

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EDGE-GRPO: ENTROPY-DRIVEN GRPO WITH GUIDED ERROR CORRECTION FOR ADVANTAGE DI- VERSITY

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have made remarkable progress in enhancing step-by-step reasoning through reinforcement learning. However, the Group Relative Policy Optimization (GRPO) algorithm, which relies on sparse reward rules, often encounters the issue of identical rewards within groups, leading to the advantage collapse problem. Existing works typically address this challenge from two perspectives: enforcing model reflection to enhance response diversity, and introducing internal feedback to augment the training signal (advantage). In this work, we begin by analyzing the limitations of model reflection and investigating the policy entropy of responses at the fine-grained sample level. Based on our experimental findings, we propose the EDGE-GRPO algorithm, which adopts **Entropy-Driven Advantage** and **Guided Error Correction** to effectively mitigate the problem of advantage collapse. Extensive experiments on different models across multiple main reasoning benchmarks demonstrate the effectiveness and superiority of our approach. The code and weights will be released upon acceptance to facilitate further research in this field.

1 INTRODUCTION

Recent advancements in large reasoning models, such as OpenAI-01 Jaech et al. (2024) and Kimi-K1.5 Team et al. (2025), have shown impressive progress in complex tasks involving mathematics and coding. Among them, the Group Relative Policy Optimization (GRPO) algorithm Shao et al. (2024) has attracted considerable attention from researchers. By discarding the value function used in the PPO algorithm Schulman et al. (2017) and instead computing rewards and relative advantages across sampled responses within each group, it significantly reduces resource consumption during training while improving reasoning performance.

For the computation of rewards in the GRPO algorithm, some studies adopt a Process Reward Model (PRM) to provide more fine-grained feedback Cui et al. (2025); Wang et al. (2025b). However, it introduces substantial computational overhead. As a result, other works abandon the reward model in favor of using rule-based reward functions Zhou et al. (2025); Zhang et al. (2025b). However, this often leads to sparse rewards, where all responses within a group receive identical rewards. Consequently, the calculated advantages for each response become zero, cease to provide

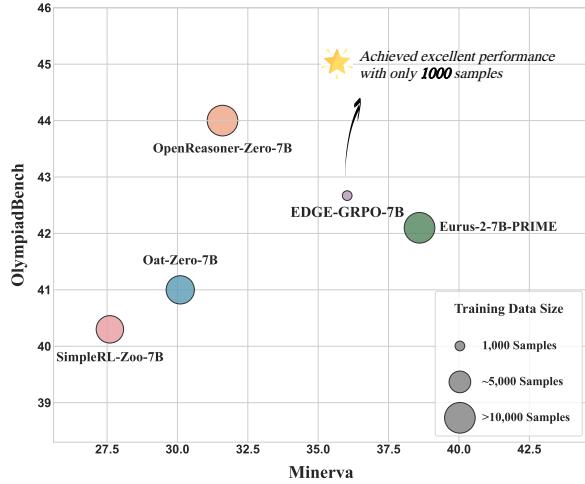


Figure 1: Performance comparison with other open-source models on Olympiad and Minerva. Our method achieves competitive and excellent performance with only 1K training samples. These models are all post-trained based on Qwen2.5-Math-7B.

054 effective policy gradient, and lead to advantage collapse during training. This phenomenon severely
 055 limits the efficiency of the sample.
 056

057 Recent studies have primarily sought to alleviate this problem from two perspectives. At the re-
 058 sponse level, efforts focus on increasing the diversity of responses to prevent identical rewards across
 059 all responses, such as enforcing model reflection on incorrect answers to reduce the occurrence of
 060 uniformly incorrect outputs within a group Wang et al. (2025a); Wan et al. (2025). However, the
 061 extent to which reflection contributes to performance improvement remains inconclusive. At the sig-
 062 nal level, internal feedback is introduced to augment the advantage, such as incorporating response-
 063 related semantic entropy or policy entropy into the advantage calculation Chen et al. (2025); Cheng
 064 et al. (2025). However, most studies either pursue low entropy to improve accuracy or encourage
 065 high entropy to maintain exploration, lacking fine-grained modeling of the relationship between
 066 responses and their policy entropy.

067 In this paper, we begin by analyzing the limitations of model reflection. Quantitative experiments
 068 show that responses containing self-reflection are often associated with significantly lower accuracy.
 069 Although forced reflection can help the model correct a subset of answers, its overall effectiveness
 070 remains limited. Additionally, we observe a misconception in the model’s estimation of policy
 071 entropy at the fine-grained sample level: incorrect responses do not necessarily indicate uncertainty,
 072 some of them exhibit notably lower entropy. Conversely, the model is not always confident in its
 073 correct responses, some of which display relatively high entropy.

074 To address these issues, we propose a simple and effective EDGE-GRPO (Entropy-Driven GRPO
 075 with Guided Error Correction) algorithm. At the response level, we introduce Guided Error Correc-
 076 tion (GEC) to enhance response diversity, providing more effective guidance even when the model
 077 encounters questions beyond its current capacity. At the signal level, we compute an Entropy-Driven
 078 Advantage (EDA) that assigns higher advantages to correct responses with low entropy and lower
 079 advantages to incorrect responses with low entropy, thereby increasing the diversity of the advan-
 080 tage signal. These improvements significantly mitigate the problem of advantage collapse. Across
 081 multiple reasoning benchmarks, our method achieves substantial performance gains compared to
 082 the vanilla GRPO. As shown in Figure 1, our approach reaches comparable performance to other
 083 open-source models using only 1K training samples.

084 Our contributions can be summarized as follows:

- 085 • We analyze the key challenges faced by preliminary attempts. Specifically, at the response
 086 level, prompting the model to reflect on incorrect responses has limited effectiveness. At the
 087 signal level, fine-grained sample-level policy entropy is needed to guide the augmentation
 088 of the advantage.
- 089 • We propose the EDGE-GRPO algorithm. At the response level, we introduce Guided Error
 090 Correction (GEC) to overcome the limitations of the model capacity and improve response
 091 diversity. At the signal level, we compute an Entropy-Driven Advantage (EDA) to increase
 092 the diversity of the advantage signal, significantly alleviating the problem of advantage
 093 collapse.
- 094 • Extensive experiments on multiple main reasoning benchmarks show that our method
 095 achieves a significant performance improvement across different model families and sizes,
 096 thus validating its effectiveness and superiority.

099 2 RELATED WORK

100 **Advantage Collapse.** Advantage collapse is a critical limitation of the GRPO algorithm, as it
 101 severely impairs effective gradient updates. Prior approaches typically mitigate this issue through
 102 data filtering Yu et al. (2025); Meng et al. (2025), by discarding samples in which all responses
 103 within a group are either entirely correct or incorrect. However, this greatly limits sample effi-
 104 ciency, as challenging samples can be beneficial for improving model performance. In addition,
 105 some works Wang et al. (2025a) attempt to enhance response diversity by enforcing model reflec-
 106 tion, while others Chen et al. (2025); Cheng et al. (2025) introduce internal feedback to strengthen
 107 the training signal.

108 **Think More or Less.** There are differing views on whether model reflection truly benefits model
 109 performance. Several works Muennighoff et al. (2025); Tian et al. (2025) proposed adding "wait"
 110 to chain-of-thought reasoning to encourage the model to engage in reflection, which can improve
 111 performance. VL-Rethinker Wang et al. (2025a) incorporates forced reflection during the training
 112 process to enhance the slow-thinking capability of the model. Meanwhile, other researchers argue
 113 that suppressing the tokens that trigger reflection Liu et al. (2025a), encouraging the model to generate
 114 shorter responses Su et al. (2025); Fatemi et al. (2025), can reduce redundant reasoning without
 115 compromising the model's accuracy.

116 **RL from Internal Feedback.** Recent studies introduce internal feedback such as entropy to
 117 strengthen the training signal. Some studies Gao et al. (2025); Zhang et al. (2025a) argue that
 118 correct responses generated by models typically exhibit lower entropy than incorrect ones, so unsupervised
 119 entropy minimization methods can also enhance performance. SEED-GRPO Chen et al.
 120 (2025) introduces semantic entropy to quantify semantic diversity among generated responses and
 121 dynamically adjusts the magnitude of policy updates based on this measure. Other works Cheng
 122 et al. (2025) suggest that high entropy encourages exploratory reasoning, therefore incorporating
 123 policy entropy into the advantage term of the GRPO algorithm to promote exploration. However,
 124 most of these methods lack fine-grained modeling of the relationship between response correctness
 125 and their policy entropy.

127 3 INVESTIGATION OF ADVANTAGE COLLAPSE IN GRPO

128 We begin with a brief introduction to the Group Relative Policy Optimization (GRPO) algorithm
 129 Shao et al. (2024). For each input question q , it generates a set of responses $\{O_1, O_2, \dots, O_G\}$
 130 using the policy model and computes a corresponding set of rewards $\{r_1, r_2, \dots, r_G\}$ for these
 131 responses. The rewards are then normalized to calculate the advantages. The model is optimized by
 132 maximizing the following objective function:

$$134 \quad J_{GRPO}(\theta) = E_{[q, \{o_i\}]} \frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{i=1}^{|o_i|} \left\{ \min \left[\frac{\pi_\theta}{\pi_{\theta_{old}}} A_i, \text{clip} \left(\frac{\pi_\theta}{\pi_{\theta_{old}}}, 1 - \epsilon, 1 + \epsilon \right) A_i \right] - \beta D_{KL} \right\} \quad (1)$$

135 where π_θ and $\pi_{\theta_{old}}$ are the current and old policy, and A_i is the advantages defined as:

$$136 \quad A_i = \frac{r_i - \text{mean}(\{r_1, r_2, \dots, r_G\})}{\text{std}(\{r_1, r_2, \dots, r_G\})}. \quad (2)$$

137 The diversity of advantages is crucial for effective model updates, as it directly determines the
 138 training signal used in policy gradient optimization. Due to the difficulty of assigning rewards to
 139 intermediate reasoning steps, most existing reward rules are sparse, with the response reward largely
 140 determined by the correctness of the final answer. As a result, when all responses within a group
 141 are either correct or incorrect, they receive identical rewards, leading to zero advantage across the
 142 group. This lack of distinction between responses impairs gradient updates, a phenomenon known
 143 as the advantage collapse problem.

144 Advantage collapse results in low sample efficiency. However, samples that are more challenging
 145 for the model often play an important role in improving its performance. Therefore, addressing the
 146 advantage collapse problem remains a critical challenge.

147 Existing approaches commonly aim to address this issue from two key perspectives: at the response
 148 level, by promoting model reflection to enhance the diversity of generated responses. At the signal
 149 level, by incorporating internal feedback mechanisms to enrich the training signal. In this work, we
 150 first conduct a preliminary investigation along both dimensions to explore their potential in mitigat-
 151 ing the advantage collapse problem.

152 3.1 RESPONSE-LEVEL: LIMITATIONS OF REFLECTION

153 We begin by conducting a series of quantitative experiments to analyze the phenomenon of model
 154 reflection. We select models of two different parameter scales, including base models as well as
 155 those post-trained by supervised fine-tuning or reinforcement learning. To determine whether a

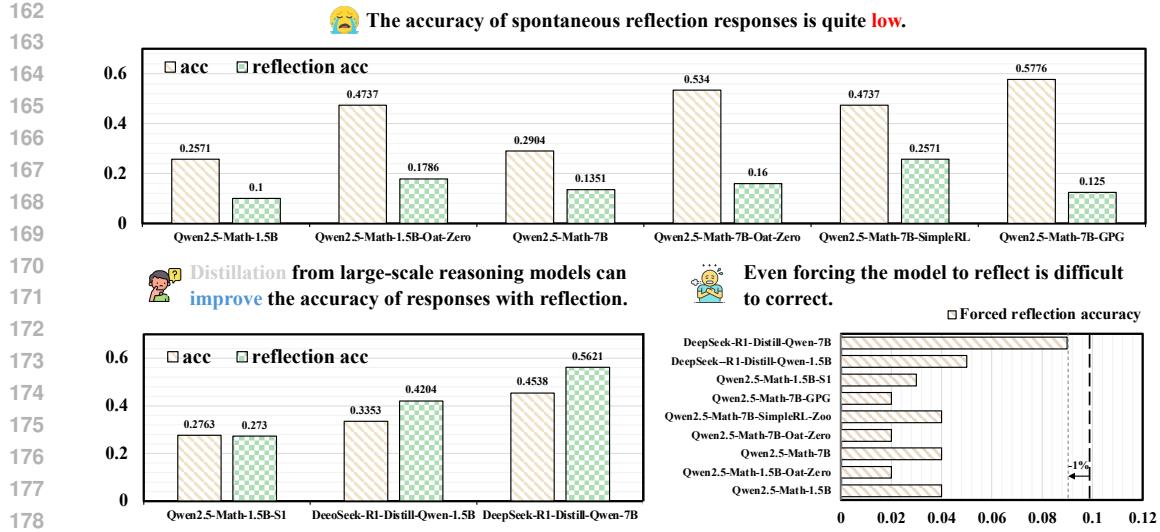


Figure 2: The reflection performance of different models. **Upper:** For most models, the accuracy of responses that involve self-reflection is significantly lower than the overall accuracy. **Left:** Fine-tuning with high-quality data that includes reflection processes helps improve the accuracy of model reflection. **Right:** Even when the model is forced to reflect on incorrect responses, the improvement in accuracy remains limited, these results are averaged over four types of reflection prompts.

model’s response exhibits self-reflection, we follow previous work Liu et al. (2025b) by extracting reflection-related keywords from the responses. If the response contains reflection keywords such as `check again`, it is considered to exhibit self-reflection. The specific set of reflection keywords is provided in the Appendix.

Initially, we observe that the majority of spontaneously generated reflections by models tend to exhibit low accuracy. As shown in the upper part of Figure 2, for both base models and those post-trained by reinforcement learning, the accuracy of responses containing reflection is significantly lower than the overall accuracy of the model. This result clearly indicates that spontaneous reflection during reasoning is often ineffective and may even lead to a higher rate of incorrect responses.

However, unlike other models, two models distilled from DeepSeek-R1 Guo et al. (2025) have a more frequent self-reflection behavior, and their reflection is accompanied by higher accuracy. To verify whether this phenomenon is caused by long chain-of-thought training data from knowledge distillation, we train Qwen2.5-Math-1.5B-S1 on the S1K dataset Muennighoff et al. (2025), which contains only 1K high quality long chain-of-thought samples, some of which include reflection-related content. It can be observed that after training on the S1K data, the model’s reflection accuracy significantly improves and becomes comparable to its overall accuracy.

Subsequently, we also investigate the effect of forcing different models to reflect on their incorrect answers. Specifically, we first have each model respond to every question in the test set, then we retain only the samples with incorrect answers. A reflection prompt is appended to each incorrect response to initiate reflection, after which the model is prompted to continue answering. We designed four distinct reflection prompts: `Wait!`, `Hmm`, `Let’s check it again!`, and `Something is wrong here`. These prompts include two anthropomorphic expressions and two objective declarative phrases.

As shown in the lower right corner of Figure 2, the accuracy of forced reflection on incorrect responses remains below 5% for most models. Although the overall accuracy does not exceed 10%, the DeepSeek-R1-Distill series model still achieves relatively higher accuracy compared to other models due to being fine-tuned with external high-quality chain-of-thought data.

These results reveal a fundamental limitation in the reflective capabilities of most models. When model capacity is limited, relying solely on self-correction yields minimal improvement. Therefore, when confronted with challenging problems where the model persistently produces incorrect

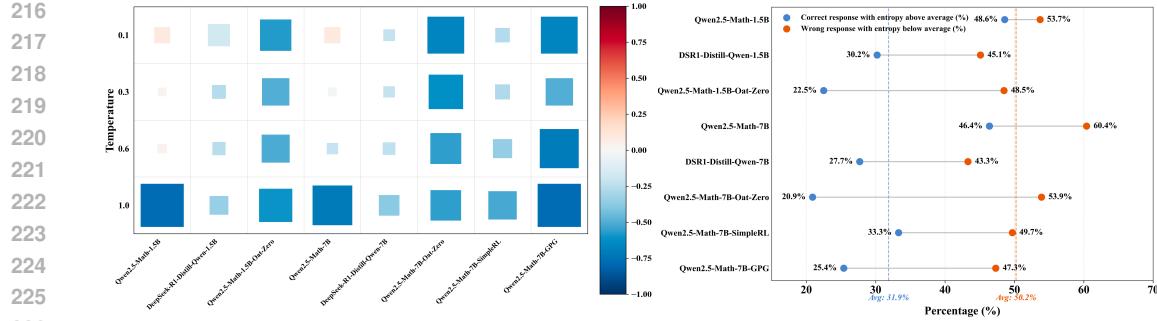


Figure 3: **Left:** The relative confidence of different models in correct responses under various temperature settings. The area of the blue squares serves as a proxy for the model’s relative confidence, with larger areas reflecting greater confidence in correct responses. **Right:** The proportion of correct responses with entropy higher than the average and incorrect responses with entropy lower than the average across different models. These results are evaluated under the setting of temperature=0.1. We provide more detailed experimental results and the policy entropy distribution of different models in the Appendix.

responses, incorporating external information for correction emerges as a more effective and reliable strategy at the response level.

3.2 SIGNAL-LEVEL: POLICY ENTROPY

We also investigate the policy entropy of different responses. For each generated chain-of-thought response, the policy entropy P is calculated as follows:

$$P = -\frac{1}{T} \sum_{t=1}^T \sum_{j=1}^V P_{t,j} \cdot \log P_{t,j}. \quad (3)$$

where T denotes the total number of tokens in the response, V is the vocabulary size, and $P_{t,j}$ is defined as:

$$P_{t,j} = \pi_\theta(j \in V | q, o < t) = \text{Softmax} \left(\frac{\text{logits}_t}{T} \right). \quad (4)$$

Here, π_θ represents the language model parameterized by θ . We use the policy entropy P to measure the uncertainty of the model over the generated response.

We first divide all responses into two categories based on whether they are correct or incorrect, and calculate the Relative Confidence Metric (RCM) of each model in correct responses under different temperatures using the following formula:

$$\text{RCM} = \frac{\text{Entropy}_{\text{Correct}} - \text{Entropy}_{\text{Wrong}}}{\text{Average Entropy}}. \quad (5)$$

The visualization results are shown on the left side of Figure 3. Except for the two base models, Qwen2.5-1.5B and Qwen2.5-7B Yang et al. (2024), other post-trained models typically exhibit higher relative confidence, as the average entropy of their correct responses is indeed lower than that of incorrect responses, which aligns with assumptions made in previous studies Gao et al. (2025).

However, a fine-grained analysis at the individual sample level reveals that many models exhibit miscalibrated confidence in their responses: approximately half of the incorrect responses display entropy values lower than the average, while nearly one-third of the correct responses exhibit entropy higher than the average, as shown on the right side of Figure 3. We posit that such miscalibration undermines model performance. Ideally, the model should exhibit greater confidence in the correct responses while maintaining appropriate uncertainty about its incorrect answers. Consequently, training strategies should avoid indiscriminately promoting high or low entropy, and instead adopt a more fine-grained approach that aligns policy entropy with response correctness to better guide learning dynamics.

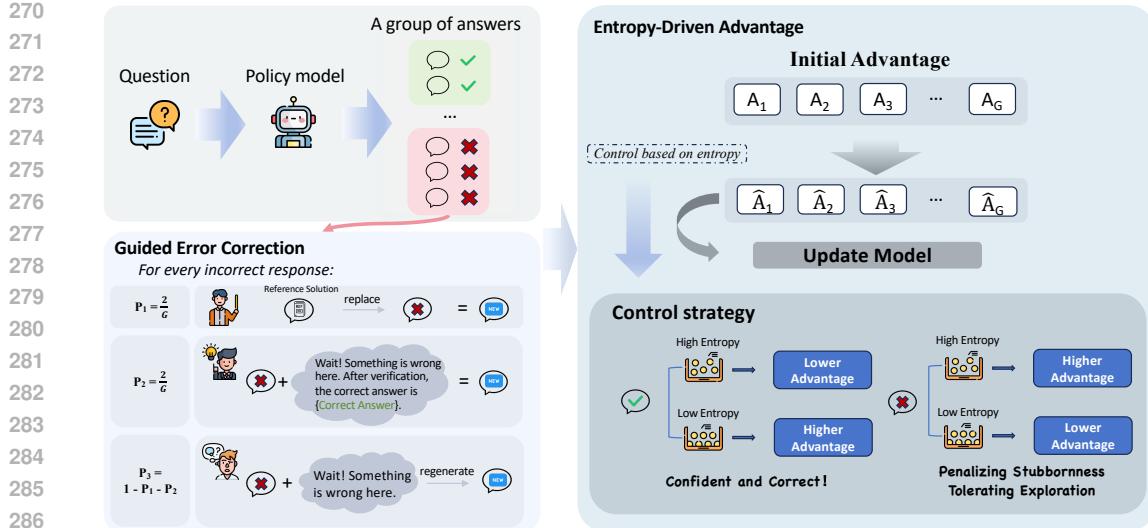


Figure 4: The overall framework of EDGE-GRPO. By introducing Guided Error Correction at the response level to enhance response diversity and Entropy-Driven Advantage at the signal level to increase advantage diversity, we mitigate the advantage collapse problem in the vanilla GRPO. Here, G represents the number of generated responses in a group.

4 EDGE-GRPO: ENTROPY-DRIVEN GRPO WITH GUIDED ERROR CORRECTION

Building on the above insights, we propose the EDGE-GRPO algorithm by introducing Guided Error Correction (GEC) to enhance response diversity and Entropy-Driven Advantage (EDA) to augment signal diversity, thus addressing the advantage collapse problem.

4.1 RESPONSE-LEVEL: GUIDED ERROR CORRECTION (GEC)

The experimental analysis in the previous section has shown that the model’s ability to correct errors through reflection is quite limited. This limitation leads the model to consistently generate entirely incorrect responses when faced with problems beyond its capabilities. However, response diversity fundamentally impacts reward diversity, which consequently directly affects advantage diversity. Therefore, introducing external solutions to ensure that each set of responses contains a certain proportion of positive and negative samples is crucial for mitigating the advantage collapse problem.

To fundamentally address this issue, we propose Guided Error Correction (GEC), a response-level intervention strategy designed to mitigate advantage collapse by enhancing response diversity. As illustrated in Figure 4, for incorrect responses, GEC performs one of the following three operations based on a predefined probability:

Reference Solution Replacement: The incorrect response is completely replaced with an external reference solution. This operation is performed with a probability of $P_1 = \frac{2}{G}$, where G is the total number of responses in the group. Compared to a smaller value ($P_1 = \frac{1}{G}$), this value ensures a higher probability that at least one response will be replaced with the reference solution when all responses are incorrect. Compared to a higher probability, it also maintains response diversity and avoids having too many identical responses within the group.

Direct Answer Injection: Along with the reflection prompt, the correct answer is provided directly. This operation is also performed with a probability of $P_2 = \frac{2}{G}$ to ensure both the number and the diversity of correct responses within the group.

Prompt and Regenerate: A simple reflection prompt is provided, and the model is asked to regenerate its answer based on it, giving the model a chance to self-correct. This operation is performed

324
 325 Table 1: Pass@1 performance comparison across various mathematical evaluation benchmarks. The
 326 results below are from 1 epoch of training on **DeepScaleR-Hard-1K**. The number of samples in each
 327 benchmark is indicated in parentheses. The results are evaluated under the setting of temperature =
 0.1. The best results are indicated by **boldface**.

Model	Method	Avg (1560)	AIME (30)	AMC (83)	Math (500)	Min (272)	Oly (675)
Qwen2.5-Math-1.5B	Base	25.71	6.67	37.35	34.60	12.13	24.00
	SFT	29.17	6.67	28.92	46.40	12.87	24.00
	Vanilla GRPO	40.26	10.00	46.99	65.00	20.59	30.37
	+ Force Reflection	41.55	13.33	31.33	70.00	22.06	30.81
	Dr.GRPO	40.13	13.33	43.37	67.20	18.75	29.48
	DAPO	33.91	6.67	31.33	54.80	16.54	26.96
Qwen2.5-Math-7B	EDGE-GRPO	47.24	10.00	44.58	73.20	29.04	37.33
	Base	29.04	10.00	37.35	53.40	10.66	18.22
	SFT	37.37	3.33	44.58	68.00	19.85	22.37
	Vanilla GRPO	47.69	26.67	53.01	74.20	25.74	37.19
	+ Force Reflection	40.26	13.33	40.96	67.60	19.85	29.33
	Dr.GRPO	48.78	23.33	56.63	75.20	27.21	38.07
Llama-3.2-3B-Instruct	DAPO	49.49	20.00	57.83	76.20	27.94	38.67
	EDGE-GRPO	53.21	16.67	53.01	79.00	36.03	42.67
	Base	19.81	6.67	14.46	36.20	12.13	12.00
	SFT	22.44	0.00	20.48	41.20	11.77	14.07
	Vanilla GRPO	22.44	13.33	15.66	42.80	15.07	11.56
	+ Force Reflection	22.89	6.67	21.69	41.8	13.97	13.33
Qwen2.5-Math-7B	Dr.GRPO	22.24	3.33	18.07	42.60	12.50	12.44
	DAPO	22.95	3.33	18.07	42.60	13.97	13.48
	EDGE-GRPO	25.06	3.33	20.48	45.60	17.28	14.52

345
 346 with a probability of $P_3 = 1 - P_1 - P_2$, which ensures that most responses are still generated by
 347 the model itself. Since the effect of self-reflection is relatively limited, only a small portion of the
 348 responses can be corrected to the right answers. These few corrected responses are then used as
 349 positive samples to guide the model update.

350 These three strategies ensure that each group of responses contains positive samples with correct
 351 answers while still retaining negative samples generated by the model itself.

352 By introducing Guided Error Correction at the response level, we ensure that even when the model
 353 encounters problems beyond its capabilities, the response set can still contain diverse answers. This
 354 helps mitigate the issue of advantage collapse and provides effective training signals.

356 4.2 SIGNAL-LEVEL: ENTROPY-DRIVEN ADVANTAGE (EDA)

357
 358 Although Guided Error Correction enhances response diversity and prevents the advantages within
 359 a group from collapsing to zero, it remains insufficient to address the issue of uniform advantages
 360 among correct or incorrect responses. To enable finer-grained differentiation among different cor-
 361 rect or incorrect responses, we introduce policy entropy as an internal feedback signal to enhance
 362 advantage diversity.

363 The results in the previous section show that the model often misjudges the confidence of its re-
 364 sponses, many incorrect responses exhibit low entropy, while many correct responses have high en-
 365 tropy. We believe this misalignment negatively impacts model performance. Therefore, we propose
 366 Entropy-Driven Advantage (EDA) to enhance the model’s ability to distinguish between different
 367 responses.

368 For each response O_i during training, we calculate its policy entropy P_i using Equations 3 and 4,
 369 and then scale it to ensure the values remain within a reasonable range.

$$370 \hat{P}_i = \frac{P_i}{\text{mean}(\{P_1, P_2, \dots, P_G\})}. \quad (6)$$

371 Next, we use the scaled entropy values to compute the entropy-driven advantage:

$$372 \hat{A}_i = \frac{r_i - \text{mean}(\{r_1, r_2, \dots, r_G\})}{\text{std}(\{r_1, r_2, \dots, r_G\}) \cdot \hat{P}_i}. \quad (7)$$

373
 374 Compared to the initial advantage values, the entropy-driven advantage exhibits greater diversity. It
 375 assigns higher advantages to responses that are both correct and confident, while imposing harsher

378 penalties on responses that are incorrect but overly confident. It ensures that, when the initial ad-
 379 vantages are not all zero, different responses are assigned distinct final advantage values, thereby
 380 enhancing the model’s ability to distinguish among responses and further mitigating the advantage
 381 collapse problem.

382 It is worth emphasizing that the GEC and EDA modules enhance the diversity of advantage from
 383 different levels, and they are complementary to some extent. Although the GEC module ensures
 384 that the advantage of the response is not zero, it cannot achieve finer-grained differentiation between
 385 correct or incorrect responses. In contrast, the EDA module relies on the presence of a certain
 386 number of positive and negative samples within the group. When the initial intra-group advantages
 387 are all zero, fine-grained scaling cannot take effect. This is precisely the reason for incorporating a
 388 proportion of correct responses into the GEC module.

390 5 EXPERIMENTS

391 5.1 EXPERIMENTAL SETUP

394 **Train Datasets.** We use the DeepScaleR dataset Luo et al. (2025) for training. The original dataset
 395 contains approximately 40K math problems. We retain only those samples that include a solution
 396 and where the final answer is placed inside a `\boxed{}` in the solution. After this filtering process,
 397 around 2K samples remain. We randomly select 1K samples as the standard training set, named
 398 DeepScaleR-Random-1K. Meanwhile, to evaluate the effectiveness of our method on more chal-
 399 lenging data, we use Qwen2.5-Math-7B to further filter the samples. Specifically, for each question,
 400 the model generates eight responses, and we select the 1K questions with the lowest accuracy as
 401 the hard training set, referred to as DeepScaleR-Hard-1K. In this dataset, approximately 80% of the
 402 questions receive entirely incorrect responses across all generations.

403 **Evaluation Benchmark.** We select five challenging mathematical reasoning benchmarks to eval-
 404 uate our method: AIME24, AMC, MATH500 Hendrycks et al. (2021), Minerva Lewkowycz et al.
 405 (2022) and OlympiadBench He et al. (2024). These benchmarks collectively contain a total of 1,560
 406 problems. All evaluation experiments in this paper are conducted on these benchmarks.

408 **Implementation Details.** We conduct experiments on 8 NVIDIA A100-40G GPUs. We remove
 409 the KL divergence to eliminate constraints on the model. Previous studies Yu et al. (2025); Liu et al.
 410 (2025b) have shown that it can lead to better training performance, as the distribution of the model
 411 may differ significantly from the initial model during training. Other training configurations and
 412 hyperparameter settings follow the default setup of the GRPO trainer under the TRL framework von
 413 Werra et al. (2020). We train for one epoch on only 1K DeepScaleR samples on Qwen2.5-Math-
 414 1.5B, Qwen2.5-Math-7B Yang et al. (2024) and Llama3.2-3B-Instruct Grattafiori et al. (2024).

415 During evaluation, we focus on the model’s pass@1 performance, meaning the model generates only
 416 one response for each given question. To calculate the overall average accuracy, we avoid directly
 417 averaging the accuracy across the five benchmarks due to their varying number of questions. Instead,
 418 we calculate the average by dividing the total number of correct answers by the total number of
 419 questions to reduce bias. More detailed experimental settings can be found in the Appendix.

421 5.2 MAIN RESULT

423 Table 1 presents the results of our method on various mathematical evaluation benchmarks. Al-
 424 though our method is trained on only 1K samples for one epoch, it achieves significant performance
 425 improvements across various scales of Qwen and Llama models. It is worth emphasizing that for
 426 about 80% of the problems in DeepScaleR-Hard-1K, all eight responses generated by the base model
 427 Qwen2.5-Math-7B are incorrect. This further validates the effectiveness of our method in challeng-
 428 ing data, even when the difficulty exceeds the capability of the model. In addition, we also conduct
 429 experiments on DeepScaleR-Random-1K to verify the generalization performance of our method,
 430 with detailed results provided in the Appendix.

431 Since our method requires each question to have not only the final answer, but also a corresponding
 432 reference solution, we established a Supervised Fine-Tuning (SFT) baseline using the same chain-

432 Table 2: The ablation study of EDGE-GRPO separately verifies the effectiveness of guided error
 433 correction and entropy-driven advantage. The results are all from training on DeepScaleR-Hard-1K.
 434

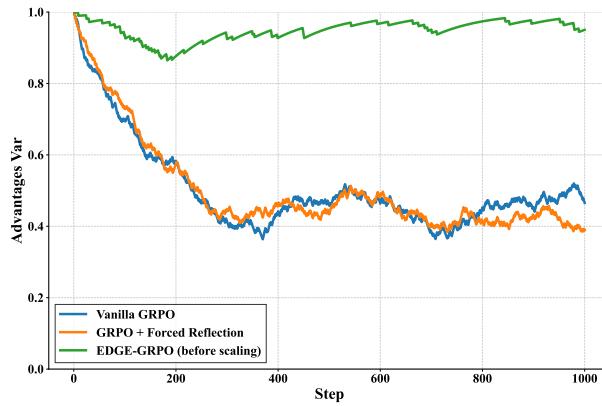
435 Method	436 Avg (1560)	437 AIME (30)	438 AMC (83)	439 Math (500)	440 Min (272)	441 Oly (675)
EDGE-GRPO [Qwen2.5-Math-1.5B]	47.24	10.00	44.58	73.20	29.04	37.33
- Reference Solution	42.44	10.00	34.94	69.60	23.53	32.30
- Guided Error Correction	40.06	13.33	40.96	64.00	21.32	30.96
- Entropy-Driven Advantage	40.64	10.00	43.37	67.80	19.12	30.22
EDGE-GRPO [Qwen2.5-Math-7B]	53.21	16.67	53.01	79.00	36.03	42.67
- Reference Solution	45.19	26.67	50.60	68.00	28.68	35.11
- Guided Error Correction	46.80	20.00	50.60	75.80	23.16	35.56
- Entropy-Driven Advantage	47.44	3.33	43.37	74.40	29.04	37.33

444 of-thought data for comparison. As shown in the SFT row of Table 1, our approach significantly
 445 outperforms supervised fine-tuning, even when trained on the exact same data. And our method also
 446 exhibits a clear advantage when evaluated against established algorithmic variants. Specifically,
 447 our method consistently outperforms algorithmic variants such as Dr.GRPO Liu et al. (2025b) and
 448 DAPO Yu et al. (2025), as well as improvements to the vanilla GRPO algorithm that force the model
 449 to reflect on incorrect responses.

450 In addition, we conduct an ablation study on EDGE-GRPO, as shown in Table 2. First, removing
 451 external reference solutions leads to a decline in model performance, highlighting the importance
 452 of integrating external information when dealing with problems beyond the model’s capability. In
 453 addition, removing either the GEC or EDA component results in a significant performance gap
 454 compared to EDGE-GRPO, which not only validates the effectiveness of each component but also
 455 underscores the importance of enhancing response diversity and providing more fine-grained dis-
 456 tinctions in training signals for improving model performance.

457 We also visualize changes in advantage variance during training for different methods, as shown in Figure 5. During
 458 training, compared with the vanilla GRPO algorithm and the variant with
 459 enforced reflection, our method maintains a higher level of intra-group advantage variance solely through response-
 460 level improvements (GEC). After advantage scaling, advantage diversity will be
 461 further enhanced. It also demonstrates its significant mitigation of the advantage collapse problem.

462 Moreover, even with significantly less
 463 training data, our model achieves comparable
 464 performance to other main open
 465 source models Zeng et al. (2025); Hu
 466 et al. (2025); Cui et al. (2025); Liu et al.
 467 (2025b), as illustrated in Figure 1. This further demonstrates the superiority and utility of our
 468 method. More detailed experimental results can be found in the Appendix.



469 Figure 5: The changes in intra-group advantage variance
 470 during training for different methods. Our method maintains a relatively high level without significant decline.

471 6 CONCLUSION

472 This work proposes a simple and effective EDGE-GRPO algorithm that mitigates the advantage
 473 collapse problem of the vanilla GRPO algorithm on two levels. At the response level, the Guided
 474 Error Correction (GEC) method is introduced to overcome the limitations of the inherent capabilities
 475 of the model and improve response diversity. At the signal level, the Entropy-Driven Advantage
 476 (EDA) computation enables the model to differentiate responses more finely during training, thereby
 477 improving the diversity of advantages. Our method significantly alleviates the advantage collapse
 478 problem and achieves notable performance improvements using only 1K samples across different
 479 base models, demonstrating its effectiveness and superiority.

486 REFERENCES
487

488 Minghan Chen, Guikun Chen, Wenguan Wang, and Yi Yang. Seed-grpo: Semantic entropy enhanced
489 grp for uncertainty-aware policy optimization. *arXiv preprint arXiv:2505.12346*, 2025.

490 Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and
491 Furu Wei. Reasoning with exploration: An entropy perspective. *arXiv preprint arXiv:2506.14758*,
492 2025.

493 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
494 Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv preprint
495 arXiv:2502.01456*, 2025.

496 Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise reasoning via
497 reinforcement learning. *arXiv preprint arXiv:2504.05185*, 2025.

498 Zitian Gao, Lynx Chen, Joey Zhou, and Bryan Dai. One-shot entropy minimization. *arXiv preprint
499 arXiv:2505.20282*, 2025.

500 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
501 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
502 of models. *arXiv preprint arXiv:2407.21783*, 2024.

503 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
504 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
505 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

506 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
507 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
508 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint
509 arXiv:2402.14008*, 2024.

510 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
511 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
512 preprint arXiv:2103.03874*, 2021.

513 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
514 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
515 model. *arXiv preprint arXiv:2503.24290*, 2025.

516 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
517 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv
518 preprint arXiv:2412.16720*, 2024.

519 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
520 Ramasesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quan-
521 titative reasoning problems with language models, 2022. URL <https://arxiv.org/abs/2206.14858>,
522 1, 2022.

523 Kaiyuan Liu, Chen Shen, Zhanwei Zhang, Junjie Liu, Xiaosong Yuan, et al. Efficient reasoning
524 through suppression of self-affirmation reflections in large reasoning models. *arXiv preprint
525 arXiv:2506.12353*, 2025a.

526 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
527 and Min Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint
528 arXiv:2503.20783*, 2025b.

529 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai,
530 Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
531 o1-preview with a 1.5b model by scaling rl, 2025. Notion Blog.

532 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Botian Shi,
533 Wenhui Wang, Junjun He, Kaipeng Zhang, et al. Mm-eureka: Exploring visual aha moment with
534 rule-based large-scale reinforcement learning. *CoRR*, 2025.

540 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 541 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 542 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

543

544 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 545 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

546

547 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 548 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 549 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

550

551 Jinyan Su, Jennifer Healey, Preslav Nakov, and Claire Cardie. Between underthinking and over-
 552 thinking: An empirical study of reasoning length and correctness in llms. *arXiv preprint
 553 arXiv:2505.00127*, 2025.

554

555 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 556 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 557 llms. *arXiv preprint arXiv:2501.12599*, 2025.

558

559 Xiaoyu Tian, Sitong Zhao, Haotian Wang, Shuaiting Chen, Yunjie Ji, Yiping Peng, Han Zhao, and
 560 Xiangang Li. Think twice: Enhancing llm reasoning by scaling multi-round test-time thinking.
 561 *arXiv preprint arXiv:2503.19855*, 2025.

562

563 Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
 564 Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
 565 learning. <https://github.com/huggingface/trl>, 2020.

566

567 Zhongwei Wan, Zhihao Dou, Che Liu, Yu Zhang, Dongfei Cui, Qinjian Zhao, Hui Shen, Jing Xiong,
 568 Yi Xin, Yifan Jiang, et al. Srpo: Enhancing multimodal llm reasoning via reflection-aware rein-
 569 force learning. *arXiv preprint arXiv:2506.01713*, 2025.

570

571 Haozhe Wang, Chao Qu, Zuming Huang, Wei Chu, Fangzhen Lin, and Wenhui Chen. Vi-
 572 rethinker: Incentivizing self-reflection of vision-language models with reinforcement learning.
 573 *arXiv preprint arXiv:2504.08837*, 2025a.

574

575 Weiyun Wang, Zhangwei Gao, Lianjie Chen, Zhe Chen, Jinguo Zhu, Xiangyu Zhao, Yangzhou Liu,
 576 Yue Cao, Shenglong Ye, Xizhou Zhu, et al. Visualprm: An effective process reward model for
 577 multimodal reasoning. *arXiv preprint arXiv:2503.10291*, 2025b.

578

579 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 580 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
 581 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024.

582

583 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 584 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 585 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

586

587 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
 588 zoo: Investigating and taming zero reinforcement learning for open base models in the wild. *arXiv
 589 preprint arXiv:2503.18892*, 2025.

590

591 Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
 592 is already half the answer: Fully unsupervised llm reasoning incentivization. *arXiv preprint
 593 arXiv:2504.05812*, 2025a.

594

595 Xingjian Zhang, Siwei Wen, Wenjun Wu, and Lei Huang. Tinyllava-video-r1: Towards smaller
 596 llms for video reasoning. *arXiv preprint arXiv:2504.09641*, 2025b.

597

598 Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. R1-
 599 zero’s” aha moment” in visual reasoning on a 2b non-sft model. *arXiv preprint arXiv:2503.05132*,
 600 2025.

601

594
595
596
597
598
A APPENDIX599
600
601
602
603
A.1 REFLECTION KEYWORDS604
605
606
607
608
609
610
611
612
613
614
615
616
We determine whether a reflection phenomenon has occurred based on the presence of reflection-related keywords in the response. The set of 15 keywords used in the experiment for identifying reflection is as follows: check again, recheck, double-check, rethink, think again, reevaluate, re-evaluate, re-examine, verify again, reevaluation, reexamine, reanalyze, reassess, reconsider, go over.617
618
619
620
621
622
623
624
A.2 ANALYSIS ON THE INTRODUCTION OF EXTERNAL SOLUTIONS625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
In the Guided Error Correction (GEC) section, we introduce external reference solutions to enhance response diversity. Since the reference solution trajectories are not sampled by the old policy, our method is not strictly on-policy. So we approximate the probability of these solutions under the old model policy $\pi_{\theta_{old}}$ using the probability that the old model would generate the trajectories of these reference solutions. The specific probability calculation is shown in Algorithm 1.648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
100932
100933
100934
100935
100936
100937
100938
100939
100940
100941
100942
100943
100944
100945
100946
100947
100948
100949
100950
100951
100952
100953
100954
100955
100956
100957
100958
100959
100960
100961
100962
100963
100964
100965
100966
100967
100968
100969
100970
100971
100972
100973
100974
100975
100976
100977
100978
100979
100980
100981
100982
100983
100984
100985
100986
100987
100988
100989
100990
100991
100992
100993
100994
100995
100996
100997
100998
100999
1001000
1001001
1001002
1001003
1001004
1001005
1001006
1001007
1001008
1001009
10010010
10010011
10010012
10010013
10010014
10010015
10010016
10010017
10010018
10010019
100100100
100100101
100100102
100100103
100100104
100100105
100100106
100100107
100100108
100100109
100100110
100100111
100100112
100100113
100100114
100100115
100100116
100100117
100100118
100100119
100100120
100100121
100100122
100100123
100100124
100100125
100100126
100100127
100100128
100100129
100100130
100100131
100100132
100100133
100100134
100100135
100100136
100100137
100100138
100100139
100100140
100100141
100100142
100100143
100100144
100100145
100100146
100100147
100100148
100100149
100100150
100100151
100100152
100100153
100100154
100100155
100100156
100100157
100100158
100100159
100100160
100100161
100100162
100100163
100100164
100100165
100100166
100100167
100100168
100100169
100100170
100100171
100100172
100100173
100100174
100100175
100100176
100100177
10

648
649

A.3 DETAILED EXPERIMENTAL SETTINGS

650

Our training configuration and hyperparameter settings follow the default settings of the GRPO trainer under the TRL framework. For each sample, the model is prompted to generate 8 responses, each response limited to a maximum of 1024 tokens. We train on 1K samples per epoch, and to enable experiments on Qwen2.5-Math-7B, we generate one response per GPU, resulting in a total of 1K training steps. The learning rate is set to 1e-6 during training. For evaluation on the five reasoning benchmarks, all tests are conducted with a temperature setting of 0.1.

656

657

A.4 DETAILED EXPERIMENTAL RESULTS

659

660

A.4.1 FURTHER EXPERIMENTAL RESULTS

661

We also conduct experiments on DeepScaleR-Random-1K, with results shown in Table 3. Our method achieves performance improvements across all three different base models. Furthermore, compared to algorithm variants such as Dr.GRPO and DAPO, as well as methods that enforce reflection on the vanilla GRPO, our method demonstrates clear advantages. We also observe that the performance improvement of Qwen2.5-Math-7B is more limited compared to training on DeepScaleR-Hard-1K. We attribute this to the fact that this training data is relatively easier for the model, which further highlights the effectiveness of our method on difficult data, as such challenging data often contributes more to performance improvement.

669

670

Table 3: Pass@1 performance comparison across various mathematical evaluation benchmarks. The results below are from 1 epoch of training on **DeepScaleR-Random-1K**. The number of samples in each benchmark is indicated in parentheses. The results are evaluated under the setting of temperature = 0.1. The best results are indicated by **boldface**.

674

675

Model	Method	Avg (1560)	AIME (30)	AMC (83)	Math (500)	Min (272)	Oly (675)
Qwen2.5-Math-1.5B	Base	25.71	6.67	37.35	34.60	12.13	24.00
	SFT	30.13	10.00	30.12	47.20	14.71	24.59
	Vanilla GRPO	40.32	13.33	39.76	65.60	19.49	31.26
	+ Force-R	42.63	10.00	36.14	71.40	21.69	32.00
	Dr.GRPO	40.39	6.67	40.96	66.80	20.22	30.37
	DAPO	41.67	10.00	44.58	67.80	19.49	32.30
	EDGE-GRPO	48.08	13.33	44.58	76.40	28.68	36.89
Qwen2.5-Math-7B	Base	29.04	10.00	37.35	53.40	10.66	18.22
	SFT	41.99	6.67	43.37	69.00	22.06	31.41
	Vanilla GRPO	46.47	23.33	55.42	72.40	27.94	34.67
	+ Force-R	47.76	23.33	53.01	74.60	23.16	38.22
	Dr.GRPO	48.78	16.67	53.01	75.60	29.04	37.78
	DAPO	46.99	20.00	59.04	73.00	26.84	35.56
	EDGE-GRPO	49.30	16.67	50.60	75.60	33.09	37.04
Llam3.2-3B-Instruct	Base	19.81	6.67	14.46	36.20	12.13	12.00
	SFT	23.46	0.00	18.07	43.40	14.71	13.93
	Vanilla GRPO	24.49	13.33	18.07	45.40	15.44	13.93
	+ Force-R	23.72	10.00	16.87	44.00	12.87	14.52
	Dr.GRPO	22.89	13.33	24.10	43.20	12.50	12.30
	DAPO	21.22	6.67	9.64	40.80	13.24	12.00
	EDGE-GRPO	25.90	3.33	19.28	47.60	17.28	15.11

691

692

693

A.4.2 PERFORMANCE COMPARISON DURING TRAINING

694

695

To visually demonstrate the superiority of our method during the training process, Figure 7 plots the performance curves of our method, the method with only forced reflection added to the vanilla GRPO (GRPO + Forced reflection), and the original GRPO method on multiple benchmark during training steps.

696

697

698

699

As can be clearly seen from the figure, our method consistently and significantly outperforms the other two baseline throughout the entire training process. In comparison, the GRPO method with only forced reflection shows some improvement over the vanilla GRPO, but the effect is limited.

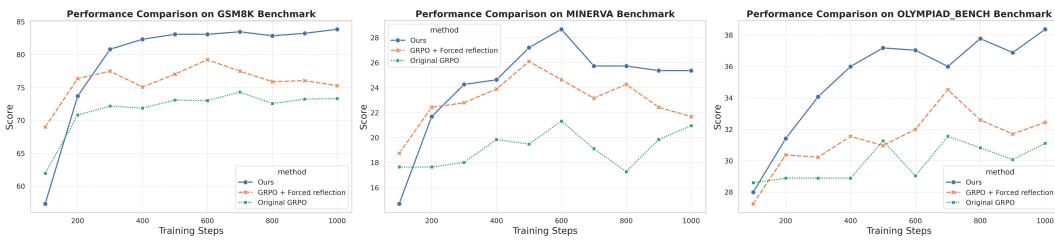


Figure 7: Performance comparison of different methods on three benchmarks during training steps. Our method consistently outperforms the vanilla GRPO and the variant with forced reflection throughout the training process.

A.4.3 COMPARE WITH OTHER OPEN SOURCE MODELS

To more comprehensively evaluate the effectiveness of our method, we conducted a comparison of our models against current mainstream open source models on Pass@1 performance across five mathematical reasoning benchmarks. Detailed comparison results are presented in Table 4. A core highlight is that our method achieves excellent results with extremely high data efficiency. Our models were trained using only 1K selected samples, far smaller than some other models which require tens of thousands of samples or more.

Table 4: Pass@1 performance comparison of our models against various open-source models on five mathematical reasoning benchmarks. Our models, trained on only 1K samples, demonstrate highly competitive performance. The total number of problems for each benchmark is indicated in parentheses. * denotes data from the original paper, other results are from our own evaluation.

Model	# Train	Avg (1560)	AIME (30)	AMC (83)	Math (500)	Min (272)	Olym (675)
Qwen2.5-Math-1.5B	Base	25.71	6.67	37.35	34.60	12.13	24.00
DeepSeek-Distill-1.5B	800K	33.53	6.67	27.71	61.00	13.60	23.11
Oat-Zero-1.5B	8.5K	47.37	20.00	48.19	75.00	25.74	36.74
Qwen2.5-Math-7B	Base	29.04	10.00	37.35	53.40	10.66	18.22
DeepSeek-Distill-7B	800K	45.39	16.67	36.14	74.20	29.41	32.89
Oat-Zero-7B	8.5K	53.40	36.67	61.45	79.80	30.88	42.67
SimpleRL-Zoo-7B	8K	47.37	23.33	53.01	76.00	24.26	35.85
Eurus-7B*	48.4K	53.9	26.7	57.8	79.2	38.6	42.1
OpenReasoner-Zero-7B	5.7K	51.99	20.00	40.96	80.20	29.41	42.96
EDGE-GRPO-1.5B	1K	48.08	13.33	44.58	76.40	28.68	36.89
EDGE-GRPO-7B	1K	53.01	16.67	49.40	79.00	36.03	42.67

A.5 DETAILED RESULTS IN REFLECTION

This section provides a more detailed quantitative analysis of the model reflection phenomenon, which we examined from the perspectives of both spontaneous and forced reflection.

Table 5 analyzes the spontaneous reflection behavior of the models. The results show that for most models, the accuracy of responses involving spontaneous reflection is significantly lower than their overall average accuracy and the accuracy of responses without reflection. A notable exception, however, is the DeepSeek-R1-Distill series of models, which were distilled from large reasoning models. Their reflection accuracy is much higher than their average on the contrary, corroborating the point made in the main text that high-quality knowledge distillation helps improve effective reflection capabilities. Furthermore, the Qwen2.5-Math-1.5B-S1 model, trained on high-quality chain-of-thought data distilled from large reasoning models, also exhibits a reflection accuracy close to its overall accuracy, outperforming most other models.

Table 6 investigates the effect of forced reflection on the other hand. We selected samples where the models provided incorrect answers and forced them to reflect and correct their responses using four different prompts. The results show that for the vast majority of models, the improvement in accuracy from forced reflection is very limited, with correction accuracy rates generally below 10%. Even for the top-performing Deepseek-R1-Distill-Qwen-7B, the highest correction rate is only around 11%.

756 Table 5: Model performance analysis. The table compares overall accuracy, accuracy on samples
 757 with reflection and accuracy on samples without reflection.

759 Temperature	760 Model	761 Average Acc	762 Reflection Acc	763 No-Reflection Acc
760 0.1	Qwen2.5-Math-1.5B	25.71	10.00	26.01
	DeepSeek-R1-Distill-Qwen-1.5B	33.53	42.04	14.37
	Qwen2.5-Math-1.5B-S1	27.63	27.30	27.93
	Qwen2.5-Math-1.5B-Oat-Zero	47.37	17.86	47.91
	Qwen2.5-Math-7B	29.04	13.51	29.42
	DeepSeek-R1-Distill-Qwen-7B	45.38	56.21	22.77
	Qwen2.5-Math-7B-Oat-Zero	53.40	16.00	54.01
	Qwen2.5-Math-7B-SimpleRL	47.37	25.71	47.87
	Qwen2.5-Math-7B-GPG	57.76	12.50	58.23
766 0.3	Qwen2.5-Math-1.5B	25.51	20.00	25.66
	DeepSeek-R1-Distill-Qwen-1.5B	33.27	41.47	16.44
	Qwen2.5-Math-1.5B-S1	26.86	26.73	26.97
	Qwen2.5-Math-1.5B-Oat-Zero	48.65	15.15	49.38
	Qwen2.5-Math-7B	26.28	14.81	26.48
	DeepSeek-R1-Distill-Qwen-7B	45.77	56.32	25.38
	Qwen2.5-Math-7B-Oat-Zero	52.88	16.22	53.78
	Qwen2.5-Math-7B-SimpleRL	48.14	22.86	48.72
	Qwen2.5-Math-7B-GPG	57.82	10.53	58.40
773 0.6	Qwen2.5-Math-1.5B	20.00	7.55	20.44
	DeepSeek-R1-Distill-Qwen-1.5B	34.04	41.71	22.19
	Qwen2.5-Math-1.5B-S1	20.32	24.82	16.65
	Qwen2.5-Math-1.5B-Oat-Zero	46.92	13.79	47.55
	Qwen2.5-Math-7B	20.77	9.09	21.02
	DeepSeek-R1-Distill-Qwen-7B	44.23	54.27	25.99
	Qwen2.5-Math-7B-Oat-Zero	53.08	14.29	53.97
	Qwen2.5-Math-7B-SimpleRL	45.45	17.50	46.18
	Qwen2.5-Math-7B-GPG	54.23	8.33	54.95
779 1	Qwen2.5-Math-1.5B	11.35	8.57	11.48
	DeepSeek-R1-Distill-Qwen-1.5B	27.44	40.06	16.65
	Qwen2.5-Math-1.5B-S1	20.83	21.95	19.93
	Qwen2.5-Math-1.5B-Oat-Zero	45.51	4.17	46.16
	Qwen2.5-Math-7B	16.92	5.80	17.44
	DeepSeek-R1-Distill-Qwen-7B	41.41	51.71	30.87
	Qwen2.5-Math-7B-Oat-Zero	52.50	21.62	53.25
	Qwen2.5-Math-7B-SimpleRL	45.38	20.93	46.08
	Qwen2.5-Math-7B-GPG	49.81	6.06	50.75

786
 787 Collectively, this data indicates that a significant bottleneck persists in the self-correction capabilities
 788 of existing models through reflection, whether spontaneous or forced. This supports the necessity of
 789 our proposed Guided Error Correction (GEC) method.

792 A.6 DETAILED RESULTS IN POLICY ENTROPY

793 This section quantitatively analyzes the relationship between model confidence and answer correct-
 794 ness using the Relative Confidence Metric (RCM). The RCM is calculated as:

$$796 \quad 797 \quad 798 \quad RCM = \frac{\text{Entropy}_{\text{Correct}} - \text{Entropy}_{\text{Incorrect}}}{\text{Average Entropy}}$$

800 As shown in Table 7, a negative RCM value indicates that the model’s correct responses have a lower
 801 average entropy than its incorrect ones, meaning the model is more confident in its correct answers
 802 than incorrect ones.

803 The results show that models can better calibrate their confidence on the whole, expressing higher
 804 confidence in correct answers than in incorrect ones. However, the RCM is an aggregate metric that
 805 reflects a macroscopic trend. The model still exhibits a significant number of high-confidence incor-
 806 rect responses at the individual sample level. Therefore, we propose our Entropy-Driven Advantage
 807 (EDA) to apply more fine-grained rewards and penalties at the signal level.

808 To visually substantiate our analysis of policy entropy at a fine-grained level, Figure 8 presents the
 809 entropy distributions of correct and incorrect responses across a variety of models, including base
 models and those enhanced through different post-training methods.

810
 811 Table 6: Reflection accuracy under different reflection triggers. The "Incorrect" column shows the
 812 total number of wrong answers. The subsequent columns show the reflection accuracy scores for
 813 specific trigger words.

814 815 816 Temperature	817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 Model	840 841 842 843 844 845 Incorrect	846 847 848 849 850 851 852 Reflection accuracy (%)			
			853 854 855 Wait!	856 857 858 859 860 861 862 863 Hmm	853 854 855 Let's check it	853 854 855 Something is wrong
0.1	Qwen2.5-Math-1.5B	1159	3.624	2.675	7.161	3.365
	DeepSeek-R1-Distill-Qwen-1.5B	1037	4.638	5.700	5.507	4.251
	Qwen2.5-Math-1.5B-Oat-Zero	821	2.314	1.462	0.974	2.923
	Qwen2.5-Math-7B	1107	5.872	5.059	1.987	4.426
	DeepSeek-R1-Distill-Qwen-7B	852	8.706	11.059	8.588	8.353
	Qwen2.5-Math-7B-Oat-Zero	727	3.026	0.688	0.413	1.926
	Qwen2.5-Math-7B-SimpleRL-Zoo	821	5.366	4.146	1.098	5.122
	Qwen2.5-Math-7B-GPG	659	4.401	1.517	0.152	2.731
0.3	Qwen2.5-Math-1.5B	1162	3.184	3.356	5.594	4.389
	DeepSeek-R1-Distill-Qwen-1.5B	1041	5.967	7.507	8.277	5.101
	Qwen2.5-Math-1.5B-Oat-Zero	801	1.748	1.623	0.250	1.873
	Qwen2.5-Math-7B	1150	5.826	4.435	3.217	2.696
	DeepSeek-R1-Distill-Qwen-7B	846	10.308	9.597	8.649	9.123
	Qwen2.5-Math-7B-Oat-Zero	735	3.129	1.769	0.136	3.401
	Qwen2.5-Math-7B-SimpleRL-Zoo	809	6.057	3.585	0.865	6.057
	Qwen2.5-Math-7B-GPG	658	2.888	1.216	0.152	3.495
0.6	Qwen2.5-Math-1.5B	1248	2.648	2.809	5.056	3.852
	DeepSeek-R1-Distill-Qwen-1.5B	1029	7.101	7.879	6.323	6.323
	Qwen2.5-Math-1.5B-Oat-Zero	828	2.053	1.208	0.725	1.932
	Qwen2.5-Math-7B	1236	4.288	3.722	1.861	5.502
	DeepSeek-R1-Distill-Qwen-7B	870	11.406	12.097	11.290	10.253
	Qwen2.5-Math-7B-Oat-Zero	732	2.869	1.093	0.137	3.005
	Qwen2.5-Math-7B-SimpleRL-Zoo	851	4.935	4.113	3.055	4.465
	Qwen2.5-Math-7B-GPG	714	3.922	1.821	0.280	2.801
1	Qwen2.5-Math-1.5B	1383	1.952	1.735	2.531	1.591
	DeepSeek-R1-Distill-Qwen-1.5B	1132	9.637	10.610	9.637	8.753
	Qwen2.5-Math-1.5B-Oat-Zero	850	1.765	1.882	0.471	1.882
	Qwen2.5-Math-7B	1296	1.931	2.008	1.236	1.776
	DeepSeek-R1-Distill-Qwen-7B	914	9.430	9.649	9.320	9.539
	Qwen2.5-Math-7B-Oat-Zero	741	2.699	1.350	0.405	2.699
	Qwen2.5-Math-7B-SimpleRL-Zoo	852	3.169	2.582	0.235	2.347
	Qwen2.5-Math-7B-GPG	783	1.788	1.660	0.255	1.788

840
 841
 842 Each plot within the figure displays two overlapping density distributions: one for correct responses
 843 and another for incorrect responses. These graphs visually confirm that most models exhibit mis-
 844 judgments in their response confidence. A consistent pattern is the substantial overlap between the
 845 entropy distributions of correct and incorrect answers.

846
 847 Specifically, these visualizations reveal two key phenomena: Firstly, a considerable portion of in-
 848 correct responses possesses low entropy, indicating that the models are often highly confident in
 849

850
 851 Table 7: Relative Confidence Metric (RCM) across different models and temperature settings. A
 852 negative value indicates that the model exhibits lower entropy (i.e., higher confidence) in its correct
 853 responses compared to its incorrect responses.

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 879 Model	899 899 899 Temperature			
	899 899 899 0.1	899 899 899 0.3	899 899 899 0.6	899 899 899 1.0
Qwen2.5-Math-1.5B	0.0909	0.0278	0.0349	-0.7773
DeepSeek-R1-Distill-Qwen-1.5B	-0.1667	-0.2596	-0.2521	-0.3476
Qwen2.5-Math-1.5B-Oat-Zero	-0.5714	-0.5000	-0.5116	-0.6049
Qwen2.5-Math-7B	0.0909	-0.0294	-0.2171	-0.7175
DeepSeek-R1-Distill-Qwen-7B	-0.2222	-0.2195	-0.2406	-0.3808
Qwen2.5-Math-7B-Oat-Zero	-0.6667	-0.6250	-0.5625	-0.5556
Qwen2.5-Math-7B-SimpleRL	-0.2727	-0.2813	-0.3553	-0.5179
Qwen2.5-Math-7B-GPG	-0.6667	-0.5000	-0.7059	-0.7778

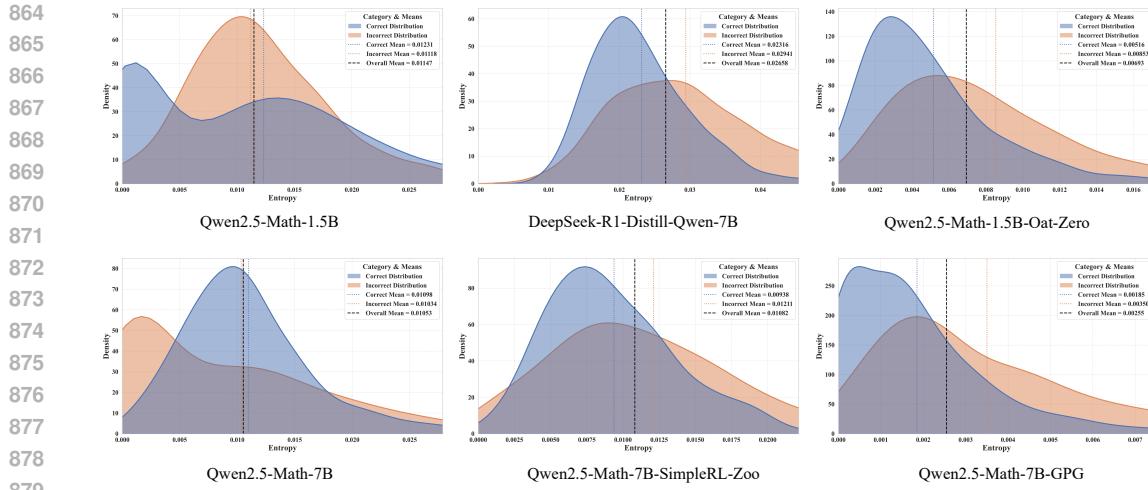


Figure 8: The entropy distribution of correct and incorrect responses within different models. The results are evaluated under the setting of temperature = 0.1.

their erroneous answers. Secondly, many correct responses exhibit high entropy, suggesting a lack of confidence even when the model produces the right answer.

This evidence highlights that relying on aggregate metrics like average entropy is insufficient, as it masks these critical sample-level discrepancies. The observed miscalibration of confidence at this granular level strongly motivates our proposed Entropy-Driven Advantage (EDA) mechanism, which is designed to apply more precise rewards and penalties to address these confidence misjudgments directly.

A.7 USE OF LARGE LANGUAGE MODELS

Some portions of the text were polished with the assistance of Large Language Models (LLMs). All content remains the responsibility of the authors.

A.8 ETHICS STATEMENT

This study does not involve human subjects, sensitive data, or potentially harmful applications. All mathematical reasoning datasets used (e.g., DeepScaleR, MATH, AIME) are publicly available and contain no personal privacy information or copyright-protected content. The authors have read and pledged to uphold the ICLR Code of Ethics. The research encountered no conflicts of interest, discriminatory bias, or legal-compliance risks. Every experiment followed academic integrity principles, and all reported results are truthful and unaltered.

A.9 REPRODUCIBILITY STATEMENT

Appendix A.2 presents the complete algorithmic pseudocode, Appendix A.3 lists all hyperparameters and training schedules, and Section 5 describes the data filtering pipeline in detail. Following the prescriptions in these sections enables full replication of the reported results.