Latent-Variable Advantage-Weighted Policy
Optimization for Offline Reinforcement Learning

Xi Chen! Ali Ghadirzadeh? Tianhe Yu? Yuan Gao? Jianhao Wang!
Wenzhe Li' Bin Liang' Chelsea Finn? Chongjie Zhang'

Abstract

Offline reinforcement learning methods hold the promise of learning policies from
pre-collected datasets without the need to query the environment for new samples.
This setting is particularly well-suited for continuous control robotic applications
for which online data collection based on trial-and-error is costly and potentially
unsafe. In practice, offline datasets are often heterogeneous, i.e., collected in
a variety of scenarios, such as data from several human demonstrators or from
policies that act with different purposes. Unfortunately, such datasets often contain
action distributions with multiple modes and, in some cases, lack a sufficient
number of high-reward trajectories, which render offline policy training inefficient.
To address this challenge, we propose to leverage latent-variable generative model
to represent high-advantage state-action pairs leading to better adherence to data
distributions that contributes to solving the task, while maximizing reward via a
policy over the latent variable. As we empirically show on a range of simulated
locomotion, navigation, and manipulation tasks, our method referred to as latent-
variable advantage-weighted policy optimization (LAPO), improves the average
performance of the next best-performing offline reinforcement learning methods
by 49% on heterogeneous datasets, and by 8% on datasets with narrow and biased
distributions.

1 Introduction

Offline reinforcement learning (RL), also known as batch RL [26], addresses the problem of learning
an effective policy from a static fixed-sized dataset without interacting with the environment to
collect new data. This formulation is especially important for robotics, as it avoids costly and unsafe
trial-and-error and provides an alternative way of leveraging a pre-collected dataset. However, in
practical settings, such offline datasets are often heterogeneous and are collected using different
policies, leading to a data distribution with multiple modes. These data-collection policies may aim to
accomplish tasks that are not necessarily aligned with the target task or may accomplish the same task
but provide conflicting solutions. In contrast to the prior works that have focused on the distributional
shift problem [24} 9} 25]], in this paper, we address the problem of learning from heterogeneous data.

The main challenges in learning from heterogeneous settings are the existence of conflicting actions
in the dataset, and the lack of sufficient high-return trajectories as the dataset is constructed by
re-labeling state-action pairs from some different tasks. Learning from heterogeneous datasets with
conflicting actions is particularly challenging for implicit policy constraint methods that formulate
a supervised learning objective function based on the forward Kullback-Leibler (KL)-divergence
between the parametric policy being learned and the closed-form optimal policy found through
advantage-weighted behavior cloning [38, 40, 43]. Figure [I]illustrates an example of offline het-
erogeneous settings in which state-conditional distributions learned directly over the action space

!Tsinghua University, 2 Stanford University, > Shenzhen Institute of Artificial Intelligence and Robotics for
Society, CUHK Shenzhen.

Learning from heterogenous datasets Action Space Policy Learning

state-conditional actions An out-of-distribution action sample .
o e —I Execution
Pushing from the dataset o=
y Latent-Variable Ad g ig| Policy Optimization (LAPO)
LA AT Latent
Y I AR sample

5 77
_2 d Y
\

Grasping
|\ — !

Openin, b ! ! \
';3 & ‘ ! Advanmge | nady Sl L .\C%g/
r(% o "A 4/ weighing 4 SoAA S Decoding &

Execution Success

VAE latent space Advantage-weighted latent space

Task-irrelevant actions ~ ® Task-relevant actions - = - Prior distribution === Posterior distribution Target Task: Object relocation

Task-irrelevant latent actions ~ 4 Task-relevant latent actions

Figure 1: An example scenario of learning from data with heterogeneous action distributions. (left)
The dataset includes data from three different tasks, pushing, grasping, and opening boxes. (right)
The learned task is to relocate an object to a goal position. (middle up) Learning policies directly
in the action space can result in sampling from out-of-distribution actions which subsequently can
fail the learning task. (middle bottom) LAPO constructs a state-conditional latent space and learns a
latent policy to only select in distribution high-return actions.

using the forward KL-divergence objective may assign high probability to out-of-distribution (OOD)
actions which results in sub-optimal policies. Replacing the forward-KL-divergence with a reverse
KL-divergence can avoid this issue in theory, as it forces the policy to only learn a single mode of
the distribution. But in practice, it requires querying the behavior policy which is unknown, and
using an erroneous approximation of the behavior policy can negatively affect the performance
([38])). A similar problem has been reported when explicitly constraining the policy on multi-modal
distributions using maximum mean discrepancy (MMD) distances [54]. This problem however may
seem to be solved by using more expressive policies such as variational auto-encoders (VAEs) or
Gaussian mixture models (GMMs). However, in practice this does not help in heterogeneous settings
with a low density of high-return trajectories. In such settings, adhering to the data distribution using
policy constraint methods can result in sub-optimal performances.

We illustrate this problem with a toy navigation task in which an agent navigates to a goal position
while avoiding an obstacle. In this example, the demonstrated expert actions have two prominent
modes at the initial state corresponding to moving to either the right or left side of the obstacle. We
assume moving to the right leads to higher returns, but we have a lower density of such actions
in the dataset. Figure [2]a illustrates the histogram of actions sampled from a trained policy with
AWAC [38], a policy constraint method. The method fails in this setting since the learned action
distribution includes OOD actions which result in a collision with the obstacle. Learning a GMM
policy with AWAC can avoid the OOD action problem but still assigns a high probability distribution
over low-return actions (Figure b). Other offline RL methods, including BCQ [9] and PLAS [54],
which learn a VAE policy, also fail to represent the high-return actions in this setting. PLAS can only
model the low-return but high-density samples in the dataset (Figure [2]c).

Figure[T]also illustrates a potential solution to the problem of learning from heterogeneous datasets.
The intuition is to construct a state-conditioned latent space that represents high-return actions. In
this case, we can learn simple state-conditional distributions such as Gaussian distributions over
the latent space which, as shown in Figure [2]d, can capture task-relevant and high-reward actions
without including out-of-distribution samples. Based on this intuition, we propose to learn a latent-
space policy by alternating between training the policy and maximizing the advantage-weighted
log-likelihood of data. This biases the RL policy to choose actions supported by the training data
while effectively solving the target task.

The main contributions of this work is the introduction of a new method, which we refer to it as latent-
variable advantage-weighted policy optimization (LAPO), that can efficiently solve heterogeneous
offline RL tasks. LAPO learns an advantage function and a state-conditional latent space in which
high-advantage action samples are generated by sampling from a prior distribution over the latent
space. Furthermore, following a prior work, [54], we also train a latent policy that obtains state-
conditioned latent values which result in higher reward outcomes compared to latent samples directly

4003 mmm Dataset 4001 Dataset 4001 Dataset 4007 m Dataset

1 AWAC_Gaussian 1 AWAC_GMM PLAS_policy 1 LAPO_VAE
300 3001 PLAS_VAE 1 LAPO_latent_policy

| Actions with Actions with

200 200 2001 2004

3 ﬁH‘L ﬂm m' J] t&:.
‘
: !
i m S 1 L
R S 0 1 0 o
(b)

Figure 2: The histogram of actions for the toy navigation task at the initial state in the offline dataset
(in blue), and the histogram of actions sampled from (a) the AWAC Gaussian policy (in red), (b) the
AWAC GMM policy (in red), (c) the PLAS generative model (in yellow) and the PLAS latent policy
(in pink), and (d) the LAPO generative model (in green), and the LAPO latent policy (in pink).

drawn from a prior distribution. We compare LAPO to vanilla behavior cloning, BCQ [9], PLAS
[54]], AWAC [38]], IQL [23]], and CQL [235] on a variety of simulated locomotion, navigation, and
manipulation tasks, provided heterogeneous offline datasets and also biased datasets with narrow
data distribution in standard offline RL benchmarks. LAPO is the only method that yields good
performance across all of these tasks and on average improves by 49% over the next best method for
heterogeneous datasets, and by 8% on other offline RL tasks with narrow data distributions.

2 Preliminaries

The goal of reinforcement learning is to obtain a policy that maximizes a notion of accumulated
reward for a task as a Markov decision process (MDP). In offline RL settings, we assume that we
are given a dataset of tuples D = {(s¢, at, 7+, St4+1)}, where, s; € S and a; € A denote the state
and action at the time step ¢, 7 = 7(s¢, at) is the reward given by a bounded reward function, and
St41 1s sampled from a fixed transition probability distribution p(s;11]s¢, a:). Note that actions can
come from a mixture of policies which is referred to as the behavior policy. The policies may try to
accomplish different tasks and hence generate trajectories unrelated to the target task.

Given an initial state distribution 1 (s) and a discount factor v € (0, 1), the RL agent optimizes a
policy m(a|s) to maximize the expected cumulative reward

L)
J(?T) = E50~H0,5t+1~p(-\St,‘n'(St)) [Z ’Ytr(st777(st))‘| . (D
t=0

The state action value function (Q function), of the policy is defined as Q™ (s,a) =
Ex[>207're|so = s, a0 = a], which can be approximated with the Bellman equation:

¢* = argglinE(st,at,rt,stJrl)ND [Tt + F)/V(St-i-l) - Q¢(St7 a’t))ﬂ ; (2)

where, ¢ denotes the parameters of the Q-function, V' denotes the value function V(s) =
Er(a|s)[@¢ (5,a)] and can be approximated by sampling actions from the policy distribution and
averaging the corresponding Q value. ¢’ denotes the parameters of the Q-function at the previous
iteration. The advantage of a pair of state and action is then defined as A(s, a) = Q4(s,a) — V(s).

3 Latent-Variable Advantage-Weighted Policy Optimization

In this work, we aim to address the problem of learning from heterogeneous offline datasets collected
by policies with different purposes. The challenge arises from the fact that the dataset contains
conflicting actions distributed with multiple modes. Besides, the dataset often does not include
a sufficient number of high-return trajectories to learn the task properly, as the dataset may be
constructed by re-labeling rewards for state-action pairs collected for some other tasks that not
necessarily aligned with the target task. We argue that in this setting we not only need a more
expressive policy class to represent the multi-modal action distributions, but also need a mechanism
that can select which samples to use for the given target task.

We present a novel method, named latent-space advantage-weighted policy training (LAPO), which
learns a policy by maximizing the Q function over a latent space that is trained to approach the

distribution of actions that leads to higher returns in solving the task. At a high-level, the overall
objective of the LAPO can be represented as follows:
argmaxE .15y [Q(s,a)] + E(sq)~p [w * log[pa(als)]] .
0.0 am~py (-]s,2) (3)

s~D

LAPO has two key components. On the right term, it learns a latent variable state-conditioned gener-
ative model py(als) = E..,:)[po(als, z)] to regress the actions in the dataset with an importance
weight w. Here p(z) is a specified prior distribution and py(als, z) is a decoder. The importance
weight w indicates how significant an action is to solving the task, which can be computed in a similar
way as other weighted-imitation learning methods [38) 140} |43]. On the left term of the objective
function, LAPO learns a latent policy my(z|s) to generate latent values that can be decoded into
in-distribution actions that maximize the state-action Q values, via the decoder py(als, z). The
parameter 6’ denotes the parameter of the decoder in earlier versions, which do not provide gra-
dient information and therefore do not interfere with the optimization of the first component. All
components are trained iteratively, and the parameter 6’ is updated after one or more iterations.

Overall, the latent variable generative model learns to represent the multi-modal distribution included
in the dataset, while actively prioritize regions containing actions that lead to higher returns through
the importance weights. Using the decoder, the latent policy will naturally avoid sampling OOD
actions, and can learn to optimize Q values without being further constrained by the data distribution,
leading to better performance (in Figure.[2]d). Next, we will describe each of these components in
detail.

Maximizing the weighted log-likelihood: To learn high-return actions while being conservative to
the dataset, LAPO incrementally maximizes the weighted log-likelihood of the data by alternating two
steps: (1) estimating the importance weight of each action, and (2) regressing the actions in the dataset
with the importance weight of each action. In practice, to characterize the importance of high-return
trajectories, we can use the exponential advantages as the importance weight, w = exp(A(s,a)/\).
Following [21]], we derive a weighted variational lower bound that maximizes the weighted log-
likelihood of data:

max Es,anDwEq, (215,0) [10g(pe(als, 2)) — BDkL(gy(zls, a) || p(2) 1], 4)

)

where gy (z|s, a) is the variational posterior distribution, p(z) is the prior distribution over the latent
variable and typically modelled by a standard normal distribution, and g is a hyper-parameter to
balance the two loss terms [[17]].

Policy evaluation: As explained earlier, the estimated advantage of each state-action pair is used to
update the decoder. These advantage estimations are incrementally found through a policy evaluation
process in which the overall policy, formed by combining the latent policy and the decoder, is being
evaluated. The state-conditional action distribution of the overall policy 7y ¢-(a|s), is found by first
sampling a latent value from the latent policy z ~ my(z|s), and then feeding the latent value to the
decoder to sample the action a ~ py(als, z). In the policy evaluation step, we update the value
function by minimizing the squared temporal difference error using Equation 2] To calculate the
expected value of a state, we sample actions from the overall policy, i.e.,

V(S) = EGNPQI('|S7Z),ZNTI'19(“S) [Qd)’ (87 a)] (5)

Since the latent values z will be used as the input to the decoder, an unbounded z can lead to
generating out-of-distribution actions. Therefore, to better ensure sampling in-distribution actions,
mo(2|s) can be modeled as a truncated Gaussian [3]]. For deterministic versions of the latent policy,
the policy output can be limited to [—2zax, Zmax] Using a tanh function.

Policy improvement: LAPO optimizes the latent policy my(z|s) in every iteration to directly
maximize the return. It is trained based on standard RL approaches such as DDPG [29]] or TD3 [8] to
maximize the RL objective in Equation[I] by learning latent actions which result in high returns after
being converted to the original action space using the decoder.

The latent policy is updated by maximizing the Q-function over states sampled from the dataset,
latent variables from the latent policy, and actions from the decoder pg::

argmax EaNpsz (:|s,2),z~my (+|s),s~D [Q(av 5)] . (6)
T

Algorithm 1 Latent-Variable Advantage-Weighted Policy Optimization
Input D= {(St, ag, St+1) } 1=]. N
Initialize: ¢, 0, v, ¥ randomly, 6’ = 9 and w = 1.0.
repeat
Update the decoder pg using Equation 4]
Update the Q-function Q) using Equations [2]and

Estimate the advantage weights for every state-action pair using w = exp
Update the latent policy my using Equation [6]
Update 6" according to 6

until M iterations completed

¢(5,0)=V (s
(Q(aA) ())

A summary of our method is presented in Algorithm [l We randomly initialize the parameters of
the state-action Q function, the action policy, the amortized variational distribution, and the latent
policy. In every training iteration, we first update the decoder and the variational distribution g using
Equation 4] given the latest values of the advantage weights. Then, we update the Q function using
Equations[2) and [5| provided the updated action and latent policies. Then, for every state-action pair
in the dataset, we compute the advantage using the updated Q function, the latent policy and the
decoder, and then estimate the weights as the exponential of the scaled advantages, with the scale
factor A. Finally, we update the latent policy using Equation [6]

4 Related Works

Offline Reinforcement Learning: Offline RL methods generally address the problem of distribution
shift between the behavior policy and the policy being learned [9, 24], which can cause issues
due to out-of-distribution actions sampled from the learned policy and passed into the learned
critic. To address this issue, prior methods constrain the learned policy to stay close to the behavior
policy via explicit policy regularization [31} [18) 49| 24, 22} [13]], via implicit policy constraints
[431148.1411140.,138L 1221123 150L134], by regularizing based on importance sampling [36L130], by learning
of conservative value functions [25} 45]], by leveraging auxiliary behavioral cloning losses [7, 37],
and through model-based training with conservative penalties [53} 20} 3} 146, 35| 28| 52]]. Compared
to these prior works, we opt to develop a method that uses an implicit policy constraint. However,
prior implicit policy constraint methods have been largely limited to Gaussian policies, leading to
OOD action samplings and sub-optimal performance on heterogeneous datasets, We overcome this
challenge by introducing a new method that leverages latent variable models. As we will find in
Section [5] our method also outperforms state-of-the-art prior methods in other categories, particularly
when learning from heterogeneous datasets.

Prior works [} [19} [51]] also studied the problem of learning from heterogeneous dataset in the
offline RL with heterogeneous dynamics setting [[1] and multi-task offline RL with data sharing
scenario [[19,51] respectively. Both settings require knowledge of the agent/task identifier. Here, we
study a more general problem setting including datasets with conflicting actions without assuming
access to the ground-truth identifier of the source of the heterogeneity.

RL with Generative Models: Generative models have been used by prior works for improving
training performance [44, [11} [12], enabling transfer learning [4} [10], implementing hierarchical RL
[2, 132 133} 139], avoiding distributional shift in offline RL settings [9, 154], and learning dynamics
models [27, 116} 142, [15]. Our proposed method resembles PLAS [54]], which learns a generative
model and latent policy; but, unlike this prior work, our method trains an advantage-weighted
generative model by alternating between learning the generative model, the advantage function,
and the latent policy. This allows LAPO to capture different high-reward solutions using a simple
Gaussian distribution in the latent space. As we will find in Section@ this distinction is crucial, as
LAPO significantly outperforms PLAS on heterogeneous datasets.

S Experiments

Our experiments aim to answer the following questions: (1) How does LAPO compare to other
offline RL methods on a set of standard offline RL tasks, including learning from heterogeneous

maze2d-umaze-vl maze2d-medium-vl maze2d-large-vl antmaze-umaze-diverse-vl 10uar\tmaze-medrum-diverse-vl 0 antmaze-large-diverse-vl
100

8
60
40
) /\/W
ol 1
0 S0 100 150

multi-walker2d-forward-vl multi-walker2d-backward-v1 multi-walker2d-jump-v1l kitchen-complete-v0 kitchen-partial-vO - kitchen-mixed-v0
100 60

0| PSSt &
/ - 52
-
40/ “ S e o eaman
| - 30 e et B |
- 20 /\’\” 20 20
20 E SN, S
i: -50
10 10
s]
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150

= | APO caL AWAC(GMM) AWAC PLAS BCQ === |[QL === BC

50 e | 5,

0] 0

6 s0 100 150 0 so 100 150 0 50 100 150 0 50 100 150 0 50 100 150

s o @
5§ 8 8
o &
N
o »

Figure 3: The learning curve of LAPO with 95% confidence interval for heterogeneous tasks. The
x-axis is the training epochs, each containing 5,000 gradient updates, and the y-axis is the normalized
score. The learning curves for random/narrow and bias datasets are included in the Appendix [C]

and homogeneous offline datasets? (2) How does LAPO compare to prior methods implemented
with GMM policies when learning behaviors offline from heterogeneous datasets? and (3) In which
setting does LAPO benefit from the latent policy training, versus only using the tenerative model?
Can LAPO learn without constraining the latent values?

We study the first question by evaluating LAPO and comparing it to several prior methods on
offline RL benchmarks with heterogeneous datasets. We consider a range of simulated robotic
tasks, including navigation, locomotion, and manipulation, each with a corresponding static dataset
with a heterogeneous data distribution. We also consider datasets with narrow and biased data
distributions, containing near-optimal or random trajectories. To answer the second question, we
include a comparison of AWAC [38] with a GMM policy, since AWAC trains using a similar
advantage-weighted objective as the actor policy in LAPO. This comparison is only performed on
heterogeneous datasets, since this is where we expect to see the most improvement from a multi-modal
policy. Finally, the questions in (3), we conduct two ablation studies in which we train LAPO without
learning the latent policy, i.e. evaluating only LAPO’s action policy, and without limiting the latent
values to the range [—2Zmax, Zmax)- We compare this version of the method to the original LAPO on
four offline RL tasks that differ in the amount of high-performing task-relevant data contained in the
offline dataset.

5.1 Comparisons

We compare LAPO to 7 offline RL approaches: (1) vanilla behavioral cloning (BC), (2) the BCQ
method [9]], which approximates the dataset distribution with a generative model and manually selects
the action with the maximum Q value among a set of generated actions, (3) the PLAS method [54],
which learns a generative model via maximum likelihood and a latent-space policy to maximize the
RL objective in the latent space, (4) the AWAC method [38]], which performs advantage-weighted
imitation learning with a forward-KL objective for the policy projection step, (5) the IQL method
[23]], which learns the value function using expectile regression without an explicit policy, and then
extracts the policy using advantage weighted regression (AWR), (6) the CQL method [25]] which
learns a conservative Q-function, and (7) AWAC vy Which trains GMM policies using AWAC.

In our experiments, we train each method three times using three different random seeds each for one
million steps, and report the return averaged over 10 test episodes from the trained policies. We used
the implementation provided by [47] for the BCQ and AWAC, the original implementation for the
PLAS, IQL and CQL, and our implementation for the BC method. We report the implementation
details in the Appendix

5.2 Tasks and Datasets

We compare LAPO to the introduced prior methods on learning from both heterogeneous and
homogeneous offline datasets. We evaluate the methods on three simulated task domains, locomotion,

Figure 4: DARL environments used in our evaluations: (from left to right) Walker 2D, Hopper,
Halfcheetah, Antmaze, Maze2d, and Kitchen environments.

navigation, and manipulation domains (Figure), with heterogeneous data distributions, and also
a locomotion task with random, narrow and biased data distribution. We consider two sources of
heterogeneous datasets: (1) data collected by policies accomplishing different tasks, and (2) data
collected by different policies that accomplish one task but in different ways. For (1), we use the
multi-task heterogeneous datasets introduced by [51]], and for (2), we leverage heterogeneous datasets
from the standard D4RL benchmark [6]. More details about our tasks and datasets are provided in
the Appendix [E]

5.3 Experimental Results

Heterogeneous datasets: Table [reports the results of our experiments on heterogeneous datasets,
and in Figure [3] we present the learning performance of LAPO with 95% confidence interval on
Heterogeneous tasks. Among the 12 tasks introduced in the previous section, LAPO (our method)
achieves the best performance on nine tasks and the second-best performance on one task. Besides,
on average, LAPO improves by 49% over the next best method on the heterogeneous datasets.

The heterogeneous locomotion tasks can be accomplished more easily by the prior methods since still
33% of the data comes from the target task. However, from the prior works, AWAC and CQL are the
only methods that can accomplish the tasks. LAPO performs well on all tasks and on average yields
the best performance on one out of the three tasks. This shows that LAPO is capable of learning from
heterogeneity introduced by multi-task datasets.

The navigation tasks are in general more challenging especially for those with medium and large map
sizes. The main challenge is to learn policies for long-horizon planning from datasets that do not
contain optimal trajectories, and there are only very few states with rewards. LAPO significantly
outperforms all prior works for all of the navigation tasks. Similarly, the manipulation tasks are
also challenging, as they require the assembly of sub-trajectories related to completing a given task
consisting of multiple sub-tasks. In addition, the agent has access to fewer training samples while
having to learn to interact with complicated dynamics. LAPO outperforms previous approaches by
a large margin on Kitchen-partial and Kitchen-mixed for which only a few optimal trajectories are
provided by the dataset. It also performs competitively on the Kitchen-complete task and yields the
second-best performance.

Surprisingly, we observe that GMM policy training does not perform well on heterogeneous offline RL
settings. The AWAC method with GMM policies yields similar or even worse performance compared
to the original AWAC. These results suggest that latent variable models are better candidates to
effectively model the high-reward regions of data especially when given data with multiple modes.

Random/Narrow datasets: Table [5|reports the results of the locomotion tasks with random, narrow
and biased datasets. Our method yields the best performance for four out of nine tasks. It also
achieves competitive performance on the rest of the tasks, showing that LAPO is applicable to general
offline RL settings and is not limited to learning from heterogeneous datasets. However, the most
significant gain is when it is applied to offline settings with heterogeneous datasets. Learning curves
and results with 95%-confidence interval are reported in Appendix [C]

5.4 Ablations

Latent Policy Training: To study the importance of the latent policy training in achieving good
performances, we conduct an ablation study on 4 different tasks by eliminating the latent policy
training from LAPO. The main motivation is that, as described in Section E|, the latent variable
generative model is trained to incrementally learn the action distribution that lead to higher return,
hence training the latent policy on top of that may seem redundant. In this case, another option for

Table 1: The normalized performance of all methods on tasks with heterogeneous dataset. 0 represents
the performance of a random policy and 100 represents the performance of an expert policy. The
scores are averaged over the final 10 evaluations and 3 seeds. LAPO achieves the best performance
on 9 tasks and achieves competitive performance on the rest 3 tasks. Results with 95%-confidence
interval are reported in Appendix [C.2]

Task ID BC BCQ PLAS AWAC AWAC (GMM) IQL CQL LAPO(ours)
Walker2d-mix-forward-v1 -5.65 091 2291 71.89 78.09 28.25 102.75 74.17
Walker2d-mix-backward-vl -84.56 -1.37 -27.58 -7.95 71.33 -46.25 66.64 99.22
Walker2d-mix-jump-v1 -72.92 -41.43 0.56 51.08 28.01 -46.41 37.28 43.20
Maze2d-umaze-v1 0.99 1891 80.12 9453 19.45 51.00 22.86 118.86
Maze2d-medium-v1 334 1279 5.19 3140 46.53 3326 12.25 142.75
Maze2d-large-v1 -1.14 27.17 45.80 43.85 9.04 64.30 7.00 200.56
Antmaze-umaze-diverse-vl 60.00 62.00 7.00 72.00 0.00 69.33 16.71 91.33
Antmaze-medium-diverse-vl 0.00 11.33 8.67 0.33 0.00 73.00 1.00 85.67
Antmaze-large-diverse-v1 0.00 0.67 133 0.00 0.00 48.00 11.89 61.67
Kitchen-complete-v0 450 9.08 38.08 3.83 1.08 66.67 4.67 53.17
Kitchen-partial-v0 31.67 17.58 27.00 0.25 0.42 32.33 0.55 53.67
Kitchen-mixed-v0 30.00 11.50 29.92 0.00 3.92 49.92 1.86 62.42

Table 2: The normalized performance of all methods on locomotion tasks with random, narrow and
biased dataset. 0 represents the performance of a random policy and 100 represents the performance
of an expert policy. The scores are averaged over the final 10 evaluations and 3 seeds. LAPO achieves
the best performance on 4 tasks and achieves competitive performance on the rest of the tasks. Results
with 95%-confidence interval are reported in Appendix[C.7]

Task ID BC BCQ PLAS AWAC IQL CQL LAPO(ours)

Hopper-random-v2 2.23 7.80 6.68 8.01 7.89 8.33 23.46
Walker2d-random-v2 1.11 4.87 9.17 0.42 541 -0.23 1.28
Halfcheetah-random-v2 ~ 2.25 2.25 26.45 15.18 13.11 2220 30.55

Hopper-medium-v2 49.23 56.44 50.96 69.55 65.75 71.59 51.63
Walker2d-medium-v2 4711 73.72 76.47 84.02 77.89 82.10 80.75
Halfcheetah-medium-v2 37.84 47.22 44.54 48.13 47.47 49.76 45.97

Hopper-expert-v2 76.16 68.86 107.05 109.32 109.36 102.27 106.76
Walker2d-expert-v2 79.22 11051 109.56 110.46 109.93 108.76 112.27
Halfcheetah-expert-v2 85.63 93.15 93.79 14.01 94.98 8740 9593

sampling latent variables is to sample from the prior distribution, which changes Equation [3]to:

V(s) = Ea~pgf(-\s’2)2~p(Z) [Qaﬁ’(s, a)},
where, the latent z is now sampled from a fixed prior.

As shown in Fig. 3] training a latent policy does not significantly contribute to higher performance
for tasks such as the Walker2D-medium and Walker2d-mix-backward which contain sufficient task-
relevant data. However, latent policy training results in large performance gains when learning
from datasets which contain fewer optimal task-related data such as Maze2D and Antmaze. LAPO
overcomes this challenge by explicitly optimizing the RL objective through learning the latent policy.

Limiting the latent values: We also study the importance of limiting the latent variable z to be
within the range [—2max, Zmax]- This is important to understand the limits of using the latent variable
decoder as a generative model of in-distribution actions. Figure [6]illustrates the result of LAPO
policy training using unbounded latent actions on four tasks. The policy training performance is
significantly worse when we do not limit the latent values. This suggests that the the action policy
can generate in-distribution actions only when in-distribution latent values (close to samples drawn
from the prior distribution p(z)) are given as the input.

maze2d-medium-v1 10Qar)tm,:-xze-medium-diverse-vl walker2d-medium-v2 multi-walker2d-backward-vl

175 80 . 100
£ 150 80
5 70 oo
<3
@B 125 &0 60
8 100 60
= 40
< 40
g 7 50 20
S
2 so 56 40 o
25 —~ —20
O AU RSO S 30
o o —40
[50 100 150 o 50 100 150 o 50 100 150 [50 100 150
— Without latent policy — With latent policy Gradient steps (x5000)

Figure 5: Comparison of LAPO with and without the latent policy on Maze2D-medium, Antmaze-
medium-diverse, Walker2D-medium, and Walker2D-mix-backward task. The shaded area represents
+95%-confidence intervals, computed using 10 evaluations and 3 random seeds. For tasks with less
optimal task-relevant data like Maze2D-medium, Antmaze-medium-diverse, the learned latent policy
results in high-performance gains.

maze2d-medium-v1l

100ar\tmaze-rnediurr'\—di\/erse-\/l walker2d-medium-v2 multi-walker2d-backward-v1l

80
(R =9
150 80
60 =200
60
100
- —a00
40
50 —600
20
20 800
(YRS - W TV — B
6 50 160 s

Normalized Score

| T’ 1 | o o T T T 1000 { - I I 1
[50 100 150 150 50 100 150 [50 100 150
Without latent policy — With latent policy Gradient steps (*x5000)

Figure 6: Comparison of LAPO with and without limiting the latent values. The policy performance
is significantly worse when the latent values are not limited to the range [—Zmax, Zmax|-

6 Conclusion

In this paper, we study an offline RL setup for learning from heterogeneous datasets where trajectories
are collected using policies with different purposes, leading to a multi-modal data distribution, and
in some cases, do not contain sufficient high-reward trajectories. Through empirical analysis, we
find that in such cases, policies constrained methods may contain out-of-distribution actions and
lead to suboptimal performance for continuous control tasks, especially for heterogeneous datasets.
To address this challenge, we present the latent-variable advantage-weighted policy optimization
(LAPO) algorithm, which learns a latent variable model that generates high-advantage actions when
sampling from a prior distribution over the latent space. In addition, we train a latent policy that
obtains state-conditioned latent actions which result in higher reward outcomes compared to sampling
from the prior distribution. We compare our method to 6 prior methods on a variety of simulated
locomotion, navigation, and manipulation tasks provided heterogeneous offline datasets, and also on
standard offline RL benchmarks with narrow and biased datasets. We find that our proposed method
consistently outperforms prior methods by a large margin on tasks with heterogeneous datasets, while
being competitive on other offline RL tasks with narrow data distributions. For our future work,
we will extend LAPO to multi-task offline RL settings in which an agent learns multiple RL tasks
provided a heterogeneous dataset of diverse behaviors.

References

(1]

2

—

[3

—

[4

—

(5]

[6

—_

[7

—

(8

—_—

[9

—

(10]

(11]

[12]

[13]

(14]

(15]

(16]

(17]

(18]

(19]

Anish Agarwal, Abdullah Alomar, Varkey Alumootil, Devavrat Shah, Dennis Shen, Zhi Xu, and Cindy
Yang. Persim: Data-efficient offline reinforcement learning with heterogeneous agents via personalized
simulators. arXiv preprint arXiv:2102.06961, 2021.

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline primitive
discovery for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611, 2020.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

Karol Arndt, Murtaza Hazara, Ali Ghadirzadeh, and Ville Kyrki. Meta reinforcement learning for sim-
to-real domain adaptation. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 2725-2731. IEEE, 2020.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. arXiv
preprint arXiv:2106.06860, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International Conference on Machine Learning, pages 1587-1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without explo-
ration. In International Conference on Machine Learning, pages 2052-2062. PMLR, 2019.

Ali Ghadirzadeh, Xi Chen, Petra Poklukar, Chelsea Finn, Marten Bjérkman, and Danica Kragic. Bayesian
meta-learning for few-shot policy adaptation across robotic platforms. arXiv preprint arXiv:2103.03697,
2021.

Ali Ghadirzadeh, Atsuto Maki, Danica Kragic, and Marten Bjorkman. Deep predictive policy training
using reinforcement learning. In 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2351-2358. IEEE, 2017.

Ali Ghadirzadeh, Petra Poklukar, Ville Kyrki, Danica Kragic, and Marten Bjorkman. Data-efficient
visuomotor policy training using reinforcement learning and generative models. arXiv preprint
arXiv:2007.13134, 2020.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-max
g-learning operator for simple yet effective offline and online 1l. In International Conference on Machine
Learning, pages 3682-3691. PMLR, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861-1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on Machine
Learning, pages 2555-2565. PMLR, 2019.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. 2016.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah Jones,
Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of implicit human
preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski, Chelsea
Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning
at scale. arXiv preprint arXiv:2104.08212, 2021.

10

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

(36]

(37]

(38]

[39]

[40]

[41]

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-based
offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning with
fisher divergence critic regularization. In International Conference on Machine Learning, pages 5774-5783.
PMLR, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-learning.
arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy g-learning via boot-
strapping error reduction. arXiv preprint arXiv:1906.00949, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning, pages 45-73. Springer, 2012.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic: Deep
reinforcement learning with a latent variable model. arXiv preprint arXiv:1907.00953, 2019.

Byung-Jun Lee, Jongmin Lee, and Kee-Eung Kim. Representation balancing offline model-based rein-
forcement learning. In International Conference on Learning Representations, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient with state
distribution correction. arXiv preprint arXiv:1904.08473, 2019.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch reinforcement
learning without great exploration. arXiv preprint arXiv:2007.08202, 2020.

Ying-Sheng Luo, Jonathan Hans Soeseno, Trista Pei-Chun Chen, and Wei-Chao Chen. Carl: Controllable
agent with reinforcement learning for quadruped locomotion. ACM Transactions on Graphics (TOG),
39(4):38-1, 2020.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and Pierre
Sermanet. Learning latent plans from play. In Conference on Robot Learning, pages 1113-1132. PMLR,
2020.

Xiaoteng Ma, Yiqin Yang, Hao Hu, Qihan Liu, Jun Yang, Chongjie Zhang, Qianchuan Zhao, and Bin Liang.
Offline reinforcement learning with value-based episodic memory. arXiv preprint arXiv:2110.09796, 2021.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-efficient
reinforcement learning via model-based offline optimization. arXiv preprint arXiv:2006.03647, 2020.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of discounted
stationary distribution corrections. arXiv preprint arXiv:1906.04733, 2019.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Awac: Accelerating online reinforcement
learning with offline datasets. 2020.

Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. Mcp: Learning composable
hierarchical control with multiplicative compositional policies. Advances in Neural Information Processing
Systems, 32:3686-3697, 2019.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression: Simple
and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Twenty-Fourth AAAI
Conference on Artificial Intelligence, 2010.

11

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. Offline reinforcement learning from
images with latent space models. In Learning for Dynamics and Control, pages 1154-1168. PMLR, 2021.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked: Behav-
ioral modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396, 2020.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot: Data-
driven behavioral priors for reinforcement learning. arXiv preprint arXiv:2011.10024, 2020.

Samarth Sinha, Ajay Mandlekar, and Animesh Garg. S4rl: Surprisingly simple self-supervision for offline
reinforcement learning. arXiv preprint arXiv:2103.06326, 2021.

Phillip Swazinna, Steffen Udluft, and Thomas Runkler. Overcoming model bias for robust offline deep
reinforcement learning. Engineering Applications of Artificial Intelligence, 104:104366, 2021.

Michita Imai Takuma Seno. d3rlpy: An offline deep reinforcement library. In NeurlPS 2021 Offline
Reinforcement Learning Workshop, December 2021.

Qing Wang, Jiechao Xiong, Lei Han, Peng Sun, Han Liu, and Tong Zhang. Exponentially weighted
imitation learning for batched historical data. In NeurIPS, pages 6291-6300, 2018.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. arXiv
preprint arXiv:1911.11361, 2019.

Yigin Yang, Xiaoteng Ma, Li Chenghao, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent reinforcement
learning. Advances in Neural Information Processing Systems, 34, 2021.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey Levine, and Chelsea Finn. Conserva-
tive data sharing for multi-task offline reinforcement learning. Advances in Neural Information Processing
Systems, 34, 2021.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn. Combo:
Conservative offline model-based policy optimization. arXiv preprint arXiv:2102.08363, 2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information Processing
Systems, 33:14129-14142, 2020.

Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline reinforcement
learning. arXiv preprint arXiv:2011.07213, 2020.

12

Latent-Variable Advantage-Weighted Policy Optimization for
Offline Reinforcement Learning (Appendix)

A Connections to other advantage-weighted behavior cloning methods

The right term of the objective function Equation [3|can be derived from the following constrained
policy optimization formulation used in [38} 40, |43]], by replacing the policy to a latent variable
generative model 7y where actions are generated by first sampling a latent value 2 from a prior
distribution p(z), and then sampling an action from a latent variable decoder pg(a|s, Z) with the given
2.

argznax anfrg (a\s),st[A(sv CL)],

(M
st Eoup | Dicr (fo(als)lIma(als))| < e,

where 7g(als) = Ez.,(2)[po(als, 2)], m5(als) denotes the unknown empirical conditional action
distribution of the dataset, and ¢ is a threshold parameter. In case, we use the KL-divergence as the
divergence in Equation |7} the optimal 7* can be expressed as

7 (als) x wg(als) exp(A(s,a)/N), (8)
where,) is a temperature parameter that depends on the e.

Prior work [38], 143] 140] suggested to incrementally solve Equation [8| by representing the optimal
policy 7*(a|s) as a non-parametric policy, and then project it onto the parametric policy 7g(a|s) by
minimizing the KL-divergence:

arg;ninESND [DKL (ﬁ*(a\S)HﬁG(aB))]
zargglaxESND |:Ea~7r*(a|s) [log 7AT@(@|S)]]
= arg;nax Esoup [w x log g (a|s)} 9)
= arggnaxEs_’awp [w *log Esp(z) [pg(a|s, 73)]]

> argerfplax Esonp [W * E2~q1/,(2|s’a) [log(pg (als, 2)) — BDkL(qy(2]s,a) || p(2)) H ;
where the importance weight w = exp(A(s, a)/A), and ¢y (z|s, a) is an encoder. The generative
model 7y is trained to maximize a weighted log-likelihood of the data distribution, and we optimize
this term by maximizing its weighted variational lower bound.

A.1 The temperature and the importance weight

We found empirically that the performance of AWAC is sensitive with the choice of the temperature
A, which control how much the policy can be deviated from the behavior policy. A large A\ may
constrain the policy to be too close to the behavior policy, leading to poor performance if the behavior
policy is far from optimal (Figure 2]b). However, if the \ is too small, the computed importance
weighted can be very large which cause problem in the training process. Therefore, additional tuning
process is needed to find an appropriate A for different tasks.

In LAPO, we circumvent this problem by learning the latent policy over the latent space to directly
maximize the Q value, the closed-form policy 7*(a|s) does not need to be optimal, and therefore
does not require a massive tuning of \. Inspired by the work [23]], in our implementation, we use a
fixed importance weight w = 0.9 for actions with positive advantage and use w = 0.1 for actions
with negative advantage. It simplify the computation and avoid tuning A for different tasks. As we
empirically observed, this technique yields good results for all settings.

B Connections to BCQ and PLAS

Besides constraining the policy by explicit regularization [24] or converting it to a weighted version of
BC [38,40]], another branch of offline RL methods such as BCQ [9] and PLAS [54] utilize generative

13

models to learn batch-constrained policies. LAPO is similar in structure to PLAS as they both learn a
generative model and have a policy over the latent space. However, the generative model in BCQ and
PLAS is pre-trained to approximate the distribution over the entire data and is fixed when training
the latent policy, which can limit the expressiveness of the model on high-return samples when
the number of these samples is small in the dataset. In LAPO, the generative model is trained to
selectively represent actions that lead to higher returns based on the current value function.

For example, in the toy task shown in Figure[2} 9% of the actions in the dataset are high-return actions.
However, when drawing 1,000 z from the prior p(z) of the latent space learned by PLAS, only 4% of
the samples are high-return actions after decoding, while in LAPO, 45% of the samples represent
high-return actions. As we illustrated in Figure E}c,d, and empirically shown in the experiments, this
distinction is crucial, as LAPO significantly outperforms PLAS on nearly all tasks.

C Additional information on experimental results

C.1 Learning curves of random, narrow and bias tasks

We plot the learning curve of random, narrow and bias tasks in Figure[7]

hopper-random-v2 20 walker2d-random-v2 halfcheetah-random-v2
30 - 0 [~ - e
s MR)
20 .) v 10 20
[s 5 e |
10 J & \NM,\L/ NS 10
o =
ol 7 T o 0
0 50 100 150 0 50 100 150 0 50 100 150
hopper-medium-v2 walker2d-medium-v2 halfcheetah-medium-v2
50
do e oo y— — = BC
60 W w ” — oL
R —
P e N i e
R/ N PSP . PN 30 | PLAS
40 / / AWAC
f / 20 AWAC_GMM
20
20 10 cQL
LAPO
0 0 0
0 50 100 150 0 50 100 150 0 50 100 150
hopper-expert-v2 walker2d-expert-v2 100 halfcheetah-expert-v2
/ e —
0/ 100 wl [F—
/ 4 i/
/ ¢ A S A A A A I
75 //\/M/MM,\ 75 /,»f " 6ol |
I/ v
so [so [/ 40
{ /)
25 25| | 20
0 0 0
0 50 100 150 0 50 100 150 0 50 100 150

Figure 7: The learning curve of LAPO with 95% confidence interval for random, narrow and bias
tasks. The x-axis is the training epochs, each containing 5,000 gradient updates, and the y-axis is the
normalized score. For better visualization, the scores are smoothed by a window with length 20.

C.2 Results with confidence interval

Table [and [5]report our experimental results with 95%-confidence interval on heterogeneous datasets
and random, narrow and bias datasets, respectively.

C.3 Examples trajectories of the navigation tasks

To visualize the performance of the policy learned by LAPO, in figure[§] we plot ten trajectories
using the learned policy in the six navigation tasks.

14

Antmaze-umaze-diverse-v1 Antmaze-medium-diverse-v1 Antmaze-large-diverse-v1

b % = o
'
p -
. -
© b -
Maze2D-umaze-v1 Maze2D-medium-v1 Maze2D-large-v1
- ‘ X X
- . .
. . L]
° el]
@ °
® @ °
: o
x‘ s o L4 L4
° o °

Figure 8: Trajectories learned by LAPO in the navigation tasks. The red dots indicate the starting
states of each trajectories, and the red cross indicates the target state. In antmaze environments, the
agents are initialized at the same xy position but with different joint values. In maze2D environments,
the agents are initialized at different locations.

D Implementation Details

D.1 Implementation of prior methods

The BCQ and AWAC methods are based on the implementations of d3ripy: |https://
github.com/takuseno/d3rlpy, and PLAS, IQL and CQL methods are implemented us-
ing the original implementations provided by the authors of the papers: https://github.
com/Wenxuan-Zhou/PLAS, https://github.com/ikostrikov/implicit_q_learning, and
https://github.com/aviralkumar2907/CQL. For AWAC-GMM method, we extend the policy
class implemented in d3rlpy AWAC from a single Gaussian policy to 5-head GMM policy.

We used the same hyperparameters as the original paper or the code provided by the author for the
prior methods. All models are trained using a NVIDIA P100 GPU.

D.2 Network Hyperparameters

The hyper-parameters used in our experiment are summarized in Table[3] We use 5 = 0.3 on Maze2D
tasks and 5 = 1 for other tasks. We set the dimension of the latent policy to be two times larger than
the dimension of the action space. We truncate the output of the latent policy to stay in the range
of [— 2.0,2.0]. In TD3, we use the clipped double Q-learning ([8]) to compute the state value by
combining the outputs of two Q-functions. For Antmaze tasks, we combine them as 0.7*min(Ql1,
Q2) + 0.3*max(Q1, Q2); for the rest of the tasks, we take the minimum of the two Q values.

D.3 Data pre-processing

We normalized the observations and actions in the dataset for all tasks. For Antmaze, we multiplied
Antmaze’s reward by 100. For the rest of the tasks, we divided the reward by the maximum reward in
the dataset.

15

https://github.com/takuseno/d3rlpy
https://github.com/takuseno/d3rlpy
https://github.com/Wenxuan-Zhou/PLAS
https://github.com/Wenxuan-Zhou/PLAS
https://github.com/ikostrikov/implicit_q_learning
https://github.com/aviralkumar2907/CQL

Table 3: Hyper-parameters and network architecture for training LAPO

Hyperparameter Value
TD3 & LAPO Optimizer Adam
Hyperparameters | Critic learning rate 0.0002
Action policy learning rate | 0.0002
Latent policy learning rate | 0.0002
Mini-batch size 512
Discount factor 0.99
Target update rate 0.005
Policy noise 0.1
Policy noise clipping 0.3
VAE g 0.3 for Maze2D, 1.0 for other tasks
Importance weight w 0.9 for positive adv, 0.1 for negative adv
Latent action size 2 x 1Al
Latent action limit [-2.0, 2.0]
Architecture Critic hidden layers [256, 256, 256]
Action policy hidden layers | [256, 256, 256]
Latent policy layers [256, 256, 256]
Vae encoder layers [256, 256, 256]
Activation function ReLU

E Tasks and Datasets

Locomeotion: We adopt the task settings introduced in [S1] to define three locomotion tasks. The
datasets are constructed using all of the training data in the replay buffer of three separate policy
training sessions each trained for 0.5 million steps using the SAC method [[14]. The tasks are to
control a Walker2D agent to run forward, backward, and jump. Similar to the original work, we keep
a single replay buffer with all of the transitions of all of the three tasks, and form three offline datasets
by relabeling the rewards using the reward function provided for each task. We refer to the datasets as
Walker2d-mix-forward, Walker2d-mix-backward and Walker2d-mix-jump in the rest of this section.

Navigation: We use the two datasets Maze2d-sparse and Antmaze-diverse from the D4RL benchmark.
The trajectories in the datasets are collected by training goal-reaching policies to navigate to random
goals from random initial positions. Provided the pre-collected trajectories, the rewards are relabeled
to generate offline data to navigate to different goal positions. Therefore, the task is to learn from
data generated by policies that try to accomplish different tasks not aligned with the task at hand. The
target task has a sparse binary reward function which gives a reward of one only when the agent is
close to the goal position, and zero otherwise.

Manipulation: For the manipulation domain, we leverage the FrankaKitchen task from the D4RL
benchmark. The task is to control a 9-DoF Franka robot to manipulate common household items
such as microwave, kettle, and oven, in sequence to reach desired target configuration for several
items. There are three datasets collected by human demonstrations: (1) Kitchen-complete which
consists of successful trajectories that perform tasks in order, (2) Kitchen-partial which similar to (1)
consists of some successful task-relevant trajectories, but also contains unrelated trajectories that are
not necessarily related to reach any target configurations, and (3) Kitchen-mixed which consists of
partial trajectories that do not solve the entire task, and requires the highest level of generalization
from the agent to accomplish the task. The kitchen environment has a sparse reward that is provided
whenever an item is at its target configuration.

Locomotion (narrow/random data distribution): For the offline RL task of learning from narrow
data distributions, we leverage three Gym-MuJoCo locomotion tasks from the D4RL benchmark
with random, narrow and biased data distribution: Hopper, Walker2d and Halfcheetah. Each task
contains three datasets collected using a randomly initialized policy ("-random"), a semi-trained
policy ("-medium"), and a fully trained policy ("-expert"), respectively. The behavioral policies are
trained online using the SAC method.

16

‘$Y[SB) ¢ 1591 o) uo 2oueu01ad 9ANNAdWOD SAAJIYOE PuUE SYSB) G U0 douewIojrod
159q 9Y) SOARIYOE OV T “[BAIOIUI QOUIPYU0I-9,GH Y} F ‘SPAds € PUB SUOHBN[RAD ()] [BUY 9Y) JOAO PISBIOAR a1k S9109s oy], “Aorjod 11adxe ue jo ooueuriofrad oy}
sjuasaxdar 0] pue Ado1jod wopuel e jJo sourwiofrad oyl s1uasaidal () -1aselep SnodUAS0IAAY YIIm SYSB) U0 SPOYIaW [[& JO 2ouewIojiad paziewliou ayJ, 4 2[qeL,

90LF YT | L9001 F98'] €¢I F 266 00F26€¢ €69F 00 €69FT6'6C 6S0IFSTI 796 F 0°0€ OA-POXIWI-UYIIY
TTTLFLYES I'9F SS0 00F€ETE 00FCr0 I€TFSTO I€TFOLT LE6IF8SLI 0YFLITE 0A-TenTed-usyoiry
796 F LI'ES LYTF LIV €ECF L9799 0r F801 L99 F€8°E L99 T 80°8¢ 18°CF80°6 ECTFSY 0A-9)9[dwod-uayIIy
YEITFLYT9 | SYYTF 6811 0'0FL9EE 00F00 00F00 00FEET YT6F L90 00F00 [A-9SIOAIP-IBIR[-0ZeUNUY
Y76 F L9°S8 €ESFON 00F06 LY0OTF00 €ESFEE0 LYOTFLYS PEITFECTI 00F 00 | TA-9SIAIP-WNIPIW-IZEUNUY
LYOLFECT6 | YITIFILIL 0'0FL9'SS €ECFO0 YELEFOTL EESFOL €ECFO0T9 091 F0°09 [A-9SIQAIP-dZBWN-OZBUNUY
98°81 ¥ 9500 9T9F 0L 899F Y9 TOEVIFH06 LSSI FSYEH 9TITFYSY SESTFLILT WSFYII- [A-9BIe[-PTIZBIN
LYTTFSLTPT | STTIFSTTI 6'€TFITEE 108 F €SP TILFYIE I'SIF6IS 6TF6LTI LEGFHEE [A-WNIPIW-PZIZBIN
99°6C F98°811 '€ F98°CC 880L FOIS 1691 FSP6l €6STFESH6 TI6CFTI08 6811 F 1681 10°'L ¥ 660] A-9ZBWN-PZIZEIN
QEFTEY | 9CCTFOTLE €OSTFIFOY- €TSFI08C 8ELIFSOTS T69TF9S0 COOFEH Ty SECETFTLOTL TA-dwn/f-x1u-pzIayrem
61'SFTT66 | 8OTEF V999 €6VI FSTI 86'STFECTIL €90TFS6L- 6TSTFYSLT SY6FLET- LSOFOSHS | [A-PIRMYORq-XTW-PZIN[BA
YOTTF LIYL | ¥¥'€ F SLT0T L89FCSTYT €60F608L €9TIF681L SYLFI6TC SH8EF 1670 909 ¥ §9°6- [A-PIBMIOF-XTW-PTION[BAM
tmOodvT 100 TOL WWO HyMY DVMV SV1d 0od od Q1 seL

17

‘[BAIIUL QOUIPYUO0I-9,G6 Y} F ‘SPas ¢ pue SUONEBN[BAS ()] UL Y} JOAO PageiaAe ale sa109s oy, “Ado110d 11adxa ue Jo souewiojrad oy sjussardal g pue
Korjod wopuel e Jo souewiojrad oy s)uasa1dal () “19seIep Paselq pue MOLIRU ‘UIOPURI (IIM SYSB) UOTJOWO0I0] U0 SPOYIaU [[8 JO 9duewIofiad pazijeuwiou 3y, :S 9[qeL,

TTOTFE6S6 TOTFVLS T80F86H6 89°0F 101 65LF6LE6 LIOFSICO €0F €968 TA-IRdX-yeIeay) e
800FLTTIT | COOFOLSOT T1€O0FE6601 FEOFOPOIT CT90F9S601 LOOFISOII TTLFCT6L TA-RdXR-PTIN[BA
9CFOL901 | SLFLTTOL E€ETFIC60L TP EFTEO60L +OTLFSOLOL 61TF9889 LTITFII9L ZA-adxa-roddoy
TEOFLESY | PSOFIL6Y O9LOFLYLY 6€0FEI'Sy SPOFYSHr CIOFCCLY LI'OFPSLE | CA-WNIpSW-yeIaayofley
€80 F SL08 9T9FIT8 SYTF6SLL 9LTFTOVS 190IFLY9L SE9OFTLEL 60TFIULY TA-WNIPAW-PZIN[BM
LTEFEYIS | COIFO6STL €6V FSLS) SHOFSS69 LTYF960S 9I'SFHP9S v EFET6Y ga-wmipaw-1oddoy
170 ¥ SS°0€ 9CTFCTC TSOFITET LYOFSIST 00 FSP'9T 9STFSTT 0'0FSTT | TA-WOpULI-YeIYJ[eH
YITFSTI TI0F€T0- 6£0F IT'S 9T0F Y0 8TOFLI'6 EI0F LY 9T FII] TA-WOPURI-PTISN[BM
790 FOV'€T 601 FEE8 69T F68°L Y00 F 10°8 ¥0'0 ¥ 89°9 YOO F 8L 8I'0F €TT ga-wopuel-1oddoy
tm0)0gv1 gole) 101 DVMV SV1d 004 od A dseL

18

	Introduction
	Preliminaries
	Latent-Variable Advantage-Weighted Policy Optimization
	Related Works
	Experiments
	Comparisons
	Tasks and Datasets
	Experimental Results
	Ablations

	Conclusion
	Connections to other advantage-weighted behavior cloning methods
	The temperature and the importance weight

	Connections to BCQ and PLAS
	Additional information on experimental results
	Learning curves of random, narrow and bias tasks
	Results with confidence interval
	Examples trajectories of the navigation tasks

	Implementation Details
	Implementation of prior methods
	Network Hyperparameters
	Data pre-processing

	Tasks and Datasets

