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Abstract

Multiple-choice evaluation has been commonly
used for assessing language model capabilities.
Current evaluation methods primarily employ
a probability comparison approach. However,
our study demonstrates overlooked reliability
issues with this approach. The determinis-
tic prediction comes at the cost of sacrificing
core properties of multiple-choice questions—
order invariance, position independence and
length independence. To perform reliability
checking, we propose a test consistency check-
ing method inspired by the double-slit experi-
ment. Experiments across multiple LLMs and
benchmarks reveal the shaky reliability of cur-
rent implementations, uncovering severe po-
sition and length biases unintentionally intro-
duced by these evaluation methods.

1 Introduction

Recent advances in artificial intelligence have been
driven by the development of Large Language Mod-
els (LLMs). With expanding abilities to tackle a
wide range of tasks, evaluating their capabilities
becomes increasingly important. Researchers have
made sustained efforts to construct comprehensive
settings for evaluating LLMs. However, in examin-
ing one of the most straightforward and prevalent
evaluation settings—multiple-choice evaluation—
we uncover intrinsic reliability issues that have
been overlooked in current implementations.
Multiple-choice question has become an im-
portant setting for assessing large language mod-
els due to its distinct structure. This structure
presents models with a query and a constrained
set of candidate choices, with one designated as
correct. The specificity enables straightforward
and grounded evaluation, allowing targeted assess-
ment of model capabilities. For instance, the Open
LLM Leaderboard (Beeching et al., 2023), a pop-
ular benchmark for evaluating LLMs, utilizes the
multiple-choice format for 3 of its 4 evaluation

tasks. LLama 2 (Touvron et al., 2023b), the suc-
cessor model to LLama (Touvron et al., 2023a),
evaluates its capabilities across 19 academic bench-
marks, with 9 being multiple-choice settings, cov-
ering evaluation on language understanding, com-
monsense reasoning, and world knowledge.

However, implementing multiple-choice eval-
uvation is not as straightforward as it may
seem. Although LLMs can generate responses
to queries, automatically evaluating these re-
sponses remains challenging. This requires ei-
ther specially-designed prompts to elicit certain re-
sponse forms (Zhang et al., 2023), or the utilization
of robust language understanding tools to verify if
responses match the choices (OpenAl, 2023). Both
of these issues can affect the precision, stability,
and consistency of the evaluation process.

Recent work has applied a two-step probabil-
ity comparison approach for automatic multiple-
choice evaluation, aided by predetermined choices.
This first adapts the multiple-choice question into
an evaluable format, then compares choice prob-
abilities using scoring methods. While enabling
definitive and automatic evaluation, the reliability
of such methods has largely been overlooked. A re-
cent study found high variability in results, with ac-
curacy ranging from 30% to nearly 60% depending
on the adaptation used (Liang et al., 2022). Given
that numerous LLMs have been evaluated using
probability comparison methods, the uncertainty
around reliability underscores the core motivation
of this work: the need to validate the reliability of
these methods under multiple-choice evaluation.

When delving into the implementation details
of these methods, we uncover three inherent is-
sues that adversely impact the nature properties of
multiple-choice questions:

1. Order Invariance: choices should be per-
muted randomly without altering the question
itself. However, adaptation process uninten-
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Figure 1: Illustration of the evaluation implementation and test consistency checking method for multiple-choice
evaluation. Considering the evaluation input and scoring choice forms, three different adaptations are commonly
used in probability comparison methods (left). Our objective is to uncover intrinsic reliability issues in these
implementations. To achieve this, we propose test consistency checking method inspired by the famous double-slit
experiment (right). This method treats each multiple-question evaluation as multiple trials, allowing us to bring out
order invariance while revealing reliability issues related to position and length independence.

tionally disrupts the invariant property as it
imposes an artificial order on the choices.

2. Position Independence: choices are elements
without inherent positional properties. Here,
positional biases are introduced when concate-
nating choices and possible answers.

3. Length Independence: a fair evaluation
should avoid bias towards longer or shorter
choices. We find that probability scoring meth-
ods introduce severe length bias, creating a
dilemma where tendencies for both longer and
shorter choices simultaneously hold true.

To perform reliability evaluation, inspired by
the famous double-slit experiment in physics, we
propose test consistency checking. By randomiz-
ing choice order across trials, this method enables
consistency checks while preserving the fundamen-
tal order invariance. In experiments, we compare
seven implementations, consisting of combinations
of three adaptation methods and three probability
scoring methods. We test both pre-trained and fine-
tuned models on six multi-subject multiple-choice
benchmarks. The results of our experiments reveal
that all current probability comparison implemen-
tations suffer from inherent reliability issues.

This paper makes three contributions: (1) a sys-
tematic and focused study of multiple-choice evalu-
ation; (2) an exploration of reliability issues in cur-
rently prevalent probability comparison methods;
and (3) extensive comparison experiments that at-
tempt to reveal underlying groundlessness in these
evaluation methods. Additionally, through explor-
ing this seemingly straightforward evaluation, we
aim to spur rethinking the study of evaluation over-
all, as a fundamental discipline in Al development.

2 Background

2.1 Multiple-Choice Evaluation

Multiple-choice evaluation is a constrained evalua-
tion setting where models are tested with multiple-
choice questions. These questions have three key
components. (1) The query: This provides context
or poses a question for the model to consider. (2)
The choices: Each candidate choice has a label (e.g,
A, B, C) and a description that proposes a possible
response to the query. (3)The answer: Only one
choice is designated as the correct answer choice
based on the query.

Multiple-choice evaluation constrains the out-
put space with predetermined choices, allowing for
targeted assessment of a model’s abilities across
domains (Zhong et al., 2023; Kung et al., 2023;
Gao et al., 2021; Zhang et al., 2023). Currently,
it has been used to assess in diverse fields such as
mathematics, chemistry, medicine and humanities,
spanning tests for safety (Lin et al., 2021), ques-
tion answering (Clark et al., 2018), commonsense
reasoning (Zellers et al., 2019), and multi-subject
knowledge (Huang et al., 2023; Zeng, 2023).

2.2 Probability Comparison Methods

The constrained nature of multiple-choice evalua-
tion enables more deterministic and automatic eval-
uation by comparing probability scores between
choices, unlike open-ended evaluations where the
LLM generates free-form responses. This type of
methods generally involve two steps: first, adapting
the multiple-choice question to an evaluable for-
mat; and second, calculating probability scores for
each choice. By comparing these scores, a model
can qualitatively predict which choice is more or
less likely to be the correct answer.



Adaptation To evaluate language models us-
ing multiple-choice questions, adaptation methods
have been applied to format the query and candi-
date choices in a way that allows the model to score
each choice. These existing adaptation methods
generally fall into three main categories.

e joint-label: This method concatenates all the
choices together with the query to form an
extended query. This extended query is fed to
the model. The probability assigned to each
label is then used to generate a score.

* joint-desc method: This method concatenates
all the choices with the query first. Given the
entire extended query into the language model
at once, it uses the probability the model as-
signs to each choice, consisting of both the
label and description, to generate a score.

e separate method: This method evaluates each
choice individually by feeding only the orig-
inal query into the language model. It then
calculates the probability of each choice at a
time to generate a score.

These adaptation methods have been applied in var-
ious works for multiple-choice evaluation. For ex-
ample, the technical report of GPT-3 (Brown et al.,
2020) indicates using the separate method in their
evaluations. The Open LLM Leaderboard (Beech-
ing et al., 2023) applies the joint-desc method by
default when accessing models. Some evaluation
frameworks utilize different methods depending
on the benchmark. For instance, HELM (Liang
et al., 2022) employs the separate method for the
HellaSwag benchmark (Zellers et al., 2019) but
uses the joint-label method for the MMLU bench-
mark (Hendrycks et al., 2021) instead.

Probability Scoring Probability scoring involves
calculating probability scores for possible continu-
ations (e.g, possible answer choices) given a query
prompt (e.g, extended query). However, scoring for
entire possible continuations poses challenges for
language models, which only generate probabili-
ties token-by-token (i.e, P(x;|x¢.;)) rather than for
complete sequences. Given x.,, as the prompt and
ZTm:n as a possible continuation to be scored, where
m is the index of the first token in the continuation
with a token length of n — m, previous work has
developed several normalization methods to handle
this issue of scoring (Gao, 2021).

* Unnormalized method: A simple approach is
to calculate the score of a continuation ..,
by summing the log likelihood of each to-
ken given the previous prompt. The formula
is E?;WlllogP(xﬂxO;i), where higher scores
indicate higher probability of being correct.
However, this could introduce a length bias
issue, as longer continuations typically have
lower log likelihood, leading to a preference
on shorter choices during evaluation.

* Token-length normalized method: The score
of a continuation is calculated by tak-
ing the average log likelihood per fo-
ken given the prompt, using the formula
n_lm E?;TlnlogP(xi\xO;i). This aims to nor-

malize the score by the number of tokens. It

is worth noting that the number of tokens is

determined by the tokenizer used.

* Character-length normalized method: This
method calculates the score by taking
the average log likelihood per charac-
ter given the prompt, using the formula
L(xim) Z?;,lllogP(:mxg;i) where L(Zy,. ) is
the number of characters in .. Using char-
acter length for normalization eliminates the
impact of different tokenizers tokenizing the

same text into varying length.

3 Reliability Issues

For multiple-choice evaluation, the prevailing meth-
ods primarily rely on the probability comparison
approach, which consists of two key steps: an adap-
tation method and a probability scoring method.
While numerous large language models have been
evaluated on diverse multiple-choice questions us-
ing probability comparison methods (Liang et al.,
2022; Beeching et al., 2023), the reliability of these
methods has been largely overlooked. To address
this gap, we closely examine the implementation of
these methods, and our analysis reveals that there
are three inherent reliability issues involved with
these implementations.

Order Invariance What makes multiple-choice
questions special? The pre-determined candidate
choices. These choices constrain the output space,
providing a set of options to select from. This con-
strained output space, represented abstractly as a
finite and discrete set of choice elements, is the key
differentiating factor that distinguishes multiple-
choice questions from other types of evaluation



settings. This makes multiple-choice questions in-
trinsically order invariant—the choices can be per-
muted without changing the nature of the question.
Current implementations of probability compari-
son methods adversely impact the order invariance.
First and foremost, adaptation methods convert the
representation of the choice set for language model
evaluation. Specifically, these adaptation meth-
ods (e.g, joint-desc method) represent the choice
set as ordered sequential text—a human-readable
but ordered format. Through this process, order
invariance is sacrificed unintentionally for human-
friendly and controllable evaluation purposes. Sec-
ondly, current large language models, typically
causal language models based on the Transformer
architecture (Vaswani et al., 2017), fundamentally
lack order invariance. Instead, one of the core
design of the Transformer is the use of position
embeddings to encode order information in text.

Position Independence Position independence
is related to order invariance, but centers on the
answer side more than the query. For a multiple-
choice question, the answer is a selected choice
from the candidate choice set. Position indepen-
dence means that choices do not possess positional
properties. In other words, there is an intrinsic po-
sition independence—there should be no positional
bias when predicting the answer choice.

However, current implementations fail to
achieve true position independence. First, prob-
ability scoring methods require concatenating each
possible answer choice with the extended query
for scoring. This concatenation establishes an im-
plicit relation between the answer choice and can-
didate choices in the query, breaking position inde-
pendence even if the choice order is randomized.
Secondly, the self-attention mechanism in current
language models also contributes to the destruc-
tion of position independence. It enables atten-
tion between the possible answer choice and other
choices in the extended query, reminding the model
of the unwanted existence of different positions
when scoring based on causal language modeling.

Length Independence Length is an attribute at-
tached to the text of choices. A fair evaluation im-
plementation should not be impacted by the length
of choices. In the abstract representation of such
questions, the choices in the set are elements with-
out an inherent length attribute. This marks an
inherent length independence—evaluation results
should not be biased by the length factor of choices.

However, current methods also fail to truly
achieve length independence. This core issue stems
from the core definition of language modeling. On
one hand, longer text generally have lower log prob-
abilities. Notably, this issue has been empirically
observed by researchers. Prior work has proposed
normalization methods to mitigate this bias by av-
eraging the log likelihoods per token or charac-
ter. However, averaged log probability increases as
length grows. This leads to a dilemma where both
“the longer, the more likely" and “‘the shorter, the
more likely" can hold true when making selection.

4 Test Consistency

To test the reliability of these methods, a straight-
forward approach is to record prediction results
across multiple trials and analyze their consistency.
However, because probability comparison involves
deterministic calculations, the prediction results
will remain identical across trials.

To achieve this straightforward method of evalu-
ation, our first goal is to bring out order invariance.
We propose a simple “test consistency checking”
method that evaluates a multiple-choice question
multiple times, introducing randomness by varying
the choice order across trials. Leveraging order
invariance makes the evaluation method more re-
liable. Our experiments in the next section also
demonstrate its effectiveness at revealing the relia-
bility issues we aim to identify.

Inspiration We propose test consistency check-
ing inspired by the famous double-slit experi-
ment (Young, 1803; Green, 2005) in quantum
physics. This classic physics experiment sends
individual photons one at a time towards two par-
allel slits. Researchers then observe the resulting
pattern on a detection screen. Surprisingly, the re-
sults show quantum particles can take both paths
simultaneously from the source to the screen, pro-
ducing an interference pattern on the screen. How-
ever, if detectors identify which slit each photon
passes through first, the pattern will match the slit
shape (Feynman et al., 1965). This reveals that
light exhibits both wave and particle properties.

In our proposed method, a multiple-choice query
acts like a single photon. When sent to a large lan-
guage model which generates arbitrary continua-
tions, the query itself undergoes “self-interference”.
The multiple choices are analogous to slits that the
photon (query) can pass through, while probabil-
ity comparison methods are like detectors tracking



which “path" the query takes. Just as photons can
take multiple paths but collapse to one after the
measurement, a query may be consistent with mul-
tiple choices essentially, yet once the probability
comparison method is applied, the query becomes
consistent with only one choice. By analyzing the
predictions across trials, we can check consistency,
similar to observing patterns of photons.

Test Consistency Checking We propose test con-
sistency checking to probe the reliability of differ-
ent probability comparison methods. Specifically,
we keep the original query unchanged while ran-
domly shuffle the order of choices for each trial.
We will record the evaluation results (e.g, predicted
choices) of these trials under different methods.
From the perspective of multiple-choice evaluation,
the core idea is that a reliable evaluation method
should predict the same choice regardless of how
the choices are ordered. Therefore, we can check
the consistency of the results across trials to indi-
cate the reliability of these methods.

By preserving order invariance and using ran-
domized order of choices, this method adapts the
evaluation to align with the inherent nature of
multiple-choice questions. It leverages inherent
randomness in the choice order to assess model
abilities across multiple trials. This approach can
be seen as a revision to existing multiple-choice
adaptation methods to better represent the core ele-
ments in multiple-choice questions. Furthermore,
it can be used to reveal the other reliability issues
we concern, testing whether evaluation results stem
from genuine language comprehension or the bi-
ases introduced by evaluation methods.

5 Experiment

Below we conduct experiments to perform the eval-
uation through test consistency checking. Our ex-
periments demonstrate that test consistency check-
ing provides valuable insights for probing reliabil-
ity issues we proposed.

5.1 Models and Benchmarks

We conduct test consistency checking on both pre-
trained and fine-tuned large language models.

(1) LLama 7B/13B (Touvron et al., 2023a), a
widely used pre-trained open-sourced LLM;

(2) Alpaca (Taori et al., 2023), a LLama-based lan-
guage model fine-tuned on instruction data;

(3) Falcon (Almazrouei et al., 2023), a high perfor-
mance language model pre-trained from scratch;

(4) Falcon-Instruct, a Falcon-based language
model fine-tuned on chat and instruction data;

(5) LLama 2 7B/13B (Touvron et al., 2023b), the
updated pre-trained successor to LLama;

(6) LLama 2-Chat 7B/13B, a LLama 2-based lan-
guage model optimized on instruction datasets;
(7) MPT (Team, 2023), a language model pre-
trained by MosaicML from scratch;

(8) MPT-Chat, the instruction fine-tuned MPT.
More details about these chosen LLMs families
and sizes can be found in Appendix.

We select a diverse benchmark suite covering
tests for commonsense reasoning, mathematics,
logical reasoning and multidisciplinary knowledge.
HellaSwag benchmark are used for commonsense
reasoning. It presents story premises with four
possible endings. Models must choose the most
plausible ending. We select benchmarks from four
distinct subjects in the MMLU suite: College Math,
Formal Logic, Professional Law and Sociology. All
of them contain 4-choice questions. We also use
questions from the United States Medical Licens-
ing Examination (USMLE) (Han et al., 2023) for
testing medicine-related knowledge, which may
contain up to 8 choices in one question.

5.2 Implementation Details

We test each multiple-choice question with m trials.
Specifically, we perform 24 trials for 4-choice ques-
tions, which covers most of our benchmarks except
for the USMLE. For the USMLE, we increase the
number of trials to 100 and filter out questions with
more than 6 choices. Given limited resources, we
randomly select 100 questions for each benchmark.

We test all possible implementations of probabil-
ity comparison approach, including three adapta-
tion methods—;joint-label, joint-desc and separate
methods—with three probability scoring methods.
The joint-label method relies solely on the choice
label for probability scoring. As a result, the unnor-
malized scoring method that sums log likelihoods
is equivalent to normalized methods that average
log likelihoods. We therefore only use unnormal-
ized scoring for joint-label method. In contrast,
Jjoint-desc and separate method utilizes the full text
of choices. For these two methods, we conduct
both unnormalized and normalized scoring.

5.3 Evaluation with Order Invariance

The initial results through test consistency check-
ing are presented as categorical plots in Figure 2.
This enables fair comparisons with preserving or-
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Figure 2: Evaluation of different implementations through test consistency checking. Accuracy scores are reported
for comparison. The X-axis represents different implementations, where “jd:All” and “jd:Ca”, for example, refer to
the joint-desc adaptation with unnormalized and character-length normalized scoring method, respectively.

der invariance. By checking whether the predicted
answer match the ground truth on every trial, an ac-
curacy score is calculated for each implementation.

The first observation is that there is no consistent
preferences for any implementation across models
and benchmarks. The results for implementations
are broadly sensitive to the benchmark used. For
example, using separate adaptation always obtains
higher accuracy compared to other implementa-
tions on the HellaSwag benchmark. However, on
the College Math benchmark, separate adaptation
obtains worse results.

Therefore, the results reveal challenges in com-
paring capabilities between models, which was par-
tially discussed in Liang et al. (2022) . Varying the
implementation can dramatically change measured
accuracy between models on the same benchmark.
For example, when comparing between LLama
and Falcon on the HellaSwag benchmark, LLama
achieves higher accuracy with the unnormalized
separate method. However, with the character-
length normalized separate method, Falcon out-
performs LLama instead. Conclusions about rela-

tive model performance can be even more unclear
across different benchmarks. Even with multiple
trials, the evaluation results may not provide defini-
tive conclusions. It seems that high variability is
inevitable with current implementations.
However, certain implementations exhibit
model-independent trends on specific benchmarks,
suggesting potential underlying biases. The unnor-
malized separate method consistently outperforms
others on the USMLE benchmark by a large mar-
gin. Conversely, some implementations yield no-
tably low performance. The results obtained from
the token-length normalized joint-desc method on
the Professional Law benchmark are quite low,
falling below 0.15. We argue that these results
may stem from underlying biases in the implemen-
tations rather than genuine performance issues.

5.4 Evaluation on Position

In this section, we track the impact of choice po-
sition and analyze how it interacts with implemen-
tations. Figure 3 shows categorical plots summa-
rizing the position of predicted choices for testing
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Figure 3: Summarization of the position rank of predicted choices across different implementations and models.
Proportions are reported for comparison. “pos_rz” refers to the predicted choices ranked at position x, with “pos_r1"
being the choices with the top-ranked position among all candidates.

different models and implementations. The y-axis
represents the proportion of times each choice posi-
tion rank is selected. Since the USMLE benchmark
can have more than 4 choices, we exclude results
on it, thus an unbiased implementation should yield
an expected value of 0.25.

The first observation is a significant contrast be-
tween the high variability of results from joint-desc
methods and the relatively stable tendency on sep-
arate methods. The separate methods exhibit ideal
position independence, with near identical propor-
tions around 0.25. The difference between the
Jjoint-desc method and the separate method is that
the former uses an extended query that includes
the original query and choices, while the latter
only uses the original query before concatenating
each choice. The inclusion of choices in the query
prompt clearly introduces positional bias.

Applying normalization methods reduces the
variance in position bias exhibited, but does not
eliminate it completely. This is evident from the
lower variability in results obtained from the nor-
malized joint-desc method compared to unnor-
malized one. These results confirm our analysis,

demonstrating that this bias cannot be eliminated
solely by bringing out order invariance. On the
other hand, such position bias can partly reveal the
relationship between different models, the impact
of pre-training and fine-tuning processes, and the
influence of different model sizes.

5.5 Evaluation on Length

Figure 4 shows categorical plots summarizing the
length of predicted choices for testing different
models and implementations. The y-axis represents
the proportion of times each length rank is selected,
excluding questions where all choices have equal
length. The statistical analysis reveals the distribu-
tion of the golden choice length rank as follows:
{0: 0.298, 1: 0.303, 2: 0.18, 3: 0.219}. For exam-
ple, the golden option with the highest length rank
occurs approximately 29.8% of the time.

We observe that length independence is severely
violated in these implementations. Instead, they
exhibit consistent yet distinct length-dependent ten-
dencies. On one side, the “the shorter, the more
likely" tendency indicates a preference for shorter
choices. On the other side, the “the longer, the
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Figure 4: Summarization of the length rank of predicted choices across different implementations and models.
Proportions are reported for comparison. “len_r0” refers to the longest candidate choice among the choice set.

more likely" tendency shows a reversed preference.

The unnormalized methods exhibit “the shorter,
the more likely" tendency. Since longer choices
tend to have lower probabilities, unnormalized
methods are biased towards selecting shorter
choices intuitively. However, the results from both
the joint-desc and separate methods show that
prepending a long prompt can mitigate this biased
tendency, or through the fine-tuning process.

The normalized methods exhibit the “the longer,
the more likely” tendency. As the choice length
increases, the selection probability monotonically
rises. Applying normalized joint-desc methods
tends to predict the longest option as the answer
with a probability over 0.75. Using character-
length normalized joint-desc can push this prob-
ability even to 0.95 for some models.

Our findings confirm the implicit connection be-
tween length and position, as described in previous
research (Kaplan et al., 2020). As the length in-
creases, the total log likelihood decreases, but the
per-token/character log likelihood increases. The
opposing preferences observed in our results, with
unnormalized methods favoring shorter choices
and normalized methods favoring longer choices,

present a dilemma where the tendencies of “the
shorter, the more likely" and “the longer, the more
likely" coexist. We conjecture that this partially
stems from the core definition of language mod-
eling and becomes ingrained during pre-training,
making it fundamentally difficult to solve.

6 Conclusion

This paper primarily focuses on the reliability of
multiple-choice evaluation methods. We uncover
three intrinsic issues ingrained in current methods
that negatively impact reliability. The adaptation
and probability scoring processes undermine the
fundamental nature of multiple-choice questions:
order invariance, position independence, and length
independence. To perform reliability checking, we
propose a test consistency checking method in-
spired by the double-slit experiment. The method
first brings out the order invariance by leverages
multiple trials evaluation through the choice shuf-
fling. Experiments covering 6 benchmarks and
different LLMs reveal severe reliability issues har-
bored within these methods, demonstrating the
need for further efforts in evaluation study.



Limitations

In this paper, we study the reliability of implemen-
tations used in current automatic multiple-choice
evaluation. We uncover the overlooked reliability
issues and introduce a method inspired by double-
slit experiment to conduct the reliable multiple-
choice evaluation. Still, our work is limited in:

* More novel evaluation method: We put our
focus on pointing out the reliability issues har-
bored within current evaluation methods in
this work. On the other hand, we consider
the test consistency checking method to be
a viable approach for multiple-choice evalua-
tion. This method has several advantages: (1)
it can reflect the genuine performance of mod-
els with preserving order invariance, (2) it can
be easily applied to the numerous models that
have already been evaluated, and (3) it has the
potential to uncover reliability issues related
to choice position and length. In the future,
we are actively working on developing more
novel evaluation methods to further enhance
the assessment of multiple-choice tasks.

» Computational resources concerns: The basic
algorithm is built on evaluating multiple tri-
als for one multiple-choice question, which
can be resource-intensive, especially as the
number of choices increases. Studying new
strategies that can be applied in limited re-
sources is an important direction in the future,
and we limit our work to 4-choices evaluation.

Ethical Statement

In this work, we conduct experiments focusing on
testing reliability of LLM evaluation methods. All
data and models are open-source and raise little
ethical concerns. Further, our work is beneficial
for ethical problems in LLM evaluation. By in-
troducing the test consistency checking method,
claims about the state-of-the-art performance or
the effectiveness of newly released LLMs should
be approached with caution. This is because the
test consistency checking method may reveal signif-
icant differences in performance compared to tradi-
tional evaluation methods, offering a more reliable
and trustworthy assessment of LL.M capabilities.
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A Appendix

LLMs in Experiment We selected LLMs based
on representativeness, fairness, and performance.
Given these criteria, we initially chose LLama due
to its common use. Moreover, LLama 2 was re-
cently released with better performance. We also
selected the Falcon model, claimed as the best LLM
upon its release on the Open LLM Leaderboard.
We also considered MPT models from MosaicML,
but visualization challenges with more models led
us to limit our selection. We believe these models
sufficiently support our conclusion.

To maintain a fair comparison, we opted to use
the 7B versions of LLMs as default. It was chal-
lenging to ensure that all LLM families had the
same version of the model. For instance, LLama
has versions of 7/13/33/65B, while LLama 2 has
versions of 7/13/70B. The Falcon model has 7/40B
versions. By standardizing our use of the 7B ver-
sions as default, we aimed to keep the compar-
ison as equitable as possible. Due to resource
constraints, model versions exceeding 13B were
deemed too costly for our project.


https://doi.org/10.48550/arXiv.2305.08322
https://doi.org/10.48550/arXiv.2305.08322
https://doi.org/10.48550/arXiv.2305.08322
https://doi.org/10.48550/arXiv.2305.08322
https://doi.org/10.48550/arXiv.2305.08322
https://doi.org/10.48550/arXiv.2211.09110
https://doi.org/10.48550/arXiv.2211.09110
https://doi.org/10.48550/arXiv.2211.09110
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2303.08774
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830
https://doi.org/10.48550/arXiv.2305.12474
https://doi.org/10.48550/arXiv.2305.12474
https://doi.org/10.48550/arXiv.2305.12474
https://doi.org/10.48550/arXiv.2305.12474
https://doi.org/10.48550/arXiv.2305.12474
https://doi.org/10.48550/arXiv.2304.06364
https://doi.org/10.48550/arXiv.2304.06364
https://doi.org/10.48550/arXiv.2304.06364

Why use 100 questions? In our work, we believe
that using 100 questions is sufficient to illustrate
the reliability issues we aim to uncover. However,
when it comes to reflecting the performance of
models on a specific test set, more samples may be
required. It is important to note that our proposed
method is not impacted by the number of data sam-
ples. This means that our evaluation approach can
effectively assess model performance regardless
of the number of samples available, providing a
reliable and consistent evaluation method.
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