
Quadruple-Slit Experiment:
Reliability Issues in Multiple-Choice Evaluation for Language Models

Anonymous ACL submission

Abstract

Multiple-choice evaluation has been commonly001
used for assessing language model capabilities.002
Current evaluation methods primarily employ003
a probability comparison approach. However,004
our study demonstrates overlooked reliability005
issues with this approach. The determinis-006
tic prediction comes at the cost of sacrificing007
core properties of multiple-choice questions—–008
order invariance, position independence and009
length independence. To perform reliability010
checking, we propose a test consistency check-011
ing method inspired by the double-slit experi-012
ment. Experiments across multiple LLMs and013
benchmarks reveal the shaky reliability of cur-014
rent implementations, uncovering severe po-015
sition and length biases unintentionally intro-016
duced by these evaluation methods.017

1 Introduction018

Recent advances in artificial intelligence have been019

driven by the development of Large Language Mod-020

els (LLMs). With expanding abilities to tackle a021

wide range of tasks, evaluating their capabilities022

becomes increasingly important. Researchers have023

made sustained efforts to construct comprehensive024

settings for evaluating LLMs. However, in examin-025

ing one of the most straightforward and prevalent026

evaluation settings—multiple-choice evaluation—027

we uncover intrinsic reliability issues that have028

been overlooked in current implementations.029

Multiple-choice question has become an im-030

portant setting for assessing large language mod-031

els due to its distinct structure. This structure032

presents models with a query and a constrained033

set of candidate choices, with one designated as034

correct. The specificity enables straightforward035

and grounded evaluation, allowing targeted assess-036

ment of model capabilities. For instance, the Open037

LLM Leaderboard (Beeching et al., 2023), a pop-038

ular benchmark for evaluating LLMs, utilizes the039

multiple-choice format for 3 of its 4 evaluation040

tasks. LLama 2 (Touvron et al., 2023b), the suc- 041

cessor model to LLama (Touvron et al., 2023a), 042

evaluates its capabilities across 19 academic bench- 043

marks, with 9 being multiple-choice settings, cov- 044

ering evaluation on language understanding, com- 045

monsense reasoning, and world knowledge. 046

However, implementing multiple-choice eval- 047

uation is not as straightforward as it may 048

seem. Although LLMs can generate responses 049

to queries, automatically evaluating these re- 050

sponses remains challenging. This requires ei- 051

ther specially-designed prompts to elicit certain re- 052

sponse forms (Zhang et al., 2023), or the utilization 053

of robust language understanding tools to verify if 054

responses match the choices (OpenAI, 2023). Both 055

of these issues can affect the precision, stability, 056

and consistency of the evaluation process. 057

Recent work has applied a two-step probabil- 058

ity comparison approach for automatic multiple- 059

choice evaluation, aided by predetermined choices. 060

This first adapts the multiple-choice question into 061

an evaluable format, then compares choice prob- 062

abilities using scoring methods. While enabling 063

definitive and automatic evaluation, the reliability 064

of such methods has largely been overlooked. A re- 065

cent study found high variability in results, with ac- 066

curacy ranging from 30% to nearly 60% depending 067

on the adaptation used (Liang et al., 2022). Given 068

that numerous LLMs have been evaluated using 069

probability comparison methods, the uncertainty 070

around reliability underscores the core motivation 071

of this work: the need to validate the reliability of 072

these methods under multiple-choice evaluation. 073

When delving into the implementation details 074

of these methods, we uncover three inherent is- 075

sues that adversely impact the nature properties of 076

multiple-choice questions: 077

1. Order Invariance: choices should be per- 078

muted randomly without altering the question 079

itself. However, adaptation process uninten- 080
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Figure 1: Illustration of the evaluation implementation and test consistency checking method for multiple-choice
evaluation. Considering the evaluation input and scoring choice forms, three different adaptations are commonly
used in probability comparison methods (left). Our objective is to uncover intrinsic reliability issues in these
implementations. To achieve this, we propose test consistency checking method inspired by the famous double-slit
experiment (right). This method treats each multiple-question evaluation as multiple trials, allowing us to bring out
order invariance while revealing reliability issues related to position and length independence.

tionally disrupts the invariant property as it081

imposes an artificial order on the choices.082

2. Position Independence: choices are elements083

without inherent positional properties. Here,084

positional biases are introduced when concate-085

nating choices and possible answers.086

3. Length Independence: a fair evaluation087

should avoid bias towards longer or shorter088

choices. We find that probability scoring meth-089

ods introduce severe length bias, creating a090

dilemma where tendencies for both longer and091

shorter choices simultaneously hold true.092

To perform reliability evaluation, inspired by093

the famous double-slit experiment in physics, we094

propose test consistency checking. By randomiz-095

ing choice order across trials, this method enables096

consistency checks while preserving the fundamen-097

tal order invariance. In experiments, we compare098

seven implementations, consisting of combinations099

of three adaptation methods and three probability100

scoring methods. We test both pre-trained and fine-101

tuned models on six multi-subject multiple-choice102

benchmarks. The results of our experiments reveal103

that all current probability comparison implemen-104

tations suffer from inherent reliability issues.105

This paper makes three contributions: (1) a sys-106

tematic and focused study of multiple-choice evalu-107

ation; (2) an exploration of reliability issues in cur-108

rently prevalent probability comparison methods;109

and (3) extensive comparison experiments that at-110

tempt to reveal underlying groundlessness in these111

evaluation methods. Additionally, through explor-112

ing this seemingly straightforward evaluation, we113

aim to spur rethinking the study of evaluation over-114

all, as a fundamental discipline in AI development.115

2 Background 116

2.1 Multiple-Choice Evaluation 117

Multiple-choice evaluation is a constrained evalua- 118

tion setting where models are tested with multiple- 119

choice questions. These questions have three key 120

components. (1) The query: This provides context 121

or poses a question for the model to consider. (2) 122

The choices: Each candidate choice has a label (e.g, 123

A, B, C) and a description that proposes a possible 124

response to the query. (3)The answer: Only one 125

choice is designated as the correct answer choice 126

based on the query. 127

Multiple-choice evaluation constrains the out- 128

put space with predetermined choices, allowing for 129

targeted assessment of a model’s abilities across 130

domains (Zhong et al., 2023; Kung et al., 2023; 131

Gao et al., 2021; Zhang et al., 2023). Currently, 132

it has been used to assess in diverse fields such as 133

mathematics, chemistry, medicine and humanities, 134

spanning tests for safety (Lin et al., 2021), ques- 135

tion answering (Clark et al., 2018), commonsense 136

reasoning (Zellers et al., 2019), and multi-subject 137

knowledge (Huang et al., 2023; Zeng, 2023). 138

2.2 Probability Comparison Methods 139

The constrained nature of multiple-choice evalua- 140

tion enables more deterministic and automatic eval- 141

uation by comparing probability scores between 142

choices, unlike open-ended evaluations where the 143

LLM generates free-form responses. This type of 144

methods generally involve two steps: first, adapting 145

the multiple-choice question to an evaluable for- 146

mat; and second, calculating probability scores for 147

each choice. By comparing these scores, a model 148

can qualitatively predict which choice is more or 149

less likely to be the correct answer. 150
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Adaptation To evaluate language models us-151

ing multiple-choice questions, adaptation methods152

have been applied to format the query and candi-153

date choices in a way that allows the model to score154

each choice. These existing adaptation methods155

generally fall into three main categories.156

• joint-label: This method concatenates all the157

choices together with the query to form an158

extended query. This extended query is fed to159

the model. The probability assigned to each160

label is then used to generate a score.161

• joint-desc method: This method concatenates162

all the choices with the query first. Given the163

entire extended query into the language model164

at once, it uses the probability the model as-165

signs to each choice, consisting of both the166

label and description, to generate a score.167

• separate method: This method evaluates each168

choice individually by feeding only the orig-169

inal query into the language model. It then170

calculates the probability of each choice at a171

time to generate a score.172

These adaptation methods have been applied in var-173

ious works for multiple-choice evaluation. For ex-174

ample, the technical report of GPT-3 (Brown et al.,175

2020) indicates using the separate method in their176

evaluations. The Open LLM Leaderboard (Beech-177

ing et al., 2023) applies the joint-desc method by178

default when accessing models. Some evaluation179

frameworks utilize different methods depending180

on the benchmark. For instance, HELM (Liang181

et al., 2022) employs the separate method for the182

HellaSwag benchmark (Zellers et al., 2019) but183

uses the joint-label method for the MMLU bench-184

mark (Hendrycks et al., 2021) instead.185

Probability Scoring Probability scoring involves186

calculating probability scores for possible continu-187

ations (e.g, possible answer choices) given a query188

prompt (e.g, extended query). However, scoring for189

entire possible continuations poses challenges for190

language models, which only generate probabili-191

ties token-by-token (i.e, P (xi|x0:i)) rather than for192

complete sequences. Given x0:m as the prompt and193

xm:n as a possible continuation to be scored, where194

m is the index of the first token in the continuation195

with a token length of n −m, previous work has196

developed several normalization methods to handle197

this issue of scoring (Gao, 2021).198

• Unnormalized method: A simple approach is 199

to calculate the score of a continuation xm:n 200

by summing the log likelihood of each to- 201

ken given the previous prompt. The formula 202

is Σn−1
i=mlogP (xi|x0:i), where higher scores 203

indicate higher probability of being correct. 204

However, this could introduce a length bias 205

issue, as longer continuations typically have 206

lower log likelihood, leading to a preference 207

on shorter choices during evaluation. 208

• Token-length normalized method: The score 209

of a continuation is calculated by tak- 210

ing the average log likelihood per to- 211

ken given the prompt, using the formula 212
1

n−mΣn−1
i=mlogP (xi|x0:i). This aims to nor- 213

malize the score by the number of tokens. It 214

is worth noting that the number of tokens is 215

determined by the tokenizer used. 216

• Character-length normalized method: This 217

method calculates the score by taking 218

the average log likelihood per charac- 219

ter given the prompt, using the formula 220
1

L(xm:n)
Σn−1
i=mlogP (xi|x0:i) where L(xm:n) is 221

the number of characters in xm:n. Using char- 222

acter length for normalization eliminates the 223

impact of different tokenizers tokenizing the 224

same text into varying length. 225

3 Reliability Issues 226

For multiple-choice evaluation, the prevailing meth- 227

ods primarily rely on the probability comparison 228

approach, which consists of two key steps: an adap- 229

tation method and a probability scoring method. 230

While numerous large language models have been 231

evaluated on diverse multiple-choice questions us- 232

ing probability comparison methods (Liang et al., 233

2022; Beeching et al., 2023), the reliability of these 234

methods has been largely overlooked. To address 235

this gap, we closely examine the implementation of 236

these methods, and our analysis reveals that there 237

are three inherent reliability issues involved with 238

these implementations. 239

Order Invariance What makes multiple-choice 240

questions special? The pre-determined candidate 241

choices. These choices constrain the output space, 242

providing a set of options to select from. This con- 243

strained output space, represented abstractly as a 244

finite and discrete set of choice elements, is the key 245

differentiating factor that distinguishes multiple- 246

choice questions from other types of evaluation 247
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settings. This makes multiple-choice questions in-248

trinsically order invariant—the choices can be per-249

muted without changing the nature of the question.250

Current implementations of probability compari-251

son methods adversely impact the order invariance.252

First and foremost, adaptation methods convert the253

representation of the choice set for language model254

evaluation. Specifically, these adaptation meth-255

ods (e.g, joint-desc method) represent the choice256

set as ordered sequential text—a human-readable257

but ordered format. Through this process, order258

invariance is sacrificed unintentionally for human-259

friendly and controllable evaluation purposes. Sec-260

ondly, current large language models, typically261

causal language models based on the Transformer262

architecture (Vaswani et al., 2017), fundamentally263

lack order invariance. Instead, one of the core264

design of the Transformer is the use of position265

embeddings to encode order information in text.266

Position Independence Position independence267

is related to order invariance, but centers on the268

answer side more than the query. For a multiple-269

choice question, the answer is a selected choice270

from the candidate choice set. Position indepen-271

dence means that choices do not possess positional272

properties. In other words, there is an intrinsic po-273

sition independence–there should be no positional274

bias when predicting the answer choice.275

However, current implementations fail to276

achieve true position independence. First, prob-277

ability scoring methods require concatenating each278

possible answer choice with the extended query279

for scoring. This concatenation establishes an im-280

plicit relation between the answer choice and can-281

didate choices in the query, breaking position inde-282

pendence even if the choice order is randomized.283

Secondly, the self-attention mechanism in current284

language models also contributes to the destruc-285

tion of position independence. It enables atten-286

tion between the possible answer choice and other287

choices in the extended query, reminding the model288

of the unwanted existence of different positions289

when scoring based on causal language modeling.290

Length Independence Length is an attribute at-291

tached to the text of choices. A fair evaluation im-292

plementation should not be impacted by the length293

of choices. In the abstract representation of such294

questions, the choices in the set are elements with-295

out an inherent length attribute. This marks an296

inherent length independence—evaluation results297

should not be biased by the length factor of choices.298

However, current methods also fail to truly 299

achieve length independence. This core issue stems 300

from the core definition of language modeling. On 301

one hand, longer text generally have lower log prob- 302

abilities. Notably, this issue has been empirically 303

observed by researchers. Prior work has proposed 304

normalization methods to mitigate this bias by av- 305

eraging the log likelihoods per token or charac- 306

ter. However, averaged log probability increases as 307

length grows. This leads to a dilemma where both 308

“the longer, the more likely" and “the shorter, the 309

more likely" can hold true when making selection. 310

4 Test Consistency 311

To test the reliability of these methods, a straight- 312

forward approach is to record prediction results 313

across multiple trials and analyze their consistency. 314

However, because probability comparison involves 315

deterministic calculations, the prediction results 316

will remain identical across trials. 317

To achieve this straightforward method of evalu- 318

ation, our first goal is to bring out order invariance. 319

We propose a simple “test consistency checking” 320

method that evaluates a multiple-choice question 321

multiple times, introducing randomness by varying 322

the choice order across trials. Leveraging order 323

invariance makes the evaluation method more re- 324

liable. Our experiments in the next section also 325

demonstrate its effectiveness at revealing the relia- 326

bility issues we aim to identify. 327

Inspiration We propose test consistency check- 328

ing inspired by the famous double-slit experi- 329

ment (Young, 1803; Green, 2005) in quantum 330

physics. This classic physics experiment sends 331

individual photons one at a time towards two par- 332

allel slits. Researchers then observe the resulting 333

pattern on a detection screen. Surprisingly, the re- 334

sults show quantum particles can take both paths 335

simultaneously from the source to the screen, pro- 336

ducing an interference pattern on the screen. How- 337

ever, if detectors identify which slit each photon 338

passes through first, the pattern will match the slit 339

shape (Feynman et al., 1965). This reveals that 340

light exhibits both wave and particle properties. 341

In our proposed method, a multiple-choice query 342

acts like a single photon. When sent to a large lan- 343

guage model which generates arbitrary continua- 344

tions, the query itself undergoes “self-interference”. 345

The multiple choices are analogous to slits that the 346

photon (query) can pass through, while probabil- 347

ity comparison methods are like detectors tracking 348

4



which “path" the query takes. Just as photons can349

take multiple paths but collapse to one after the350

measurement, a query may be consistent with mul-351

tiple choices essentially, yet once the probability352

comparison method is applied, the query becomes353

consistent with only one choice. By analyzing the354

predictions across trials, we can check consistency,355

similar to observing patterns of photons.356

Test Consistency Checking We propose test con-357

sistency checking to probe the reliability of differ-358

ent probability comparison methods. Specifically,359

we keep the original query unchanged while ran-360

domly shuffle the order of choices for each trial.361

We will record the evaluation results (e.g, predicted362

choices) of these trials under different methods.363

From the perspective of multiple-choice evaluation,364

the core idea is that a reliable evaluation method365

should predict the same choice regardless of how366

the choices are ordered. Therefore, we can check367

the consistency of the results across trials to indi-368

cate the reliability of these methods.369

By preserving order invariance and using ran-370

domized order of choices, this method adapts the371

evaluation to align with the inherent nature of372

multiple-choice questions. It leverages inherent373

randomness in the choice order to assess model374

abilities across multiple trials. This approach can375

be seen as a revision to existing multiple-choice376

adaptation methods to better represent the core ele-377

ments in multiple-choice questions. Furthermore,378

it can be used to reveal the other reliability issues379

we concern, testing whether evaluation results stem380

from genuine language comprehension or the bi-381

ases introduced by evaluation methods.382

5 Experiment383

Below we conduct experiments to perform the eval-384

uation through test consistency checking. Our ex-385

periments demonstrate that test consistency check-386

ing provides valuable insights for probing reliabil-387

ity issues we proposed.388

5.1 Models and Benchmarks389

We conduct test consistency checking on both pre-390

trained and fine-tuned large language models.391

(1) LLama 7B/13B (Touvron et al., 2023a), a392

widely used pre-trained open-sourced LLM;393

(2) Alpaca (Taori et al., 2023), a LLama-based lan-394

guage model fine-tuned on instruction data;395

(3) Falcon (Almazrouei et al., 2023), a high perfor-396

mance language model pre-trained from scratch;397

(4) Falcon-Instruct, a Falcon-based language 398

model fine-tuned on chat and instruction data; 399

(5) LLama 2 7B/13B (Touvron et al., 2023b), the 400

updated pre-trained successor to LLama; 401

(6) LLama 2-Chat 7B/13B, a LLama 2-based lan- 402

guage model optimized on instruction datasets; 403

(7) MPT (Team, 2023), a language model pre- 404

trained by MosaicML from scratch; 405

(8) MPT-Chat, the instruction fine-tuned MPT. 406

More details about these chosen LLMs families 407

and sizes can be found in Appendix. 408

We select a diverse benchmark suite covering 409

tests for commonsense reasoning, mathematics, 410

logical reasoning and multidisciplinary knowledge. 411

HellaSwag benchmark are used for commonsense 412

reasoning. It presents story premises with four 413

possible endings. Models must choose the most 414

plausible ending. We select benchmarks from four 415

distinct subjects in the MMLU suite: College Math, 416

Formal Logic, Professional Law and Sociology. All 417

of them contain 4-choice questions. We also use 418

questions from the United States Medical Licens- 419

ing Examination (USMLE) (Han et al., 2023) for 420

testing medicine-related knowledge, which may 421

contain up to 8 choices in one question. 422

5.2 Implementation Details 423

We test each multiple-choice question with m trials. 424

Specifically, we perform 24 trials for 4-choice ques- 425

tions, which covers most of our benchmarks except 426

for the USMLE. For the USMLE, we increase the 427

number of trials to 100 and filter out questions with 428

more than 6 choices. Given limited resources, we 429

randomly select 100 questions for each benchmark. 430

We test all possible implementations of probabil- 431

ity comparison approach, including three adapta- 432

tion methods—joint-label, joint-desc and separate 433

methods—with three probability scoring methods. 434

The joint-label method relies solely on the choice 435

label for probability scoring. As a result, the unnor- 436

malized scoring method that sums log likelihoods 437

is equivalent to normalized methods that average 438

log likelihoods. We therefore only use unnormal- 439

ized scoring for joint-label method. In contrast, 440

joint-desc and separate method utilizes the full text 441

of choices. For these two methods, we conduct 442

both unnormalized and normalized scoring. 443

5.3 Evaluation with Order Invariance 444

The initial results through test consistency check- 445

ing are presented as categorical plots in Figure 2. 446

This enables fair comparisons with preserving or- 447
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Figure 2: Evaluation of different implementations through test consistency checking. Accuracy scores are reported
for comparison. The X-axis represents different implementations, where “jd:All” and “jd:Ca”, for example, refer to
the joint-desc adaptation with unnormalized and character-length normalized scoring method, respectively.

der invariance. By checking whether the predicted448

answer match the ground truth on every trial, an ac-449

curacy score is calculated for each implementation.450

The first observation is that there is no consistent451

preferences for any implementation across models452

and benchmarks. The results for implementations453

are broadly sensitive to the benchmark used. For454

example, using separate adaptation always obtains455

higher accuracy compared to other implementa-456

tions on the HellaSwag benchmark. However, on457

the College Math benchmark, separate adaptation458

obtains worse results.459

Therefore, the results reveal challenges in com-460

paring capabilities between models, which was par-461

tially discussed in Liang et al. (2022) . Varying the462

implementation can dramatically change measured463

accuracy between models on the same benchmark.464

For example, when comparing between LLama465

and Falcon on the HellaSwag benchmark, LLama466

achieves higher accuracy with the unnormalized467

separate method. However, with the character-468

length normalized separate method, Falcon out-469

performs LLama instead. Conclusions about rela-470

tive model performance can be even more unclear 471

across different benchmarks. Even with multiple 472

trials, the evaluation results may not provide defini- 473

tive conclusions. It seems that high variability is 474

inevitable with current implementations. 475

However, certain implementations exhibit 476

model-independent trends on specific benchmarks, 477

suggesting potential underlying biases. The unnor- 478

malized separate method consistently outperforms 479

others on the USMLE benchmark by a large mar- 480

gin. Conversely, some implementations yield no- 481

tably low performance. The results obtained from 482

the token-length normalized joint-desc method on 483

the Professional Law benchmark are quite low, 484

falling below 0.15. We argue that these results 485

may stem from underlying biases in the implemen- 486

tations rather than genuine performance issues. 487

5.4 Evaluation on Position 488

In this section, we track the impact of choice po- 489

sition and analyze how it interacts with implemen- 490

tations. Figure 3 shows categorical plots summa- 491

rizing the position of predicted choices for testing 492
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Figure 3: Summarization of the position rank of predicted choices across different implementations and models.
Proportions are reported for comparison. “pos_rx” refers to the predicted choices ranked at position x, with “pos_r1"
being the choices with the top-ranked position among all candidates.

different models and implementations. The y-axis493

represents the proportion of times each choice posi-494

tion rank is selected. Since the USMLE benchmark495

can have more than 4 choices, we exclude results496

on it, thus an unbiased implementation should yield497

an expected value of 0.25.498

The first observation is a significant contrast be-499

tween the high variability of results from joint-desc500

methods and the relatively stable tendency on sep-501

arate methods. The separate methods exhibit ideal502

position independence, with near identical propor-503

tions around 0.25. The difference between the504

joint-desc method and the separate method is that505

the former uses an extended query that includes506

the original query and choices, while the latter507

only uses the original query before concatenating508

each choice. The inclusion of choices in the query509

prompt clearly introduces positional bias.510

Applying normalization methods reduces the511

variance in position bias exhibited, but does not512

eliminate it completely. This is evident from the513

lower variability in results obtained from the nor-514

malized joint-desc method compared to unnor-515

malized one. These results confirm our analysis,516

demonstrating that this bias cannot be eliminated 517

solely by bringing out order invariance. On the 518

other hand, such position bias can partly reveal the 519

relationship between different models, the impact 520

of pre-training and fine-tuning processes, and the 521

influence of different model sizes. 522

5.5 Evaluation on Length 523

Figure 4 shows categorical plots summarizing the 524

length of predicted choices for testing different 525

models and implementations. The y-axis represents 526

the proportion of times each length rank is selected, 527

excluding questions where all choices have equal 528

length. The statistical analysis reveals the distribu- 529

tion of the golden choice length rank as follows: 530

{0: 0.298, 1: 0.303, 2: 0.18, 3: 0.219}. For exam- 531

ple, the golden option with the highest length rank 532

occurs approximately 29.8% of the time. 533

We observe that length independence is severely 534

violated in these implementations. Instead, they 535

exhibit consistent yet distinct length-dependent ten- 536

dencies. On one side, the “the shorter, the more 537

likely" tendency indicates a preference for shorter 538

choices. On the other side, the “the longer, the 539
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Figure 4: Summarization of the length rank of predicted choices across different implementations and models.
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more likely" tendency shows a reversed preference.540

The unnormalized methods exhibit “the shorter,541

the more likely" tendency. Since longer choices542

tend to have lower probabilities, unnormalized543

methods are biased towards selecting shorter544

choices intuitively. However, the results from both545

the joint-desc and separate methods show that546

prepending a long prompt can mitigate this biased547

tendency, or through the fine-tuning process.548

The normalized methods exhibit the “the longer,549

the more likely” tendency. As the choice length550

increases, the selection probability monotonically551

rises. Applying normalized joint-desc methods552

tends to predict the longest option as the answer553

with a probability over 0.75. Using character-554

length normalized joint-desc can push this prob-555

ability even to 0.95 for some models.556

Our findings confirm the implicit connection be-557

tween length and position, as described in previous558

research (Kaplan et al., 2020). As the length in-559

creases, the total log likelihood decreases, but the560

per-token/character log likelihood increases. The561

opposing preferences observed in our results, with562

unnormalized methods favoring shorter choices563

and normalized methods favoring longer choices,564

present a dilemma where the tendencies of “the 565

shorter, the more likely" and “the longer, the more 566

likely" coexist. We conjecture that this partially 567

stems from the core definition of language mod- 568

eling and becomes ingrained during pre-training, 569

making it fundamentally difficult to solve. 570

6 Conclusion 571

This paper primarily focuses on the reliability of 572

multiple-choice evaluation methods. We uncover 573

three intrinsic issues ingrained in current methods 574

that negatively impact reliability. The adaptation 575

and probability scoring processes undermine the 576

fundamental nature of multiple-choice questions: 577

order invariance, position independence, and length 578

independence. To perform reliability checking, we 579

propose a test consistency checking method in- 580

spired by the double-slit experiment. The method 581

first brings out the order invariance by leverages 582

multiple trials evaluation through the choice shuf- 583

fling. Experiments covering 6 benchmarks and 584

different LLMs reveal severe reliability issues har- 585

bored within these methods, demonstrating the 586

need for further efforts in evaluation study. 587
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Limitations588

In this paper, we study the reliability of implemen-589

tations used in current automatic multiple-choice590

evaluation. We uncover the overlooked reliability591

issues and introduce a method inspired by double-592

slit experiment to conduct the reliable multiple-593

choice evaluation. Still, our work is limited in:594

• More novel evaluation method: We put our595

focus on pointing out the reliability issues har-596

bored within current evaluation methods in597

this work. On the other hand, we consider598

the test consistency checking method to be599

a viable approach for multiple-choice evalua-600

tion. This method has several advantages: (1)601

it can reflect the genuine performance of mod-602

els with preserving order invariance, (2) it can603

be easily applied to the numerous models that604

have already been evaluated, and (3) it has the605

potential to uncover reliability issues related606

to choice position and length. In the future,607

we are actively working on developing more608

novel evaluation methods to further enhance609

the assessment of multiple-choice tasks.610

• Computational resources concerns: The basic611

algorithm is built on evaluating multiple tri-612

als for one multiple-choice question, which613

can be resource-intensive, especially as the614

number of choices increases. Studying new615

strategies that can be applied in limited re-616

sources is an important direction in the future,617

and we limit our work to 4-choices evaluation.618

Ethical Statement619

In this work, we conduct experiments focusing on620

testing reliability of LLM evaluation methods. All621

data and models are open-source and raise little622

ethical concerns. Further, our work is beneficial623

for ethical problems in LLM evaluation. By in-624

troducing the test consistency checking method,625

claims about the state-of-the-art performance or626

the effectiveness of newly released LLMs should627

be approached with caution. This is because the628

test consistency checking method may reveal signif-629

icant differences in performance compared to tradi-630

tional evaluation methods, offering a more reliable631

and trustworthy assessment of LLM capabilities.632
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A Appendix 773

LLMs in Experiment We selected LLMs based 774

on representativeness, fairness, and performance. 775

Given these criteria, we initially chose LLama due 776

to its common use. Moreover, LLama 2 was re- 777

cently released with better performance. We also 778

selected the Falcon model, claimed as the best LLM 779

upon its release on the Open LLM Leaderboard. 780

We also considered MPT models from MosaicML, 781

but visualization challenges with more models led 782

us to limit our selection. We believe these models 783

sufficiently support our conclusion. 784

To maintain a fair comparison, we opted to use 785

the 7B versions of LLMs as default. It was chal- 786

lenging to ensure that all LLM families had the 787

same version of the model. For instance, LLama 788

has versions of 7/13/33/65B, while LLama 2 has 789

versions of 7/13/70B. The Falcon model has 7/40B 790

versions. By standardizing our use of the 7B ver- 791

sions as default, we aimed to keep the compar- 792

ison as equitable as possible. Due to resource 793

constraints, model versions exceeding 13B were 794

deemed too costly for our project. 795
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Why use 100 questions? In our work, we believe796

that using 100 questions is sufficient to illustrate797

the reliability issues we aim to uncover. However,798

when it comes to reflecting the performance of799

models on a specific test set, more samples may be800

required. It is important to note that our proposed801

method is not impacted by the number of data sam-802

ples. This means that our evaluation approach can803

effectively assess model performance regardless804

of the number of samples available, providing a805

reliable and consistent evaluation method.806
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