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ABSTRACT

This study investigates the convergence of Stein variational gradient descent
(SVGD), which is used to approximate a target distribution based on a gradient
flow on the space of probability distributions. The existing studies mainly focus
on the convergence in the kernel Stein discrepancy, which doesn’t imply weak
convergence in many practical settings. To address this issue, we propose to intro-
duce a novel analytical approach called (ϵ, δ)-approximate gradient flow, extend-
ing conventional concepts of approximation error for the Wasserstein gradient.
With this approach, we show the sub-linear convergence of SVGD in Kullback–
Leibler divergence under the discrete-time and infinite particle settings. Finally,
we validate our theoretical findings through several numerical experiments.

1 INTRODUCTION

Sampling from an unnormalized target distribution, such as posterior distribution in Bayesian in-
ference, is a fundamental problem in machine learning. The mainstream approaches for obtaining
such samples is using Markov Chain Monte Carlo (MCMC) methods (Hastings, 1970; Welling &
Teh, 2011) or approximating the target distribution by variational inference (VI) (Jordan et al., 1999;
Blei et al., 2017). While MCMC provides guarantees of producing asymptotically unbiased samples
from the target density, it tends to be computationally intensive (Robert & Casella, 2004). On the
other hand, VI achieves a computationally efficient approximation of the target distribution through
stochastic optimization under a simpler alternative distribution; however, it does not come with a
guarantee of obtaining unbiased samples (Blei et al., 2017).

To alleviate such sample bias while maintaining computational efficiency of VI as much as possi-
ble, Liu & Wang (2016) introduced Stein variational gradient descent (SVGD), which allows the
direct approximation of the target distribution without the need for alternative distributions. SVGD
iteratively updates correlated samples, referred to as particles, by minimizing the Kullback–Leibler
(KL) divergence between a distribution of particles and the target distribution through a gradient flow
on the space of probability distributions. Since the Wasserstein gradient is intractable in practice,
SVGD approximates it through a kernel method.

On the theoretical front, analysis has been actively conducted ever since Liu (2017) elucidated the
asymptotic behavior of SVGD from the perspective of gradient flow within the reproducing kernel
Hilbert space (RKHS). Korba et al. (2020) showed sub-linear convergence in kernel Stein discrep-
ancy (KSD) under infinite particles assuming that KSD at each step is bounded. Salim et al. (2022)
contributed a proof of sub-linear convergence in KSD without the necessity of bounded KSD assum-
ing that the target distribution satisfies T1 inequality (Villani, 2008), and Sun et al. (2023) provided
the proofs of this convergence property by relaxing the smoothness assumption of the target distribu-
tion. A common thread in these analyses is seeing SVGD’s update rule as the approximation of the
Wasserstein gradient in the RKHS and showing that the KL divergence to target distribution mono-
tonically decreases like gradient descent. Beyond the infinite particle setting, Shi & Mackey (2023)
has recently shown that the SVGD with n finite particles and an appropriate step size converges in
KSD at the O(1/

√
log log n) order if the target distribution is sub-Gaussian with a Lipschitz score.

However, the convergence analysis in terms of KSD is insufficient to understand the weak conver-
gence property of SVGD because the convergence in KSD holds under highly restrictive conditions
for the kernel and the target distribution under practical settings as shown by Gorham & Mackey
(2017). This fact underscores the importance of conducting convergence analysis using criteria
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other than KSD to provide more realistic guarantees for the obtained particles. A natural candidate
for the criterion is the KL divergence itself, which is the objective function of SVGD. Recently, Liu
et al. (2023) showed that SVGD with finite particles achieves linear convergence in KL divergence
under a very limited setting where the target distribution is Gaussian. However, the analytical ap-
proach presented in previous studies makes it difficult to conduct convergence analysis based on KL
divergence in a more global setting. The reason for this lies in the fact that while the logarithmic
Sobolev inequality (LSI) (Gross, 1975) is typically employed to show the linear convergence in KL
divergence for a gradient flow in the space of probability distributions (Villani, 2008), it becomes ap-
parent that the inequality similar to the LSI (see Eq. (7)) does not hold in practical settings (Duncan
et al., 2023) when considering SVGD as a gradient flow in the RKHS.

In this study, we introduce a novel analytical approach that allows us to circumvent the aforemen-
tioned issue. A key idea in our analysis is to consider SVGD as an approximation of the gradient
flow in the space of probability distributions, as opposed to the conventional analytical approach
that views SVGD as a gradient flow in the RKHS. To express the degree of this approximation,
we introduce a new concept called (ϵ, δ)-approximate gradient flow, which extends the concept of
approximation error widely used in the gradient estimation context such as score gradient estima-
tion (Lee et al., 2022; 2023) and particle-based VI (Liu et al., 2019; Dong et al., 2022).

With our concept, we offer new insights into the convergence of SVGD in the settings of discrete-
time and an infinite number of particles. We first analyze the degree of the approximation error {ϵ, δ}
between the Wasserstein gradient of the KL divergence and the update rule in SVGD by focusing
on spectral decomposition specified via a kernel function. With this approximation error analysis,
we show that SVGD exhibits sub-linear convergence in the KL divergence for the first time, to the
best of our knowledge. At last, we conduct a numerical study to examine the convergence behavior
of SVGD across various metrics and validate the soundness of our theoretical findings.

2 PRELIMINARIES

Random variables are denoted by capital letters like X , while deterministic values are denoted by
lowercase letters like x. The Euclidean inner product and distance are expressed as ⟨·, ·⟩ and ∥ · ∥,
respectively. Let X = Rd and let Cl(X ,Y) be the space of l continuously differentiable functions
from X to a Hilbert space Y . We abbreviate Cl(X ,R) as Cl(X ). The set of smooth functions with
compact support is expressed as C∞

c (X ). If ϕ ∈ C1(X ), its gradient is ∇ϕ. For ϕ ∈ C1(X ,X ),
the Jacobian is represented as Jϕ(x), a d × d matrix at each point x ∈ X . We define divϕ(x) =
TrJϕ(x). The Hilbert–Schmidt and operator norm of a matrix are denoted as ∥ · ∥HS and ∥ · ∥op.

2.1 WASSERSTEIN SPACE AND CONTINUITY EQUATION

Here we summarize some of the basics of optimal transport that underlie our analysis. We denote
the set of probability measures on X with finite second moments as P2(X ). For any µ ∈ P2(X ),
we express the set of measurable functions f : X → X with

∫
∥f∥2dµ < ∞ as L2(µ), with its

norm and inner product as ∥ · ∥L2(µ) and ⟨·, ·⟩L2(µ). Given a measurable map T : X → X and
µ, we denote the pushforward measure of µ by T as T#µ ∈ P2(X ), which is characterized by∫
ϕ(T (x))dµ(x) =

∫
ϕ(y)dT#µ(y) for any measurable and bounded function ϕ. Given µ, ν ∈

P2(X ), the Wasserstein distance between µ and ν is defined as W 2
2 (µ, ν) = infs∈S(µ,ν)

∫
∥x −

y∥2ds(x, y), where S(µ, ν) is the set of couplings between µ and ν. This distance defines a metric
on P2(X ), making (P2(X ),W2) the Wasserstein space, which is complete and separable.

Now we introduce a continuous equation. Let T > 0 and consider a weakly continuous map µ :
(0, T ) → P2(X ), t 7→ µt. The family (µt)t∈(0,T ) satisfies a continuity equation if there exists
(vt)t∈(0,T ) such that vt ∈ L2(µt) and ∂µt

∂t + div(µtvt) = 0 holds in the distribution sense (see
Appendix B.1 for the formal meaning of distribution sense). A family (µt)t∈(0,T ) that satisfies a
continuity equation with integrable ∥vt∥L2(µt) over (0, T ) is referred to as absolutely continuous.
Conversely, one can construct an absolutely continuous (µt)t∈(0,T ) by selecting (vt)t∈(0,T ) such
that they meet the above condition.

While the Wasserstein space does not inherently possess the characteristics of a Riemannian man-
ifold, it can be endowed with a Riemannian structure and interpretation (Otto, 2001). In this in-
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terpretation, the tangent space of P2(X ) at µt, denoted as Tµt
P2(X ), forms a subset of L2(µt).

When considering all possible (vt)t∈(0,T ), we call vt that exhibits the minimal L2(µt) norm as the
velocity field of (µt)t∈(0,T ). This minimality condition can be characterized by the requirement that
vt ∈ Tµt

P2(X )(⊂ L2(µt)).

2.2 SAMPLING-BASED APPROXIMATION VIA GRADIENT FLOW OF KL DIVERGENCE

We aim to obtain samples from the density π(x) ∝ e−V (x) in P2(X ) under the following assumption
for the potential function V : X → R.

Assumption 1. The Hessian of V ∈ C2(X ), HV , satisfies ∥HV ∥op ≤ L.

This task can be formulated as the optimization problem over a functional space, i.e., minimizing a
functional, KL divergence of µ from π defined on Wasserstein space, that is,

min
µ∈P2(X )

KL(µ|π), KL(µ|π) :=
∫

log
dµ

dπ
(x)dµ(x), (1)

where KL(·|π) : P2(X ) → [0,+∞), µ 7→ KL(µ|π) and µ is absolutely continuous with respect to
(w.r.t.) π. Thus, Radon–Nikodym 1 derivative dµ/dπ is available (KL(µ|π) = +∞ otherwise).

As a method for solving Eq. (1), a gradient-descent-like algorithm utilizing the differential struc-
ture of the Wasserstein space and continuous equations (see Section 2.1) is often employed. Let
the Wasserstein gradient of KL(µ|π) at µ be ∇W2KL(µ|π) (the formal definition is presented in
Appendix B.1). We then consider how KL(µ|π) evolves by the continuity equation, i.e.,

d

dt
KL(µt|π) = ⟨∇W2

KL(µt|π), vt⟩L2(µt)
, (2)

which shows that KL(µ|π) is minimized by choosing vt such that ⟨∇W2KL(µt|π), vt⟩L2(µt)
≤ 0

and using the continuity equation. A natural choice is to use the Wasserstein gradient itself as
vt = −∇W2

KL(µt|π), which results in d
dtKL(µ|π) = −∥∇W2

KL(µt|π)∥2L2(µt)
≤ 0. According

to the fact that the Wasserstein gradient of KL divergence is obtained as ∇W2
KL(µ|π) = ∇ log µ

π ∈
L2(µ) (Ambrosio et al., 2005), we have

d

dt
KL(µt|π) = −

∥∥∥∇ log
µt

π

∥∥∥2
L2(µt)

. (3)

Many existing studies analyzed Eq. (3) under the following assumption (Bakry et al., 2013).

Assumption 2. We say that the target distribution π satisfies the LSI, if, for any µ ∈ P2(X ), there
exists a positive constant CLS such that

KL(µ|π) ≤ 1

CLS

∥∥∥∇ log
µ

π

∥∥∥2
L2(µ)

. (4)

With the above inequality and Eq. (3), we have KL(µt|π) ≤ e−CLStKL(µ0|π), which implies linear
convergence. However, it is difficult to deal with the continuous-time equation of Eq. (3), and thus
discretization such as a forward Euler discretization (Ambrosio et al., 2005) is often used. This
recursion is given by

µt+1 =
(
I − γt∇ log

µt

π

)
#µt, (5)

at each iteration t 2, where γt > 0 is a stepsize and I is the identity map.

1Suppose that µ is absolutely continuous w.r.t. π, i.e., µ ≪ π. Then, there exists a function f such that, for
any measurable set A, µ(A) =

∫
A
f(x)dπ(x). This function f is referred to as the Radon–Nikodym derivative

of µ w.r.t. π, denoted by f = dµ/dπ (Durrett, 2019).
2For the sake of readability, we adopt t to express both continuous and discrete time.

3



Under review as a conference paper at ICLR 2024

2.3 STEIN VARIATIONAL GRADIENT DESCENT

Performing optimization based on Eq. (5) is still difficult because µ is often intractable and thus
∇ log µ

π is hard to compute. SVGD is one of the alternative gradient flow approaches to avoid this
issue by projecting ∇ log µ

π into the reproducing kernel Hilbert space (RKHS) by a kernel function.

Here, we briefly summarize the fundamental operations on the RKHS. Let k : X × X → R
be a symmetric and positive semi-definite kernel and H0 be its corresponding RKHS of real-
valued functions X → R. The inner product within H0 is denoted as ⟨·, ·⟩H0 , which satisfies
f(x) = ⟨f, k(·, x)⟩H0

(∀f ∈ H0) by the reproducing property of H0. We also define H as the
Cartesian product of H0, whose elements are expressed as f = (f1, . . . , fd) where fi ∈ H0

for i = 1, . . . , d. The inner product of f, g ∈ H is given by ⟨f, g⟩H =
∑d

i=1 ⟨fi, gi⟩H0
. If

µ ∈ P2(X ) and
∫
k(x, x)dµ(x) < ∞, the integral operator associated to k and µ can be defined

as Sµ,kf(x) :=
∫
k(y, x)f(y)dµ(y), where Sµ,k : L2(µ) → H and thus H ⊂ L2(µ) 3. We further

define the inclusion map as ι : H → L2(µ), which is the adjoint of Sµ,k. Under the map ι, for
f ∈ L2(µ) and g ∈ H, we have ⟨f, ιg⟩L2(µ) = ⟨ι∗f, g⟩H = ⟨Sµ,kf, g⟩H, where ι∗ is the adjoint of
ι. We finally define the mapping function Pµ,k : L2(µ) → L2(µ), where Pµ,k = ιSµ,k.

In SVGD, instead of using the Wasserstein gradient ∇ log µ
π , we employ −Pµ,k∇ log µ

π as vt in
Eq. (2), leading to the following discretized dynamics:

µt+1 =
(
I − γtPµ,k∇ log

µt

π

)
#µt. (6)

The difference from Eq. (5) is that ∇ log µ
π is mapped by Pµ,k. If a kernel function satis-

fies lim∥x∥→∞ k(x, ·)π(x) = 0, by using an integration by parts (Liu, 2017), we can obtain
Pµ,k∇ log µ

π (x) := −
∫
[∇ log π(y)k(y, x) + ∇yk(y, x)]dµ(y). By focusing on the continuous

dynamics of the KL divergence, we have
d

dt
KL(µt|π) = −

〈
∇ log

µt

π
, Pµt,k∇ log

µt

π

〉
L2(µt)

= −
∥∥∥Sµt,k∇ log

µt

π

∥∥∥2
H

=: −Istein(µt|π),

where Istein(µt|π) is called as the Stein–Fisher (SF) information (Duncan et al., 2023). It is known
that the square root of the SF information corresponds to the KSD. Now it is tempting to consider
whether the inequality similar to LSI in Eq. (4) holds for the SF information presented below:

KL(µ|π) ≤ cIstein(µ|π), (7)

where c is some positive constant. If this inequality holds, the linear convergence of SVGD holds.
Unfortunately, the conditions for the validity of this inequality are not as evident as in the case of
LSI and Duncan et al. (2023) has shown that Eq. (7) may not hold in many practical models with
kernel functions like the RBF kernel, where the tail of π is exponential. Hence, showing the linear
convergence of KL divergence in the geometry of H is not straightforward. We refer to Liu (2017)
and Duncan et al. (2023) for a detailed discussion of the geometry of SVGD.

Recently, Salim et al. (2022) showed the descent lemma, KL(µt+1|π) ≤ KL(µt|π)−cγIstein(µt|π)
holds where c is some positive constant that depends on the problem. Although we can obtain the
convergence in KSD from this inequality, the convergence KSD not necessarily means the weak
convergence as discussed in Gorham & Mackey (2017).

3 APPROXIMATE GRADIENT FLOW

Here, we introduce a new concept of approximation for the Wasserstein gradient, (ϵ, δ)-approximate
gradient flows (AGF). We then analyze the convergence of the KL divergence under our concept.

3.1 (ϵ, δ)-APPROXIMATE GRADIENT FLOW

Let us assume that a gradient flow on the Wasserstein space exists, which is induced by some velocity
vt = gµt

(x) ∈ L2(µt) for x ∈ X . Here, gµt
(x) represents a function of x only depending on µt.

3We introduce Sµ,k for vector inputs f = (f1, . . . , fd). When f is a scalar (d = 1), for simplicity, we
consider Sµ,k to be defined as applied to a single element, i.e., Sµ,k : L2

0(µ) → H0, allowing us to abuse the
notation, where L2

0(µ) is the set of a measurable function f1 : X → R with
∫
f2
1dµ < ∞.
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In the continuous-time setting, such a gradient flow is obtained via the continuity equation given as
∂µt

∂t + div(µtgµt(x)) = 0. Under mild growth and regularity assumptions on gµt(x) (Ambrosio
et al., 2005; Bonnet & Frankowska, 2021), the existence and uniqueness of a gradient flow by gµt is
guaranteed. When considering discrete time, we assume that the recursion µt+1 = (I − γtgµt)#µt

exists, which is similar to Eq. (6).

In the presence of these, we consider the time evolution of KL(µt|π) under the velocity vt =
gµt

(x) as in Section 2.2. In the continuous-time setting, we assume that d
dtKL(µt|π) =〈

∇ log µt

π , gµt

〉
L2(µt)

. As for the discrete-time setting, we assume the following inequality with
a kind of descent property:

KL(µt+1|π) ≤ KL(µt|π)− ηt

〈
∇ log

µt

π
, gµt

〉
L2(µt)

, (8)

where ηt is some positive constant. Such a descent property holds both in the Wasserstein gradient
flow (Ambrosio et al., 2005) and in SVGD as shown in Section 2.3.

From the above two (in)equalities, we can anticipate that when gµt
(x) exhibits behavior close to

that of ∇ log µt

π (x), i.e.,
〈
∇ log µt

π , gµt

〉
L2(µt)

≥ 0 is satisfied (recall the cosine similarity in the
finite-dimensional case), the KL divergence does not increase with t. In SVGD, for example, we set
gµt

= Pµt,k∇ log µt

π , which satisfies
〈
∇ log µt

π , gµt

〉
L2(µt)

= Istein(µt|π) ≥ 0.

However, the condition
〈
∇ log µt

π , gµt

〉
L2(µt)

≥ 0 is insufficient for explicitly analyzing the con-
vergence rate since it doesn’t convey how accurate the approximation via gµt

is. To overcome this
situation, we introduce a new concept of the similarity between ∇ log µt

π (x) and gµt
(x) as follows.

Definition 1. Suppose that ∇ log µt

π (x) < ∞ (a.e.) and ∥∇ log µt

π ∥L2(µt) < ∞ for all t. Then, we
say a function gµt

(x) ∈ L2(µt) is (ϵt, δt)-AGF if the following condition holds:

−
〈
∇ log

µt

π
, gµt

〉
L2(µt)

≤ −ϵt
∥∥∥∇ log

µt

π

∥∥∥2
L2(µt)

+ δt, (9)

where ϵt, δt ≥ 0.

Eq. (9) evaluates the approximation quality of gµt
(x) for ∇ log µt

π via {ϵt, δt}, where ϵt and δt
express the relative and absolute bias of approximating ∇ log µt

π by gµt(x), respectively. This def-
inition is motivated by the inexact gradient descent methods in finite-dimensional parameter space
such as (Jaggi, 2013; Schmidt et al., 2011) and unifies some existing approximate flow methods (see
Section 3.2).

Using the (ϵt, δt)-AGF, we can analyze the convergence in KL divergence qualitatively as follows.

Lemma 1. Suppose that Assumption 2 is satisfied. Then, under Eq. (8), for any T ∈ N, we obtain
KL(µT |π) ≤

∏T−1
t=0 (1− ηtϵt)KL(µ0|π) +

∑T−1
t=0 δt

∏T−1
j=t+1(1− ηjϵj).

Proof. By substituting Eq. (8) into Eq. (9) and applying the LSI, we obtain KL(µt+1|π) ≤ (1 −
ηtϵt)KL(µt|π) + δt. By induction in the above, we obtain the claim.

This lemma shows that ϵt and δt (as well as ηt) significantly impact the convergence rate.

Remark 1. When δt = 0 and ηtϵt is independent of t, linear convergence is achieved, indicating
that gµt

(x) provides a precise approximation of ∇ log µt

π . When δ = 0 and ηtϵt = O(1/tα) with
a constant α ∈ (0, 1], it indicates sub-linear convergence, which implies that the approximation
quality is not so significant but it is enough to ensure the convergence in KL divergence.

Remark 2. If δt ̸= 0, the convergence is biased in terms of KL divergence. However, by employing
the technique in Lee et al. (2022), it remains feasible to mitigate the impact of bias on total variation.

3.2 RELATION TO EXISTING APPROXIMATE FUNCTIONAL GRADIENT FLOWS

In this section, we provide examples of AGF from existing studies. Dong et al. (2022) proposed the
preconditioned functional gradient flow, where they considered approximating ∇ log µt

π by neural
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networks (NNs). The authors also assumed that gµt
(x), which is the output of NNs, satisfies∥∥∥gµt

−∇ log
µt

π

∥∥∥2
L2(µt)

≤ ϵ
∥∥∥∇ log

µt

π

∥∥∥2
L2(µt)

, (10)

where ϵ < 1. This corresponds to a special case of our AGF with ϵt := (1 − ϵ)/2 and δt := 0, as
confirmed by expanding the left-hand side of Eq. (10). According to Remark 1, the above inequality
implies linear convergence in KL divergence. However, their method requires re-training NNs at
each iteration, which yields difficulty in ensuring δ = 0 in practice. Conversely, it later becomes
evident that SVGD achieves δt = 0 by using a kernel function that meets some conditions.

Lee et al. (2022; 2023) studied the score based diffusion models assuming that gµt(x) = s(x) +
logµt(x), where the ∇ log π(x) in the Wasserstein gradient is approximated with some measurable
function s(x) that satisfies ∥∥∥(s(·) + log µt)−∇ log

µt

π

∥∥∥2
L2(µt)

≤ δ. (11)

The equation above corresponds to our AGF with ϵt = 0, which signifies the presence of bias in the
KL divergence (see Remark 2).

From the perspective of convergence analysis, the significant difference between these studies lies
in the treatment of {ϵ, δ}. The convergence analysis in Dong et al. (2022), Lee et al. (2022), and Lee
et al. (2023) assumes that gµt achieves sufficiently small ϵ or δ according to the criteria in Eq. (10)
or (11). In our study, we take the opposite approach — identifying {ϵ, δ} that SVGD achieves under
the AGF, and then evaluating its convergence properties.

4 APPLICATION TO STEIN VARIATIONAL GRADIENT DESCENT

In this section, we present the main result, the convergence of SVGD in KL divergence, obtained by
applying the concept of (ϵ, δ)-AGF, and provide an overview of the proofs. Here, µt represents the
t-th output of the SVGD algorithm, where t ∈ N is the number of iterations as shown in Eq. (6).

4.1 SUB-LINEAR CONVERGENCE OF SVGD IN KL DIVERGENCE

Our analyses are based on the following assumptions concerning the kernel function k.
Assumption 3. The feature map ∇k(·, x) : X → H is continuous. Moreover, for all
x ∈ X , there exists B > 0 such that ∥k(·, x)∥H0 ≤ B,

∑d
i=1 ∥∂ik(·, x)∥2H0

≤ B2, and∑d
i,j=1 ∥∂i∂jk(·, x)∥H0

≤ B2 hold.
Assumption 4. The kernel k is integrally strictly positive definite (ISPD), which means that∫ ∫

k(x, y)dρ(x)dρ(y) > 0 holds for all finite nonzero signed Borel measures ρ.
Assumption 5. The trace of a kernel is bounded for any µ ∈ P2(X ), i.e.,

∫
k(x, x)dµ(x) <∞.

Under Assumption 5, the Hilbert–Schimidt operator Pµ,k has positive eigenvalues {λi} (see Sec-
tion 4.2 and Appendix C). We thus further pose the following assumption according to this fact.
Assumption 6. Eigenvalues {λi} are constant order w.r.t. t and strictly positive, i.e., there exist
upper and lower bounds for {λi} that are independent of t and are greater than 0.

Assumptions 3-6 are satisfied in the RBF kernel commonly employed in SVGD. A detailed discus-
sion of these assumptions can be found in Appendix A.

We now show the main contribution of this paper, which establishes the sub-linear convergence of
SVGD in KL divergence.
Theorem 1. Suppose that Assumptions 1-6 are satisfied. Let α > 1 and the stepsize γt satisfies

γt ≤ O(1/t2/3) and γt ≤ (α− 1)αB2(1+ ∥∇V (0)+LEπ∥x∥+L
√
2C−1

LSKL(µ0|π))(=: Cγ) for
all t. Then, SVGD is (c0, 0)-AGF and for any T ∈ N, we have

KL(µT |π) ≤
T−1∏
t=0

(1− c0γt)KL(µ0|π), (12)

where c0(> 0) is a problem-dependent constant that is independent of t.

6



Under review as a conference paper at ICLR 2024

This theorem guarantees the sub-linear convergence of SVGD in KL divergence because
limt→∞

KL(µt+1|π)
KL(µt|π) = limt→∞ 1 − c0γt = 1. Moreover, by setting γt = c1

t for some positive

constant c1 in the above, for example, we obtain KL(µT |π) ≤ KL(µ0|π)
T c1c0

.

Before outlining the proof, we position our results in comparison to existing studies. As suggested
by Korba et al. (2021) and Duncan et al. (2023), it is difficult for SVGD to achieve linear con-
vergence in KL divergence and the difficulty also surfaces in our analysis. To show our results,
the step size must be γt ≤ O(1/t2/3) to control ∥∇ log µt

π ∥L2(µt), which highlights the difficulty
of achieving convergence faster than sub-linear order. While Huang et al. (2023) has shown the
linear convergence in a continuous-time setting, the kernel function utilized in their study is specif-
ically designed to guarantee linear convergence and thus it is not commonly employed in practice.
On the other hand, our result is established within the discrete time setting that corresponds to the
SVGD algorithm, under realistic assumptions commonly met by the RBF kernel frequently adopted
in SVGD.

Expanding our sight to other deterministic sampling methods based on kernel functions, sub-linear
convergence has been demonstrated in the kernel herding (e.g., Chen et al. (2010); Bach et al. (2012))
and Bayesian Quadrature context (e.g., Briol et al. (2015); Futami et al. (2019)) when employing
infinite-dimensional kernel functions like the RBF kernel. Our results are consistent with these facts.

4.2 SPECTRAL DECOMPOSITION AND (ϵ, δ)-APPROXIMATION

The main objective here is to provide an overview of the proof focusing on how we detect ϵt and δt
in the AGF. The complete proof is in Appendix C.

To conduct analyses based on our AGF, we need to show that
∥∥∇ log µt

π

∥∥
L2(µt)

is bounded for all t
in SVGD, which is guaranteed by the following lemma (see Appendix C.2 for complete proof).
Lemma 2. Suppose that Assumptions 1-3 and 5 are satisfied. Let γt satisfies γt ≤ Cγ defined in
Theorem 1. Then, there exists a positive problem-dependent constant c and is independent of t such
that, for any t ∈ (0, T ] we have

∥∥∇ log µt

π

∥∥
L2(µt)

≤
∥∥∇ log µ0

π

∥∥
L2(µ0)

+ c
∑t−1

t=0 γt.

Now we are ready to begin the analysis of the convergence of SVGD based on AGF. Substituting
gµt(x) = Pµt,k∇ log µt

π into Eq. (9) and multiplying both sides by ηt(> 0) yields

−ηt
〈
∇ log

µt

π
, Pµt,k∇ log

µt

π

〉
L2(µt)

=− ηtIstein(µt|π) ≤ −ϵtηt
∥∥∥∇ log

µt

π

∥∥∥2
L2(µt)

+ ηtδt.

(13)

According to the fact that ηtIstein(µt|π) ≤ KL(µ0|π) (see Appendix C), we further obtain the
following inequalities:

KL(µ0|π) ≥ ηtIstein(µt|π) ≥ ϵtηt

∥∥∥∇ log
µt

π

∥∥∥2
L2(µt)

− ηtδt. (14)

Therefore, our goal is to guarantee the existence of the above inequality. If Eq. (14) exists, we
can qualitatively analyze the convergence in KL divergence by specifying {ϵt, δt} and utilizing the
property of AGF shown in Lemma 1 and Remarks 1 and 2.

To focus on the discussion for detecting {ϵ, δ}, we first mention the necessary conditions for the
existence of Eq. (14) w.r.t. ηt under our final results. As can be seen from Theorem 1, we obtain
ϵt = c0 and δt = 0 through the proof that we explain later, where c0 is independent of t. In this
case, from Eq. (13), it is necessary for ηt

∥∥∇ log µt

π

∥∥2
L2(µt)

to be uniformly upper bounded w.r.t. t
to compensate for the convergence based on AGF. This condition can be satisfied by setting ηt such
that it fulfills γt ≤ O(1/t2/3) from Lemma 2 (see Appendix C for this derivation).

Our strategy is to show the boundedness of the following equality expressed as

ϵtηt

∥∥∥∇ log
µt

π

∥∥∥2
L2(µt)

− ηtIstein(µt|π) = ηt

〈
∇ log

µt

π
, (ϵtI − Pµt,k)∇ log

µt

π

〉
L2(µt)

. (15)

We adopt the spectral decomposition of the kernel operator to analyze the above. Since a Hilbert–
Schmidt operator Pµ,k is compact and self-adjoint, we have, for all i, Pµ,kϕi = λiϕi, where ϕi ∈

7
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Figure 1: The convergence behavior in terms of KL(µT |π) and 1
T

∑T
t=1 Istein(µt|π) for all T under

two-dimensional Gaussian distribution experiments (β = 0.67 ≈ 2/3).

L2(µ) represents an eigenfunction that satisfies a complete orthonormal system (CONS), and λi is
an eigenvalue corresponding to ϕi. Even if these eigenvalues are ordered as λ1 ≥ λ2 ≥ . . . > 0, it
does not compromise generality. Moreover, the kernel function can be decomposed into k(x, y) =∑∞

i=1 λiϕi(x)ϕi(y), where the convergence of this infinite series holds in the norm of ∥ · ∥L2(µ).

Defining vt := ∇ log µt

π for simplicity in notation, we can obtain vt =
∑∞

i=1 ⟨vt, ϕi⟩L2(µ) ϕi and
Pµ,kvt =

∑∞
i=1 λi ⟨vt, ϕi⟩L2(µ) ϕi because the kernel function is dense in L2(µ) and thus its eigen-

vectors are complete. We provide the discussion for non-complete eigenvectors in Appendix A.
Substituting these equalities into Eq. (15), we have

ϵtηt

∥∥∥∇ log
µt

π

∥∥∥2
L2(µt)

− ηtIstein(µt|π) = ηt

∞∑
i=1

(ϵt − λi) ⟨vt, ϕi⟩2L2(µt)
. (16)

In the right-hand side term of the above, there exists a index 1 < j such that λj > ϵt > λj+1

by setting sufficiently small ϵt. Hence, by regularizing {⟨vt, ϕi⟩2L2(µt)
}∞i=1, we can render the left-

hand side of Eq. (16) negative. For that purpose, we focus on the RKHS associated with k given as
H =

{
f ∈ L2(µ) | f =

∑∞
i=1 aiϕi,

∑∞
i=1 λ

−1
i ∥ai∥2 <∞, ai ∈ R

}
, where H is dense inL2(µ). In

this RKHS, there exists a function v(l)t ∈ H such that the sequence of v(l)t → vt as l → ∞ in L2(µ)

norm. Thus, by approximating the original vt with v(l)t in H, we can regularize {⟨vt, ϕi⟩2L2(µt)
}∞i=1.

Under the regularized {⟨vt, ϕi⟩2L2(µt)
}∞i=1 in the above and sufficiently small ϵt, we can obtain

ϵtηt
∥∥∇ log µt

π

∥∥2
L2(µt)

− ηtIstein(µt|π) < 0, which implies that δt = 0 in the AGF. From As-
sumption 6, we can show that ϵt is the constant order w.r.t. t and express it as c0 (see Appendix C).
This concludes the proof outline.

5 NUMERICAL EXPERIMENTS

In this section, we aim to confirm the validity of our theoretical results. We only show the results
of the two-dimensional Gaussian experiments due to the page limitation. The details of the experi-
mental settings and additional results including the Gaussian mixture can be seen in Appendix E.

We set the target distribution as the two-dimensional Gaussian distribution. We adopted the RBF
kernel k(x, y) = exp( 1h∥x−x

′∥22), which is commonly used in practice and satisfies the assumptions
in Section 4. The bandwidth h was selected by the median trick as in Liu & Wang (2016). To
appropriately verify our theoretical analysis, we simply set the decaying step size γt = 1/(1+tβ)(=
O(1/tβ)) suggested by Theorem 1 and did not use the Adagrad-based stepsize, which is adopted in
related studies such as Korba et al. (2021) and others. We evaluated the KL divergence: KL(µT |π)
and the cumulative mean of KSD: 1

T

∑T
t=1 Istein(µt|π), which are theoretically guaranteed sub-

linear convergence.

Results: From Figures 1 and 2, we can see that SVGD with the RBF kernel tends to achieve
sub-linear convergence both in KL(µT |π) and in 1

T

∑T
t=1 Istein(µt|π), which supports Theorem 1.

As discussed in Appendix A, the bias remains in the KL divergence as we increase T since we
used the finite particles and thus δt ̸= 0 in AGF. Such a bias can be reduced by increasing the
number of particles increases. Conversely, employing a substantial number of particles leads to

8
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Figure 2: Convergence in KL(µT |π) and 1
T

∑T
t=1 Istein(µt|π) for all T under different particles and

stepsize settings (β = {0., 0.5, 0.67, 1.}).

slower convergence for both the KSD and KL divergence. This phenomenon may be attributed
to the presence of exceedingly small eigenvalues of Pµ,k when using a larger number of particles
since the eigenvalues of the RBF kernel decay exponentially fast (Wainwright, 2019). Our numerical
evaluation of eigenvalues can be seen in Appendix E. In other words, there exists a trade-off between
the improvement in the approximation accuracy achieved by using a large number of particles and
the convergence speed.

6 LIMITATION & CONCLUSION

Ensuring the convergence of SVGD in KL divergence has proven challenging in finite and infinite
particle settings. Furthermore, while many studies have provided convergence guarantees for SVGD
in KSD, these do not necessarily ensure its weak convergence. As a first strategy to address this
issue, we conducted the convergence analysis of SVGD under the ideal conditions of an infinite
particle setting that guarantees an accurate gradient approximation. Then, we successfully elucidated
the convergence of SVGD in KL divergence in this setting. Our finding suggests weak convergence
of SVGD with infinite particles, affirming its capability to approximate the expectation by the target
distribution without bias, akin to MCMC.

One of limitations in our paper is the challenge in furnishing a theoretical explanation for the con-
vergence of SVGD when employing a finite number of particles. Extending our analysis to finite
particle settings using AGF is being considered as our future study. The main challenge in this exten-
sion is expected to be in determining the values of ϵ and δ, primarily due to the unknown theoretical
properties of gradient approximation on RKHS when dealing with correlated particles, as far as our
current knowledge extends.

Another limitation is that Assumption 6 is rather strong. This assumption, introduced to ensure that
c0 remains of constant order w.r.t. t, is difficult to justify in the infinite particle setting. The pursuit
of convergence guarantees grounded in milder assumptions represents a crucial avenue for future
research. Furthermore, we aspire for this study to catalyze further research endeavors that aim to
furnish better convergence guarantee for SVGD in KL divergence.
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