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Abstract

Neural Network (NN) verification methods provide local robustness guarantees
for a NN in the dense perturbation space of an input. In this paper we introduce
H?2V, a method for the validation of local robustness of NNs against geometric
perturbations. H?V uniquely employs a Hilbert space-filling construction to recast
multi-dimensional problems into single-dimensional ones and Holder optimisa-
tion, iteratively refining the estimation of the Holder constant for constructing
the lower bound. In common with methods, Holder optimisation might theoreti-
cally converge to a local minimum, thereby resulting in a robustness result being
incorrect. However, we here identify conditions for H?V to be provably sound,
and show experimentally that even outside the soundness conditions, the risk of
incorrect results can be minimised by introducing appropriate heuristics in the
global optimisation procedure. Indeed, we found no incorrect results validated
by H2V on a large set of benchmarks from SoundnessBench and VNN-COMP.
To assess the scalability of the approach, we report the results obtained on large
NN ranging from Resnet34 to Resnet152 and vision transformers. These point
to SoA scalability of the approach when validating the local robustness of large
NNs against geometric perturbations on the ImageNet dataset. Beyond image
tasks, we show that the method’s scalability enables for the first time the robustness
validation of large-scale 3D-NNs in video classification tasks against geometric
perturbations for long-sequence input frames on Kinetics/UCF101 datasets.

1 Introduction

As well known, Neural Networks (NNs) are inherently vulnerable to adversarial perturbations [1],
i.e., their output is susceptible to fragilities, or attacks, in the neighbourhood of correctly processed
inputs. In the context of machine vision models, input perturbations generating such fragilities can
take various forms including noise, geometric changes, and illumination variations. Evaluating the
robustness of a model, i.e., its resistance to such small input changes, is particularly important in
safety-critical applications.

The area of robustness verification [2] consists of methods providing formal guarantees that a model
is locally robust in regions of the input space defined by a test point and a particular perturbation.
With the exceptions discussed in the Related Work (Section E[), methods for the verification of local
robustness are often theoretically sound (if a method reports that the model is either locally robust or
not robus in a region, then that is guaranteed to be the case), and often complete (given unlimited
time and resources a method can always resolve the local robustness query).

A well-known difficulty of sound and complete verification methods is their scalability: the robustness
verification problem is theoretically NP-hard [3] and present SoA methods often fail to scale to large
models, large inputs, or large perturbations [4], thereby hindering the application of the methods
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in many noteworthy applications. Consequently, incomplete methods like adversarial testing are
routinely used in applications to evaluate the robustness of large models [5}16]. Yet, adversarial testing
is known to fail to identify fragilities in a large number of cases, potentially instilling a false sense of
robustness in the developer.

In this paper, we leverage on the considerations above to introduce H?V, a method based on Hilbert
curve mapping and Holder optimisation for robustness Validation. Differently from some verification
methods, H2V is theoretically unsound in general. The practical impact of this is less significant
than what may initially appear for two reasons. Firstly, in applications the assessment of a model’s
robustness is typically based on the analysis of a large number of input samples and perturbations
of varying magnitudes. It is the aggregation of these results, not any single query, that enables the
analysis of a model’s robustness and the comparison across models. Secondly, the actual correctness
of individual verification queries in SoA verification tools is often hindered by inherent system-
level floating point precision errors and other issues [7, 18], thereby rendering theoretical soundness
guarantees less significant in practice.

H?V is based on Holder optimisation and follows advanced developments in the area of global
optimisation [9-11]. As such, in line with many global optimisation methods [[12] for NN analysis,
its convergence to the global minimum can be assured theoretically only if appropriate optimisation
parameters are chosen. Given this, we refer to H2V as a robustness validation method, rather than
one for robustness verification, because in general the method may be unsound. However, in what
follows we identify circumstances where the method is theoretically sound, thereby falling into the
category of traditional verification methods. In cases where this assumption cannot be established,
we demonstrate that in practice the optimisation procedure at the heart of H2V results in no incorrect
robustness results in all the validation benchmarks that we studied, including SoundnessBench [8]],
indeed outperforming in terms of soundness all current SoA and theoretically sound methods.

A major feature of H?V lies in its scalability. As we demonstrate below, H?V enables the validation
of models with hundreds of millions of tunable parameters, thereby enabling the robustness analysis
of models in many present applications.

In summary, our contributions are as follows:

» We propose H2V, a global optimisation method for the validation of NNs based on space-
filling dimensionality reduction and Holder optimisation. We provide theoretical conditions
for theoretical convergence, hence soundness. We illustrate that when these theoretical
convergence conditions are not met, the potential of a robustness error in a single query is
well contained. Indeed, no errors were found in the extensive evaluation reported.

* We use H?V to validate the local robustness of models of up to 300M tunable parame-
ters, including ResNet152 and Vision Transformers for image classification tasks, against
geometric properties (rotation, scaling, and translation) on the large-scale ImageNet dataset.

» We use H?V to validate the geometric robustness of 3D ResNet models in video classification
tasks for streams of 32 x 3 x 256 x 256 inputs.

The rest of the paper is organised as follows. In Section 2] we present key notions of use throughout.
We present H2V in Section [3| where we give the technical details of the validation approach and
present soundness conditions. In Section 4] we evaluate H?V on large NNs for image classification
and video classification; we also evaluate the correctness of the implementation empirically on
SoundnessBench and additional benchmarks from VNN-COMP [4]]. Section[5]discusses related work.
We conclude in Section

2 Preliminaries

This section outlines the background concepts and notation that facilitate the exposition of the
validation method presented in the next section.

Holder/Lipschitz constant. A function f : RN — R is said to be Holder continuous with exponent
a € (0, 1] if there exists a smallest constant H > 0, called the Holder constant, such that for all
x,2" € [a, b], the following inequality holds: | f(x) — f(z')| < H|z — 2'|*. Lipschitz continuity [13]
is a special case of Holder continuity when oo = 1, in which case H becomes the Lipschitz constant
L. These constants represent the highest rate at which the function can change in the interval.



Hilbert space-filling curve. A space-filling curve [14] is a function i : R — R¥ that maps the unit
interval = € [0, 1] onto a multidimensional hypercube D = {6 € [a,b]V} C RV:

{h(z):0<2x<1}={0cRY :a<0; <bic N} 1)

The function £ is surjective; so for every point in the hypercube, there exists at least one point in the
interval which maps onto it.

The first examples of space-filling curves date back to Peano [14]; the one we adopt here is due
to Hilbert [15]]. Their definitions are given in the limit of infinitely many refinements of recursive
constructions. Each recursive step discretises the space at a fixed resolution determined by a parameter
m, thereby producing an m-approximation of the space. Specifically, the hypercube D is subdivided
into 2V*™ smaller hypercubes with 2™ subdivisions along each dimension. The Hilbert curve
for an m-approximation, denoted hy ,, traverses these unit hypercubes in a continuous manner,
thus preserving spatial locality. As m — oo, the approximation converges to the true space-filling
Hilbert curve, which fully covers the entire hypercube in the limit. An example of Hilbert curves
hn—3,m=3(-) can be seen on the left of Figure/l]

A property of Hilbert curves is that the multi-dimensional minimisation problem of a Lipschitz
continuous function f : RN — R¢ (N, ¢ € R) can be accurately reduced to the one-dimensional
problem along the m-approximation of the Hilbert curve Ay, [16]:
. 0) — . h ~ . BN — min f , 2
min £(6) = min f(h(@) ~ min (i (@) = min f(@) @)
where for brevity f(x) denotes f(hy . (z)). Further, f(z) is Holder continuous with exponent
a=1/N:
Ve,a' € [0,1]: |f(x) — (') < H(jz —a')¥, 3
where H = 2L+/N + 3 is the Holder constant and L is the Lipschitz constant of the original f.

Neural Networks with Lipschitz continuity. We consider Lipschitz continuous neural networks
(NNs) g : RN — R¢. NNs comprising convolutional, fully connected, and contrast-normalisation
layers with ReLU activation functions are Lipschitz continuous [[17]. Further, softmax layers, as well
as sigmoid and hyperbolic tangent activation functions, also satisfy Lipschitz continuity [18]. We
here focus on classification tasks where each input & € RY is assigned to the class 4 among a set of

Local robustness verification. Given a NN g : RY — R¢, an input x to ¢, and a perturbation space
Q(x) of x, the robustness verification problem establishes whether the class prediction of the network
is consistent within the perturbation space. In other words, the problem is to determine whether:

V' € Q(z): argmax g(x); = arg max g(zx’);. 4
By taking f(g,z,z') = g(z'), — II_l;ng(iC/)i, where y = argmax g(x);, this is equivalent to
iy %
establishing whether:
vx' € Q(x): f(g,x,2') > 0. 5)

A NN g is said to be certifiably robust on input & with respect to the perturbation space () if Eq. (8)
holds. Any violation of this property, i.e., 3z’ € Q(x): f(g,x,z’) < 0, indicates the presence of a
counterexample (or attack, or fragility). A common perturbation space is the one generated by £,
norms around x, defined as Q(z) = {z’: || — @’||, < €} for a perturbation budget € € R.

Local geometric robustness. A perturbation space that is of particular interest in computer vision
is defined in terms of geometric perturbations on the input, such as rotation, translation, isotropic
scaling or combinations thereof [[19]]. A geometric perturbation is a 2D affine transformation Ag that
provides a mapping between source coordinates (2%, y*) of the input and target coordinates (x?, y*)
of the transformed input:

at \ \ at
z* _ t| cosy — Sin'}/ thor t
{ys} = Ao yl - {)\ siny  Acosvy  tyer % ’ (6)
where @ = [, \, th°T V'] are the transformation parameters, with  representing the rotation angle,
A denoting the scaling factor, and #°T, £V°* controlling the horizontal and vertical translation. Each
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Figure 1: From left to right: Hilbert curve mapping; k-th iteration of H2V’s optimisation; The
subsequent iterations of H2V’s optimisation.

pixel value V¢ .+ in the transformed image can be computed by calculating the pre-image of the pixel
under Ay and interpolating the (possibly non-integer) resulting coordinates using any interpolation
scheme. We here adopt Spatial Transformation Networks [20] with bilinear interpolation to determine
these values: Vit ¢ = Zf ZK Upm max(0,1 — |2° — m|) max(0,1 — |y® — n|), where Up,, is
the value of the pixel with coordinates (n, m).

Given interval constraints @ C R%, the geometric perturbation space Q(z) = {V(z,0) | 0 € ©}
for an input x is the set of all transformed inputs for each 8 € ®, where each transformed input
V(z, 0) is obtained by determining V,, ,, for each pixel (z,y) of the input. Establishing the local
robustness of NNs with respect to this space can be used to assess their robustness to geometric
distortion effects, such as tilted camera orientation (rotation), positional shifts (translation), and zoom
variations (isotropic scaling) [21].

Two key properties enable the derivation and efficiency of the validation procedure introduced in the
next section. Firstly, prepending geometric transformation modules to Lipschitz continuous NNs
preserves Lipschitz continuity [22]. Secondly, the perturbation dimensionality, i.e., the number of
parameters, of these modules is very low when compared to the input dimensionality, i.e., the number
of pixels, of norm-based perturbation modules. We will exploit this to provide an effective reduction
to one dimension for a global optimisation method for more than one input dimensions.

In the following we consider the local geometric robustness problem V0 € © : f(¢',x, V(x,8)) > 0,
where ¢’ denotes a NN prepended with a geometric module on input z [19]]. Since ¢’ and x are fixed,
we briefly denote the problem by V6 € © : f(6) > 0.

3 Holder-based Global Optimisation for Neural Network Validation

In this section we present H?V, a Holder-based global optimisation method for addressing the local
geometric robustness problem defined in the previous section.

The method aims to find a solution to the optimisation problem min f(6) s.t. 8 € ©, where
©® is an N-dimensional hyperrectangle encoding the perturbation space around an input. If the
solution to the problem is greater than zero, then the robustness problem is answered positively
by H2V. To enable the utilisation of scalable 1D methods, H2V first transforms the multivariate
function of the optimisation problem into a univariate equivalent using the Hilbert space filling-curve.
Some optimisation methods for the resulting univariate problem require knowledge of the Holder
constant [23]], while some others do not [[11]]. Following the intractability of the accurate estimate of
the constant [9], we here adapt a method from the latter category that relies on adaptive estimations
of the constant throughout the optimisation process [9} 10, [18]. As we discuss in more detail below,
while the method does not theoretically guarantee the identification of the global minimisers of the
optimisation objective, as we demonstrate below, the potential for any potential unsound result is
well-contained in view of widely employed settings in the resulting global optimisation problem.

In the following, we provide a technical exposition of H2V. To ease its presentation, and without loss
of generality, we assume that the input domain © is the hypercube [0, 1]". We begin with a short
technical overview.

Overview. Figure|l|illustrates two consecutive iterations of H2V. Having transformed the multi-
variate objective function into a univariate one, the algorithm iteratively operates on increasingly



tighter intervals of the one-dimensional input range. For each interval, it computes a low-bounding
piecewise function (the dashed lines in the figure) using an estimation of the Holder constant for that
interval. Based on this low-bounding function, it then computes a lower bound for the interval (the
minimum between zjef; and z,ig1¢ in the figure). At each iteration, the algorithm chooses the interval
with the lowest bound to split into tighter intervals at the point where the estimated lower bound is
observed. Lower-bounding functions for the new sub-intervals are then computed to facilitate the
next iteration. The algorithm terminates when an optimisation budget ¢ is reached that reflects the
minimum length of the selected interval. Below, we discuss this procedure in detail.

Initialisation. H2V is initialised by: (i) transforming the multi-dimensional optimisation problem
min £(0) s.t. @ € [0,1]" to the one-dimensional problem min f(z) s.t. « € [0, 1] using the Hilbert
space-filling curve, (ii) setting Z = {[0, 1]} to be the set of initial intervals, and (iii) letting O = {} to
be the set of already considered intervals. Then, for each iteration k£ > 1, H2V executes the following
steps.

Step 1 (Adaptive estimation of the Holder constant). For each interval ¢ € Z, with i = [a, ], H?V
_ J®)=f(a)]

|a_b‘l/N B
1 € Z}. Based on these constants, it derives its (adaptive) estimation of the Holder constant for
interval ¢ as H;, = r - max {k, n, £}, where:

computes a local Holder constant H; and a global Holder constant hy, = max{H,; |

* k =max{H, | j =1 or jis adjacent to ¢} is the local component of the estimation, which
represents the maximum value among the local constants of interval 7 and its neighbouring
intervals (i.e., all intervals within a given number of hops n,; from ¢, including ¢ itself.

°n = hkw is the global component of the estimation, where Xy.x =
max { (b’ — a')'/V | [a/,b'] € I} is the widest interval;

e ¢ is a small value that prevents H; from becoming 0, thereby accounting for f (x) varying
over [0, 1];

e r > 1 is the reliability parameter of the algorithm.

Intuitively, the adaptive estimation H; is dominated by the global component whenever an interval is
large (and thus the local estimates are not reliable), and by the local component whenever an interval
is small (and thus the local estimates are more accurate). A a practical enhancement is introduced in
more details below to mitigate potential underestimations of the constant.

Step 2 (Estimation of the lower bounds of the intervals). For each interval ¢ € Z, with i = [a, b], the
algorithm computes the point

_b+a [ = fla
S Ty AT e @

This point is the intersection of the lines ric¢ () and ryigne () (see the solid lines in Figure , which
are defined as

Prete (2) = —Hi(b— a)' ¥ 2+ Hi(b—a)" ¥ a + f(a),

~ 1-N o 1-N z ®
Tright (@) = Hi(b—a)™ ¥ o — H;j(b—a) ¥ b+ f(b).
These lines relax the piecewise lower bounding functions of f within the interval (the dashed lines
in the figure); we refer to [9]] for a formal description of the functions using the estimated Holder
constant. The lower bound [; of the interval is then estimated as {; = min(2ief, 2right ), Where

et = fla) — Hi(s; — a)V/P, Zright = f(b) — Hi(b—s)'/N. 9
The bound I; corresponds to the minimum value of the lower bounding functions evaluated at the s;.

Step 3 (Convergence and refinement). H?V selects the interval 4 € Z with the minimum lower bound
estimate [;. Then,

* If the length of the interval i = [a, b] is smaller than the optimisation budget, i.e., |b—a| < e,
it executes Step 4 and terminates;

* Otherwise, it splits the selected interval with respect to s; = [a’,b], and updates Z +
T\ {i} U{la,d'],[d,b]}, O < O U {i}. It then repeats from Step 1.



Step 4 (Calibration and output). H?V computes an estimation of the minimum of the function
as f,, = min {f(a), f(®) | [a,b] € I}, and an estimation of the lower bound of the function

as l,, = min{l; | j € ZUO}. The bound I, is then calibrated as l,,, < l,, — 7, where =
L-2-m+tD\/N + H - (¢/2)"/N, L and H are the present estimates of the global Lipschitz and
Holder constants, and m is the resolution of the Hilbert approximation. The calibration, which is
theoretically analysed below, accounts for (i) approximation errors in the dimensionality reduction
along the Hilbert curve, and (ii) the constrained nature of the optimisation budget € within which the
algorithm operates. Following the calibration, H?V produces its output as follows:

e If [,,, > 0, then it returns robust, i.e., a positive answer to the robustness of the underlying
network.
o If f,,, <0, then it returns non-robust, along with a counterexample hy ,,, () corresponding

to the value for which f(z) = fp..

We now proceed to analyse the algorithm’s soundness and examine practical methods for sustaining
high reliability and computational efficiency. We begin by showing that a calibrated (as per Step 4)
lower bound for the reduced one-dimensional space translates to a lower bound for the original
N-dimensional space.

Theorem 1. Let I} be a lower bound of the one-dimensional problem min f(x) s.t. z € [0, 1] over
the Hilbert space-filling curve. Then, we have that

I —L-27mHVN — H - (e/2)YN < 1*, (10)

where I* is the optimal solution of the multi-dimensional problem min f(0) s.t. 6 € [0, 1]".
Proof. The proof is included in the Appendix. O

Note that the first calibration term results from the approximation of the Hilbert curve reduction,
while the second is a consequence of the limited optimisation budget. When the resolution of the
Hilbert approximation is high enough, e.g., m = 50 in our experiments, the magnitude of the former
term is negligible. Differently, the magnitude of the latter term grows with the number of dimensions,
thus hindering the efficacy of H2V to high-dimensional input domains.

Next, we show that given a sufficiently enough large value for the reliability parameter r, H2V
implements a sound verification procedure.

Theorem 2. There exists r* s.t. for all v > r*, H?V outputs robust iff V8 € [0,1]V: £(8) > 0.
Proof. The result follows immediately from Theorem [I|and Theorem 3.8 in [9]. O

Note that Theorem [2] does not provide a constructive way of determining 7*. Consequently, in
practice, the Holder constant can be underestimated at any iteration and interval, which may impact
the localisation of the global minimisers and the convergence speed. Consequently, H2V may output
robust when the local geometric robustness problem is not robust. This reflects all existing global op-
timisation—based verification methods that do not necessitate knowledge of the true Lipschitz/Holder
constant [[18,24]]. Note however that if H2V reports non-robust, meaning the model is fragile in the
specified neighbourhood, the conclusion is definitive. Note also that if in Step 1 an overestimation
of the Holder constant is used, then H?V is theoretically guaranteed to return sound results as the
corollary below formalises.

Corollary 1. Let H* be the true Holder constant. If for every iteration of Step 1, H; > H*, then
H2V outputs robust iff V8 € [0,1]V: £(8) > 0.

Proof. The corollary is a direct consequence of Theorems 3.6 and 3.8 in [9]]. O

Tight bounds for the Holder constant are in general intractable to compute [9], while fast and loose
bounds lead to major performance degradation of the verification procedure, as empirically analysed
in the Appendix. In the light of this, H2V relies on estimations of the constant as detailed in Step 1,
but implements the following operational enhancements that remedy the potential underestimation of
the constant.



Practical enhancements. To ensure high reliability, following convergence (i.e., when the opti-
misation budget is reached), H?V iteratively increases the value of the global Holder constant hy,
and the number of neighbourhood intervals n, used in the estimation of the Holder constant until
either (i) a different interval is selected at Step 3, or (ii) a time limit (given as a parameter) is reached.
Intuitively, if the algorithm converges to a local minimum following an underestimation of the Holder
constant, the iterative adjustment of the constant will eventually trigger an escape from said minimum.
To further enable high practical efficacy, H2V implements two global optimisation strategies [9].
First, it employs a heuristic whereby it dynamically adapts the Holder constant based on both local
and global information as detailed in Step 1. Second, for every iteration, following the selection
of an interval ¢ = [a, b] and division thereof as per split point s; at Step 3, it re-estimates the lower
bound of an interval j at the next iteration only if one of the following conditions hold: (i) j is
adjacent or contained in ¢; (ii) the length of ¢ is equal to X ,ax; (iii) the local Holder constant for
the sub-intervals of ¢ is greater than the global Holder constant hy. These express the necessary
conditions for triggering a change in the estimation of the lower bound /; of each interval j (as

per the definition of the adaptive estimation of the Holder constant H ; in Step 1). Taken together,
these enhancements contribute towards achieving high efficiency and a very high degree of correctly
answered verification problems.

4 Experimental Evaluation

Experimental Setup. Our experiments were conducted on a workstation equipped with a 16-core
AMD Ryzen 9 9950X CPU, 192 GB of RAM, running Linux kernel 6.14.0-29-generic, and an
NVIDIA RTX 5090 GPU with 32 GB of graphics memory. The implementation is in Python; the
Hilbert space-filling curve mapping is implemented by using the hilbertcurve library [25]. The
experimental evaluation is aimed to evaluate the practical applicability of the approach. We establish
this by assessing the scalability of the approach on very large NNs and its reliability in practice. As
we discuss below, our findings suggest that: the method scales to models such as vision transformers
and video models that to our knowledge could not be previously verified and the implementation
achieves the highest level of correctly answered verification queries.

In terms of geometric perturbations, we denote the rotation operation as R(+y), where the angle varies
within the range £+, and the scaling operation as S()), where the scaling factor ranges between
1+ A Let T(¢) represent the translation operation, shifting an input by up to £¢ proportionally in
both the horizontal and vertical directions. Here we consider the combination of these three types of
geometric transformations to evaluate the model’s robustness in terms of its robust accuracy, i.e., the
percentage of samples reported robust in the geometric neighbourhood considered. We report only
the highlights in the rest of this section but base our conclusions on the comprehensive benchmarking
for the method also reported in the Appendix.

Large NNs for Image Classification. To evaluate the performance of H2V on image classification
for large NNs, we benchmarked the robust accuracy obtained by the tool on 9 models from timnﬂ
of different sizes, ranging from 19M (Gmlp) to 300M (Large ViT1gx1¢) tunable parameters. These
include several ResNet models up to ResNet152, trained to a good level of accuracy. The dataset used
is ImageNet, with input sizes of either 3 x 224 x 224 or 3 x 299 x 299, depending on the model con-
figuration. The verification queries consisted of any combination of input transformation consisting
of rotation, translation and isotropic scaling with parameters 20°, 10%, and 10%, respectively. We set
the timeout budget for each verification query to 1200s (20 minutes) and report the average runtime
of H2V in seconds. The runtimes are computed with respect to the robust and non-robust cases and
do not include the timeouts. To the best of our knowledge, GeoRobust [22] is the only available
tool that can handle such queries on high dimensional inputs for such large NNs. In particular, none
of the tools in VNN-COMP [4} 21]] can resolve such queries. We provide further benchmarking
for completeness in the Appendix. Table[I]reports the results obtained for 500 ImageNet samples.
We observe that in most cases H?V significantly outperforms GeoRobust in terms of finding more
counterexamples whilst exhibiting a smaller percentage of timeouts. GeoRobust is shown to have
superior performance on non-ResNet models in terms of robust accuracy. However, further analysis
of these results indicate that GeoRobust often incorrectly reported a model as robust. Indeed, H>V
identified several counterexamples (i.e., 8 for Inception V3, 9 for ResNet34, 2 for ResNet50, 5 for
ResNet101, 12 for ResNet152, 9 for Mixer,15 for Gmlp, 21 for Swin, 30 for ViT) to verification

"https://huggingface.co/docs/timm



Table 1: Evaluation results on 500 images from ImageNet against the perturbation combination
(4 dimensions) of rotation (20°), translation (10%) and isotropic scaling (10%). The baseline
performances are adopted from [22]], except for ResNet-34, for which we rerun the experiment to
obtain updated results due to changes in the timm (PyTorch Image Models) library.

. Clean No. Params Timeouts (%) Robust Accuracy (%) Average Runtime (s)

Model Input Size 8
Acc (%) M) GeoRobust” H2V GeoRobust ~ H2V H2V
Inception V3 3 % 299 x 299 73.4 24 4.0 0.6 242 23.0 150.51
ResNet34 3 x 299 x 299 72.0 22 42 1.0 27.8 26.0 101.55
ResNet50 3 % 299 x 299 78.4 26 229 1.8 31.1 40.8 253.97
ResNet101 3 % 299 x 299 80.0 45 6.0 2.2 48.2 47.0 430.27
ResNet152 3 x 299 x 299 79.6 60 7.2 2.0 46.2 46.8 477.01
Mixer 3% 224 x 224 722 60 3.8 4.0 234 20.2 206.01
Gmlp 3 x 224 x 224 78.0 19 4.0 6.2 36.8 30.6 327.11
Swin 3 x 224 x 224 80.2 88 214 9.6 13.2 8.2 199.29
Large ViTigx16 3 X 224 x 224 83.4 300 9.0 10.6 40.2 29.0 496.16

“ GeoRobust’s termination criterion is the query count; therefore, we here present the percentage of cases that remain undecided.

queries that were reported robust by GeoRobust. We suspect this is because GeoRobust’s underlying
global optimisation procedure can often use underestimations of the Lipschitz constant.

The results suggest that the ViT model considered is less robust than some ResNet models. This
raises the question as to why the patch-based attention mechanisms do not translate into improved
robustness [26]. The results here only refer to geometric robustness and require further analysis.

Large NNs for Video Classification. To further evaluate the performance of H?V, we now report
the experimental results obtained when assessing the robustness of large models used for video
classification. For this we considered end-to-end RGB 3D-NNs without flow information trained
on the Kinetics-400 dataset [27]. Specifically, we evaluated 5 pre-trained NNs from the open-
source library PyTorchVideo [28] with network parameters ranging from 3.79M to 32.45M, and
up to 32 x 3 x 256 x 256 input dimensions: Slow-R50 [29], R(2+1)D-R50 [30]], X3D_M [31]],
I3D-R50 [32], and C2D-R50 [33].

Table 2: Benchmarking static geometric robustness of video classification models against geometric
transforms (R(20°) + S(10%) + T(10%)).

Model E;I;i Flgz;rtr;e No. Params (M) Clean Acc (%) Timeouts (%) Robust Acc (%) Rlﬁ?t?rﬂ?fis)
X3D_M 16 5 3.79 73.0 3.0 37.0 1210.70
C2D-R50 8 8 24.33 73.0 3.0 36.0 768.88
13D-R50 8 8 28.04 74.0 1.0 45.0 1118.28
R(2+1)D-R50 16 5 28.11 76.0 2.0 45.0 1874.70
Slow-R50 8 8 32.45 78.0 2.0 47.0 1238.82

For the evaluation, we randomly selected 100 videos from the dataset and evaluated the robustness
of the models against perturbations applied to entire video (see the Appendix for technical details).
The perturbations consisted of combinations of rotation, scaling and translation, using the same
perturbation intensity used for the images above. We set the timeout budget for each verification
query to 3600s (60 minutes) and report the average runtime of H2V in seconds. The runtimes are
computed with respect to the robust and non-robust cases and do not include the timeouts. In terms
of baselines, to the best of our knowledge, the only two verification methods applicable to video
tasks are [34] and [35]. However, the former analyses the robustness of the extracted optical flow,
rather than perturbing the RGB frames directly, thereby limiting its real-world applicability and
comparability with our task. The latter can only scale to small NNs with small input sizes, hence it is
not comparable with H2V.

The results are reported in Table It can be observed that H2V was able to resolve a large proportion
of the verification queries with a minimum rate of timeouts. To our knowledge, this is the first time
that large video classifiers are evaluated for local robustness. In our results Slow-R50 and R(2+1)D-



Table 3: Soundness validation on SoundnessBench.

Benchmark Dim:r?s[;gLali ty No. Params Tool No. Robust  No. Non-Robust  No. Unknown  No. Unsound Rﬁ?ﬁfis)
a3-CROWN 19 0 57 0 6.74
CNN1 25-75 353K PyRAT 12 0 64 0 3.50
H2V 27 0 49 0 66.06
a3-CROWN 12 0 62 0 543
CNN2 25-75 354K PyRAT 5 0 69 0 1532
H2V 16 0 58 0 63.31
a3-CROWN 1 67 0 435
CNN3 25-75 606K PyRAT 5 0 71 0 9.63
H2V 12 0 64 0 62.87
a3-CROWN 10 8 32 0 2.12
CNN AvgPool 25-75 353K PyRAT 6 0 54 0 18.80
H2V 12 0 48 0 65.47
a3-CROWN 0 1 37 0 0.71
CNN Tanh 25-75 353K PyRAT 0 0 38 0 0.00
H2V 19 0 19 0 63.34
a3-CROWN 2 0 29 0 0.50
CNN Sigmoid 25-75 353K PyRAT 1 0 30 0 0.36
H2V 19 0 12 0 63.80
a3-CROWN 20 3 48 0 0.79
MLP 10 3.13M PyRAT 20 0 51 0 7.23
H2V 30 2 39 0 54.32

Table 4: Evaluation on TLL Verify Bench, a VNN-COMP benchmark.

Benchmark  Input Dimensionality =~ No. Params Tool No. Robust  No. Non-Robust  No. Unknown No. Unsound Rl?:t?;?f?s)
TLL a-CROWN 15 17 0 0 37.93
Verify 2 é;llt/i PyRAT 11 17 4 0 44.29
Bench H2V 15 17 0 0 27.86

R50 achieved the highest robust accuracy (47.0% and 45.0%, respectively). These findings indicate
that architectural refinements and expanding model capacity could potentially benefit robustness
against geometric transformations.

Soundness Validation. We discussed in Sections [1| and [3| that since H?V is based on global
optimisation, it may return unsound results. This theoretical possibility can be mitigated, as it is
routinely done in optimisation, by carefully choosing the optimisation parameters. The ablation
studies of several relevant hyper-parameters, including the reliability parameter, the resolution
parameter of the Hilbert curve, and the optimisation budget, are provided in the Appendix.

In what follows we evaluate the empirical soundness of H2V. We do this in two ways. Firstly, we
evaluate the results obtained by H?V on SoundnessBench [8]. This is a recently released neural
network verification benchmark, specifically designed for the validation of the correctness of verifiers
by including the ground truth of the verification queries. Secondly, we report the results obtained by
H?2V on low-dimensionality perturbations from VNN-COMP [4]]. In this case the ground truth is not
known, and thus, similarly to VNN-COMP, we compare the results against those produced by the
SoA tools. In total, we evaluated the soundness of H2V on 460 robustness queries. We found that
all the results produced by H2V on SoundnessBench were correct (i.e., matching the ground truth
provided), and all the results produced by H?V on the VNN-COMP benchmarks were in line with
those reported by a5-CROWN [36]].

We report the results obtained on SoundnessBench in Table 3] using a timeout of 100 seconds. The
benchmark comprises 24 models (primarily CNNs and MLPs) and includes 240 verification queries
that ought to be resolved as robust and 186 that ought to be resolved as non-robust. Note that the latter
include carefully hidden adversarial examples that are challenging for verifiers to discover. It has
recently reported that several mainstream NN verifiers, including «3-CROWN [36]], NeuralSAT [37]],
and Marabou [38], answer some of the instances incorrectly [§]. In contrast, H?V returned the



correct result for all the queries, and achieved the highest number of verified queries. We refer to the
Appendix for an exposition of the detailed performance of each method.

Lastly, Table@reports the results obtained on the TLL Verify Bench benchmark from VNN-COMP [4]],
using a default timeout of 600 seconds. The benchmark was selected because of the low-input
dimensionality (N = 2) of the perturbations it includes, which makes it amenable to analysis via
H2V. We observe that H2V achieves the same verification results as o-CROWN (batch size 1) and
PyRAT [39], while being more efficient and exhibiting no unsound cases.

5 Related work

An extensive body of literature exists on the verification of NN robustness against £,-bounded
and other local perturbations; we refer to [2, 40] for surveys on the area. A variety of methods
are used ranging from Mixed-Integer Linear Programming [41-44], to SMT [37, 138]], abstract
interpretation [39,45H49], and branch-and-bound with symbolic interval propagation [36} 50-56].
All of these differ from H2V in that they are theoretically sound. This guarantee does not always
translate into sound implementations since unavoidable floating point approximations may impact
the correctness of the bounds generated by symbolic interval propagation methods [[7} 18]]. In contrast,
outside the soundness envelope discussed in Section H?V may in principle return “robust” for
a model that admits attacks. We noted that this eventually is remote and can be mitigated by an
appropriate choice of optimisation parameters as our experiments demonstrate.

In terms of scalability, the approaches cited above, notably symbolic interval propagation, outperform
H2V for large dimensionality problems. However, as shown in the previous section, H2V considerably
outperforms all SOA on geometric perturbations, including the approaches targeting geometric
robustness directly [21}, 22] 157H59] (see also a discussion in the Appendix).

Much closer to H2V are existing methods based on global optimisation [18| 24, [60]. The key
difference between H?V and these methods is that the former couples Holder optimisation with a
dimensionality reduction technique, thereby scaling to larger models and to higher dimensions, as
we empirically demonstrated. We note that existing optimisation methods provably converge only if
particular parameters can be chosen. However, this choice is closely related to establishing an upper
bound of the Lipschitz constant. This is normally intractable for large models and only estimations
can be used in practice, thereby potentially resulting in unsound results, as we empirically observed.

6 Conclusions

We presented H?V, a novel method for the robustness validation of NNs against geometric perturba-
tions. We demonstrated that H2V outperforms SoA robustness verification methods against geometric
perturbations and scales to vision classification models of hundreds of millions of tunable parameters
and large inputs, enabling, for the first time to our knowledge, the validation of large video classifiers.
These results enable the rigorous validation of present vision systems including transformer-based
architectures. We noted that, differently from several present verification methods, the theoretical
soundness of H2V cannot be guaranteed in all cases, but we presented the reasons why we do not
regard this as a limitation in practice.
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A Proof of Theorem 1

Lemma 1. ([0, Theorem 2.1]) Let I} be the solution of the lower bound along the Hilbert curve
hn,m(z) for f(0) satisfying the Lipschitz condition with constant L:

Ir <min f(hx,m(x)) = min f(z), z€[0,1]. (11)

Considering the infinite optimisation budget, i.e., € = 0, then the true lower bound for the multi-
dimensional problem min f(8) in the original space over the entire region [0, 1]V

Ir— L2~ J/N < [*, (12)

Proof can be found in [10, Thm. 2.1]. O

Theorem 1. Let I} be a lower bound of the one-dimensional problem min f(z) s.t. « € [0,1] over
the Hilbert space-filling curve. Then we have that

Iy —L-2=mVN — H - (e/2)YN <1, (13)

where 1* is the optimal solution of the multi-dimensional problem min f(8) s.t. 6 € [0,1]V.

Proof. The first calibration term directly comes from Lemma. |1} Let f : [0,1] — R satisfy the
Hoélder condition with exponent v = 1/N and constant H > 0:

‘f(x)_f(y)‘ SH|x_y|1/Nv Vx,ye [Oal]'

Assume that during H2 Vs optimisation process, Theoremin the main manuscript has been satisfied,

i.e., 7 > r* such that H; > H; for each interval, the algorithm terminates when the selected interval
[xi—1, ;] has length §; = |x; — z;—1| < e. Let

¥ = arg m[in] f(x), &= argmin{f(z;) : sampled endpoints z;},
z€|0,1

and denote f* = f(z*), f = f(&). Let ¢ represent the endpoint of the interval [z;_,, z;] that is
closest to the true minimizer x*. Then, upon termination [9], the true minimizer x* will only fall into
the chosen interval. By definition of £ as the nearer endpoint, we have

|o* — x|+ |o* — x| ]

ot — & = min{|a* — z; 1], 0" — 2]} < 5 ;<5 (4
From the Holder condition for the function f:
F© - fe < mie—a N <m(5)" (1s)
Since f = ming f(zx) < f(0),
Fof<ii© - fa<u(§)” (16)

Therefore, H - (¢/2)'/N is incorporated into the lower bound in Eq. (T3) as the second calibration
term, thereby completing the proof. O

Summary: The first calibration term results from the approximation of the Hilbert curve reduction,
while the second is a consequence of the limited optimisation budget. When the resolution of the
Hilbert approximation is high enough, e.g., m = 50 in our experiments, the magnitude of the former
term is negligible. Differently, the magnitude of the latter term grows with the number of dimensions,
thus hindering the efficacy of H?V to high-dimensional input domains.

15



B Ablation Study

In this section we report several ablation studies for some hyper-parameters used in our method.
Specifically, we conducted ablation studies on the reliability parameter r on two benchmarks with
ground-truth: TLL Verify Bench from VNN-COMP (2 dimensions) and a MLP5 benchmark from
SoundnessBench (10 dimensions). The timeout is set to 100 seconds. We report the counts of Robust,
Non-Robust, and Unknown cases, respectively, along with the average runtime in seconds. The
runtimes are computed with respect to the robust and non-robust cases and do not include the timeouts.
The results show that H2V outputs no unsound results for any value of r > 1. However, we note an
increase difficulty to answer verification queries with bigger values of . Empirical results from the
optimisation literature [11] also suggest that the use of a small value close to 1, e.g., 1.3, yields close
to optimal solutions. This is aligned with the observations in [11].

In addition, the computational complexity of modern libraries providing the Hilbert space mapping
grows linearly in m, so any value of m > 30, which already provides small calibration errors (see
mathematical expression (Eq. in the paper), would be adequate to use. We report an ablation
study on m in Table [§] which confirms this intuition: any value of m > 10 resolved all verification
queries with stable overheads.

Also note that the optimisation budget corresponds to the typical optimisation gap present in all
convergent algorithms. As shown in Table[7} a smaller value generally enables the method to solve
more verification queries, as it allows exploration of a finer-grained search space. Its value is thus
contingent to available computation and temporal resources.

Table 5: Ablation study on the reliability parameter 7.

Benchmark l?enurl?atiop No. Params r  No. Robust (Sound) No. Non-Robust No. Unknown Avgrage
Dimensionality Runtime (s)
1.1 15 (15) 17 0 26.45
1.3 15 (15) 17 0 27.81
TLL Verify Bench 2 17k-67M 15 1505 17 0 26.06
12 (12) 17 3 24.51
6 6 (6) 17 9 17.60
10 3(3) 17 12 10.87
1.1 10 (10) 2 2 47.08
1.3 10 (10) 2 2 50.81
SoundnessBench 1.5 9(9) 2 3 39.27
X 10 3.13M

MLPS5 (epsilon 0.2) 3 0(0) 2 12 4.04
6 0 (0) 1 13 68.20

10 0(0) 0 14

Table 6: Ablation study on the Hilbert curve resolution parameter m.
Benchmark I_’erturt_)atiop No. Params m No. Robust (Sound) No. Non-Robust No. Unknown AVf_:rage
Dimensionality Runtime (s)
10 0(0) 17 15 1.65
30 15 (15) 17 0 25.22
TLL Verify Bench 2 17k-67M 50 15 (15) 17 0 26.06
70 15 (15) 17 0 26.57
90 15 (15) 17 0 27.39
10 10 (10) 1 3 44.85
SoundnessBench 30 10 (10) 1 3 56.35
oundnessBenc]

MLPS5 (epsilon 0.2) 10 3.13M 50 10 (10) 2 2 50.81
70 10 (10) 1 3 52.29
90 909) 2 3 47.92

C Additional Experimental Evaluation

We here provide additional experimental results for image and video tasks.
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Table 7: Ablation study on the optimisation budget parameter e.

Benchmark Df;gzz?j::;ﬁy No. Params € No. Robust (sound) No. Non-Robust No. Unknown Rﬁ?;?ege(s)

le—3 0(0) 17 15 1.60
le — 6 15 (15) 17 0 2591

TLL Verify Bench 2 17k-6TM le—9 15 (15) 17 0 26.60
le — 13 15 (15) 17 0 26.22
le — 15 15 (15) 17 0 26.06
le—3 0(0) 0 14 -
le— 6 50) 0 9 57.16

VS, 0 ABM Lo 100) 2 > e
le — 13 10 (10) 2 2 46.23
le — 15 10 (10) 2 2 50.81

C.1 Verification on Image Classification

We return to the simple case where we consider geometric perturbation in one dimension only. Table[§]
reports the results obtained on the MNIST and CIFAR-10 datasets. H?V outperforms other methods,
including TSS [57]], GeoRobust [22]], DeepG [59], and GSmooth [58]].

Table 8: Comparing with baseline methods on MNIST/CIFAR-10 against rotation and scaling.
Baselines performance is adopted from [22, 157} 158]].

Clean Adversarial Accuracy (%) Robust Accuracy (%) Average Runtime (s)
Dataset Model Acc Pert - -
cc TSS GeoRobust GridSearch H?V DeepG  GSmooth TSS GeoRobust H?V H?V
MINST Small 99.4  R(50°) 982 98.2 98.2 98.2 85.8 95.7 97.4 98.2 98.2 55.38
CNN 99.4  S(30%) 99.2 99.2 99.2 99.2 85.0 95.9 97.2 99.2 99.2 83.45
840 R(10°) 764 74.8 74.8 74.8 62.5 65.6 70.6 74.6 74.8 216.35
CIFAR-10  ResNetl10 812  R(30°) 69.4 66.6 66.4 66.4 10.6 - 63.6 66.2 66.4 169.37
80.8  S(30%) 67.0 63.4 63.4 63.4 00.0 54.3 58.8 62.8 63.4 170.23

Additionally, we conducted experiments on Tiny ImageNet to evaluate the WideResNet (with 7.94M
parameters), adopted from Certified Geometric Training (CGT) [61], which uses auto_LiRPA [62]] to
perform geometric robustness verification. Experimental results in Table@]illustrate that H2V verifies
all images and returns any counterexample found.

Table 9: Comparing with baseline method CGT on the Tiny-ImageNet against rotation and scaling
perturbations.

Perturbation  Clean Accuracy (%) Timeouts (%) Robust Accuracy (%) Average Runtime (s)
CGT H?V CGT H2V H?V

S(2%) 33.10 4.06 0.00% 21.44 25.50 48.99

R(5°) 32.01 398 0.00% 17.49 21.47 45.58

C.2 Verification on Video Classification

We reported the results on several large 3D-NNs on the Kinetics dataset in the main manuscript. Here
we report results on geometric robustness validation on the UCF101 dataset.

Long-length video classification often requires segmentation into shorter clips, achieved by consider-
ing & = n X [vep). Two metrics are often used for assessing model performance: clip-level accuracy
and video-level accuracy. Clip-level accuracy records the proportion of correctly predicted clips
across all videos. Video-level accuracy is computed by aggregating the predicted probabilities of
individual clips for each video and using the accumulated probabilities to compute the final prediction
accuracy at the video level. Let V(x, 0) represent the perturbed video/clip, we then analyse the
video classifier’s robustness by simulating the effects of geometric distortions, including tilted camera
orientation (rotation), positional shifts (translation), and zoom variations (scaling). We focus on
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geometric robustness against frame-agnostic perturbations at the video level. In this setting, the
same transformation @ is applied consistently across all frames, and we evaluate the classifier’s
ability to handle such uniform geometric distortions. This setup captures the overall impact of static
transformations, such as those caused by incorrect camera positioning. The experiments conducted
on the Kinetics dataset presented in the main manuscript also belong to this category.

Analogously, the local geometric robustness problems for video classification can be formulated
as checking whether V0 € © : f(0) > 0. In our setting this is solved by evaluating Vx € [0, 1] :
f(x) > 0 in the corresponding optimisation problem. We here focus on a 3D-ResNet50 model,
adapted from [63]], to explore its robustness on the UCF101 dataset [64]. The model processes entire
videos using a frame length of 16 and a frame rate of 1, with 46.4M network parameters. Since
the frame-agnostic perturbations are applied uniformly across all frames in a video, the number of
perturbation dimension ranges from 1 to 4.

We select the first two videos of each class in the test set, which consists of 202 videos in total. Since
we are not aware of any previous work supporting this setup, to provide a baseline comparison, we
adapted another global optimisation based verification method, DeepGO [18]] with a pre-defined
Lipschitz constant L = 8 (follow their settings), PGD [63]], and as two strong baselines for comparison.
We controlled the termination of all methods by setting a maximum number of queries KX = 100, 000
and timeout as 2400 seconds (40 minutes). The 3D-ResNet50 model we are adopting achieves
87.13% clean accuracy across the 202 videos. Detailed results against various consistent geometric
perturbations at video level are summarised in Table As we can see, H2V obtains the best
adversarial accuracy and robust accuracy and these values coincide. This means that the method
could solve all queries for this model and inputs with no unknowns. We are also able to establish
that for the parameters analysed, rotation has the highest impact on the fragility of the model. As
we discuss in the main part of the paper, global optimisation-based verification methods without
guarantees on the soundness of the upper bound of the Lipschitz constant may converge to a local
minimum. As a consequence, they may potentially derive unsound results, as indicated in Table[T0}

Table 10: Evaluation of static geometric robustness for a 3D-ResNet50 model with 87.13% clean
video accuracy on UCF101 dataset. Below R, S, T refer to R(20°), S(10%), T(10%), respectively.

. Perturbation Adversarial Accuracy (%) Robust Accuracy (%) Average Runtime (s)
Perturbation Dimensionality  pGp H2V DeepGO  H2V H?V

R 1 51.98 43.07 45.05 43.07 458.10

T 2 76.73 66.33 70.30 66.33 634.15

S 1 75.74 74.75 75.74 74.75 929.69
R+T 3 48.02 34.65 37.13 34.65 358.03
R+S 2 50.10 35.64 36.14 35.64 342.10
T+S 3 72.77 5891 61.39 5891 613.48
R+T+S 4 40.10 22.77 25.25 22.77 286.33

Figure [2] illustrates the impact of rotation (R), translation (T), scaling (S), and their combination
on the static geometric robustness in video classification under different perturbation magnitudes.
Note that H2V is able to solve all the robustness verification among the following perturbation
settings. A clear trend emerges, indicating that as the perturbation magnitude increases, robust
accuracy consistently declines. While individual transformations already contribute to performance
degradation, their combinations exacerbate the effect, leading to even more significant accuracy
drops. Among these three geometric factors, scaling (S) appears to be the most stable than shifting
and angular transformations, as its impact on accuracy degradation is relatively lower compared to
rotation and translation.

C.3 Detailed Experimental Results on SoundnessBench and VNN-COMP

Table |1 1] reports detailed verification results on SoundnessBench [8] for a/3-CROWN?} PyRAT[} and
H?2V, respectively, with default timeout setting 100 seconds for each instance. It can be seen that,

*https://github.com/Verified-Intelligence/alpha-beta-CROWN
*https://git.frama-c.com/pub/pyrat
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Figure 2: Robust accuracy decreases as perturbation magnitude increases.

differently from previously reported, in our tests, all three tested tools now pass the soundness tests.
Previously [8] identified unsound results in ot3-CROWN [36]]. It can be observed that H2V provides
more positive answers for the verification queries, and finds counterexamples for queries that cannot
be solved by other tools. This highlights its effectiveness in NN verification.

For additional benchmarking from VNN-COMP [4]], we consider TLL Verify Bench, which has
the low-input dimensionality of 2 of the perturbation. The TLL Verify Bench consists of Two-
Level Lattice (TLL) NNs; it has been proposed as a means of comparing TLL-specific verification
algorithms with general-purpose NN verification algorithms. We used the default timeout setting, 600
seconds, described in VNN-COMP 2023 [4]. H2V achieved the same SOA performance on these
two benchmarks as at3-CROWN.

Table 11: Soundness validation on SoundnessBench. Numbers in bold denote that counterexamples
were found.

Perturbation Settings No. Sample Results for Clean Instances Results for Unverifiable Instances Average Runtime (s)
(Clean | Unveri) (No. UNSAT | Unknown) (No. UNSAT | SAT | Unknown)

Model Name ¢ Input Size af-CROWN PyRAT  H2V f-CROWN PyRAT  H2V  af-CROWN PyRAT HZ2V
CNN1Conv 02 1x5x5 1019 10]0 100 10]0 0109 0/0/9 0]0]9 0.65 .02 59.92
CNN1Conv 02  3x5x5 10]9 91 0/10 10]0 0]0[9 010[9 0]0[9 13.51 1587 73.68
CNN1Conv 05 1x5x5 1010 0]10 0/10 713 0]0]10 0/0[10 0]0]10 - - 63.97
CNN1Conv 05 3x5x5 108 010 0[10 0]10 0l0]8 0l0[8 0]0]|8 - - -
CNN2Conv 02  1x5x5 10]7 91 515 10]0 010]7 00|17 0]0|7 2.11 1532 5874
CNN2Conv 02 3x5x5 107 307 010 64 0]0|7 0|07 0]0[7 15.38 - 70.92
CNN2Conv 05 1x5x5 10|10 010 0[10 0]10 0l0]10 0l0[10 0]0|10 - - -
CNN2Conv 05 3x5x5 1010 010 010 010 0]0]10 0/0[10 0]0]10 - - -
CNN3Conv 02 Ix5x5 10] 10 8(2 5|5 9|1 0]0]10 0/0[10 0]0]10 4.79 9.63  64.14
CNN3Conv 02 3x5x5 107 010 0[10 11]9 0l0]7 007 0]0]7 - - 69.45
CNN3Conv 05 1x5x5 109 0]10 010 218 0109 0]0/9 0]0]9 - - 53.89
CNN3Conv 05 3x5x5 10|10 0[10 010 0]10 0l1]9 0l0[10 0]|0]10 0.82 - -
CNN AvgPool 0.2 1x5x5 10]0 1010 64 10]0 0lo|o0 0j0o[0 0]0]0 3.21 18.80  62.89
CNN AvgPool 0.2 3x5x5 101 0]10 010 119 0]0]0 0joj1 001 - - 86.15
CNN AvgPool 0.5  1x5x5 1019 010 0[10 11]9 0l0]0 0l0[9 0]0]9 - - 70.52
CNN AvgPool 0.5  3x 5x5 10] 10 010 010 0]10 0]8]2 0]0/10 0]0]10 0.74 - -

CNN Tanh 02  1x5x5 108 0]10 0/10 10]0 0|17 0|08 0]0[8 0.71 - 58.04

CNN Tanh 02 3x5x5 10|10 0[10 0[10 91 0l0]10 0l0[10 0]0[10 - - 69.23
CNN Sigmoid 0.2 1x5x5 10]1 208 119 9|1 0]0]1 0/0|1 0]0|1 0.50 036 5645
CNN Sigmoid 0.2 3x5x5 1010 010 0/10 10]0 0]0]10 0/0[10 0]0]10 - - 70.43
MLP 4 Hidden 0.2 10 1019 10]0 10/0 10]0 0]2|7 0]0/9 0]0]9 0.70 2.10  49.46
MLP 4 Hidden 0.5 10 10]9 19 119 3|7 0]0]9 0/0]9 0]0]9 1.60 60.10  76.00
MLP 5 Hidden 0.2 10 104 8(2 8[2 100 0]1|3 0]0l4 0]2]2 0.78 584 5216
MLP 5 Hidden 0.5 10 1019 119 119 713 0l0]9 0l0[9 0]0]9 1.31 16.83  55.66
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D Comparison with the State-of-the-Art Methods

In this section, we compare H2V with a3-CROWN, the SoA tool from VNN-COMP [4]]. The
verification queries from our main experiments cannot be used for this comparison. Firstly, the
tools do not support the affine_grid and grid_sample required for the geometric perturbations
via the Spatial Transformer Networks. Secondly, the tools do not scale to the sizes of the models
considered in the main experiments. To illustrate this, we used the ResNet18_cifar model from
the aS-CROWN repository, and considered different model sizes by adjusting the width of the
layers through thje in_planes parameter of the benchmark. For the verification of the models, we
constructed one-pixel perturbations (corresponding to three dimensions), serving as a comparable
low-dimensional proxy with H2V capabilities. We then performed verification queries for € = 0.1
and € = 0.3.

Table[T2]reports the results obtained on this simplified setting. We observe that a-CROWN verifies
the smallest case at e = 0.1 but either timeouts or runs out of memory (OOM) as € increases or the
model grows. In particular, «3-CROWN runs out of memory (OOM) on a relatively small model with
175,802 parameters. In contrast, H?V consistently returns robust with lower and more stable memory
consumption. In conclusion, SoA methods cannot scale to models of tens/hundreds of millions of
parameters as we do here, or to ImageNet-scale inputs with geometric perturbations.

Table 12: Verification results against a one-pixel perturbation for CIFAR10 models.

. . _ Perturbation Perturbation . ; . .
Model In_planes No. Params Magnitude  Dimensionality Tool Result Peak Memory (MB)  Runtime (s)

PGD Unknown 656 12.75
2 11,270 0.1 3 af-CROWN Robust 644 0.73
H2V Robust 636 68.33
PGD Unknown 656 13.32
ResNet18_cifar 2 11,270 0.3 3 a3-CROWN  Unknown 4298 Timeout
H?V Robust 636 61.02
PGD Unknown 678 14.16
8 175,802 0.1 3 afB-CROWN  Unknown OOM Timeout
H2V Robust 638 56.54

E Performance Analysis of H>V With Soundness Guarantees

In Section we noted that if Step 1 of H2V uses an overestimation of the Holder constant, then the
method is theoretically guaranteed to produce sound results. Here, we use H>V* to denote H?V with
such overestimations. We then compare the scalability of H>V and H2V*, allowing us to empirically
identify the practical limitations of H2V*.

For this, we use the CIFAR10 and RESNET models from VNNCOMP and 1-pixel perturbations.
Table13|reports the results. These show that H2V* is able to verify the models associated with small
Lipschitz constants but timeouts when the constant exceeds a certain value. In contrast, H2V validates
all models and scales to models with significantly larger Lipschitz constants (e.g., around 8e+50 for
ResNet34) and much larger models (over 300M parameters), as reported in the paper. We stress that,
unlike much of the existing verification literature, model size itself is not the primary bottleneck in
our setting. This is instead the value of the Lipschitz constant, as these experiments demonstrate.

F Further implementation details of H?V

In the main manuscript, we have described the optimisation process of our method in detail. The
pseudocode of H?V is also outlined in Algorithm [1} In the algorithm, we use K to control the
maximum number of queries considered. The algorithm initiates the reliability parameter with r =
1.3, as recommended by [[L1]]. When the algorithm converges (i.e., when it reaches the optimisation
budget), the size of the neighbourhood is increased n,, <— n, + 1, and the value of the global Holder
constant iteratively loosened (i.e., hy < hg - 1.3), until a different interval is selected in Step 16
of the algorithm. This process is repeated until the the optimisation budget is reached for the same
interval for 25 times, at which point the estimated lower bound is used to answer the geometric
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Table 13: Verification results on different models on the CIFAR10 examples.

Upper bound of Perturbation Perturbation .
Model Lipschitz Constant No. Params Magnitude  Dimensionality Method Result Runtime (s)
2 o
marabou-cifarl 0/cifar10_small 1.2888¢+02 2,456 0.1 3 HV Robust 61.58
H2V*  Robust 2.68
2
marabou-cifar1O/cifarl0_small ~ 2.0159e+02 9,008 0.1 3 HV Robust 53.37
H2V* Robust 4.49
2
marabou-cifarl 0/cifar10_small 4.2458e+02 34,400 0.1 3 HV Robust 65.02
H2V* Robust 161.73
2
cifar10_resnet/resnet2b 2.2218e+08 112,006 0.1 3 H7V Robust 56.98
H2V*  Unknown Timeout
2
cifar10_resnet/resnetdb 7.8005e+13 123,734 0.1 3 HV - Robust 48.73

H?V*  Unknown  Timeout

“ H2V*: H?V with an upper bound of Lipschitz constant, hence an upper bound of Holder constant as well.

robustness query. As shown in the experimental results, this solution provide a good approximation
for the unknown Holder constant.

G Additional Related Work

Besides what previously referenced, further approaches have been put forward for the verification of
local robustness against geometric perturbations. We here compare these with H?V.

By constructing the set of allowed perturbation values using an £, bound for each pixel and replacing
it with a convex relaxation, [19}47] provide an over-approximation for the solution but result in loose
performance bounds.

TSS [57] and GSmooth [58]] demonstrate the potential of randomised smoothing to certify robust-
ness against individual geometric transformations. However, these approaches provide statistical
guarantees which are of a different nature from other approaches. Also, as presented, they do not
support combinations of transformations. Methods such as DeepG [39] and PWL [21]] cater for
combined transformations but rely on computationally expensive techniques like DeepPoly [47] or
VENUS [44]], making them infeasible for large NNs due to scalability issues.

GeoRobust [22] investigates the worst-case combinations of transformations affecting a network’s
output for image inputs, by leveraging direct optimisation [66]. However, as shown in our main
experiments, some unsound results have been revealed on the ImageNet dataset, which requires
further analysis in terms of possible underestimations of the Lipschitz constant. Similar issues apply
to existing verification methods based on global optimisation like DeepGO [18], as also shown in
Table
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Algorithm 1 Geometric Robustness Validation of Neural Networks via H2V.

Input: Original input = and its corresponding label y; N-dimensional perturbation variables of
the geometric transformation @ = [, thorizontal, tvertical, A] With bounds I, b € RY, Hilbert curve
hn,m(-), threat NN model; the property function f, the optimisation budget e, and the maximum
number of queries K.

Out
1.
2
3
4
5:
6.
7
8
9

10:
11:

12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:

28:

29:
30:
31:
32:
33:

put: {UNSAT|SAT|Unknown}

: x():Q,xlzl,k:2
2z = f(z;) = f(M(z5)),j =0,1 > h(x) is the m-approximation of the Hilbert curve
: O0={}LZ={[0,1]} > Initialisation for set of initial intervals
 Jon = min{ f(a), F(0) | [a,0] € T}

if f,, < 0 then
: return SAT > Misclassification
: end if
: while £ < K do

for i = [a,b] € Z do

Compute the estimation of the Holder constant H;

S = H?a — Lf(ﬂ)]\, > Compute the intersection point for the interval
_ 2H(b—a) N

Zefs = f(a) — Hi(s; —a)*/N > Compute the estimated lower bound from the left side

Zright = f(b) — H;(b— 5;)1/N > Compute the estimated lower bound from the right side
li = min(Zlefta Zright)

end for

Locate the interval from ¢ € Z, with ¢ = [a, b] who has minimum lower bound estimate /;

if |b — a| < e then
Compute the estimation of the lower bound of the function as [,,, = min{l; | j € ZU O}.

Compute the calibration of the lower bound ,,, < I,,, — 7
if [,, > 0 then
return UNSAT > The property is validated to hold
else
return Unknown
end if
endif
Compute f(s;), k=k+1 > Accept s; as the new trial point
I+ Z\{i} U{[a,d],[d,b]}, O+ OU{i} > Split the interval [a, b] according to s;
Compute the current minimum of the function as f,,, = min < f(a), f(b) | [a,b] € Z ¢,
if f;, < O then
return SAT > Found a counterexample
end if
end while

return Unknown
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction have clearly stated the main contributions, scope
and potential limitation.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitation and potentially unsound results may be obtained via
our algorithm, but this seldom happens.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The complete proofs are provided in the appendix. Theorems are properly
referenced in this paper.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the proposed algorithm in detail and include its pseudocode in
the Appendix. An experienced researcher should be able to reproduce the method within a
reasonable time. The code will be open-sourced.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

24



5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The code will be open-sourced, and the datasets we evaluate are publicly
available; no private benchmarks are used.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed settings for our experiments are provided in the experiments section
and in the Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our method is deterministic, producing identical results when executed on the
same machine.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Detailed settings, environment configurations, and software package informa-
tion for our experiments are provided in the experiments section and in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have read and acknowledged the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Societal impacts have been discussed explicitly in the introduction. As the
paper concerns a technical approach to Al Safety. Specifically, it is intended to contribute
towards the assessment of Al systems before they are deployed. We regard this as a strongly
positive social impact.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited the original paper that produced the code package or
dataset.

Guidelines:
» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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