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Abstract

Brain-inspired Spiking Neural Network (SNN)001
has demonstrated its effectiveness and effi-002
ciency in vision, natural language, and speech003
understanding tasks, indicating their capacity to004
"see", "listen", and "read". In this paper, we de-005
sign SpikeVoice, which performs high-quality006
Text-To-Speech (TTS) via SNN, to explore the007
potential of SNN to “speak”. A major obsta-008
cle to using SNN for such generative tasks lies009
in the demand for models to grasp long-term010
dependencies. The serial nature of spiking neu-011
rons, however, leads to the invisibility of in-012
formation at future spiking time steps, limiting013
SNN models to capture sequence dependen-014
cies solely within the same time step. We term015
this phenomenon "partial-time dependency".016
To address this issue, we introduce Spiking017
Temporal-Sequential Attention (STSA) in the018
SpikeVoice. To the best of our knowledge,019
SpikeVoice is the first TTS work in the SNN020
field. We perform experiments using four well-021
established datasets that cover both Chinese022
and English languages, encompassing scenar-023
ios with both single-speaker and multi-speaker024
configurations. The results demonstrate that025
SpikeVoice can achieve results comparable to026
Artificial Neural Networks (ANN) with only027
10.5% energy consumption of ANN. Both our028
demo and code are available as supplementary029
material.030

1 Introduction031

Since the advent of Artificial Neural Networks032

(ANN), remarkable achievements have been made033

in the field of image (Radford et al., 2021; Car-034

ion et al., 2020; Liu et al., 2021), natural lan-035

guage (Vaswani et al., 2017; Devlin et al., 2018;036

Brown et al., 2020), and speech (Baevski et al.,037

2020; Hsu et al., 2021). In recent years, with the038

success of large language models (OpenAI, 2023;039

Anil et al., 2023; Touvron et al., 2023; Li et al.,040

2023a; Sun et al., 2023; Radford et al., 2023), there041

has been a notable upward trend in energy con-042

sumption. At the same time, Spiking Neural Net- 043

work (SNN), inspired by the biological nervous 044

system and recognized as the third generation of 045

neural networks (Maass, 1997), employs spiking 046

neurons (Hodgkin and Huxley, 1952; Abbott, 1999; 047

Fang et al., 2023b) with charge-fire-reset temporal 048

dynamic. The temporal dynamic makes SNN to 049

exhibit the event-driven feature of sparse firing and 050

the binary spike communication feature between 051

neurons using 0s and 1s, providing a distinct ad- 052

vantage in energy efficiency (Cao et al., 2015). 053

Recently, SNN has achieved remarkable 054

progress on several tasks, such as object detec- 055

tion and image classification (Zhao et al., 2021; 056

Rajagopal et al., 2023; Yao et al., 2023), speech 057

recognition (Wu et al., 2020; Wang et al., 2023), 058

and text classification tasks (Lv et al., 2023, 2022). 059

It is the success of these tasks that have led us to be- 060

lieve that SNN has preliminarily acquired the abili- 061

ties of "seeing", "listening", and "reading". How- 062

ever, applying SNN to generative tasks encounters 063

some obstacles, particularly in addressing the chal- 064

lenge of SNN capturing long-term dependencies. 065

As mentioned above, spiking neurons have a tem- 066

poral dynamic of charge-fire-reset. Such a serial 067

process hinders the capture of information from 068

future time steps in the spiking temporal dimen- 069

sion. Existing SNN models performing attention 070

operations in the spiking sequential dimension can 071

only establish sequence dependencies within the 072

same time step or, in other words, among partial bi- 073

nary embedding (Lv et al., 2023; Li et al., 2023b), 074

hindering the establishment of long-term depen- 075

dencies. We term this phenomenon as "partial-time 076

dependency". 077

In this paper, we introduce SpikeVoice, a 078

high-quality Text-To-Speech (TTS) model with 079

a Transformer-based SNN framework (Vaswani 080

et al., 2017) solving the "partial-time dependency" 081

problem, and successfully explore the potential of 082

SNN to "speak". To address the issue of "partial- 083
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time dependency", we propose Spiking Temporal-084

Sequential Attention (STSA) in SpikeVoice. STSA085

performs temporal-mixing in the spiking temporal086

dimension to capture information from future time087

steps, enabling access to the global information of088

binary embedding at each spiking time step. After089

time-mixing, STSA performs sequential-mixing090

in the spiking sequential dimension to integrate091

contextual information. Furthermore, we imple-092

ment SpikeVoice in a spike-driven manner with the093

Leaky Integrate-and-Fire (LIF) (Maass, 1997) neu-094

rons, fully harnessing the energy efficiency of SNN.095

Spike-driven denotes the concurrent existence of096

both the binary spike communication feature and097

the event-driven feature. To the best of our knowl-098

edge, SpikeVoice is the first TTS model within099

the SNN framework, which not only promotes the100

development of SNN in generative tasks but also101

expands the scope of the SNN model in practical102

applications.103

The main contributions are summarized as fol-104

lows:105

• To the best of our knowledge, SpikeVoice is106

the first TTS model within the SNN frame-107

work that endows SNN with the "speaking"108

capability, enabling high-quality speech syn-109

thesis and filling the blank of speech synthesis110

in the SNN field.111

• In SpikeVoice, we introduce STSA, where the112

temporal-mixing in the spiking temporal di-113

mension enables the access to the global infor-114

mation of binary embedding at each spiking115

time step, resolving the issue of "partial-time116

dependency" caused by the serial spiking neu-117

rons.118

• The results reveal that SpikeVoice achieves119

synthesis performance close to ANN in both120

English and Chinese scenarios with both121

single-speaker and multi-speaker configura-122

tions. Remarkably, the energy consumption123

of SpikeVoice is merely 10.5% of ANN, al-124

leviating the high energy consumption issue125

associated with ANN.126

2 Related work127

Transformers in SNN: Training in SNN is primar-128

ily categorized into two methods: ANN-to-SNN129

conversion (ANN2SNN) (Bu et al., 2023; Deng130

and Gu, 2021; Han et al., 2020) and surrogate train- 131

ing (Wu et al., 2018a; Shrestha and Orchard, 2018; 132

Wu et al., 2018b; Duan et al., 2022). Leveraging 133

ANN2SNN, (Mueller et al., 2021) integrates the 134

Transformer architecture into SNN. Nevertheless, 135

this approach demands dozens or even hundreds of 136

time steps to attain satisfactory performance. Spike- 137

former (Zhou et al., 2022) conducts direct training 138

of the Transformer within the SNN framework and 139

achieves state-of-the-art performance on ImageNet 140

with just four time steps. However, it doesn’t fully 141

harness the energy-efficient advantages of SNN 142

due to the presence of Multiply-and-Accumulate 143

(MAC) operations. Spike-driven Transformer (Yao 144

et al., 2023) incorporates the spike-driven paradigm 145

into Transformer architecture and introduces the 146

Spike-Driven Self-Attenton (SDSA) (Yao et al., 147

2023). SDSA utilizes sparse additive operations 148

as a replacement for multiplication operations in 149

attention mechanisms, effectively addressing the 150

issues present in Spikeformer related to MAC oper- 151

ations. SpikeGPT (Zhu et al., 2023) is the first to 152

introduce text generation tasks into the SNN frame- 153

work. However, it still does not make full of the 154

energy-efficient capabilities of SNN. 155

Transformers in TTS: Tactron2 (Shen et al., 156

2018) employs RNN (Hochreiter and Schmidhu- 157

ber, 1997) for speech synthesis which results in 158

low training efficiency and struggles to establish 159

long-term dependencies. To address these issues, 160

Transformer-TTS (Li et al., 2019) introduces an 161

autoregressive TTS model that combines Tactron2 162

with the Transformer, enhancing training efficiency 163

while capturing long-term dependencies. However, 164

autoregressive TTS models often suffer from slow 165

synthesis speed and less robust speech synthesis. 166

FastSpeech (Ren et al., 2019), on the other hand, 167

utilizes knowledge distillation during training to 168

build a non-autoregressive TTS model, yet the train- 169

ing process can be complicated. FastSpeech2 (Ren 170

et al., 2020) simplifies the training process by re- 171

moving knowledge distillation from the FastSpeech 172

training pipeline and adopting the end-to-end train- 173

ing approach, effectively addressing the issue of 174

the extended training duration associated with Fast- 175

Speech. 176

3 Method 177

In this study, we propose SpikeVoice, the first spike- 178

driven TTS model. The overall model architecture 179

is illustrated in Fig.1. The Spiking Phoneme En- 180
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Figure 1: The overview model structure of SpikeVoice. In the figure, the left part represents the Spiking Temporal-
Sequential Attention (STSA). In the middle part, from bottom to top, are the Spiking Phoneme Encoder (SPE),
Spiking Variance Adapter (SVA), and Spiking Mel Decoder (SMD) with the topmost part represents the output
Mel-Spectrogram. On the right part, the green module represents the predictor within the Spiking Variance Adapter,
the blue module represents Spiking FeedForward, and the orange module indicating Spiking PostNet.

coder (SPE) performs binary embedding on the181

input phoneme embedding sequence and gener-182

ates high-level spiking phoneme representations.183

The Spiking Variance Adaptor (SVA) enhances the184

spiking phoneme representations by incorporating185

variance information related to duration, pitch, and186

energy. Finally, the Spiking Mel Decoder (SMD)187

and Spiking PostNet generate Mel-Spectrograms188

in a non-autoregressive manner. In the following189

sections, we will first introduce the LIF neurons,190

and then introduce the components of SpikeVoice.191

3.1 Leaky Integrate-and-Fire Neuron192

The LIF neuron is a biologically inspired spiking193

neuron having the charge-fire-reset biological neu-194

ronal dynamics as shown in Fig.2. The working195

process of LIF neuron can be described as: 196

Ht = Vt−1 +
1

τ
(Xt − (Vt−1 − V re)) (1) 197

St = Θ(Ht − V th) (2) 198

Vt = V reSt +Ht(1− St) (3) 199

Eq.(1) to (3) respectively represent the charging, 200

firing, and membrane potential resetting of LIF. Xt 201

denotes the input current at time t, Ht signifies the 202

membrane potential after charging, St represents 203

the spike tensor at time t, Θ represents the step 204

function, V th denotes the firing threshold, V re is 205

the reset membrane potential, and Vt signifies the 206

membrane potential after resetting. 207
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SpikeVoice FastSpeech2

STSA/Attention

Q,K, V TR̄t/s ∗ Eadd ∗ 3ND2 Emac ∗ 3ND2

F (Q,K, V ) TR̂t/s ∗ Eadd ∗ND Emac ∗ND2

Linear0 TRmlp1 ∗ Eadd ∗ FLPmlp0 Emac ∗ FLPmlp0

Scale - Em ∗N2

Softmax - Emac ∗ 2N2

Spiking Feedforward Conv_Layer0/1 TRc0/c1 ∗ Eadd ∗ FLPc0/c1 Emac ∗ FLPc0/c1

Predictors
Conv_Layer2/3 TRc2/c3 ∗ Eadd ∗ FLPc2/c3 Emac ∗ FLPc2/c3

Linear1 TRmlp1 ∗ Eadd ∗ FLPmlp1 Emac ∗ FLPmlp1

Spiking PostNet
Linear2 TRmlp2 ∗ Eadd ∗ FLPmlp2 Emac ∗ FLPmlp2

Conv_Layer4−9 TRc4−c9 ∗ Eadd ∗ FLPc4−c9 Emac ∗ FLPc4−c9

Table 1: The energy consumption estimation of the main components. T is the total time steps, and R denotes
the firing rates of spike tensors. Eadd = 0.9pJ and Emac = 4.6pJ are the energy consumption of add and MAC
operations at 45nm process nodes for full precision (FP32) SynOps. N is the length of sequences, and D represents
the number of channels. FLPc and FLPmlp are FLOPs of Conv layers and MLP layers.

Figure 2: The LIF neuron layer.

3.2 SpikeVoice208

Temporal-Sequential Embedding: At spiking209

temporal wise, we first expand the phoneme em-210

bedding sequence z to T time steps. In order to in-211

corporate the position information with STSA, we212

then apply position embedding in both the spiking213

temporal dimension and the phoneme sequential214

dimension.215

x0(t,l) = z(t,l) + etem(t,) + eseq(,l) (4)216

where x0 ∈ RT×L×D will be taken as the input217

to Spiking Phoneme Encoder. L represents the218

length of the phoneme sequence, D denotes the219

size of embedding dimension, t ∈ {1, . . . , T} and220

l ∈ {1, . . . , L}. etem(t,) and eseq(,l) are the position221

embedding of time step t at temporal wise and222

position l at sequence wise.223

Spiking Phoneme Encoder: Spiking Phoneme224

Encoders are composed of a stack of N identi-225

cal layers, each of which consists of an STSA226

module and a Spiking FeedForward module. As227

shown on the right side of Fig.1, each Spiking228

FeedForward module consists of two stacked 1D-229

Convolution layers. To ensure the energy efficiency230

of SpikeVoice, we introduce a LIF neuron layer 231

before each 1D-Convolution layer, to convert con- 232

tinuous inputs into sparse spiking tensors. Then the 233

high-level spiking phoneme representations xn of 234

layer n can be obtained as: 235

un = STSA(xn−1) (5) 236

xn = LN(un + f(un)) (6) 237

f(·) = [Conv(SN (·))]2 (7) 238

where LN is layer nomalization, SN refers to 239

the LIF neuron layer depicted in Eq.(1)-(3). f(·) 240

represents the stacked 1D-Convolution and LIF 241

neuron layers, un is the membrane potential output 242

of STSA. 243

Spiking Temporal-Sequential Attention: As 244

illustrated in the left block of Fig.1, STSA is com- 245

posed of a Spiking Temporal Attention and a Spik- 246

ing Sequential Attention. Due to the serial nature 247

of LIF neurons, it results in the inability to cap- 248

ture information from future time steps along the 249

spiking temporal dimension and leads to the issue 250

of "partial-time dependency". Therefore, we pro- 251

pose the Spiking Temporal Attention to perform 252

temporal-mixing over the spiking temporal dimen- 253

sion obtaining the global information of binary em- 254

bedding. 255

Taking STSA in layer n of Spiking Phoneme 256

Encoder as an example, initially, we perform bi- 257

nary embedding on the output of layer n − 1 to 258

obtain the sparse spiking hidden representation 259

sn = SN (xn−1), sn ∈ RT×L×D. Along the spik- 260

ing temporal dimension T the binary embedding of 261

each token can be obtained. The Spiking Temporal 262
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Attention can be depicted as:263

µn = SN (BN(Wn,tem
µ sn)) (8)264

sn(t,:) = SN (Σc(q
n
(t,:) ⊙ kn(t,:)))⊙ vn(t,:) (9)265

σn = LN(xn−1 + Linear(sn)) (10)266

where µ ∈ {q, k, v}, BN represents Batch Nor-267

malization, and Wn,tem
µ is a learnable matrix for268

Spiking Temporal Attention. For vanilla attention269

can introduce MAC operations to the SpikeVoice,270

we utilize the SDSA (Yao et al., 2023) in Eq.(9) as a271

substitute for vanilla attention. ⊙ is the Hadamard272

product and Σc means sum up in column-wise.273

sn(t,:) denotes the spiking tensor at time step t,274

which is the output of attention computing on spik-275

ing temporal wise. σn represents the membrane276

potential output of Spiking Temporal Attention.277

Then sn = SN (σn) will serve as the sparse278

input to Spiking Sequential Attention:279

µn = SN (BN(Wn,seq
µ sn)) (11)280

sn(:,l) = SN (Σc(q
n
(:,l) ⊙ kn(:,l)))⊙ vn(:,l) (12)281

un = LN(un + Linear(sn)) (13)282

where sn(:,l) is the spiking tensor at position l in the283

sequence wise. The computation process above284

can be easily extended to Spiking Mel Decoder.285

Spiking Variance Adaptor: The Spiking Vari-286

ance Adaptor takes the high-level spiking phoneme287

representations xN as its input. And then the Dura-288

tion Predictor Pd, Energy Predictor Pe, and Pitch289

Predictor Pp impart variance information to xN .290

The predictors in Spiking Variance Adaptor all take291

an identical structure, shown in the green block292

on the right side of Fig.1. Besides, We employ a293

residual connection around the Energy Predictor294

and Pitch Predictor. Finally, the Length Regulator295

LR aligns the hidden sequence to the length of the296

Mel-Spectrogram:297

d = Pd(x
N ) (14)298

u = Pe(Pp(x
N )) (15)299

{y0(t,l′)}l′=1,...,L′ = LR
(
u(t,l), d(l,)

)
l=1,...,L

(16)300

where d ∈ RL comprises the length of mel frames301

corresponding to each phoneme. u represents the302

membrane potential incorporated the pitch and en-303

ergy variance information. {y0(t,l′)} signifies the304

mel representations corresponding to u(t,l) after be-305

ing extended by d(l,) times. L′ represents the total306

length of the target Mel-Spectrogram.307

Spiking Mel Decoder and PostNet: Spiking 308

Phoneme Encoders are composed of a stack of 309

M identical layers, each of which also comprises 310

an STSA and a Spiking FeedForward. The Spik- 311

ing PostNet is designed to enhance the fine details 312

of Mel-Spectrograms. LIF neuron layers are also 313

added before each linear layer and 1D-convolution 314

layer in the Spiking PostNet to ensure sparse inputs. 315

Then the Mel-Spectrogram can be obtained as: 316

ym = SFF (STSA(ym−1)) (17) 317

O = PostNet(yM ) (18) 318

Oc
(l′,) = ȳM(:,l′), Of

(l′,) = Ō(:,l′) (19) 319

where ym is the output of the mth layer of Spik- 320

ing Mel Decoder. To calculate the supervised 321

loss with ground truth, we average the output at 322

spiking temporal dimension as the predicted Mel- 323

Spectrograms, and ·̄ represents the average opera- 324

tion. We denote the Mel-Spectrograms obtained 325

before the Spiking PostNet as Oc and the output 326

obtained from the Spiking PostNet as Of . 327

The loss function encompasses supervised losses 328

using Mean Squared Error (MSE) for pitch, en- 329

ergy, and duration, as well as Mean Absolute 330

Error (MAE) losses for both the coarse Mel- 331

Spectrograms Oc and the fine Mel-Spectrograms 332

Of . 333

4 Experiments 334

We conducted experiments with SpikeVoice on 335

single-speaker and multi-speaker datasets, encom- 336

passing both English and Chinese. The single- 337

speaker datasets include LJSpeech (Ito and John- 338

son, 2017) and Baker1, while the multi-speaker 339

datasets comprise LibriTTS (Zen et al., 2019) and 340

AISHELL3 (Yao Shi, 2015). In the following sub- 341

sections, we present results on subjective and objec- 342

tive metrics for ground truth denoted as ’GT’, ANN 343

baseline denoted as ’FastSpeech2’, SpikeVoice sig- 344

nified as ’SpikeVoice-STSA’, and SNN baselines: 345

SpikeVoice with attention in Spikeformer replacing 346

the STSA, which is denoted as ’SpikeVoice-ATTN’ 347

and SpikeVoice with only Spiking Sequential Atten- 348

tion, which denoted as ’SpikeVoice-SDSA’. Addi- 349

tionally, In Section 4.5, we perform visual analysis, 350

and in Section 4.6, we discuss the balance between 351

SpikeVoice’s energy consumption and the quality 352

of synthesized speech. 353

1https://www.data-baker.com/data/index/TNtts/
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Single-Speaker
LJSpeech Baker

Methods WER↓NISQA-V2↑ MOS↑ CER↓NISQA-V2↑ MOS↑
GT 6.39 4.42 4.75± .037 12.25 4.06 4.30± .052

FastSpeech2 (Ren et al., 2020) 7.98 4.13 4.10± .057 13.18 3.80 3.82± .089

SpikeVoice-ATTN (Zhou et al., 2022) 8.39 4.08 3.69± .053 13.16 3.78 3.52± .093
SpikeVoice-SDSA (Yao et al., 2023) 8.70 4.10 3.63± .059 12.96 3.79 3.46± .088

SpikeVoice-STSA (ours) 7.93 4.11 4.06± .05212.89 3.80 3.86± .076

Table 2: Results on LJSpeech and Baker for experiments for single-speaker. GT stands for ground truth, FastSpeech2
is the work of (Ren et al., 2020). WER/CER and NISQA-V2 are the objective metric and MOS is the subjective
metric. The best results of the SNN-based models are highlighted with bold font, and the underlined font indicates
that the performance of the ANN-based model is superior to the optimal performance of the SNN-based model.

4.1 Datasets354

For each of the datasets, we have randomly split355

the dataset into three sets: the training set, the356

validation, and the testing sets, both comprising357

256 samples.358

LJSpeech is a female single-speaker English359

monolingual dataset. It comprises a collection of360

13100 utterances, each lasting between 1 to 10361

seconds, amounting to roughly 24 hours of speech362

material.363

Baker is a female single-speaker Chinese364

dataset. It encompasses a wide range of content365

domains, including news, novels, technology, and366

so on. In total, Baker comprises 10000 speech367

recordings, with approximately a total of 12 hours368

of speech material.369

LibriTTS comprises approximately 191 hours370

of speech with 1,160 speakers. We utilized the371

train-clean-360 set from LibriTTS. Within this sub-372

set, there are 430 female speakers and 474 male373

speakers.374

AISHELL3 is a multi-speaker Chinese dataset,375

containing a total of approximately 85 hours of376

speech, recorded by 218 speakers.377

4.2 Experiments settings378

Training Settings SpikeVoice is stacked by N = 4379

Spiking Phoneme Encoders, a Spiking Variance380

Adaptor, and M = 6 Spiking Mel Decoders. We381

transformed the raw speech in all the datasets into382

mel-spectrograms with a frame length of 1024383

and a hop length of 256. The synthesized mel-384

spectrograms were uniformly converted into speech385

using the vocoder HiFiGAN (Kong et al., 2020).386

We performed the training on four Tesla V100-387

SXM2-32G GPUs with batch size 48. The opti-388

mization settings were in line with those defined389

in (Ren et al., 2020). The implementation of the 390

SNN framework in SpikeVoice is based on Spik- 391

ingJelly (Fang et al., 2023a). 392

Evaluation Settings We employed Word Er- 393

ror Rate (WER) for English and Character Er- 394

ror Rate (CER) for Chinese, along with NISQA- 395

V2 (Mittag et al., 2021), as objective metrics to 396

evaluate the quality of single-speaker speech syn- 397

thesis. For multi-speaker synthesis, we addition- 398

ally utilized Speaker Embedding Cosine Similarity 399

(SECS) to gauge the similarity between the syn- 400

thesized speech and the target speech in terms of 401

the speaker’s voice. Specifically, for WER, we uti- 402

lized Hubert (Hsu et al., 2021) for English ASR 403

transcription and Wav2Vec2 (Baevski et al., 2020) 404

for Chinese ASR transcription. As for SECS, we 405

employed the speaker encoder from the Resem- 406

blyzer2 toolkit to extract speaker embeddings and 407

calculate cosine similarity. In assessing both single 408

and multi-speaker synthesis, we relied on 5-scale 409

Mean Opinion Scores (MOS) with 95% confidence 410

intervals as our subjective metric. To obtain these 411

scores, we randomly selected 80 samples from each 412

test set, and a total of 12 participants were asked to 413

provide ratings for the synthesized speech. 414

4.3 Performance on Single-Speaker 415

As shown in Tab.2, we conducted experiments on 416

the LJSpeech and Baker datasets, reflecting the 417

synthesis quality of English and Chinese single- 418

speaker respectively. 419

For the objective metrics, SpikeVoice surpasses 420

all the SNN and ANN baselines on the WER/CER 421

metric and is the best-performing SNN-based 422

model on NISQA. These results demonstrate that 423

the global information of temporal spike sequence 424

2https://github.com/resemble-ai/Resemblyzer
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Multi-Speaker
AISHELL3 LibriTTS

Methods WER↓ NISQA
-V2

↑ SECS↑ MOS↑ CER↓ NISQA
-V2

↑ SECS↑ MOS↑

GT 5.36 3.37 - 4.48± .057 5.07 4.14 - 4.46± .047

FastSpeech2 6.36 3.09 0.849 3.92± .059 5.72 3.47 0.822 3.43± .074

SpikeVoice-ATTN 7.13 3.12 0.841 3.55± .061 6.63 3.42 0.794 2.72± .089
SpikeVoice-SDSA 7.42 3.12 0.849 3.63± .058 6.45 3.4 0.794 2.88± .066
SpikeVoice-STSA 6.32 3.13 0.850 3.79± .056 6.06 3.43 0.795 3.32± .052

Table 3: Results on AISHELL3 and LibriTTS for experiments of multi-speaker. CER, NISQA-V2, and SCER are
the objective metric and MOS is the subjective metric. The best results of the SNN-based models are highlighted
with bold font, and the underlined font indicates that the performance of the ANN-based model is superior to the
optimal performance of the SNN-based model.

in STSA contributes to the synthesis of higher-425

quality and clearer speech.426

For the subjective evaluation, SpikeVoice out-427

performs both SpikeVoice-ATTN and SpikeVoice-428

SDSA. The difference in MOS scores between429

SpikeVoice and ANN is merely 0.04 on LJSpeech430

and SpikeVoice even surpasses the ANN-based431

model on the Baker dataset, indicating that432

SpikeVoice’s synthesis quality closely approaches433

that of ANN in terms of human perception. The434

results compared to SpikeVoice-SDSA also confirm435

the effectiveness of temporal-mixing.436

4.4 Model Performance on Multi-Speaker437

In Tab.3, we respectively present the performance438

on the AISHELL3 and LibriTTS. In the multi-439

speaker experiments, we have additionally incorpo-440

rated the SCER metric to assess the speaker similar-441

ity between synthesized speech and target speech.442

Compared to single-speaker, multi-speaker443

datasets present more challenges for SNN-based444

models. SpikeVoice with STSA remains the best-445

performing SNN-based model, however, the sparse446

nature of the spike tensor contributes to energy447

efficiency at the expense of information loss, lead-448

ing to a performance gap of MOS scores between449

the SNN-based models and ANN-based models450

in multi-speaker datasets, which encompass richer451

information. Investigating strategies to minimize452

information loss in the context of spike tensors with453

low firing rates is worthwhile for future research.454

4.5 Visualized Analysis455

Visualization of Mel-Spectrograms: Speech syn-456

thesized by SpikeVoice exhibits less noise and457

is clearer compared to the SNN-based baselines,458

which is evident in Fig.3. As shown in Fig. 3(b)459

and 3(c), Mel-Spectrograms synthesized by the 460

SNN baselines become blurry towards the end, los- 461

ing fine details. In contrast, the Mel-Spectrograms 462

in Fig.3(d) synthesized by SpikeVoice with STSA 463

exhibit minimal sacrifice of details as to ANN in 464

3(a) and remain notably clearer than those pro- 465

duced by SNN baselines.

(a) FastSpeech2 (b) SpikeVoice-ATTN

(c) SpikeVoice-SDSA (d) SpikeVoice-STSA

Figure 3: Mel-Spectrograms visualization analysis on
English single-speaker dataset LJSpeech.

466

Visualization of Spike Patterns: By visualizing 467

spike tensors, more details of SpikeVoice can be ob- 468

served. As the spike patterns of STSA depicted in 469

Fig.4(a) and Fig.4(b), each dot represents an event, 470

the spike events in the lower layers are sparser, and 471

as the network deepens, more information is incor- 472

porated, leading to denser spike events. Spike ten- 473

sors that convey similar information exhibit similar 474

spike patterns, while others reveal markedly dif- 475

ferent spike patterns. Spike patterns of the energy 476

and pitch predictors are displayed in Fig.4(c) and 477

Fig.4(d), different from the distribution of spike 478

pattern in 4(a) and 4(b), noticeable channel cluster- 479

ing phenomena can be observed in 4(c) and 4(d). 480
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Methods Spike-Driven Complexity Param Time Step E(pJ) MOS
FastSpeech2 % O(N2D) 35.4 1 2.14e11 4.10± .057

SpikeVoice-ATTN ! O(TN2D) 35.4 4 2.55e10 3.69± .053

SpikeVoice-SDSA ! O(TND) 35.4 4 2.06e10 3.63± .059

SpikeVoice-STSA ! O(2TND) 37.2 1 8.84e09 3.61± .053

SpikeVoice-STSA ! O(2TND) 37.2 4 2.26e10 4.06± .052

Table 4: Balance between consumption and synthesized quality of models. Spike-Driven denotes the existence of
solely AC operations. Param represents the amount of parameters of models, Time Step is total spike sequence time
steps, and E(pJ) represents the energy consumption calculated according to Table 1. MOS represents the results of
the LJSpeech.

(a) STSA-layer1 (b) STSA-layer4

(c) Pitch Predictor (d) Energy Predictor

Figure 4: Visualization of spike tensor. Fig.4(a) and
Fig.4(b) are the spike patterns of STSA in the first layer
and the fourth layer. 4(c) and 4(d) denote spike pattern
for speech energy and speech pitch. Each dot depicts a
fired event.

4.6 Analysis of Balance between Consumption481

and Synthesized Speech Quality482

Apart from its notable biological interpretability,483

one of the most prominent advantages of SNN lies484

in its energy efficiency. However, SNN’s binary em-485

bedding within a finite time step results in some de-486

gree of performance decay. In Tab.4, we present the487

number of model parameters, time steps of binary488

embedding, and energy consumption. The term489

"Spike-Driven" refers to the existence of solely AC490

operations, and "MOS" here refers to the results on491

LJSpeech.492

While SpikeVoice-STSA comes with a slight in-493

crease in the parameter, it takes only 10.5% energy 494

consuming of ANN with 4 time steps and achieves 495

a better performance than SNN baselines. In con- 496

trast, SpikeVoice-SDSA exhibits noticeable perfor- 497

mance degradation, while the energy consumption 498

is 9.6% of ANN with an equivalent amount of pa- 499

rameters. Similarly, SpikeVoice-ATTN also results 500

in an 88.1% reduction in energy consumption. It 501

is worth to noting that when set time step to 1, 502

the energy consumption of SpikeVoice-STSA can 503

be merely 4.11% of ANN. Hence, when consid- 504

ering both the quality of speech synthesis and en- 505

ergy consumption, SpikeVoice is a superior choice, 506

offering significant energy savings with minimal 507

performance sacrifice. 508

5 Conclusion 509

In this paper, we introduce SpikeVoice. To the 510

best of our knowledge, it is the first TTS model 511

that achieves high-quality speech synthesis within 512

the SNN framework and for the first time endows 513

SNN with the ability to "speak". Additionally, 514

SpikeVoice is a spike-driven model with highly 515

energy-efficient. In SpikeVoice, we propose STSA, 516

which performs temporal-mixing in the spiking 517

temporal dimension to address the issue of informa- 518

tion invisibility at future time steps on the spiking 519

temporal dimension caused by the serial nature of 520

spiking neurons and thereby address the issue of 521

"partial-time dependency". 522

We conducted experiments on both single- 523

speaker and multi-speaker datasets in both Chi- 524

nese and English. The results demonstrate that 525

SpikeVoice achieves performance comparable to 526

ANN models while consuming only 10.5% of the 527

energy required by ANN. Our successful practice 528

proves the feasibility of TTS tasks within the SNN 529

framework and offers an energy-saving solution for 530

TTS tasks. 531
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6 Limitation532

The SpikeVoice within the SNN framework still533

has several limitations. Primarily, the binary em-534

bedding results in inevitably information lost from535

the input data, leading to a decline in performance.536

Secondly, due to the inherent sequential mechanism537

of LIF neurons, the training speed of SpikeVoice is538

slower than ANN. Finally, as analyzed in section539

4.5 with the layers deepen, the firing rate becomes540

progressively higher, which implies the potential541

for further reductions in energy consumption. In542

light of this, we present several prospective ex-543

ploration directions that reduce information loss544

during the binary embedding process in SNN, low-545

ering the firing rate in deep neural networks, and546

parallelization of spike neurons.547
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A Firing Rate of SpikeVoice770

In Tab.5, Tab.6, and Tab.7, we respectively present771

the spike firing rates of Spiking Phoneme Encoder,772

Spiking Variance Adapter, and Spiking Mel De-773

coder.774

B Examples of Spike Patterns775

In Fig.5 we present the spike patterns of STSA776

and also the spike patterns of Pitch Predictor and777

Energy Predictor.778

C Examples of Mel-Spectrograms779

In Fig.6 we present Mel-Spectrograms of780

LJSpeech, Baker, LibriTTS, and AISHELL3, and781

we have magnified the tail of the Mel-Spectrogram782

for a clearer observation.783
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Spiking Phoneme Encoder
Layer1 Layer2 Layer3 Layer4 AVG

Spiking Sequential Attention

Q 0.19 0.18 0.19 0.2 0.19
K 0.04 0.04 0.05 0.07 0.05
V 0.04 0.04 0.05 0.07 0.05

Linear 0.05 0.05 0.06 0.09 0.06

Spiking Temporal Attention

Q 0.04 0.02 0.02 0.03 0.03
K 0.05 0.02 0.03 0.04 0.04
V 0.05 0.03 0.03 0.04 0.04

Linear 0.01 0.01 0.01 0.02 0.01

Spiking FeedForward
Conv1 0.07 0.10 0.13 0.15 0.11
Conv2 0.12 0.10 0.12 0.17 0.13

Table 5: Spike Firing Rates in Spiking Phoneme Encoder of SpikeVoice on LJSpeech dataset. The spike firing rate
refers to the proportion of elements in the spike tensor that have an activation value of 1, with the value of other
elements being 0.

Spiking Variance Adapter
FR_Conv1 FR_Conv2 FR_Conv3 AVG

Duration Predictor 0.23 0.29 0.24 0.25
Energy Predictor 0.27 0.31 0.32 0.30
Pitch Predictor 0.23 0.38 0.30 0.30

Table 6: Spike Firing Rates in Spiking Variance Adapter of SpikeVoice on LJSpeech dataset. "FR_Conv1",
"FR_Conv2" and "FR_Conv3" in the SpikeVoice refer to the firing rate in Conv1, Conv2, and Conv3 of the
Predictors respectively.

Spiking Mel Decoder
Layer1 Layer2 Layer3 Layer4 Layer5 Layer6 AVG

Spiking Sequential Attention

Q 0.16 0.17 0.18 0.21 0.24 0.31 0.21
K 0.03 0.04 0.04 0.05 0.05 0.04 0.04
V 0.03 0.04 0.04 0.04 0.05 0.05 0.04

Linear 0.03 0.05 0.06 0.07 0.8 0.11 0.07

Spiking Temporal Attention

Q 0.14 0.13 0.14 0.13 0.13 0.13 0.13
K 0.24 0.20 0.18 0.18 0.19 0.22 0.20
V 0.24 0.20 0.18 0.18 0.19 0.21 0.20

Linear 0.02 0.02 0.03 0.03 0.03 0.04 0.03

Spiking FeedForward
Conv1 0.12 0.13 0.13 0.13 0.12 0.19 0.14
Conv2 0.10 0.13 0.14 0.15 0.16 0.22 0.15

Table 7: Spike Firing Rates in Spiking Mel Decoder of SpikeVoice on LJSpeech dataset. The spike firing rate refers
to the proportion of elements in the spike tensor that have an activation value of 1, with the value of other elements
being 0.
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(a) STSA-encoder1 (b) STSA-encoder2 (c) STSA-encoder3

(d) STSA-encoder4 (e) Energy Predictor (f) Pitch Predictor

(g) STSA-decoder1 (h) STSA-decoder2 (i) STSA-decoder3

(j) STSA-decoder4 (k) STSA-decoder5 (l) STSA-decoder6

Figure 5: Visualization of spike tensor in the SpikeVoice. Figures in 5(a),5(b),5(c),5(d) are the spike pattern of
STSA in Spiking Phoneme Encoder. 5(e) and 5(f) denote spike pattern for speech energy and speech pitch. Fig.5(g)
to 5(l) are the spike pattern of STSA in Spiking Mel Decoder.
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(a) Mel-Spectrograms of LJSpeech

(b) Mel-Spectrograms of Baker

(c) Mel-Spectrograms of LibriTTS

(d) Mel-Spectrograms of AIshell3

Figure 6: Mel Spectrograms on LJSpeech, Baker, LibriTTS and Aishell3. Each row from left to right is the Mel
spectrograms of the model ANN, SpikeVoice-ATTN, SpikeVoice-SDSA and SpikeVoice-STSA.
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