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Abstract
001

We present a novel approach to automatically syn-002

thesize “wayfinding instructions" for an embodied003

robot agent. In contrast to prior approaches that004

are heavily reliant on human-annotated datasets005

designed exclusively for specific simulation plat-006

forms, our algorithm uses in-context learning to007

condition an LLM to generate instructions using008

just a few references. Using an LLM-based Vi-009

sual Question Answering strategy, we gather de-010

tailed information about the environment which011

is used by the LLM for instruction synthesis. We012

implement our approach on multiple simulation013

platforms including Matterport3D, AI Habitat and014

ThreeDWorld, thereby demonstrating its platform-015

agnostic nature. We subjectively evaluate our ap-016

proach via a user study and observe that 83.3% of017

users find the synthesized instructions accurately018

capture the details of the environment and show019

characteristics similar to those of human-generated020

instructions. Further, we conduct zero-shot navi-021

gation with multiple approaches on the REVERIE022

dataset using the generated instructions, and ob-023

serve very close correlation with the baseline on024

standard success metrics (< 1% change in SR),025

quantifying the viability of generated instructions026

in replacing human-annotated data. To the best027

of our knowledge, ours is the first LLM-driven028

approach capable of generating “human-like" in-029

structions in a platform-agnostic manner, without030

requiring any form of training.031

1 Introduction032

In embodied navigation tasks, language is primar-033

ily used to convey wayfinding instructions to an034

agent operating in a simulation platform. These035

instructions convey the path that the agent should036

take to reach a target location. Generating these037

Figure 1: Overview: We use in-context learning with an
LLM to generate multiple styles of wayfinding instruc-
tions for embodied navigation. Given any environment,
we first gather a set of egocentric images along a path
(white arrows), and obtain spatial knowledge via Visual
Question Answering. We then condition an LLM on dif-
ferent styles of instructional language (coarse as well as
fine grained) via reference texts. The figure highlights
wayfinding instructions for this environment generated
without training on any datasets.

instructions usually takes place in the form of creat- 038

ing datasets that require several human annotation 039

hours (Qi et al., 2020a; Anderson et al., 2018a; 040

Padmakumar et al., 2022). In addition, the current 041

datasets are exclusive to the embodied simulation 042

platform in which the agent operates, preventing 043

the transfer of instruction-following approaches 044

across platforms. For instance, instructions based 045

on the Matterport3D simulator (Chang et al., 2017; 046

Ramakrishnan et al., 2021), which is the most com- 047

monly used platform for indoor datasets (Gu et al., 048

2022) cannot be directly used with other indoor 049

simulators such as ThreeDWorld (Gan et al., 2020) 050

and Ai2-thor (Kolve et al., 2017) because the en- 051

vironment layouts are different. As a result, eval- 052

uating embodied navigation methods across the 053
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simulators is rather difficult, which hinders exper-054

iments on their generalizability. It is important055

to design platform-agnostic wayfinding instruction056

synthesizers to help alleviate these issues.057

Some recent works have looked at synthesizing058

instructions from input visual landmarks (Wang059

et al., 2022b; Kurita and Cho, 2020; Tan et al.,060

2019). These approaches however are not eas-061

ily generalizable and require training a separate062

model for each instruction dataset to infer synthetic063

instructions. Moreover, they only focus on the064

Matterport3D environment, as indoor instruction065

datasets are scarce on other platforms.066

Main Results: We present a novel approach to067

synthesize wayfinding instructions for an embod-068

ied robot agent. Figure 1 presents an overview of069

our approach. Given a set of egocentric images cap-070

tured from a simulator, we perform Visual Question071

Answering to gather information about the scene,072

and use this to condition an LLM with reference073

texts to generate different styles of instructions.074

The novel components of our work include:075

• We present a novel platform-agnostic, non-076

training based approach to synthesize wayfind-077

ing instructions of multiple styles.078

• We use the in-context learning capabilities of079

LLMs to perform instruction synthesis in a080

few-shot manner. Our method only requires081

a few samples of reference wayfinding text to082

produce human-like instructions in multiple083

simulation platforms.084

• We subjectively validate generated instruc-085

tions across multiple simulation platforms via086

a user study and infer that 83.3% of users find087

the instructions accurately capture details of088

the environment, and exhibit human-like char-089

acteristics.090

• Finally, we evaluate the effectiveness of091

our generated instructions on the REVERIE092

vision-and-language navigation (VLN) task.093

The performance of three zero-shot VLN ap-094

proaches, evaluated using standard VLN suc-095

cess metrics, was comparable to established096

baselines, highlighting the efficacy and prac-097

tical utility of LLM-generated instructions in098

navigation tasks.099

In contrast to prior work which is limited to a single100

simulation platform and instruction style, we use101

in-context learning in LLMs to achieve instruction102

Figure 2: Extracting Spatial Knowledge: We use the
GPT-3.5-turbo along with BLIP to maximize knowledge
captured from an image, similar to ChatCaptioner (Zhu
et al., 2023). We notice that adding more detail to the
captions helps improve the quality the final instruction
by filtering out unnecessary information. More details
about this are in Appendix A.

synthesis of multiple styles on different embodied 103

simulation platforms, including Matterport3D, AI 104

Habitat and ThreeDWorld. Our evaluation both via 105

a user study and navigation performance indicates 106

that the synthesized instructions are sufficiently rep- 107

resentative of human-like texts for them to be used 108

as a scalable alternative for generating instructions 109

for embodied navigation tasks. 110

2 Approach 111

Our approach consists of two components. First, 112

we perform Visual Question Answering (VQA) on 113

egocentric images taken along an agent’s path in 114

a simulation environment. This gives us spatial 115

knowledge about the scene. Next, we combine this 116

spatial knowledge with a few reference wayfinding 117

instructions in an in-context learning (Liu et al., 118

2023b) prompt to condition an LLM for synthesiz- 119

ing instructions that would lead the agent to the 120

target location. 121

2.1 Extracting Spatial Knowledge: LLM + 122

BLIP 123

Paths in simulated environments describe a navi- 124

gable route for an embodied agent to get from one 125

point to another. In our approach, given any em- 126

bodied simulator, we first generate random paths. 127

We then obtain a discrete set of egocentric images 128

I uniformly sampled on this path. 129
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Figure 3: Given any embodied simulator, we synthe-
size multiple styles of wayfinding instructions for agents.
Spatial knowledge is first mined from egocentric images
I captured using the LLM and BLIP. These captions
are fed into a prompt along with a few reference exam-
ples representing the desired instruction style. Finally,
the LLM is conditioned with this prompt to generate a
human-like instruction in the style of the reference text,
using the captioned information.

We then perform VQA on the images in I, to130

gather information about the environmental arti-131

facts on the path. Following a similar approach132

presented in ChatCaptioner (Zhu et al., 2023), we133

maximize the knowledge obtained from each im-134

age by gathering insights via a conversation in a135

Chain of Thought manner (Wei et al., 2022) be-136

tween GPT-3.5 (OpenAI, 2020) and BLIP (Li et al.,137

2023) (Figure 2). We notice that this gives us more138

detailed descriptions of each image, improving the139

quality of the generated instruction.140

2.2 Synthesizing Wayfinding Instructions via141

In-Context Learning142

We condition GPT-3.5-turbo-instruct to generate143

suitable wayfinding instructions for navigation.144

Figure 3 illustrates this approach. Captions ob-145

tained for images in I along with reference texts146

providing context on the desired instruction style147

are used to create a prompt for the LLM. We ex-148

periment with reference instructions taken from149

two datasets with contrasting styles; R2R (Ander-150

son et al., 2018a), which has more detailed, fine-151

grained human annotations, and REVERIE (Qi152

et al., 2020a), which has instructions that are ab-153

stract and coarse-grained.154

We also observe that adding more information 155

about the instruction style itself helps further fine- 156

tune the outcome. For instance, in the REVERIE 157

dataset (Qi et al., 2020a), almost all instructions 158

end by describing a task with the target object 159

(‘turn the faucet’ for example). Adding this in- 160

formation as an additional constraint helps further 161

finetune the LLM output. More details about this 162

are provided in appendix A. 163

3 Evaluation & Results 164

In this section, we discuss our evaluation strategy 165

and present results. 166

3.1 Qualitative: User Study 167

We conduct a user study to evaluate the quality 168

of the generated instructions. Participants are first 169

shown a video of a random path taken from one of 170

3 different simulators (Matterport3D, AI Habitat, 171

ThreeDWorld). Using an instruction of either a 172

REVERIE or R2R style as reference they are asked 173

to come up with a stylistically similar instruction 174

for the video. We then show them the generated 175

instruction, and ask them a few questions about 176

correlation. We infer that 83.3% of users believe 177

that the generated instruction captured details of 178

the environment to more than a decent level of ac- 179

curacy, and that a majority of 73.3% believed that 180

the agent could reach the target room by follow- 181

ing the generated instruction. More details are in 182

Appendix B.2. 183

3.2 Quantitative: Embodied Navigation 184

Our evaluation setup is simple. We first implement 185

a zero-shot navigation scheme using the original 186

instructions provided in REVERIE, a popular VLN 187

dataset. We then replace the original instructions 188

with instructions generated by our approach, and 189

run the navigation scheme again. A similar perfor- 190

mance would indicate that the generated instruc- 191

tions can indeed serve as a replacement to human- 192

annotated data. 193

REVERIE is based on the Matterport3D simula- 194

tor, which contains real-world captures of house- 195

hold environments. We look at 3 zero-shot VLN 196

approaches - 1) CLIP-Nav (Dorbala et al., 2022), 197

which uses CLIP (Radford et al., 2021) to ground 198

target instructions to a scene to drive the agent’s 199

navigation policy, 2) Seq-CLIP-Nav, an extension 200

of this approach that also performs backtracking 201

(see Appendix B.3), and 3) GLIP-Nav, which we 202
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Approach
Original Generated (Central) Generated (Panoramic)

SR ↑ OSR ↑ SPL ↑ SR ↑ OSR ↑ SPL ↑ SR ↑ OSR ↑ SPL ↑
Clip-Nav 6.57 28.68 0.06 5.98 26.69 0.05 5.57 26.09 0.05

Seq-CLIPNav 14.92 24.46 0.15 13.94 21.51 0.14 11.35 23.10 0.13
GLIP-Nav 16.87 32.56 0.18 16.32 33.23 0.18 14.18 29.87 0.15

Results: We evaluate zero-shot VLN models by replacing REVERIE’s human-annotated instructions with instruc-
tions generated by our approach. Notice the similar performance on each VLN model across all metrics. There
is a noticeable drop in using panoramic frames over central frames, and this could be attributed to condensing
copious amounts of scene information into a single sentence (See Appendix B.3.2). We can positively infer from
the minimal difference in SR, OSR, and SPL values that our approach can generate instructions that can indeed
serve as a good replacement to human-annotated data.

introduce as a GLIP (Li* et al., 2022) based vari-203

ant of Seq-CLIP-Nav. More details about these204

approaches are in Appendix B.3.205

As Matterport3D provides panoramic images,206

we consider two possibilities for extracting spa-207

tial knowledge (see Appendix B.3.2); The Cen-208

tral Caption, where only the images in the direc-209

tion of the agent’s heading are captioned, and the210

Panoramic Caption, where the entire panorama211

(4 images) is captioned and summarized to obtain212

an instruction.213

Experiment Details: We employ 3 standard VLN214

evaluation metrics (Zhao et al., 2021) to measure215

performance across each navigation approach - 1)216

SR, which is the Success Rate determining when217

the agent has successfully reached the target loca-218

tion; 2) OSR, the Oracle Success Rate, for when219

the agent successfully reached the target location220

once, but overshot and stopped elsewhere, and221

3) SPL, which measures efficiency of Success222

weighted by Path Length. The results table com-223

pares the performance of the generated instructions224

with the original ones on the zero-shot VLN ap-225

proaches.226

We make the following key inferences -227

Automated Instruction Generation: A key obser-228

vation is that embodied agents equipped with LLM-229

generated instructions perform almost equally well230

compared to when they are provided with human231

annotated instruction. This has practical implica-232

tions for researchers working on embodied navi-233

gation, where such instruction data is limited and234

hard to annotate. Creating large-scale instruction235

datasets is challenging, often needing simulator-236

specific annotation tools, which cannot be easily237

transferred. To this end, our study presents a good238

alternative in leveraging off-the-shelf LLMs as a239

wayfinding instruction generation tool.240

Cross-Platform Scalability: Our approach is241

platform-agnostic, and can be applied to generate 242

instructions across embodied simulation platforms, 243

whether they are discrete, continuous, photoreal- 244

istic, or not. The user study validates this, where 245

users across simulator types believed that the gen- 246

erated instructions captured details of the environ- 247

ment and could lead the agent to the target location. 248

We believe that the embodied navigation commu- 249

nity can significantly benefit from this, enabling 250

researchers to conduct cross-platform generalizabil- 251

ity experiments without relying on the availability 252

of platform-specific human-annotated data. 253

Improved Instruction Quality: We notice that 254

human-annotated instructions in REVERIE some- 255

times tend to be unnatural and lacking in terms 256

of sentence construction. As these annotations are 257

crowdsourced, this can be attributed to human error. 258

It is often in these cases that the embodied agent 259

fails to reach it’s target location, due to poor anno- 260

tation leading to inferior grounding scores. LLM- 261

generated instructions on the other hand are almost 262

always well structured, containing specific objects 263

and waypoints leading up to a target location; a di- 264

rect consequence of our prompting strategy. Some 265

of these cases are discussed in appendix B.3.3. 266

4 Conclusion 267

We present a simple, cross-platform approach to 268

synthesize multiple styles of wayfinding instruc- 269

tions for embodied navigation. Our approach oper- 270

ates under zero-shot setting, and instead utilizes an 271

LLM with in-context learning to produce instruc- 272

tions across multiple simulation platforms. We 273

verify the quality of the instructions generated both 274

via a user study and by evaluating zero-shot VLN 275

performance. We positively infer that the gener- 276

ated instructions are usable, and that our approach 277

provides for a scalable and accessible solution for 278

creating wayfinding instructions. 279
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5 Limitations and Future Work280

While our approach is platform-agnostic, the qual-281

ity of the generated instructions is very sensitive282

to the individual modules that drive our scheme.283

Poor spatial knowledge extracted from performing284

VQA would directly affect the quality of the cap-285

tion. In some preliminary experiments, we notice286

this behavior on some images taken from the Vir-287

tualHome (Puig et al., 2018) embodied simulator,288

which has non-photorealistic environments. Using289

LLaVA (Liu et al., 2023a) for VQA seems to create290

ghost objects and artifacts when asked to describe291

a scene leading to poor instructions. In contrast, it292

performs well with real world images taken from293

Matterport3D. We believe this poor performance294

might be because large captioning models such as295

LLaVA are trained on an abundance of real world296

data, and may contain fewer if not any simulation297

or non-photorealistic images. Secondly, during the298

synthesis stage, we present the LLM with examples299

from the instruction style that we wish to obtain.300

The generated instructions can sometimes contain301

the direct words or language used in these reference302

examples. As such, we believe it is necessary to303

explicitly specify in the prompt that the LLM uses304

only the captions and not the reference texts for305

generation. In the future, we intend to use our ap-306

proach to implement a generalist navigation agent307

and study its performance in terms of consistency308

across various embodied simulation platforms.309

6 Ethics Statement310

Equipping embodied agent with LLM-generated in-311

structions to perform navigational tasks is a step to-312

wards cohesive human-robot collaboration. While313

the end goal is to make such systems fault-tolerant314

and error-free, we may not want an agent to per-315

form certain actions that it is unsure of. However,316

currently there seems to be a gap in the language317

interpretation capabilities of the agent especially in318

complex scenarios.319

Our user study protocol was approved by Institu-320

tional Review Board and we do not collect, share or321

store any personal information of the participants.322
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A In-Context Learning Strategies539

In this section, we discuss some strategies we em-540

ploy to get the best possible wayfinding instruction.541

A prompt template is presented to the LLM as -542

"A robot agent at home sees a sequence543

of egocentric images with the following544

frame descriptions.545

Frame 0: <Caption 1>546

Frame 1: <Caption 2>547

...548

Frame n: <Caption n>549

Reference Texts: [’Go to ...’, ’Move past550

...’, Walk ahead ... ]551

Write an concise instruction in the style552

of the Reference Texts that would get the553

robot from Frame 0 to Frame n.554

<Additional constraints on the instruc-555

tion style>"556

Each caption in this template is obtained using557

the LLM + BLIP strategy outlined in section 2.1.558

A.1 Influence of LLM + BLIP559

An example egocentric image sequence of a path560

taken in the TDW simulator (Gan et al., 2020) is561

shown in figure 4. Using the LLM + BLIP approach562

discussed in section 2.1, we get the following cap-563

tions for each image in 4.564

1. The image depicts a computer screen showing565

a colorful video of a man that is being dis-566

played on a television. There is also a chair567

visible in the image besides the television.568

2. The image contains a small chair made of569

fabric, in colors of red, white and gray. There570

is another object present in the image, but it571

is not clear what it is.572

3. The image is of a living room with brown fur-573

niture and no decorations on the walls. There574

are no people present in the living room.575

4. The image depicts a room with a gray couch576

located against a wall. There is a small televi-577

sion mounted on the wall.578

5. The image features a computer screen display-579

ing a website, with a couch visible in the back-580

ground. A plant is placed on a table next to581

the computer. No other objects are visible on582

the table.583

Passing these Frame descriptions to the prompt 584

in A gives us a REVERIE-like instruction as, 585

Go to the living room, then move to the 586

room with the gray couch and turn off 587

the television mounted on the wall. 588

and R2R-like instruction as, 589

Go from the computer screen to the chair, 590

then past the object in the background 591

and into the living room. Walk past the 592

blue furniture and turn right towards the 593

gray couch. Finally, stop in front of the 594

table with the plant and view the website 595

on the computer screen. 596

Notice the level of detail added by insights that 597

LLM gathers by conversing with BLIP. This inturn 598

gives more information for GPT-3.5-Turbo-Instruct 599

to use for generating a final instruction from the 600

frames. 601

Figure 7: LLM + BLIP: Notice the initial BLIP caption
mentions a television in the image, even when it is not
present. When the LLM asks for the presence of elec-
tronic items in the room, BLIP answers no, which leads
to the refined caption preventing misinformation.

We also experiment with using only BLIP cap- 602

tions with object and room queries, without the 603

LLM. The REVERIE-like instruction in this case 604

looks like, 605

Go to the living room on level 0 and turn 606

off the television by the couch and the 607

table. 608

and the R2R-like instruction is, 609
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Figure 4: Egocentric Image Sequence from a path in ThreeDWorld (Gan et al., 2020)

Figure 5: Egocentric Image Sequence from a path in AI Habitat (Ramakrishnan et al., 2021)

Figure 6: Egocentric Image Sequence from a path in Matterport3D (Chang et al., 2017)

Start in the kitchen and go up the stairs610

on the left. Turn right at the top of the611

stairs and then go past the round table612

and chairs and stairs. Keep walking until613

you see the two small tables on the rug614

and then turn left. Go down the hallway615

keeping the wall on your left and stop616

in front of the door on your right with617

the treadmill. Turn left and you will see618

the living room with a computer screen619

containing a picture of a couch and a620

table.621

While the REVERIE-like instruction is still us-622

able, notice the R2R-like instruction tends to be623

nonsensical with ghost objects such as stairs and624

treadmill in the caption. It also contains bad di-625

rections. We observe this phenomenon in multiple626

cases, and Figure 7 showcases how the conversa-627

tion with the LLM improves the initial captions to628

remove ghost objects and prevent misinformation.629

Thus, we infer that using an LLM with BLIP630

to provide more detail about the environment is631

important when it comes to finally generating more632

meaningful instructions.633

A.2 Empirical Information on Instruction634

Styles635

We utilize factual knowledge about R2R and636

REVERIE instruction styles to finetune the LLM637

prompt.638

A.2.1 Additional Constraints for R2R 639

Upon inspection, we observe that R2R instructions 640

are usually 2 or more sentences long, attributed to 641

longer path lengths. Further, in the R2R paper, the 642

authors mention that they ask annotators to “write 643

directions so that a smart robot can find the goal 644

location after starting from the same start location", 645

and are told that it is not necessary to follow the 646

path, but only to reach the goal. We incorporate 647

this information to append our prompt:- 648

“Write directions so a smart robot can 649

find the final frame after starting from 650

the same starting frame. You do not have 651

to use information in the frames, and just 652

need to reach the goal location." 653

A.2.2 Additional Constraints for REVERIE 654

REVERIE instructions are concise, and talk only 655

about the goal location. Clip-Nav (Dorbala et al., 656

2022) studies REVERIE in detail and empirically 657

deduces that most instructions can be broken down 658

into navigation and activity components, with the 659

conjunction and between them. We utilize this 660

information to add the following to our prompt:- 661

"The instruction must be a single sen- 662

tence long, ending with a task related to 663

an object in the final frame, and must be 664

less than 20 words." 665
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B Evaluation Details666

B.1 Simulator Implementations667

We implement our approach on 3 different simula-668

tion platforms, namely AI Habitat (Ramakrishnan669

et al., 2021), Matterport3D (Chang et al., 2017)670

and ThreeDWorld (TDW) (Gan et al., 2020). Ego-671

centric image sequences for these simulators are672

presented in Figure 4, Figure 5 and Figure 6 re-673

spectively. Depending on the type of simulator,674

we revise our strategy for extracting sequences as675

listed below -676

• Environments in the Matterport3D simulator677

are taken from real world scenes and provide678

fully connected graphs whose nodes represent679

360 panoramas. Given two nodes from the680

connected graph, we compute a path between681

them as a sequence of nodes. To compute682

captions, we either consider the central frame683

or the entire panorama (described in Appendix684

B.3.2). The path contains discrete “hops" of in685

the form of images, which gives us our image686

sequence.687

• AI Habitat has continuous 3D reconstruc-688

tions of real world household environments.689

To obtain a path, we first sample two naviga-690

ble points in the environment and compute the691

shortest distance between them. Then, to ob-692

tain a discrete sequence of images, we sample693

images at a uniform interval along the path.694

• TDW is a photorealistic simulator that is ca-695

pable of procedurally generating new envi-696

ronments. We make use of this simulator to697

test the robustness of our approach in non-real698

world environments. We obtain our image699

sequence in the same manner as AI Habitat.700

For the user study, we sample 100 paths of vary-701

ing lengths from each of these simulators, randomly702

choosing from environments they offer. We then703

use our approach on these paths to generate instruc-704

tions in a platform-agnostic manner.705

B.2 Qualitative Analysis - User Study Details706

Each user is presented with a random image se-707

quence chosen from a bank of sequences gathered708

from the 3 different environments. This allows709

for us to evaluate the generated instruction across710

multiple platforms. We observe a consistent per-711

formance across simulators, leading us to establish712

the platform-agnostic nature of our instruction syn- 713

thesizer. 714

Our study was aimed at quantifying the usability 715

of generated instructions in guiding an embodied 716

agent in the environment. In this direction, we first 717

presented the user with video of an egocentric im- 718

age sequence chosen from a random simulation 719

platform. After being shown examples of fine or 720

coarse grained instructions, the users were asked to 721

provide an instruction describing the robot’s path in 722

that style. Finally, the participant is shown the syn- 723

thesized instruction for the same sequence and is 724

asked comparative questions highlighted in figure 725

below. 726

Our User Study. The participant is asked questions on
the quality of the generated instructions and about how
much it compares with the instruction that they wrote.

Each question aims to tackle a different com- 727

parative perspective. The first question seeks to 728

find out if the generated instructions are similar 729

to what the user has written down. The second 730

question asks if the generated instructions accu- 731

rately capture details of the environment. The third 732

queries about the robustness of generation by ask- 733

ing if the participant has noticed any ghost objects 734

or artifacts. Finally, we ask if the user thinks an 735

embodied agent could reach the target location by 736

following the generated instruction. 737

Out of a total of 30 participants, 83.3% believed 738

the instruction captured details of the environment 739

to a more than decent level of accuracy. A major- 740

ity (73.3%) of these users also believed that the 741

agent could reach the target room by following 742
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the generated instruction. A lower percentage of743

participants (16.5%) reported seeing ghost objects,744

which indicates either that some people may have745

missed objects in the video, or that the generated746

instruction is sensitive to the captioning scheme.747

Conversely, 43.3% of participants believed that748

the instructions generated were either very differ-749

ent from what they wrote, or had minor overlaps.750

We can infer from this that the vocabulary people751

use to describe a path may significantly vary from752

the generated instruction. However, this does not753

necessarily mean that the agent would not be able754

to follow the generated instruction to reach the tar-755

get location, as it would use alternate references or756

landmarks to get there.757

Our study was determined exempt by our institu-758

tion’s IRB. All of the participants voluntarily chose759

to participate in it.760

B.3 Quantitative Study - Zero-Shot Embodied761

Navigation762

B.3.1 Dataset and Navigation Setup Details763

We run navigation experiments on the REVERIE764

dataset, which tackles vision-and-language navi-765

gation (VLN) using coarse-grained instructions.766

Instructions in REVERIE have been human-767

annotated, where the annotator is asked to write768

a high-level instruction describing how to get to the769

target location after being shown a path in the Mat-770

terport3D environment. Each path is discrete, i.e.,771

it consists of a set of panoramic images or nodes772

along which the agent “hops". The nodes inturn773

consist of 4 views covering a 360 degree view of774

the agent.775

We consider a generalizable, zero-shot case,776

where the agent is dropped in an environment that777

it has no knowledge of, and is given an instruction778

that it must follow to get to a target location. This779

setting is in line with our ultimate goal of develop-780

ing a generalist embodied navigation agent, which781

is able to function without any supervision in an782

unseen environment. We opt to use the unseen783

validation split of the REVERIE dataset for evalu-784

ation, which contains environments that the agent785

would not see in the training split. It contains 504786

paths, which was deemed sufficient for showcasing787

zero-shot navigation prowess using the generated788

instructions.789

CLIP-Nav (Dorbala et al., 2022) uses CLIP to790

make grounding decisions for navigation. The in-791

struction is first broken down into a Navigation792

Component (NC) and an Activity Component (AC). 793

The NC contains information about getting to the 794

target location, while the AC containing the activity 795

that the agent is expected to perform is disregarded. 796

The NC is further broken down into noun phrases 797

using GPT-3.5-turbo, which are then grounded us- 798

ing CLIP with each of the 4 images captured by the 799

agent from its panoramic view. The agent takes the 800

direction of the highest CLIP grounding score. 801

Seq-CLIP-Nav extends this to incorporate back- 802

tracking. Backtracking refers to when the agent 803

falls back or “backtracks" a few nodes when it de- 804

termines that it has taken the wrong path. 805

We also ablate with GLIP-Nav, a variant of Seq- 806

CLIP-Nav we introduce, where CLIP is replaced 807

with GLIP (Li* et al., 2022) for obtaining ground- 808

ing scores. 809

B.3.2 Matterport3D: Frame Selection 810

REVERIE provides a set of panoramic images 811

taken from Matterport3D that forms a path cor- 812

responding to each instruction. The annotator is 813

provided with this whole panoramic view at each 814

step. To incorporate our generation approach here, 815

we consider two variations. 816

Central Caption: We hypothesize that the central 817

frame contains the most immediate and critical 818

information required for the embodied agent to 819

perform its next set of actions. To this end, we 820

caption only the central frames (i.e., the image in 821

the direction of the agent’s heading) of the entire 822

path sequence to generate the instruction. 823

Panoramic Caption: Here we caption each image 824

of the entire panorama (4 frames), and summarize 825

the individual captions using the LLM. We perform 826

this over the entire path sequence to generate the 827

instruction. Although the panoramic sequence con- 828

tains more semantic information over the single 829

(central) frame, note that each instruction is only a 830

single sentence, and compressing all the informa- 831

tion of a scene (be it the target or an image along 832

the path) is non-trivial, if the instruction has to be 833

of a suitable length. 834

During the panoramic-frame case, we use the 835

LLM to summarize the set of captions obtained 4 836

90 degree views around the agent. Each caption in 837

this set is obtained using the LLM + BLIP approach 838

discussed in section 2.1. The prompt for this is - 839

"I see a panoramic view with the follow- 840

ing descriptions. 841

North: <Caption 1> 842
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East: <Caption 2>843

South: <Caption 3>844

West: <Caption 4>845

Summarize these descriptions into a846

single description using less than 20847

words."848

B.3.3 Inferences on Generated Instructions849

In addition to the results presented in section 3.2,850

we also measure the average pairwise cosine simi-851

larity using MiniLM-V6 (Reimers and Gurevych,852

2019) between the human-annotated instructions853

and the generated instructions.854

For the central-caption case, we get a score of855

0.476, and for the panoramic-caption case, we get856

0.433, on a scale of −1 to 1. From the overall857

positive correlation, we can infer that the gener-858

ated instructions tend to be similar to the human-859

annotated ones on average. Some individual cases860

of extreme difference are discussed below.861

In a low cosine similarity example, consider862

Human-Annotated: "Walk to the bot-863

tom of the stairs leading to the level 1864

hallway and find the bottommost stair"865

Generated: "Move from bedroom to866

kitchen, turn off faucet."867

Similarity: 0.0850868

Notice that the human-annotated instruction869

presents a unique situation to the agent where it870

is expected to find the bottommost stair. In con-871

trast, the generated instruction asks the agent to872

move to the kitchen, which is near the vicinity of873

the staircase in this environment. While the cosine874

similarity might be low, a generalist agent would875

still be able to reach the target location with the876

given instruction since it references other elements877

(“the faucet" here) in the scene. Note that VLN878

tasks deal with the agent reaching a target location,879

and not with what it needs to do once it gets there.880

In a high cosine-similarity example, consider,881

Human-Annotated: "Go through the882

nearest bedroom to the bathroom on the883

first floor and turn on the faucet on the884

rightmost"885

Generated: "Go to the bedroom and886

turn off faucet."887

Similarity: 0.820888

Observe that a high cosine similarity does not889

necessarily mean that the generated instruction is890

of good quality. In this example, notice that the hu- 891

man annotator asks the agent to enter the bathroom 892

after going through the bedroom to turn off the 893

faucet. The generated instruction however entirely 894

misses out on entering the bathroom, which would 895

cause an agent to incorrectly look for a faucet in 896

the bedroom. 897

These are however one-off cases; we observe 898

that most generated instructions tend to closely fol- 899

low or paraphrase human-annotations. For instance, 900

consider, 901

Human-Annotated: "Go to the bath- 902

room on level 1 and wipe off the faucet" 903

Generated: "Go to the wooden room on 904

level 1, turn off faucet in the bathroom." 905

Similarity: 0.885 906

Both these instructions ask the agent to go to the 907

bathroom on level 1 to execute a task. 908

C Related Work 909

C.1 Embodied Instruction Synthesis 910

Embodied or Vision-and-Language Navigation 911

deals with the problem of navigating an agent in 912

unseen photorealistic environments and adhering 913

to language instructions. These wayfinding in- 914

structions are usually human annotated as part of 915

datasets (Ku et al., 2020; Qi et al., 2020b; Anderson 916

et al., 2018b; Krantz et al., 2020), and can roughly 917

be categorized into coarse and fine-grained (Gu 918

et al., 2022) based on their level of detail. As these 919

datasets are exclusive to the environments that they 920

are created in, generalizing them to other new or 921

procedurally generated environments presents a 922

unique challenge. Most prior work on instructions 923

synthesis (Li et al., 2022) has mostly been tailored 924

toward data augmentation. (Wang et al., 2022a) 925

presents a counterfactual reasoning approach to 926

generate instructions, but ultimately requires the 927

model to be trained on the R2R (Anderson et al., 928

2018a) dataset. (Wang et al., 2022b; Kamath et al., 929

2023) present imitation learning models that are 930

trained on datasets, and use the augmented instruc- 931

tions to improve navigation performance. More 932

recently Wang et al. (2023) presents a navigation 933

agent which is able to not only execute human- 934

written navigation commands, but also provide 935

route descriptions to humans. These approaches 936

are limited to a few datasets and have cumbersome 937

training procedures. In contrast, our approach can 938

generalize over multiple styles of instructions, over 939
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multiple simulation platforms without requiring a940

dataset.941

C.2 LLMs for Embodied Robot Navigation942

Recent work has used LLMs being for embodied943

robot navigation (Huang et al., 2022a; Zhou et al.,944

2023a), especially in a zero-shot setting (Yu et al.,945

2023; Dorbala et al., 2022). While (Shah et al.,946

2023) leverage GPT-3.5 (Brown et al., 2020) to947

identify landmarks, (Zhou et al., 2023b) and (Dor-948

bala et al., 2023) use an LLM for commonsense949

reasoning between objects and targets to facilitate950

navigation. With LLMs being increasingly used in951

several embodied AI frameworks beyond naviga-952

tion (Mu et al., 2023; Huang et al., 2022b), utilizing953

them for instruction generation allows for easier954

integration and testing at a system level. Finally,955

March-in-Chat (MiC) (Qiao et al., 2023) can talk956

to the LLM on the fly and plan the navigation tra-957

jectory dynamically.958
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