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Abstract

Agent-Based Models are very useful for simula-
tion of physical or social processes, such as the
spreading of a pandemic in a city. Such models
proceed by specifying the behavior of individuals
(agents) and their interactions, and parameterizing
the process of infection based on such interactions
based on the geography and demography of the
city. However, such models are computationally
very expensive, and the complexity is often lin-
ear in the total number of agents. This seriously
limits the usage of such models for simulations,
which often have to be run hundreds of times for
policy planning and even model parameter estima-
tion. In this paper, we propose a Deep Learning
model, based on the Dilated Convolutional Neural
Network, that can emulate such an Agent-Based
Model with high accuracy. We show that use of
this model instead of the original Agent-Based
Model provides us major gains in the speed of
simulations, allowing much quicker calibration to
observations, and more extensive scenario analy-
sis. The models we consider are spatially explicit,
as the locations of the infected individuals are
simulated instead of the gross counts. Another
aspect of our emulation framework is its divide-
and-conquer approach that divides the city into
several small overlapping blocks and carries out
the emulation in them parallelly, after which these
results are merged together. This ensures that
the same emulator can work for a city of any size,
and also provides significant improvement of time
complexity of the emulator, compared to the orig-
inal simulator.
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pur 2Indian Institute of Technology Kharagpur. Correspondence
to: Adway Mitra <adway@cai.iitkgp.ac.in>, Varun Madhavan
<varun.m.iitkgp@gmail.com>.

Figure 1. The multi-channel heatmap based emulation framework.
The figure above shows how spatially-varying statistics and pa-
rameters are merged into a single multi-channel heatmap, and the
figure below shows the input-output flow of the emulator.

1. Introduction
During the Covid-19 pandemic throughout 2020-2021, Epi-
demiological Models gained considerable attention world-
wide, as policymakers scrambled to predict the impacts of
Non-Pharmaceutical Interventions (NPIs) like lockdown
orders, weekend curfews, containment zones etc. It is nec-
essary to make a delicate trade-off between curbing disease
spread and socio-economic disruption. To enable such a
trade-off, it is necessary to have an estimate of the possi-
ble consequences of different policies, such as a what-if
analysis. Carrying out such an analysis is difficult because
there is no closed-form analytical formula to express the
possible results of a particular policy, at least not for the
pandemic spread. The way a pandemic may spread through
a city is related to its demography, geography, public spaces
and the interaction between these. It becomes necessary to
develop simulators that may represent how the infections
can spread out over space and time, under different charac-
teristics of the virus (basic reproductive number R0), the
policies in place (eg. lockdown in whole or parts of the city)
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and people’s compliance with them. One way to build such
simulators is by using differential equation-based compart-
mental models, or by Agent-Based Models. The former are
simpler and more efficient to run, but are unable to incor-
porate individual-level behavior in response to NPIs and
spatial nature of the infection spread, while these pros and
cons are reversed for Agent-Based Models.

In this paper, we look to develop machine learning-based
emulators for Agent-Based Models to get the best of both
worlds, being able to produce spatially explicit simulations
taking individual behavior into account like Agent-Based
Models, but in a significantly less time. For this purpose, we
use a neural network based on Dilated Convolutional Neural
Network that is trained on spatial heatmaps of daily infec-
tions, hospitalizations, recoveries, deaths as simulated by
Agent-Based Models as a response to different parameters
like R0 and lockdown policies, and is able to produce such
spatial heatmaps by sequential predictions starting from
specified initial conditions. We show through detailed exper-
iments that the spatial heatmaps produced by the emulator
very closely resemble those generated by the Agent-Based
Model, while requiring only a small fraction of time apart
from a one-time training phase. For 14 simulation runs, the
emulator (including training) takes equal time as the ABM,
for 29 runs the emulator requires only half the time required
by the ABM, and for 58 runs the time required by emulator
is only a quarter of ABM. To the best of our knowledge, this
is the first work that can successfully emulate a full-scale
Agent-Based simulate at spatial scale.

The rest of the paper is organized as follows - in section 2 we
describe prior work on epidemiological modelling, Agent-
Based Models and the emulation of ABMs. In section 3
we formally state the problem, followed by a description of
working of the ABM used for epidemic modelling in section
4. In section 5 we describe the main Emulation framework,
and discuss experiments and results of this approach in sec-
tion 6. Finally, we discuss some of the possible applications
of this framework in section 7 and conclude in section 8.

2. Related Works
In this section, we review relevant literature on the three
aspects of this work- Epidemiological models, Agent-Based
Models and Machine Learning based surrogate modeling.

2.1. Epidemiological Models

Compartmental models have commonly been used for epi-
demic simulations, where the total number of individuals in
different health states like Susceptible, Infected and Recov-
ered are tracked, and the time-evolution of these numbers
modeled by differential equations. In the context of Covid-
19, these well-known compartments are insufficient due to

the presence of large number of asymptomatic cases. In
these models, the impacts of NPIs is handled by varying the
parameters (eg. rate of infection and recovery) over time.
Silva et al. (2020) proposes a COVID-ABS model to predict
the impact of NPIs on public health and urban economics
by simulating the contained environment of an urban city.
The framework implements a compartmental SEIR model
and takes into account the demographic and economic dis-
tributions of the population. Census data for Brazil is used
for the parameters of this SEIR model, but the framework
can be extended for any demographic. Hoertel et al. (2020)
perform a similar analysis for France. They use detailed
attributes pertaining to the specific demographics and social
contact structure in France and implement a statistical model
for city spaces and transport. Agrawal et al. (2021) came
up with the SUTRA compartmental model which includes
more compartments like asymptomatic cases.

2.2. Agent-Based Modeling

Agent-Based Modeling emerged as late as the 1990s in the
domain of computational social science (Epstein & Axtell,
1996; Bonabeau, 2002) for simulation of artificial societies
and their underlying interactions and outcomes. In such
models, the behaviors of individuals (called agents) and
their mutual interactions are represented mathematically, to
observe the outcomes of systems which are difficult to ex-
press mathematically. Agent-Based Modeling has also been
used in the domains of economics (Tesfatsion, 2003), ecol-
ogy (Grimm et al., 2006) and population biology (Brauer
et al., 2012). Agent-Based Modeling has tremendous poten-
tial for modelling urban systems, as detailed in O’Sullivan &
Haklay (2000) to simulate the interactions of all stakehold-
ers with their urban environment. Batty (2008) and Bharath
et al. (2016) explore temporal changes in urban sprawl and
land-use compare ABMs with Cellular Automata-Based
models. In these works, agents represent residents in a city
and rule-based models are used to simulate their interactions
(Heppenstall et al., 2016; Motieyan & Mesgari, 2018). Re-
cent work on ABMs focuses on modelling specific unique
characteristics/aspects of cities in greater detail. Works
such as Fosset et al. (2016); Patel et al. (2018); Huynh et al.
(2015); Hager et al. (2015); Kagho et al. (2020); Waddell
et al. (2003) have focused on modeling different aspects of
urban life, including urban population growth, pollution and
vulnerability to climate change, mobility and traffic man-
agement, resource planning and so on. Several ABM-based
software packages like MATSIM (Horni et al., 2016) and
UrbanSim (Waddell, 2002) have also been developed.

In the context of Covid-19 pandemic simulation, several
works have attempted to study the spread of infections as a
function of social interactions among individuals of a city.
For such modeling of social interactions, various aspects of
a city such as the family structures, residences, workplaces,
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spaces of social interactions etc can be represented at dif-
ferent levels of complexity or detail. Several works like
Truszkowska et al. (2021); Hinch et al. (2020); Kerr et al.
(2020) have developed such models for simulation of the
pandemic.

This work uses the ABM developed in Suryawanshi et al.
(2021) to compare the performance of the Neural Network-
based emulators in predicting the outcomes of the counter-
factual scenarios studied in the paper.

2.3. Emulating Agent-Based Models

Machine Learning and Deep Learning are increasingly be-
ing used for Agent-Based Modeling, primarily for parame-
ter estimation using techniques like Approximate Bayesian
Computation, or for developing surrogate models or emula-
tors. This field is still quite nascent. Zhang et al. (2021) and
Jäger (2021) explore how Agent-Based Models have been
augmented using Machine Learning techniques. In (Zhang
et al., 2018) Machine Learning techniques are used to em-
ulate the real-time flow of city traffic as simulated by an
Agent-Based Model. They use a shallow convolutional neu-
ral network (CNN), which is able to predict the traffic flow
significantly faster than the original ABM while maintaining
comparable accuracy. Angione et al. (2020) and Anirudh
et al. (2020) also propose using Neural Networks to emulate
the outputs of an ABM epidemic model. Angione et al.
(2020) compares the performance of several candidate ML
models as emulators and concludes that Neural Networks
perform the best.

None of the emulators mentioned above are spatially ex-
plicit, i.e. they produce only a time-series of different quan-
tities, not their spatial maps. Also, a comprehensive study
comparing time benefits and accuracy of emulation is lack-
ing. The current work aims to address these gaps.

3. Problem Definition
Let us formally define the problem that we aim to solve
in this paper. We consider a city with N residents. The
city is divided into K blocks, and they have populations
N1, N2, . . . , NK such that

∑K
k=1 Nk = N . Each resident i

is provided with attributes such as age, family connections,
health status and workplace, and mapped to a block Si as
residence. A pandemic strikes the city which has basic
reproductive number R0(t) on day t (this index varies over
time as the virus mutates and NPIs are put in place). At
t=0, I0 people are infected, who may belong to any block
uniformly at random. Over the days, the infections spread,
and on day t, Ikt people in block k are infected, Rkt persons
recover there, Dkt persons pass away, etc. This number
depends on the social interactions among the people and
the NPIs imposed, like total or partial lockdown orders.

However, an individual may follow orders with compliance
rate γ.

We have an Agent-Based Model f which can simu-
late the multi-channel spatio-temporal sequence X =
{Xkti}K,T,L

k=1,t=1,i=1 as X = f(N0, R0, γ). Index k refers
to a block, t refers to a day and channel index i re-
fer to different compartments of the pandemic, such as
new positive cases, recoveries and hospitalizations on
each day in a particular block. Our aim is to develop
a neural network g, which can predict Xkti as Xkti =
g({Xjt′l}K,t−1,L

j=1,t′=t−H,l=1, {R0(t
′)}t−1

t′=1, γ). Here, H is a
time horizon or lookback window. Using this neural net-
work, we aim to predict the full sequence X of daily infec-
tions. In Section 4 we describe the Agent-Based Model f ,
and in Section 5 we discuss the emulator neural network g.

4. Agent-Based Simulator
In this section, we focus on the Agent-Based Model f that
was discussed above to generate the spatio-temporal se-
quence of daily infections. This Agent-Based Model is
largely based on the work by Suryawanshi et al. (2021). In
this model, each individual in the city is considered as an
agent. Each agent has a set of attributes - his home, fam-
ily, workplace etc. The agent interacts with other agents
in the city and, if infected, spreads the virus to those he
comes in contact with probabilities based on the duration
and nature of the interaction. The Agent-Based Model has
two main components: the city component and the infection
component.

4.1. City Component

The city model has specific modules for the city structure,
economic activities, transportation, education, healthcare.
The city module specifies many kinds of spaces - residential,
workplaces, marketplaces etc and also different kinds of
facilities and services. The movements and interactions of
individuals in these places is simulated. The Economic Mod-
ule is sub-divided into sectors, which are further divided
into sub-sectors. Each sub-sector consists of several Work-
places. Workplaces are locations where agents go for work.
Workplaces are mapped to a location within the city, and
each employed agent is assigned to a specific Workplace,
where they travel regularly and interact with co-workers.
Public transport facilities are also represented for simulat-
ing the movements of individuals and their interactions in
the process. The healthcare module consists of a network
of Covid-19 Hospitals, Covid-19 Healthcare centres, and
Covid Isolation Centres. Each of these facilities is associ-
ated with a location and has a fixed capacity. The education
module deals with schools and colleges, each of which is
associated with a location and capacity. Each agent rep-
resenting an individual who is a student is assigned to an
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educational institute (school or college), depending on age
and residential area.

4.2. Infection Component

This component is based on health states of individuals,
and how these states can change due to infection by the
virus. Each agent consists of a state belonging to a finite
state machine, which is a vector of dimension 2. The first
dimension represents the virus-related state i.e Healthy (H),
Infected (IF) Recovered (R) and Dead (D). The IF state has
two sub-parts namely Symptomatic (S) and Asymptomatic
(A). We call them Virus-State (Sv). The second dimension
represents mobility-related states which are Free (F), Out-
of-City (O), Quarantined (Q), Isolated (I) and Hospitalized
(HP). We call them Mobility-State (Sm) These two kinds
of states are independent of each other, and the final state
consists of a concatenated vector of these two.

Regarding the Virus-state, initially, every person is assumed
to be healthy (H). When a person in state H comes in con-
tact with a person in state IF , the former gets infected
with a certain probability. The viral load (VL) of a newly
infected person is assumed to follow a Beta distribution,
scaled appropriately. If this load is below a threshold, the
person remains asymptomatic. Otherwise, the person under-
goes a fixed incubation period after infection, after which
they start showing symptoms. The peak infection period
is sampled from a Gaussian distribution1, after which the
person may die or start recovering, depending on age and
co-morbidities. The time taken to recover is also considered
to follow a Gaussian distribution. Infection can spread from
one person to another with a certain probability whenever
they share the same physical space. This probability is a
function of the contact duration and physical distance be-
tween them. This is why we have considered the number of
work hours and physical gap as attributes of workplaces.

Additionally, we define Compliance Rate γ as the proportion
of the population actually following the policy in place.
Higher compliance rates mean no two agents meet beyond
their daily schedule (family, school, workplace).

4.3. Simulation Methodology

The simulation proceeds by initializing the system, which
includes setting up all the agents and their attributes, work-
places, medical facilities etc. This is done by sampling
from probability distributions, such that all the attributes are
consistent with each other. A small random subset N0 of
the population is infected with the disease as initialization.
After that, we begin the simulation for the specified period.

1For Gaussian sampling, we use min(0, Gaussian sample) to en-
sure the sampled value is positive, and round to the nearest integer
for parameters that take only integral values (e.g. population).

At each time step, we sample the movements of each agent
according to a stochastic process based on their daily rou-
tine, whose distributions are based on the agent’s workplace,
residence and travel preferences. We track the interactions
between pairs of individuals (when they come spatially close
during their movements), and in such cases, the infection
may take place stochastically as explained above.

The Agent-Based Model produces a spatio-temporal se-
quence, producing the number of infections, hospitaliza-
tions, deaths etc in each block of the city on each day. We
can represent the effect of spatial policies like block-wise
lockdowns, containment zones, spatial distribution of re-
sources, the effect of competing virus variants, etc. Using
the spatial blocks as a grid structure, this spatio-temporal se-
quence may be visualized as a time-series of multi-channel
heatmaps, with the pixel intensity value in each channel
representing the value of a statistic (e.g. number of positive
tested individuals, number of hospitalized individuals, etc.)
or parameter (e.g. the population of the block. One grid
heatmap is created after each day of simulation.

5. Emulation Framework
In this section, we discuss the Deep Learning based model
to emulate the simulation results generated by the Agent-
Based Model. The model takes as input at each time step 1)
the simulation parameters (initial number of infections (at
t = 0), compliance rate γ, and Basic Reproductive Number
R0(t)), and 2) the past spatio-temporal heatmap sequence
(as described in 4.3). Using this input, the model predicts
the subsequent heatmap sequence over the next time steps.
The model is trained to minimize the Mean Squared Error
(MSE) between the predicted heatmaps (i.e. model output)
and the actual heatmaps (i.e. ABM predictions). Using this
approach at each time step, a complete prediction of the
heatmap sequence is generated by the emulator.

After each time step the model is fed its own predictions
back as inputs at the next time step, not the actual values (i.e.
ABM outputs). This is important because in the end use-
case we will need the emulator to make complete predictions
over a long period without having intermediate access to
ground-truths to correct previous mistakes.

Here we note that while the ABM was stochastic in nature,
the emulator is deterministic. While a stochastic model has
its benefits, in this work we only explore if Neural Networks
can capture the main signal without the random effects.
Although the ABM is stochastic by design, the simulation
results we use for emulation are obtained by averaging over
several simulation runs, thus smoothing out the random
effects.

In this way, the emulator serves as a surrogate of the ABM
(see Figure 2).
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Figure 2. The training procedure of the emulator

5.1. Emulator Architecture

We experimented with several network architectures for the
emulator, particularly ones that could leverage both spatial
and temporal information given the nature of the heatmap
prediction problem. Through our experiments, we demon-
strated that a 2D version of the Dilated CNN presented in
(Borovykh et al., 2019) performs the best. This architec-
ture, inspired by DeepMind’s WaveNet (van den Oord et al.,
2016), uses stacks of convolutional layers with increasing
dilations that allow it to access data from past time steps.
Causal padding is used to ensure no leakage of future data.
The following visualization from DeepMind captures this
architecture well (3). Other architectures we tried included
the original LSTM (Hochreiter & Schmidhuber, 1997), Con-
volutional LSTM (Shi et al., 2015) and the 3D-CNN (Ge
et al., 2017). Complete details about the Dilated CNN archi-
tecture and training methodology can be found in Appendix
A.2.

Figure 3. Stacked Dilated CNN (figure from DeepMind)

5.2. Divide-and-Conquer Framework

One of the key benefits of Deep Neural Networks is that
modern GPU architectures allow for rapid inference by par-
allelizing matrix computations in batches. We use this abil-
ity to produce spatio-temporal trajectories for large cities
using small amounts of training data. As we will demon-
strate in 6, the ABM scales linearly with population and the
number of city blocks. Instead of training separate emula-
tors for different block sizes, we can use the same emulator

Algorithm 1 Scaled ABM emulator Training
1: Generate training data using ABM simulations for a big

city with blocks arranged as grids (size = (20, 20))
2: Split this big city into regions (sub-grid size = (10, 10),

stride = (2, 2))
3: Train a single emulator Model (block size = (10, 10))

to predict the spatio-temporal sequence of heatmaps of
each region independently

Algorithm 2 Divide-and-Conquer ABM emulator Inference
1: Use the Simulator to predict the case statistics for the

first H = 5 days
2: Divide the initial city into regions (sub-grid size = (h,

w) = (10, 10), stride = (sh, sw) = (2, 2))
3: Use the learned emulator to predict the spatio-temporal

heatmap sequence for the rest of the days for each re-
gion parallelly

4: Combine the predictions thus obtained for these regions
to recreate the entire city’s heatmap predictions. The
prediction for each block on any day is the prediction
for that day by all regions that overlap with that block

by dividing the city into smaller overlapping regions, carry-
ing out the emulation in each of them, and combining them
by averaging over the overlapping regions. The emulations
of these smaller regions can be done in parallel, and this
gives massive time advantage. We call this as the Divide-
and-Conquer framework for emulation. As an example,
we demonstrate how we can simulate a 20x20 Block city
using a 10x10 emulator in Algorithms 5.2 and 5.2. This
procedure allows us to generate spatio-temporal trajectories
for a 20x20 city using a 10x10 emulator that is significantly
faster than an equivalent ABM, because we can generate
all 10x10 predicted spatio-temporal heatmap sequences in
parallel (rather than doing them one-by-one as we would
have to do if we trained a 20x20 emulator instead).

Hence, this Divide-and-Conquer framework can be used to
emulate a large city as smaller grids in parallel, allowing
for faster inference. Additionally, once an emulator with a
particular resolution (e.g. 10x10) has been trained, it can be
used to emulate any larger city grid using this framework,
e.g. 20x20, 30x30, 40x40, etc. It can also be used on a
coarser grid, by coarsening the emulation results. But for a
grid of finer resolution, we need to retrain the model.

6. Experimental Validation
Having described the models in detail, we now come to the
experimental evaluation. The first step is to generate data by
carrying out simulations using the Agent-Based Model. The
next step is to use this data to train the deep learning-based
emulator model, and test its performance.
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6.1. Data Generation

The training data is generated by running the ABM repeat-
edly. Parameters like the virus Reproduction Number (R0),
population N0, lockdown duration and compliance ration
γ are varied to generate distinct series. Since the ABM
has a stochastic component, the simulation outputs for a
particular parameter configuration vary slightly (about 5%
from the mean). To help the emulator learn the true signals
and ignore the noise, we generate multiple series for each
set of parameter configurations.

We create a city with a population of N = 100000 resi-
dents, distributed over a 10x10 gridded block structure. The
population of each grid is sampled from a normal distri-
bution with a mean of 1000 and a standard deviation of
mean/6. To test the ability of the emulator to predict the
case trajectory for different parameter values, we vary the
R0 between 1 and 4 in steps of 0.1. For each parameter
value we generate several series of length T = 100 days.
All other parameters of the ABM are kept constant for this
experiment. Of all the case-statistics tracked by the ABM,
we retain 3 most descriptive ones - Cumulative Positive
Tested, Current Hospitalizations and Current Asymptomatic
Free. Each heatmap is thus of size (10x10x3), and the length
of the heatmap sequence is 100. The total number of such
sequences generated for training is 512.

We split these sequences into training, validation and testing
sets in the ratio 80:10:10 (410 + 51 + 51), uniformly across
all parameter values. Each channel in X is normalized by
dividing it by the mean of the channel (mean calculated
using only the training set). In order to train the emulator,
we rearrange the training data as into (predictor, prediction)
tuples, where each predictor is a sequence of H consecutive
heatmaps (10x10x3) and the parameters (γ,R0), and the
prediction is the heatmap in the next timestep. We set the
lookback window as H = 5. The loss function is the Mean
Squared Error between predicted and actual heatmaps.

6.2. Accuracy of Emulation

First of all, we compare the time-series of all the statistics as
generated by the Agent-Based Model against those predicted
by the emulator. Figure 4 shows the plot of the predicted
(by emulator) values of the Cumulative True Cases (red)
compared to the ABM-simulated values (blue) for 4 random
values of the Reproductive Number (R0), and we can see the
close similarity between the curves in all cases. We obtain
similar plots for daily Hospitalizations and Deaths too (not
shown for space constraints). Next, we also examine the
spatio-temporal heatmap sequences generated by the ABM
and compare them against the predictions by the emulator.
In Figure 5 we show the spatio-temporal heatmaps of the
daily number of new infections detected in each block of
the city, according to the emulator. These heatmaps closely

match the heatmaps obtained from the simulator (not shown
due to lack of space).

Figure 4. Time-series of Cumulative Daily Infections for different
R0 values: clockwise from top-left: 1.8, 2.0, 2.2, 2.4. Blue: ABM,
Red: emulator

Figure 5. Cumulative Positive Tested heatmaps of the city grid at
10-day intervals for R0 = 2. Left: ABM (Act Day X), Right:
emulator (Pred Day X)

6.3. Generalization

We also wish to explore how the model performs when deal-
ing with unseen parameter values. Figure 9 in the appendix
shows the performance of emulating the ABM for unseen
values of R0 in-between the values it was trained on (the
model was trained on values of R0 between 1 and 4, in steps
of 0.2). We observe that, as expected, it is able to perform
well for these values of R0. On the other hand, Figure 10 in
the appendix shows that the model is also able to emulate
the ABM for unseen values of R0 outside the range of R0

values it was trained on. We observe that while it is able to
perform well for larger values of R0, the emulator struggles
for smaller values. This might be explained by the unstable
behaviour of the ABM for smaller values of R0, since for
very low R0, the infection may subside very quickly.
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Table 1. COMPUTATIONAL PERFORMANCE OF THE SIMULATOR

AND THE EMULATOR IN SCALED INFERENCE. BOTH THE SIM-
ULATION TIME AND THE EMULATOR INFERENCE TIMES ARE

THE TIMES REQUIRED TO GENERATE COMPLETE TRAJECTO-
RIES. ALL TIMES ARE MEASURED IN SECONDS.

TASK SIMULATOR TIME
20X20 CITY-GRID SIMULATION TIME 38.0626 SEC

TASK EMULATOR
EMULATOR TRAINING 503.93 SEC
INFERENCE (10X10) 0.75 SEC

SCALED INFERENCE (20X20) 0.76 SEC

6.4. Computational Benefits

The divide-and-conquer procedure allows us to generate
spatio-temporal trajectories for a 20x20 city using a 10x10
emulator that is significantly faster than an equivalent ABM,
because we can generate all 10x10 predicted spatio-temporal
heatmap trajectories in parallel (rather than doing them one-
by-one as we would have to do if we trained a 20x20 emula-
tor instead). We show the time gain in Table 1, and the pre-
dicted spatio-temporal heatmap trajectory in the subsequent
figures. Note that for n simulation runs on a 20 × 20 city,
the Agent-Based Model will require 38n seconds, while
the emulation will require 504 + 0.76n seconds, which
gives a major gain especially for high values of n. This is
illustrated in Figure 11 in the Appendix. Further, the Agent-
Based Model also scales linearly in the number of agents,
i.e. the city population N . In the next analysis, we vary N ,
keeping the grid size fixed at 10x10, and observe how the
emulator compares with the simulator. Figure 6 shows that
the emulator inference time remains nearly constant in all
cases.

Figure 6. Time Analysis: Average Runtime vs. Population N for
simulator (red) and emulator (blue)

7. Applications of Emulation
The computational benefits obtained by the process of em-
ulation may be used in situations where hundreds of simu-
lation runs are required. Carrying out such runs using the
computationally-expensive Agent-Based Model is highly
time-consuming. Although training the emulator model
takes time, it is a one-time process. The inference, which is
very fast, needs to be carried out repeatedly which gives a

Table 2. COMPARISON OF PERFORMANCES BY SIMULATOR AND

EMULATOR TO CALIBRATE AGAINST OBSERVATIONS BY ESTI-
MATING R0 VALUE THROUGH BAYESIAN OPTIMIZATION

AVERAGE ERROR AVERAGE TIME TAKEN
SIMULATOR 15.82% 881 SEC
EMULATOR 25.27% 33.9 SEC

major computational benefit compared to the Agent-Based
Model. Below, we consider two situations where multi-
ple simulation runs are needed, and demonstrate how the
emulator scores over the simulator in such situations.

7.1. Parameter Tuning

In practical applications of epidemic ABMs, we often have
historical observations of some statistics, e.g. the number
of new cases, hospitalizations, recoveries, deaths, etc., but
we do have any information about others, e.g. the virus R0

or γ. Suitable values of these statistics are usually chosen
by calibrating them based on the available historical data,
using parameter search techniques like grid search, Bayesian
Optimization, rejection sampling, etc. In this experiment,
we demonstrate how the emulator can be used to speed-up
this parameter search.

We design an experiment where Bayesian Optimization
is used to estimate the value of the virus R0 from given
historical data. A randomly sampled value of R0 (uniformly
sampled from the range [2.0, 3.0]) is used to produce one
complete ABM simulation. Then, with this ground-truth
value hidden, we use the emulator to line-search for this R0

in a Bayesian Optimization paradigm. For each value of
R0 to be tested, a complete heatmap sequence is predicted
by the emulator. The Mean Squared Error (MSE) of this
predicted sequence vs. the actual heatmap sequence (i.e.
the original ABM simulation) is used as the objective to be
minimized by Bayesian Optimization. This process is then
repeated using the ABM instead of the emulator to compare
the time required.

This experiment is repeated for 20 distinct sampled values
of R0. Table 7.1 compares the results when we use the
emulator vs. the ABM (i.e. the simulator). We find that
the R0 searched by the ABM is slightly more accurate than
by the emulator on average, but the latter provides a very
significant time gain. Further, the emulator can make a
better estimate of the R0 in 40% of the values tested.

7.2. Scenario Analysis

Another application in which a large number of simulation
runs are usually needed is when we want to explore alternate
intervention policies or counterfactual scenarios for what-if
analysis. In the context of a pandemic, we can consider the
possible impacts of alternate non-pharmaceutical interven-



Agent-Based Model Emulation

tions like localized lock-downs and restricted use of public
spaces, as discussed in Suryawanshi et al. (2021).

Figure 7. Scenario Analysis: Heatmaps for number of Cumulative
Positive Tested persons, if there is a lockdown of 9 days from the
10th day. Left: observations from ABM simulator (actual values,
Act Day X), Right: predictions by emulator (Pred Day X)

In this experiment, we demonstrate that our emulator can
learn the effect of lockdowns on the spatio-temporal case
trajectory. For this experiment, the lockdown status of the
city (i.e., whether the city is currently in a state of lockdown
or not) at each time-step is passed to the emulator as an
additional parameter channel. We consider lockdowns of
various lengths in the range [3, 45], starting at a randomly
chosen time-step near the start of the simulation (day 10),
and observe the predictions of the emulator. We find that
the emulator is still able to predict the spatio-temporal case
trajectories accurately. In Figure 7. It can be observed from
the predicted trajectories that the emulator can learn the
delay in rise of cases due to lockdowns quite accurately.

Figure 8. Effects of varying R0 linearly from 1.0 till 2.0 and then
back to 1.0. Left: observations from ABM simulator (actual values,
Act Day X), Right: predictions by emulator (Pred Day X)

The basic reproductive number R0 does not stay constant
during a pandemic. With increasing levels of immunity,
either due to vaccination or infection, R0 tends to decrease,
while it may increase in the presence of multiple variants
of the virus as it mutates. We want to see if the emulator
can adapt to such changes in the R0 time-series. Towards
this end, we vary the R0 through the simulation and observe
the predictions of the emulator. The value of R0 on each
time-step of the simulation is passed as a feature to the
emulator as another parameter channel. We demonstrate
a simple trajectory for R0 here as a proof-of-concept; it
starts at a low initial value of 1, then linearly increases to a
maximum value near the mid-point of the simulation, then
again linearly decreases to the initial value. In addition
to varying R0 throughout the simulation, we also vary the
maximum value (and hence the slope on either side) of
the R0 trajectory to observe how well the emulator can
learn these effects. From the results shown in Figure 8, we
observe that the emulator can predict accurate trajectories
for a wide range of maximum R0s.

8. Conclusion
This paper introduced a deep learning-based emulator for
Agent-Based Models for pandemic spread in a city. The
proposed model can almost perfectly reproduce the Agent-
Based Model’s outputs in a spatially explicit way, taking into
account dynamically varying parameters, at only a small
fraction of time. This approach is particularly suitable when
hundreds of simulation runs are required.
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A. Appendix
A.1. Appendix A: Interpolation and Extrapolation

Figure 9. Temporal Interpolation: Cumulative True Cases vs. Days for different unseen R0 values inside the training range: clockwise
from top-left: 2.65, 2.75, 2.85, 2.95

Figure 10. Temporal Extrapolation: Cumulative True Cases vs. Days for different unseen R0 values outside the training range: clockwise
from top-left: 3.05, 3.15, 3.25, 3.35

Figure 11. The time required in seconds (along Y-axis) for emulation (red), including the initial training time, increases negligibly with
more simulation runs, and this makes it highly efficient compared to the agent-based simulator (blue)
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A.2. Appendix B: Emulator Implementation

A.2.1. GENERATING TRAINING DATA

The training data is generated by running the ABM repeatedly. Parameters like the virus Reproduction Number (R0),
population, and lockdown duration are varied to generate distinct series. Since the ABM has an inherent stochastic
component, the outputs for a particular parameter configuration may vary slightly (about 5% from the mean). To help the
Emulator learn the true signals and ignore the noise, we generate multiple series for each set of parameter configurations as
well.

While the parameters for each experiment are different, for the baseline we create a city with a population of 100000
residents, distributed over a 10x10 city grid. The population of each grid is sampled from a normal distribution with a
mean of 1000 and a standard deviation of mean/6. To test the ability of the Emulator to predict the case trajectory for
different parameter values, we vary the R0 between 1 and 2.5 in steps of 0.1 (i.e. 16 distinct values). For each value of R0,
we generate 32 distinct series of 100 days each. . All other parameters of the ABM are kept constant for this experiment.
Of all the case-statistics tracked by the ABM, we retain 3 most descriptive ones - Cumulative Positive Tested, Current
Hospitalizations and Current Asymptomatic Free. We additionally add R0 and block population as parameter channels
to the heatmaps to serve as features for the Emulator’s predictions, making for a total of 5 channels. The total number of
heatmap sequences is hence 512 (16*32), each of size [100, 10, 10, 5].

A.2.2. DATA PREPROCESSING

We split the development set of 512 sequences into training, validation and testing sets in the ratio 80:10:10 (410 + 51 +
51), uniformly across all parameter values. Each channel is normalized by dividing it by the mean of the channel (mean
calculated using only the training set).

A.2.3. EMULATOR ARCHITECTURE

The Dilated CNN architecture, inspired by DeepMind’s WaveNet (van den Oord et al., 2016), uses stacks of convolutional
layers with increasing dilations that allow it to access data from past time steps. Causal padding is used to ensure no leakage
of future data. The figure below shows the model architecture, including the number of kernels, kernel size, feed-forward
dimensions, etc.

A.2.4. TRAINING THE EMULATOR

In order to train the Emulator, we need to rearrange the series in a (lagged heatmaps, future heatmaps) format. The Emulator
will be trained to take the lagged heatmaps as input and predict future heatmaps as close as possible to the actual future
heatmaps (loss function - MSE between predicted and actual future heatmaps). From each simulated series, we create
ordered tuples (lagged heatmaps, future heatmaps) of shape ([lag, 10, 10, 5], [horizon, 10, 10, 3]). Note that we do not
require the Emulator to produce outputs for the parameter channels. For the baseline experiments, we set lag to 5 and
horizon to 1. The emulator was implemented in Python using Tensorflow 2.0. All computation times were recorded on free
instances of Google Colaboratory.

A.2.5. GENERATING PREDICTIONS USING THE EMULATOR

Once the Emulator is trained, we generate full length predictions as follows -

1. Start with an initial lag sequence of shape [lag, city grid rows, city grid cols, num case statistics + num parameters]

2. While generated sequence length ¡ simulation length, do

(a) Pass lag sequence through Emulator to get an output of shape [lag, city grid rows, city grid cols, num case
statistics], and append it to the prediction sequence

(b) Rotate lag sequence to the left by horizon time steps

(c) Replace the first horizon time steps from the right of the lag sequence with the output tensor, effectively replacing
the earliest horizon days with the newest horizon days
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Figure 12. Stacked Dilated CNN Architecture

While the algorithm described above predicts a single series, in actual implementation we leverage the batching abilities of
GPUs to predict several series at once.

A.3. Appendix C: Comparison against Emulator Baselines

In this section, we compare our emulator with Angione et al. (2022), another proposed NN-based surrogate for ABMs.
Angione et al. (2022) uses a feed-forward network based approach, but lacks the spatial component in our paper. The
network takes as input the historical values of the case statistics (aggregated across all blocks), and predicts the subsequent
values. Like our emulator, it is trained to minimize the Mean Squared Error between the predictions and the actual case
statistics (i.e. ABM outputs). However the predictions are temporal only, with no spatial distribution across blocks. In
Figure 13, we observe that our emulator is better at predicting the case statistics temporally.

Figure 13. Comparison against baselines for cumulative positive tested, current hospitalized and current asymptomatic free respectively.


