
vMF-exp: von Mises-Fisher Exploration of Large
Action Sets with Hyperspherical Embeddings

Walid Bendada
Deezer Research & LAMSADE,
Université Paris Dauphine, PSL

Paris, France

Guillaume Salha-Galvan
Deezer Research

Paris, France

Romain Hennequin
Deezer Research

Paris, France

Théo Bontempelli
Deezer Research

Paris, France

Thomas Bouabça
Deezer Research

Paris, France

Tristan Cazenave
LAMSADE, Université Paris

Dauphine, PSL
Paris, France

Abstract

This workshop paper is under review for presentation at an international conference.
We introduce von Mises-Fisher exploration (vMF-exp), a scalable method for
exploring large action sets in reinforcement learning problems where hyperspherical
embedding vectors represent actions. vMF-exp involves initially sampling a state
embedding representation using a von Mises-Fisher hyperspherical distribution,
then exploring this representation’s nearest neighbors, which scales to unlimited
numbers of candidate actions. We show that, under theoretical assumptions, vMF-
exp asymptotically maintains the same probability of exploring each action as
Boltzmann Exploration (B-exp), a popular alternative that, nonetheless, suffers
from scalability issues as it requires computing softmax values for each action.
Consequently, vMF-exp serves as a scalable alternative to B-exp for exploring
large action sets with hyperspherical embeddings. We further validate the empirical
relevance of vMF-exp by discussing its successful deployment at scale on a music
streaming service to recommend playlists to millions of users.

1 Introduction

Exploration is a fundamental component of the reinforcement learning (RL) paradigm [4, 44, 52].
It allows RL agents to gather valuable information about their environment and identify optimal
actions that maximize rewards [4, 19, 25, 32, 38, 44, 47, 50, 52, 54]. However, as the set of actions
to explore grows larger, the exploration process becomes increasingly challenging. Indeed, large
action sets can lead to higher computational costs, longer learning times, and the risk of inadequate
exploration and suboptimal policy development [4, 17, 25, 42, 52, 55].

As an illustration, consider a recommender system on a music streaming service like Apple Music or
Spotify, curating playlists of songs “inspired by” an initial selection to help users discover music [8].
In practice, these services often generate such playlists all at once, using efficient nearest neighbor
search systems [33, 41] to retrieve songs most similar to the initial one, in a song embedding
vector space learned using collaborative filtering or content-based methods [8, 10, 12, 30, 49, 56].
Alternatively, one could formalize this task as an RL problem [55], where the recommender system
(i.e., the agent) would adaptively select the next song to recommend (i.e., the next action) based on
user feedback on previously recommended songs (i.e., the rewards, such as likes or skips). Using
an RL approach instead of generating the playlist at once would have the advantage of dynamically
learning from user feedback to identify the best recommendations [3, 55]. However, music streaming

38th Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).

services offer access to large catalogs with millions of songs [9, 30, 49]. Therefore, the agent would
need to consider millions of possible actions for exploration, increasing the complexity of this task.

In particular, Boltzmann Exploration (B-exp) [13, 52], a popular exploration strategy sampling
actions to explore based on embedding similarities, would become practically intractable as it would
require computing softmax values over millions of elements (see Section 2). Furthermore, in large
action sets, many actions are often irrelevant; in our example, most songs would constitute poor
recommendations [55]. Therefore, random exploration methods like ε-greedy [22, 52], although more
efficient than B-exp, would also be unsuitable for production use. Since these methods ignore song
similarities, each song, including inappropriate ones, would have an equal chance of being selected
for exploration. This could result in negative user feedback and a poor perception of the service [55].
Lastly, deterministic exploration strategies would also be ineffective. Systems serving millions of
users often rely on batch RL [39] since updating models after every trajectory is impractical. Batch
RL, unlike on-policy learning, requires exploring actions non-deterministically given a state, and
deterministic exploration would result in redundant trajectories and slow convergence [9].

In summary, exploration remains challenging in RL problems characterized by large action sets
and where accounting for embedding similarities is crucial, like our recommendation example.
Overall, although a growing body of scientific research has been dedicated to adapting RL models for
recommendation (see, e.g., the survey by Afsar et al. [3]), evidence of RL adoption in commercial
recommender systems exists but remains limited [16–18, 55]. The few existing solutions typically
settle for a workaround by using a truncated version of B-exp (TB-exp). In TB-exp, a small subset
of candidate actions is first selected, e.g., using approximate nearest neighbor search (a framework
sometimes referred to as the Wolpertinger architecture [25]). Softmax values are then computed
among those candidates only [16–18]. YouTube, for instance, employs this technique for video
recommendation [16]. TB-exp allows for exploration in the close embedding neighborhood of a given
state; however, it restricts the number of candidate actions based on technical considerations rather
than optimal convergence properties. Although exploring beyond this restricted neighborhood might
be beneficial, finding the best way to do so in large-scale settings remains an open research question.

In this paper, we propose to address this important question. Our work focuses on the specific
setting where actions are represented by embedding vectors of dimension d ≥ 2 with unit norm, i.e.,
embedding vectors lying on the d-dimensional unit hypersphere. As detailed in Section 2, this setting
aligns with many real-world recommender system applications. Our contributions are as follows:

• We introduce von Mises-Fisher exploration (vMF-exp), a scalable method for exploring large
sets of actions represented by hyperspherical embedding vectors. vMF-exp involves initially
sampling a state embedding vector using a von Mises-Fisher distribution [27], then exploring
this representation’s nearest neighbors. Our proposed strategy scales to millions of candidate
actions and, unlike TB-exp, does not restrict exploration to a specific neighborhood.

• We provide a comprehensive analysis of vMF-exp, demonstrating that, under certain the-
oretical assumptions, it asymptotically maintains the same probability of exploring each
action as the popular B-exp method, while overcoming its scalability issues. Consequently,
vMF-exp serves as a scalable alternative to B-exp for effectively exploring large action sets.

• While our analysis remains general, we also offer a real-world example of a vMF-exp usage.
We describe how, in 2024, we have deployed vMF-exp at scale on the music streaming
service Deezer to recommend “Mixes inspired by” playlists. This application, backed by
successful A/B tests on millions of users, confirms the empirical relevance of vMF-exp.

• We release a Python implementation of vMF-exp on GitHub to encourage its future use.

The remainder of this paper is organized as follows. We introduce our problem more formally in
Section 2. We propose the vMF-exp method in Section 3. We present our theoretical analysis in
Section 4, we discuss our experiments on Deezer in Section 5, and we conclude in Section 6.

2 Preliminaries

2.1 Problem Formulation

Notation In this paper, we consider an RL agent sequentially selecting actions within a set In =
{1, 2, . . . , n} of n ∈ N⋆ actions. Each action i ∈ In is represented by a distinct low-dimensional

2

vectorial representation Xi ∈ Rd, i.e., by an embedding vector or simply an embedding, for some
fixed dimension d ∈ N with d ≥ 2 and d ≪ n. Additionally, we assume all vectors have a unit
Euclidean norm, i.e., ∥Xi∥2 = 1,∀i ∈ In. They form a set noted Xn = {Xi, 1 ≤ i ≤ n} ∈ (Sd−1)n,
where Sd−1 is the d-dimensional unit hypersphere [27]: Sd−1 = {x ∈ Rd : ∥Xi∥2 = 1}.

We also assume the availability of an approximate nearest neighbor (ANN) [33, 41] search engine.
Using this engine, for any vector V ∈ Sd−1, the nearest neighbor of V among Xn in terms of inner
product similarity (equal to the cosine similarity, for unit vectors [53]), called Xi⋆V

, can be retrieved in
a sublinear time complexity with respect to n. Although ANN engines are parameterized based on a
trade-off between efficiency and accuracy, we make the simplifying assumption that Xi⋆V

is the actual
nearest neighbor of V , which we later discuss in Section 4.3. Formally, i⋆V = argmaxi∈In

⟨V , Xi⟩.
Returning to the illustrative example of Section 1, Xn would represent embeddings associated
with each song of the catalog In of the music streaming service. In this case, n would be on the
order of several millions [9, 30, 49]. The RL agent would be the recommender system sequentially
recommending these songs to users. Normalizing embeddings is a common practice in both academic
and industrial recommender systems [2, 12, 35, 49] to mitigate popularity biases, as vector norms
often encode popularity information on items [2, 15]. Normalizing embeddings also prevents inner
products from being unbounded, avoiding overflow and underflow numerical instabilities [40].

At time t, the agent considers a state vector Vt ∈ Sd−1, noted V for brevity. It selects the next action
in In, whose relevance is evaluated by a reward provided by the environment. In our example, the
agent would recommend the next song to continue the playlist, based on the previous song whose
embedding V acts as the current state. In this case, the reward might be based on user feedback, such
as liking or skipping the song [12]. The agent may select i⋆V , i.e., exploit i⋆V [52]. Alternatively, it
may rely on an exploration strategy to select another In element. Formally, an exploration strategy P
is a policy function [52] that, given V , selects each action i ∈ In with a probability P (i | V) ∈ [0, 1].

Objective Our goal in this paper is to develop a suitable exploration strategy for our specific setting,
where hyperspherical embedding vectors represent actions, and the number of actions can reach
millions. Precisely, we aim to obtain an exploration scheme meeting the following properties:

• Scalability (P1): we consider an exploration scalable if the time required to sample actions
given a vector V is at most the time needed for the ANN engine to retrieve the nearest neigh-
bor, which is typically achieved in a sublinear time complexity with respect to n. Scalability
is a mandatory requirement for exploring large action sets with millions of elements.

• Unrestricted radius (P2): Radius(P | V) is the number of actions with a non-zero probability
of being explored given a state V . While exploring actions too far from V might be
suboptimal (e.g., resulting in poor recommendations), it is crucial that exploration is not
restricted to a specific radius by construction. Such a restriction could prevent the agent
from exploring relevant actions that lie beyond this radius. An unrestricted radius ensures
that the exploration strategy remains flexible and capable of adapting to various contexts,
allowing for the exploration of relevant actions regardless of their embedding position.

• Order preservation (P3): order is preserved when the probability of selecting the action
i given the state V is a strictly increasing function of ⟨V , Xi⟩. More formally, order
preservation requires ∀(i, j) ∈ I2

n, ⟨V , Xi⟩ > ⟨V , Xj⟩ =⇒ P (i | V) > P (j | V).
Order preservation implies that the exploration strategy properly leverages the information
captured in the embedding vectors to assess the relevance of an action given a state.

2.2 Limitations of Existing Exploration Strategies

Finding an exploration strategy that simultaneously meets these three properties is essential for effec-
tive exploration in RL problems with large action sets and embedding representations. Nonetheless,
existing exploration strategies suffer from limitations that motivate our work in this paper.

Random and ε-greedy Exploration The most straightforward example of an exploration strategy
would be the random (uniform) policy, where Prand(i | V) = 1

n ,∀i ∈ In. A popular variant is the
ε-greedy strategy [52]. With a probability ε ∈ [0, 1], the agent would choose the next action uniformly
at random. With a probability 1− ε, it would exploit the most relevant action based on its knowledge.
Random and ε-greedy exploration strategies are scalable (P1), as elements of In can be uniformly

3

sampled in O(1) time [21]. Additionally, they verify P2. Indeed, Radius(Prand|V) = n since every
action can be selected. However, these strategies ignore embeddings at the sampling phase and do
not achieve order preservation (P3). This is a significant limitation, reinforced by the fact that these
policies have a maximal radius. As explained in Section 1, in large action sets, many actions are often
irrelevant, e.g., most songs from the musical catalog would constitute poor recommendations given
an initial state [55]. Exploring each action/song with equal probability, including inappropriate ones,
could result in negative user feedback and a poor perception of the service [55].

Boltzmann Exploration To address the limitations of random exploration, one can sample actions
according to their embedding similarity with V . The prevalent approach in RL is Boltzmann
Exploration (B-exp) [4, 13, 17, 52], which employs the Boltzmann distribution for action sampling:

∀i ∈ In, PB-exp(i | V,Xn, κ) =
eκ⟨V , Xi⟩∑n
j=1 e

κ⟨V , Xj⟩
, (1)

where the hyperparameter κ ∈ R+ controls the entropy of the distribution. B-exp samples actions
according to a strictly increasing function of their inner product similarity with V for κ > 0,
guaranteeing order preservation (P3). By carefully tuning κ, one can ensure that irrelevant actions are
practically never selected while maintaining a non-zero probability of recommending actions with less
than maximal similarity, thereby indirectly controlling the radius of the policy (P2). Unfortunately,
B-exp does not satisfy P1, i.e., it is not scalable to large action sets. Indeed, evaluating Equation (1)
requires explicitly computing the probability of sampling each individual action before actually
sampling from them, which is prohibitively expensive for large values of n [17]. Note that, while we
focus on B-exp in this section, these scalability concerns would remain valid for any other sampling
distribution requiring explicitly computing similarities and probabilities for each of the n actions [4].

Truncated Boltzmann Exploration Due to these scalability concerns, previous work on RL with
large and embedded action sets often settled for a workaround consisting in sampling actions from a
truncated version of the Boltzmann distribution (or another distribution) [17]. In this method, which
we refer to as Truncated Boltzmann Exploration (TB-exp), a small number m ≪ n of candidate
actions, usually around hundreds or thousands, is first retrieved using the ANN search engine, leading
to a candidate action set Im(V). The sampling step is subsequently performed only within Im(V):

∀i ∈ Im(V), PTB-exp,m(i | V,Xn, κ) =
eκ⟨V , Xi⟩∑

j∈Im(V) e
κ⟨V , Xj⟩

. (2)

TB-exp performs action selection in a time that depends on m instead of n, and has been successfully
deployed in production environments involving millions of actions [16–18]. While it still satisfies P3,
TB-exp also meets P1 for small values of m. However, it no longer satisfies P2. This method
restricts the radius, i.e., the number of candidate actions, based on technical considerations rather
than exploration efficiency. This restriction can potentially hinder model convergence by neglecting
the exploration of relevant actions beyond this fixed radius. In summary, the challenge of finding
an exploration strategy that satisfies P1, P2, and P3 simultaneously—in other words, an exploration
scheme with properties similar to full Boltzmann exploration yet scalable—remains relatively open.

3 From Boltzmann to von Mises–Fisher (vMF) Exploration

In this section, we present our solution for exploring large action sets with hyperspherical embeddings.

3.1 von Mises–Fisher Exploration

The inability of B-exp to scale arises from its need to compute all n sampling probabilities explicitly.
In this paper, we propose von Mises-Fisher Exploration (vMF-exp), an alternative exploration strategy
that overcomes this constraint. Specifically, given an initial state vector V , vMF-exp consists in:

• Firstly, sampling a vector Ṽ according to a vMF distribution [27] centered on V .

• Secondly, selecting Ṽ s nearest neighbor action in the embedding space for exploration.

4

V

A

0.5

1.0

1.5

2.0

2.5

(a)

A
V

V

O

< V, A >

(b)

0

X1

X2
X3

X4

X5

X6X7

X8

X9

X10 O

V
V

0
1

0 + 1
2

AA

(c)

Figure 1: (a) PDF of a 3D vMF distribution. (b) vMF-exp explores the action A when the sampled
vector Ṽ lies in A’s Voronoï cell, shown in red in 3D. (c) Same as (b) in 2D.

In directional statistics, the vMF distribution [27] is a continuous vector probability distribution
defined on the unit hypersphere Sd−1. It has recently been used in RL to assess the uncertainty of
gradient directions [57]. For all Ṽ ∈ Sd−1, its probability density function (PDF) is:

fvMF(Ṽ | κ, V, d) = Cd(κ)e
κ⟨V , Ṽ ⟩,with Cd(κ) =

1∫
Ṽ ∈Sd−1 eκ⟨V , Ṽ ⟩ dṼ

=
κ

d
2−1

(2π)
d
2 I d

2−1(κ)
(3)

with κ ∈ R+. The function I d
2−1 designates the modified Bessel function of the first kind [7] at

order d/2− 1. Figure 1(a) illustrates the PDF of a vMF distribution on the 3-dimensional unit sphere.
For any Ṽ ∈ Sd−1, fvMF(Ṽ | κ, V, d) is proportional to eκ⟨V , Ṽ ⟩, which is reminiscent of the B-exp
sampling probability of Equation (1). The hyperparameter κ controls the entropy of the distribution.
In particular, for κ = 0, the vMF distribution boils down to the uniform distribution on Sd−1.

3.2 Properties

P1 vMF-exp only requires sampling a d-dimensional vector instead of handling a discrete distri-
bution with n parameters, allowing Ṽ to be sampled in constant time with respect to n. Therefore,
vMF-exp is a scalable exploration strategy. Efficient sampling algorithms for vMF distributions have
been extensively studied [34, 46]. As shown in the following sections, we successfully explored sets
of millions of actions without scalability issues, using the Python vMF sampler from Pinzón and
Jung [46] for simulations in Section 4 and our own variant implementation for A/B tests in Section 5.

P2 The probability of sampling i ∈ In given V for exploration is the probability that Xi is the
nearest neighbor of Ṽ among Xn vectors, i.e., that Ṽ lies in SVoronoï(Xi | Xn), the Voronoï cell of
Xi in the Voronoï tessellation of Sd−1 defined by Xn [23, 24] (see Figures 1(b) and1(c)). We have:
SVoronoï(Xi | Xn) = {Ṽ ∈ Sd−1,∀j ∈ In, ⟨Ṽ , Xi⟩ ≥ ⟨Ṽ , Xj⟩}, and

⋃
i∈In

SVoronoï(Xi | Xn) =

Sd−1. Using this notation, the probability of sampling the action i for exploration using vMF-exp is:

∀i ∈ In, PvMF-exp(i | V,Xn, κ) =

∫
Ṽ ∈SVoronoï(Xi|Xn)

fvMF(Ṽ | κ, V, d) dṼ , (4)

which is always strictly positive. Thus, vMF-exp verifies the unrestricted radius property. Like B-exp,
tuning κ ensures that actions with low similarity have negligible sampling probabilities in practice.

P3 PvMF-exp(i | V,Xn, κ) increases due to two factors. Firstly, the average fvMF(Ṽ | κ, V, d) value
for Ṽ ∈ SVoronoï(Xi | Xn), which is correlated to ⟨Xi , V ⟩ and contributes to order preservation.
Secondly, the surface area of SVoronoï(Xi | Xn), measuring how dissimilar Xi is from other Xn

elements. Actions embedded in a low-density subspace of Sd−1 will have an expanded Voronoï
cell and may be selected more often than actions closer to V but located in a high-density subspace.
Hence, vMF-exp favors actions that are both similar to V and dissimilar to other actions, and order
preservation depends on the Xn distribution. Section 4 will focus on a setting where B-exp and vMF-
exp asymptotically share similar probabilities. Consequently, vMF-exp, like B-exp, will verify order
preservation (P3). In conclusion, in this setting, vMF-exp will verify P1, P2, and P3 simultaneously.

5

4 Theoretical Comparison of vMF-exp and B-exp

We now provide a mathematical comparison of vMF-exp and B-exp. We focus on the theoretical
setting presented in Section 4.1. We show that, in this setting, vMF-exp maintains the same probability
of exploring each action as B-exp, while overcoming its scalability issues. As noted above, this implies
that vMF-exp verifies P1, P2, and P3 simultaneously and, therefore, acts as a scalable alternative to
the popular but unscalable B-exp for exploring large action sets with hyperspherical embeddings.

4.1 Setting and Assumptions

We focus on the setting where embeddings are independent and identically distributed (i.i.d.) and
follow a uniform distribution on the unit hypersphere, i.e., Xn ∼ U(Sd−1). For convenience in our
proofs, we consider the action set to be the union of In, the set of n actions, and another action a
with a known embedding A ∈ Sd−1. The resulting entire action set In+1 and embedding set Xn+1

are defined as In+1 = In ∪ {a} and Xn+1 = Xn ∪ {A} . In this section, we are interested in the
probability of each exploration scheme, B-exp and vMF-exp, to sample a among all actions of In+1

given a state embedding vector V ∈ Sd−1. These probabilities are defined respectively as:

PB-exp(a | n, d, V, κ) = E Xn∼U(Sd−1)

[
PB-exp(a | V,Xn+1, κ)

]
, (5)

PvMF-exp(a | n, d, V, κ) = E Xn∼U(Sd−1)

[
PvMF-exp(a | V,Xn+1, κ)

]
. (6)

4.2 Results

We now present and discuss our main theoretical results. For brevity, we report all intermediary
lemmas and mathematical proofs in the Appendices A to D of this paper. Our first and most general
result links the asymptotic behavior of B-exp and vMF-exp as the action set grows.
Proposition 4.1. In the setting of Section 4.1, we have:

lim
n→+∞

PB-exp(a | n, d, V, κ)
PvMF-exp(a | n, d, V, κ)

= 1. (7)

Proposition 4.1 states that, for large values of n, the probability of selecting a for exploration is
asymptotically the same using either B-exp or vMF-exp. This result follows from the respective
asymptotic characterizations of PB-exp and PvMF-exp, detailed below. Importantly, it implies that, for
large values of n, vMF-exp shares the same properties as B-exp (P2, P3), including order preservation.
However, as noted in Section 3, vMF-exp offers greater scalability since its implementation only
requires sampling a vector of a fixed size d, an operation independent of the number of actions n (P1).
Next, we give a common approximate expression for both methods, defined as P0(a | n, d, V, κ) =
fvMF(A|V,κ)A(Sd−1)

n , with A(Sd−1) denoting the surface area of the hypersphere Sd−1, and describe
the rate at which this asymptotic behavior is reached as n grows.
Proposition 4.2. In the setting of Section 4.1, we have:

PB-exp(a | n, d, V, κ) = P0(a | n, d, V, κ) + o(
1

n
√
n
). (8)

Proposition 4.3. In the setting of Section 4.1, we have:

PvMF-exp(a | n, d, V, κ) = P0(a | n, d, V, κ) +

{
O(1

n2) if d = 2,

O(1

n
1+ 2

d−1
) if d > 2. (9)

In essence, when n is large, the probability of sampling the action a can be approximated by the PDF
of the vMF distribution evaluated at A multiplied by the average surface area of the Voronoï cell of
A, for both exploration methods. As n grows, this Voronoï cell shrinks until fvMF becomes nearly
constant across its entire surface. Figure 2(f) illustrates this interpretation.

However, the rate at which both exploration methods reach their asymptotic behavior differs. The rate
at which the Voronoi cell shrinks depends on the dimension of the hypersphere, which explains why
the second term of Equation (9) depends on d. Note that this is not the case for B-exp. Consequently,
for large values of d, one may require a higher number of actions n before the asymptotic behavior
of Equation (7) is observed. For this reason, it is useful to obtain a more precise approximation of
PvMF-exp(a | n, d, V, κ) when d increases, which we provide in the next section.

6

0.2 0.4 0.6 0.8 1.0
n 1e6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

P(
a)

1e 5 = 1.0, <V,A>=0.5, d=4
P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(a)

0.2 0.4 0.6 0.8 1.0
n 1e6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

P(
a)

1e 5 = 1.0, <V,A>=0.5, d=8
P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(b)

0.2 0.4 0.6 0.8 1.0
n 1e6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

P(
a)

1e 5 = 1.0, <V,A>=0.5, d=16
P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(c)

0.2 0.4 0.6 0.8 1.0
n 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P(
a)

1e 5 = 1.0, <V,A>=0.5, d=32
P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(d)

0.2 0.4 0.6 0.8 1.0
n 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P(
a)

1e 5 = 1.0, <V,A>=0.5, d=64
P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(e)

50
100

1000A

O

(f)

Figure 2: (a) to (e): Simulations of Section 4.3. (f) 3D Voronoï cell of A for n ∈ {50, 100, 1000}.

4.3 Discussion

High Dimension Following the above discussion, Proposition 4.4 offers a more precise expression
of PvMF-exp(a | n, V, κ) to use when d increases (roughly, d ≥ 20 in our experiments). It is obtained
by studying the first two terms of the Taylor expansion [1] of fvMF near A, instead of only the
zero-order term, the second term becoming more significant when d increases. Despite its apparent
complexity, it can be interpreted simply. The negative sign before ⟨V , A⟩, indicates that, when A is
similar to V , it is sampled less often than with B-exp for the same κ and d values. Conversely, when
A is on the opposite side of the hypersphere, the term contributes positively to PvMF-exp(a | n, V, κ).
To summarize, for larger d values, vMF-exp is expected to explore more than B-exp with the same κ.

Proposition 4.4. Let B : (z1, z2) 7→
∫ 1

0
tz1−1(1− t)z2−1 dt denote the Beta function, and Γ : z 7→∫∞

0
tz−1e−t dt denote the Gamma function [1]. In the setting of Section 4.1 with d ≥ 3, we have:

PvMF-exp(a | n, V, κ) = P1(a | n, V, κ) +O(
1

n
2

d−1

),with: (10)

P1(a | n, V, κ) = P0(a | n, V, κ)− fvMF(A | V, κ)A(Sd−1)

n

κ⟨V , A⟩Γ(d+1
d−1)

2

(
(d− 1)B(12 ,

d−1
2)

n

) 2
d−1

.

The case d = 2 In 2 dimensions, Voronoi cells are arcs of a circle and are delimited by the
perpendicular bisectors of two neighboring points, as shown in Figure 1(c). Interestingly, in this
specific case, PvMF-exp(a | n, d = 2, V, κ) can be computed using geometric arguments. We report
a comprehensive analysis in Appendix B, confirming that, when d = 2, vMF-exp approaches its
asymptotic behavior faster than B-exp, as indicated by the O(1

n2) term in Proposition 4.3.

Validation Using Monte Carlo Simulations Using the Python sampler of Pinzón and Jung [46],
we repeatedly sampled vectors Xn ∼ U(Sd−1) and Ṽ ∼ vMF(V, κ), for various d, κ, and ⟨V , A⟩.
Figure 2 reports, for κ = 1.0, ⟨V , A⟩ = 0.5 and growing values of d, the PvMF-exp(a) sampling
probability depending on the number of actions n, as well as PB-exp(a) with similar parameters and
our approximations P0(a) and P1(a). We repeated all experiments 8 million times and reported
95% intervals. Our results are consistent with our theoretical findings. Firstly, in line with Proposition
4.2, PB-exp(a) and P0(a) are indistinguishable for this range of n values. Secondly, for small d values

7

Figure 3: Interface of the “Mixes inspired by” recommender system on Deezer. To preserve anonymity,
we have removed some elements from the figure, such as the logo and the top/bottom of the website.

(Figures 2(a), 2(b), 2(c)), PvMF-exp is also tightly aligned with PB-exp(a) and P0(a), consistently with
Proposition 4.1 and 4.3. Note that the y-axis in on a 1e-5 scale; hence, probabilities are extremely
close. Thirdly, when d ≥ 16 (Figures 2(d), 2(e)), P1(a) becomes more distinguishable from P0(a)
and constitutes a better approximation of PvMF-exp(a) than P0(a), as per Proposition 4.4. Lastly,
since ⟨V , A⟩ > 0, Proposition 4.4 predicts that PB-exp(a) ≥ PvMF-exp(a) for large d, which our
experiments confirm. We provide comparable simulations with other (d, κ, ⟨V , A⟩) combinations
in Appendix F. Our code will be available online at: https://github.com/deezer.

Link with Thompson Sampling One might draw interesting similarities between vMF-exp and
bandit arm exploration using Thompson Sampling [14]. Appendix E compares the two approaches.

Limitations and Future Work While we believe our study offers valuable insights into vMF-exp,
several limitations must be acknowledged. Most notably, our theoretical guarantees are currently
restricted to the setting of Section 4.1 where embeddings are i.i.d. and uniform vectors. Although,
in practice, vMF-exp can be used with hyperspherical embeddings from other distributions, we do
not yet provide guarantees in these cases. For instance, studying vMF-exp in clustered embedding
settings, as is sometimes the case with music recommendation embeddings [2] (where clusters can,
e.g., summarize music genres [48]), could be insightful. Section 5 will demonstrate the practical
value of vMF-exp on song embeddings that do not explicitly comply with Section 4.1, but further
mathematical investigation would be warranted. In future work, we will also study the second-order
term of Proposition 4.4, which could be relevant for large values of κ, and the impact of errors from
the ANN engine. While we assumed this engine returns exact neighbors, this may not hold for very
large action sets [33] and, intuitively, could cause minor exploration perturbations.

5 Application to Large-Scale Music Recommendation

Our analysis of vMF-exp in Section 4 was intentionally general, as the method can be applied to
various problem settings. In this Section 5, we showcase a real-world application of vMF-exp.

5.1 Experimental Setting

We consider the “Mixes inspired by” feature of the global music streaming service Deezer. This
recommender system is deployed at scale and available on the homepage of this service. As shown in
Figure 3, it displays a personalized shortlist of songs, selected from those previously liked by each user.
A click on a song generates a playlist of 40 songs “inspired by“ the initial one, with the aim of helping
users discover new music within a catalog including several millions of recommendable songs.

To generate playlists, Deezer leverages a collaborative filtering model [37]. This model learns unit
norm song embedding representations of dimension d = 128 by factorizing a mutual information
matrix based on song co-occurrences in various listening contexts, using singular value decomposition
(SVD) [6]. Inner product proximity in the resulting embedding space aims to reflect user preferences.
When a user selects an initial song, the model retrieves its embedding, then (approximately) identifies
its neighbors in the embedding space using the efficient Faiss library [33] for ANN. Currently, Deezer
generates the entire playlist at once in production. The service is considering RL approaches to,
instead, recommend songs one by one while adapting to user feedback on previous songs of the
playlist (likes, skips, etc.). However, as explained in Section 1, adopting such approaches would
require exploring millions of possible actions/songs, significantly increasing the complexity of this

8

task. In this section, we continue generating “Mixes inspired by” playlists all at once, but take a step
towards RL by comparing three methods for exploring large action sets of millions of songs:

• vMF-exp: we use the embedding of the user’s selected song as the initial state V . We
sample a random state embedding Ṽ according to the vMF distribution, using the estimator
of Banerjee et al. [5] to tune κ (see Equation (4) of Sra [51]). Finally, we recommend the 40
nearest neighbors of Ṽ in the embedding space according to the ANN engine.

• TB-exp: comparing vMF-exp to full B-exp is practically intractable at this scale. We compare
vMF-exp to TB-exp with a similar κ. We first retrieve the m = 500 nearest neighbors of the
initial song in the embedding space, according to the ANN engine. Then, we generate the
playlist by sampling 40 songs from these 500 using a truncated Boltzmann distribution.

• Reference: we also compare vMF-exp to a baseline that retrieves the 500 nearest neighbors
of the initial song using ANN, then shuffles them randomly to generate a playlist of 40 songs.

In early 2024, we conducted an online A/B test on Deezer to compare these exploration strategies in
real conditions. The test involved millions of users worldwide, randomly split and unaware of the test.

5.2 Results

Firstly, it is important to highlight that we were able to successfully deploy vMF-exp in Deezer’s
production environment, achieving a sampling latency of just a few milliseconds, comparable to the
other methods. This industrial deployment on a service used by millions of users on a daily basis
confirms the claimed scalability of vMF-exp and its practical relevance for large-scale applications.

Using vMF-exp or TB-exp for exploration improved the daily number of recommended songs “liked”
by users through “Mixes inspired by” (liking a song adds it to their list of favorites), compared to
the reference baseline. For confidentiality, we do not report exact numbers of likes or users in each
cohort, but present relative rates with respect to the reference. On average, users exposed to vMF-exp
or TB-exp added 11% more recommended songs to their playlists than the reference cohort. These
differences were statistically significant at the 1% level (p-value < 0.01). No apparent differences
were observed between vMF-exp and TB-exp, showing that vMF-exp is competitive with TB-exp.

In addition, vMF-exp, which does not suffer from the restricted radius of TB-exp, recommended
more diverse playlists. We measured the average Jaccard similarity [53] of playlists generated from
the same initial selection, to assess how similar the songs sampled from the same state embedding
were, for each method. Results reveal that TB-exp had an average Jaccard similarity 35% higher (less
diverse playlists) than vMF-exp, a statistically significant difference at the 1% level (p-value < 0.01).
Therefore, vMF-exp allowed for a more substantial exploration, without compromising performance.

At the time of writing, Deezer continues to use vMF-exp for “Mixes inspired by” recommendations.
Playlists are still generated at once, but our work equips this service with an effective strategy to
explore their large and embedded action set of millions of songs. This opens interesting avenues for
further investigation of RL for recommendation. In the near future, Deezer will launch tests involving
actor-critic RL models [36, 52] to explore and generate songs sequentially based on user feedback.

6 Conclusion

In conclusion, the primary contribution of this article is the development of vMF-exp, a scalable
method for exploring large action sets in RL problems where hyperspherical embedding vectors rep-
resent actions. We have shown that, under theoretical conditions, vMF-exp asymptotically maintains
the same probability of exploring each action as the popular B-exp method while overcoming its scal-
ability issues. Additionally, unlike the TB-exp workaround, which restricts exploration to a specific
neighborhood, vMF-exp allows for unrestricted exploration. This makes vMF-exp a valuable tool for
RL researchers and practitioners aiming to explore large action sets with hyperspherical embeddings,
offering a suitable alternative to both B-exp and TB-exp. We have also discussed the limitations of our
work, suggesting directions for future research. While our analysis has been general, the final part of
this article has also provided a real-world application of vMF-exp. Specifically, we have successfully
deployed vMF-exp on the music streaming service Deezer, where it has been used for months to
better explore songs to recommend to millions of users. This application highlights the practical
relevance of our work and will facilitate future RL research and large-scale experiments on Deezer.

9

References
[1] Milton Abramowitz and Irene A Stegun. 1948. Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. Vol. 55. US Government Printing Office.

[2] Darius Afchar, Romain Hennequin, and Vincent Guigue. 2023. Of Spiky SVDs and Music
Recommendation. In Proceedings of the 17th ACM Conference on Recommender Systems.
926–932.

[3] Mehdi M Afsar, Trafford Crump, and Behrouz Far. 2022. Reinforcement Learning Based
Recommender Systems: A Survey. ACM Computing Surveys 55, 7 (2022), 1–38.

[4] Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke van Hoof, and Doina Precup. 2021. A
Survey of Exploration Methods in Reinforcement Learning. arXiv preprint arXiv:2109.00157
(2021).

[5] Arindam Banerjee, Inderjit S Dhillon, Joydeep Ghosh, Suvrit Sra, and Greg Ridgeway. 2005.
Clustering on the Unit Hypersphere using von Mises-Fisher Distributions. Journal of Machine
Learning Research 6, 9 (2005).

[6] Sudipto Banerjee and Anindya Roy. 2014. Linear Algebra and Matrix Analysis for Statistics.
CRC Press.

[7] Árpád Baricz. 2010. Generalized Bessel Functions of the First Kind. Springer.

[8] Walid Bendada, Théo Bontempelli, Mathieu Morlon, Benjamin Chapus, Thibault Cador,
Thomas Bouabça, and Guillaume Salha-Galvan. 2023. Track Mix Generation on Music Stream-
ing Services using Transformers. In Proceedings of the 17th ACM Conference on Recommender
Systems. 112–115.

[9] Walid Bendada, Guillaume Salha, and Théo Bontempelli. 2020. Carousel Personalization in
Music Streaming Apps with Contextual bandits. In Proceedings of the 14th ACM Conference
on Recommender Systems. 420–425.

[10] Walid Bendada, Guillaume Salha-Galvan, Thomas Bouabça, and Tristan Cazenave. 2023. A
Scalable Framework for Automatic Playlist Continuation on Music Streaming Services. In
Proceedings of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 464–474.

[11] Patrick Billingsley. 2013. Convergence of Probability Measures. John Wiley & Sons.

[12] Théo Bontempelli, Benjamin Chapus, François Rigaud, Mathieu Morlon, Marin Lorant, and
Guillaume Salha-Galvan. 2022. Flow Moods: Recommending Music by Moods on Deezer. In
Proceedings of the 16th ACM Conference on Recommender Systems. 452–455.

[13] Nicolò Cesa-Bianchi, Claudio Gentile, Gábor Lugosi, and Gergely Neu. 2017. Boltzmann
Exploration Done Right. Advances in Neural Information Processing Systems 30 (2017).

[14] Olivier Chapelle and Lihong Li. 2011. An Empirical Evaluation of Thompson Sampling.
Advances in Neural Information Processing Systems 24 (2011).

[15] Jiawei Chen, Junkang Wu, Jiancan Wu, Xuezhi Cao, Sheng Zhou, and Xiangnan He. 2023.
Adap-τ : Adaptively Modulating Embedding Magnitude for Recommendation. In Proceedings
of the ACM Web Conference 2023. 1085–1096.

[16] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H Chi. 2019.
Top-K Off-Policy Correction for a REINFORCE Recommender System. In Proceedings of the
12th ACM International Conference on Web Search and Data Mining. 456–464.

[17] Minmin Chen, Bo Chang, Can Xu, and Ed H Chi. 2021. User Response Models to Improve a
REINFORCE Recommender System. In Proceedings of the 14th ACM International Conference
on Web Search and Data Mining. 121–129.

10

[18] Minmin Chen, Can Xu, Vince Gatto, Devanshu Jain, Aviral Kumar, and Ed Chi. 2022. Off-
Policy Actor-Critic for Recommender Systems. In Proceedings of the 16th ACM Conference on
Recommender Systems. 338–349.

[19] Alberto Silvio Chiappa, Alessandro Marin Vargas, Ann Huang, and Alexander Mathis. 2023.
Latent Exploration for Reinforcement Learning. Advances in Neural Information Processing
Systems 36 (2023).

[20] Julian L Coolidge. 1949. The Story of the Binomial Theorem. The American Mathematical
Monthly 56, 3 (1949), 147–157.

[21] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022. Introduction
to Algorithms. MIT Press.

[22] Chris Dann, Yishay Mansour, Mehryar Mohri, Ayush Sekhari, and Karthik Sridharan. 2022.
Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation. In
Proceedings of the 39th International Conference on Machine Learning. PMLR, 4666–4689.

[23] Qiang Du, Vance Faber, and Max Gunzburger. 1999. Centroidal Voronoi Tessellations: Applica-
tions and Algorithms. SIAM Rev. 41, 4 (1999), 637–676.

[24] Qiang Du, Max Gunzburger, and Lili Ju. 2010. Advances in Studies and Applications of
Centroidal Voronoi Tessellations. Numerical Mathematics: Theory, Methods and Applications
3, 2 (2010), 119–142.

[25] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap,
Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. 2015. Deep
Reinforcement Learning in Large Discrete Action Spaces. arXiv preprint arXiv:1512.07679
(2015).

[26] Hans Fischer. 2011. A History of the Central Limit Theorem: from Classical to Modern
Probability Theory. Springer.

[27] Ronald Aylmer Fisher. 1953. Dispersion on a Sphere. Proceedings of the Royal Society of
London. Series A. Mathematical and Physical Sciences 217, 1130 (1953), 295–305.

[28] James E Gentle. 2009. Computational Statistics. Vol. 308. Springer.

[29] Boris Gnedenko. 1943. Sur la Distribution Limite du Terme Maximum d’une Serie Aleatoire.
Annals of Mathematics (1943), 423–453.

[30] Kurt Jacobson, Vidhya Murali, Edward Newett, Brian Whitman, and Romain Yon. 2016. Music
Personalization at Spotify. Proceedings of the 10th ACM Conference on Recommender Systems,
373–373.

[31] Jean Jacod and Philip Protter. 2004. Probability Essentials. Springer Science & Business
Media.

[32] Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. 2020. Reward-Free
Exploration for Reinforcement Learning. In Proceedings of the 37th International Conference
on Machine Learning. PMLR, 4870–4879.

[33] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-Scale Similarity Search with
GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[34] Seungwoo Kang and Hee-Seok Oh. 2024. Novel Sampling Method for the von Mises–Fisher
Distribution. Statistics and Computing 34, 3 (2024), 106.

[35] Dain Kim, Jinhyeok Park, and Dongwoo Kim. 2023. Test-Time Embedding Normalization
for Popularity Bias Mitigation. In Proceedings of the 32nd ACM International Conference on
Information and Knowledge Management. 4023–4027.

[36] Vijay Konda and John Tsitsiklis. 1999. Actor-Critic Algorithms. Advances in Neural Information
Processing Systems 12 (1999).

11

[37] Yehuda Koren and Robert Bell. 2015. Advances in Collaborative Filtering. Recommender
Systems Handbook (2015), 77–118.

[38] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. 2022. Exploration in Deep
Reinforcement Learning: A Survey. Information Fusion 85 (2022), 1–22.

[39] Sascha Lange, Thomas Gabel, and Martin Riedmiller. 2012. Batch Reinforcement Learning. In
Reinforcement Learning: State-Of-The-Art. Springer, 45–73.

[40] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep Learning. Nature 521, 7553
(2015), 436–444.

[41] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xuemin Lin.
2019. Approximate Nearest Neighbor Search on High Dimensional Data — Experiments,
Analyses, and Improvement. IEEE Transactions on Knowledge and Data Engineering 32, 8
(2019), 1475–1488.

[42] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. 2016. Continuous Control with Deep Reinforcement Learning.
In Proceedings of the 4th International Conference on Learning Representation.

[43] Kanti V Mardia and Peter E Jupp. 2009. Directional Statistics. John Wiley & Sons.

[44] Roger McFarlane. 2018. A Survey of Exploration Strategies in Reinforcement Learning. McGill
University 3 (2018), 17–18.

[45] Gary W Oehlert. 1992. A Note on the Delta Method. The American Statistician 46, 1 (1992),
27–29.

[46] Carlos Pinzón and Kangsoo Jung. 2023. Fast Python Sampler for the von Mises Fisher
Distribution. HAL Id: hal-04004568 (2023).

[47] Stuart Ian Reynolds. 2002. Reinforcement Learning with Exploration. Ph.D. Thesis, University
of Birmingham (2002).

[48] Guillaume Salha-Galvan, Johannes F Lutzeyer, George Dasoulas, Romain Hennequin, and
Michalis Vazirgiannis. 2022. Modularity-Aware Graph Autoencoders for Joint Community
Detection and Link Prediction. Neural Networks 153 (2022), 474–495.

[49] Markus Schedl, Hamed Zamani, Ching-Wei Chen, Yashar Deldjoo, and Mehdi Elahi. 2018.
Current Challenges and Visions in Music Recommender Systems Research. International
Journal of Multimedia Information Retrieval 7 (2018), 95–116.

[50] Aleksandrs Slivkins et al. 2019. Introduction to Multi-Armed Bandits. Foundations and Trends
in Machine Learning 12, 1-2 (2019), 1–286.

[51] Suvrit Sra. 2012. A Short Note on Parameter Approximation for von Mises-Fisher Distributions:
And a Fast Implementation of Is(x). Computational Statistics 27 (2012), 177–190.

[52] Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Introduction. MIT
Press.

[53] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2016. Introduction to Data Mining.
Pearson Education India.

[54] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. 2017. # Exploration: A Study of Count-Based
Exploration for Deep Reinforcement Learning. Advances in Neural Information Processing
Systems 30 (2017).

[55] Federico Tomasi, Joseph Cauteruccio, Surya Kanoria, Kamil Ciosek, Matteo Rinaldi, and
Zhenwen Dai. 2023. Automatic Music Playlist Generation via Simulation-based Reinforcement
Learning. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 4948–4957.

12

[56] Hamed Zamani, Markus Schedl, Paul Lamere, and Ching-Wei Chen. 2019. An Analysis
of Approaches Taken in the ACM RecSys Challenge 2018 for Automatic Music Playlist
Continuation. ACM Transactions on Intelligent Systems and Technology (TIST) 10, 5 (2019),
1–21.

[57] Yiwen Zhu, Jinyi Liu, Wenya Wei, Qianyi Fu, Yujing Hu, Zhou Fang, Bo An, Jianye Hao,
Tangjie Lv, and Changjie Fan. 2024. vMFER: von Mises-Fisher Experience Resampling Based
on Uncertainty of Gradient Directions for Policy Improvement of Actor-Critic Algorithms.
In Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent
Systems. 2621–2623.

13

Appendix

This appendix provides detailed proofs and discussions for all theoretical results presented in the
“vMF-exp: von Mises-Fisher Exploration of Large Action Sets with Hyperspherical Embeddings”
article along with additional figures.

A Asymptotic Behavior of Boltzmann Exploration (Proof of Proposition 4.2)

We begin with the proof of Proposition 4.2 claiming that, in the setting of Section 4.1, we have:

PB-exp(a | n, d, V, κ) = fvMF(A | V, κ)A(Sd−1)

n︸ ︷︷ ︸
denoted P0(a|n,d,V,κ)

+o(
1

n
√
n
), (11)

with fvMF the probability density function (PDF) of the von Mises-Fisher (vMF) [27] distribution:

∀A ∈ Sd−1, fvMF(A | V, κ) = Cd(κ)e
κ⟨V , A⟩, (12)

where A(Sd−1) is the surface area of Sd−1, the d-dimensional unit hypersphere, and Cd(κ) is the
normalizing constant.

Proof. By definition,

PB-exp(a | n, d, V, κ) = E Xn∼U(Sd−1)

[
eκ⟨V , A⟩

eκ⟨V , A⟩ +
∑n

i=1 e
κ⟨V , Xi⟩

]
=

eκ⟨V , A⟩

n
E Xn∼U(Sd−1)

[
1

eκ⟨V , A⟩

n +
∑n

i=1
eκ⟨V , Xi⟩

n

]

=
eκ⟨V , A⟩

n
E Xn∼U(Sd−1)

[
1

Dn

]
.

(13)

We use Dn to denote the denominator of the expression inside the above expectation. Dn is the
empirical average of n independent and identically distributed (i.i.d.) random variables (plus a
constant). Therefore, by applying the Central Limit Theorem (CLT) [26], we know that as n grows it
will be asymptotically distributed according to a Normal distribution with the following expectation:

E Xn∼U(Sd−1) [Dn] = E Xn∼U(Sd−1)

[
eκ⟨V , A⟩

n
+

n∑
i=1

eκ⟨V , Xi⟩

n

]

=
eκ⟨V , A⟩

n
+ E X∼U(Sd−1)

[
eκ⟨V , X⟩

]
.

(14)

Moreover, we have:

E X∼U(Sd−1)

[
eκ⟨V , X⟩

]
=

∫
X∈Sd−1

eκ⟨V , X⟩

A(Sd−1)
dX

=
1

A(Sd−1)Cd(κ)
,

(15)

using the fact that Cd(κ) is the normalizing constant of a vMF distribution, ensuring that its PDF
(Equation (12)) sums to 1 when integrated on the unit hypersphere.

Let us define σ = Var X∼U(Sd−1)

[
eκ⟨V , X⟩] Although we do not need an explicit expression for σ,

we know it is finite. Additionally, let g : x 7→ 1

x
be the inverse function. The CLT ensures that:

√
n
[
Dn − 1

A(Sd−1)Cd(κ)

]
D−→N (0, σ2), (16)

where D−→ denotes convergence in distribution [31]. Moreover, since g is a differentiable function on
R∗

+, we use the Delta method [45] to infer that:
√
n[g(Dn)− g(

1

A(Sd−1)Cd(κ)
)]

D−→N (0, σ2[g′(
1

A(Sd−1)Cd(κ)
)]2). (17)

14

Replacing g and g′ by their respective values, we obtain:

√
n
[1

Dn
− Cd(κ)A(Sd−1)

]
D−→N (0, σ2(A(Sd−1)Cd(κ))

4). (18)

Furthermore, recall that if a sequence Z1, Z2, ... of random variables converges in distribution to a
random variable Z, then for all bounded continuous function ϕ, lim

n→+∞
E [ϕ(Zn)] = E [ϕ(Z)] [31].

Since for every n the random variable Zn =
√
n[1

Dn
− Cd(κ)A(Sd−1)] has bounded values, we can

simply chose the identity function for ϕ to conclude that :

lim
n→+∞

E Xn∼U(Sd−1)

[√
n[

1

Dn
− Cd(κ)A(Sd−1)]

]
= 0, (19)

which is equivalent to:

E Xn∼U(Sd−1)

[
1

Dn

]
= Cd(κ)A(Sd−1) + o(

1√
n
). (20)

Finally, by multiplying Equation (20) by eκ⟨V , A⟩

n , we obtain Equation (11), concluding the proof.

B Asymptotic Behavior of vMF Exploration in d = 2 dimensions (Proof of
Proposition 4.3, Part 1)

We now prove Proposition 4.3 when d = 2. In 2 dimensions, the vMF distribution takes the special
form of the von Mises (vM) distribution [43] which, instead of describing the distribution of the
dot product between V and Ṽ , describes the distribution of their angle θ. The PDF of a von Mises
distribution is defined as follows:

∀θ ∈ [−π, π], fvM(θ | κ) = eκ cos(θ)

2πI0(κ)
. (21)

Let us define θ0 as the angle between V and A. In this section, we prove that:

PvMF-exp(A | n, d = 2, κ) =
eκ cos(θ0)

nI0(κ)
+O(

1

n2
). (22)

Proof. By definition,

PvMF-exp(A | n, d = 2, κ) = E Xn∼U(S1)

[
P(Ṽ ∈ SVoronoï(A | Xn+1)

)
], (23)

where SVoronoï(Xi | Xn) = {Ṽ ∈ Sd−1,∀j ∈ In, ⟨Ṽ , Xi⟩ ≥ ⟨Ṽ , Xj⟩}. Let us call Yn = {Yi}
the result of the permutation of the indices of Xn such that the (signed) angles βi between A and Yi

are sorted in increasing order. Since the {Xi} are i.i.d. and uniformly distributed on the circle, then
the angles between A and the {Xi} are i.i.d. and uniformly distributed on [0, 2π]. Therefore, the
set {βi} is the set of the order statistics of n i.i.d. random variables uniformly distributed on [0, 2π].
Consequently, the set { βi

2π} is the set of the order statistics of n i.i.d. random variables uniformly
distributed on [0, 1], which are known to follow Beta distributions [28] defined as follows:

∀1 ≤ i ≤ n,
βi

2π
∼ Beta(i, n+ 1−i). (24)

As a consequence, we have:

E [β1] =
2π

n+ 1
, (25)

E [βn] =
2πn

n+ 1
, (26)

Var [β1] = Var [βn] =
4π2n

(n+ 1)2(n+ 2)
. (27)

15

0

Y1

Y2Y3

Y4

Y5

Y6Y7
Y8

Y9

Y10

O

V
V

0
1

0 + 1
2

AA

Figure 4: For d = 2: vMF-exp explores the action A when Ṽ lies in its Voronoï cell, shown in red.

Moreover, for given values of Yi, we can see from Figure 4 that, in 2 dimensions, Voronoï cells are
arcs of the circle and are delimited by perpendicular bisectors of two neighboring points. Specifically,
the Voronoï cell of A is delimited by the perpendicular bisector of A and Y1 on one side, and the
perpendicular bisector of A and Yn on the other side. By denoting θ the (signed) angle between V
and Ṽ , we have:

P
(
Ṽ ∈ SVoronoï(A | Xn+1)

)
= P

(
θ ∈ [θ0 +

βn − 2π

2
, θ0 +

β1

2
] | θ ∼ vM(0, κ), β1, βn

)
=

∫ θ0+
β1
2

θ=θ0+
βn−2π

2

fvM(θ | κ) dθ.
(28)

Therefore:

PvMF-exp(A | n, d = 2, κ) = E β1,βn

[∫ θ0+
β1
2

θ=θ0+
βn−2π

2

fvM(θ | κ) dθ

]
. (29)

To get an asymptotic expression of the probability that θ lies between the considered bounds, we can
first notice that as n grows, β1 will approach 0 and βn will approach 2π. This means that the integral
we need to compute will have very narrow bounds centered on θ0, and so we can leverage the Taylor
series expansion [1] of fvM around θ0 and obtain:

fvM(θ | κ) = fvM(θ0 | κ) +R0(θ), (30)

where R0(θ) =
∑∞

i=1
f
(i)
vM (θ0|κ)

i! (θ − θ0)
i is the zero order remainder term of the Taylor series

expansion of fvM near θ0.

We can now estimate the portion of the integral of Equation (29) corresponding to each term of the
expansion separately, and show that when n becomes large:

• the zero-order term gives a probability of selecting A that is the same as the asymptotic

behavior of B-exp: E β1,βn

[∫ θ0+
β1
2

θ=θ0+
βn−2π

2

fVM(θ0 | κ) dθ
]
= eκ cos(θ0)

nI0(κ)
+O(1

n2).

• the expectation of the remainder term is bounded by a 1
n2 term:

E β1,βn

[∫ θ0+
β1
2

θ=θ0+
βn−2π

2

R0(θ) dθ

]
= O(1

n2).

16

B.1 Zero-Order Estimate

Let us study the zero-order approximation of fvM(θ | κ) near θ0:

E β1,βn

[∫ θ0+
β1
2

θ=θ0+
βn−2π

2

fVM(θ0 | κ) dθ

]
= E β1,βn

[
fVM(θ0 | κ)(θ0 +

β1

2
− (θ0 +

βn − 2π

2
))

]
= E β1,βn

[
fvM(θ0 | κ)(π − βn − β1

2
)

]
= πfvM(θ0 | κ)E β1,βn

[
1− βn − β1

2π

]
=

eκ cos(θ)

2I0(κ)
(1− E β1,βn

[
βn

2π

]
+ E β1,βn

[
β1

2π

]
)

=
eκ cos(θ0)

2I0(κ)

n+ 1− n+ 1

n+ 1

=
eκ cos(θ0)

2I0(κ)

2

n+ 1

=
eκ cos(θ0)

(n+ 1)I0(κ)

=
eκ cos(θ0)

nI0(κ)
− eκ cos(θ0)

n(n+ 1)I0(κ)

=
eκ cos(θ0)

nI0(κ)
+O(

1

n2
).

(31)
This proves that, asymptotically, the contribution of the zero-order term of fvM to the probability of
selecting A is equal to the probability of selecting A using B-exp with the same κ value.

To understand how fast vMF-exp reaches its asymptotic behavior, we now need to study R0(θ), the
remainder of the Taylor series expansion of fVM around θ0.

B.2 Bounding of the Remainder Term

We start by computing the first derivative of fvM:

∀θ ∈ [0, 2π], |f ′
vM(θ | κ)|= | sin(θ)|κeκ cos(θ)

I0(κ)
, (32)

which is bounded1 on [0, 2π] by M = κeκ

I0(κ)
. According to the Taylor-Lagrange inequality [1], this in

turn bounds the remainder term as follows:
∀θ ∈ [0, 2π], |R0(θ)| ≤ M |θ − θ0|. (33)

In particular, this inequality holds for every θ ∈ [θ0 +
βn−2π

2 , θ0 +
β1

2], and so:∫ θ0+
β1
2

θ=θ0+
βn−2π

2

|R0(θ)|dθ ≤
∫ θ0+

β1
2

θ=θ0+
βn−2π

2

M |θ − θ0|dθ

=

∫ θ0+
β1
2

θ=θ0

M(θ − θ0) dθ +

∫ θ0

θ=θ0+
βn−2π

2

M(θ0 − θ) dθ

=

∫ β1
2

θ=0

Mθ dθ −
∫ 0

θ= βn−2π
2

Mθ dθ

= M
β2
1 + (βn − 2π)2

8
.

(34)

1We note that a tighter bound could be found by studying the second derivative, but will not be necessary for
the purpose of this proof.

17

The above inequality holds when considering the expected values over uniformly distributed Xi:

E β1,βn

[∫ θ0+
β1
2

θ=θ0+
βn−2π

2

|R0(θ)|dθ

]
≤ M

E β1,βn

[
β2
1

]
+ E β1,βn

[
(βn − 2π)2

]
8

= M
Var β1,βn

[β1] + (E β1,βn
[β1])

2 + Var β1,βn
[(βn − 2π)] + (E β1,βn

[βn − 2π])2

8

=
M

8
(

2× 4π2n

(n+ 1)2(n+ 2)
+

2× 4π2

(n+ 1)2
)

=
Mπ2

(n+ 1)(n+ 2)

= O(
1

n2
).

(35)

Since
∣∣∣∣E β1,βn

[∫ θ0+
β1
2

θ=θ0+
βn−2π

2

R0(θ) dθ

]∣∣∣∣ ≤ E β1,βn

[∫ θ0+
β1
2

θ=θ0+
βn−2π

2

|R0(θ)|dθ
]

, we have shown:

E β1,βn

[∫ θ0+
β1
2

θ=θ0+
βn−2π

2

R0(θ) dθ

]
= O(

1

n2
). (36)

In summary, when combining the asymptotic behavior of the zero-order term and the remainder term,
we conclude that when d = 2 we have:

PvMF-exp(A | n, d = 2, κ) =
eκ cos(θ0)

nI0(κ)
+O(

1

n2
). (37)

This proves Proposition 4.3 when d = 2. Note that, comparing the asymptotic expressions for
PB-exp(A | n, d = 2, κ) and PvMF-exp(A | n, d = 2, κ), also gives us a proof for Proposition 4.1 when
d = 2.

C Asymptotic Behavior of vMF Exploration in d > 2 dimensions (Proofs of
Proposition 4.3, Part 2, and of Proposition 4.4)

We now prove Proposition 4.3 when d > 2, starting with a series of intermediary lemmas. We
subsequently justify the approximate expression of Proposition 4.4.

C.1 Intermediary Lemmas

We introduce a series of lemmas regarding the properties of the Voronoï cell of A when Xn ∼ Ud−1.
We recall that, for a given set of embedding vectors Xn, we use the notation Xn+1 = Xn ∪ {A}.
Lemma C.1. Let d ∈ N, d ≥ 2, A ∈ Sd−1 and n ∈ N∗. As before, let A(Sd−1) denote the surface
area of Sd−1. Then:

E Xn∼U(Sd−1)

[
A(SVoronoï(A | Xn+1))

]
=

A(Sd−1)

n+ 1
. (38)

Proof. To compute this expectation, one can notice that:

E Xn∼U(Sd−1)

[
A(SVoronoï(A | Xn+1))

]
= E Xn+1∼U(Sd−1)

[
A(SVoronoï(Xn+1 | Xn+1)) | Xn+1 = A

]
.

(39)
Indeed, considering that A is known is equivalent to considering A as a random vector Xn+1 ∼
U(Sd−1) with the constraint Xn+1 = A. We will now show that the right part of Equation (39) is
actually independent of the value of A.

Consider any point A′ ∈ Sd−1. One can always define a (not necessarily unique) rotation RA,A′ such
that RA,A′(A) = A′. Since rotations preserve inner products, they also preserve areas of Voronoi
cells, which means that for a given set of vectors Xn+1, we have:

A
(
SVoronoï(Xn+1 | Xn+1)

)
= A

(
SVoronoï(RA,A′(Xn+1) | RA,A′(Xn+1))

)
. (40)

18

Moreover, the image of the rotation of a random vector uniformly distributed on the hypersphere is
also uniformly distributed, which means that:

Xn+1 ∼ U(Sd−1) ⇔ RA,A′(Xn+1) ∼ U(Sd−1). (41)

Therefore:

E Xn+1∼U(Sd−1)

[
A(SVoronoï(Xn+1 | Xn+1)) | Xn+1 = A

]
=E Xn+1∼U(Sd−1)

[
A(SVoronoï(RA,A′(Xn+1) | RA,A′(Xn+1))) | Xn+1 = A

]
=E RA,A′ (Xn+1)∼U(Sd−1)

[
A(SVoronoï(RA,A′(Xn+1) | RA,A′(Xn+1))) | RA,A′(Xn+1) = A′

]
=E RA,A′ (Xn)∼U(Sd−1)

[
A(SVoronoï(A

′ | RA,A′(Xn)))
]

=E Xn∼U(Sd−1)

[
A(SVoronoï(A

′ | Xn))
]
.

(42)

This result proves that E Xn∼U(Sd−1)[A(SVoronoï(A | Xn+1))] is independent of A. Then, we use this
information along with Equation (39) to obtain:

E Xn∼U(Sd−1)

[
A(SVoronoï(A | Xn+1))

]
= E Xn+1∼U(Sd−1)

[
A(SVoronoï(Xn+1 | Xn+1)

]
. (43)

Since
n+1∑
i=1

A(SVoronoï(Xi | Xn+1)) = A(Sd−1) [23, 24] and the Xi are i.i.d., we derive:

E Xn+1∼U(Sd−1)

[
A(SVoronoï(Xn+1 | Xn+1))

]
=

A(Sd−1)

n+ 1
. (44)

Combining Equations (39) with Equation (44) leads to Equation (38), concluding the proof.

Lemma C.2. Let d ∈ N, d ≥ 2, A ∈ Sd−1 and n ∈ N∗. Then:

∃λ ∈ R,E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(A|Xn+1)

Ṽ dṼ
]
= λA. (45)

Proof. We want to prove that the average normal vector of the Voronoï cell of A and A are collinear,
as illustrated in Figure 5. To do so, we will show that this average normal vector is invariant to any
rotation around A. For every θ ∈ [0, 2π], we define RA,θ as the rotation around A of the angle θ.
As discussed in the proof of Lemma C.1, Xn ∼ U(Sd−1) ⇔ RA,θ(Xn) ∼ U(Sd−1). Moreover,
RA,θ(A) = A. Let us denote:

N(A | n) = E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(A|Xn+1)

Ṽ dṼ
]
, (46)

the expected normal vector of the Voronoï cell of A. Its image by the rotation RA,θ verifies:

RA,θ(N(A | n)) = RA,θ

(
E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(A|Xn+1)

Ṽ dṼ
])

= E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(RA,θ(A)|RA,θ(Xn+1))

Ṽ dṼ
]

= E RA,θ(Xn)∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(A|RA,θ(Xn+1))

Ṽ dṼ
]

= N(A | n).

(47)

This proves that N(A | n) and A are collinear.

Lemma C.3. With the same hypotheses as Lemma C.2:

λ =
A(Sd−1)

n+ 1
E Xn∼U(Sd−1),Ṽ∼U(Sd−1)

[
max

i
⟨Ṽ , Xi⟩

]
. (48)

19

A
N(A n)

V

O

Figure 5: The Voronoï cell of A, SVoronoï(A | Xn+1), along with the average normal vector of the cell
N(A | n). On expectation, (A | n) and A are collinear.

Proof. λ is defined as follows:

λA = E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(A|Xn+1)

Ṽ dṼ
]

=⇒ ⟨λA , A⟩ = ⟨E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(A|Xn+1)

Ṽ dṼ
]
, A⟩

⇔ λ = E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(A|Xn+1)

⟨Ṽ , A⟩dṼ
]

⇔ λ = E Xn+1∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(Xn+1|Xn+1)

⟨Ṽ , Xn+1⟩dṼ | Xn+1 = A
]

⇔ λ = E Xn+1∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(Xn+1|Xn+1)

max
i

⟨Ṽ , Xi⟩dṼ | Xn+1 = A
]
.

(49)

Moreover, as done in the proof of Lemma C.1, we can leverage the invariance by any rotation of the
above expression to infer that the conditional expectation is actually independent of A:

λ = E Xn+1∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(Xn+1|Xn+1)

max
i

⟨Ṽ , Xi⟩dṼ
]
. (50)

20

Since, in the above equation, Xn+1 has the same distribution as every element of Xn+1, a similar
expression for λ can be found using each Xn+1 element. By summing them together, we obtain:

(n+ 1)λ =

n+1∑
j=1

E Xn+1∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(Xj |Xn+1)

max
i

⟨Ṽ , Xi⟩dṼ
]

= E Xn+1∼U(Sd−1)

[n+1∑
j=1

∫
Ṽ ∈SVoronoï(Xj |Xn+1)

max
i

⟨Ṽ , Xi⟩dṼ
]

= E Xn+1∼U(Sd−1)

[∫
Ṽ ∈Sd−1

max
i

⟨Ṽ , Xi⟩dṼ
]

= E Xn+1∼U(Sd−1)

[∫
Ṽ ∈Sd−1

A(Sd−1)maxi⟨Ṽ , Xi⟩
A(Sd−1)

dṼ
]

= A(Sd−1)E Xn+1∼U(Sd−1)

[
E Ṽ∼U(Sd−1)[max

i
⟨Ṽ , Xi⟩]

]
,

(51)

which proves the lemma.

The last two lemmas are useful to describe the distribution of maxi⟨Ṽ , Xi⟩ when Ṽ is fixed,
Xn+1 ∼ U(Sd−1), and n is large.

Lemma C.4. Let B : (z1, z2) 7→
∫ 1

0
tz1−1(1 − t)z2−1 dt denote the Beta function. Let d ≥ 3,

Ṽ ∈ Sd−1 and X be a random vector with X ∼ U(Sd−1). Let Fradial be the cumulative distribution
function (CDF) of ⟨Ṽ , X⟩. The Taylor series expansion of Fradial near 1 is:

Fradial(t) = 1− 2
d−1
2

(d− 1)B(12 ,
d−1
2)

(1− t)
d−1
2 + o((1− t)

d−1
2). (52)

Proof. The distribution of ⟨Ṽ , X⟩ has been studied in directional statistics [43]. Its PDF is known
to be:

fradial(t) =
(1− t2)

d−1
2 −1

B(12 ,
d−1
2)

=
(1− t)

d−1
2 −1(1 + t)

d−1
2 −1

B(12 ,
d−1
2)

=
(1− t)

d−1
2 −1(2− (1− t))

d−1
2 −1

B(12 ,
d−1
2)

=
2

d−1
2 −1(1− t)

d−1
2 −1(1− (1−t)

2)
d−1
2 −1

B(12 ,
d−1
2)

=
2

d−1
2 −1(1− t)

d−1
2 −1

B(12 ,
d−1
2)

(

=∞∑
i=0

(d−1
2 − 1

i

)(
1− t

2

)i

).

(53)

The last line above was obtained using Newton’s generalized binomial theorem for real exponent [20].

It involves the term
(d−1

2 −1
i

)
=

(d−1
2 −1)i
i! with (·)i the Pochhammer symbol used to designate a

falling factorial [1]. We have obtained an expression of fradial involving an infinite weighted sum of
powers of (1− t) with exponents greater or equal to 0 since d ≥ 3. Therefore, by uniqueness of the
Taylor polynomial, we derive that the Taylor series expansion of fradial near 1 is:

fradial(t) =
2

d−1
2 −1(1− t)

d−1
2 −1

B(12 ,
d−1
2)

+ o((1− t)
d−1
2 −1). (54)

Since by definition Fradial is the primitive of fradial on [−1, 1] and that Fradial(1) = 1, we can integrate
the above equation to get:

21

Fradial(t) = 1− 2

d− 1

2
d−1
2 −1(1− t)

d−1
2

B(12 ,
d−1
2)

+ o((1− t)
d−1
2)

= 1− 2
d−1
2 (1− t)

d−1
2

(d− 1)B(12 ,
d−1
2)

+ o((1− t)
d−1
2).

(55)

Since this is exactly the Equation (52), this completes the proof.

Lemma C.5. Let d ≥ 3, Ṽ ∈ Sd−1 and let Fradial be defined as in Lemma C.4. For n ∈ N∗, let
Xn ∼ U(Sd−1) be a set of n i.i.d. random vectors uniformly distributed on Sd−1, and let Fn be the
CDF of maxi⟨Ṽ , Xi⟩. Then, for u ∈ [−1, 1]:

lim
n→+∞

Fn(anu+ bn) = e(−(1+γu)
−1
γ), (56)

where γ = − 2
d−1 , an = 1

2

(
(d−1)B(1

2 ,
d−1
2)

n

) 2
d−1

with B the Beta function, and bn = 1− 2
d−1an.

Proof. The proof relies on the Fisher–Tippett–Gnedenko theorem [29] which states that if there
exists a couple of sequences an and bn such that the left term of Equation (56) converges, then its
limit should be the CDF of a Generalized Extreme Value distribution (GEV) with shape parameter
γ, which is the right term of Equation (56). Theorem 5 of Gnedenko [29] provides a necessary and
sufficient convergence condition for a random variable with maximal value xmax and CDF F, provided
that γ < 0:

lim
t→0+

1− F (xmax − u t)

1− F (xmax − t)
= u

(−1
γ

)
for all u > 0 . (57)

Recall that Lemma C.4 gives us the Taylor expansion of Fradial near 1 : Fradial(t) = 1−K(1− t)
d−1
2 +

o((1− t)
d−1
2) with K = 2

d−1
2

(d−1)B(1
2 ,

d−1
2)

. Knowing that xmax = 1, we obtain that, ∀u > 0:

lim
t→0+

1− Fradial(1− u t)

1− Fradial(1− t)
= lim

t→0+

1− (1−K(ut)
d−1
2) + o((t)

d−1
2)

1− (1−K(t)
d−1
2) + o((t)

d−1
2)

= lim
t→0+

K(ut)
d−1
2 + o((t)

d−1
2)

K(t)
d−1
2 + o((t)

d−1
2)

= u

(
d−1
2

)
,

(58)

which guarantees convergence and in the same time gives the value of γ = − 2
d−1 .

To find suitable sequences an and bn, we can use the fact that Fn(t) = Fradial(t)
n and study the

behavior of lnFn(t) near t = 1:
lnFn(t) = ln (Fradial(t)

n)

= n ln (Fradial(t))

= n(ln (1−K(1− t)
−1
γ + o((1− t)

−1
γ))) as t → 1−

= −nK((1− t)
−1
γ + o((1− t)

−1
γ)) as t → 1−.

(59)

By defining an = −γ(Kn)γ , bn = 1− (Kn)γ and doing the change of variable u = t−bn
an

, we see
that:

t = anu+ bn
= 1− (1 + γu)(Kn)γ .

(60)

Since for every u, limn→+∞(1 + γu)(Kn)γ = 0 (recall that γ < 0), the term o((1− x)
−1
γ) as x →

1− is equivalent to o(1n) as n → +∞. this means that:

ln (Fn(anu+ bn)) = −nK

(
((1 + γu)(Kn)γ)

−1
γ + o

(
(
1

n
)

))
as n → +∞.

= −(1 + γu)
−1
γ + o(1) as n → +∞.

(61)

22

We can now consider the exponential of the above expression to get our asymptotic maximum
distribution:

lim
n→+∞

Fn(anu+ bn) = e−(1+γu)
−1
γ
, (62)

which concludes the proof.

Corollary C.5.1. With Γ : z 7→
∫∞
0

tz−1e−t dt the Gamma function [1], we have:

E Xn∼U(Sd−1)

[
max

i
⟨Ṽ , Xi⟩

]
= 1−

Γ(d+1
d−1)

2

(
(d− 1)B(12 ,

d−1
2)

n

) 2
d−1

+ o(
1

n
2

d−1

). (63)

Proof. According to the Portmanteau theorem [11], Lemma C.5 is equivalent to:

maxi⟨Ṽ , Xi⟩ − bn
an

D−→ GEV(γ), (64)

where GEV(γ) is a generalized extreme value distribution with shape parameter γ [29]. Recall that if
a sequence Z1, Z2, ... of random variables converges in distribution to a random variable Z, then for
all bounded continuous function ϕ, lim

n→+∞
E [ϕ(Zn)] = E [ϕ(Z)]. Since maxi⟨Ṽ , Xi⟩−bn

an
is bounded

for every n, we can consider the identity function for ϕ and obtain:

lim
n→+∞

E Xn∼U(Sd−1)

[
maxi⟨Ṽ , Xi⟩ − bn

an

]
= E [GEV(γ)] =

Γ(1− γ)− 1

γ
. (65)

Replacing γ, an and bn by their respective expressions, it implies that:

lim
n→+∞

E Xn∼U(Sd−1)

[
maxi⟨Ṽ , Xi⟩

]
− 1 + (Kn)−

2
d−1

(Kn)−
2

d−1

+ Γ(
d− 1

d− 1
)− 1 = 0

=⇒ lim
n→+∞

E Xn∼U(Sd−1)

[
maxi⟨Ṽ , Xi⟩

]
− 1 +K− 2

d−1Γ(d−1
d−1)

n− 2
d−1

= 0.

(66)

Since K− 2
d−1 = 1

2

(
(d−1)B(1

2 ,
d−1
2)

n

) 2
d−1

, this is equivalent to writing:

E Xn∼U(Sd−1)

[
max

i
⟨Ṽ , Xi⟩

]
− 1 +

1

2

(
(d− 1)B(12 ,

d−1
2)

n

) 2
d−1

Γ(
d− 1

d− 1
) = o(

1

n
2

d−1

)

⇔ E Xn∼U(Sd−1)

[
max

i
⟨Ṽ , Xi⟩

]
= 1− Γ(

d− 1

d− 1
)
1

2

(
(d− 1)B(12 ,

d−1
2)

n

) 2
d−1

+ o(
1

n
2

d−1

).

(67)

We have thus obtained Equation (63), concluding the proof of the corollary.

C.2 Proof of Proposition 4.3

We now return to Proposition 4.3. In this section we consider the case of vMF-exp when d > 2 and
Xi embeddings are uniformly distributed on Sd−1. Under those assumptions:

PvMF-exp(a | n, d, V, κ) = fvMF(A | V, κ)A(Sd−1)

n
+O(

1

n1+ 2
d−1

). (68)

Proof. Similarly to the 2 dimensional case, the definition of PvMF-exp(a | n, d, V, κ) is:

PvMF-exp(A | n, d, V, κ) = E Xn∼U(Sd−1)

[
P(Ṽ ∈ SVoronoï(A | Xn+1) | Ṽ ∼ vMF(V, κ))

]
, (69)

23

A
V

V

O

< V, A >

Figure 6: For d = 3: vMF-exp explores the action A when Ṽ lies in its Voronoï cell, shown in red.

which can be written using the PDF of the vMF distribution:

PvMF-exp(A | n, d, V, κ) = E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(A|Xn+1)

fvMF(Ṽ | V, κ) dṼ

]
. (70)

As done in the 2D case, we study the Taylor expansion of fvMF near A:

∀Ṽ ∈ SVoronoï(A | Xn+1), fvMF(Ṽ | κ, V) = Cd(κ)e
κ⟨V , Ṽ ⟩

= Cd(κ)e
κ⟨V , A⟩eκ⟨V , Ṽ−A⟩

= fvMF(A | V, κ)
∞∑
i=0

(κ⟨V , Ṽ −A⟩)i

i!

= fvMF(A | V, κ)(1 + κ⟨V , Ṽ −A⟩+R1(Ṽ)).

(71)

with R1(Ṽ) =
∑∞

i=2
(κ⟨V , Ṽ−A⟩)i

i! . Leveraging the linearity property of both integration and
expectation [31], we can study PvMF-exp(A | n, d, V, κ) by assessing separately the contribution of
the different terms of the expansion of fvMF in:

PvMF-exp(A | n, d, V, κ) =

E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(A|Xn+1)

fvMF(A | V, κ)(1 + κ⟨V , Ṽ −A⟩+R1(Ṽ)) dṼ

]
.

(72)

However, contrary to the 2D case where SVoronoï(A | Xn+1) is always defined as the arc between 2
angles on the circle, for d > 2 the shape of SVoronoï(A | Xn+1) is highly dependent of the layout of
the elements of Xn that share a frontier with A. Figure 6 provides an illustration of the complexity
and diversity of the shapes of Voronoï cells for uniformly sampled points on the 3D sphere.

As a consequence, expliciting the bounds of integration, as we did in the 2D case, can be somewhat
tedious. Instead, we will leverage the geometrical properties of the problem at hand to estimate
PvMF-exp(A | n, d, V, κ). We start with the zero-order term.

24

C.2.1 Zero-Order Term

Since the zero-order term is constant, its integral over SVoronoï(A | Xn+1) can be expressed as:∫
Ṽ ∈SVoronoï(A|Xn+1)

fvMF(A | V, κ) dṼ = fvMF(A | V, κ)A(SVoronoï(A | Xn+1)), (73)

where A(SVoronoï(A | Xn+1)) is the value of the surface area of SVoronoï(A | Xn+1). To assess the
expected value of the above equation for uniformly distributed Xn, we use Lemma C.1 and obtain:

E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(A|Xn+1)

fvMF(A | V, κ) dṼ

]
=

fvMF(A | V, κ)A(Sd−1)

n+ 1
(74)

=
fvMF(A | V, κ)A(Sd−1)

n
+O(

1

n2
).

C.2.2 First-Order Term

We want to estimate the value of:

E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(A|Xn+1)

fvMF(A | V, κ)κ⟨V , Ṽ −A⟩ dṼ

]
(75)

= fvMF(A | V, κ)κ

(
⟨V , E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(A|Xn+1)

Ṽ dṼ

]
⟩ − ⟨V , A⟩A(Sd−1)

n

)
.

Using Lemmas C.2 and C.3 as well as Corollary C.5.1, the left term inside the parentheses is:

⟨V , E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(A|Xn+1)

Ṽ dṼ

]
⟩

= ⟨V , A⟩A(Sd−1)

n+ 1
E Xn∼U(Sd−1),Ṽ∼U(Sd−1)

[
max

i
⟨Ṽ , Xi⟩

]
= ⟨V , A⟩A(Sd−1)

n+ 1

1−
Γ(d+1

d−1)

2

(
(d− 1)B(12 ,

d−1
2)

n

) 2
d−1

+ o(
1

n
2

d−1

)

 .

(76)

Reinjecting this expression into Equation (75) gives the following expression for the contribution of
the first-order term to the probability of sampling A:

E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoï(A|Xn+1)

fvMF(A | V, κ)κ⟨V , Ṽ −A⟩ dṼ

]
(77)

= −fvMF(A | V, κ)A(Sd−1)

n+ 1
κ⟨V , A⟩

Γ(d+1
d−1)

2

(
(d− 1)B(12 ,

d−1
2)

n

) 2
d−1

+ o(
1

n
2

d−1

)

 .

C.2.3 Remainder Term

As done in the 2D proof, we leverage the Taylor-Lagrange inequality [1]. The second derivative
of the function f(x) = Cd(κ)e

κx is f(x)(2) = κ2f(x), which is bounded on x ∈ [−1, 1] by
M = κ2Cd(κ)e

κx. This implies that:

|R1(Ṽ)| ≤ M⟨V , Ṽ −A⟩2

2

≤ M∥Ṽ −A∥22
2

(according to the Cauchy-Schwarz inequality [31])

= M(1− ⟨Ṽ , A⟩).

(78)

25

This inequality holds for every Ṽ ∈ SVoronoï(A | Xn+1) when Xn ∼ U(Sd−1), which means that:

E Xn∼U (Sd−1)

[∫
Ṽ ∈SVoronoï(A|Xn+1)

fvMF(A | V, κ)|R1(Ṽ)| dṼ

]

≤ fvMF(A | V, κ)E Xn∼U (Sd−1)

[∫
Ṽ ∈SVoronoï(A|Xn+1)

M(1− ⟨Ṽ , A⟩) dṼ

]

= fvMF(A | V, κ)A(Sd−1)

n+ 1
M(1− E Xn+1∼U (Sd−1)

[∫
Ṽ ∈Sd−1

max
i

⟨Ṽ , Xi⟩ dṼ
]
)

= fvMF(A | V, κ)MA(Sd−1)

n+ 1

Γ(d+1
d−1)

2

(
(d− 1)B(12 ,

d−1
2)

n

) 2
d−1

+ o(
1

n
2

d−1

)

= O(

1

n1+ 2
d−1

).

(79)

We used Lemmas C.2 and C.3 to go from line 2 to 3, and Corollary C.5.1 to go from line 3 to 4. In
essence, we have bounded the contribution of R1(Ṽ) to the probability of sampling A as follows:

E Xn∼U (Sd−1)

[∫
Ṽ ∈SVoronoï(A|Xn+1)

fvMF(A | V, κ)|R1(Ṽ)| dṼ

]
= O(

1

n1+ 2
d−1

) (80)

Finally, adding up Equations (74), (78), and (80), we conclude the proof of Proposition 4.3 for d ≥ 3
and (via the first-order term) simultaneously justify the approximate probability P1(a | n, V, κ)
introduced in Proposition 4.4.

26

D Similar Asymptotic Behavior of B-exp and vMF-exp for Large Action Sets
(Proof of Proposition 4.1)

Finally, Propositions 4.2 and 4.3 allow us to derive Proposition 4.1, i.e., that in the setting of
Section 4.1, we have:

lim
n→+∞

PB-exp(a | n, d, V, κ)
PvMF-exp(a | n, d, V, κ)

= 1. (81)

Proof. Acording to Proposition 4.2, we have:

PB-exp(a | n, d, V, κ) = fvMF(A | V, κ)A(Sd−1)

n
+ o(

1

n
√
n
). (82)

Moreover, according to Proposition 4.3, we have:

PvMF-exp(a | n, d, V, κ) = fvMF(A | V, κ)A(Sd−1)

n
+

{
O(1

n2) if d = 2,

O(1

n
1+ 2

d−1
) if d > 2. (83)

Therefore:

lim
n→+∞

PB-exp(a | n, d, V, κ)
PvMF-exp(a | n, d, V, κ)

= lim
n→+∞

n

n

PB-exp(a | n, d, V, κ)
PvMF-exp(a | n, d, V, κ)

=
fvMF(A | V, κ)A(Sd−1) + 0

fvMF(A | V, κ)A(Sd−1) + 0

= 1.

(84)

E Link with Thompson Sampling

At first glance, one might draw some similarities between vMF-exp and Thompson Sampling (TS)
with Gaussian prior for contextual bandits [14]. Admittedly, vMF-exp shares a common spirit with TS,
where action selection is preceded by sampling individual weights according to a Normal distribution
centered on an observed context/state vector. However, vMF-exp also presents two major differences:

• Firstly, in vMF-exp, vector sampling is performed according to a vMF hyperspherical
distribution, centered on the state embedding vector V . This choice of distribution ensures
that vectors with the same inner product with the state vector have the same probability of
being sampled, as illustrated in Figure 1(a). This aligns better with the similarity used to
retrieve nearest neighbors and, as emphasized in this paper, leads to probabilities of exploring
actions asymptotically comparable to Boltzmann Exploration (with better scalability) under
the theoretical assumptions of Section 4.1.

• Secondly, vMF-exp is not designed to maximize the expected reward of a policy in an
RL or contextual bandit environment and does not impose any parameter update strategy.
Instead, it serves as an action selection tool for any scenario where policy updates cannot be
performed regularly (as in the batch RL setting commonly found in industrial applications),
yet broad exploration must still be guaranteed between consecutive updates.

27

F Monte Carlo Simulations

0.2 0.4 0.6 0.8 1.0
n 1e6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
P(

a)
1e 5 = 1.0, <V,A>=0.5, d=4

P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(a)

0.2 0.4 0.6 0.8 1.0
n 1e6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

P(
a)

1e 5 = 1.0, <V,A>=0.5, d=8
P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(b)

0.2 0.4 0.6 0.8 1.0
n 1e6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

P(
a)

1e 5 = 1.0, <V,A>=0.5, d=16
P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(c)

0.2 0.4 0.6 0.8 1.0
n 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P(
a)

1e 5 = 1.0, <V,A>=0.5, d=32
P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(d)

0.2 0.4 0.6 0.8 1.0
n 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
P(

a)

1e 5 = 1.0, <V,A>=0.5, d=64
P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(e)

0.2 0.4 0.6 0.8 1.0
n 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P(
a)

1e 5 = 1.0, <V,A>=0.5, d=128
P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(f)

0.2 0.4 0.6 0.8 1.0
n 1e6

0.0

0.5

1.0

1.5

2.0

2.5

P(
a)

1e 5 = 1.0, <V,A>=0.9, d=4
P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(g)

0.2 0.4 0.6 0.8 1.0
n 1e6

0

1

2

3

4

P(
a)

1e 5 = 2.0, <V,A>=0.9, d=4
P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(h)

0.2 0.4 0.6 0.8 1.0
n 1e6

0

1

2

3

4

5

P(
a)

1e 5 = 2.0, <V,A>=0.9, d=8
P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(i)

0.2 0.4 0.6 0.8 1.0
n 1e6

0.0

0.5

1.0

1.5

2.0

2.5

P(
a)

1e 5 = 1.0, <V,A>=0.9, d=8
P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(j)

0.2 0.4 0.6 0.8 1.0
n 1e6

0.0

0.5

1.0

1.5

2.0

P(
a)

1e 5 = 2.0, <V,A>=0.5, d=8
P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(k)

0.2 0.4 0.6 0.8 1.0
n 1e6

0

1

2

3

4

5

P(
a)

1e 5 = 2.0, <V,A>=0.9, d=32
P0(a)
P1(a)
PB exp(a)
PvMF exp(a)

(l)

Figure 7: We report complete results for the Monte Carlo simulations presented and discussed in
Section 4.3, involving more combinations of d, κ, and ⟨V , A⟩). We recall that PB-exp(a) and P0(a)
are indistinguishable for this range of n values. We emphasize that the y-axis in on a 1e-5 scale;
hence, all probabilities are extremely close.

28

	Introduction
	Preliminaries
	Problem Formulation
	Limitations of Existing Exploration Strategies

	From Boltzmann to von Mises–Fisher (vMF) Exploration
	von Mises–Fisher Exploration
	Properties

	Theoretical Comparison of vMF-exp and B-exp
	Setting and Assumptions
	Results
	Discussion

	Application to Large-Scale Music Recommendation
	Experimental Setting
	Results

	Conclusion
	Asymptotic Behavior of Boltzmann Exploration (Proof of Proposition 4.2)
	Asymptotic Behavior of vMF Exploration in d=2 dimensions (Proof of Proposition 4.3, Part 1)
	Zero-Order Estimate
	Bounding of the Remainder Term

	Asymptotic Behavior of vMF Exploration in d>2 dimensions (Proofs of Proposition 4.3, Part 2, and of Proposition 4.4)
	Intermediary Lemmas
	Proof of Proposition 4.3
	Zero-Order Term
	First-Order Term
	Remainder Term

	Similar Asymptotic Behavior of B-exp and vMF-exp for Large Action Sets (Proof of Proposition 4.1)
	Link with Thompson Sampling
	Monte Carlo Simulations

