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ABSTRACT

Large Language Models (LLMs) have made remarkable progress in enhancing
step-by-step reasoning through reinforcement learning. However, the Group Rel-
ative Policy Optimization (GRPO) algorithm, which relies on sparse reward rules,
often encounters the issue of identical rewards within groups, leading to the ad-
vantage collapse problem. Existing works typically address this challenge from
two perspectives: enforcing model reflection to enhance response diversity, and
introducing internal feedback to augment the training signal (advantage). In this
work, we begin by analyzing the limitations of model reflection and investigat-
ing the policy entropy of responses at the fine-grained sample level. Based on
our experimental findings, we propose the EDGE-GRPO algorithm, which adopts
Entropy-Driven Advantage and Guided Error Correction to effectively mitigate
the problem of advantage collapse. Extensive experiments on different models
across multiple main reasoning benchmarks demonstrate the effectiveness and su-
periority of our approach. The code and weights will be released upon acceptance
to facilitate further research in this field.

1 INTRODUCTION
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Figure 1: Performance comparison with other open-
source models on Olympiad and Minerva. Our method
achieves competitive and excellent performance with
only 1K training samples. These models are all post-
trained based on Qwen2.5-Math-7B.

Recent advancements in large reasoning
models, such as OpenAI-o1 Jaech et al.
(2024) and Kimi-K1.5 Team et al. (2025),
have shown impressive progress in com-
plex tasks involving mathematics and cod-
ing. Among them, the Group Relative Pol-
icy Optimization (GRPO) algorithm Shao
et al. (2024) has attracted considerable at-
tention from researchers. By discarding
the value function used in the PPO al-
gorithm Schulman et al. (2017) and in-
stead computing rewards and relative ad-
vantages across sampled responses within
each group, it significantly reduces re-
source consumption during training while
improving reasoning performance.

For the computation of rewards in the
GRPO algorithm, some studies adopt a
Process Reward Model (PRM) to pro-
vide more fine-grained feedback Cui et al.
(2025); Wang et al. (2025b). However, it
introduces substantial computational over-
head. As a result, other works abandon the
reward model in favor of using rule-based reward functions Zhou et al. (2025); Zhang et al. (2025b).
However, this often leads to sparse rewards, where all responses within a group receive identical
rewards. Consequently, the calculated advantages for each response become zero, cease to provide
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effective policy gradient, and lead to advantage collapse during training. This phenomenon severely
limits the efficiency of the sample.

Recent studies have primarily sought to alleviate this problem from two perspectives. At the re-
sponse level, efforts focus on increasing the diversity of responses to prevent identical rewards across
all responses, such as enforcing model reflection on incorrect answers to reduce the occurrence of
uniformly incorrect outputs within a group Wang et al. (2025a); Wan et al. (2025). However, the
extent to which reflection contributes to performance improvement remains inconclusive. At the sig-
nal level, internal feedback is introduced to augment the advantage, such as incorporating response-
related semantic entropy or policy entropy into the advantage calculation Chen et al. (2025); Cheng
et al. (2025). However, most studies either pursue low entropy to improve accuracy or encourage
high entropy to maintain exploration, lacking fine-grained modeling of the relationship between
responses and their policy entropy.

In this paper, we begin by analyzing the limitations of model reflection. Quantitative experiments
show that responses containing self-reflection are often associated with significantly lower accuracy.
Although forced reflection can help the model correct a subset of answers, its overall effectiveness
remains limited. Additionally, we observe a misconception in the model’s estimation of policy
entropy at the fine-grained sample level: incorrect responses do not necessarily indicate uncertainty,
some of them exhibit notably lower entropy. Conversely, the model is not always confident in its
correct responses, some of which display relatively high entropy.

To address these issues, we propose a simple and effective EDGE-GRPO (Entropy-Driven GRPO
with Guided Error Correction) algorithm. At the response level, we introduce Guided Error Correc-
tion (GEC) to enhance response diversity, providing more effective guidance even when the model
encounters questions beyond its current capacity. At the signal level, we compute an Entropy-Driven
Advantage (EDA) that assigns higher advantages to correct responses with low entropy and lower
advantages to incorrect responses with low entropy, thereby increasing the diversity of the advan-
tage signal. These improvements significantly mitigate the problem of advantage collapse. Across
multiple reasoning benchmarks, our method achieves substantial performance gains compared to
the vanilla GRPO. As shown in Figure 1, our approach reaches comparable performance to other
open-source models using only 1K training samples.

Our contributions can be summarized as follows:

• We analyze the key challenges faced by preliminary attempts. Specifically, at the response
level, prompting the model to reflect on incorrect responses has limited effectiveness. At the
signal level, fine-grained sample-level policy entropy is needed to guide the augmentation
of the advantage.

• We propose the EDGE-GRPO algorithm. At the response level, we introduce Guided Error
Correction (GEC) to overcome the limitations of the model capacity and improve response
diversity. At the signal level, we compute an Entropy-Driven Advantage (EDA) to increase
the diversity of the advantage signal, significantly alleviating the problem of advantage
collapse.

• Extensive experiments on multiple main reasoning benchmarks show that our method
achieves a significant performance improvement across different model families and sizes,
thus validating its effectiveness and superiority.

2 RELATED WORK

Advantage Collapse. Advantage collapse is a critical limitation of the GRPO algorithm, as it
severely impairs effective gradient updates. Prior approaches typically mitigate this issue through
data filtering Yu et al. (2025); Meng et al. (2025), by discarding samples in which all responses
within a group are either entirely correct or incorrect. However, this greatly limits sample effi-
ciency, as challenging samples can be beneficial for improving model performance. In addition,
some works Wang et al. (2025a) attempt to enhance response diversity by enforcing model reflec-
tion, while others Chen et al. (2025); Cheng et al. (2025) introduce internal feedback to strengthen
the training signal.
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Think More or Less. There are differing views on whether model reflection truly benefits model
performance. Several works Muennighoff et al. (2025); Tian et al. (2025) proposed adding ”wait”
to chain-of-thought reasoning to encourage the model to engage in reflection, which can improve
performance. VL-Rethinker Wang et al. (2025a) incorporates forced reflection during the training
process to enhance the slow-thinking capability of the model. Meanwhile, other researchers argue
that suppressing the tokens that trigger reflectionLiu et al. (2025a), encouraging the model to gener-
ate shorter responses Su et al. (2025); Fatemi et al. (2025), can reduce redundant reasoning without
compromising the model’s accuracy.

RL from Internal Feedback. Recent studies introduce internal feedback such as entropy to
strengthen the training signal. Some studies Gao et al. (2025); Zhang et al. (2025a) argue that
correct responses generated by models typically exhibit lower entropy than incorrect ones, so unsu-
pervised entropy minimization methods can also enhance performance. SEED-GRPO Chen et al.
(2025) introduces semantic entropy to quantify semantic diversity among generated responses and
dynamically adjusts the magnitude of policy updates based on this measure. Other works Cheng
et al. (2025) suggest that high entropy encourages exploratory reasoning, therefore incorporating
policy entropy into the advantage term of the GRPO algorithm to promote exploration. However,
most of these methods lack fine-grained modeling of the relationship between response correctness
and their policy entropy.

3 INVESTIGATION OF ADVANTAGE COLLAPSE IN GRPO

We begin with a brief introduction to the Group Relative Policy Optimization (GRPO) algo-
rithm Shao et al. (2024). For each input question q, it generates a set of responses {O1, O2, . . . , OG}
using the policy model and computes a corresponding set of rewards {r1, r2, . . . , rG} for these re-
sponses. The rewards are then normalized to calculate the advantages. The model is optimized by
maximizing the following objective function:

JGRPO(θ) = E[q,{oi}]
1

G

G∑
i=1

1

|oi|

|oi|∑
i=1

{
min

[
πθ

πθold

Ai, clip
(

πθ

πθold

, 1− ϵ, 1 + ϵ

)
Ai

]
− βDKL

}
(1)

where πθ and πθold are the current and old policy, and Ai is the advantages defined as:

Ai =
ri −mean({r1, r2, · · · , rG})

std({r1, r2, · · · , rG})
. (2)

The diversity of advantages is crucial for effective model updates, as it directly determines the
training signal used in policy gradient optimization. Due to the difficulty of assigning rewards to
intermediate reasoning steps, most existing reward rules are sparse, with the response reward largely
determined by the correctness of the final answer. As a result, when all responses within a group
are either correct or incorrect, they receive identical rewards, leading to zero advantage across the
group. This lack of distinction between responses impairs gradient updates, a phenomenon known
as the advantage collapse problem.

Advantage collapse results in low sample efficiency. However, samples that are more challenging
for the model often play an important role in improving its performance. Therefore, addressing the
advantage collapse problem remains a critical challenge.

Existing approaches commonly aim to address this issue from two key perspectives: at the response
level, by promoting model reflection to enhance the diversity of generated responses. At the signal
level, by incorporating internal feedback mechanisms to enrich the training signal. In this work, we
first conduct a preliminary investigation along both dimensions to explore their potential in mitigat-
ing the advantage collapse problem.

3.1 RESPONSE-LEVEL: LIMITATIONS OF REFLECTION

We begin by conducting a series of quantitative experiments to analyze the phenomenon of model
reflection. We select models of two different parameter scales, including base models as well as
those post-trained by supervised fine-tuning or reinforcement learning. To determine whether a

3
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Figure 2: The reflection performance of different models. Upper: For most models, the accuracy
of responses that involve self-reflection is significantly lower than the overall accuracy. Left: Fine-
tuning with high-quality data that includes reflection processes helps improve the accuracy of model
reflection. Right: Even when the model is forced to reflect on incorrect responses, the improvement
in accuracy remains limited, these results are averaged over four types of reflection prompts.

model’s response exhibits self-reflection, we follow previous work Liu et al. (2025b) by extracting
reflection-related keywords from the responses. If the response contains reflection keywords such as
check again, it is considered to exhibit self-reflection. The specific set of reflection keywords is
provided in the Appendix.

Initially, we observe that the majority of spontaneously generated reflections by models tend to
exhibit low accuracy. As shown in the upper part of Figure 2, for both base models and those post-
trained by reinforcement learning, the accuracy of responses containing reflection is significantly
lower than the overall accuracy of the model. This result clearly indicates that spontaneous reflection
during reasoning is often ineffective and may even lead to a higher rate of incorrect responses.

However, unlike other models, two models distilled from DeepSeek-R1 Guo et al. (2025) have a
more frequent self-reflection behavior, and their reflection is accompanied by higher accuracy. To
verify whether this phenomenon is caused by long chain-of-thought training data from knowledge
distillation, we train Qwen2.5-Math-1.5B-S1 on the S1K dataset Muennighoff et al. (2025), which
contains only 1K high quality long chain-of-thought samples, some of which include reflection-
related content. It can be observed that after training on the S1K data, the model’s reflection accuracy
significantly improves and becomes comparable to its overall accuracy.

Subsequently, we also investigate the effect of forcing different models to reflect on their incorrect
answers. Specifically, we first have each model respond to every question in the test set, then we
retain only the samples with incorrect answers. A reflection prompt is appended to each incorrect re-
sponse to initiate reflection, after which the model is prompted to continue answering. We designed
four distinct reflection prompts: Wait!, Hmm, Let’s check it again!, and Something
is wrong here. These prompts include two anthropomorphic expressions and two objective
declarative phrases.

As shown in the lower right corner of Figure 2, the accuracy of forced reflection on incorrect re-
sponses remains below 5% for most models. Although the overall accuracy does not exceed 10%,
the DeepSeek-R1-Distill series model still achieves relatively higher accuracy compared to other
models due to being fine-tuned with external high-quality chain-of-thought data.

These results reveal a fundamental limitation in the reflective capabilities of most models. When
model capacity is limited, relying solely on self-correction yields minimal improvement. There-
fore, when confronted with challenging problems where the model persistently produces incorrect
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Figure 3: Left: The relative confidence of different models in correct responses under various tem-
perature settings. The area of the blue squares serves as a proxy for the model’s relative confidence,
with larger areas reflecting greater confidence in correct responses. Right: The proportion of correct
responses with entropy higher than the average and incorrect responses with entropy lower than the
average across different models. These results are evaluated under the setting of temperature=0.1.
We provide more detailed experimental results and the policy entropy distribution of different mod-
els in the Appendix.

responses, incorporating external information for correction emerges as a more effective and reliable
strategy at the response level.

3.2 SIGNAL-LEVEL: POLICY ENTROPY

We also investigate the policy entropy of different responses. For each generated chain-of-thought
response, the policy entropy P is calculated as follows:

P = − 1

T

T∑
t=1

V∑
j=1

Pt,j · logPt,j . (3)

where T denotes the total number of tokens in the response, V is the vocabulary size, and Pt,j is
defined as:

Pt,j = πθ(j ∈ V |q, o < t) = Softmax
(

logitst
T

)
. (4)

Here, πθ represents the language model parameterized by θ. We use the policy entropy P to measure
the uncertainty of the model over the generated response.

We first divide all responses into two categories based on whether they are correct or incorrect, and
calculate the Relative Confidence Metric (RCM) of each model in correct responses under different
temperatures using the following formula:

RCM =
EntropyCorrect − EntropyWrong

Average Entropy
. (5)

The visualization results are shown on the left side of Figure 3. Except for the two base mod-
els, Qwen2.5-1.5B and Qwen2.5-7B Yang et al. (2024), other post-trained models typically exhibit
higher relative confidence, as the average entropy of their correct responses is indeed lower than that
of incorrect responses, which aligns with assumptions made in previous studies Gao et al. (2025).

However, a fine-grained analysis at the individual sample level reveals that many models exhibit
miscalibrated confidence in their responses: approximately half of the incorrect responses display
entropy values lower than the average, while nearly one-third of the correct responses exhibit entropy
higher than the average, as shown on the right side of Figure 3. We posit that such miscalibration
undermines model performance. Ideally, the model should exhibit greater confidence in the correct
responses while maintaining appropriate uncertainty about its incorrect answers. Consequently,
training strategies should avoid indiscriminately promoting high or low entropy, and instead adopt
a more fine-grained approach that aligns policy entropy with response correctness to better guide
learning dynamics.
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Figure 4: The overall framework of EDGE-GRPO. By introducing Guided Error Correction at the
response level to enhance response diversity and Entropy-Driven Advantage at the signal level to
increase advantage diversity, we mitigate the advantage collapse problem in the vanilla GRPO. Here,
G represents the number of generated responses in a group.

4 EDGE-GRPO: ENTROPY-DRIVEN GRPO WITH GUIDED ERROR
CORRECTION

Building on the above insights, we propose the EDGE-GRPO algorithm by introducing Guided Error
Correction (GEC) to enhance response diversity and Entropy-Driven Advantage (EDA) to augment
signal diversity, thus addressing the advantage collapse problem.

4.1 RESPONSE-LEVEL: GUIDED ERROR CORRECTION (GEC)

The experimental analysis in the previous section has shown that the model’s ability to correct
errors through reflection is quite limited. This limitation leads the model to consistently generate
entirely incorrect responses when faced with problems beyond its capabilities. However, response
diversity fundamentally impacts reward diversity, which consequently directly affects advantage
diversity. Therefore, introducing external solutions to ensure that each set of responses contains a
certain proportion of positive and negative samples is crucial for mitigating the advantage collapse
problem.

To fundamentally address this issue, we propose Guided Error Correction (GEC), a response-level
intervention strategy designed to mitigate advantage collapse by enhancing response diversity. As
illustrated in Figure 4, for incorrect responses, GEC performs one of the following three operations
based on a predefined probability:

Reference Solution Replacement: The incorrect response is completely replaced with an external
reference solution. This operation is performed with a probability of P1 = 2

G , where G is the total
number of responses in the group. Compared to a smaller value (P1 = 1

G ), this value ensures a
higher probability that at least one response will be replaced with the reference solution when all
responses are incorrect. Compared to a higher probability, it also maintains response diversity and
avoids having too many identical responses within the group.

Direct Answer Injection: Along with the reflection prompt, the correct answer is provided directly.
This operation is also performed with a probability of P2 = 2

G to ensure both the number and the
diversity of correct responses within the group.

Prompt and Regenerate: A simple reflection prompt is provided, and the model is asked to regen-
erate its answer based on it, giving the model a chance to self-correct. This operation is performed

6
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Table 1: Pass@1 performance comparison across various mathematical evaluation benchmarks. The
results below are from 1 epoch of training on DeepScaleR-Hard-1K. The number of samples in each
benchmark is indicated in parentheses. The results are evaluated under the setting of temperature =
0.1. The best results are indicated by boldface.

Model Method Avg (1560) AIME (30) AMC (83) Math (500) Min (272) Oly (675)

Qwen2.5-Math-1.5B

Base 25.71 6.67 37.35 34.60 12.13 24.00
SFT 29.17 6.67 28.92 46.40 12.87 24.00
Vanilla GRPO 40.26 10.00 46.99 65.00 20.59 30.37

+ Force Reflection 41.55 13.33 31.33 70.00 22.06 30.81
Dr.GRPO 40.13 13.33 43.37 67.20 18.75 29.48
DAPO 33.91 6.67 31.33 54.80 16.54 26.96
EDGE-GRPO 47.24 10.00 44.58 73.20 29.04 37.33

Qwen2.5-Math-7B

Base 29.04 10.00 37.35 53.40 10.66 18.22
SFT 37.37 3.33 44.58 68.00 19.85 22.37
Vanilla GRPO 47.69 26.67 53.01 74.20 25.74 37.19

+ Force Reflection 40.26 13.33 40.96 67.60 19.85 29.33
Dr.GRPO 48.78 23.33 56.63 75.20 27.21 38.07
DAPO 49.49 20.00 57.83 76.20 27.94 38.67
EDGE-GRPO 53.21 16.67 53.01 79.00 36.03 42.67

Llama-3.2-3B-Instruct

Base 19.81 6.67 14.46 36.20 12.13 12.00
SFT 22.44 0.00 20.48 41.20 11.77 14.07
Vanilla GRPO 22.44 13.33 15.66 42.80 15.07 11.56

+ Force Reflection 22.89 6.67 21.69 41.8 13.97 13.33
Dr.GRPO 22.24 3.33 18.07 42.60 12.50 12.44
DAPO 22.95 3.33 18.07 42.60 13.97 13.48
EDGE-GRPO 25.06 3.33 20.48 45.60 17.28 14.52

with a probability of P3 = 1 − P1 − P2, which ensures that most responses are still generated by
the model itself. Since the effect of self-reflection is relatively limited, only a small portion of the
responses can be corrected to the right answers. These few corrected responses are then used as
positive samples to guide the model update.

These three strategies ensure that each group of responses contains positive samples with correct
answers while still retaining negative samples generated by the model itself.

By introducing Guided Error Correction at the response level, we ensure that even when the model
encounters problems beyond its capabilities, the response set can still contain diverse answers. This
helps mitigate the issue of advantage collapse and provides effective training signals.

4.2 SIGNAL-LEVEL: ENTROPY-DRIVEN ADVANTAGE (EDA)

Although Guided Error Correction enhances response diversity and prevents the advantages within
a group from collapsing to zero, it remains insufficient to address the issue of uniform advantages
among correct or incorrect responses. To enable finer-grained differentiation among different cor-
rect or incorrect responses, we introduce policy entropy as an internal feedback signal to enhance
advantage diversity.

The results in the previous section show that the model often misjudges the confidence of its re-
sponses, many incorrect responses exhibit low entropy, while many correct responses have high en-
tropy. We believe this misalignment negatively impacts model performance. Therefore, we propose
Entropy-Driven Advantage (EDA) to enhance the model’s ability to distinguish between different
responses.

For each response Oi during training, we calculate its policy entropy Pi using Equations 3 and 4,
and then scale it to ensure the values remain within a reasonable range.

P̂i =
Pi

mean({P1, P2, · · · , PG})
. (6)

Next, we use the scaled entropy values to compute the entropy-driven advantage:

Âi =
ri −mean({r1, r2, · · · , rG})

std({r1, r2, · · · , rG}) · P̂i

. (7)

Compared to the initial advantage values, the entropy-driven advantage exhibits greater diversity. It
assigns higher advantages to responses that are both correct and confident, while imposing harsher

7
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penalties on responses that are incorrect but overly confident. It ensures that, when the initial ad-
vantages are not all zero, different responses are assigned distinct final advantage values, thereby
enhancing the model’s ability to distinguish among responses and further mitigating the advantage
collapse problem.

It is worth emphasizing that the GEC and EDA modules enhance the diversity of advantage from
different levels, and they are complementary to some extent. Although the GEC module ensures
that the advantage of the response is not zero, it cannot achieve finer-grained differentiation between
correct or incorrect responses. In contrast, the EDA module relies on the presence of a certain
number of positive and negative samples within the group. When the initial intra-group advantages
are all zero, fine-grained scaling cannot take effect. This is precisely the reason for incorporating a
proportion of correct responses into the GEC module.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Train Datasets. We use the DeepScaleR dataset Luo et al. (2025) for training. The original dataset
contains approximately 40K math problems. We retain only those samples that include a solution
and where the final answer is placed inside a \boxed{} in the solution. After this filtering process,
around 2K samples remain. We randomly select 1K samples as the standard training set, named
DeepScaleR-Random-1K. Meanwhile, to evaluate the effectiveness of our method on more chal-
lenging data, we use Qwen2.5-Math-7B to further filter the samples. Specifically, for each question,
the model generates eight responses, and we select the 1K questions with the lowest accuracy as
the hard training set, referred to as DeepScaleR-Hard-1K. In this dataset, approximately 80% of the
questions receive entirely incorrect responses across all generations.

Evaluation Benchmark. We select five challenging mathematical reasoning benchmarks to eval-
uate our method: AIME24, AMC, MATH500 Hendrycks et al. (2021), Minerva Lewkowycz et al.
(2022) and OlympiadBench He et al. (2024). These benchmarks collectively contain a total of 1,560
problems. All evaluation experiments in this paper are conducted on these benchmarks.

Implementation Details. We conduct experiments on 8 NVIDIA A100-40G GPUs. We remove
the KL divergence to eliminate constraints on the model. Previous studies Yu et al. (2025); Liu et al.
(2025b) have shown that it can lead to better training performance, as the distribution of the model
may differ significantly from the initial model during training. Other training configurations and
hyperparameter settings follow the default setup of the GRPO trainer under the TRL framework von
Werra et al. (2020). We train for one epoch on only 1K DeepScaleR samples on Qwen2.5-Math-
1.5B, Qwen2.5-Math-7B Yang et al. (2024) and Llama3.2-3B-Instruct Grattafiori et al. (2024).

During evaluation, we focus on the model’s pass@1 performance, meaning the model generates only
one response for each given question. To calculate the overall average accuracy, we avoid directly
averaging the accuracy across the five benchmarks due to their varying number of questions. Instead,
we calculate the average by dividing the total number of correct answers by the total number of
questions to reduce bias. More detailed experimental settings can be found in the Appendix.

5.2 MAIN RESULT

Table 1 presents the results of our method on various mathematical evaluation benchmarks. Al-
though our method is trained on only 1K samples for one epoch, it achieves significant performance
improvements across various scales of Qwen and Llama models. It is worth emphasizing that for
about 80% of the problems in DeepScaleR-Hard-1K, all eight responses generated by the base model
Qwen2.5-Math-7B are incorrect. This further validates the effectiveness of our method in challeng-
ing data, even when the difficulty exceeds the capability of the model. In addition, we also conduct
experiments on DeepScaleR-Random-1K to verify the generalization performance of our method,
with detailed results provided in the Appendix.

Since our method requires each question to have not only the final answer, but also a corresponding
reference solution, we established a Supervised Fine-Tuning (SFT) baseline using the same chain-
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Table 2: The ablation study of EDGE-GRPO separately verifies the effectiveness of guided error
correction and entropy-driven advantage. The results are all from training on DeepScaleR-Hard-1K.

Method Avg (1560) AIME (30) AMC (83) Math (500) Min (272) Oly (675)

EDGE-GRPO [Qwen2.5-Math-1.5B] 47.24 10.00 44.58 73.20 29.04 37.33
- Reference Solution 42.44 10.00 34.94 69.60 23.53 32.30
- Guided Error Correction 40.06 13.33 40.96 64.00 21.32 30.96
- Entropy-Driven Advantage 40.64 10.00 43.37 67.80 19.12 30.22

EDGE-GRPO [Qwen2.5-Math-7B] 53.21 16.67 53.01 79.00 36.03 42.67
- Reference Solution 45.19 26.67 50.60 68.00 28.68 35.11
- Guided Error Correction 46.80 20.00 50.60 75.80 23.16 35.56
- Entropy-Driven Advantage 47.44 3.33 43.37 74.40 29.04 37.33

of-thought data for comparison. As shown in the SFT row of Table 1, our approach significantly
outperforms supervised fine-tuning, even when trained on the exact same data. And our method also
exhibits a clear advantage when evaluated against established algorithmic variants. Specifically,
our method consistently outperforms algorithmic variants such as Dr.GRPO Liu et al. (2025b) and
DAPO Yu et al. (2025), as well as improvements to the vanilla GRPO algorithm that force the model
to reflect on incorrect responses.

In addition, we conduct an ablation study on EDGE-GRPO, as shown in Table 2. First, removing
external reference solutions leads to a decline in model performance, highlighting the importance
of integrating external information when dealing with problems beyond the model’s capability. In
addition, removing either the GEC or EDA component results in a significant performance gap
compared to EDGE-GRPO, which not only validates the effectiveness of each component but also
underscores the importance of enhancing response diversity and providing more fine-grained dis-
tinctions in training signals for improving model performance.

0 200 400 600 800 1000
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Vanilla GRPO
GRPO + Forced Reflection
EDGE-GRPO (before scaling)

Figure 5: The changes in intra-group advantage variance
during training for different methods. Our method main-
tains a relatively high level without significant decline.

We also visualize changes in advan-
tage variance during training for differ-
ent methods, as shown in Figure 5. Dur-
ing training, compared with the vanilla
GRPO algorithm and the variant with
enforced reflection, our method main-
tains a higher level of intra-group advan-
tage variance solely through response-
level improvements (GEC). After advan-
tage scaling, advantage diversity will be
further enhanced. It also demonstrates
its significant mitigation of the advan-
tage collapse problem.

Moreover, even with significantly less
training data, our model achieves com-
parable performance to other main open
source models Zeng et al. (2025); Hu
et al. (2025); Cui et al. (2025); Liu et al.
(2025b), as illustrated in Figure 1. This further demonstrates the superiority and utility of our
method. More detailed experimental results can be found in the Appendix.

6 CONCLUSION

This work proposes a simple and effective EDGE-GRPO algorithm that mitigates the advantage
collapse problem of the vanilla GRPO algorithm on two levels. At the response level, the Guided
Error Correction (GEC) method is introduced to overcome the limitations of the inherent capabilities
of the model and improve response diversity. At the signal level, the Entropy-Driven Advantage
(EDA) computation enables the model to differentiate responses more finely during training, thereby
improving the diversity of advantages. Our method significantly alleviates the advantage collapse
problem and achieves notable performance improvements using only 1K samples across different
base models, demonstrating its effectiveness and superiority.

9
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A APPENDIX

A.1 REFLECTION KEYWORDS

We determine whether a reflection phenomenon has occurred based on the presence of reflection-
related keywords in the response. The set of 15 keywords used in the experiment for identify-
ing reflection is as follows: check again, recheck, double-check, rethink, think
again, reevaluate, re-evaluate, re-examine, verify again, reevaluation,
reexamine, reanalyze, reassess, reconsider, go over.

A.2 ANALYSIS ON THE INTRODUCTION OF EXTERNAL SOLUTIONS

Figure 6: The changes in gradient during training
after introducing reference solution.

In the Guided Error Correction (GEC) section,
we introduce external reference solutions to en-
hance response diversity. Since the reference
solution trajectories are not sampled by the old
policy, our method is not strictly on-policy. So
we approximate the probability of these solu-
tions under the old model policy πθold using
the probability that the old model would gener-
ate the trajectories of these reference solutions.
The specific probability calculation is shown in
Algorithm 1.

In practice, we consider filtering out reference
solutions whose trajectory probability under
πθold was below a certain threshold to reduce
variance and stabilize model training. However,
we observed that during training with external
reference solutions, the model gradient updates
remain stable, as shown in Figure 6, so we ulti-
mately decided to keep all the reference solutions.

Algorithm 1 GRPO with Reference Solution Replacement

1: Input: Prompt p, Reference answer a∗, Reference solution s∗, Number of generations G
2: // 1. Generate and Check
3: for i = 1 to G do
4: ci ← model.generate(p), ri ← reward(p, ci)
5: if ri ̸= 2 then ▷ Incorrect response
6: With 2

G probability: ci ← s∗ ▷ Replace with reference solution
7: end if
8: end for
9: // 2. Compute Logits

10: for i = 1 to G do
11: tokensi ← tokenize(p+ ci)
12: log pπi ← model logprobs(tokensi, τ) ▷ Current policy
13: log pπold,i ← log pπi .detach() ▷ Old policy
14: end for
15: // 3. GRPO Loss
16: for i = 1 to G do
17: Ai ← Normalize(ri − r̄), ρi ← exp(log pπi − log pπold,i)

18: Li ← −min(ρi, clip(ρi, 1− ϵ, 1 + ϵ)) ·Ai

19: end for
20: L ← 1

G

∑G
i=1 Li

21: return L

12
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A.3 DETAILED EXPERIMENTAL SETTINGS

Our training configuration and hyperparameter settings follow the default settings of the GRPO
trainer under the TRL framework. For each sample, the model is prompted to generate 8 responses,
each response limited to a maximum of 1024 tokens. We train on 1K samples per epoch, and to
enable experiments on Qwen2.5-Math-7B, we generate one response per GPU, resulting in a total
of 1K training steps. The learning rate is set to 1e-6 during training. For evaluation on the five
reasoning benchmarks, all tests are conducted with a temperature setting of 0.1.

A.4 DETAILED EXPERIMENTAL RESULTS

A.4.1 FURTHER EXPERIMENTAL RESULTS

We also conduct experiments on DeepScaleR-Random-1K, with results shown in Table 3. Our
method achieves performance improvements across all three different base models. Furthermore,
compared to algorithm variants such as Dr.GRPO and DAPO, as well as methods that enforce reflec-
tion on the vanilla GRPO, our method demonstrates clear advantages. We also observe that the per-
formance improvement of Qwen2.5-Math-7B is more limited compared to training on DeepScaleR-
Hard-1K. We attribute this to the fact that this training data is relatively easier for the model, which
further highlights the effectiveness of our method on difficult data, as such challenging data often
contributes more to performance improvement.

Table 3: Pass@1 performance comparison across various mathematical evaluation benchmarks. The
results below are from 1 epoch of training on DeepScaleR-Random-1K. The number of samples in
each benchmark is indicated in parentheses. The results are evaluated under the setting of tempera-
ture = 0.1. The best results are indicated by boldface.

Model Method Avg (1560) AIME (30) AMC (83) Math (500) Min (272) Oly (675)

Qwen2.5-Math-1.5B

Base 25.71 6.67 37.35 34.60 12.13 24.00
SFT 30.13 10.00 30.12 47.20 14.71 24.59
Vanilla GRPO 40.32 13.33 39.76 65.60 19.49 31.26

+ Force-R 42.63 10.00 36.14 71.40 21.69 32.00
Dr.GRPO 40.39 6.67 40.96 66.80 20.22 30.37
DAPO 41.67 10.00 44.58 67.80 19.49 32.30
EDGE-GRPO 48.08 13.33 44.58 76.40 28.68 36.89

Qwen2.5-Math-7B

Base 29.04 10.00 37.35 53.40 10.66 18.22
SFT 41.99 6.67 43.37 69.00 22.06 31.41
Vanilla GRPO 46.47 23.33 55.42 72.40 27.94 34.67

+ Force-R 47.76 23.33 53.01 74.60 23.16 38.22
Dr.GRPO 48.78 16.67 53.01 75.60 29.04 37.78
DAPO 46.99 20.00 59.04 73.00 26.84 35.56
EDGE-GRPO 49.30 16.67 50.60 75.60 33.09 37.04

Llam3.2-3B-Instruct

Base 19.81 6.67 14.46 36.20 12.13 12.00
SFT 23.46 0.00 18.07 43.40 14.71 13.93
Vanilla GRPO 24.49 13.33 18.07 45.40 15.44 13.93

+ Force-R 23.72 10.00 16.87 44.00 12.87 14.52
Dr.GRPO 22.89 13.33 24.10 43.20 12.50 12.30
DAPO 21.22 6.67 9.64 40.80 13.24 12.00
EDGE-GRPO 25.90 3.33 19.28 47.60 17.28 15.11

A.4.2 PERFORMANCE COMPARISON DURING TRAINING

To visually demonstrate the superiority of our method during the training process, Figure 7 plots
the performance curves of our method, the method with only forced reflection added to the vanilla
GRPO (GRPO + Forced reflection), and the original GRPO method on multiple benchmark during
training steps.

As can be clearly seen from the figure, our method consistently and significantly outperforms the
other two baseline throughout the entire training process. In comparison, the GRPO method with
only forced reflection shows some improvement over the vanilla GRPO, but the effect is limited.
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Figure 7: Performance comparison of different methods on three benchmarks during training steps.
Our method consistently outperforms the vanilla GRPO and the variant with forced reflection
throughout the training process.

A.4.3 COMPARE WITH OTHER OPEN SOURCE MODELS

To more comprehensively evaluate the effectiveness of our method, we conducted a comparison
of our models against current mainstream open source models on Pass@1 performance across five
mathematical reasoning benchmarks. Detailed comparison results are presented in Table 4. A core
highlight is that our method achieves excellent results with extremely high data efficiency. Our
models were trained using only 1K selected samples, far smaller than some other models which
require tens of thousands of samples or more.

Table 4: Pass@1 performance comparison of our models against various open-source models on
five mathematical reasoning benchmarks. Our models, trained on only 1K samples, demonstrate
highly competitive performance. The total number of problems for each benchmark is indicated in
parentheses. * denotes data from the original paper, other results are from our own evaluation.

Model # Train Avg (1560) AIME (30) AMC (83) Math (500) Min (272) Olym (675)

Qwen2.5-Math-1.5B Base 25.71 6.67 37.35 34.60 12.13 24.00
DeepSeek-Distill-1.5B 800K 33.53 6.67 27.71 61.00 13.60 23.11
Oat-Zero-1.5B 8.5K 47.37 20.00 48.19 75.00 25.74 36.74

Qwen2.5-Math-7B Base 29.04 10.00 37.35 53.40 10.66 18.22
DeepSeek-Distill-7B 800K 45.39 16.67 36.14 74.20 29.41 32.89
Oat-Zero-7B 8.5K 53.40 36.67 61.45 79.80 30.88 42.67
SimpleRL-Zoo-7B 8K 47.37 23.33 53.01 76.00 24.26 35.85
Eurus-7B* 48.4K 53.9 26.7 57.8 79.2 38.6 42.1
OpenReasoner-Zero-7B 5.7K 51.99 20.00 40.96 80.20 29.41 42.96

EDGE-GRPO-1.5B 1K 48.08 13.33 44.58 76.40 28.68 36.89
EDGE-GRPO-7B 1K 53.01 16.67 49.40 79.00 36.03 42.67

A.5 DETAILED RESULTS IN REFLECTION

This section provides a more detailed quantitative analysis of the model reflection phenomenon,
which we examined from the perspectives of both spontaneous and forced reflection.

Table 5 analyzes the spontaneous reflection behavior of the models. The results show that for most
models, the accuracy of responses involving spontaneous reflection is significantly lower than their
overall average accuracy and the accuracy of responses without reflection. A notable exception,
however, is the DeepSeek-R1-Distill series of models, which were distilled from large reasoning
models. Their reflection accuracy is much higher than their average on the contrary, corroborating
the point made in the main text that high-quality knowledge distillation helps improve effective
reflection capabilities. Furthermore, the Qwen2.5-Math-1.5B-S1 model, trained on high-quality
chain-of-thought data distilled from large reasoning models, also exhibits a reflection accuracy close
to its overall accuracy, outperforming most other models.

Table 6 investigates the effect of forced reflection on the other hand. We selected samples where
the models provided incorrect answers and forced them to reflect and correct their responses using
four different prompts. The results show that for the vast majority of models, the improvement
in accuracy from forced reflection is very limited, with correction accuracy rates generally below
10%. Even for the top-performing Deepseek-R1-Distill-Qwen-7B, the highest correction rate is only
around 11%.
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Table 5: Model performance analysis. The table compares overall accuracy, accuracy on samples
with reflection and accuracy on samples without reflection.

Temperature Model Average Acc Reflection Acc No-Reflection Acc

0.1

Qwen2.5-Math-1.5B 25.71 10.00 26.01
DeepSeek-R1-Distill-Qwen-1.5B 33.53 42.04 14.37
Qwen2.5-Math-1.5B-S1 27.63 27.30 27.93
Qwen2.5-Math-1.5B-Oat-Zero 47.37 17.86 47.91
Qwen2.5-Math-7B 29.04 13.51 29.42
DeepSeek-R1-Distill-Qwen-7B 45.38 56.21 22.77
Qwen2.5-Math-7B-Oat-Zero 53.40 16.00 54.01
Qwen2.5-Math-7B-SimpleRL 47.37 25.71 47.87
Qwen2.5-Math-7B-GPG 57.76 12.50 58.23

0.3

Qwen2.5-Math-1.5B 25.51 20.00 25.66
DeepSeek-R1-Distill-Qwen-1.5B 33.27 41.47 16.44
Qwen2.5-Math-1.5B-S1 26.86 26.73 26.97
Qwen2.5-Math-1.5B-Oat-Zero 48.65 15.15 49.38
Qwen2.5-Math-7B 26.28 14.81 26.48
DeepSeek-R1-Distill-Qwen-7B 45.77 56.32 25.38
Qwen2.5-Math-7B-Oat-Zero 52.88 16.22 53.78
Qwen2.5-Math-7B-SimpleRL 48.14 22.86 48.72
Qwen2.5-Math-7B-GPG 57.82 10.53 58.40

0.6

Qwen2.5-Math-1.5B 20.00 7.55 20.44
DeepSeek-R1-Distill-Qwen-1.5B 34.04 41.71 22.19
Qwen2.5-Math-1.5B-S1 20.32 24.82 16.65
Qwen2.5-Math-1.5B-Oat-Zero 46.92 13.79 47.55
Qwen2.5-Math-7B 20.77 9.09 21.02
DeepSeek-R1-Distill-Qwen-7B 44.23 54.27 25.99
Qwen2.5-Math-7B-Oat-Zero 53.08 14.29 53.97
Qwen2.5-Math-7B-SimpleRL 45.45 17.50 46.18
Qwen2.5-Math-7B-GPG 54.23 8.33 54.95

1

Qwen2.5-Math-1.5B 11.35 8.57 11.48
DeepSeek-R1-Distill-Qwen-1.5B 27.44 40.06 16.65
Qwen2.5-Math-1.5B-S1 20.83 21.95 19.93
Qwen2.5-Math-1.5B-Oat-Zero 45.51 4.17 46.16
Qwen2.5-Math-7B 16.92 5.80 17.44
DeepSeek-R1-Distill-Qwen-7B 41.41 51.71 30.87
Qwen2.5-Math-7B-Oat-Zero 52.50 21.62 53.25
Qwen2.5-Math-7B-SimpleRL 45.38 20.93 46.08
Qwen2.5-Math-7B-GPG 49.81 6.06 50.75

Collectively, this data indicates that a significant bottleneck persists in the self-correction capabilities
of existing models through reflection, whether spontaneous or forced. This supports the necessity of
our proposed Guided Error Correction (GEC) method.

A.6 DETAILED RESULTS IN POLICY ENTROPY

This section quantitatively analyzes the relationship between model confidence and answer correct-
ness using the Relative Confidence Metric (RCM). The RCM is calculated as:

RCM =
EntropyCorrect − EntropyIncorrect

Average Entropy

As shown in Table 7, a negative RCM value indicates that the model’s correct responses have a lower
average entropy than its incorrect ones, meaning the model is more confident in its correct answers
than incorrect ones.

The results show that models can better calibrate their confidence on the whole, expressing higher
confidence in correct answers than in incorrect ones. However, the RCM is an aggregate metric that
reflects a macroscopic trend. The model still exhibits a significant number of high-confidence incor-
rect responses at the individual sample level. Therefore, we propose our Entropy-Driven Advantage
(EDA) to apply more fine-grained rewards and penalties at the signal level.

To visually substantiate our analysis of policy entropy at a fine-grained level, Figure 8 presents the
entropy distributions of correct and incorrect responses across a variety of models, including base
models and those enhanced through different post-training methods.
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Table 6: Reflection accuracy under different reflection triggers. The ”Incorrect” column shows the
total number of wrong answers. The subsequent columns show the reflection accuracy scores for
specific trigger words.

Temperature Model Incorrect Reflection accuracy (%)

Wait! Hmm Let’s check it Something
is wrong

0.1

Qwen2.5-Math-1.5B 1159 3.624 2.675 7.161 3.365
DeepSeek-R1-Distill-Qwen-1.5B 1037 4.638 5.700 5.507 4.251
Qwen2.5-Math-1.5B-Oat-Zero 821 2.314 1.462 0.974 2.923
Qwen2.5-Math-7B 1107 5.872 5.059 1.987 4.426
DeepSeek-R1-Distill-Qwen-7B 852 8.706 11.059 8.588 8.353
Qwen2.5-Math-7B-Oat-Zero 727 3.026 0.688 0.413 1.926
Qwen2.5-Math-7B-SimpleRL-Zoo 821 5.366 4.146 1.098 5.122
Qwen2.5-Math-7B-GPG 659 4.401 1.517 0.152 2.731

0.3

Qwen2.5-Math-1.5B 1162 3.184 3.356 5.594 4.389
DeepSeek-R1-Distill-Qwen-1.5B 1041 5.967 7.507 8.277 5.101
Qwen2.5-Math-1.5B-Oat-Zero 801 1.748 1.623 0.250 1.873
Qwen2.5-Math-7B 1150 5.826 4.435 3.217 2.696
DeepSeek-R1-Distill-Qwen-7B 846 10.308 9.597 8.649 9.123
Qwen2.5-Math-7B-Oat-Zero 735 3.129 1.769 0.136 3.401
Qwen2.5-Math-7B-SimpleRL-Zoo 809 6.057 3.585 0.865 6.057
Qwen2.5-Math-7B-GPG 658 2.888 1.216 0.152 3.495

0.6

Qwen2.5-Math-1.5B 1248 2.648 2.809 5.056 3.852
DeepSeek-R1-Distill-Qwen-1.5B 1029 7.101 7.879 6.323 6.323
Qwen2.5-Math-1.5B-Oat-Zero 828 2.053 1.208 0.725 1.932
Qwen2.5-Math-7B 1236 4.288 3.722 1.861 5.502
DeepSeek-R1-Distill-Qwen-7B 870 11.406 12.097 11.290 10.253
Qwen2.5-Math-7B-Oat-Zero 732 2.869 1.093 0.137 3.005
Qwen2.5-Math-7B-SimpleRL-Zoo 851 4.935 4.113 3.055 4.465
Qwen2.5-Math-7B-GPG 714 3.922 1.821 0.280 2.801

1

Qwen2.5-Math-1.5B 1383 1.952 1.735 2.531 1.591
DeepSeek-R1-Distill-Qwen-1.5B 1132 9.637 10.610 9.637 8.753
Qwen2.5-Math-1.5B-Oat-Zero 850 1.765 1.882 0.471 1.882
Qwen2.5-Math-7B 1296 1.931 2.008 1.236 1.776
DeepSeek-R1-Distill-Qwen-7B 914 9.430 9.649 9.320 9.539
Qwen2.5-Math-7B-Oat-Zero 741 2.699 1.350 0.405 2.699
Qwen2.5-Math-7B-SimpleRL-Zoo 852 3.169 2.582 0.235 2.347
Qwen2.5-Math-7B-GPG 783 1.788 1.660 0.255 1.788

Each plot within the figure displays two overlapping density distributions: one for correct responses
and another for incorrect responses. These graphs visually confirm that most models exhibit mis-
judgments in their response confidence. A consistent pattern is the substantial overlap between the
entropy distributions of correct and incorrect answers.

Specifically, these visualizations reveal two key phenomena: Firstly, a considerable portion of in-
correct responses possesses low entropy, indicating that the models are often highly confident in

Table 7: Relative Confidence Metric (RCM) across different models and temperature settings. A
negative value indicates that the model exhibits lower entropy (i.e., higher confidence) in its correct
responses compared to its incorrect responses.

Model Temperature
0.1 0.3 0.6 1.0

Qwen2.5-Math-1.5B 0.0909 0.0278 0.0349 -0.7773
DeepSeek-R1-Distill-Qwen-1.5B -0.1667 -0.2596 -0.2521 -0.3476
Qwen2.5-Math-1.5B-Oat-Zero -0.5714 -0.5000 -0.5116 -0.6049

Qwen2.5-Math-7B 0.0909 -0.0294 -0.2171 -0.7175
DeepSeek-R1-Distill-Qwen-7B -0.2222 -0.2195 -0.2406 -0.3808
Qwen2.5-Math-7B-Oat-Zero -0.6667 -0.6250 -0.5625 -0.5556
Qwen2.5-Math-7B-SimpleRL -0.2727 -0.2813 -0.3553 -0.5179
Qwen2.5-Math-7B-GPG -0.6667 -0.5000 -0.7059 -0.7778
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DeepSeek-R1-Distill-Qwen-7BQwen2.5-Math-1.5B

Qwen2.5-Math-7B Qwen2.5-Math-7B-SimpleRL-Zoo Qwen2.5-Math-7B-GPG

Qwen2.5-Math-1.5B-Oat-Zero

Figure 8: The entropy distribution of correct and incorrect responses within different models. The
results are evaluated under the setting of temperature = 0.1.

their erroneous answers. Secondly, many correct responses exhibit high entropy, suggesting a lack
of confidence even when the model produces the right answer.

This evidence highlights that relying on aggregate metrics like average entropy is insufficient, as
it masks these critical sample-level discrepancies. The observed miscalibration of confidence at
this granular level strongly motivates our proposed Entropy-Driven Advantage (EDA) mechanism,
which is designed to apply more precise rewards and penalties to address these confidence misjudg-
ments directly.

A.7 USE OF LARGE LANGUAGE MODELS

Some portions of the text were polished with the assistance of Large Language Models (LLMs). All
content remains the responsibility of the authors.

A.8 ETHICS STATEMENT

This study does not involve human subjects, sensitive data, or potentially harmful applications. All
mathematical reasoning datasets used (e.g., DeepScaleR, MATH, AIME) are publicly available and
contain no personal privacy information or copyright-protected content. The authors have read and
pledged to uphold the ICLR Code of Ethics. The research encountered no conflicts of interest,
discriminatory bias, or legal-compliance risks. Every experiment followed academic integrity prin-
ciples, and all reported results are truthful and unaltered.

A.9 REPRODUCIBILITY STATEMENT

Appendix A.2 presents the complete algorithmic pseudocode, Appendix A.3 lists all hyperparame-
ters and training schedules, and Section 5 describes the data filtering pipeline in detail. Following
the prescriptions in these sections enables full replication of the reported results.

17


	Introduction
	Related Work
	Investigation of Advantage Collapse in GRPO
	Response-level: Limitations of Reflection
	Signal-level: Policy Entropy

	EDGE-GRPO: Entropy-Driven GRPO with Guided Error Correction
	Response-level: Guided Error Correction (GEC)
	Signal-level: Entropy-Driven Advantage (EDA)

	Experiments
	Experimental Setup
	Main Result

	Conclusion
	Appendix
	Reflection Keywords
	Analysis on the Introduction of External Solutions
	Detailed Experimental Settings
	Detailed Experimental Results
	Further experimental results
	Performance Comparison During Training
	Compare with Other Open Source Models

	Detailed Results in Reflection
	Detailed Results in Policy Entropy
	Use of Large Language Models
	Ethics Statement
	Reproducibility statement


