
Interaction2Code: Benchmarking MLLM-based Interactive Webpage
Code Generation from Interactive Prototyping

Anonymous ACL submission

Abstract001

Multimodal Large Language Models (MLLMs)002
have demonstrated remarkable performance on003
the design-to-code task, i.e., generating UI code004
from UI mock-ups. However, existing bench-005
marks only contain static web pages for evalua-006
tion and ignore the dynamic interaction, limit-007
ing the practicality, usability and user engage-008
ment of the generated webpages.009

To bridge these gaps, we present the first sys-010
tematic investigation of MLLMs in generat-011
ing interactive webpages. Specifically, we for-012
mulate the Interaction-to-Code task and es-013
tablish the Interaction2Code benchmark, en-014
compassing 127 unique webpages and 374015
distinct interactions across 15 webpage types016
and 31 interaction categories. Through com-017
prehensive experiments utilizing state-of-the-018
art (SOTA) MLLMs, evaluated via both au-019
tomatic metrics and human assessments, we020
identify four critical limitations of MLLM on021
Interaction-to-Code task: (1) inadequate gen-022
eration of interaction compared with full page,023
(2) prone to ten types of failure, (3) poor024
performance on visually subtle interactions,025
and (4) insufficient undestanding on interac-026
tion when limited to single-modality visual de-027
scriptions. To address these limitations, we028
propose four enhancement strategies: Inter-029
active Element Highlighting, Failure-aware030
Prompting (FAP), Visual Saliency Enhance-031
ment, and Visual-Textual Descriptions Com-032
bination, all aiming at improving MLLMs’033
performance on the Interaction-to-Code task.034
The Interaction2Code benchmark and code035
are available in https://anonymous.4open.036
science/r/Interaction2Code-0E7C.037

1 Introduction038

Converting webpage design into functional UI code039

is a critical step for building websites, which can be040

labor-intensive and time-consuming. MLLMs have041

shown remarkable performance on visually rich042

code generation tasks (Yang et al., 2024), which043

create new opportunities for the Design-to-Code 044

task, i.e., generating code from UI designs to repli- 045

cate web page elements, layout, text, and colors. 046

For example, Design2Code (Si et al., 2024) pro- 047

poses three types of prompts to stimulate MLLMs’ 048

web content understanding and self-refined capa- 049

bilities for GUI code generation. DCGen (Wan 050

et al., 2024) develops a divide-and-conquer-based 051

approach to prompt MLLMs to generate webpage 052

elements by division and assembly stages. 053

However, existing research (Si et al., 2024; Yun 054

et al., 2024; Gui et al., 2024) only focuses on the 055

static appearance of a webpage (e.g., color, lay- 056

outs), ignoring the dynamic interactive properties 057

and functionality of such elements, like size selec- 058

tion list, and quantity adjustment button shown in 059

Figure. 1(a). Additionally, we observe that such 060

interactive elements account for a large proportion 061

of the webpage in real-world software practices. 062

We randomly select 10 real-world webpages with 063

different topics to analyze the ratio of interactive 064

elements, the results in Figure. 1(b) indicate that 065

interactive elements take up more than 50% cases. 066https://www.fun.com/adult-cakeworthy-never-land-denim-jacket.html

(a) Interactive elements.

0 20 40 60 80 100
Percentage of interactive and static elements(%)

blog
code

music
news

search engine
shopping

sports
technology

video
social media

53% 47%
50% 50%

96% 4%
68% 32%

88% 12%
91% 9%

59% 41%
74% 26%

60% 40%
61% 39%

Interactive Elements Static Elements

(b) Interactive and static ratio.

Figure 1: Interaction example and interactive elements
ratio of different types of webpages.

Static webpages limit user interaction with web 067

elements, hindering access to new content (such as 068

browsing images via carousel buttons) or imped- 069

ing task completion (like selecting clothing sizes 070

from drop-down menus), thereby impairing over- 071

all user experience. Therefore, we argue that a 072

benchmark for interactive webpages is essential 073

1

https://anonymous.4open.science/r/Interaction2Code-0E7C
https://anonymous.4open.science/r/Interaction2Code-0E7C
https://anonymous.4open.science/r/Interaction2Code-0E7C

to enhance the practicality, usability, and user074

engagement of studies on auto-generated GUI075

code. To this end, we provide the first system-076

atic analysis of MLLMs’ capability in generating077

interactive webpages. Our contributions are sum-078

marized as follows:079

• Task formulation. We are the first to formulate080

the Interaction-to-Code task and present a sys-081

tematic study on the code generation capabilities082

of MLLMs for dynamic interaction of webpages.083

• Benchmark. We build the first real-world web-084

page interaction datasets Interaction2Code con-085

taining 127 webpages and 374 interactions, span-086

ning 15 webpage topics and 31 interaction types.087

We also provide failure annotations for the088

MLLM-generated webpages.089

• Key Findings. Our in-depth analysis reveals four090

main limitations: (1) MLLMs struggle to gener-091

ate interactive part compared with full static web-092

page generation; (2) MLLMs are prone to make093

10 types of failures; (3) MLLMs perform poorly094

on interactions that are not visually obvious; (4)095

Single visual modality description is not enough096

for MLLMs to understand the interaction.097

• Improvements. We propose four methods to098

improve the performance of MLLMs on the099

Interaction-to-Code task. (1) Interactive ele-100

ment highlighting, i.e., applying visual markers101

for interactive elements can improve MLLMs’102

performance by forcing MLLMs to focus on103

the Interaction. (2) Failure-aware prompting104

(FAP) can make MLLMs avoid potential fail-105

ures by incorporating the failure example into106

prompts. (3) Visual saliency enhancement107

(VSE) allows the model to better perceive the108

interaction area by image cropping, thereby im-109

proving the performance of interaction genera-110

tion. (4) Visual and textual description combi-111

nation can makes MLLMs understand the inter-112

action better.113

2 Background114

2.1 Related Work115

Some benchmarks and methods are proposed to116

evaluate and improve the ability of MLLM’s UI117

code generation. Websight (Laurençon et al., 2024)118

synthesize a dataset consisting of 2 million pairs of119

HTML codes and their corresponding screenshots120

Benchmark Real
World

Failure
Annotation Interactive

WebSight (Laurençon et al., 2024) ✗ ✗ ✗
Vision2UI (Gui et al., 2024) ✓ ✗ ✗
Design2Code (Si et al., 2024) ✓ ✗ ✗
Interaction2Code (Ours) ✓ ✓ ✓

Table 1: Comparisons between Interaction2Code and
existing UI2Code benchmarks.

for fine-tuning MLLMs on UI2Code tasks. Vi- 121

sion2UI (Gui et al., 2024) extracts from real-world 122

scenarios, augmented with comprehensive layout 123

information, tailored for finetuning MLLMs in UI 124

code generation. Design2Code (Si et al., 2024) 125

generates UI code through text-augmented and self- 126

revision prompting. DCGen (Wan et al., 2024) pro- 127

poses a divide-and-conquer-based approach to gen- 128

erate the UI code. DeclarUI (Zhou et al., 2024) 129

uses the element segmentation method to accu- 130

rately generate elements and page transition graphs 131

to prompt MLLMs to generate app UI with jump 132

logic. Although the above works achieve decent 133

performance on the UI2Code task, none of them 134

consider the generation of interactive webpages. 135

2.2 Problem Definition 136

UI-Mockup (UI-Mockup, 2025) is a visual rep- 137

resentation of a user interface, essentially a static 138

image showing the look and feel of a webpage. Fig- 139

ure 2 shows that the UI2Code task takes the static 140

UI-Mockup S as input and generates a static web- 141

page. Interactive Prototyping (Interactive, 2025) 142

is a functional model of that design, allowing users 143

to simulate interactions and navigate through the 144

interface to test usability and functionality before 145

full development. An interactive behavior is repre- 146

sented as an interactive prototype IP = {So, SI}, 147

where So is the UI-Mockup of original webpage 148

and SI is the UI-Mockup after the interaction I . 149

Interaction2Code task takes the interactive pro- 150

totyping IP as input and generates an interactive 151

webpage as shown in Figure 3. 152

3 The Interaction2Code Benchmark 153

3.1 Dataset Collection 154

We follow these steps for constructing benchmark 155

that represent a variety of real-world use cases (i.e., 156

diverse webpages and interactions). 157

Webpage Selection. We collect webpages from 158

CommonCrawl (C4 validation set (Raffel et al., 159

2020)) and github. (1) CommonCrawl. Following 160

2

Github and
CommonCrawl

Webpage
Candidate

Interactive
Prototyping

Filtering
Capture

Interact

Interaction2Code
Dataset

Model
Evaluation

Annotation

(1) Failure Type

感觉可以做一个python的package
来衡量两个网页的差异

Image
input

UI2Code Task

OK, here is the
webpage code.

Prompts: You are a web developer proficient in HTML, CSS and
JavaScript. You are tasked with creating a interactive webpage
based on the interactive prototyping.

Generated
Codes: CLIP SSIM

PositionText

Automatic Metric

Implementation Rate

Usability Rate
Failure Type

Human Evaluation

Comparison

UI
Mockup

Interaction2Code TaskCreate a webpage
based on the
UI-mockup

Webpage Selection

Interaction
Extraction

Interaction Annotation Evaluation

Figure 2: UI2Code.

Github and
CommonCrawl

Webpage
Candidate

Interactive
Prototyping

Filtering
Capture

Interact

Interaction2Code
Dataset

Model
Evaluation

Annotation

(1) Failure Type

感觉可以做一个python的package
来衡量两个网页的差异

Image
input

UI2Code Task

OK, here is the
webpage code.

Prompts: You are a web developer proficient in HTML, CSS and
JavaScript. You are tasked with creating a interactive webpage
based on the interactive prototyping.

Generated
Codes: CLIP SSIM

PositionText

Automatic Metric

Implementation Rate

Usability Rate
Failure Type

Human Evaluation

Comparison

UI
Mockup

Interaction2Code TaskCreate a webpage
based on the
UI-mockup

Webpage Selection

Interaction
Extraction

Interaction Annotation Evaluation

Figure 3: The construction of Interaction2Code benchmark.

the Design2Code (Si et al., 2024), we automatically161

filter out webpages that are too long or too simple162

(only contain images or texts) and run deduplica-163

tion. We then choose 15 common web topics and164

randomly sample 1k web pages related with these165

topics. Finnaly, we employ four PhD students ma-166

joring in computer science, each with experience167

in front-end development. Each student is assigned168

to select approximately 25 webpages, thus obtain-169

ing 100 webpages from C4. The selection guide-170

line is shown in Appendix E.4.1. The selection171

criteria are as follows: 1) complexity: each web172

page must contain at least one meaningful interac-173

tions; 2) diversity: the selection process aims to174

include a wide range of webpages with different175

interaction types. Most of the websites in C4 are176

traditional and do not use UI frameworks, so we177

also collect webpaes from github website projects178

built with UI frameworks. (2) Github projects.179

We search for “open-production-web-projects” and180

“awesome-opensource-apps” on GitHub to get a181

summary list of web projects, then we identify 27182

popular projects with deployed links and higher star183

counts. These projects represent various real-world184

website uses, ranging from commercial product185

frontend websites to blogs, with 13k average star186

counts. Their popularity have proven their useful-187

ness and quality. Ultimately, we compile a dataset188

consisting of 127 webpages.189

Interaction Annotation. (1) Interactive Proto-190

typing Construction. In real-world webpages, there191

are many trivial interactions, like underlining texts192

when hovering. To preserve meaningful interac-193

tions and ensure the complexity and diversity of194

interactions, the four PhD students are employed195

to interact with webpages and select complex and196

meaningful interactions to capture the pre- and post-197

interaction screenshots to build interactive proto-198

shop

11%blog
8%

business 6%

news 6%

book
6%

homepage

4%

hotel

4%

form

4%

food

4%

study

3%

encyclopedia

3%

sport

3%
product

3% video
3% technology
3%

Other

29%

(a) Topic.

react 56%

vue
22%

angular
11%

next.js

11%

(b) Framework.

Figure 4: Topic and framework distribution.

typing (the guideline is shown in Appendix E.4.2). 199

Finally, 1-10 important and functional interactions 200

are retained on one webpage and we get 374 inter- 201

actions. (2) Annotation. The four PhD students 202

manually annotate the topics of the web pages, the 203

development framework, and the types of interac- 204

tions for benchmark diversity analysis. 205

3.2 Data Statistics and Diversity 206

Topic and Framework Distribution. Figure 4(a) 207

shows that our benchmark covers a diverse range 208

of web topics with more than 15 types, includ- 209

ing business, shop, technology, entertainment, and 210

so on. Figure 4(b) shows that the benchmark in- 211

cludes mainstream front-end open source frame- 212

works such as react, next.js, vue, and angular. 213

Interaction Type Distribution. We manually 214

annotate the type of interactions based on their el- 215

ement tag and the visual effect perspective. Tag 216

categories come from HTML tags such as button, 217

image, and link. Buttons, input boxes, and links 218

are the most frequent types as shown in Table 2 219

and play a great role in human-website interaction. 220

Visual categories involve changes in color, size, 221

position, text, etc. Note that one interaction may 222

belong to multiple tag categories and visual cate- 223

gories. Table 2 demonstrates that Interaction2Code 224

3

Tag Categories Visual Categories

Element Number Element Number Type Number

button 235 summary 15 text 162
input 52 form 13 new component 161
span 37 detail 12 color 85
link 36 video 11 position 45
select 35 area 9 switch 41
textarea 35 output 9 new page 37
option 31 datalist 8 new window 34
iframe 28 dialog 6 size 20
text 24 audio 5 - -
progress 22 template 3 - -
image 21 table 1 - -
label 16 - - - -

Table 2: Tag and visual categories distribution.

benchmark has a rich set of interaction types, in-225

cluding 23 tag categories and 8 visual categories.226

3.3 Evaluation227

Automated Interaction When generating web228

pages, we prompt MLLMs to encode the id of the229

interactive elements (for example, id="interact1").230

During evaluation, we apply selenium webdriver231

(Selenium, 2025) to locate the interactive elements232

by id and automatically interact with the gener-233

ated webpage and take screenshots to construct the234

interactive prototyping.235

Interaction Extraction. After obtaining the in-236

teractive prototyping (i.e., screenshots before and237

after the interaction), we automatically extract the238

interactive part for evaluation. For interactions that239

preserve webpage dimensions, we identify affected240

areas through pixel-wise subtraction. For interac-241

tions that alter webpage dimensions (e.g., showing242

details), we employ Git diff tool (Git, 2025) to243

locate modified rows and columns, with their in-244

tersections marking the affected regions. Detailed245

extraction algorithm is provided in Appendix C.246

Full Page Metrics. We measure the quality247

of generated webpages from the following per-248

spectives: (1) Visual Similarity. We use CLIP249

score (Radford et al., 2021) to measure the visual250

similarity. (2) Structure Similarity. SSIM (Wang251

et al., 2004) (Structural Similarity Index Measure)252

score is applied to calculate the structure similarity.253

(3) Text Similarity. We apply OCR tools to rec-254

ognize the text in the webpages, and then use the255

BLEU score (Papineni et al., 2002) to measure the256

text similarity between the two webpages.257

Interaction Part Metrics. We also evaluate258

the interactive parts of webpages from the per-259

spective of the position and function of the in-260

teraction.(1) Position Similarity. The position 261

similarity between original interaction Io and gen- 262

erated interaction Ig is defined as P (Io, Ig) = 263

1−max(|xo − xg|, |yo − yg|), where (xo, yo) and 264

(xg, yg) are normalized coordinates (in [0, 1]) of 265

the interactive area center. (2) Implement Rate 266

(IR) measures the ratio of interactions successfully 267

implemented by MLLM. An interaction is con- 268

sidered implemented if detectable by webdriver, 269

and unimplemented otherwise. Let N(·) denote 270

the quantity, we can calculate the IR as IR = 271
N(implemented)

N(implemented)+N(unimplemented) . (3) Usability 272

Rate (UR). Human annotators are asked to interact 273

with the generated webpage and judge the usability. 274

We can calculate as UR = N(usable)
N(usable)+N(unusable) . 275

We also employ human annotators to conduct pair- 276

wise comparison and failure type analysis in Sec- 277

tion 5.2 and Section 5.3. 278

4 Study Setup 279

4.1 Evaluation Models 280

To understand the MLLMs’ performance on 281

Interaction-to-Code task and identify the gap be- 282

tween open-source and closed-source models, we 283

conduct experiments on three popular commercial 284

models: Gemini-1.5-flash (Google, 2024), GPT- 285

4o-20240806 (OpenAI, 2024a) and Claude-3.5- 286

Sonnet-20240620 (Anthropic, 2024). Interaction- 287

to-Code task takes multiple images as input, and 288

many open source MLLMs do not support that 289

(e.g., llava (Liu et al., 2024), llama-3.2-vision 290

(Meta, 2024)), so we select Qwen2.5-vl-instruct 291

(3B, 7B, 72B) (Qwen, 2025) for assessment. The 292

detailed parameters are in Appendix E.2. 293

4.2 Prompt Design 294

We provide the reference webpage interactive pro- 295

totyping consisting of two screenshots, along with 296

the instruction to generate the HTML, CSS and 297

JavaScript code (full prompt in Appendix E.1) 298

5 Experiments 299

5.1 Model Performance 300

The model performance is shown in Table 3. We 301

can make the following observations MLLMs un- 302

der direct prompting: (1) GPT-4o and Claude-3.5- 303

Sonnet have higher performance than other mod- 304

els according to the average value. (2) Among 305

the open source models, Qwen2.5-vl-72B has the 306

best performance and is comparable to the com- 307

mercial model Gemini-1.5-flash. As the model size 308

4

Model Prompt Full Page Interaction Part

CLIP SSIM Text CLIP SSIM Text Position IR

Qwen2.5-vl-3B-instruct

Direct 0.3220 0.1932 0.1510 0.2100 0.1531 0.0415 0.2090 0.3449
CoT 0.2031 0.1085 0.0800 0.1219 0.0894 0.0352 0.1212 0.1979
Mark 0.2752 0.1503 0.1200 0.1706 0.1188 0.0514 0.1706 0.2647

Average 0.2668 0.1507 0.1170 0.1675 0.1204 0.0427 0.1669 0.2692

Qwen2.5-vl-7B-instruct

Direct 0.4169 0.2886 0.2519 0.3230 0.2177 0.0952 0.2529 0.4786
CoT 0.3895 0.2529 0.2207 0.2806 0.1981 0.0744 0.2259 0.4305
Mark 0.4586 0.3282 0.2703 0.3541 0.2468 0.1348 0.2798 0.5267

Average 0.4217 0.2899 0.2477 0.3192 0.2209 0.1015 0.2529 0.4786

Qwen2.5-vl-72B-instruct

Direct 0.6430 0.4234 0.4197 0.4624 0.3207 0.2450 0.3950 0.6524
CoT 0.6335 0.4785 0.4585 0.5090 0.3692 0.2376 0.4385 0.7380
Mark 0.6954 0.4569 0.4586 0.4992 0.3621 0.2995 0.4541 0.7112

Average 0.6573 0.4529 0.4456 0.4902 0.3507 0.2607 0.4292 0.7005

Gemini-1.5-flash

Direct 0.5967 0.4526 0.4749 0.4737 0.3616 0.2809 0.4320 0.6738
CoT 0.6166 0.4810 0.4775 0.5093 0.3854 0.3217 0.4511 0.7112
Mark 0.6321 0.4946 0.4878 0.5194 0.3898 0.3454 0.4612 0.7326

Average 0.6151 0.4761 0.4801 0.5008 0.3789 0.3160 0.4481 0.7059

GPT-4o

Direct 0.7114 0.5277 0.5147 0.5605 0.4149 0.3590 0.4888 0.7754
CoT 0.6905 0.4962 0.4761 0.5234 0.4013 0.3663 0.4668 0.7273
Mark 0.7160 0.5539 0.5112 0.5955 0.4488 0.4474 0.5225 0.8128

Average 0.7059 0.5259 0.5007 0.5598 0.4217 0.3909 0.4927 0.7718

Claude-3.5-Sonnet

Direct 0.7172 0.5318 0.6003 0.5674 0.4209 0.3833 0.5123 0.7914
CoT 0.6961 0.5110 0.5603 0.5606 0.4005 0.3662 0.5085 0.7727
Mark 0.7258 0.5299 0.5899 0.5944 0.4282 0.4319 0.5149 0.7968

Average 0.7130 0.5242 0.5835 0.5742 0.4165 0.3938 0.5119 0.7870

Table 3: Performance of different MLLMs under different prompts on Interaction-to-Code task. Bold values
indicate the optimal performance, and underlined values indicate the second-best performance. The red value is the
highest value among the averages.

increases, the performance gradually improves. (3)309

The performance of MLLMs in the interactive310

part is lower than that of the full page (Limita-311

tion 1). Limitation 1 is caused by the fact that the312

MLLMs do not pay attention to the interaction part313

enough, which motivates us to propose a solution314

to emphasize the interaction part.315

Improvement 1: Interactive element
highlighting. To improve the performance
of generated interaction, we further propose
Chain-of-Thought (CoT) and Mark prompts
to force models to focus on the interaction.

316

For CoT prompt (Wei et al., 2022), we design317

three thinking steps: analyze the interaction effects,318

locate the interactive elements, and implement the319

interaction. For Mark prompt, we use red bounding320

boxes to highlight the interaction area, prompting321

MLLMs to focus on the interaction.322

Both CoT and Mark prompts enhance model323

performance compared to direct prompt, the324

Mark prompt demonstrates superior perfor-325

mance compared to the CoT prompt. Gemini-326

0 20 40 60 80 100
Percentage (%)

Claude (Mark)
Claude (CoT)

Claude (Direct)
GPT-4o (Mark)
GPT-4o (CoT)

GPT-4o (Direct)
Gemini (Mark)
Gemini (CoT)

Gemini (Direct)
Qwen-72B (Mark)
Qwen-72B (CoT)

Qwen-72B (Direct)
Qwen-7B (Mark)
Qwen-7B (CoT)

Qwen-7B (Direct)
Qwen-3B (Mark)
Qwen-3B (CoT)

Qwen-3B (Direct)

77% 23%
69% 31%

66% 34%
81% 19%

74% 26%
73% 27%

64% 36%
53% 47%

47% 53%
54% 46%

43% 57%
41% 59%

32% 68%
22% 78%

30% 70%
18% 82%
19% 81%
17% 83%

Usable Unusable

(a) Usability evaluation.

0 20 40 60 80 100
Percentage (%)

Claude (Mark)
Claude (CoT)

Claude (Direct)
GPT-4o (Mark)
GPT-4o (CoT)

GPT-4o (Direct)
Gemini (Mark)
Gemini (CoT)

Qwen-72B (Mark)
Qwen-72B (CoT)

Qwen-72B (Direct)
Qwen-7B (Mark)
Qwen-7B (CoT)

Qwen-7B (Direct)
Qwen-3B (Mark)
Qwen-3B (CoT)

Qwen-3B (Direct)

53% 44% 3%
46% 50% 4%
47% 48% 5%

58% 27% 15%
58% 28% 14%

54% 31% 15%
32% 53% 15%
32% 51% 17%
30% 63% 7%
29% 60% 11%

21% 64% 15%
21% 46% 33%

15% 52% 33%
20% 39% 41%

9% 37% 54%
8% 39% 53%
9% 36% 55%

Win Tie Lose

(b) Pairwise comparision.

Figure 5: Human evaluation, a higher usable rate indi-
cates better functionality and a higher win rate indicates
better quality.

1.5-flash’s metrics (CLIP, SSIM, text, position, IR) 327

of the interaction part improve from direct prompt- 328

ing scores (0.4737, 0.3616, 0.2809, 0.4302, 0.6738) 329

to (0.5093, 0.3854, 0.3217, 0.4511, 0.7112) with 330

CoT, and further to (0.5194, 0.3898, 0.3454, 331

0.4612, 0.7326) with Mark prompting. 332

5.2 Human Evaluation 333

Functionality Evaluation. Four PhD students with 334

three years of front-end development experience 335

are employed to evaluate the functionality (i.e., us- 336

5

ability) of generated interaction. If the interactive337

function is consistent with ground truth, it is re-338

garded as usable, otherwise unusable (the guideline339

details are shown in Appendix E.4.3). The usability340

rate results are shown in Figure 5(a).341

Pairwise Model Comparison. We ask five hu-342

man annotators to rank a pair of generated inter-343

actions (one from the baseline, the other from the344

tested methods) to decide which one implements345

the reference interaction function better. We use346

Gemini-1.5-flash with direct prompt as the baseline347

and collect the other 17 methods’ Win/Tie/Lose348

rates against this baseline. Each pair will count349

as Win (Lose) only when Win (Lose) receives the350

majority vote (≥ 3). All other cases are considered351

Tie. The guideline is shown in Appendix E.4.4.352

The results are shown in Figure 5(b); a higher win353

rate and lower loss rate suggest better quality as354

judged by human annotators.355

Results. (1) Our human evaluation reveals356

that GPT-4o and Claude-3.5-Sonnet consistently357

demonstrates superior performance compared to358

other baseline models. (2) Both CoT and Mark359

prompting strategies can enhance model perfor-360

mance beyond direct prompting, showing higher361

win rates and usability rates across most models362

(except Qwen-vl-7B-instruct’s CoT prompt). (3)363

Mark prompting yields the most significant im-364

provements in usability, with Claude-3.5-Sonnet365

showing 11% and 8% increases compared to Di-366

rect and CoT prompts, respectively (Figure. 5(a)).367

(4) These human evaluation results align with Sec-368

tion 5.1, validating that our automatic evaluation369

metrics are reasonable.370

5.3 Failure Type Analysis371

Four PhD students with three years of front-end372

development experience are employed to analyze373

the difference between the generated and the origi-374

nal interactions, then summarize the failure types375

and evaluate their influence from content, function376

and user experience. We first randomly select 25%377

interactions for analysis and then discuss, revise,378

and refine the failure type until everyone reaches379

a consensus. During annotating new data, if en-380

countering a new failure type, annotators will com-381

municate and update failure type in time to guide382

subsequent annotations (the guideline is shown in383

Appendix E.4.5). Table 4 shows that MLLMs are384

prone to make 10 types of failure (Limitation385

2). the failure definition is in the Appendix F. Ten386

representative failure examples are shown in Fig-387

ure. 11 and Figure. 12, where the first row shows 388

the reference interaction, and the second row shows 389

the generated interaction by MLLMs. 390

Failure reason analysis. Failures (a), (c), (e), 391

and (f) stem from MLLMs’ limitations in element 392

localization. Failures (d) and (g) are caused by 393

MLLMs’ misidentification of element types. Fail- 394

ures (b), (h), (i), and (j) arise from MLLMs’ mis- 395

understanding of interaction. 396

Base on the failure distribution in Figure 6, we 397

find that, the main failure modes include “No 398

interaction”, “Partial implementation”, “Inter- 399

active element missing”, and “Wrong function”. 400

Besides, the most serious failures are “Inter- 401

active element missing”, “Wrong function”, “No 402

interaction” and “Effect on wrong element”. 403

The severity of the failures depends on the usability 404

rate (UR), with higher UR meaning lower severity 405

and lower UR meaning higher severity. As illus- 406

trated in Table 4, failure (a), (b) and (j) exhibit UR 407

lower than 10%, rendering the generated interac- 408

tions completely ineffective. 409

Improvement 2: Failure-aware Prompt
(FAP). Based on failure types, we propose
FAP to stimulate the self-criticism ability
of MLLM, thereby avoiding problems that
may occur in the Interaction-to-Code task.

410

FAP incorporates the failure example into the 411

prompt and tell MLLMs to avoid these types of 412

failures (full prompt in Appendix E.1). We use 2
3 413

of the dataset to annotate failure types and 1
3 of the 414

dataset to test. Table 5 shows the results of the FAP 415

methods, we can find that Failure-aware Prompt 416

can improve the performance of the Interaction- 417

to-Code task on all models. The full results are 418

shown in Appendix G.2. 419

5.4 The Impact of Interaction Visual Saliency 420

The visual perception limitations of MLLMs affect 421

their performance on visual understanding tasks, 422

especially when facing small low-resolution ob- 423

jects (Zhang et al., 2024). We examine the im- 424

pact of interaction area ratio (i.e., visual saliency) 425

on generation outcomes. Let I denote interac- 426

tion, SI denote the screenshot of the webpage 427

after interaction I , we define the visual saliency 428

V S(I) = area(I)
area(SI)

, where area() calculates the 429

size (in pixels) of a component. A higher VS score 430

indicates a larger area influenced by the interaction 431

6

Failure
Object Failure Type Content Function User

Experience Usability Rate

Interactive
element

(a) Interactive element missing 0%
(b) No interaction 6.93%

(c) Wrong interactive element 92.31%
(d) Wrong type of interactive element 96.82%

(e) Wrong position of interactive element 98.41%

Interaction
effects

(f) Wrong position after interaction 96.17%
(g) Wrong type of interaction effects 57.14%

(h) Effect on wrong element 44.44%
(i) Partial Implementation 89.20%

(j) Wrong function 0%

Table 4: Failure types and their influences, where represents full impact and represents partial impact.

0 10 20 30 40 50 60
Percentage (%)

Wrong type of interactive element0.0%
Wrong type of interaction effects0.0%
Effect on wrong element0.18%
Wrong interactive element0.27%
Wrong position after interaction0.44%
Wrong position of interactive element1.78%
No failure1.96%
Interactive element missing3.21%
Partial Implementation12.21%
Wrong function18.98%
No interaction 60.96%

(a) Qwen2.5-vl-3B.

0 5 10 15 20 25 30 35
Percentage (%)

Wrong interactive element0.44%
Effect on wrong element0.45%
Wrong position after interaction0.71%
Wrong function1.43%
Wrong type of interaction effects2.85%
Wrong type of interactive element3.66%
Wrong position of interactive element4.01%
Partial Implementation7.4%
No failure10.96%
No interaction 31.73%
Interactive element missing 36.36%

(b) Qwen2.5-vl-7B.

0 5 10 15 20 25 30 35
Percentage (%)

Wrong function0.18%
Effect on wrong element0.36%
Wrong type of interactive element1.07%
Wrong interactive element1.43%
Wrong position of interactive element2.23%
Wrong position after interaction3.57%
Partial Implementation3.74%
Wrong type of interaction effects5.35%
Interactive element missing18.45%
No interaction 27.54%
No failure 36.1%

(c) Qwen2.5-vl-72B.

0 5 10 15 20 25 30 35
Percentage (%)

Wrong type of interaction effects0.09%
Effect on wrong element0.44%
Interactive element missing2.14%
Wrong type of interactive element2.76%
Wrong position of interactive element3.03%
Wrong position after interaction4.63%
Wrong interactive element7.04%
Wrong function11.59%
No failure14.53%
Partial Implementation19.43%
No interaction 34.31%

(d) Gemini-1.5-flash.

0 5 10 15 20 25 30 35
Percentage (%)

Effect on wrong element1.69%
Wrong type of interaction effects2.32%
Wrong type of interactive element2.76%
Wrong function3.39%
Wrong position after interaction5.44%
Wrong position of interactive element5.79%
Interactive element missing7.49%
No interaction11.23%
Wrong interactive element11.49%
Partial Implementation12.3%
No failure 36.1%

(e) GPT-4o.

0 5 10 15 20 25 30 35 40
Percentage (%)

Wrong type of interaction effects0.71%
Effect on wrong element1.07%
Wrong type of interactive element1.43%
Wrong position of interactive element2.41%
Interactive element missing2.94%
Wrong function4.28%
Wrong position after interaction6.24%
Wrong interactive element9.45%
Partial Implementation9.54%
No interaction22.19%
No failure 39.75%

(f) Claude-3.5-Sonnet.

Figure 6: Failure distribution of MLLMs.

Model Method CLIP SSIM Text Position

Gemini
1.5-flash

Direct 0.5403 0.4494 0.3602 0.5802
FAP 0.5886 0.4584 0.4394 0.6032
∆ ↑ 0.0483 ↑ 0.0090 ↑ 0.0792 ↑ 0.0230

GPT
4o

Direct 0.5700 0.4891 0.3652 0.5803
FAP 0.6072 0.5405 0.4580 0.6452
∆ ↑ 0.0372 ↑ 0.0514 ↑ 0.0928 ↑ 0.0649

Claude
3.5

Sonnet

Direct 0.4582 0.3771 0.3086 0.4927
FAP 0.4921 0.4035 0.3822 0.5154
∆ ↑ 0.0339 ↑ 0.0264 ↑ 0.0736 ↑ 0.0227

Qwen2.5
vl-72B
instruct

Direct 0.4741 0.3612 0.3275 0.5022
FAP 0.5144 0.3750 0.3286 0.5376
∆ ↑ 0.0403 ↑ 0.0138 ↑ 0.0011 ↑ 0.0354

Table 5: Comparison between direct prompt and FAP.

and, consequently, a higher visual saliency.432

We first calculate the visual saliency for all in-433

teractions and plot the distribution, as shown in434

Figure 7(a). We then divide the samples into five435

groups based on the distribution results, keeping436

the number of samples in each group roughly bal-437

anced. The VS ranges for the five groups are as438

follows: [0, 0.025), [0.025, 0.05), [0.05, 0.1], [0.1,439

0.2), [0.2, 1). Figure 7 shows the box plot distri- 440

bution of metrics for Gemini-1.5 across these five 441

groups, we can find that the group with lower 442

visual saliency has lower SSIM and position 443

similarity (Limitation 3). Although the clip and 444

text similarity fluctuates among different groups, 445

as shown in Figure 7(b), Figure 7(c) shows that 446

the SSIM and position similarity significantly in- 447

creases as the visual saliency increases. As shown 448

in Figure 7(c), the group [0.2, 1) shows the high- 449

est metrics, while the group [0, 0.025) shows the 450

lowest metrics. This demonstrates that MLLMs 451

are more likely to capture structural and positional 452

features for samples with high visual saliency. 453

Improvement 3: Visual Saliency En-
hancement (VSE). By cropping the image
to increase the proportion of the interactive
part, VSE makes the model to better per-
ceive the interaction area.

454

We then randomly sample 10 webpages from 455

7

0.0 0.2 0.4 0.6 0.8 1.0
Visual Saliency

0.0

2.5

5.0

7.5

10.0

Nu
m

be
r

Histogram
CDF

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

(a) Visual saliency distribution.

(0-0.025) (0.025-0.05) (0.05-0.1) (0.1-0.2) (0.2-1)
0.0
0.2
0.4
0.6
0.8
1.0

CLIP Text

(b) CLIP and Text.

(0-0.025) (0.025-0.05) (0.05-0.1) (0.1-0.2) (0.2-1)
0.0
0.2
0.4
0.6
0.8
1.0

SSIM Position

(c) SSIM and Position.

Figure 7: Visual saliency and interaction part metrics distribution of different groups of Gemini-1.5-flash.

failure cases and crop the screenshots to increase456

the visual saliency of the interactions in the web-457

pages (for example, if the webpage is cropped to 1
2458

of the original, the visual saliency of the interaction459

will be doubled). Figure 8 shows the relationship460

between the magnification factor and the metrics461

of generation results. We observe that: when the462

magnification factor is set to 1, all evaluation met-463

rics yield values of 0, indicating the unsuccessful464

interaction generation. Upon increasing VS by 1.2465

times, the model is able to reproduce interactions,466

but with relatively low metric scores. As the magni-467

fication factor increases from 1.2 to 3, we observe468

substantial improvements in performance metrics:469

the CLIP and SSIM similarities approach 0.8, while470

text and position similarities reach approximately471

0.6. This suggests that models effectively over-472

come the original failure cases.473

1.0 1.5 2.0 2.5 3.0
Scale

0.0
0.2
0.4
0.6
0.8
1.0

CLIP
SSIM
Text
Position

Figure 8: Metrics under different magnification.

5.5 The Impact of Different Modalities474

Prompt Modality CLIP SSIM Text Position

Direct
V 0.3737 0.1793 0.2539 0.3951
T 0.4174 0.4067 0.2316 0.4293

V+T 0.6735 0.5612 0.3919 0.7157

CoT
V 0.3871 0.3101 0.2433 0.4461
T 0.5579 0.1828 0.3045 0.5465

V+T 0.6440 0.4800 0.4287 0.7080

Mark
V 0.5015 0.4520 0.3389 0.5025
T 0.4613 0.4454 0.2805 0.4810

V+T 0.6923 0.4336 0.4248 0.7469

Table 6: Performance of GPT-4o with different modal-
ity inputs. Bold values are the best performance and
underlined values are the second-best performance.

MLLMs’ UI code generation effectiveness475

hinges on interaction comprehension, with com- 476

plex or visually subtle interactions being particu- 477

larly challenging when using images alone. Natural 478

language descriptions can complement visual in- 479

puts. To investigate the impact of different input 480

signals, we conduct experiments on GPT-4o us- 481

ing 10 randomly selected webpages from failure 482

cases. Human annotators provide textual descrip- 483

tions for each interaction (e.g., "clicking the lo- 484

gin button triggers a new window with two input 485

boxes"). We evaluate three settings: visual input 486

only (V), textual description only (T), and com- 487

bined visual-textual input (V+T). Table 6 shows 488

that visual-only (V) and text-only (T) inputs ex- 489

hibits unsatisfactory performance (Limitation 490

4), the combined approach (V+T) consistently out- 491

performs single-modality inputs across all prompt 492

types, indicating complementary benefits. 493

Improvement 4: Visual and Textual De-
scription Combination. Combined visual
and textual inputs can optimize MLLMs’
Interaction-to-Code performance.

494

6 Conclusion 495

We present the first systematic study of MLLMs’ 496

capabilities in generating interactive webpages. We 497

formulate the Interaction-to-Code task and estab- 498

lish the Interaction2Code benchmark. Through 499

comprehensive experiments, we identify four crit- 500

ical limitations: (1) inadequate generation of in- 501

teraction compared with full page, (2) susceptibil- 502

ity to ten types of failures, (3) poor performance 503

on visually subtle interactions, and (4) insufficient 504

comprehension when limited to single-modality vi- 505

sual descriptions. To address these limitations, we 506

propose four enhancement strategies: interactive el- 507

ement highlighting, failure-aware prompting (FAP), 508

visual saliency enhancement, and the integration of 509

visual-textual descriptions. 510

8

Limitations511

While Interaction2Code establishes a foundation512

for evaluating web interaction generation, several513

opportunities exist for future enhancement and re-514

search directions:515

• Extending from interactive webpages to full-516

stack website development. Some complex517

functional interactions (e.g., login, search,518

etc.) are implemented by server-side script-519

ing languages like Python. This also requires520

the evaluation to consider back-end functions521

beyond just front-end functions.522

• Expand a single-page webpage to multiple523

pages. In real scenarios, a website usually has524

multiple interfaces, as well as external links525

and pictures. Therefore, a benchmark can be526

established to evaluate the ability of MLLM to527

generate multi-page and multi-resource web-528

sites.529

References530

Anthropic. 2024. Introducing claude 3.5 sonnet. Ac-531
cessed: 2024-09-29.532

Anthropic. 2024. Vision documentation. Accessed:533
2024-10-18.534

Batuhan Aşıroğlu, Büşta Rümeysa Mete, Eyyüp Yıldız,535
Yağız Nalçakan, Alper Sezen, Mustafa Dağtekin, and536
Tolga Ensari. 2019. Automatic html code genera-537
tion from mock-up images using machine learning538
techniques. In 2019 Scientific Meeting on Electrical-539
Electronics & Biomedical Engineering and Computer540
Science (EBBT), pages 1–4. Ieee.541

Tony Beltramelli. 2018. pix2code: Generating code542
from a graphical user interface screenshot. In Pro-543
ceedings of the ACM SIGCHI symposium on engi-544
neering interactive computing systems, pages 1–6.545

C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu. 2018.546
From ui design image to gui skeleton: a neural ma-547
chine translator to bootstrap mobile gui implementa-548
tion. In Proceedings of the 40th International Con-549
ference on Software Engineering, pages 665–676.550

Wen-Yin Chen, Pavol Podstreleny, Wen-Huang Cheng,551
Yung-Yao Chen, and Kai-Lung Hua. 2022. Code gen-552
eration from a graphical user interface via attention-553
based encoder–decoder model. Multimedia Systems,554
28(1):121–130.555

André Armstrong Janino Cizotto, Rodrigo556
Clemente Thom de Souza, Viviana Cocco Mariani,557
and Leandro dos Santos Coelho. 2023. Web pages558
from mockup design based on convolutional neural559

network and class activation mapping. Multimedia 560
Tools and Applications, 82(25):38771–38797. 561

Git. 2025. Git difference tool. 562

Google. 2024. Gemini api. Accessed: 2024-10-06. 563

Yi Gui, Zhen Li, Yao Wan, Yemin Shi, Hongyu Zhang, 564
Yi Su, Shaoling Dong, Xing Zhou, and Wenbin Jiang. 565
2024. Vision2ui: A real-world dataset with layout 566
for code generation from ui designs. arXiv preprint 567
arXiv:2404.06369. 568

Interactive. 2025. Ui mockups. 569

Vanita Jain, Piyush Agrawal, Subham Banga, Rishabh 570
Kapoor, and Shashwat Gulyani. 2019. Sketch2code: 571
transformation of sketches to ui in real-time 572
using deep neural network. arXiv preprint 573
arXiv:1910.08930. 574

Hugo Laurençon, Léo Tronchon, and Victor Sanh. 2024. 575
Unlocking the conversion of web screenshots into 576
html code with the websight dataset. Preprint, 577
arXiv:2403.09029. 578

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan 579
Zhang, Sheng Shen, and Yong Jae Lee. 2024. Llava- 580
next: Improved reasoning, ocr, and world knowledge. 581

Meta. 2024. Llama 3.2 vision. Accessed: 2025-02-06. 582

Kevin Moran, Carlos Bernal-Cárdenas, Michael Curcio, 583
Richard Bonett, and Denys Poshyvanyk. 2018. Ma- 584
chine learning-based prototyping of graphical user 585
interfaces for mobile apps. IEEE Transactions on 586
Software Engineering, 46(2):196–221. 587

Tuan Anh Nguyen and Christoph Csallner. 2015. Re- 588
verse engineering mobile application user interfaces 589
with remaui (t). In 2015 30th IEEE/ACM Interna- 590
tional Conference on Automated Software Engineer- 591
ing (ASE), pages 248–259. IEEE. 592

OpenAI. 2024a. Hello gpt-4o. Accessed: 2024-10-06. 593

OpenAI. 2024b. Vision guide. Accessed: 2024-10-18. 594

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 595
Jing Zhu. 2002. Bleu: a method for automatic evalu- 596
ation of machine translation. In Proceedings of the 597
40th annual meeting of the Association for Computa- 598
tional Linguistics, pages 311–318. 599

Qwen. 2025. Qwen2.5-vl. 600

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya 601
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas- 602
try, Amanda Askell, Pamela Mishkin, Jack Clark, 603
et al. 2021. Learning transferable visual models from 604
natural language supervision. In International confer- 605
ence on machine learning, pages 8748–8763. PMLR. 606

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 607
Dario Amodei, Ilya Sutskever, et al. 2019. Language 608
models are unsupervised multitask learners. OpenAI 609
blog, 1(8):9. 610

9

https://www.anthropic.com/news/claude-3-5-sonnet
https://docs.anthropic.com/en/docs/vision
https://git-scm.com/docs/git-difftool
https://ai.google.dev/gemini-api
https://www.uxpin.com/studio/blog/interactive-prototype-setting-user-interactions-without-coding/
https://arxiv.org/abs/2403.09029
https://arxiv.org/abs/2403.09029
https://arxiv.org/abs/2403.09029
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://huggingface.co/meta-llama/Llama-3.2-90B-Vision-Instruct
https://openai.com/index/hello-gpt-4o/
https://platform.openai.com/docs/guides/vision
https://qwenlm.github.io/blog/qwen2.5-vl/

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine611
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,612
Wei Li, and Peter J Liu. 2020. Exploring the lim-613
its of transfer learning with a unified text-to-text614
transformer. Journal of machine learning research,615
21(140):1–67.616

Selenium. 2025. Selenium.617

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo618
Liu, and Diyi Yang. 2024. Design2code: How far are619
we from automating front-end engineering? arXiv620
preprint arXiv:2403.03163.621

UI-Mockup. 2025. Ui mockups.622

Yuxuan Wan, Chaozheng Wang, Yi Dong, Wenxuan623
Wang, Shuqing Li, Yintong Huo, and Michael R624
Lyu. 2024. Automatically generating ui code from625
screenshot: A divide-and-conquer-based approach.626
arXiv preprint arXiv:2406.16386.627

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P628
Simoncelli. 2004. Image quality assessment: from629
error visibility to structural similarity. IEEE transac-630
tions on image processing, 13(4):600–612.631

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten632
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,633
et al. 2022. Chain-of-thought prompting elicits rea-634
soning in large language models. Advances in neural635
information processing systems, 35:24824–24837.636

Y. Xu, L. Bo, X. Sun, B. Li, J. Jiang, and W. Zhou. 2021.637
image2emmet: Automatic code generation from web638
user interface image. Journal of Software: Evolution639
and Process, 33(8):e2369.640

John Yang, Carlos E Jimenez, Alex L Zhang, Kil-641
ian Lieret, Joyce Yang, Xindi Wu, Ori Press,642
Niklas Muennighoff, Gabriel Synnaeve, Karthik R643
Narasimhan, et al. 2024. Swe-bench multimodal: Do644
ai systems generalize to visual software domains?645
arXiv preprint arXiv:2410.03859.646

Sukmin Yun, Haokun Lin, Rusiru Thushara, Moham-647
mad Qazim Bhat, Yongxin Wang, Zutao Jiang,648
Mingkai Deng, Jinhong Wang, Tianhua Tao, Junbo649
Li, et al. 2024. Web2code: A large-scale webpage-650
to-code dataset and evaluation framework for multi-651
modal llms. arXiv preprint arXiv:2406.20098.652

Jiarui Zhang, Jinyi Hu, Mahyar Khayatkhoei, Filip653
Ilievski, and Maosong Sun. 2024. Exploring percep-654
tual limitation of multimodal large language models.655
arXiv preprint arXiv:2402.07384.656

Ting Zhou, Yanjie Zhao, Xinyi Hou, Xiaoyu Sun, Kai657
Chen, and Haoyu Wang. 2024. Bridging design and658
development with automated declarative ui code gen-659
eration. arXiv preprint arXiv:2409.11667.660

A Basic Knowledge about Website 661

Development 662

A.1 Website Development Process 663

A typical industrial application development life- 664

cycle includes the following stages: 665

1. Design stage: designers create high-fidelity 666

mock-ups and interactive prototyping using 667

prototyping tools such as Sketch 1 and Axure 668
2 during design stage. UI Mock-ups represent 669

the visual design of the interface without func- 670

tionality. They are static representations that 671

show the layout, color scheme, typography, 672

and overall look and feel of the web applica- 673

tion. Interactive prototyping takes the static 674

mock-ups a step further by adding function- 675

ality and interactivity. These prototypes sim- 676

ulate the actual user experience by allowing 677

users to interact with webpage. 678

2. Development stage: this phase involves trans- 679

forming the design concepts into a functional 680

application through coding. The development 681

stage typically consists of GUI and underlying 682

functionalities implementation. 683

A.2 Basic Knowledge about Front-end 684

Development 685

Front-end development focuses on what users see 686

and interact with in their web browsers. Visual 687

design and interactive implementation are two 688

key parts of creating visually appealing and user- 689

friendly interfaces. The primary technologies used 690

in front-end development are Hypertext Markup 691

Language (HTML), Cascading Style Sheets (CSS), 692

and JavaScript. 693

A.2.1 HTML 694

HTML (HyperText Markup Language) is a markup 695

language used to create web page content. It 696

defines the structure and content of a web page 697

through tags, such as titles, paragraphs, and buttons, 698

as shown in Fig 9; each HTML element includes an 699

opening tag, content, and a closing tag, forming the 700

basic block of a webpage. HTML does not support 701

complex interactions, but some specific elements 702

(e.g., form, button) and attributes can be used to 703

implement basic interactive functions. For exam- 704

ple, the HTML code in Figure. 9 set the “draggable” 705

1https://www.sketch.com/
2https://www.axure.com/

10

https://selenium-python.readthedocs.io/
https://www.uxpin.com/studio/blog/what-is-a-mockup-the-final-layer-of-ui-design/

<!DOCTYPE html>
<html lang="en">

<head>
<title>Front-End Development</title>
<style>CSS Codes</style>

</head>

<body>
<h1>Front-End Development</h1>
<p id="myParagraph">This is an example</p>
<button id=“myButton”,

draggable="true">Click Me</button>
<script>JavaScript Codes</script>

 </body>

</html>

<script>
const button = document.getElementById('myButton’);
const paragraph = document.getElementById('myParagraph');
button.addEventListener('click', function() {

paragraph.textContent = 'Button clicked!’;
});

</script>

<style>
#myButton {
 background-color:green;
 transition: background-color 0.5s;}
#myButton:hover{
 background-color:blue;}

</style>

Figure 9: Example code of HTML, CSS and JavaScript.

attribute as true in the button flag to allow user to706

drag the button.707

A.2.2 CSS708

CSS (Cascading Style Sheets) is a style sheet lan-709

guage used to describe the style of HTML docu-710

ments. It allows web developers to control the lay-711

out, fonts, colors, spacing, and other visual effects712

of the page. CSS can achieve interactive effects713

through pseudo-classes, pseudo-elements, transi-714

tions and animations. For example, the CSS pro-715

gram between the style tag in Figure. 9 leverages716

the “:hover” pseudo-class to add an interaction on717

the button. The button’s color will change from718

green to blue once the mouse hovers. The tran-719

sition (“transition: background-color 0.5s”) can720

smoothly change the color of the button over 0.5721

second to create an animation effect.722

A.2.3 JavaScript723

JavaScript is a high-level, dynamic, and versatile724

programming language that is primarily used for725

adding interactivity and dynamic behavior to web-726

sites. JavaScript enables developers to create rich,727

interactive user experiences, manipulate the Docu-728

ment Object Model (DOM), and handle events. For729

example, Figure. 9 shows that the JavaScript pro-730

gram between the script tag adds an event listener731

on the button, once clicked, the text content of the732

paragraph will be changed to “Button clicked!”.733

In summary, the interaction of the front end734

of the web page comes from HTML tags and at-735

tributes, style changes implemented by CSS, and736

custom events implemented by JavaScript.737

A.3 Related Work738

UI code generation techniques can be divided739

into three categories: Deep Learning (DL) based740

methods, Computer Vision (CV) based methods, 741

and Multimodal Large Language Model (MLLM) 742

based methods. (1) DL-based methods: (Aşıroğlu 743

et al., 2019; Cizotto et al., 2023; Moran et al., 744

2018; Xu et al., 2021; Chen et al., 2018) lever- 745

ages CNNs to automatically prototype software 746

GUIs. Pix2code (Beltramelli, 2018) utilizes CNNs 747

and LSTM to extract features from GUI images to 748

generate a domain-specific language (DSL). (Chen 749

et al., 2022) implements an encoder-decoder frame- 750

work with an attention mechanism to generate the 751

DSL. (2) CV-based methods: Sketch2Code (Jain 752

et al., 2019) inputs hand-drawn sketches into ob- 753

ject detection models to learn the object represen- 754

tation, which is read by the UI parser to generate 755

code for targeted platforms. REMAUI (Nguyen 756

and Csallner, 2015) identifies user interface ele- 757

ments via optical character recognition (OCR) tech- 758

niques and then infers a suitable user interface hi- 759

erarchy and exports the results as source code. (3) 760

MLLM-based methods: with the help of MLLMs’ 761

powerful understanding of images, Design2Code 762

(Si et al., 2024) generates UI code through text- 763

augmented and self-revision prompting. To solve 764

the element omission distortion and misarrange- 765

ment problems during UI code generation, DCGen 766

(Wan et al., 2024) proposes a divide-and-conquer- 767

based approach to generate the code of the submod- 768

ules separately and then assemble them to construct 769

the full webpage. DeclarUI (Zhou et al., 2024) uses 770

the element segmentation method to accurately gen- 771

erate elements and page transition graphs to prompt 772

MLLMs to generate mobile app UI with jump logic. 773

Although the above works achieve decent per- 774

formance on the UI code generation task, none 775

of them consider the generation of interactive 776

elements. 777

11

B Quantitative Metrics of778

Interaction2Code benchmark779

Quantitative Metrics. To measure the diversity780

and complexity of our dataset, we adopt the same781

statistical metrics as those in Design2Code (Si782

et al., 2024), with the results presented in Table 7.783

The Length indicates the token length obtained784

through the GPT-2 tokenizer (Radford et al., 2019),785

tag count refers to the number of tags in the HTML786

code, DOM depth signifies the maximum depth of787

the HTML’s DOM Tree, and unique tags denote the788

number of unique tags in the HTML code. Table 7789

shows that the data is rich in HTML tags (1,291 in790

a page on average).791
Table 7: Quantitative metrics.

Min Max Average Std

Length (tokens) 82 769,466 127,604 165,046
Tag Count 2 5,739 983 1,038
DOM Depth 2 38 16 6
Unique Tags 2 52 28 11

Total size 127

792

C Interaction Part Extraction Method793

After obtaining the screenshots before and after794

the interaction, we extract the interactive part from795

them to evaluate the generation effect of the interac-796

tion part. If the interaction does not change the size797

of the webpage, we can directly subtract the pixels798

of the two screenshots to obtain different areas (the799

area where the pixel value is not 0 after subtraction800

is the interaction area). However, some interactions801

will change the size of the web page (e.g., gener-802

ating new components). In this case, we use the803

Git difference tool 3 to calculate the different row804

and column numbers of the two screenshots. The805

areas where these rows and columns intersect are806

the areas affected by the interaction. The algorithm807

is shown in Algorithm 1.808

D Visual Categories of Interaction809

Visual categories explanations are as follows:810

• New component: it represents new elements are811

generated after an interaction. For example, as812

shown in Fig 11(c), two new input elements will813

be generated after selecting the third choice.814

• Text: text change after interaction, As shown in815

Figure. 12(i), after clicking the “Select” button,816

the text on it will change to “Selected”.817

3https://git-scm.com/docs/git-difftool

Algorithm 1 Interaction Part Extraction Algorithm

Require:
1: Webpage screenshot A (Before interaction)
2: Webpage screenshot B (After interaction)

Ensure:
3: Coordinates (xmin, ymin, xmax, ymax) of in-

teraction region
4: if dim(A) = dim(B) then
5: D ← |A−B|;
6: C ← {(x, y)|D(x, y) ̸= 0};
7: xmin ← min{x|(x, y) ∈ C};
8: xmax ← max{x|(x, y) ∈ C};
9: ymin ← min{y|(x, y) ∈ C};

10: ymax ← max{y|(x, y) ∈ C};
11: else
12: diff_rows← DiffTool(A,B);
13: diff_cols← DiffTool(AT , BT);
14: xmin ← min(diff_cols);
15: xmax ← max(diff_cols);
16: ymin ← min(diff_rows);
17: ymax ← max(diff_rows);
18: end if
19:

20: return (xmin, ymin, xmax, ymax)

• Color: it denotes the color change after interac- 818

tion. For example, the background color change 819

from while to dark after clicking the dark label 820

as illustrated in Figure. 12(c). 821

• New window: it represents that a new window 822

is generated after the interaction, such as a form 823

popping up after clicking the contact button, as 824

shown in Figure. 12(f). 825

• New page: it represents the webpage jumps to 826

another page after interaction, such as clicking 827

the login button to jump to login page. 828

• Position: it indicates that the position of the ele- 829

ment changes after the interaction. For example, 830

on a text editing website, clicking the right button 831

can move the text from the left to the right. 832

• Size: it indicates that the size of the element 833

changes after the interaction. For example, the 834

text size will increase after clicking the large 835

label as shown in Figure. 12(h). 836

• Switch: it indicates the switching of content. For 837

example, in Figure. 11(b), after clicking the “M” 838

button, the clothes parameter will be switched 839

from “S” to “M”. 840

12

E Experiment Detail841

E.1 Prompt Design Details842

The prompts are shown in Figure 10. In the Direct843

prompt, the first screenshot represents the original844

webpage state, while subsequent screenshots depict845

states after specific interactions. Requirements are846

applied to guide MLLMs in replicating the web-847

page design and interaction. Requirement 3 allows848

MLLM to number the interactions when generating849

code, so that in the automated testing phase, web-850

driver 4 can locate the interactive elements through851

the interaction ID (e.g., interact1) and perform the852

interaction automatically.853

To achieve Interactive element highlighting, we854

design CoT and Mark prompt to let MLLM focus855

on the interactive part. For the CoT prompt (Wei856

et al., 2022), we use the instruction “let’s think step857

by step” and design three intermediate steps: an-858

alyze the interaction effects, locate the interactive859

elements, and implement the interaction. For the860

Mark prompt, we use red bounding boxes to high-861

light the interaction area, prompting MLLMs to862

focus on the interactive parts.863

To enable MLLM to avoid potential errors as864

much as possible when generating interactions, we865

design Failure-aware prompt to put the failure866

types in the prompt to guide MLLM to avoid corre-867

sponding failures.868

E.2 Model Details869

In configuring the MLLM models, we set the tem-870

perature to 1 and the maximum number of tokens871

output for Gemini-1.5-flash, GPT-4o, Claude-3.5-872

Sonnect as 4096. For the Qwen series models, the873

maximum output token are set to 2048. All other874

parameters were kept at their default settings as out-875

lined in the relevant API documentation (Google,876

2024; OpenAI, 2024b; Anthropic, 2024; Qwen,877

2025).878

E.3 Metrics Details879

We employ both full webpage metric and interac-880

tive part metric to judge the capability of MLLMs881

in the Interaction-to-Code task. We measure the882

quality of webpages generated by MLLMs from883

the perspectives of visual, structure, and text:884

• Visual Similarity. We use CLIP score (Radford885

et al., 2021) to measure the visual similarity. This886

metric measures the semantic similarity between887

4https://selenium-python.readthedocs.io/

the generated and original webpages, serving as 888

an indicator of how effectively the generated GUI 889

captures the intended visual elements and overall 890

design concept. 891

• Structure Similarity. SSIM (Wang et al., 2004) 892

(Structural Similarity Index Measure) score is 893

applied to calculate the structure similarity. It 894

evaluates the layout and compositional accuracy, 895

emphasizing the spatial arrangement and struc- 896

tural similarities between the generated and orig- 897

inal webpages. 898

• Text Similarity. We first use python OCR tools 899

to recognize the text in the original and the gener- 900

ated webpages, and then use the Bilingual Evalu- 901

ation Understudy (BLEU) score (Papineni et al., 902

2002) to measure the text similarity between the 903

two web pages. 904

For the interactive parts of webpages, in addition 905

to the above visual, structure and text similarity, 906

we also evaluate them from the perspective of the 907

position and function of the interaction. 908

• Position Similarity. The position similarity be- 909

tween original interaction Io and generated inter- 910

action Ig is defined as follows: 911

P (Io, Ig) = 1−max(|xo−xg|, |yo−yg|), (1) 912

where (xo, yo) and (xg, yg) are normalized coor- 913

dinates (in [0, 1]) of the center of the interactive 914

area. 915

• Implement Rate (IR) measures the percent- 916

age of interactions successfully implemented 917

by MLLM. An interaction is considered imple- 918

mented if detectable by webdriver, and unimple- 919

mented otherwise. Let N(·) denote the quantity, 920

we can calculate the IR as: 921

IR =
N(implemented)

N(implemented) +N(unimplemented)
(2) 922

• Function Usability. This metric is used to mea- 923

sure whether the interactive function is usable, 924

human annotators are asked to interact with the 925

generated webpage and judge the usability. Let 926

N(·) denote the quantity, we can calculate the 927

Usability Rate (UR): 928

UR =
N(usable)

N(usable) +N(unusable)
. (3) 929

13

Direct Prompt
[Instruction]:
You are a web developer proficient in HTML, CSS and JavaScript. The user provides some screenshots of a webpage. The first screenshot [image1] shows the webpage in its original
state, while the second screenshot [image2] shows the webpage after the user has interacted with certain element. You are tasked with creating a webpage that replicates the
design and interaction observed in screenshots.
[Requirements]:
1. Design Replication: Pay attention to layout, color and so on to make the webpage look identical to the first screenshot .
2. Interaction Replication : Implement the changes shown in screenshots caused by interactions (e.g., clicks).
3. Number Interactions: You need to encode the interact id in the interactive element. For example, if the button is clicked in the second screenshot, the id of the button is set to
interact1: "<button id="interact1">Click Me!</button>"
…
Combine HTML, CSS and JavaScript codes into one file and respond the codes only:

Chain-of-Thought (CoT) Prompt
[Instruction]
[Requirements]
[CoT]
You should think step by step:
Step 1: Understand the interaction effects by analyzing
the difference between the first and other screenshots.
Step 2: Locate interactive elements.
Step 3: Implement the interaction: the interaction
function should cause the difference you analyze in Step
1 and be implemented the interactive element you
locate from step 2.

Combine HTML, CSS and JavaScript codes into one file
and respond the codes only:

Mark Prompt
[Instruction]
[Requirements]
[Mark]
In the first screenshot, the interactive elements
are highlighted with red bounding boxes. In other
screenshots, the interaction effects are
highlighted with red bounding boxes. Pay
attention to the position of the red bounding
boxes, which mark the position of interaction. But
do not generate the red bounding box, which is
just used for marking the interaction area.

Combine HTML, CSS and JavaScript codes into
one file and respond the codes only:

Failure-aware Prompt (FAP)
[Instruction]
[Requirements]
[Failure Type Example]
There are ten types of errors you should avoid:
(a) Interactive element missing: MLLMs do not generate
interactive elements…
(b) No interaction: There is no interaction in the generated
webpage…
(c) Wrong interactive element: MLLMs implement the
interactive function on the wrong element…
(d) (e) (f) (g) (h) (i) (j)…

Combine HTML, CSS and JavaScript codes into one file and
respond the codes only:

Figure 10: The four kinds of prompts for MLLMs.

E.4 Human Annotation Guidelines930

E.4.1 Webpage Selection Guidelines931

Task Overview
You will be given some web links with diverse
topics. Your task is to select some webpages
from different topics.
Guidelines
1. Complexity: Each webpage must contain at
least one meaningful interactive element.
2. Diversity: The selection process should in-
clude multiple different types of interactions to
ensure that the selected pages are diverse.
3. User Experience: When selecting webpages,
ensure that the layout and design of the pages
are user-friendly. Avoid selecting pages that are
too cluttered.
4. Accessibility: The selected pages should meet
basic accessibility standards to ensure that all
users, including those with special needs, can
interact effectively.
5. Representativeness: Strive to select webpages
that represent a wide range of specific topics to
ensure that the sample is representative.

932

E.4.2 Interaction Annotation Guidelines 933

Task Overview
You will be given a webpage link. Your task
is interacting with the webpage and choose 1-
10 meaningful interactions for annotation. You
should take screenshots before interaction and
after interaction for interactive prototyping con-
struction. The selection guidelines are:
Guidelines
1. Functional dimension

• 1.1 Interactions to achieve user goals: (1)
Complete form submission; (2) Perform
information retrieval; (3) Implement data
screening; (4) Complete purchase process.

• 1.2 Interactions to change status/data: (1)
Update user settings (2) Modify content sta-
tus (3) Save/delete data (4)Switch display
mode.

2. User experience dimension

• 2.1 Interactions to provide feedback: (1)
Operation confirmation prompt; (2) Status
update display; (3)Error message prompt;
(4)Loading progress indicator

3. Business value dimension
934

14

• 3.1 Interactions to promote business pro-
cesses: (1) User registration/login; (2) Or-
der processing; (3) Payment process; (4)
Information collection.

• 3.2 Interactions to improve conversion: (1)
Product purchase;(2) Sharing function; (3)
Collect/follow; (4)Rating and evaluation.

935

E.4.3 Usability Annotation Guidelines936

Task Overview
You will be given a reference interactive proto-
typing IP consisting of two screenshots, as well
as one webpage that try to implement the inter-
action of the reference interactive prototyping.
Your task is to judge whether the interaction
indicated in the IP is usable in the webpage.
Guidelines
1. Evaluation should focus exclusively on the
interactive functionality, disregarding overall
visual appearance.
2. An interaction is considered usable if its
implementation precisely matches the behavior
specified in the interactive prototype.
3. In cases where the implemented interaction
differs from the prototype, evaluate whether it
effectively achieves the intended goals. The in-
teraction is considered usable if it accomplishes
the desired goal, despite implementation varia-
tions; otherwise, it is deemed unusable.

937

E.4.4 Pair Wise Comparison Guidelines938

Task Overview
You will be given a reference interactive proto-
typing consisting of two screenshots, as well as
two candidate webpages that try to implement
the interaction of the reference interactive pro-
totyping. Your task is to judge which of the two
candidates implements the interaction better.
Guidelines
1. Function Check: (1) Interactive Elements:
Check whether the interactive elements are cor-
rect and pay attention to the types of interactive
elements. (2) Interactive Effect: Check whether
the effect after interaction is correct. Please pay
attention to the changes after interaction.

939

2. Appearance Check (1) Content Check:
Check whether there are any missing elements.
(2)Layout Check: Check if their organization,
order, and hierarchy match the reference.
3. Comparison
Based on the criteria in the order of priority
(Function > Appearance), make an overall judg-
ment on which webpage is more similar to the
reference interactive prototyping.
Judgment Options
(1)Select "Example 1 better" if Example 1 is
closer to the reference. (2) Select "Example 2
better" if Example 2 is closer to the reference.
(3) Select "Tie" only if both examples are simi-
larly or equally distant from the reference.

940

E.4.5 Failure Annotation Guidelines 941

Task Overview
You will be given a reference interactive pro-
totyping IP consisting of two screenshots, as
well as one webpage that try to implement the
interaction of the reference interactive prototyp-
ing. Your task is to determine whether the given
webpage has failures shown in below.
Failure Type
Here are x types of error examples:
a) Interactive element missing: MLLMs do not
generate interactive elements. [Example]
b) No interaction: There is no interaction in the
generated webpage. [Example]
c) Wrong interactive element: MLLMs imple-
ment the interactive function on the wrong ele-
ment. [Example]
.....
Guidelines
If there are failures, but they do not belong to
the failure types above, you need to mark them
as unknown failures, and then further discuss
to determine the type of failure. If there are no
errors, mark them as “no failure”.

942

F Failure Type and Explanation 943

F.1 Failure on Interactive Elements 944

(a) Interactive element missing: MLLMs do not 945

generate interactive elements. As shown in 946

Figure 11(a), there is a chat button in the upper 947

right corner of the reference web page. When 948

clicked, a chat window pops up. However, 949

there is no such button in the generated web 950

page, and users cannot perform any operation. 951

15

(a) Interactive Element Missing (b) No Interaction (c)Wrong Interactive Element
(d) Wrong Types of
Interactive Element

(e) Wrong Position of
Interactive Element

Reference

Generated Generated Generated Generated

Reference Reference Reference Reference

Generated

Figure 11: Failure on interactive elements.

Reference Reference

Generated Generated

Reference

Generated

(f) Wrong Position of
Interaction Effect

(g) Wrong type of
interaction Effect (h) Effect on Wrong Element (i) Partial Implementation (j) Wrong Function

ReferenceReference

Generated Generated

Figure 12: Failure of interaction effects.

(b) No interaction: There is no interaction in the952

generated webpage. As shown in Figure 11(b),953

clicking button M in the original webpage will954

switch to the information of size "M". How-955

ever, clicking "M" button in the generated,956

there is no change of the size information. It957

should be noted here that sometimes the lack958

of interaction does not result in the unavail-959

ability of functions. For example, suppose a960

web page contains a menu bar that can display961

detailed information after clicking. If MLLM962

does not achieve the click effect, but has dis-963

played the detailed menu information, it does964

not affect the functionality of the web page.965

(c) Wrong interactive element: MLLMs imple-966

ment the interactive function on the wrong967

element. As shown in Figure 11(c), in the968

original webpage, after clicking "I’m donat-969

ing on behalf of a company or organisation",970

two input boxes will appear. However, in the 971

generated webpage, the input box will only 972

appear after clicking "I’ like to add 0.00 to my 973

donation to cover any fees." 974

(d) Wrong type of interactive element: The types 975

of interactive elements generated by MLLM 976

are wrong. As shown in Figure 11(d), the 977

element for adjusting the price in the original 978

web page is of input type, while the element 979

for adjusting the price in the generated web 980

page is of progress type. 981

(e) Wrong position of interactive element: The 982

interactive elements generated by MLLM are 983

positioned incorrectly. As shown in Fig- 984

ure 11(e), the button in the original webpage 985

is in the upper right corner of the image, while 986

the generated button is below the image. 987

16

F.2 Failure on Interactive Effects988

(f) Wrong position after interaction: The inter-989

active effects generated by MLLM are in the990

wrong position. As shown in Figure 12(f), af-991

ter clicking the dialogue button, the pop-up992

window is displayed in the lower left corner993

of the reference webpage, but appears in the994

middle of the generated webpage.995

(g) Wrong type of interaction effects: As shown996

in Figure 12(g), in the reference webpage, the997

element that appears after clicking select is998

of option type, but in the generated web page,999

the element that appears is of text type.1000

(h) Effect on wrong element: MLLMs achieve the1001

effect of interaction on the wrong elements.1002

As shown in Figure 12(h), in the reference1003

webpage, after clicking the "dark" button, the1004

background color of the web page turns black.1005

However, in the generated web page, after1006

clicking the "dark" button, the block turns1007

black and the background does not change.1008

(i) Partial Implementation: MLLMs only imple-1009

ment a part of the interactive functionality. As1010

shown in Figure 12(i), in the reference web-1011

page, after clicking the select button, the but-1012

ton will become selected, and will return to its1013

original state when clicked again. However,1014

in the generated web page, the button can only1015

be selected but not unselected.1016

(j) Wrong function: MLLM implements the1017

wrong function. As shown in Figure 12(j),1018

in the original webpage, clicking the button1019

will cause a date selection box to appear, but1020

in the generated webpage, clicking the button1021

will generate a date display box.1022

G Experimental Results Details1023

G.1 MLLMs’ Performance under Different1024

Interaction Scenarios1025

We study the performance of MLLMs on the1026

Interaction-to-Code task under different interaction1027

types. The results of varying tag categories with1028

high frequency and visual categories are shown in1029

Table 8 and Table 9, respectively.1030

For tag categories, FORM, SELECT, and OPTION1031

are the easiest interaction types to generate, achiev-1032

ing a usability rate higher than 80%. This is be-1033

cause these interactions scenarios always contain1034

fixed patterns, for example, SELECTION and OP- 1035

TION only appear in drop-down lists, and FORM 1036

often merely contains input boxes. In contrast, 1037

IFRAME and PROGRESS elements show lower us- 1038

ability rates (<60%), attributed to their complex- 1039

ity: IFRAMES involve embedding external con- 1040

tent, while PROGRESS bars require intricate compo- 1041

nent coordination for functions like audio control 1042

or price range adjustment, raising difficulties for 1043

MLLM to understand. 1044

For visual categories, MLLMs excel at gener- 1045

ating interactions that result in prominent visual 1046

changes, such as creating new windows, and com- 1047

ponents. However, they struggle with subtle visual 1048

modifications, such as color shifts and positional 1049

adjustments, indicating their limitations in handling 1050

fine-grained interaction effects. 1051

Finding: Performance varies by interaction
type: MLLMs are good at handling interac-
tions with fixed pattern (e.g., selection list)
and obvious changes (e.g., new window cre-
ation), while struggling with interactions
involving complex changes (e.g., iframe,
progress) and subtle visual modifications
(e.g., position change).

1052

G.2 Full results of Failure-aware Prompting 1053

Table 10 shows the full results of failure-aware 1054

prompting results. We can find that for commercial 1055

models and the open source 72B model Qwen2.5- 1056

vl-72B-instruct, failure-aware prompt can guide the 1057

model to use self-critic ability to avoid potential 1058

errors. However, for 3B and 7B models, due to their 1059

own limitations in understanding failure samples, 1060

the performance will decrease after using FAP. 1061

G.3 Full Results of Modality influence 1062

Table 11 shows the influence of different modali- 1063

ties, we can find that combine visual and textual 1064

modality can optimize the models’ performance. 1065

H Tool 1066

The Interaction2Code tool is shown in Figure 13. 1067

The tool comprises several key components: a 1068

model selector, a prompt method chooser, and three 1069

main functional modules for code download, web- 1070

page preview, and code generation. Users can up- 1071

load webpage screenshots both before and after 1072

their intended interactions, allowing the system to 1073

17

Table 8: Usability rate of different tag categories.

Model Prompt button input span link select textarea option iframe text progress

Qwen2.5-vl-3B-instruct
Direct 0.1149 0.4038 0.0541 0.0556 0.3143 0.2000 0.2258 0.2500 0.0000 0.0909
CoT 0.1660 0.4231 0.1081 0.0833 0.4571 0.2571 0.3710 0.2500 0.0625 0.2500
Mark 0.2199 0.4679 0.1802 0.1204 0.5143 0.4000 0.4516 0.3214 0.1111 0.3333

Qwen2.5-vl-7B-instruct
Direct 0.2830 0.4856 0.2095 0.2222 0.5500 0.4071 0.5081 0.3482 0.2188 0.2955
CoT 0.3779 0.5462 0.3459 0.3444 0.6229 0.4857 0.5806 0.4143 0.3000 0.3545
Mark 0.4206 0.5833 0.3829 0.3519 0.6619 0.5286 0.6237 0.4405 0.3125 0.3939

Qwen2.5-vl-72B-instruct
Direct 0.3812 0.5659 0.3398 0.3095 0.6163 0.4816 0.5714 0.4184 0.2679 0.3636
CoT 0.3516 0.5385 0.3176 0.2882 0.5964 0.4607 0.5565 0.3839 0.2396 0.3409
Mark 0.3537 0.5470 0.3333 0.2809 0.5937 0.4698 0.5735 0.3889 0.2500 0.3434

Gemini-1.5-flash
Direct 0.3745 0.5462 0.3486 0.3111 0.6000 0.4771 0.5968 0.4071 0.2667 0.3545
CoT 0.4085 0.5664 0.3980 0.3510 0.6182 0.5013 0.6188 0.4188 0.3106 0.3678
Mark 0.4305 0.5849 0.4167 0.3588 0.6429 0.5238 0.6452 0.4226 0.3264 0.3712

GPT-4o
Direct 0.4062 0.5725 0.3867 0.3355 0.6198 0.4989 0.6154 0.4093 0.3013 0.3531
CoT 0.3960 0.5604 0.3707 0.3353 0.6082 0.4857 0.6106 0.3954 0.2917 0.3442
Mark 0.4037 0.5667 0.3838 0.3259 0.6076 0.5086 0.6237 0.4000 0.3000 0.3455

Claude-3.5-Sonnet
Direct 0.4186 0.5709 0.3986 0.3507 0.6089 0.5089 0.6250 0.4018 0.3281 0.3665
CoT 0.4431 0.5837 0.4277 0.3758 0.6235 0.5294 0.6414 0.4202 0.3529 0.3877
Mark 0.4612 0.6004 0.4399 0.3827 0.6397 0.5524 0.6577 0.4345 0.3657 0.3965

Average 0.3561 0.5396 0.3245 0.2879 0.5831 0.4598 0.5609 0.3847 0.2558 0.3362

analyze the interaction and generate corresponding1074

HTML code.1075

I Visual Comparison of UI2Code1076

Benchmark and Interaction2Code1077

Benchmark1078

Figure 14 shows the comparison between UI2Code1079

benchmark and our Interaction2Code benchmark.1080

UI2Code benchmark only contains the static web-1081

page, whereas Interaction2Code contains interac-1082

tive webpage, which is represented by interactive1083

prototyping.1084

J Summarization1085

Limitation 1:The performance of the
MLLMs in the interactive part is lower than
that of the full page.
Limitation 2:The MLLMs are prone to
make 10 types of failure.
Limitation 3: MLLMs perform poorly on
interactions that are not visually obvious.
Limitation 4: Single visual modality de-
scription is not enough for MLLMs to un-
derstand the interaction.

1086

Improvement 1: Interactive element
highlighting. To improve the performance
of generated interaction, we further propose
Chain-of-Thought (CoT) and Mark prompts
to force models to focus on the interaction.
Improvement 2: Failure-aware Prompt
(FAP). Based on failure types, we propose
FAP to stimulate the self-criticism ability
of MLLM, thereby avoiding problems that
may occur in the Interaction-to-Code task.
Improvement 3: Visual Saliency En-
hancement (VSE). By cropping the image
to increase the proportion of the interactive
part, VSE makes the model to better per-
ceive the interaction area.
Improvement 4: Visual and Textual De-
scription Combination. Combined visual
and textual inputs can optimize MLLMs’
Interaction-to-Code performance.

1087

18

Table 9: Usability rate of different visual categories.

Model Prompt text new component color position switch new page new window size

Qwen2.5-vl-3B-instruct
Direct 0.1667 0.1366 0.1765 0.0889 0.0976 0.0556 0.1176 0.2500
CoT 0.2438 0.2112 0.2824 0.1333 0.1341 0.0694 0.1765 0.2750
Mark 0.3086 0.2961 0.3294 0.2000 0.1870 0.1019 0.2549 0.3500

Qwen2.5-vl-7B-instruct
Direct 0.3534 0.3509 0.3382 0.2556 0.2317 0.2500 0.3088 0.4000
CoT 0.4358 0.4335 0.3953 0.3600 0.3220 0.3889 0.4235 0.4400
Mark 0.4825 0.4803 0.4294 0.4037 0.3821 0.4213 0.4755 0.5000

Qwen2.5-vl-72B-instruct
Direct 0.4383 0.4348 0.3950 0.3619 0.3449 0.3730 0.4202 0.4714
CoT 0.4105 0.4022 0.3838 0.3250 0.3201 0.3403 0.3860 0.4437
Mark 0.4198 0.4106 0.3922 0.3309 0.3171 0.3148 0.3954 0.4500

Gemini-1.5-flash
Direct 0.4309 0.4286 0.3882 0.3511 0.3439 0.3444 0.4176 0.4550
CoT 0.4641 0.4585 0.4139 0.3818 0.3792 0.3939 0.4572 0.4864
Mark 0.4887 0.4840 0.4284 0.3981 0.4065 0.4120 0.4804 0.5083

GPT-4o
Direct 0.4649 0.4577 0.4090 0.3726 0.3827 0.3846 0.4525 0.4885
CoT 0.4524 0.4494 0.4017 0.3603 0.3711 0.3810 0.4370 0.4714
Mark 0.4609 0.4576 0.4118 0.3585 0.3707 0.3796 0.4529 0.4800

Claude-3.5-Sonnet
Direct 0.4734 0.4674 0.4206 0.3764 0.3857 0.4080 0.4614 0.4938
CoT 0.4956 0.4881 0.4401 0.3987 0.4118 0.4379 0.4827 0.5118
Mark 0.5117 0.5072 0.4556 0.4160 0.4295 0.4475 0.5065 0.5250

Average 0.4167 0.4085 0.3828 0.3262 0.3232 0.3280 0.3948 0.4444

Table 10: Performance comparison between Direct and FAP methods (Full results of RQ6).

Model Method Full Page Interaction Part

CLIP SSIM Text CLIP SSIM Text Position IR

Gemini-1.5-flash
Direct 0.6276 0.4984 0.5231 0.5403 0.4494 0.3602 0.5802 0.7636
FAP 0.6580 0.5337 0.5311 0.5886 0.4584 0.4394 0.6032 0.8182
∆ ↑ 0.0304 ↑ 0.0353 ↑ 0.0080 ↑ 0.0483 ↑ 0.0090 ↑ 0.0792 ↑ 0.0230 ↑ 0.0546

GPT-4o
Direct 0.6660 0.5480 0.4995 0.5700 0.4891 0.3652 0.5803 0.7636
FAP 0.7047 0.5976 0.6045 0.6072 0.5405 0.4580 0.6452 0.8364
∆ ↑ 0.0387 ↑ 0.0496 ↑ 0.1050 ↑ 0.0372 ↑ 0.0514 ↑ 0.0928 ↑ 0.0649 ↑ 0.0728

Claude-3.5-Sonnet
Direct 0.5747 0.3950 0.4611 0.4582 0.3771 0.3086 0.4927 0.6364
FAP 0.6080 0.4500 0.4810 0.4921 0.4035 0.3822 0.5154 0.6545
∆ ↑ 0.0333 ↑ 0.0550 ↑ 0.0199 ↑ 0.0339 ↑ 0.0264 ↑ 0.0736 ↑ 0.0227 ↑ 0.0181

Qwen2.5-vl-3B-instruct
Direct 0.4284 0.2466 0.1674 0.2777 0.2180 0.0285 0.3020 0.4727
FAP 0.3647 0.2076 0.1146 0.2375 0.1867 0.0328 0.2213 0.3818
∆ ↓ 0.0637 ↓ 0.0390 ↓ 0.0528 ↓ 0.0402 ↓ 0.0313 ↑ 0.0043 ↓ 0.0807 ↓ 0.0909

Qwen2.5-vl-7B-instruct
Direct 0.3596 0.1981 0.1758 0.2802 0.1894 0.0854 0.2580 0.4000
FAP 0.3828 0.1642 0.1948 0.2603 0.1747 0.0746 0.2419 0.4182
∆ ↑ 0.0232 ↓ 0.0339 ↑ 0.0190 ↓ 0.0199 ↓ 0.0147 ↓ 0.0108 ↓ 0.0161 ↑ 0.0182

Qwen2.5-vl-72B-instruct
Direct 0.6169 0.3967 0.4060 0.4741 0.3612 0.3275 0.5022 0.6545
FAP 0.6194 0.4208 0.4426 0.5144 0.3750 0.3286 0.5376 0.7636
∆ ↑ 0.0025 ↑ 0.0241 ↑ 0.0366 ↑ 0.0403 ↑ 0.0138 ↑ 0.0011 ↑ 0.0354 ↑ 0.1091

19

Table 11: Performance of MLLMs with different modality inputs. Bold values are the best performance and
underlined values are the second-best performance.

Prompt Modality Gemini-1.5-flash GPT-4o

CLIP SSIM Text Position CLIP SSIM Text Position

Direct
V 0.3338 0.1587 0.2777 0.3342 0.3737 0.1793 0.2539 0.3951
T 0.3116 0.1550 0.1687 0.3999 0.4174 0.4067 0.2316 0.4293

V+T 0.5679 0.3010 0.2732 0.5964 0.6735 0.5612 0.3919 0.7157

CoT
V 0.4357 0.1975 0.3072 0.4303 0.3871 0.3101 0.2433 0.4461
T 0.3677 0.0897 0.2290 0.4403 0.5579 0.1828 0.3045 0.5465

V+T 0.5503 0.4027 0.3558 0.5656 0.6440 0.4800 0.4287 0.7080

Mark
V 0.4502 0.3256 0.2197 0.4302 0.5015 0.4520 0.3389 0.5025
T 0.5019 0.2478 0.2921 0.5301 0.4613 0.4454 0.2805 0.4810

V+T 0.5946 0.4327 0.3416 0.4791 0.6923 0.4336 0.4248 0.7469

Figure 13: The interactive webpage generation tool.

20

Interaction2Code Benchmark (Ours)

UI2Code Benchmark

Figure 14: Comparison between UI2Code benchmark and our Interaction2Code benchmark. UI2Code benchmark
only contains the static webpage, whereas Interaction2Code contains interactive webpage, which is represented by
interactive prototyping.

21

	Introduction
	Background
	Related Work
	Problem Definition

	The Interaction2Code Benchmark
	Dataset Collection
	Data Statistics and Diversity
	Evaluation

	Study Setup
	Evaluation Models
	Prompt Design

	Experiments
	Model Performance
	Human Evaluation
	Failure Type Analysis
	The Impact of Interaction Visual Saliency
	The Impact of Different Modalities

	Conclusion
	Basic Knowledge about Website Development
	Website Development Process
	Basic Knowledge about Front-end Development
	HTML
	CSS
	JavaScript

	Related Work

	Quantitative Metrics of Interaction2Code benchmark
	Interaction Part Extraction Method
	Visual Categories of Interaction
	Experiment Detail
	Prompt Design Details
	Model Details
	Metrics Details
	Human Annotation Guidelines
	Webpage Selection Guidelines
	Interaction Annotation Guidelines
	Usability Annotation Guidelines
	Pair Wise Comparison Guidelines
	Failure Annotation Guidelines

	Failure Type and Explanation
	Failure on Interactive Elements
	Failure on Interactive Effects

	Experimental Results Details
	MLLMs' Performance under Different Interaction Scenarios
	Full results of Failure-aware Prompting
	Full Results of Modality influence

	Tool
	Visual Comparison of UI2Code Benchmark and Interaction2Code Benchmark
	Summarization

