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Abstract

Research has repeatedly demonstrated that intermediate hidden states extracted
from large language models predict measured brain response to natural language
stimuli. Yet, very little is known about the representation properties that enable
this high prediction performance. Why is it the intermediate layers, and not the
output layers, that are most capable for this unique and highly general transfer
task? In this work, we show that evidence from language encoding models in
fMRI supports the existence of a two-phase abstraction process within LLMs. We
use geometric methods to show that this abstraction process naturally arises over
the course of training a language model and that the first "composition" phase
of this abstraction process is compressed into fewer layers as training continues.
Finally, we demonstrate a strong correspondence between layerwise encoding
performance and the intrinsic dimensionality of representations from LLMs. We
give initial evidence that this correspondence primarily derives from the inherent
compositionality of LLMs and not their next-word prediction properties.

1 Introduction

How do brains and machines take low-level information, such as a collection of sounds or words, and
compose it into the rich tapestry of ideas and concepts that can be expressed in natural language?
This question of composition, or abstraction, is at the heart of most studies of human language
comprehension. Recent work has shown that representations from large language models (LLMs)
are able to successfully model human brain activity at varying spatial and temporal resolutions with
only a linear transformation [} 2} |3} 14} |5, 16l [7]]. This has led to questions about the reason for this
brain-model similarity. Do LLMs and brains possess similar representations because they have
similar learning properties or objectives? [8, 19} 1] Or is the similarity merely a consequence of shared
abstraction, the ability to represent features not derivable from the lexical properties of language
alone? [[10]]

In this work, we present new evidence that it is the abstractive, compositional properties of LLMs
that drive predictivity between LL.Ms and brains. We do this by examining an underexplored and
unexplained phenomenon of the similarity - the tendency for intermediate hidden layers of LLMs
to be optimal for this linear transfer task. We show that an LLM layer’s performance at predicting
brain activity is strongly related to intrinsic dimensionality of that layer relative to other layers in the
same network. Furthermore, we demonstrate that this relationship is itself an indicator that pretrained
LLMs naturally split into an early abstraction, or composition, phase, and a later prediction, or
extraction, phase, a result independently suggested in the LM interpretability literature [[11[12]. We
suggest that it is the first abstraction phase, rather than the latter prediction phase, that primarily
drives the observed correspondence between brains and LLMs.
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Table 1: The average voxelwise product-moment correlations between representational dimensionality
and encoding performance are shown for I;, PCA-d (variance threshold of 0.99), and PR-d. Across
models, the correlation is generally high no matter the dimensionality measure. All values, except
those marked with (¥), are significant to p < 1073, as computed by a permutation test.

OPT-125M OPT-1.3B OPT-13B Pythia-6.9B
GRIDE I, 0.91 0.96 0.85 0.90
PCA d 0.91 0.93 0.96 0.86
PR d 0.94 0.82 0.85 —0.05*
2 Methods

We test the hypothesis that feature abstraction, not next-token prediction per se, drives brain-model
similarity. To do so requires three observables. First, we measure the dependent variable, (1)
brain-model representational similarity, by scoring the prediction performance of a learned linear
mapping from LLM representations to brain activity. Then, we compute the (2) dimensionality of
representations to measure abstract feature complexity over the LLM’s layers. Finally, to test the
alternate hypothesis that next-token prediction drives brain-LM similarity, as has been suggested by
others [[13} (8 [1]], we compute the (3) surprisal, or next-token prediction error, from each layer.

2.1 Brain-model similarity

fMRI data We used publicly available functional magnetic resonance imaging (fMRI) data col-
lected from 3 human subjects as they listened to 20 hours of English language podcast stories over
Sensimetrics S14 headphones. Stories came from podcasts such as The Moth Radio Hour, Modern
Love, and The Anthropocene Reviewed. Each 10-15 minute story was played during a separate scan.
Subjects were not asked to make any responses, but simply to listen attentively to the stories. For
encoding model training, each subject listened to roughly 95 different stories, giving 20 hours of data
across 20 scanning sessions, or a total of ~33,000 datapoints for each voxel across the whole brain.
Additional details of the MRI methods are summarized in Appendix [D]

Neural encoding model training To train encoding models, we use the method described in [4].
High-level details of the method are summarized here. For each word in the stimulus set, activations
were extracted by feeding that word and its immediate preceding context into the LLM. A sliding
window was used to ensure each word received a minimum of 256 tokens of context. Activations
were then downsampled using a Lanczos filter and FIR delays of 1,2,3 and 4 TRs were added to
account for the hemodynamic lag in the BOLD signal. A linear projection from the downsampled,
time-delayed features was trained using ridge regression. Encoding models were built using the
OPT language model [14] (three sizes - 125M, 1.3B, 13B) and the 6.9B parameter deduped Pythia
language model [15]]. To study model training, 9 different Pythia model checkpoints were used (at
1K, 2K, 3K, 4K, 8K, 16K, 32K, 64K, and 143K training steps). Model details are summarized in
Table [El

2.2 Dimensionality of neural manifolds

To measure representational complexity, we compute the intrinsic dimensionality 15 as well as the
linear effective dimensionality d of activations at each layer. I; and d describe different geometric
properties of the representations: while the former is the dimension of the representations’ underlying
(nonlinear) manifold, the latter describes the number of linear directions that explain their variance
up to a threshold. We will use dimensionality to refer to both I; and d, specifying when necessary.

We are interested in an LLLM’s behavior on a representative sample of natural language, so that
the computed dimensionality is informative about the model’s general linguistic processing. For
all models, we compute the ID on N = 10000 20-word contexts randomly sampled from Pythia’s
training data The Pile [16]], over 5 random data samples. The model’s tokenization scheme can
produce sequences of variable length, so we aggregated representations at each layer by taking the last

'The training data for OPT are not publicly downloadable.
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Figure 1: Analyzing Layerwise Representational Trends: (a) Iy is well correlated with encoding
performance across model sizes. I; is normalized here by the log of embedding size to account
for power law scaling. (b) The abstract-predict phase transition at layer 17 is shown for OPT-1.3B.
At the peak of encoding performance (red dashed line), the next-token prediction loss (blue curve)
sharply decreases, corresponding with a decrease in encoding performance. (¢) A flatmap of the
brain, for one subject, is shown colored voxelwise by the correlation over layers between I; and
encoding performance. With the exception of auditory cortex (bright), which captures low-level
spectral information, encoding performance in brain regions thought to perform higher-level linguistic
processing (dark) is well-captured by representational ,;.(d) The layer-wise representational similarity
computed with linear CKA is shown for OPT-1.3B.

token representation in the model’s residual stream [17]; this yields one N x D matrix of activations
per layer, D being the model’s hidden dimension, or extrinsic dimension.

Nonlinear ID estimation To compute /;, we apply the Generalized Ratios Intrinsic Dimension
Estimator (GRIDE) [18]], an extension of the popular TwoNN estimator [19] to general scales. GRIDE
operates on ratios fi; ok k := T 2k / 75 k> Where 7; ; is the Euclidean distance between point 7 and its
j*" neighbor. Assuming local uniform density up to the 2k‘" neighbor, the ratios y; 2 x follow a

LaG' 1" ohere B(-,-) is the beta functi
Bk kypla@—n71> Where (+,-) is the beta function.

The 1 is then recovered by maximizing this likelihood over points ¢ for several candidate scales k.

generalized Pareto distribution f,, o5 1 (1) =

Finally, in order to choose the proper I, a scale analysis over k, which controls the neighborhood
size, is necessary: if k is too small, the I; likely describes local noise, and if k is too large, the
curvature of the manifold will produce a faulty estimate. Instead, it is recommended to choose a k for
which the I is stable [I8]. We provide an example of such a scale analysis in Appendix [B]

Linear dimensionality estimation In addition to nonlinear I;, we computed linear effective
dimensionality d two ways: using PCA with variance cutoff 0.99 [20], and the Participation Ratio
(PR), defined as (3°, A\i)?/(3>=, A7) [21]. By definition, I;-dimensional manifolds can be embedded
in d > I; dimensions, so we expect that d > 1.
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Figure 2: Encoding Performance and Intrinsic Dimensionality Peaks Manifest Concurrently over
Training: (a) - The evolution of layerwise encoding performance over training of the Pythia 6.9B
model is shown. A peak is reached at layer 13 of the model. (b) -Likewise, a peak in I at layer 13
manifests over training. Red dots in each figure denote maximal layers for the respective metric.

2.3 Measuring layerwise surprisal

To determine whether predictive coding explains brain-LLM representational similarity, on The Pile,
we computed the next token’s surprisal from intermediate layers using TunedLens [22]. TunedLens
learns an affine mapping from an intermediate layer to the vocabulary space in order to predict the
next token, indicating how much intermediate layers (linearly) represent next-token identity. See
Appendix [C| for implementation details.

3 Results

Layerwise encoding performance and representational dimensionality, linear and nonlinear, are
highly correlated across brain areas involved in linguistic processing. Table[I|shows the correlation
between encoding performance and dimensionality averaged over all voxels, and Figure[Th shows the
correlation between average encoding performance and (normalized) I; for OPT models. The positive
relationship, p = 0.85, between I; and encoding performance suggests that in trained models, the I
of layer activations captures linguistic feature complexity needed to support language comprehension.

Figure [Ib overlays, for OPT-1.3B, the encoding performance, I, and next-token prediction loss
computed from each layer. Encoding performance peaks at layer 17, which exactly marks a sharp
downwards turn in prediction loss. While Cheng et al. [12] showed pre-1;-peak layers to extract
syntactic and semantic features, our results also suggest a functional shift post-7;-peak to next-token
prediction. The sharp transition from abstraction to prediction is observed across OPT model sizes,
but it is more gradual for Pythia (see Appendix [FI). To further evidence a transition in layer
function, we report inter-layer representational similarity via linear Centered Kernel Alignment [23].
In Figure[Id, where lighter is more similar, the I peak approximately marks a point where preceding
layers are no longer similar to following ones. Results hold across models, see Appendix [F:3]

Figure [Tk shows, for one subject, the voxelwise correlation of I; with encoding performance across
layers (dark red is better). Except for the primary auditory cortex, which processes low-level auditory
information, encoding performance in brain areas thought to handle higher-level linguistic processing
is well-predicted by /4. Results hold across subjects and models, see Appendix

The relationship between encoding performance and I, arises nontrivially from learning. Figure 2]
plots the encoding performance (left) and I; (right) across layers over the course of training for
Pythia-6.9B (each curve is a different checkpoint). We confirm an existing result from the literature
that the /; peak emerges and that I, generally grows for all layers over training (Figure [2] right)
[12]. Furthermore, encoding performance and I; increase at similar rates over training, seen by
similar positions of the checkpoint curves in the two plots. The two plots are globally correlated
with p = 0.94. Lastly, the location of the I; peak (red dots, right), changes over training, eventually
settling at the same layers for peak encoding performance (red dots, left). This rules out that the I,
peak trivially reflects the Transformer architecture, e.g., layer index.



4 Discussion

Recent studies of the properties of language encoding models have observed that the intermediate
layers of LLMs, rather than the output layers, have the highest linear similarity to measured brain
activity. This is true regardless of the scanning modality (be it fMRI [4], ECoG [24]], or MEG [8]]),
and regardless of the chosen LLM. Despite this very frequently observed trend, little research has
been dedicated to explaining this phenomenon. Yet, an understanding of this trend would greatly
benefit our understanding of both brains and LLMs, not least because layerwise differences in LLMs
have highly useful epistemic properties. LLM layers are invariant to many confounding variables -
each layer has seen the same data in the same order, has an identical architecture, was trained on the
same loss term, and built using the same hyperparameters. Therefore, differences between layers can
only arise either as a result of the compositional nature of the transition from earlier layers to later
ones, or due to the "time pressure" exerted by the loss term on the final output layers.

These competing pressures, to first build up the most comprehensive representation of the input text
possible, and to then ultimately use this representation to resolve towards a distribution over predicted
next word outputs, have opposite effects, as we demonstrate here. The composition effect leads to
a increase in encoding performance and dimensionality, whereas the prediction effect narrows the
dimensionality to the detriment of encoding. Furthermore, we observe that as models get larger and
more thoroughly trained, the best layer for encoding slowly drifts to earlier in the model, perhaps
suggesting a saturation effect for this initial compositional phase.

What conclusions should we draw from this? Firstly, that it is not likely to be the autoregressive
nature of language models that drives brain-model similarity [9}[1,[10]. As models get more potent
at prediction, their most predictive and most descriptive layers drift apartE] Secondly, we can draw
that the multi-phase abstraction process in LLMs that has been proposed independently by other
authors [[12,[11]] is supported by evidence from the only other system known to effectively reason
with complex language, the human brain. As the present work only tests two model families, it will
be necessary to test more models for conclusions to hold in the general case.

From a practical perspective, conclusions point to a potential new avenue for improving the perfor-
mance of encoding models. If the spectral properties of different LLM layers can be measured and
efficiently combined to produce a representation with higher /; than any individual layer, then we
might expect that new representation to outperform any single layerwise encoding model coming
from the same LLM. As linear layerwise encoding models reach their limit, such methods may be
necessary to see further benefits.
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Table B.1: Selected GRIDE scales k after performing a scale analysis for intrinsic dimension
estimation, for all models and checkpoints tested.

Model GRIDE &
OPT-125M 64
OPT-1.3B 32
OPT-13B 32
Pythia-6.9B 16

Pythia (t =64000) | 16
Pythia (t =32000) | 32
Pythia (t =16000) | 32
Pythia (t =8000) | 32
Pythia (t =4000) | 64
Pythia (t =3000) | 64
Pythia (t =2000) | 16
Pythia (t =1000) | 16
Pythia (t =512) | 16

Appendix

A Computing resources

Dimensionality and surprisal computation were run on a cluster with 12 nodes with 5 NVIDIA A30
GPUs and 48 CPUs each. Extracting and computing dimensionality on LM representations took a
few wall-clock hours per model. Training TunedLens took around 15 minutes per layer, so overall
30 wall-clock hours. We parallelized all computation, and estimate the overall parallelized runtime,
including preliminary experiments and failed runs to be around 6 days.

Ridge regression was performed using compute nodes with 128 cores (2 AMD EPYC 7763 64-core
processors) and 256GB of RAM. In total, roughly 1,000 node-hours of compute was expended for
these models. Feature extraction for language models was performed on specialized GPU nodes
similar to the AMD compute nodes but with 3 NVIDIA A100 40GB cards. Feature extraction
required roughly 300 node-hours of compute on these GPU nodes. Pycortex [26] and Numpy [27]
were used for flatmap visualization and figure generation.

B ID Estimation

B.1 Nonlinear ID

GRIDE operates on ratios j; ok, k := Ti,2k/7i,k» Where r; ; is the Euclidean distance between point
i and its j*" neighbor. Assuming local uniform density up to the 2k*" neighbor, the ratios i; o k

I Ig_qyk—1 )
W, where B(,-) is the beta
function. The I, is then recovered by maximizing this likelihood over points ¢ for several candidate

scales k.

follow a generalized Pareto distribution f,; 2k 1 (1) =

Finally, in order to choose the proper /4, a scale analysis over k, which controls the neighborhood
size, is necessary: if k is too small, the I; likely describes local noise, and if k is too large, the
curvature of the manifold will produce a faulty estimate. Instead, it is recommended to choose a k for
which the 1, is stable [18]].

For ID estimation using GRIDE, we reproduce the setup in Cheng et al. [[12]. For each model,
checkpoint, and layer, we perform a scale analysis. The intrinsic dimension of the manifold is
sensitive to the scale, or neighborhood size, for which it is estimated [19} [18]. Figure E] shows
an example, where the GRIDE scale k varies from 2° to 2'2. As recommended in Denti et al. [18]],
we choose a scale k corresponding in a range where the intrinsic dimension is stable, or plateaus,
by visual inspection. For simplicity, we choose one scale k per model. In the particular example in
Figure we choose k = 2%, where the derivative of the curve is closest to 0 for as many layers as
possible. Scales chosen for all models are in Table
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Figure B.1: GRIDE scale analysis for Pythia-6.9B. The estimated intrinsic dimension (y axis) varies
according to the chosen scale & (x axis). It is recommended to choose a scale where the local change
is minimal, in this case, k = 2%.

B.2 Linear dimensionality

To compute the linear effective dimensionality of a mean-centered representation matrix X, we
compute the eigenspectrum A\; > Ay > --- A\p of its covariance matrix X ' X € RP*P_ Then, the
dimensionality given by Principal Component Analysis with a threshold of 0.99 is

> 0.99. B.D)
D
Zj:l Aj

dpca,0.99(X) =minjey..p @ s.t.

In words, this is the minimal number of principal components that explain at least 99% of the variance
in X.

We also compute the Participation Ratio (PR), a non-integer measure of linear dimensionality defined

as
dpr(X Z)\ JO-N). (B.2)
J

The PR is designed to smoothly interpolate between 1 and D: one can verify that when \;2; = 0,
then dpr(X) = 1, and when data are isotropic, that is, \; = \; Vi # j, then dpr(X) = D [21].

C Saurprisal Estimation

We used the TunedLens implementation by Ghandeharioun et al. [29]]. TunedLens ascertains the
amount of information linearly encoded in hidden layer ¢ about the next token. To do so, an affine
mapping is learned from the last-token hidden representation h; at layer ¢ as follows:

1141’11[1)1 DKL (f>t(ht) H LayerNorm(Atht + bt)WU) (C3)

Here, A; € RP*P b, € RP are the learnable parameters of the affine mapping. W7 is the LM’s
unembedding matrix that maps the final layer to the vocabulary. Finally, f.(h;) is the layers of the
LM f after layer ¢, producing the model’s original distribution over the vocabulary. In the provided
code [29]], TunedLens is implemented using a direct solver numpy .1linalg.lstsq on N = 8000



randomly sampled sequences from The Pile dataset [16]], returning the least squares solution that
minimizes the [o-norm between h; and last layer representation hp. Finally, we compute the next-
token surprisals on a validation set of The Pile (N = 2000) from the TunedLens-modified hidden
layers.

D fMRI Methods

MRI data were collected on a 3T Siemens Skyra scanner at The University of Texas at Austin
Biomedical Imaging Center using a 64-channel Siemens volume coil. Functional scans were collected
using a gradient echo EPI sequence with repetition time (TR) = 2.00 s, echo time (TE) = 30.8 ms,
flip angle = 71°, multi-band factor (simultaneous multi-slice) = 2, voxel size = 2.6mm x 2.6mm x
2.6mm (slice thickness = 2.6mm), matrix size = 84x84, and field of view = 220 mm. Anatomical data
were collected using a T1-weighted multi-echo MP-RAGE sequence with voxel size = Imm x 1lmm x
Imm.

In addition to motion correction and coregistration [30], low frequency voxel response drift was
identified using a 2nd order Savitzky-Golay filter with a 120 second window and then subtracted
from the signal. The mean response for each voxel was subtracted and the remaining response was
scaled to have unit variance.

E LLM Details

Table E.1: LLMs considered for both encoding and dimensionality analysis. All mod-
els are causal language models, where each layer consists of a self-attention and an
MLP layer. For the Pythia-6.9B model, we considered training checkpoints ¢ &
{512, 1000, 2000, 3000, 4000, 8000, 16000, 32000, 64000, 143000}.

LLM | Hidden dimension D # Parameters # Layers

768 125m 12
OPT 2048 1.3b 24
5120 13b 40
Pythia | 4096 6.9b 32

10



F Extended Results

F.1 Extended Tuned Lens Results

Surprisal

—— pythia-6.9b
— opt-13b
opt-125m

0.0 0.2 0.4 0.6 0.8 1.0
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Figure F.1: Remaining tuned lens results for OPT-125, OPT-13B, and Pythia-6.9B
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F.2 Extended Voxelwise ID Correlation Results

Correlation with ID

Figure F.2: Voxelwise ID correlation results as in Figure 1c for OPT-125M

Correlation with ID

Figure F.3: Voxelwise ID correlation results as in Figure 1c for OPT-13B
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Correlation with ID
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Figure F.4: Voxelwise ID correlation results as in Figure 1c for Pythia-6.9B
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F.3 Extended CKA Results
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Figure F.5: CKA results as in Figure 1d for OPT-125M
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Figure F.6: CKA results as in Figure 1d for OPT-13B
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Figure F.7: CKA results as in Figure 1d for Pythia-6.9B
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