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Abstract
Pufferfish privacy is a flexible generalization of
differential privacy that allows to model arbitrary
secrets and adversary’s prior knowledge about
the data. Unfortunately, designing general and
tractable Pufferfish mechanisms that do not com-
promise utility is challenging. Furthermore, this
framework does not provide the composition guar-
antees needed for a direct use in iterative machine
learning algorithms. To mitigate these issues, we
introduce a Rényi divergence-based variant of
Pufferfish and show that it allows us to extend the
applicability of the Pufferfish framework. We first
generalize the Wasserstein mechanism to cover
a wide range of noise distributions and introduce
several ways to improve its utility. Finally, as an
alternative to composition, we prove privacy am-
plification results for contractive noisy iterations
and showcase the first use of Pufferfish in private
convex optimization. A common ingredient un-
derlying our results is the use and extension of
shift reduction lemmas.

1. Introduction
Differential privacy (DP) (Dwork & Roth, 2014) is now
considered as the gold standard for privacy-preserving data
analysis. However, despite its many desirable properties, DP
does not suit all types of data effectively. Specifically, the
guarantees it offers are based on the underlying assumption
that individuals in the dataset being analyzed are statistically
independent. In reality, data often exhibit correlations, and
when two correlated individuals are present in a dataset,
performing the same analysis with and without one of these
individuals could leak more knowledge about the individ-
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ual than the conventional differential privacy framework
assumes (Humphries et al., 2023).

To address these situations, specialized privacy definitions
have been designed. Certain direct extensions of DP, like
group privacy (Dwork & Roth, 2014) or entry privacy (Hardt
& Roth, 2013), protect entire instances or groups, which
results in strong privacy guarantees but often much poorer
utility. More flexible frameworks allow to tailor the privacy
definition to a set of distributions which could have plausi-
bly generated the dataset, and thereby allow a tighter privacy
analysis. In this work, we focus on the general framework of
Pufferfish privacy (Kifer & Machanavajjhala, 2014), which
is closely related to other similar definitions like Blowfish
privacy (He et al., 2014) and distribution privacy (Kawamoto
& Murakami, 2019; Chen & Ohrimenko, 2023).

Pufferfish privacy however comes with new challenges, first
and foremost in the design of general and computation-
ally tractable Pufferfish private mechanisms. Indeed, the
sensitivity of the query, which is critical in DP to design
additive noise mechanisms, has no direct use in Pufferfish
privacy. Moreover, while various ways to measure and ef-
ficiently track the privacy loss have been proposed for DP,
see for instance Rényi differential privacy (RDP) (Mironov,
2017), this flexibility is lacking in Pufferfish privacy. As
a result, previous work on the design of Pufferfish mecha-
nisms has focused on specific noise distributions and appli-
cations (Kifer & Machanavajjhala, 2014; Ou et al., 2018;
Kessler et al., 2015; Niu et al., 2019; Song et al., 2017).
For instance, Song et al. (2017) proposed the Wasserstein
mechanism for the Laplace noise, which relies on the com-
putation of ∞-Wasserstein distances. Another recent work
proposes an exponential mechanism-based approach which
provides a more computationally tractable approach but
relies on (potentially loose) sufficient conditions for Puffer-
fish privacy (Ding, 2022). The Pufferfish framework thus
lacks a unified theory that subsumes the original worst-case
definition and allows for the design of general additive mech-
anisms compatible with a wide range of noise distributions.

Another key limitation of Pufferfish privacy is that it does
not always compose when the same data is used across mul-
tiple computations. Existing sequential and adaptive com-
positions theorems hold only for some particular Pufferfish
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instantiations and mechanisms, sometimes without a closed-
form that can be used in practice (Kifer & Machanavajjhala,
2014; Nuradha & Goldfeld, 2023). For instance, a sequential
(but non-adaptive) composition result exists for the Markov
Quilt Mechanism (Song et al., 2017), but it is limited to
Bayesian networks. The lack of a universal adaptive com-
position theorem currently makes Pufferfish privacy unfit
for the analysis of iterative algorithms such as those used in
differentially private machine learning (Abadi et al., 2016).

In this paper, we mitigate the above limitations of Pufferfish
privacy by making the following contributions:

• We define the Rényi Pufferfish privacy framework and
show that it preserves the main desirable properties of
Pufferfish while providing additional flexibility.

• We introduce the General Wasserstein Mechanism
(GWM), a generalization of the Wasserstein mecha-
nism of Song et al. (2017). Our mechanism allows to
derive (Rényi) Pufferfish privacy guarantees for all ad-
ditive noise distributions that are absolutely continuous
with respect to the Lebesgue measure.

• We propose two ways to improve the utility of GWM
by relaxing the ∞-Wasserstein distance used to cal-
ibrate the noise. Our first approach relies on a δ-
approximation allowing the tail of the distribution
of the mechanism to be disregarded, similar to what
has been proposed by Chen & Ohrimenko (2023) for
the distribution privacy framework. Incidentally, we
demonstrate an equivalence between Pufferfish privacy
and distribution privacy. Our second approach enables
the use of p-Wasserstein distances, yielding the first
general Pufferfish mechanism with better utility than
the Wasserstein mechanism at the same privacy cost.

• Inspired by Feldman et al. (2018), we prove privacy
amplification by iteration results for Pufferfish, allow-
ing to bypass the use of composition in the analysis
of contractive noisy iterations. This technique is par-
ticularly useful to analyze convex optimization with
stochastic gradient descent, allowing the integration of
Pufferfish privacy in machine learning pipelines.

• We provide examples of concrete instantiations of our
framework where the proposed mechanisms are com-
putationally efficient and provide better utility than
(Group) DP.

One of our key technical contributions lies in the novel
use and generalization of shift reduction lemmas (Feldman
et al., 2018; Altschuler & Talwar, 2022) in the context of
Pufferfish privacy. We argue that shift reduction is the right
tool to analyze Pufferfish privacy, and believe this view may
yield more results in the future.

All proofs and some additional content can be found in the
supplementary material.

2. Rényi Pufferfish Privacy
Rényi differential privacy (RDP) ensures that an adversary
cannot gain too much knowledge about whether an individ-
ual point is in the dataset or not by observing the output of
the mechanism. In the original definition, it is implied that
the elements of the dataset are statistically independent (see
Appendix A.1 for definitions). A more general framework,
Pufferfish privacy, has been designed to handle possibly cor-
related data and other types of secrets than the presence of
an individual in a dataset (Kifer & Machanavajjhala, 2014).
In a Pufferfish instantiation, we denote by S the set of pos-
sible secrets to be protected, and by Q ⊆ S2 the specific
pairs of secrets we aim to make indistinguishable. In con-
trast to differential privacy, the variable X representing the
dataset is not deterministic in Pufferfish privacy. Instead,
it is sampled from a certain distribution θ ∈ Θ. The set Θ
represents the possible prior knowledge of an adversary.

Definition 2.1 (Pufferfish privacy, PP (Kifer & Machanava-
jjhala, 2014; Ding, 2022)). Let ε ≥ 0 and δ ∈ (0, 1). A
privacy mechanism M is said to be (ε, δ)-Pufferfish private
in a framework (S,Q,Θ) if for all θ ∈Θ, for all secret pairs
(si, sj) ∈ Q, and for all w ∈ Range(M), we have:

P (M(X) = w | si, θ) ≤ eεP (M(X) = w | sj , θ) + δ,

where X ∼ θ and (si, sj) is such that P (si | θ) ̸=
0, P (sj | θ) ̸= 0. If δ = 0, M satisfies ε-Pufferfish privacy.

In this work, we introduce a Rényi divergence-based version
of Pufferfish privacy. Using Rényi divergences in privacy
definitions has several advantages. Especially relevant to
our work will be the quantification of privacy guarantees by
bounding certain moments of the exponential of the privacy
loss (Mironov, 2017), and the ability to leverage a large
body of results on Rényi divergences such as shift reduction
lemmas (Feldman et al., 2018; Altschuler & Chewi, 2023).

Definition 2.2 (Rényi Pufferfish privacy, RPP). Let α > 1
and ε ≥ 0. A privacy mechanism M is said to be (α, ε)-
Rényi Pufferfish private in a framework (S,Q,Θ) if for all
θ ∈ Θ and for all secret pairs (si, sj) ∈ Q, we have:

Dα (P (M(X) | si, θ) , P (M(X) | sj , θ)) ≤ ε,

where X ∼ θ, (si, sj) is such that P (si | θ) ̸= 0 and

P (sj | θ) ̸= 0, and Dα(µ, ν) =
1

α−1 logEx∼ν

[(
µ(x)
ν(x)

)α]
is the Rényi divergence of order α.

Rényi Pufferfish privacy upholds the post-processing in-
equality, which is a key attribute for any effective privacy
framework.
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Proposition 2.1 (Post-processing). Let M1 be a random-
ized algorithm and M be (α, ε)-RPP. Then,

Dα (P (M1(M(X)) | si, θ) , P (M1(M(X)) | sj , θ))
≤ Dα (P (M(X) | si, θ) , P (M(X) | sj , θ)) ≤ ε.

It is easy to see that (∞, ε)-RPP corresponds to ε-PP. Fur-
thermore, (α, ε)-RPP can be converted to (ε, δ)-PP.

Proposition 2.2 (RPP implies PP). If M is (α, ε)-RPP, it
also satisfies

(
ε+ log(1/δ)

α−1 , δ
)
-PP ∀δ ∈ (0, 1).

Guarantees against close adversaries. In Pufferfish, the
set Θ represents the possible beliefs of the adversary. It
needs to be large enough to prevent harmful privacy leaks,
but there is also a no free lunch theorem that states that
if Θ is too large then the resulting mechanism will have
poor utility (Kifer & Machanavajjhala, 2014). Hence, it is
important to quantify the privacy protection offered by a
mechanism M when the belief θ′ of the adversary is not
in Θ. This question has been addressed for ϵ-PP by Song
et al. (2017). The theorem derived by Song et al. (2017),
which we recall in Appendix A.4 for completeness, shows
that if θ′ is ∆-close to some θ ∈ Θ, then M retains its
Pufferfish privacy guarantees for θ′ up to an additive penalty
2∆. However, ∆ is measured in ∞-Rényi divergence, which
corresponds to a worst-case scenario, and can thus be very
large. We extend this result to our RPP framework, allowing
the use of α-Rényi divergences (see Appendix A.4). Our
result can provide better privacy guarantees in situations
where the original one gives poor guarantees.

Running examples. We introduce here some examples
of RPP instantiations which we will use throughout the
paper to illustrate our private mechanisms. Let n > 0 be
the total number of participants in a study. Let X be the
potential values of an individual’s private features. Let
X = (X1, . . . , Xn) ∈ Xn describing the private prop-
erties of the n individuals. An adversary anticipates cor-
relations among individuals within the study with a prior
θ ∈ Θ. We define the set of secrets for this adversary as
S = {sai ≜ {Xi = a}; a ∈ X , i ∈ J1 , nK} and define Q =
{(sai , sbj); a, b ∈ X , i, j ∈ J1, nK}. Consider the following
simple instantiations of this setting for datasets of size 2:

Example 1 (Counting query with correlation). Each indi-
vidual i holds a binary value Xi ∈ {0, 1} and we con-
sider a counting query f(X) = X1 + X2. For p ∈
(0, 1), ρ ∈ [−1, 1], the adversary has the following prior:
P (X1 = 1) = P (X2 = 1) = p, where X1 and X2 are
drawn with correlation ρ.

Example 2 (Average salary query). Each individual i holds
her salary Xi ≥ 0 and we consider an average query
f(X) = 1

2 (X1 + X2). The adversary has the following

prior for the marginals: for i ∈ {1, 2},

Xi =


1 with prob. 1/2
2 with prob. 499/1000,
100 with prob. 1/1000

for i ∈ {1, 2}

Here, X1 and X2 are thus considered independent.

Example 3 (Sum query with user-dependent prior). We
consider X = (0, r) and a sum query f(X) = X1 + X2.
The adversary has an arbitrary prior about the distribution
of (X1, X2) but assumes that each individual i holds a
different value Xi ∈ (0, ri) with 0 < ri ≤ r.

3. A General Additive Mechanism for Rényi
Pufferfish Privacy

In this section, we present a general approach to obtain
Rényi Pufferfish privacy guarantees. Specifically, we intro-
duce the General Wasserstein Mechanism (GWM), a gen-
eralization of the Laplacian-based Wasserstein mechanism
of Song et al. (2017) to a wide range of noise distributions,
and derive the corresponding RPP guarantees. We also
highlight that the shift reduction lemma and its variants, in-
troduced by Feldman et al. (2018) in the context of privacy
amplification by iteration, provide the right framework for
analyzing Rényi Pufferfish privacy.

We first introduce ∞-Wasserstein distances and couplings.

Definition 3.1 (Couplings). Let µ and ν be two distribu-
tions on a measurable space (Rd,B(Rd)) with B(Rd)) the
Borel σ-algebra. A coupling π is a joint distribution on
the product space (Rd×2,B(Rd)2) with marginals µ and ν,
where B(Rd)2 is the product σ-algebra.

Definition 3.2 (∞-Wasserstein distance). Let µ and ν be
two distributions on Rd. We note Γ the set of the couplings
between µ and ν. We define the ∞-Wasserstein distance
between µ and ν as:

W∞(µ, ν) = inf
π∈Γ(µ,ν)

sup
(x,y)∈supp(π)

∥x− y∥.

Throughout the paper, ∥ · ∥ represents a norm of Rd. When
necessary, in later results, the type of norm will be specified.

We now recall the shift reduction lemma, a result that allows
to split the Rényi divergence between two noised distri-
butions into two distinct components: one involving the
two original distributions, and one involving the noise. Let
µ, ν, ζ be three distributions on Rd and z, a ≥ 0. We define
the following quantities:

D(z)
α (µ, ν) = inf

W∞(µ,µ′)≤z
Dα(µ

′, ν),

Rα(ζ, z) = sup
∥x∥<z

Dα(ζ−x, ζ),
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where ζ−x : y 7→ ζ(y−x), and denote by ∗ the convolution
product.
Lemma 3.1 (Shift reduction (Feldman et al., 2018)). Let
µ, ν, ζ be three distributions on Rd and z, a ≥ 0. Then,

D(a)
α (µ ∗ ζ, ν ∗ ζ) ≤ D(z+a)

α (µ, ν) +Rα(ζ, z).

We now show that the shift reduction lemma allows to obtain
a unified approach for RPP analysis. In fact, it gives a closed
formula for the privacy guarantees of releasing a query
with additive noise. This yields our General Wasserstein
Mechanism (GWM) and its associated privacy guarantees.
Theorem 3.3 (General Wasserstein mechanism, GWM).
Let f : D → Rd be a numerical query and denote:

∆G = max
(si,sj)∈S

θ∈Θ

W∞ (P (f(X)|si, θ), P (f(X)|sj , θ)).

Let N = (N1, . . . , Nd) ∼ ζ drawn independently of
the dataset X . Then, M(X) = f(X) + N satisfies
(α,Rα(ζ,∆G))-RPP for all α ∈ (1,+∞) andR∞(ζ,∆G)-
PP.

While Theorem 3.3 is very general, we can easily derive
explicit results for specific choices of noise distributions.
Instantiating GWM with Laplacian noise, we recover the
results of Song et al. (2017) for PP as a special case where
d = 1. More interestingly, we also directly obtain a novel
Gaussian mechanism and a novel Laplacian mechanism for
RPP.
Corollary 3.1 (Privacy guarantees for usual noise distribu-
tions). We note Id the identity matrix of size d. Plugging the
expressions of R∞(ζ, z) and Rα(ζ, z) for Laplacian and
Gaussian distributions, we obtain:

• M(X) = f(X) + N with N ∼ N
(
0,

α∆2
G

2ε Id
)

and
∆G computed w.r.t. the l2 norm is (α, ε)-RPP.

• M(X) = f(X) + L with L ∼ Lap(0, ρId)
and ∆G computed w.r.t. the l1 norm is(
α, 1

α−1 log
(

α
2α−1e

∆G(α−1)/ρ + α−1
2α−1e

−∆Gα/ρ
))

-
RPP.

• M(X) = f(X) + L with L ∼ Lap
(
0, ∆G

ε Id
)

with
∆G computed w.r.t. the l1 norm is ε-PP.

The results of Corollary 3.1 are analogous to the results
of Mironov (2017) for RDP, where the sensitivity of the
query is replaced by ∆G. It enables us to directly com-
pare the utility of a RDP mechanism in the group privacy
setting and the GWM in RPP. Considering Example 3, we
have ∆G ≤ r1 + r2, which is smaller than ∆GROUP = 2r.
Therefore, GWM achieves better utility than group RDP in
this case. This observation can be generalized to other set-
tings as the utility guarantees of the Wasserstein mechanism
of Song et al. (2017) extend to the GWM.

Rα(ζ,∆G,δ) Rα(ζ,∆G) Rα(ζ,∆GROUP)

log∆ζ,1,α
G

α−1

(δ, α, ε)-RPP (α, ε)-RPP (α, ε)-GROUP-RDP

≤ ≤

≤

=⇒
δ→0

Figure 1. Relations between the mechanisms and privacy notions
studied in the paper. The values on the top of the graph represent
the value ε of the privacy budget guaranteed by the mechanisms.
∆G corresponds to the sensitivity of the GWM (Section 3), and
∆G,δ corresponds to the sensitivity of the GAWM (Section 4.1),
∆ζ,1,α

G corresponds to the sensitivity of the DAGWM (Section 4.2).
∆GROUP corresponds to the sensitivity of mechanisms in the group
privacy framework. The plain arrows indicate the privacy guar-
antees offered by the mechanisms. The dashed arrows compare
the privacy budget offered by the mechanisms. The implication
arrows illustrate the relations between the different frameworks.

Proposition 3.1 (Utility of the GWM, informal). Under
mild conditions, an additive mechanism offers better utility
in the GWM setting than in the group privacy setting (see
Appendix B.3 for details).

One drawback of GWM is that in some cases, ∆G may be
large, as it depends on ∞-Wasserstein distances. In Ex-
ample 1, ∆G = ∆GROUP = 2, thus GWM gives no utility
advantage compared to group RDP. In Example 2, ∆G = 98
is large although the event Xi = 100 is rare. We deal with
this issue in the next section.

4. Improving Utility by Relaxing the W∞
Constraint

In this section, we propose two ways to improve the utility
of GWM by relaxing the ∞-Wasserstein constraint in the
calibration of the noise. Figure 4 summarizes the relations
between the different mechanisms and privacy definitions
that we introduce.

4.1. δ-Approximation of (α, ε)-RPP

Our first approach is to define an approximation of Rényi
Pufferfish Privacy that allows a low probability set of values
to be disregarded.

Definition 4.1 (Approximate Rényi Pufferfish privacy). A
privacy mechanism M is said to be (α, ε, δ)-approximate
Rényi Pufferfish private in a framework (S,Q,Θ) if for all
θ ∈ Θ and for all secret pairs (si, sj) ∈ Q, there exists
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E,E′ such that P (E) ≥ 1− δ, P (E′) ≥ 1− δ and:

Dα (P (M(X) | si, θ, E) , P (M(X) | sj , θ, E′)) ≤ ε,

Dα (P (M(X) | sj , θ, E′) , P (M(X) | si, θ, E)) ≤ ε,

where X ∼ θ and (si, sj) is such that P (si | θ) ̸=
0, P (sj | θ) ̸= 0.

Note that similar privacy definitions have been proposed
for versions of differential privacy in (Bun & Steinke, 2016,
Definition 8.1) and (Papernot & Steinke, 2021, Definition
18). This definition implies (ε, δ)-PP when α → +∞. It
also implies (ε′, 2δ)-RPP for a specific value ε′.

Proposition 4.1. If M is (α, ε, δ)-approximate RPP, then
it is (ε′, 2δ)-PP, with ε′ = ε+ log(1/δ)

α−1 .

We now design an approximate Wasserstein mechanism for
Rényi Pufferfish privacy. To do so, we rely on the notion of
(z, δ)-proximity (named closeness in Chen & Ohrimenko,
2023).

Definition 4.2 ((z, δ)-proximity). Let µ, ν two distributions
on Rd and z ≥ 0, δ ∈ (0, 1). We say that µ and ν are
(z, δ)-near if there exists a coupling π between µ and ν
and R ⊂ supp(π) such that

∫
R dπ(x, y) ≥ 1 − δ and

∀(x, y) ∈ R, ∥x− y∥ ≤ z.

We also need to extend the shift reduction lemma of Feldman
et al. (2018) to account for shifts that are (z, δ)-near to
the original distribution µ, instead of shifts µ′ such that
W∞(µ, µ′) ≤ z.

Lemma 4.1 (Approximate shift reduction). Let µ, ν, ζ
be three distributions on Rd. We denote D(z,δ)

α (µ, ν) =
inf

µ,µ′ (z,δ)-near
Dα(µ

′, ν). Then, for all δ ∈ (0, 1), there exists

an event E such that P (E) ≥ 1− δ and:

Dα

(
(µ ∗ ζ)|E , (ν ∗ ζ)

)
≤ D(z,δ)

α (µ, ν) +Rα(ζ, z) +
α

α− 1
log
( 1

1− δ

)
.

This approximate shift reduction lemma provides a general
mechanism to achieve approximate RPP.

Theorem 4.3 (General approximate Wasserstein mecha-
nism, GAWM). Let f : D → Rd be a numerical query. For
all δ ∈ (0, 1), let us denote:

∆G,δ > inf{z ∈ R;∀(si, sj) ∈ S, ∀θ ∈ Θ,

(P ((f(X)|si, θ), P (f(X)|sj , θ)) are (z, δ)-near}.

Let N = (N1, . . . , Nd) ∼ ζ drawn independently
of the dataset X . Then, M = f(X) + N satisfies
(α,Rα(ζ,∆G,δ) +

α
α−1 log

1
1−δ , δ)-approximate RPP for

all α ∈ (1,+∞) and (R∞(ζ,∆G,δ) + log 1
1−δ , δ)-PP.

From this general result, we can then design approximate
RPP mechanisms for usual noise distributions. These results
are similar to those of the general Wasserstein mechanism
(see Corollary 3.1) but with an additive term that depends
on δ. We refer to Appendix C.4 for details. Using this new
mechanism, we can obtain better utility at a small privacy
cost for queries that take large values with small probability.
In Example 2, we have ∆G = 98 while for δ = 3 · 10−3,
∆G,δ = 1, which yields a major improvement in utility.
This observation also holds in a more general case.

Proposition 4.2 (Utility of the GAWM, informal). At a
privacy cost of δ ∈ (0, 1), the GAWM offers more utility
than the GWM (see Appendix C.6 for details).

Remark 4.4 (Relation to distribution privacy). A related
result has been shown by Chen & Ohrimenko (2023) for
the distribution privacy framework (see Appendix C.5 for
the definition of distribution privacy and the result). The
formulation of the results are similar, despite employing a
different proof technique to get the conclusions. We prove a
connection between the two results by establishing a formal
equivalence between Pufferfish privacy and distribution pri-
vacy, which appears to be novel and could be of independent
interest. In the interest of space, we refer to Appendix C.5
for the formal result and its proof. While our approximate
shift reduction result (Lemma 4.1) induces an additional
term which prevents us from recovering exactly the results
of Chen & Ohrimenko (2023) in the particular case of the
Laplace mechanism for PP, our result can be used with a
wide range of noise distributions and in the RPP framework,
which is more general than PP (and thus more general than
distribution privacy).

4.2. Leveraging p-Wasserstein Metrics

As another way to improve the utility of the GWM, we
propose to use shifts constrained by p-Wasserstein metrics
instead of ∞-Wasserstein metrics, thereby replacing the
worst case transportation cost between P (f(X)|si, θ) and
P (f(X)|sj , θ) by moments of the transportation cost. This
idea was explored in a different context by Altschuler &
Chewi (2023), who considered Orlicz-Wasserstein shifts for
Gaussian noise and identified a dependency between the
noise distribution and the selected Wasserstein shift con-
straint. They argue that the Orlicz-Wasserstein metric is
the “right” metric to use for the shifted Rényi analysis be-
cause the original shift reduction lemma fails for weaker
shifts. Inspired by these considerations, we broaden the ap-
plicability of the Orlicz-Wasserstein shift reduction lemma
of Altschuler & Chewi (2023) by adapting their result to a
wider range of noise distributions.

Lemma 4.2 (Generalized shift reduction).
Let ζ be a noise distribution of Rd. Let
z, p, q > 0 such that 1/p + 1/q = 1. We note:
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D
(z)
α,α′,ζ(µ, ν) = inf

ξ; E
W∼ξ

[exp((α′−1)Dα′ (ζ,ζ∗W ))]≤z
Dα(µ ∗ ξ, ν).

Then, we have:

Dα(µ∗ζ, ν∗ζ) ≤ D
(z)
p(α−1)+1,q(α−1)+1,ζ(µ, ν)+

log(z)

q(α− 1)
.

In the case q = 1:

Dα(µ ∗ ζ, ν ∗ ζ) ≤ D
(z)
∞,α,ζ(µ, ν) +

log(z)

α− 1
.

This lemma yields a general Wasserstein mechanism that
incorporates the noise distribution within the shift.

Theorem 4.5 (Distribution Aware General Wasserstein
Mechanism, DAGWM). Let f : D → Rd be a numeri-
cal query and ζ noise distribution of Rd. Let q ≥ 1. For
(si, sj) ∈ Q, θ ∈ Θ, we note µθ

i = P (f(X)|si, θ). We
denote:

∆ζ,q,α
G = max

(si,sj)∈S
θ∈Θ

inf
P (X,Y )∈Γ(µθ

i ,µ
θ
j )

E
[
eq(α−1)Dq(α−1)+1(ζ,ζ∗(X−Y ))

]
.

Let N = (N1, . . . , Nd) ∼ ζ drawn independently
of the dataset X . Then, M(X) = f(X) + N sat-

isfies (α,
log(∆ζ,q,α

G )

q(α−1) )-RPP for all α ∈ (1,+∞) and

limα→+∞
log(∆ζ,q,α

G )

q(α−1) -PP.

Leveraging this result allows for the design of mecha-
nisms with sensitivity constrained by p-Wasserstein dis-
tances (Wp). In particular, we will consider noise drawn
from generalized Cauchy distributions, originally intro-
duced by Rider (1957).

Definition 4.6 (Generalized Cauchy Distributions).
Let k ≥ 2, λ > 0. We say that the real random vari-
able V ∼ GCauchy(λ, k) if it has the following density:
ζk,λ(x) =

βk,λ

((1+(λx)2)k/2 , x ∈ R and
∫
ζk,λ(x)dx = 1.

The Cauchy distribution is the special case k = 2.

Using generalized Cauchy noise enables to consider Wp

shifts while ensuring the existence of moments for large
values of k.

Corollary 4.1 (Cauchy Mechanism). Let f : D → Rd be a
numerical query. We denote Qα the Legendre polynomial of
integer index α > 1 and Qα as the polynomial derived from
Qα by retaining only its non-negative coefficients. Let k ≥ 2
and q ≥ 1 such that kq(α − 1)/2 is an integer. We note:
∆

dkq(α−1)
G = max

(si,sj)∈S
θ∈Θ

Wdkq(α−1) (P (f(X)|si, θ), P (f(X)|sj , θ)),

with Wdkq(α−1) computed with the l2
norm. Then, M(X) = f(X) + V with

V = (V1, . . . , Vd)
iid∼ GCauchy (λ, k) is(

α,
d log

βk,λπ

λ Qkq(α−1)/2

(
1+

(
∆

dkq(α−1)
G

dλ

)2)
q(α−1)

)
-RPP.

In Example 1, for q = d = 1 and α = k = 2, we have
∆ζ,2,2

G =
√
1 + 3ρ and noising with V ∼ Cauchy(λ) in

DAGWM ensures
(
α,

log(1+ 1+3ρ

λ2 )
α−1

)
-RPP, while the GWM

for the same noise distribution gives
(
α,

log(1+ 4
λ2 )

α−1

)
-RPP.

Hence, in this case DAGWM is better than GWM, as it
allows to capture the correlation between the attributes. In
the general case, DAGWM consistently outperforms GWM.
Proposition 4.3 (Utility of the DAGWM, informal). The
DAGWM always offers more utility than the GWM at no
additional privacy cost (see Appendix D.4 for details).

5. Privacy Amplification by Iteration
Analyzing the privacy guarantees of Pufferfish privacy
under composition is known to be challenging (Kifer &
Machanavajjhala, 2014). While Pufferfish satisfies a form of
parallel composition (see Appendix E for the result in RPP),
to our knowledge there does not exist any theorem providing
mechanism-agnostic guarantees for sequential composition
in Pufferfish privacy. As an alternative to composition, we
show in this section that RPP is amenable to privacy ampli-
fication by iteration, providing a way to analyze iterative
gradient descent algorithms for convex optimization.

In differential privacy, privacy amplification by iteration
(PABI) allows to evaluate the privacy loss of applying mul-
tiple contractive noisy iterations to a dataset and releasing
only the output of the last iteration (Feldman et al., 2018;
Altschuler & Talwar, 2022). PABI has often been employed
in private machine learning to analyze the privacy cost of
projected noisy stochastic gradient descent (DP-SGD), by-
passing the use of composition (Feldman et al., 2018). How-
ever, existing PABI results for differential privacy cannot
be used in Pufferfish privacy. These results consider the
distribution shift between two processes performed on two
neighboring datasets (equal up to one element) and how this
additional shift propagates through the rest of the iterations.
In Pufferfish, privacy is obtained by conditioning over se-
crets and the dataset is sampled from an adversary’s prior.
This means that two datasets with different secrets might
share no common elements. Hence, the original worst case
PABI analysis must be adapted to account for shifts at each
iteration, while measuring these shifts based on the dataset
distribution conditioned by the secrets.

We start by defining contractive noisy iterations.
Definition 5.1 (Contractive noisy iteration (CNI)). Let Z ⊂
Rd. Given an initial random state W0 ∈ Z , a sequence of

6
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random variables {Xt}, a sequence of contractive maps in
their first argument ψt : Z × D → Z and a sequence of
noise distributions {ζt}, we define the Contractive Noisy
Iteration (CNI) by the following update rule:

Wt+1 = ψt+1(Wt, Xt+1) +Nt+1,

where Nt+1 ∼ ζt+1. For brevity, we refer to
the result WT of the CNI at the time step T by
CNI T (W0, {Xt}, {ψt}, {ζt}).

As opposed to the work of Feldman et al. (2018), we make
an explicit reference to the dataset distribution modeled
by the random sequence {Xt} in the CNI definition. The
original PABI analysis leverages a contraction lemma that
we need to adapt to the Pufferfish setting. We prove a new
contraction lemma which incorporates the ∞-Wasserstein
distance to take into account the dataset distribution.

Lemma 5.1 (Dataset Dependent Contraction lemma).
Let ψ be a contractive map in its first argument on
(Z, ∥ · ∥). Let X,X ′ be two r.v’s. Suppose that
supwW∞(ψ(w,X), ψ(w,X ′)) ≤ s. Then, for z > 0:

D(z+s)
α (ψ(W,X), ψ(W ′, X ′)) ≤ D(z)

α (W,W ′).

Coupled with the original shift reduction lemma
(Lemma 3.1), this contraction lemma yields a relaxation
of the original PABI bounds, allowing take into account the
dataset distribution in the measurement of the shifts.

Theorem 5.2 (Dataset Dependent PABI). Let XT and
X ′

T denote the output of CNI T (W0, {ψt}, {ζt}, X)
and CNI T (W0, {ψt}, {ζt}, X ′). Let st =
supwW∞(ψ(w,Xt), ψ(w,X

′
t)). Let a1, . . . , aT be a

sequence of reals and let zt =
∑

i≤t si −
∑

i≤t ai. If
zt ≥ 0 for all t, then, we have:

D(zT )
α (XT , X

′
T ) ≤

T∑
t=1

Rα(ζt, at).

This new PABI bound allow for an RPP analysis of noisy
gradient descent, as developed in the next section.

6. Applications
In this section, we focus on concrete applications of our
RPP mechanisms and PABI for specific instantiations. Our
generic mechanisms can be hard to compute in the general
case, as they rely on the computation of Wasserstein dis-
tances between arbitrary distributions. Below, we present
specific instances for which the sensitivity of the GWM has
a simple closed form. We also apply our generic PABI result
to convex optimization, bypassing the lack of adaptive com-
position theorems and avoiding the cost of group privacy.

6.1. Weakly Dependent Data

The sensitivity ∆G of the GWM can be bounded in a
straightforward way for near-independent data distributions,
where the dependence level is quantified via a generalization
of Wasserstein dependence metrics (Ozair et al., 2019). Be-
low, we consider X = (X1, . . . , Xn) ∈ Xn with X ⊂ Rd

and, for any distribution θ ∈ P (Xn), we denote by θ⊗ the
product distribution of the marginals of θ.
Proposition 6.1. Let λ > 0, (S,Q,Θ) a Pufferfish frame-
work. Let ∆ be the sensitivity of a numerical query f , denote
µθ
i = P (f(X)|si, θ), and let

Θλ = {θ ∈ P (Xn); supsi∈S W∞(µθ
i , µ

θ⊗

i )) ≤ λ}.

Then, if Θ ⊆ Θλ, ∆G ≤ 2λ+∆.

In other words, for instances with low dependencies, the
GWM avoids the extra privacy cost of Group DP.

6.2. Attribute Privacy

Attribute privacy (Zhang et al., 2022) is a specific instantia-
tion or Pufferfish. In this setting, each record Xi in a dataset
X = (Xj

i )i∈J1,nK,j∈J1,mK is viewed as independent, while
an adversary possesses prior knowledge, denoted as θ, about
the distribution generating each record. The columns, repre-
senting each attribute, are denoted by Xj . The objective is
to reveal the answer of a query f(X) while protecting some
summary statistics gj(Xj) of each attribute Xj . A formal
definition of attribute privacy is recalled in Appendix F.2.1.
Below, we show that the GWM can be efficiently computed
for Gaussian data, and we also conduct experiments to em-
pirically show that RPP mechanisms have better utility than
RDP mechanisms on real datasets.

Special case of Gaussian data. Attribute privacy guaran-
tees for Gaussian priors can be obtained through specific
attribute privacy mechanisms (Zhang et al., 2022). It is also
possible to derive closed form bounds with the GWM for
linear queries. A simple example is the case of releasing an
attribute Xj while protecting another attribute Xi.
Proposition 6.2 (Attribute privacy with Gaussian data).
Consider a dataset X = (X1

1 , . . . , X
m
n ). Let j ∈ J1, mK

be an attribute. We assume that each record Xi is inde-
pendently sampled from θ = N (µ,Σ). Let the secrets
sai = {Xj

i = a}, with a ∈ K and K a compact of Rm, the
pairs of secrets Q = {(sai , sbi ); a, b ∈ K, i ∈ J1, nK} and
the numerical query f : x = (x1, . . . , xm) 7→ xj . We have

∆G ≤ max
a,b∈K

Var(Xi
1)

−1 Cov(Xi
1, X

j
1)∥a− b∥

for the Pufferfish framework (S,Q, {θ}).

This proposition shows that if Xi and Xj are weakly cor-
related, then ∆G is small. A more general version of this
result can be found in Appendix F.3.
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Experiments. Table 1 presents some experimental re-
sults showing that GWM provides strictly better utility
than DP mechanisms in attribute privacy scenarios on three
real-world datasets. We obtain lower sensitivities for the
DAGWM and the GWM than for DP. Figures, discussions
and detailed results can be found in Appendix F.2.2.

Table 1. Sensitivities for DP (∆), GWM (∆G) and Cauchy mecha-
nism (∆G,2) in attribute privacy scenarios on 3 real datasets.

Sensitivity
Dataset ∆ ∆G ∆G,2

Student Scores 20 8 2.76
Heart ≥100 8 7.80
Adult 1 1 0.42

6.3. Privacy in Diffusion Processes

The GWM is also tractable for special cases of temporally
correlated data. We consider the setting where one wants to
release the output of a query f(Xt1 , . . . , Xtn) performed on
a time series (Xt)t≥0 with t1 < · · · < tn while protecting
the privacy of the initial point X0. With some assumptions,
it is possible to derive contraction results that enable to com-
pute ∆G. We concentrate on the case where the adversary’s
prior can be modeled by a Langevin dynamic system.

Proposition 6.3. Let V : Rd → R such that ∇2V ≽ CId.
For θ0 ∈ P (Rd), we note θt the distribution of Xt, with
(Xt)t≥0 solution of the stochastic differential equation:
dXt = −∇V (Xt)dt +

√
2dBt, where (Bt)t≥0 is a brow-

nian motion. We note θt1,...,tn the distribution generat-
ing X = (Xt1 , . . . , Xtn) from the distribution of (Xt)t≥0.
We consider the secrets sa = {X0 = a}, with a ∈ K
and K a compact of Rd, and the pairs of secrets Q =
{(sa, sb); a, b ∈ K}. Then, the GWM of any L-Lipschitz
query f performed on X has a sensitivity for the l1 norm:

∆G ≤ LDiam(K)

n∑
i=1

exp(−2Cti)

for the Pufferfish framework (S,Q, {θt1,...,tn}).

This result demonstrates that for some well-behaved diffu-
sion processes, the GWM drastically mitigates the sensi-
tivity compared to the Group DP scenario. This reduction
is indicated by an exponential term which depends on the
convexity of V and the released timestamps.

6.4. Application of PABI to Convex Optimization

We show an application of our general PABI result (The-
orem 5.2) to the RPP analysis of the celebrated DP-SGD
algorithm for private machine learning.

Let m, d, T > 0. Let (S,Q,Θ) be a Pufferfish framework.
We note X the set of values taken by the elements of the
dataset. Let the secrets sai = {Xi = a}, sbi = {Xi = b},
i ∈ J1, T K, a, b ∈ X . We note X = (X1, . . . , XT ) ∼
P (X|sai , θ) and X ′ = (X ′

1, . . . , X
′
T ) ∼ P (X|sbi , θ). We

assume that X ⊂ Rm. Let f : Rd×X → R be an objective
function. We assume that f is convex, L-Lipschitz in its
first argument, β-smooth in its second argument (see Ap-
pendix F.5.1 for definitions) and f satisfies the following
condition: ∀x1, x2 ∈ X , w1 ∈ Rd,∃Cw1

> 0 such as :

∥∇wf(w1, x1)−∇wf(w1, x2)∥ ≤ Cw1
∥x1 − x2∥.

The last assumption, which is used in the adversarial train-
ing literature (see e.g., Liu et al., 2020), is satisfied in cer-
tain simple settings as linear regression. It enables to take
into account the distribution of the gradients as a function
of the distribution of the data in our PABI analysis. Let
Π : Rd → Rd be a projection over a compact K ⊂ Rd and
η > 0 such that η < 2/β. By Proposition 18 of Feldman
et al. (2018), the weight update function: ψ : Rd × X →
Rd, (v, x) 7→ Π(v − η∇wf(v, x)) is contractive. Let
W0 = W ′

0 ∈ K be the initial weight and ζ = N (0, σ2Id)
be a noise distribution. We note (N1, . . . , NT ) ∼ ζ⊗T

and for all t ∈ J1 , T K, Wt = ψ(Wt−1, Xt) + Nt, W ′
t =

ψ(W ′
t−1, X

′
t) + Nt, as in DP-SGD. Then, we note st =

η supv∈KW∞(∇wf(v,Xt),∇wf(v,X
′
t)). As an example

of application of Theorem 5.2, taking (at) = (st), we have:

Dα(WT ,W
′
T ) ≤

αη2

2σ2

T∑
t=1

min(2L, sup
v∈K

CvW∞(Xt, X
′
t))

2.

To interpret this formula, we can look at some extreme cases.
If the adversary has a prior of high correlations, such as for
example X1 = · · · = Xt, X ′

1 = · · · = X ′
t, we get:

Dα(WT ,W
′
T ) ≤

Tαη2

2σ2
min(2L, ∥a− b∥ sup

v∈K
Cv)

2,

which is no better than the group privacy analysis. On
the other hand, when data points are independent as in
differential privacy, we get:

Dα(WT ,W
′
T ) ≤

αη2

2σ2
min(2L, ∥a− b∥ sup

v∈K
Cv)

2.

In this case, the upper bound is independent of T and we
thus obtain much better results than with group privacy. In
fact, our result is general enough to recover the original
results of Feldman et al. (2018) for DP-SGD as a special
case.
Remark 6.1 (DP as a special case, informal). Theorem 5.2
allows to recover the same privacy bounds as Theorem 23
of Feldman et al. (2018) (see Appendix F.5.2 for details).
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In the Gaussian case, our results allow to derive PABI
bounds that explicitly depend on correlations in the dataset.
Proposition 6.4. Assume that the adversary has a Gaussian
prior θ. Then,

Dα(WT ,W
′
T ) ≤

αη2

2σ2

(
min(2L, sup

v∈K
Cv∥a− b∥)2+

T∑
t̸=i

min(2L, sup
v∈K

Cv∥Cov(Xt, Xi) Cov(Xi)
−1(a− b)∥)2

)
.

This result is the sum of two terms: the first one is the same
as for DP (i.e., the case where data points are independent),
while the second one accounts for the dependence by sum-
ming, for each step t, the correlation between Xt and Xi.

This bound can be improved when W∞(Xt, X
′
t) is non-

increasing, leading to settings where the privacy loss con-
verges to 0 as T → +∞. This consideration is discussed
and illustrated numerically in Appendix F.5.4.

7. Conclusion
We presented a new framework, called Rényi Pufferfish
privacy, which extends the original Pufferfish privacy def-
inition. We designed general additive noise mechanisms
for achieving (approximate) Rényi Pufferfish privacy and
discussed their applicability for specific instantiations. As
a way to use Pufferfish privacy to analyze sequential algo-
rithms, we derived a privacy amplification by iteration result
which allows to bypass the lack of adaptive composition
theorems. We put forward a first application of this analysis
for convex optimization with gradient descent, allowing the
integration of Pufferfish in machine learning algorithms. Po-
tential areas for future work include a tighter PABI analysis
with other shift reduction lemmas, and a numerical analysis
of Rényi Pufferfish privacy mechanisms to optimize utility
in more complex practical use-cases.

Impact Statement
This paper presents work whose goal is to advance privacy in
machine learning, offering tools to make it more secure. We
provide methods to protect specific types of secrets and to
manage correlations in datasets, which are frequently found
in practice. Properly designed Pufferfish instantiations can
provide greater utility than usual Group Differential Privacy
mechanisms. However, the data curator must carefully de-
sign its Pufferfish instantiation in order to ensure adequate
robust privacy protection.
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Mironov, I. Rényi differential privacy. In 2017 IEEE 30th
Computer Security Foundations Symposium (CSF), pp.
263–275, 2017. doi: 10.1109/CSF.2017.11.

Niu, C., Zheng, Z., Tang, S., Gao, X., and Wu, F. Making
big money from small sensors: Trading time-series data
under pufferfish privacy. In IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, pp. 568–576,
2019. doi: 10.1109/INFOCOM.2019.8737579.

Nuradha, T. and Goldfeld, Z. Pufferfish privacy: An
information-theoretic study. IEEE Trans. Inf. Theory,
69(11):7336–7356, 2023.

Ou, L., Qin, Z., Liao, S., Yin, H., and Jia, X. An optimal
pufferfish privacy mechanism for temporally correlated
trajectories. IEEE Access, 6:37150–37165, 2018. doi:
10.1109/ACCESS.2018.2847720.

Ozair, S., Lynch, C., Bengio, Y., van den Oord, A., Levine,
S., and Sermanet, P. Wasserstein dependency measure
for representation learning. In Advances in Neural Infor-
mation Processing Systems, volume 32, 2019.

Papernot, N. and Steinke, T. Hyperparameter tuning with
renyi differential privacy. CoRR, abs/2110.03620, 2021.
URL https://arxiv.org/abs/2110.03620.

Rider, P. R. Generalized cauchy distributions. Annals
of the Institute of Statistical Mathematics, 9:215–223,
1957. URL https://api.semanticscholar.
org/CorpusID:122913729.

Saumard, A. and Wellner, J. A. Log-concavity and strong
log-concavity: a review. Statistics surveys, 8:45–114,
2014. URL https://api.semanticscholar.
org/CorpusID:23773316.

Song, S., Wang, Y., and Chaudhuri, K. Pufferfish pri-
vacy mechanisms for correlated data. In Proceed-
ings of the 2017 ACM International Conference on
Management of Data, SIGMOD ’17, pp. 1291–1306,
2017. ISBN 9781450341974. doi: 10.1145/3035918.
3064025. URL https://doi.org/10.1145/
3035918.3064025.
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This appendix provides some useful background, as well as more detailed versions of our results, along with their proofs.

A. Properties of Rényi Pufferfish Privacy (Section 2)
A.1. Definitions

Rényi differential privacy relies on Rényi divergences, which are defined as follows.
Definition A.1. Let µ and ν be two distributions on a measurable space (E,A) and α > 1. We define the Rényi divergence
of order α between µ and ν as:

Dα(µ, ν) =
1

α− 1
logEx∼ν

[(
µ(x)

ν(x)

)α]
.

The definition extends to the case α = +∞ by continuity.
Definition A.2 (Rényi differential privacy, RDP (Mironov, 2017)). Let α > 1 and ε ≥ 0. A randomized algorithm M : D →
R satisfies (α, ε)-Rényi differential privacy if for any two adjacent datasets X1, X2 ∈ D differing by one element, it holds:

Dα (P (M(X1)), P (M(X2)) ≤ ε.

A.2. Proof of Proposition 2.1

Proposition 2.1 (Post-processing). Let M1 be a randomized algorithm and M be (α, ε)-RPP. Then,

Dα (P (M1(M(X)) | si, θ) , P (M1(M(X)) | sj , θ))
≤ Dα (P (M(X) | si, θ) , P (M(X) | sj , θ)) ≤ ε.

Proof. Let S,Q,Θ) be a Pufferfish framework. Let (si, sj) ∈ Q, θ ∈ Θ, α > 1 and ϵ > 0. Let M1 be a randomized
algorithm and M satisfying (α, ε)-RPP. Then,

Dα (P (M(X) | si, θ) , P (M(X) | sj , θ)) = EZ∼P (M(X)|sj ,θ)

[(
P (M(X) = Z | si, θ)
P (M(X) = Z | sj , θ)

)α]
= E(Z′,Z)∼(P (M1(M(X))|sj ,θ),P (M(X)|sj ,θ))

[(
P (M(X) = Z | si, θ)
P (M(X) = Z | sj , θ)

)α]
= E(Z′,Z)∼(P (M1(M(X))|sj ,θ),P (M(X)|sj ,θ))

[(
P (M(X) = Z | si, θ)
P (M(X) = Z | sj , θ)

P (M1(M(X)) = Z ′ | M(X) = Z)

P (M1(M(X)) = Z ′ | M(X) = Z)

)α]
= EZ′∼P (M1(M(X))|sj ,θ)

[
EZ∼P (M(X)|M1(M(X)),sj ,θ)

[(
P (M1(M(X)) = Z ′,M(X) = Z | si, θ)
P (M1(M(X)) = Z ′,M(X) = Z | sj , θ)

)α]]
≥ EZ′∼P (M1(M(X))|sj ,θ)

[(
EZ∼P (M(X)|M1(M(X)),sj ,θ)

[
P (M1(M(X)) = Z ′,M(X) = Z | si, θ)
P (M1(M(X)) = Z ′,M(X) = Z | sj , θ)

])α]
Jensen

inequality

= EZ′∼P (M1(M(X))|sj ,θ)

[(
P (M1(M(X)) = Z | si, θ)
P (M1(M(X)) = Z | sj , θ)

)α]
= Dα (P (M1(M(X)) | si, θ) , P (M1(M(X)) | sj , θ)) .

Thus,

Dα (P (M1(M(X)) | si, θ) , P (M1(M(X)) | sj , θ)) ≤ Dα (P (M(X) | si, θ) , P (M(X) | sj , θ)) ≤ ε.

A.3. Proof of Proposition 2.2

Proposition 2.2 (RPP implies PP). If M is (α, ε)-RPP, it also satisfies
(
ε+ log(1/δ)

α−1 , δ
)
-PP for all δ ∈ (0, 1).

Proof. The proof technique of (Mironov, 2017) remains applicable in the context of Rényi Pufferfish privacy. For clarity
and completeness, we showcase it here. Let ε ≥ 0, α > 1. Let (S,Q,Θ) be a Pufferfish privacy framework and M an
(α, ε)-RPP mechanism. Let δ ∈ (0, 1), θ ∈ Θ, (si, sj) ∈ Q and z ∈ Range(M). Then, we have:

P (M(X) = z|si, θ)α ≤ e(α−1)Dα(P (M(X)|si,θ),P (M(X)|sj ,θ))P (M(X) = z|sj , θ)α−1 ≤ eε(α−1)P (M(X) = z|sj , θ)α−1
,

11
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where the first inequality is obtained by Hölder inequality applied to the functions
(

fα

gα−1

) 1
α

and g
α−1
α . We then consider

two cases:

• Case 1: eεP (M(X) = z|sj , θ) ≤ δ
α

α−1 . Then, P (M(X) = z|si, θ) ≤ δ ≤ eε+
log(1/δ)

α−1 P (M(X) = z|sj , θ) + δ.

• Case 2: eεP (M(X) = z|sj , θ) > δ
α

α−1 . Then,

P (M(X) = z|si, θ) ≤ (eεP (M(X) = z|sj , θ)) (eεP (M(X) = z|sj , θ))
−1
α

≤ eεP (M(X) = z|sj , θ) δ
−1
α−1

≤ eε+
log(1/δ)

α−1 P (M(X) = z|sj , θ) + δ.

A.4. Guarantees Against Close Adversaries

A.4.1. ORIGINAL RESULT FROM SONG ET AL. (2017)

For completeness, we recall here the original theorem from Song et al. (2017) on the robustness of the Pufferfish privacy
framework.

Theorem A.3 (Protection against close adversaries (Song et al., 2017)). Let M be a mechanism that satisfies ε-PP in a
framework (S,Q,Θ). Let θ′ /∈ Θ and

∆ = inf
θ∈Θ

sup
si∈Q

max{D∞ (P (X|si, θ), P (X|si, θ′)) ,

D∞ (P (X|si, θ), P (X|si, θ′))}.

Then, M is (ε+ 2∆)-PP for the framework (S,Q,Θ′) with Θ′ = Θ ∪ {θ′}.

A.4.2. PROTECTION AGAINST CLOSE ADVERSARIES IN THE RPP FRAMEWORK

Theorem A.4 (RPP protection against close adversaries). Let p, q, r > 0 such that 1
p + 1

q + 1
r = 1, and let M be a

mechanism that satisfies (q(α− 1/p), ε)-RPP in a framework (S,Q,Θ). Let θ′ /∈ Θ and

∆1
p = inf

θ∈Θ
sup
si∈S

Dαp (P (X|si, θ′), P (X|si, θ)) ,

∆2
r = inf

θ∈Θ
sup
si∈S

D(α−1)r+1 (P (X|si, θ), P (X|si, θ′)) .

Then, for all α ∈ (1,∞), M satisfies:

(
α,
(
1 +

1

r(α− 1)

)
ε+

(
1 +

1
r + 1

q

α− 1

)
∆1

p +∆2
r

)
-RPP

for (S,Q,Θ′) with Θ′ = Θ ∪ {θ′}.

Proof. Let (S,Q,Θ) be a Pufferfish privacy instance and M a randomized mechanism. Let θ′ /∈ Θ and p, q, r > 0 such

12
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that 1
p + 1

q + 1
r = 1. Let si, sj ∈ Q. We have:

exp(α− 1)Dα (P (M(X)|si, θ′), P (M(X)|sj , θ′))

=

∫
P (M(X) = z|si, θ′)α

P (M(X) = z|sj , θ′)α−1
dz

=

∫
P (M(X) = z|si, θ′)α

P (M(X) = z|si, θ)α−1/p

P (M(X) = z|si, θ)α−1/p

P (M(X) = z|si, θ)α−1/p−1/q

P (M(X) = z|sj , θ)α−1/p−1/q

P (M(X) = z|sj , θ′)α−1
dz

≤
(∫

P (M(X) = z|si, θ′)αp

P (M(X) = z|si, θ)αp−1
dz

) 1
p

·
(∫

P (M(X) = z|si, θ)q(α−1/p)

P (M(X) = z|si, θ)q(α−1/p)−1
dz

) 1
q

·
(∫

P (M(X) = z|sj , θ)α−1/p−1/q

P (M(X) = z|sj , θ′)α−1
dz

) 1
r

≤ exp (α− 1/p)Dαp (P (M(X)|si, θ′), P (M(X)|si, θ))
+ exp

(
(α− 1 + 1/r)Dq(α−1/p) (P (M(X)|si, θ), P (M(X)|sj , θ))

)
+ exp

(
(α− 1)D(α−1)r+1 (P (M(X)|sj , θ), P (M(X)|sj , θ′))

)
by using the generalized Hölder inequality: for p, q, r, t > 0 such that 1

p + 1
q + 1

r = 1
t and f ∈ Lp, g ∈ Lq, h ∈ Lr,

∥fgh∥t ≤ ∥f∥p∥g∥q∥h∥r.

Then, the post-processing property of RPP (Proposition 2.1) gives the result.

This theorem employs α-Rényi divergences and can be viewed as a generalization of the result of Song et al. (2017), which
we recover as a special case for α = +∞. Note that neither Theorem A.4 nor the original result of Song et al. (2017) exploit
the characteristics of the particular mechanism M of interest in the quantification of the additional privacy loss. As a matter
of fact, it is likely that a mechanism with large variance would yield more robust guarantees. Interestingly, we can address
this issue by refining our result to additive noise mechanisms using the shift reduction lemma.

A.4.3. REFINEMENT OF THEOREM A.4 FOR ADDITIVE MECHANISMS

Leveraging the shift reduction lemma (Lemma 3.1), we refine Theorem A.4 for additive mechanisms.

Theorem A.5 (RPP protection against close adversaries for additive noise mechanisms). Let p, q, r > 0 such that 1
p+

1
q+

1
r =

1. Let f : D → Rd be a numerical query. Let M(X) = f(X) + N with N ∼ ζ be an additive noise mechanism that
satisfies (q(α− 1/p), ε)-RPP for (S,Q,Θ). Let θ′ /∈ Θ and

∆θ′ = inf
θ∈Θ

sup
si∈S

W∞ (P (f(X)|si, θ′), P (f(X)|si, θ)) .

Then, for all α ∈ (1,∞) and denoting

K =

(
1 +

1
r + 1

q

α− 1

)
Rαp(ζ,∆θ′) +R(α−1)r+1(ζ,∆θ′),

M satisfies: (
α,

(
1 +

1

r(α− 1)

)
ε+K

)
-RPP

for (S,Q,Θ′) with Θ′ = Θ ∪ {θ′}.

This theorem enables us to take into account the characteristics of the mechanism when examining the robustness of a RPP
instance. We illustrate this below with the Gaussian mechanism.

Corollary A.1 (RPP protection against close adversaries for the Gaussian mechanism). We note Id the identity matrix of
size d. Let p, q, r > 0 such that 1

p + 1
q + 1

r = 1. Let f : D → Rd be a numerical query. Let M(X) = f(X) +N with

N ∼ N
(
0,

q(α−1/p)∆2
G

2ε Id
)
, where ∆G is defined in Theorem 3.3. Let θ′ /∈ Θ.

13
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Then, for all α ∈ (1,∞), M satisfies:(
α,

((
1 +

1

r(α− 1)

)
+

(
α

(
p+

p− 1

α− 1

)
+ (α− 1)r + 1

)
∆2

θ′

∆2
G

1

q(α− 1/p)

)
ε

)
-RPP

for (S,Q,Θ′) with Θ′ = Θ ∪ {θ′}.

One can see that the additive penalty vanishes proportionally to 1
∆2

G
. It establishes a trade-off between the utility of the

mechanism and the robustness of the Pufferfish privacy framework when designing Θ. Remarkably, this consideration could
not have been derived from our Theorem A.4 for RPP nor from the original result from Song et al. (2017) (Theorem A.3).

B. General Wasserstein Mechanism (Section 3)
B.1. Proof of Theorem 3.3

Theorem 3.3 (General Wasserstein mechanism, GWM). Let f : D → Rd be a numerical query and denote:

∆G = max
(si,sj)∈S

θ∈Θ

W∞ (P (f(X)|si, θ), P (f(X)|sj , θ)) .

Let N = (N1, . . . , Nd) ∼ ζ, where N1, . . . , Nd are iid real random variables independent of the data X . Then, M(X) =
f(X) +N satisfies (α,Rα(ζ,∆G))-RPP for all α ∈ (1,+∞) and R∞(ζ,∆G)-PP.

Proof. Let (S,Q,Θ) be a Pufferfish privacy instance. Let f : D → Rd be a numerical query and denote:

∆G = max
(si,sj)∈S

θi∈Θ

W∞ (P (f(X)|si, θ), P (f(X)|sj , θ)) .

Let N = (N1, . . . , Nd) ∼ ζ, where N1, . . . , Nd are iid real random variables independent of the data X . We use the abuse
of notation Dα(X|E , Y|E) = Dα(P (X|E), P (Y |E)). Let α > 1, z > 0, (si, sj) ∈ Q and θ ∈ Θ. By the shift reduction
lemma (Lemma 3.1), we have:

Dα

(
(f(X) +N)|si,θ , (f(X) +N)|sj ,θ

)
≤ D(z)

α

(
f(X)|si,θ, f(X)|sj ,θ

)
+Rα(ζ, z).

By definition,
D(z)

α

(
f(X)|si,θ, f(X)|sj ,θ

)
= inf

W∈P(Rd);W∞(W,f(X)|si,θ)≤z
Dα

(
W, f(X)|sj ,θ

)
,

and
D(W∞(P (f(X)|si,θ),P (f(X)|sj ,θ)))

α

(
f(X)|si,θ, f(X)|sj ,θ

)
= 0.

Then,

Dα

(
(f(X) +N)|si,θ , (f(X) +N)|sj ,θ

)
≤ Rα (ζ,W∞ (P (f(X)|si, θ), P (f(X)|sj , θ))) ≤ Rα (ζ,∆G) .

B.2. Proof of Corollary 3.1

In order to compute Rα for usual distributions, we use the following result.

Lemma B.1 (Rα calculation criterion). Let α > 1, d ∈ N∗. Let ζ be a distribution on R. If ζ = e−g is even, non-decreasing
on R+ and z 7→ Dα(ζ−g−1(z), ζ) is convex on R+, then supg−1(

∑d
i=1 g(xi))≤zDα(ζ

⊗d
−x , ζ

⊗d) = Dα(ζ−z, ζ), where ζ⊗d is
the joint distribution of d independent random variables drawn from ζ, and g−1 is the inverse of g on R+.

Proof. We start by proving the following characterization of convex functions: if g is a convex function of R, then for
z1 ≤ z2, the function x 7→ g(x − z1) − g(x − z2) is non-decreasing. A similar statement and its proof can be found
in (Saumard & Wellner, 2014).
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Let x ≤ x′. By taking λ = x−x′

x−x′+z1−z2
, we have:

x− z1 = (1− λ)(x′ − z1) + λ(x− z2) and x′ − z2 = λ(x′ − z1) + (1− λ)(x− z2).

By convexity:

g(x− z1) ≤ (1− λ)g(x′ − z1) + λg(x− z2) and g(x′ − z2) = λg(x′ − z1) + (1− λ)g(x− z2).

Then, g(x′ − z1)− g(x′ − z2) ≥ g(x− z1)− g(x− z2).

We also prove that if g is convex, g(0) = 0 and y1, . . . , yd ∈ R+, g(
∑d

i=1 yi) ≥
∑d

i=1 g(yi). We prove this assertion by
induction. Obviously, g(y1) ≥ g(y1). Also,

∑d
i=1 yi ≥ 0. Then, x 7→ g(x +

∑d
i=1 yi) − g(x) is non-decreasing. For

yd+1 ≥ 0, we have g(
∑d+1

i=1 yi)− g(yd+1) ≥ g(
∑d

i=1 yi)− g(0), and by induction g(
∑d+1

i=1 yi) ≥
∑d+1

i=1 g(yi).

Then, if z 7→ Dα(ζ−g−1(z), ζ) is convex, for x ∈ Rd+, we have:

Dα(ζ
⊗d
−x , ζ

⊗d) =

d∑
i=1

Dα(ζ−g−1(g(xi)), ζ) ≥ Dα

(
ζ−g−1(

∑d
i=1 g(xi))

, ζ
)
,

which proves the statement.

As we only considered shifts in Rd+, we also need z 7→ Dα(ζ−z, ζ) to be even, which is achieved for symmetrical densities:
if ζ is symmetric, z 7→ Dα(ζ−z, ζ) is also symmetric. In fact:∫ +∞

−∞

ζ(x− z)α

ζ(x)α−1
dx =

∫ +∞

−∞

ζ(x+ z)α

ζ(x)α−1
dx

by symmetry and changes of variable.

Corollary 3.1 (Privacy guarantees for usual noise distributions). We note Id the identity matrix of size d. Plugging the
expressions of R∞(ζ, z) and Rα(ζ, z) for Laplacian and Gaussian distributions, we obtain:

• M(X) = f(X) +N with N ∼ N
(
0,

α∆2
G

2ε Id
)

and ∆G computed on the l2 norm is (α, ε)-RPP.

• M(X) = f(X) + L with L ∼ Lap(0, ρId) and ∆G computed on the l1 norm is
(
α, 1

α−1 log
(

α
2α−1e

∆G(α−1)/ρ +

α−1
2α−1e

−∆Gα/ρ
))

-RPP.

• M(X) = f(X) + L with L ∼ Lap
(
0, ∆G

ε Id
)

with ∆G computed on the l1 norm is ε-PP.

Proof. The result is directly obtained by plugging Rényi divergences into the GWM and using Lemma B.1. Let α > 1, z ≥ 0.

• Lap(0, ρId) is symmetric and z 7→ g−1(
∑d

i=1 g(zi)) is the l1 norm for g : z 7→ |z|. For L ∼ Lap(0, ρId),

Dα(L+ z, L) =
1

α− 1
log

(
α

2α− 1
e|z|(α−1)/ρ +

α− 1

2α− 1
e−|z|α/ρ

)
.

Also, for z ≥ 0:
d

dz2
Dα(L+ z, L) =

α(2α2 − 1)

ρ2(2α− 1)

e−z/ρ

αez(α−1)/ρ + (α− 1)e−zα/ρ
≥ 0.

• N (0, σ2Id) is symmetric and z 7→ g−1(
∑d

i=1 g(zi)) is the l2 norm for g : z 7→ z2. For N ∼ N (0, σ2Id), Dα(N +

z,N) = αz2

2σ2 .
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B.3. Utility of the GWM (Proposition 3.1)

Below, we make the informal result of Proposition 3.1 precise and provide its proof.

Proposition B.1 (Utility of the GWM). Let n, d, d1, . . . , dn ∈ N∗, X ⊂ Rd. Let (S,Q,Θ) be a Pufferfish framework such
that, for each θ ∈ Θ, θ = ⊗n

k=1θk, with θk ∈ P(X dk). We note X = (X1
1 , . . . , X

1
d1
, . . . , Xn

dn
) ∼ θ. We assume that

sai,k = {Xk
i = a} ∈ S and Q = {(sai,k, sbi,k); k ∈ {1, . . . , n}, i ∈ {1, . . . , dk}, a, b ∈ X}. Following Song et al. (2017),

we define the corresponding group differential privacy of the Pufferfish framework as: Gk = (xk1 , . . . , x
k
dk
) ∈ X dk and

Dk = {(x, x′) ∈ X dk such that x and x′ only differ in Gk}.

∆GROUP (f) = max
k∈{1,...,n}

max
(x,x′)∈Dk

∥f(x)− f(x′)∥.

Then, ∆G ≤ ∆GROUP (f).

Proof. Let (sai,l, s
b
i,l) ∈ Q, θ ∈ Θ, with θ = ⊗n

k=1θk. Let Y ∼ P (f(X)|sai,l, θ). Let Z ∼ θl|sbi,l drawn independently from

Y . For k ∈ J1, nK, i ∈ J1 , dkK. We define Y
′k
i =

{
Y k
i if k ̸= l

Zi else
and Y ′ = (Y

′1
1 , . . . , Y

′1
d1
, . . . , Y

′n
dn

).

Then, (Y, Y ′) ∈ Dl, Y ′ ∼ P (f(X)|sbi,l) and:

∥Y − Y ′∥ ≤ max
(x,x′)∈Dl

∥f(x)− f(x′)∥ ≤ ∆GROUP (f).

Then, W∞(P (f(X)|sai,l), P (f(X)|sbi,l)) ≤ ∆GROUP (f) and ∆G ≤ ∆GROUP (f).

C. Approximate General Wasserstein Mechanism (Section 4.1)
Our result relies on the following characterization of (z, δ)-proximity.

Lemma C.1. µ and ν are (z, δ)-near iff ∃X ∼ µ, Y ∼ ν and V ∈ P(Rd) such that X + V = Y and P (∥V ∥ > z) < δ.

Proof. Let z ≥ 0, δ ∈ (0, 1), µ, ν two distributions on Rd such that µ and ν are (z, δ)-near. Then, there exists π a coupling
between µ and ν such that

∫
R dπ(x, y) ≥ 1 − δ and ∀(x, y) ∈ R, ∥x − y∥ ≤ z. We note V = Y −W where (W,Y ) is

drawn from the coupling π. We observe that R ⊂ {(x, y); ∥x− y∥ ≤ z}.

Then, P (∥V ∥ > z) ≤ P ((W,Y ) /∈ R) =
∫
Rd\R dπ(x, y) < δ.

For the opposite side, consider the coupling π of the pair (W,Y ) such that W ∼ µ, Y ∼ ν and W + V = Y with
P (∥V ∥ > z) < δ.

Then, P (∥V ∥ ≤ z) =
∫
∥x−y∥<z

dπ(x, y) ≥ 1− δ.

C.1. Proof of Lemma 4.1

Lemma 4.1 (Approximate shift reduction). Let µ, ν, ζ be three distributions on Rd. We denote D
(z,δ)
α (µ, ν) =

inf
µ,µ′ (z,δ)-near

Dα(µ
′, ν). Then, for all δ ∈ (0, 1), there exists an event E such that P (E) ≥ 1− δ and:

Dα

(
(µ ∗ ζ)|E , (ν ∗ ζ)

)
≤ D(z,δ)

α (µ, ν) +Rα(ζ, z) +
α

α− 1
log
( 1

1− δ

)
.

Proof. Let α > 1, z > 0, X ∼ µ, Y ∼ ν,N ∼ ζ and W ∼ ξ ∈ P(Rd) such that P (∥W∥ ≥ z) = δ and N is independent
of X , Y and W . We use the abuse of notation Dα(µ, ν) = Dα(X,Y ), with X ∼ µ, Y ∼ ν. We consider the event
E = {∥W∥ ≤ z}. Like in the original proof of the shift reduction lemma of Feldman et al. (2018), we have:

Dα((X +N)|E , Y +N) = Dα((X +W +N −W )|E , Y +N) ≤ Dα((X +W,N −W )|E , (Y,N)).
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by post-processing (Proposition 2.1) for M1(x, y) = x+ y. Then, we have:

Dα((X +W,N −W )|E , (Y,N))

=
1

α− 1
log

(∫
P(X+W,N−W )|E (x, y)

α

PY,N (x, y)α−1
dxdy

)
=

1

α− 1
log

(∫
PX+W |E(x)

αPN−W |E,X+W=x(y)
α

ν(x)α−1ζ(y)α−1
dxdy

)
=

1

α− 1
log

(∫
PX+W |E(x)

α

ν(x)α−1

(∫
PN−W |E,X+W=x(y)

α

ζ(y)α−1
dy

)
dx

)

=
1

α− 1
log

∫
PX+W |E(x)

α

ν(x)α−1

∫
(∫

∥u∥≤z
PN−W |X+W=x,W=u(y)ξ(u)du

)α
ζ(y)α−1

dy

 dx

≤ 1

α− 1
log

(∫
PX+W |E(x)

α

ν(x)α−1

(∫
∥u∥≤z

ζ(y + u)α

ζ(y)α−1
ξ(u)dudy

)
dx

)

≤ 1

α− 1
log

(∫
PX+W |E(x)

α

ν(x)α−1
dx

)
+Rα(ζ, z).

Yet,

PX+W |E(x)
α =

(
PX+W (x)− P (Ē)PX+W |Ē(x)

P (E)

)α

≤ PX+W (x)α

(1− δ)α
.

Thus:

Dα((X +W,N −W )|E , (Y,N))

≤ Dα(X +W,Y ) +Rα(ζ, z)−
α

α− 1
log (1− δ) .

C.2. Relationship between (+∞, ε, δ)-approximate RPP and (ε, δ)-PP

Proposition C.1. If M is (+∞, ε, δ)-approximate RPP, then it is (ε, δ)-PP.

Proof. The proof uses the same approach as the Lemma 8.8 of Bun & Steinke (2016). Let (si, sj) ∈ Q, θ ∈ Θ.
Without loss of generality, we assume that there exists E,E′ such that P (E) = 1 − δ, P (E′) = 1 − δ and we have:
D∞ (P (M(X) = w | si, θ, E) , P (M(X) = w | sj , θ, E′)) ≤ ε. Then,

sup
w∈Range(M)

log
P (M(X) = w | si, θ, E)

P (M(X) = w | sj , θ, E′)
≤ ε.

P (M(X) = w | sj , θ) = P (E′)P (M(X) = w | sj , θ, E′) + P (Ē′)P
(
M(X) = w | sj , θ, Ē′

)
≥ (1− δ)P (M(X) = w | sj , θ, E′) ,

P (M(X) = w | si, θ) = P (E)P (M(X) = w | si, θ, E) + P (Ē)P
(
M(X) = w | si, θ, Ē

)
≤ (1− δ)P (M(X) = w | si, θ, E) + δ

≤ (1− δ)P (M(X) = w | sj , θ, E′) eε + δ

≤ P (M(X) = w | sj , θ) eε + δ.

Proposition 4.1. If M is (α, ε, δ)-approximate RPP, then it is (ε′, 2δ)-PP, with ε′ = ε+ log(1/δ)
α−1 .

Proof. We use the proof techniques of Proposition C.1 and Proposition 2.2. Let ε ≥ 0, α > 1. Let (S,Q,Θ) be a Pufferfish
privacy framework and M an (α, ε, δ)-RPP mechanism. Let δ ∈ (0, 1), θ ∈ Θ, (si, sj) ∈ Q and z ∈ Range(M).

17



General Additive Noise Mechanisms and Privacy Amplification by Iteration for Pufferfish Privacy

There exists E,E′ such that Dα (P (M(X) | si, θ, E) , P (M(X) | sj , θ, E′)) ≤ ε and P (E), P (E′) ≥ 1− δ, The proof
technique of Proposition 2.2 allows to show that:

P (M(X) = z|E, si, θ) ≤ eε+
log(1/δ)

α−1 P (M(X) = z|E′, sj , θ) + δ.

Then, the proof technique of Proposition C.1 allows to show that:

P (M(X) = z|si, θ) ≤ eε+
log(1/δ)

α−1 P (M(X) = z|, sj , θ) + 2δ.

C.3. Proof of Theorem 4.3

Theorem 4.3 (General approximate Wasserstein mechanism). Let f : D → Rd be a numerical query. For all δ ∈ (0, 1), let
us denote:

∆G,δ > inf{z ∈ R;∀(si, sj) ∈ S, ∀θ ∈ Θ,

(P ((f(X)|si, θ), P (f(X)|sj , θ)) are (z, δ)-near}.

Let N = (N1, . . . , Nd) ∼ ζ, where N1, . . . , Nd are iid real random variables independent of the dataset X . Then,
M = f(X) +N satisfies (α,Rα(ζ,∆G,δ) +

α
α−1 log

1
1−δ , δ)-approximate RPP for all α ∈ (1,+∞) and (R∞(ζ,∆G,δ) +

log 1
1−δ , δ)-PP.

Proof. This proof is similar to Theorem 3.3 but we use the approximate shift reduction lemma (Lemma 4.1). We use the abuse
of notation Dα(X|E , Y|E) = Dα(P (X|E), P (Y |E)). Let f : D → Rd be a numerical query and N = (N1, . . . , Nd) ∼ ζ,
where N1, . . . , Nd are iid real random variables independent of the data X . Let δ ∈ (0, 1). Let us denote:

∆G,δ > inf{z ∈ R;∀(si, sj) ∈ S,∀θ ∈ Θ, (P (f(X)|si, θ), P (f(X)|sj , θ)) are (z, δ)-near}.

By the approximate shift reduction lemma (Lemma 4.1), there exists E such that P (E) ≥ 1− δ and:

Dα

(
(f(X) +N)|E,si,θ

, (f(X) +N)|sj ,θ

)
≤ D(z,δ)

α

(
f(X)|si,θ, f(X)|sj ,θ

)
+Rα(ζ, z)−

α

α− 1
log(1− δ).

By definition,

D(z,δ)
α

(
f(X)|si,θ, f(X)|sj ,θ

)
= inf

µ∈P(Rd);µ,P (f(X)|si,θ) are (z,δ)-near
Dα (µ, P (f(X) | sj , θ)),

and
D

(∆G,δ,δ)
α

(
f(X)|si,θ, f(X)|sj ,θ

)
= 0.

Then,
Dα

(
(f(X) +N)|E,si,θ

, (f(X) +N)|sj ,θ

)
≤ Rα(ζ,∆G,δ)−

α

α− 1
log(1− δ).

C.4. Result for Usual Noise Distributions

We provide below a corollary of Theorem 4.3 that gives closed formula for usual noise distributions to get approximate RPP
guarantees.

Proposition C.2 (Approximate Wasserstein mechanism). We note Id the identity matrix of size d. The results are similar to
those of the general Wasserstein mechanism (Corollary 3.1), but with an additive term which depends on δ:

• M(X) = X +N with N ∼ N
(
0,

α∆2
G,δ

2(ε+ α
α−1 log(1−δ))

Id

)
is (α, ε, δ)-approximate RPP.

• M(X) = X + L with L ∼ Lap(0, ρId) is
(
α, 1

α−1 (log (b)− α log(1− δ)) , δ
)
-approximate RPP for b =

α
2α−1e

∆G,δ(α−1)/ρ + α−1
2α−1e

−∆G,δα/ρ.

• M(X) = X + L with L ∼ Lap
(
0,

∆G,δ

ε+log(1−δ)Id
)

is (ε, δ)-PP.
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C.5. Relationship with Distribution Privacy Results of Chen & Ohrimenko (2023)

We start by recalling the definition of distribution privacy.

Definition C.1 (Distribution privacy (Chen & Ohrimenko, 2023)). A mechanism M satisfies (ε, δ)-distribution privacy
with respect to a set of distribution pairs Ψ ⊂ Θ×Θ if for all pairs (ψi, ψj) ∈ Ψ and all subsets S ⊂ Range(M),

P (M(X) ∈ S|ψi) ≤ eεP (M(X) ∈ S|ψj) + δ,

where the expression P (M(X) ∈ S|ψ) denotes the probability that M(X) given X ∼ ψ.

For completeness, we recall the original approximate Wasserstein mechanism Theorem for distribution privacy from (Chen
& Ohrimenko, 2023).

Theorem C.2 (Approximate Wasserstein mechanism for distribution privacy (Chen & Ohrimenko, 2023)). Let (Ψ,Θ) be a
distribution privacy framework. Let W > 0, δ ∈ (0, 1). Suppose that for all (ψi, ψj) ∈ Ψ, P (X | ψi) and P (X | ψj) are
(W, δ)-near. Then M(X) = X + L where L ∼ Lap

(
0, Wε I

)
is (ε, δ)-distribution private.

We now formally state and prove the equivalence between Pufferfish privacy and distribution privacy.

Proposition C.3. Let (E,B(E)) be a measurable space, where |E| ≤ ℵ1 is a topological space with its Borel σ-algebra
B(E) and ℵ1 is the cardinality of R. Let Θ ⊂ P(B(E)). Let (S,Q,Θ) be a Pufferfish privacy instance and M a randomized
mechanism. Then, there exists a distribution privacy instance (Ψ,Θ′) such that M is (ε, δ)-PP iff M is (ε, δ)-distribution
private. Conversely, let (Ψ,Θ) be a distribution privacy instance. Then, there exists a Pufferfish privacy instance (S,Q,Θ′)
such that M is (ε, δ)-PP iff M is (ε, δ)-distribution private.

Remark C.3. The condition |E| ≤ ℵ1 is quite general. In particular, it allows the data space to be (a subset of) Rd, thus
covering typical data domains found in fields like data analysis, machine learning, text processing, computer vision, and
database management.

Proof. We show the equivalence between the Pufferfish privacy framework and the distribution privacy framework. Let
Θ ⊂ P(B(E)), where |E| ≤ ℵ1.

• Let (S,Q,Θ) be a Pufferfish privacy instance. We consider:

Ψ = {(P (X|si, θ), P (X|sj , θ)) such that (si, sj) ∈ Q, θ ∈ Θ and P (si | θ) ̸= 0, P (sj | θ) ̸= 0} .

Then,

∀w ∈ Range(M),∀(ψi, ψj) ∈ Ψ,

P (M(X) = w | ψi) ≤ eεP (M(X) = w | ψj) + δ

⇐⇒
∀w ∈ Range(M),∀(si, sj) ∈ Q, θ ∈ Θ such that P (si | θ) ̸= 0, P (sj | θ) ̸= 0,

P (M(X) = w | si, θ) ≤ eεP (M(X) = w | sj , θ) + δ.

• Let (Ψ,Θ) be a distribution privacy instance. First, we consider the case where each ψ ∈ Θ is parametrized by a vector
ρ ∈ Rd, which means that there exists a bijection between a subset of Rd and Θ. For ρ ∈ Rd, if it exists, we denote
ψρ ∈ Θ the corresponding distribution. Then, we denote Φ = {ρ ∈ Rd such that ∃ψ ∈ Ψ; (ψρ, ψ) ∈ Ψ∨(ψ,ψρ) ∈ Ψ}
and Ω = {(ρ1, ρ2) ∈ Φ× Φ such that (ψρ1 , ψρ2) ∈ Ψ} ⊂ Rn×2 and Π = {π ∈ P (B(Rd)) such that supp(π) = Φ}.
We consider:

S = {(sρ = “X has been generated from the distribution ψρ”),∀ρ ∈ Φ},
Q = {(sρ1 , sρ2) such that (ρ1, ρ2) ∈ Ω},

Θ′ =

{
θπ ∈ P(B(E)) such that π ∈ Π ∧ P (X|θπ) =

∫
Φ

π(ρ)P (X|ψρ)dρ

}
.
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Then, ∀w ∈ Range(M),∀(si, sj) ∈ Q, θπ ∈ Θ′, P (X|θπ, si) = P (X|ψi). Thus, we have:

∀w ∈ Range(M),∀(ψi, ψj) ∈ Ψ,

P (M(X) = w | ψi) ≤ eεP (M(X) = w | ψj) + δ

⇐⇒
∀w ∈ Range(M),∀(si, sj) ∈ Q, θ ∈ Θ such that P (si | θ) ̸= 0, P (sj | θ) ̸= 0,

P (M(X) = w | si, θ) ≤ eεP (M(X) = w | sj , θ) + δ.

In this proof, the case |Θ| = n ∈ N∗ is a case where ψ ∈ Θ can be parameterized. One such parameterization is to
define Θ = {ψ1, . . . , ψn} and the mapping i ∈ N 7→ ψi ∈ Θ.

The second part of the proof relies on the fact that the distributions of P(B(E)) are parameterizable. The hypothesis
|E| ≤ ℵ1 allows us to reduce to the case E = R, up to a bijection. Yet, every distribution of B(R) is entirely defined by
its values taken on open intervals of R and each open interval of R is a countable union of open intervals with rational
endpoints. Therefore, |P(B(R))| ≤ 2ℵ0 = ℵ1, where the notation ℵ0 denotes the cardinal of N and we can map every
distribution of R with elements of R.

Remark C.4. The proof shows how to transition from the Pufferfish privacy framework to the distribution privacy framework.
Thus, it is possible to use Pufferfish private mechanisms to achieve distribution privacy guarantees (and vice versa).

This equivalence result allows us to precisely compare our result (Theorem 4.3) to the result of Chen & Ohrimenko (2023).
Our approximate shift reduction result (Lemma 4.1) induces an additional term which prevents us from recovering exactly
the results of Chen & Ohrimenko (2023) in the particular case of the Laplace mechanism for PP. However, we believe that
our analysis can be improved and lead to better results. More generally, our result can be used with a wide range of noise
distributions and in the RPP framework, which is more general than PP (and thus more general than distribution privacy).

C.6. Utility of the GAWM (Proposition 4.2)

Below, we make the informal result of Proposition 4.2 precise and provide its proof.
Proposition C.4 (Utility of the GAWM). Let (S,Q,Θ) be a Pufferfish framework, δ ∈ (0, 1), α > 1 and let M(X) =
f(X) +N , where X ∼ θ ∈ Θ, N ∼ ζ and f is a numerical query. Then, ∆G as defined in Theorem 3.3 is greater or equal
than ∆G,δ defined in Theorem 4.3. Moreover, ifRα(∆G,δ, ζ) ≤ Rα(∆G, ζ)+

α
α−1 log(1−δ) then the GAWM achieves better

utility than the GWM with (α, ε, δ)-RPP, without additional privacy cost on the ε. It happens when ∆G is sufficiently larger
than ∆G,δ, which happens when there exists (si, sj) ∈ Q, θ ∈ Θ and (Y, Y ′) ∼ π ∈ Γ(P (f(X)|si, θ), P (f(X)|sj , θ))
such that ∥Y − Y ′∥ is large with small probability.

Proof. Let (si, sj) ∈ Q, θ ∈ Θ. Then, there exists (Y, Y ′) ∼ π ∈ Γ(P (f(X)|si, θ), P (f(X)|sj , θ)) such that P (∥Y −
Y ′∥ > ∆G) = 0. Then, for any δ ∈ (0, 1), P (∥Y − Y ′∥ > ∆G) < δ and by Lemma C.1, Y and Y ′ are (∆G, δ)-near.
Finally, ∆G,δ ≤ ∆G.

D. Leveraging Wp metrics (Section 4.2)
D.1. Proof of Lemma 4.2

Lemma 4.2 (Generalized shift reduction). Let ζ be a noise distribution of Rd. Let z, p, q > 0 such that 1/p+ 1/q = 1. We
note :

D
(z)
α,α′,ζ(µ, ν) = inf

ξ; E
W∼ξ

[exp((α′−1)Dα′ (ζ,ζ∗W ))]≤z
Dα(µ ∗ ξ, ν).

Then, we have :

Dα(µ ∗ ζ, ν ∗ ζ) ≤ D
(z)
p(α−1)+1,q(α−1)+1,ζ(µ, ν) +

log(z)

q(α− 1)
.

In the case q = 1:

Dα(µ ∗ ζ, ν ∗ ζ) ≤ D
(z)
∞,α,ζ(µ, ν) +

log(z)

α− 1
.
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Proof. The proof construction is similar to the one developed in (Chen & Ohrimenko, 2023). We do not apply Jensen
inequality at the last step of the proof to obtain Orlicz-Wasserstein metrics, and keep the result general and working for
a broader range of distributions. We use the abuse of notation Dα(µ, ν) = Dα(X,Y ), with X ∼ µ, Y ∼ ν. Let z > 0,
X ∼ µ, Y ∼ ν,N ∼ ζ ∈ P(Rd) be a noise distribution and W ∼ ξ ∈ P(Rd) such that:

EW [exp(q(α− 1)Dq(α−1)+1(ζ, ζ ∗W ))] ≤ z.

Let p, q > 0 such that 1
p + 1

q = 1. We want to compute : Dα(X +N,Y +N). By the post processing theorem applied on
the map f : (x, y) → x+ y, and the fact that X +N = X +W −W +N , we have :

Dα(X +N,Y +N) ≤ Dα((X +W,N −W ), (Y,N)).

We have:

Dα((X +W,N −W ), (Y,N)) =
1

α− 1
log

(∫
P(X+W,N−W )(x, y)

α

PY,N (x, y)α−1
dxdy

)
=

1

α− 1
log

(∫
PX+W (x)αPN−W |X+W=x(y)

α−1

ν(x)α−1ζ(y)α
dxdy

)
=

1

α− 1
logE U∼X+W

V∼N−W |X+W=U

[(
PX+W (U)

ν(U)

)α−1(PN−W |X+W=x(V )

ζ(V )

)α−1
]

≤ 1

p(α− 1)
logEU∼X+W

[(
PX+W (U)

ν(U)

)p(α−1)
]
(1)

+
1

q(α− 1)
logE U∼X+W

V∼N−W |X+W=U

[(
PN−W |X+W=x(V )

ζ(V )

)q(α−1)
]
(2) by Hölder

inequality

Immediately (1) = Dp(α−1)+1(X +W,Y ) and, given that

PN−W |X+W=x(y)
q(α−1)+1 =

(∫
PN−W |W=z(y)ξ(z)dz

)q(α−1)+1

= EW [ζ(y +W )]
q(α−1)+1

≤ EW

[
ζ(y +W )q(α−1)+1

]
,

we have:

(2) =
1

q(α− 1)
log

∫ (
PN−W |X+W=x(y)

ζ(y)

)q(α−1)

PX+W (x)PN−W |X+W=x(y)dxdy

≤ 1

q(α− 1)
log

∫
ζ(y + u)q(α−1)+1

ζ(y)q(α−1)
ξ(u)PX+W (x)dxdydu

≤ 1

q(α− 1)
logEW∼ξ

[
exp(q(α− 1)Dq(α−1)+1(ζ, ζ ∗W ))

]
≤ log(z)

q(α− 1)
.

In the case p = +∞, let W ∼ ξ ∈ P(Rd) such that:

EW [exp((α− 1)Dα(ζ, ζ ∗W ))] ≤ z.

Dα((X +W,N −W ), (Y,N)) ≤ sup
U∼X+W

1

α− 1
log

(
PX+W (U)

ν(U)

)α−1

(3)

+
1

(α− 1)
logE U∼X+W

V∼N−W |X+W=U

[(
PN−W |X+W=x(V )

ζ(V )

)α−1
]
(4)
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Yet, (3) = D∞(PX+W , ν) and:

(4) =
1

α− 1
log

∫ (
PN−W |X+W=x(y)

ζ(y)

)α−1

PX+W (x)PN−W |X+W=x(y)dxdy

≤ 1

α− 1
logEW∼ξ [exp((α− 1)Dα(ζ, ζ ∗W ))]

≤ log(z)

α− 1
.

D.2. Proof of Theorem 4.5

Theorem 4.5 (Distribution Aware General Wasserstein Mechanism). Let f : D → Rd be a numerical query and ζ a noise
distribution of Rd. Let q ≥ 1. For (si, sj) ∈ Q, θ ∈ Θ, we note µθ

i = P (f(X)|si, θ). We denote:

∆ζ,q,α
G = max

(si,sj)∈S
θi∈Θ

inf
P (X,Y )∈Γ(µθ

i ,µ
θ
j )
E
[
eq(α−1)Dq(α−1)+1(ζ,ζ∗(X−Y ))

]
.

Let N = (N1, . . . , Nd) ∼ ζ, where N1, . . . , Nd are iid real random variables independent of the data X . Then, M(X) =

f(X) +N satisfies (α, log(∆
ζ,q,α
G )

q(α−1) )-RPP for all α ∈ (1,+∞) and limα→+∞
log(∆ζ,q,α

G )

q(α−1) -PP.

Proof. The proof is similar to Theorem 3.3 but we use the generalized shift reduction lemma (Lemma 4.2). Let (S,Q,Θ)
be a Pufferfish privacy instance. Let f : D → Rd be a numerical query and denote:

∆ζ,q,α
G = max

(si,sj)∈S
θi∈Θ

inf
P (X,Y )∈Γ(µθ

i ,µ
θ
j )
E
[
eq(α−1)Dq(α−1)+1(ζ,ζ∗(X−Y ))

]
.

Let N = (N1, . . . , Nd) ∼ ζ, where N1, . . . , Nd are iid real random variables independent of the data X . Let α > 1, z > 0,
(si, sj) ∈ Q and θ ∈ Θ. We use the abuse of notation Dα(X|E , Y|E) = Dα(P (X|E), P (Y |E)). By the shift reduction
lemma (Lemma 4.2), we have:

Dα

(
(f(X) +N)|si,θ , (f(X) +N)|sj ,θ

)
≤ D

(z)
p(α−1)+1,q(α−1)+1,ζ

(
f(X)|si,θ, f(X)|sj ,θ

)
+

log(z)

q(α− 1)
.

By definition,

D
(z)
p(α−1)+1,q(α−1)+1,ζ

(
f(X)|si,θ, f(X)|sj ,θ

)
= inf

W∈P(Rd); E
W∼ξ

[exp(q(α−1)Dq(α−1)+1(ζ,ζ∗(W−f(X)|si,θ)))]≤z
Dα

(
W, f(X)|sj ,θ

)
,

and
D

(exp(q(α−1)Dq(α−1)+1(ζ,ζ∗(f(X)|si,θ−f(X)|sj,θ))))

p(α−1)+1,q(α−1)+1,ζ

(
f(X)|si,θ, f(X)|sj ,θ

)
= 0.

Then,

Dα

(
(f(X) +N)|si,θ , (f(X) +N)|sj ,θ

)
≤

log(∆ζ,q,α
G )

q(α− 1)
.

D.3. Proof of Corollary 4.1

Divergences of shifts in Cauchy distributions have been discussed in (Verdú, 2023). We generalize their results for certain
types of generalized Cauchy distributions in the following lemma.
Lemma D.1 (Shifts of generalized Cauchy distributions). Let k ∈ N∗, α > 1, λ > 0 and βk,λ > 0 such that ζk,λ : x 7→
βk,λ(

1
1+(λx)2 )

k
2 verifies

∫
ζk,λ(x)dx = 1. Let X ∼ ζk,λ and z ≥ 0. Then,

Dα(X + z,X) ≤ 1

α− 1
log

βk,λπ

λ
Qk(α−1)/2

(
1 +

z2

λ2

)
,

where Qk(α−1)/2 is the Legendre function of the first kind of index k(α− 1)/2.
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Proof. Let λ, z > 0, k ∈ N∗. We have:∫
ζk,λ(x+ z)α

ζk,λ(x)α−1
dx = βk,λ

∫ (
1 + (λ(x− z))2

)(α−1)k/2

(1 + (λx)2)
αk/2

dx

=
βk,λ
λ

∫ (
1 + (u− λz)2

)(α−1)k/2

(1 + u2)
αk/2

du

=
βk,λ
λ

∫ π/2

−π/2

(
1 + (tan(t)− λz)2

)(α−1)k/2

(1 + tan(t)2)
αk/2

(1 + tan2(t))dt

=
βk,λ
λ

∫ π/2

−π/2

(
1 + tan2(t)− 2 tan(t)λz + λ2z2

)(α−1)k/2
(cos2(t))αk/2−1dt

=
βk,λ
λ

∫ π/2

−π/2

(
cos2(t)(1 + tan2(t)− 2 tan(t)λz + λ2z2)

)(α−1)k/2
(cos2(t))k/2−1dt

≤ βk,λ
λ

∫ π/2

−π/2

(
1− 2 sin(t) cos(t)λz + cos2(t)λ2z2)

)(α−1)k/2
dt

≤ βk,λ
2λ

∫ π

−π

(
1− sin(t)λz + (cos(t) + 1)λ2z2/2)

)(α−1)k/2
dt

≤ βk,λ
2λ

∫ π

−π

(
1 + λ2z2/2− sin(t)λz + cos(t)λ2z2/2)

)(α−1)k/2
dt

≤ βk,λ
2λ

∫ π

−π

(
1 + λ2z2/2 +

√
λz + λ2z2/2 cos(t)

)(α−1)k/2

dt,

And Qα(z) is defined by:

Qα(z) =
1

π

∫ π

0

(
z +

√
z2 − 1 cos(t)

)α
dt.

We are now ready to prove Corollary 4.1.

Corollary 4.1 (Cauchy Mechanism). Let d ∈ N∗. We denote Qα the Legendre polynomial of integer index α > 1 and Qα as
the polynomial derived from Qα by retaining only its non-negative coefficients. Let k ≥ 2 and q ≥ 1 such that kq(α− 1)/2
is an integer. We note:

∆
dkq(α−1)
G = max

(si,sj)∈S
θi∈Θ

Wdkq(α−1) (P (f(X)|si, θ), P (f(X)|sj , θ)) ,

with Wdkq(α−1) computed with the l2 norm. Then, M(X) = f(X) + V with V = (V1, . . . , Vd)
iid∼ GCauchy (0, λ, k) is(

α,
d log

βk,λπ

λ Qkq(α−1)/2

(
1+

(
∆

dkq(α−1)
G

dλ

)2)
q(α−1)

)
-RPP.

Proof. We apply Theorem 4.5 and compute ∆ζ,q,α
G to prove our claim. We start by noticing that h : z 7→ logQk(α−1)/2 (z)

is convave for z ≥ 0. It is shown by factorizing the polynomial Qk(α−1)/2. It is known that all roots r1, . . . , rk(α−1)/2

of Legendre polynomials are real, distinct from each other and lie in (−1, 1). Then, for z ∈ R, Qk(α−1)/2(z) =

Π
k(α−1)/2
i=1 (z − ri).
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Then, h(z) = logQk(α−1)/2 (z) =
∑k(α−1)/2

i=1 log (z − ri), which is concave for z ≥ 0. Then, for z1, . . . , zd ≥ 0, we have∑d
i=1 h(zi) ≤ dh(

∑d
i=1 zi/d). We have:

∆ζ,q,α
G = max

(si,sj)∈S
θi∈Θ

inf
P (X,Y )∈Γ(µθ

i ,µ
θ
j )
E
[
eq(α−1)Dq(α−1)+1(ζ

⊗d,ζ⊗d∗(X−Y ))
]

= max
(si,sj)∈S

θi∈Θ

inf
P (X,Y )∈Γ(µθ

i ,µ
θ
j )

[
eq(α−1)

∑d
i=1 Dq(α−1)+1(ζ∗(Yi−Xi),ζ)

]
independence of the noise

≤ max
(si,sj)∈S

θi∈Θ

inf
P (X,Y )∈Γ(µθ

i ,µ
θ
j )

[
e

∑d
i=1 log

βk,λπ

λ Qkq(α−1)/2

(
1+

(Xi−Yi)
2

λ2

)]
Lemma D.1

≤ max
(si,sj)∈S

θi∈Θ

inf
P (X,Y )∈Γ(µθ

i ,µ
θ
j )
E

[(
βk,λπ

λ
Qkq(α−1)/2

(
1 +

∥X − Y ∥2

d2λ2

))d
]

Concavity inequality

≤
(
βk,λπ

λ

)d

max
(si,sj)∈S

θi∈Θ

inf
P (X,Y )∈Γ(µθ

i ,µ
θ
j )

dkq(α−1)/2∑
i=0

aiE

[(
1 +

∥X − Y ∥2

d2λ2

)i
]

Q
d
kq(α−1)/2 is a polynomial
(degree dkq(α − 1)/2)

≤
(
βk,λπ

λ

)d

max
(si,sj)∈S

θi∈Θ

inf
P (X,Y )∈Γ(µθ

i ,µ
θ
j )

dkq(α−1)/2∑
i=0

i∑
l=0

(
i

l

)
aiE

[
∥X − Y ∥2i

λ2i

]

≤
(
βk,λπ

λ

)d

max
(si,sj)∈S

θi∈Θ

inf
P (X,Y )∈Γ(µθ

i ,µ
θ
j )

dkq(α−1)/2∑
i=0

i∑
l=0

(
i

l

)
ai
E
[
∥X − Y ∥dkq(α−1)

] 2i
dkq(α−1)

d2iλ2i
Jensen inequality

(2i ≤ dkq(α − 1))

≤
(
βk,λπ

λ

)d

max
(si,sj)∈S

θi∈Θ

dkq(α−1)/2∑
i=0

i∑
l=0

(
i

l

)
ai
Wdkq(α−1)(µ

θ
i , µ

θ
j )

2i

d2iλ2i
by definition of Wdkq(α−1)

≤

βk,λπ
λ

max
(si,sj)∈S

θi∈Θ

Qkq(α−1)/2

(
1 +

Wdkq(α−1)(µ
θ
i , µ

θ
j )

2

d2λ2

)d

.

D.4. Utility of the DAGWM (Proposition 4.3)

In order to prove analyze the utility of the DAWGM, we resort to the following lemma.

Lemma D.2. Let α > 1. Let ζ be a distribution of Rd and W a random variable of Rd such that ∥W∥ ≤ z a.s. For N
drawn from ζ and independent of W , we have:

Dα(N +W,N) ≤ Rα(ζ, z).
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Proof. We have:

e(α−1)Dα(N+W,N) =

∫
PW+N (x)α

PN (x)α−1
dx

=

∫
E[PN (x−W )]α

PN (x)α−1
dx

≤
∫ ∫

∥u∥≤z

PN (x− u)α

PN (x)α−1
PW (u)dxdu

=

∫
∥u∥≤z

e(α−1)Dα(N+u,N)PW (u)du

≤
∫
∥u∥≤z

sup
∥x∥≤z

e(α−1)Dα(N+z,N)PW (u)du

≤ sup
∥x∥≤z

e(α−1)Dα(N+W,N).

Below, we make the informal result of Proposition 4.3 precise and provide its proof.

Proposition D.1 (Utility of the DAGWM). Let (S,Q,Θ) be a Pufferfish framework, and let M(X) = f(X) +N , where
X ∼ θ ∈ Θ, N ∼ ζ ∈ P(Rd) and f is a numerical query. Let α > 1. Then, Rα(ζ,∆G) as defined in Theorem 3.3 is

greater or equal to log(∆ζ,1,α
G )

α−1 defined in Theorem 4.5.

Proof. By definition: for (si, sj) ∈ Q, θ ∈ Θ, we note (µθ
i , µ

θ
j ) = (P (f(X)|si, θ), P (f(X|sj , θ))), and if

(f(X)|si,θ, f(X)|sj ,θ) ∼ π∗ ∈ Γ(µθ
i , µ

θ
j ) realises the optimal transport plan for W∞(µθ

i , µ
θ
j ):

∥f(X)|si,θ − f(X)|sj ,θ∥ ≤W∞(µθ
i , µ

θ
j ) a.s.

Using Lemma D.2, We have:

E
[
e(α−1)Dα(ζ,ζ∗(f(X)|si,θ−f(X)|sj,θ))

]
= E

[
e(α−1)Dα(ζ∗(f(X)|sj,θ−f(X)|si,θ),ζ)

]
≤ e(α−1)Rα(ζ,W∞(µθ

i ,µ
θ
j )).

It follows:

∆ζ,1,α
G = max

(si,sj)∈S
θi∈Θ

inf
P (X,Y )∈Γ(µθ

i ,µ
θ
j )
E
[
e(α−1)Dα(ζ,ζ∗(X−Y ))

]
≤ max

(si,sj)∈S
θi∈Θ

E
[
e(α−1)Dα(ζ,ζ∗(f(X)|si,θ−f(X)|sj,θ))

]
≤ e(α−1)Rα(ζ,W∞(µθ

i ,µ
θ
j )).

Finally :
log(∆ζ,1,α

G )

α− 1
≤ max

(si,sj)∈S
θi∈Θ

Rα(ζ,W∞(µθ
i , µ

θ
j )) = Rα(ζ,∆G).

E. Privacy Amplification by Iteration (Section 5)
E.1. Parallel Composition

Assessing the privacy guarantees of composition in RPP may be challenging. As a matter of fact, there does not exist, to our
knowledge, any theorem stating the mechanism-agnostic privacy guarantees of sequential composition in Pufferfish privacy.
However, we can recover a staightforward result of parallel composition for the RPP framework.
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Proposition E.1 (RPP parallel composition for queries performed over independent datasets). Let m > 0 and (S,Q,Θk)
be Pufferfish frameworks corresponding to each dataset Xk ∼ P (·|ski , θk). We assume that each secret ski is independent
of the distributions θl, for l ̸= k and that Q only contains pairs of the form (ski , s

k
j ). For all k ∈ {1, . . . , n}, let

Mk(Xk) be mechanisms that satisfy (α, εk)-RPP. Let Θ = {
⊗m

k=1 θk;∀k ∈ {1, . . . ,m}, θk ∈ Θk}. Then, the mechanism
(M1, . . . ,Mm) satisfies (α,maxk εk)-RPP for (S,Q,Θ).

Proof. Let sli, s
l
j ∈ Q, θ =

⊗m
k=1 θk ∈ Θ.

Dα(P (M(X)|sli, θ), P (M(X)|slj , θ)) = Dα

(
P
(
(M1(X1), . . . ,Mn(Xn))|sli,⊗m

k=1θk
)
,

P
(
(M1(X1), . . . ,Mn(Xn)|slj ,⊗m

k=1θk
) )

=

n∑
k=1

Dα

(
P
(
Mk(Xk)|sli, θl

)
, P
(
Mk(Xk)|slj , θk

))
= Dα

(
P
(
Ml(Xl)|sli, θl

)
, P
(
Ml(Xl)|slj , θl

))
≤ εl.

This theorem states that if an adversary assumes that the dataset can be split into independent parts and if the secrets have
some form of separability, such as in our Example 2, it is possible to apply a different RPP mechanisms to each independent
part while paying only for the maximum privacy loss, similar to the parallel composition result for differential privacy.

E.2. Proof of Lemma 5.1

Lemma 5.1 (Dataset Dependent Contraction lemma). Let ψ be a contractive map in its first argument on (Z, ∥ · ∥). Let
X,X ′ be two r.v’s. Suppose that supwW∞(ψ(w,X), ψ(w,X ′)) ≤ s. Then, for z > 0:

D(z+s)
α (ψ(W,X), ψ(W ′, X ′)) ≤ D(z)

α (W,W ′).

Proof. This proof is similar to the contraction lemma of (Feldman et al., 2018). Let s > 0 such that
supwW∞(ψ(W,X), ψ(W,X ′)) ≤ s, we have, for Y a v.a. such that D(z)

α (W,W ′) = Dα(Y,W
′) and W∞(W,Y ) ≤ z:

W∞(ψ(W,X), ψ(Y,X ′)) ≤W∞(ψ(W,X), ψ(W,X ′)) +W∞(ψ(W,X ′), ψ(Y,X ′))

≤ s+W∞(W,Y )

≤ s+ z.

It follows that:

D(z+s)
α (ψ(W,X), ψ(W ′, X ′)) ≤ Dα(ψ(Y,X

′), ψ(W ′, X ′)) ≤ Dα(Y,W
′) = D(z)

α (W,W ′).

E.3. Proof of Theorem 5.2

Theorem 5.2 (Dataset Dependent PABI). Let XT and X ′
T denote the output of CNI T (W0, {ψt}, {ζt}, X) and

CNI T (W0, {ψt}, {ζt}, X ′). Let st = supwW∞(ψ(w,Xt), ψ(w,X
′
t)). Let a1, . . . , aT be a sequence of reals and let

zt =
∑

i≤t si −
∑

i≤t ai. If zt ≥ 0 for all t, then, we have:

D(zT )
α (XT , X

′
T ) ≤

T∑
t=1

Rα(ζt, at).

Proof. The proof is similar to the original PABI proof of (Feldman et al., 2018). It is obtained by induction by replacing in
the original PABI proof st = supw∈Rd,x,x′∈X ∥ψ(w, x) − ψ(w, x′)∥ by st = supwW∞(ψ(w,Xt), ψ(w,X

′
t)) and using

the dataset dependent contraction lemma (Lemma 5.1).
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F. Applications (Section 6)
F.1. Proof of Proposition 6.1

Proposition 6.1. Let λ > 0, (S,Q,Θ) a Pufferfish framework. We note ∆ the sensitivity of a numerical mechanism f and:

Θλ = {θ ∈ P (Xn);

sup
si∈S

W∞(P (f(X)|si, θ), P (f(X)|si, θ⊗)) ≤ λ}.

Then, if Θ ⊆ Θλ, ∆G ≤ 2λ+∆.

Proof. It is a direct consequence of triangle inequality for the W∞ distance: for (si, sj) ∈ Q,

W∞(P (f(X)|si, θ), P (f(X)|sj , θ)) ≤W∞(P (f(X)|si, θ), P (f(X)|sj , θ))
+W∞(P (f(X)|si, θ⊗), P (f(X)|sj , θ⊗))
+W∞(P (f(X)|sj , θ⊗), P (f(X)|sj , θ))
≤ ∆+ sup

si∈S
W∞(P (f(X)|si, θ), P (f(X)|si, θ⊗))

F.2. Attribute Inference Setting

F.2.1. DEFINITIONS

We recall the definition of Dataset Attribute Privacy from (Zhang et al., 2022):

Definition F.1 (Dataset Attribute Privacy (Zhang et al., 2022)). Let X = (X1
i , . . . , X

m
i ) a record with m attributes that

is sampled from an unknown distribution D, and let X = (X1, . . . , Xm) be a dataset of n records sampled i.i.d from D,
where Xi denotes the (column) vector containing values of ith attribute of every record. Let C ⊆ [m] be the set of indices of
sensitive attributes, and for each i ∈ C, let gi(Xi) be a function with codomain Ui. A mechanism M satisfies (ε, δ)-dataset
attribute privacy if it is (ε, δ)-Pufferfish private for the following framework (S,Q, {θ}):

• Set of secrets S = {sai
def
= 1[gi(X

i) ∈ Ua
i ⊆ Ui; i ∈ C]}.

• Set of secret pairs Q = {(sai , sbi ) ∈ S × S; i ∈ C}.

• Θ is a set of possible distributions θ over the dataset X . For each possible distribution D over records, there exists a
θD ∈ Θ that corresponds to the distribution over n i.i.d. samples from D.
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F.2.2. EXPERIMENTS

We make some experiments in order to highlight strictly better utility than DP mechanisms for real world datasets. We
compare the sensitivity of DP, noted ∆, the sensitivity of the GWM, noted ∆G and the sensitivity of the DAGWM for the
Cauchy distribution, noted ∆G,2.

F.2.3. ATTRIBUTE INFERENCE SETTING

Datasets The datasets are taken from the UCI Machine Learning Repository (Markelle Kelly).

• Student grade prediction: the Student Performance dataset (Cortez, 2014) has been collected to predict student
grades. We want to release the column X of final math grades (0-20) while protecting the privacy of the values
of the column S representing attendance in extra paid classes. We find Here, W∞(P (X|S = ”no”), P (X|S =
”yes”)) = 8, W2(P (X|S = ”no”), P (X|S = ”yes”)) ≈ 2.76. The distribution of X conditioned on S is shown in the
accompanying figure.

Figure 2. Distribution of the student scores on attendance in extra paid classes from the Student Performance dataset.

• Heart disease prediction: the Heart Disease dataset (Janosi et al., 1988) has been collected to predict heart disease
diagnosis. We want to release the column X of ages (integer) while protecting the privacy of the values of the column
S representing heart disease diagnosis (represented by integer values in (0-4). maxdiseasei,diseasej W∞(P (X|S =
diseasei), P (X|S = diseasej)) = 8, maxdiseasei,diseasej W2(P (X|S = diseasei), P (X|S = diseasej)) ≈ 7.80. The
distribution of X conditioned on S is shown in the accompanying figure.

Figure 3. Distribution of ages conditioned on heart diagnosis from the Heart Disease dataset

• Salary prediction: the Adult dataset (Becker & Kohavi, 1996) is a popular dataset allowing to predict the salary of an
individual. We want to release the column X of salaries in {≤ 50K,> 50K} ({0, 1} for privacy analysis) while pro-
tecting the privacy of the values of the column S representing the individual race. We find maxracei,racej W∞(P (X|S =
racei), P (X|S = racej)) = 1, maxracei,racej W2(P (X|S = racei), P (X|S = racej)) ≈ 0.42. The distribution of X
conditioned on S is shown in the accompanying figure.

28



General Additive Noise Mechanisms and Privacy Amplification by Iteration for Pufferfish Privacy

Figure 4. Distribution of the salary label conditioned on every pair of races from the Adult dataset.

F.3. Attribute Inference for Gaussian Data

Proposition F.1 (Multiple attribute inference with Gaussian data). Let M ∈ Rl1×m, N ∈ Rl2×m, with l1, l2 ≤ m. We
assume that the adversary has a prior θ = N (µ,Σ) ∈ P (Rm), with X = (X1

1 , . . . , X
m
n ). Then, considering the secrets

sai = {NXi = a}, with a ∈ K a compact of Rm, the pairs of secrets Q = {(sai , sbi ); i ∈ J1, dK, a, b ∈ K} and the linear
numerical query f : x = (x1, . . . , xn) 7→ (Mx1, . . . ,Mxn),

∆G ≤ max
a,b∈K

∥Cov(MX1, NX1) Cov(NX1)
−1(a− b)∥

for the Pufferfish framework (S,Q, {θ}).

Proof. For i ∈ J1 , nK, we have:
(
M
N

)
Xi ∼ N

((
Mµ
Nν

)
,

(
MΣMT MΣNT

NΣMT NΣNT

))
. Then,

MXi|NXi = a ∼ N
(
Mµ+MΣNT (NΣNT )−1(a−Nµ),MΣMT −MΣNT (NΣNT )−1NΣMT

)
We note Cov(MXi, NXi) =MΣNT . Drawing Y ∼ P (MXi|NXi = a) and noting:

Z = Y +Cov(MXi, NXi)(NΣNT )−1(b− a),

we have Z ∼ P (MXi|NXi = b) and:

∥Y − Z∥ = ∥Cov(MXi, NXi)(NΣNT )−1(b− a)∥.
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F.4. Proof of Proposition 6.3

Proposition 6.3. Let V : Rd → R such that ∇2V ≽ CId. For θ0 ∈ P (Rd), we note θt the distribution of Xt, with (Xt)t≥0

solution of the stochastic differential equation: dXt = −∇V (Xt)dt+
√
2dBt, where (Bt)t≥0 is a brownian motion. We

note θt1,...,tn the distribution generating X = (Xt1 , . . . , Xtn) from the distribution of (Xt)t≥0. We consider the secrets
sa = {X0 = a}, with a ∈ K a compact of Rd, the pairs of secrets Q = {(sa, sb); a, b ∈ K} Then, the GWM of any
L-Lipschitz query f performed on X has a sensitivity for the l1 norm:

∆G ≤ LDiam(K)

n∑
i=1

exp(−2Cti)

for the Pufferfish framework (S,Q, {θt1,...,tn}).

Proof. The proof can be obtained via a synchronous coupling argument, which can for example be found in (Villani, 2008).
Let a, b ∈ K. Let (Bt)t≥0 be a brownian motion and we define:

Xt = a−
∫

∇V (Xs)ds+
√
2Bt,

Yt = b−
∫

∇V (Ys)ds+
√
2Bt,

with the same realization of (Bt)t≥0 for the two processes. Noting αt =Wt−Vt, we have: dαt

dt = −(∇Rλ(Wt)−∇Rλ(Vt))
and, by convexity of V:

d∥αt∥21
dt

= −2⟨∇Rλ(Wt)−∇Rλ(Vt),Wt − Vt⟩ ≤ −2C∥αt∥1.

Gronwall’s lemma implies that ∀t ≥ 0, ∥αt∥1 ≤ e−Ct∥a− b∥1. Then,

∥f(Xt1 , . . . , Xtn)− f(Yt1 , . . . , Ytn)∥1 ≤ L

n∑
i=1

∥αti∥1 ≤ L∥a− b∥1
n∑

i=1

exp(−2Cti)
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F.5. Application of PABI to Convex Optimization (Section 6.4)

F.5.1. SETUP OF CONVEX OPTIMIZATION FOR PABI

Here is the setup for projected noisy stochastic gradient descent in the convex setting:

• f is L-Lipschitz in its first argument: there exists L > 0 such that ∀x ∈ X , w1, w2 ∈ Rd,

∥f(w1, x)− f(w2, x)∥ ≤ L∥w1 − w2∥.

• f is β-smooth in its first argument: there exists β > 0 such that ∀x ∈ X , w1, w2 ∈ Rd,

∥∇wf(w1, x)−∇wf(w2, x)∥ ≤ β∥w1 − w2∥.

• f satisfies the following condition: ∀x1, x2 ∈ X , w1 ∈ Rd,∃Cw1
> 0 such as :

∥∇wf(w1, x1)−∇wf(w1, x2)∥ ≤ Cw1∥x1 − x2∥.

F.5.2. APPLICATION TO DP

Lemma F.1 (Example: DP as a special case). In the case of DP, each distribution θ ∈ Θ corresponds to a prior
of independence between the elements of the dataset. Let β, η, σ, L, T > 0, α > 1 such that η > 2/β. We set the

secrets S =
{
sai

def
= {Xi = a}; a ∈ X

}
and the pairs of secrets : Q = {(sai , sbi ); a, b ∈ X}. Let (X,X ′) ∼ π ∈

Γ(P (X|sai ), P (X|sbi )). Let f be an objective function which is convex, β-smooth and L-Lipschitz. Let K ⊂ Rd be a
compact set. Let W0 = W ′

0 ∈ K be the original weight of the stochastic gradient descent and ψ the update function of
the projected noisy stochastic gradient descent of learning rate η. Let ζ = N (0, σ2η2Id) be the noising distribution. For
t ∈ J0 , T K, we define Wt = CNI t(W0, ψ, ζ,X),Wt = CNI t(W

′
0, ψ, ζ,X

′). Then, Theorem 5.2 allows to obtain:

D(zT )
α (XT , X

′
T ) ≤

2αL2

σ2(T − i+ 1)
.

This recovers the results of Feldman et al. (2018) for the case of DP-SGD.

Proof. Let σ > 0. Let (sai , s
b
i ) ∈ Q, θ ∈ Θ, with θ representing a prior of independence. Then, for t ∈ J1 , T K,

(X,X ′) ∼ π ∈ Γ(P (X|sai ), P (X|sbi )), st = supwW∞(ψ(w,Xt), ψ(w,X
′
t)) =

{
supw ∥ψ(w, a)− ψ(w, b)∥ if t = i

0 else
,

ζt = N (0, (ησ)2Id). Then, setting at =

{
si

T−i+1 if t ≥ i

0 else
, we get:

D(zT )
α (XT , X

′
T ) ≤

T∑
t=i

Rα

(
ζt,

supw ∥ψ(w, a)− ψ(w, b)∥
T − i+ 1

)

≤
T∑
t=i

α supw ∥ψ(w, a)− ψ(w, b)∥
2η2σ2(T − i+ 1)2

≤ 2αL2

σ2(T − i+ 1)
,

which is the bound of Theorem 23 of Feldman et al. (2018).

F.5.3. PABI BOUNDS FOR GAUSSIAN DATASETS

Proposition 6.4. Assume that the adversary has a Gaussian prior θ. Then,

Dα(WT ,W
′
T ) ≤

αη2

2σ2
min(2L, sup

v∈K
Cv∥a− b∥)2

+
αη2

2σ2

T∑
t ̸=i

min(2L, sup
v∈K

Cv∥Cov(Xt, Xi) Cov(Xi)
−1(a− b)∥)2.
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Proof. Let t ∈ J1, T K such that t ̸= i. We want to find a upper bound to W∞P (Xt|Xi = a), P (Xt|Xi = b)). We note

X = (X1
1 , . . . , X

d
1 , . . . , X

d
T ) ∼ N (µ,Σ), Xt = (X1

t , . . . , X
d
t ) ∼ N (µt,Σt) and M i

t =

(
0(i−1)d Id 0(T−i)d

0(t−1)d Id 0(T−t)d

)
. Then,(

Xi

Xt

)
=M i

tX ∼ N
((

µi

µt

)
,

(
Σi Σit

Σti Σt

))
, and:

Xt|Xi = a ∼ N (µt +ΣtiΣ
−1
i (a− µi),Σt − ΣtiΣ

−1
i Σit).

Then, for Y ∼ Xt|Xi = a and Z = Y + Cov(Xt, Xi) Cov(Xi)
−1(b − a), Z ∼ Xt|Xi = b. For t = i, we have

W∞P (Xi|Xi = a), P (Xi|Xi = b)) = ∥b− a∥.

F.5.4. PABI BOUNDS FOR DECREASING DEPENDENCIES

The bounds of Section 6.4 can be improved in the case where (W∞(Xt, X
′
t))t is non-increasing.

Proposition F.2. Taking the notations from Theorem 5.2, let (Xt) and (X ′
t) be CNIs. Assume that (st)t = (W∞(Xt, X

′
t))t

is non-increasing. Then,

D(zT )
α (XT , X

′
T ) ≤

T∑
t=1

Rα

(
ζt,

∑T
k=1W∞(Xk, X

′
k)

T

)
.

When ζt = ζ for all t ∈ {1, . . . , T}, the bound becomes:

D(zT )
α (XT , X

′
T ) ≤ TRα

(
ζ,

∑T
t=1W∞(Xt, X

′
t)

T

)
.

Proof. We assume that the sequence (st)t = (W∞(Xt, Xi))t is decreasing. We apply Theorem 5.2 to get new bounds.

Compared to the analysis of Section 6.4, it gives For t ∈ {1, . . . , T}, we take at =
∑T

k=1 W∞(Xk,X
′
k)

T , we have:

zt =
∑
k≤t

si −
∑
k≤t

ai =
∑
i≤t

W∞(Xi, X
′
i)−

1

T

∑
i≤t

T∑
k=1

W∞(Xk, X
′
k)

=
T − t

T

∑
i≤t

W∞(Xi, X
′
i)−

t

T

∑
t<i≤T

W∞(Xi, X
′
i)

≥ T − t

T

∑
i≤t

W∞(Xi, X
′
i)− tW∞(Xt, X

′
t)

 ≥ 0. (st) is non-increasing

We further analyze this new bound for the case of Gaussian noise : ζt = ζ = N (0, σ2Id) for all t. Then, we have:

D(zT )
α (XT , X

′
T ) ≤

α(
∑T

t=1W∞(Xt, X
′
t))

2

2Tσ2
. (1)

We can compare this bound with the PABI bound of Section 6.4:

D(zT )
α (XT , X

′
T ) ≤

α
∑T

t=1W∞(Xt, X
′
t)

2

2σ2
. (2)

While the latter result (2) allows to derive privacy guarantees for composition in the Pufferfish framework, it does not ensure
that privacy loss tends to 0 as T → +∞ even when

∑T
t=1W∞(Xt, X

′
t)

2 converges. However, when dependencies are
decreasing over time, the privacy loss analysis is improved with (1).

We now compare our PABI bounds with the DP and the Group DP (which represent two extreme cases of our analysis).
In order to do this, we illustrate the privacy loss as a function of the number of iterations. We let the secrets sa = {X1 =
a}, sb = {X1 = b} and for simplicity and visualization, we stay in the Gaussian setting of Proposition 6.4. We assume
that each Xt has a covariance matrix Cov(Xt) = Id and the covariance between Xt and X1 is Cov(X1, Xt) = ρtId. This
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Figure 5. Privacy loss as a function of the num-
ber of iterations for the following values of ρt:
0 (DP), 0.1, 0.2, 0.8 and 1 (Group DP).

Figure 6. Privacy loss as a function of the number of iterations for
the following values of ρt : 0 (DP), 0.1, 1/t and 1/t2.

corresponds to the case where each the columns of the dataset are independent of each other but dependencies within
each column are controlled by the parameter ρt. ρt

t→+∞→ 0 means that Xt becomes increasingly independent of X1 as t
increases, indicating that Xt is less correlated with X1 when they are far apart in the dataset. Using Proposition F.2 and
Proposition 6.4, we have, for t ∈ {1, . . . , T} and ρ1 = 1: ∥Cov(Xt, Xi) Cov(Xi)

−1(a− b)∥ = |ρt|∥a− b∥. Then:

D(zT )
α (XT , X

′
T ) ≤

αη2

2Tσ2

(
T∑

t=1

min(2L, sup
v∈K

Cv|ρt|∥a− b∥)

)2

≤
αη2∥a− b∥2(supv∈K Cv)

2

2Tσ2

(
T∑

t=1

|ρt|

)2

.

We set the following parameters for visualization: L = σ = η = supCv = ∥a − b∥ = 1, α = 2. Recall that standard
DP corresponds to the absence of correlation (ρt = 0), while Group DP corresponds to maximal correlation (ρt = 1). In
Figure 5, we show how our PABI bounds compare with the DP setting in the case where all elements of the dataset are
equally correlated (ρt = ρ), highlighting the privacy gains over Group DP. In Figure 6, we show the convergence of the
privacy loss to 0 when the correlations vanish (ρt

t→+∞→ 0).
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