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ABSTRACT

Transformers have achieved state-of-the-art performance across diverse language
and vision tasks. This success drives the imperative to interpret their internal mech-
anisms with the dual goals of enhancing performance and improving behavioral
control. Model attribution 1 methods help advance interpretability by assigning
model outputs associated with a target concept to specific model components. Cur-
rent attribution research primarily studies multi-layer perceptron (MLP) neurons
and addresses relatively simple concepts such as factual associations (e.g., Paris
is located in France). This focus tends to overlook the impact of the attention
mechanism and lacks a unified approach for analyzing more complex concepts.
To fill these gaps, we introduce Scalable Attention Module Discovery (SAMD),
a concept-agnostic method for mapping arbitrary, complex concepts to specific
attention heads of general transformer models. We accomplish this by representing
each concept as a vector, calculating its cosine similarity with each attention head,
and selecting the TopK-scoring heads to construct the concept-associated attention
module. We then propose Scalar Attention Module Intervention (SAMI), a simple
strategy to diminish or amplify the effects of a concept by adjusting the atten-
tion module using only a single scalar parameter. Empirically, we demonstrate
SAMD on concepts of varying complexity, and visualize the locations of their
corresponding modules. Our results demonstrate that module locations remain
stable before and after LLM post-training, and confirm prior work on the me-
chanics of LLM multilingualism. Through SAMI, we facilitate jailbreaking on
HarmBench (+72.7%) by diminishing “safety” and improve performance on the
GSM8K benchmark (+1.6%) by amplifying “reasoning”. Lastly, we highlight the
domain-agnostic nature of our approach by suppressing the image classification
accuracy of vision transformers on ImageNet.

1 INTRODUCTION

With the advent of deep learning, models have grown more complex and turned into “black-box”
machines, thus launching efforts to comprehend their underlying mechanisms Molnar et al. (2020);
Linardatos et al. (2020). Early interpretability work on convolutional neural network classification
models focused on specific inputs to identify the most influential constituents affecting the output, like
providing saliency maps for single images (Simonyan et al., 2013; Yosinski et al., 2015; Zintgraf et al.,
2017; Selvaraju et al., 2017; Sundararajan et al., 2017). In the current era, the rapid development
of transformer-based models (Vaswani et al., 2017) has not only led to significant breakthroughs in
both language and vision, but has also advanced the quality and scalability of generative modeling
approaches. This underscores the need for interpretability methods that go beyond single inputs and
instead target concepts derived from groups of inputs, to enable deeper insight into where models
learn and internalize knowledge (Singh et al., 2024).

Attribution methods, a prevalent approach to interpreting models, facilitate such concept-level
understanding by localizing certain behaviors to specific model components. For transformers, among

1Not to be confused with input attribution, which refers to determining how much each part of an input
influences the output of a model.
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Scalar Attention Module
Intervention (SAMI)

The most well-known
animal that "barks" is
the hummingbird.

The most common animal
that barks is the dog.

no intervention
SAMI

What is the animal that barks?

🤩

🤩

+

Attention Head  Vector
Representation

Concept  Vector
Representation

🫀

🐶

🧮

🤔

Scalable Attention Module
Discovery (SAMD)

+

MLP

Figure 1: A Summary of our pipeline. Left: Top-Left: The residual stream viewpoint of a transformer
layer (Section 2.1). Each attention head adds its linear contribution to the current representation.
Stacking these contributions together for all H attention heads in a layer across L layers, we obtain
a H × L matrix. Top-Right: The vector abstraction of an arbitrary concept in representation space
(Section 2.2). Bottom: Our Scalable Attention Module Discovery (Section 3.1). We score by the
averaged cosine similarity across a dataset between the vectorized concept and the contribution
of each attention head, and choose the TopK heads as our attention module. Right: Our Scalar
Attention Module Intervention (Section 3.2). We directly change the coefficient of contributions of
attention heads in our module, and diminish or amplify the concept of interest in LLMs and ViTs.

multiple types of module candidates, neuron attribution has a prominent position (see literature review
in Appendix B.1). This is largely due to the findings that multi-layer perceptrons serve as memories
(Geva et al., 2021; 2022), a property that supports their use in demystifying where knowledge is
localized. However, several key limitations persist. First, the impact and functionality of multi-
head self-attention, the decisive characteristic of transformers, tend to be overlooked for attribution.
Second, the concepts studied for attribution in current research have relatively low complexity, such
as number and syntax (Lakretz et al., 2019), factual association (Meng et al., 2022a;b), and simple
nouns. How to generalize attribution to arbitrary concepts remains elusive. Third, previous attribution
methods usually rely on manual inspection by humans and require ad-hoc examinations (Wang et al.,
2023; Räuker et al., 2023), and there lacks a generic, concept-agnostic pipeline that is generalizable
on a broad spectrum of concepts.

In this paper, we present Scalable Attention Module Discovery (SAMD), a simple and concept-agnostic
method that scales to arbitrary transformers and concepts. SAMD abstracts a concept into a single
vector by either averaging the activations from a reference dataset or duplicating a sparse autoencoder
feature, then measures its cosine similarity with the output of each attention head on a reference
dataset that represents the concept in one single forward pass. We find that the cosine similarity
metric provides a reliable indication of the significance of a specific head. We define the attributed
module through the top-K highest scoring heads. In order to probe our modules, we propose a simple
intervention strategy, Scalar Attention Module Intervention (SAMI). The goal of the intervention is
to diminish or amplify the effects of a given concept. We achieve this with a single parameter that
scales the output magnitude of attention heads in the discovered module.

Empirically, we test SAMD and SAMI in four domains: on interpreted features from Sparse Autoen-
coders (Section 4.1), reasoning (Section 4.2), safety alignment (Section 4.3), and visual recognition
(Section 4.4). With SAMD, we discover that only a sparse set of 3-10 attention heads is crucial
for the wide variety of concepts we examined. By visualizing the module, we provide evidence
on the superficial alignment hypothesis (Zhou et al., 2023), which states that a model’s knowledge
and capabilities are learned almost entirely during pretraining, by demonstrating that the module
remains unchanged before and after LLM post-training for a number of concepts analyzed. We also
corroborate previous research that aims to determine at what depth within the transformer certain
concepts such as output language or image labels are represented by attributing the “French” module
to later layers and discovering image label modules in the final layer of ViTs. Using SAMI, we show
that suppressing the safety module facilitates jailbreaking on HarmBench (+72.7%) (Mazeika et al.,
2024), amplifying the reasoning module improves performance on the GSM8K benchmark (+1.6%)
(Cobbe et al., 2021), and scaling down the recognition module in a ViT reduces classification accuracy
on a target label to 0%. Notably, to observe these effects, we only intervene on approximately 0.1%
of all weights across models; namely those corresponding to the identified (sparse) module.

To summarize, the contributions of our work include:

2
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• Scalable Attention Module Discovery: We present the first concept-agnostic algorithm
that performs attention head attribution to arbitrary concepts and large transformers.

• Scalar Attention Module Intervention: Once the module is identified, we employ a single
scaling parameter to intervene on its output strength in the forward pass. We show that
this intervention effectively diminishes or amplifies the corresponding concept within the
transformer.

• Evaluation: We perform comprehensive experiments across a wide range of arbitrary con-
cepts, models, and modalities in both language and vision. Through SAMD, we demonstrate
that knowledge is sparsely encoded in the structure of large models, as indicated by the
modules we uncover in all transformers and concepts analyzed. Using SAMI, we provide
both qualitative and quantitative results to illustrate the effects of concept diminishment and
amplification.

In the next section, we provide an overview of the relevant preliminaries, followed by our method in
Section 3 and our results in Section 4. Since there is no directly comparable work, we defer related
work to Appendix B.

2 PRELIMINARIES

In this section, we summarize the residual stream view of transformers, a convenient way to represent
how the contributions from individual model components are accumulated in a forward pass, as well
as current work on deriving vector-valued concepts.

2.1 RESIDUAL STREAM

Transformer-based models process inputs as token sequences, which introduces additional challenges
in quantifying the contribution of individual components from input to output. Elhage et al. (2021)
conceptualize a single vector representation of a fixed token throughout all layers of the transformer,
the so called residual stream. It focuses on the residual connections and interprets each attention and
multi-layer perceptron (MLP) block as interacting with the stream by linearly adding their respective
contributions. Moving a step further, we explicitly decompose the contribution of a single multi-head
self-attention block into the sum of contributions from its constituent attention heads. Consider a set
of input tokens; for a fixed token position, at any given layer l with H attention heads, the residual
stream rl is defined recursively:

rl = rl−1 +

H∑
h=1

al,h +ml. (1)

Here al,h and ml represent the contributions from attention head h and the MLP in the l-th layer,
respectively. Denoting the input sequence of tokens by p, we use rl(p), al,h(p) to represent the
residual stream and the contribution from the h-th attention head at layer l with input p, particularly
when the choice of token position is explicitly specified.

2.2 VECTOR AS CONCEPT

A concept, while elusive to define, is generally thought of as representing a semantically meaningful
unit. In this work, we consider concepts to be units that are operationalized by a positive dataset
Dp - a collection of data points that all carry similar meaning or share a characteristic. The notion
of representing c through a concept vector vc has been extensively explored in contemporary
literature, dating back to word2vec (Mikolov et al., 2013). Below we summarize common practices
for producing vc and creating Dp given the concept c.

Image recognition with ViTs. In this case, concepts correspond to label classes. Thus, we use
the term “concept” and “label” interchangeably for vision tasks. Given a label c, the positive
dataset Dp comprises (a subset of) all training images labeled with c, and the concept vector vc is the
corresponding row in the unembedding matrix.

3
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Sparse Autoencoders (SAEs). SAEs are sparse, overcomplete autoencoders trained to reconstruct
representations of an LLM. Researchers find that SAEs can extract concepts through semantically
meaningful decoder vectors (Templeton et al., 2024; Lieberum et al., 2024). Thus, with an SAE,
the concept vector vc is the corresponding decoder vector, and the positive dataset Dp is the set of
prompts that strongly activates this vector.

Difference-in-means. Given a concept c, researchers either have access to a pair of contrasting
positive (Dp) and negative (Dn) datasets, or only the positive one when it is challenging to define
“negative”. The mean difference vector at the l-th layer given a specific token position is obtained
by computing (Tigges et al., 2023; Marks and Tegmark, 2023; Rimsky et al., 2023; Jorgensen et al.,
2023; Arditi et al., 2024):

vl =
1

|Dp|
∑
p∈Dp

rl(p)−
1

|Dn|
∑

p′∈Dn

rl(p
′), (2)

with rl as defined in Eq. (1). In scenarios where the negative dataset Dn is absent, we set the latter
term to 0. To identify a concept vector vc, one needs to select a layer index l and a token position,
depending on the problem of interest, possibly requiring a sweep. Typically vc is picked by selecting
the last token position in the final layer.

In the following sections, we utilize concept vectors obtained via all three construction methods to
illustrate the broad applicability of our proposed pipeline across diverse settings.

3 METHODOLOGY

In this section, we lay out our proposed methodology for (i) discovering the attention module via the
vector as concept abstraction, and (ii) applying intervention to control the output of the model.

3.1 SCALABLE ATTENTION MODULE DISCOVERY (SAMD)

The key to our method is comparing the residual stream contribution from an attention head (Section
2.1) to the vector abstraction of a chosen concept (Section 2.2) via cosine similarity. Our approach is
inspired by recent work (nostalgebraist, 2020), which compares partial residual streams with token
representations to show the evolution of token probabilities. In a similar vein, in our method we
substitute the token vector with our vector representation vc.

More specifically, for a concept c, given the vector vc and the positive dataset Dp (Section 2.2), we
quantify the contribution of each attention head to vc by calculating the cosine similarity score.
The underlying hypothesis is that a higher cosine similarity score implies a higher semantic similarity,
as shown in e.g., Templeton et al. (2024). By setting a size budget K, we perform module attribution
by selecting (indices of) the K attention heads with the highest scores across layers l and attention
head indices h:

module = argTopK(l,h)

1

|Dp|
∑
p∈Dp

cos∠(al,h(p), vc). (3)

Our method discovers the module through direct similarity score computation, and requires only a
single forward pass per input, making it fast and concept-agnostic.

3.2 SCALAR ATTENTION MODULE INTERVENTION (SAMI)

Prior intervention strategies rely on vector representations or MLP weights that are static and
pre-computed, to either change model behavior through vector steering (Vig et al., 2020; Goldowsky-
Dill et al., 2023; Geiger et al., 2022; Lieberum et al., 2024; Templeton et al., 2024) or through
modifying MLP memory (Meng et al., 2022a;b). In contrast, we propose to intervene through the
contribution strength of the discovered attention heads via only a single scalar parameter without
any pre-computation or significant changes of the model weights.

Definition 3.1. (Scalar Attention Module Intervention (SAMI)) At any given layer l with H attention
heads, instead of computing the original residual stream update (Eq. (1)), SAMI works by multiplying

4
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the magnitude of the contributions from the module by a scalar s as follows:

rl = rl−1 +
∑

h:al,h /∈module

al,h +
∑

h:al,h∈module

sal,h +ml. (4)

When s > 1, we call the intervention positive, and when s < 1 we call the intervention negative.

This strategy allows us to control the intervention strength by tuning the control scalar s. Note that
our intervention is highly efficient to implement: it is equivalent to modifying the output projection
matrices of multi-head self-attention blocks by multiplying specific weights by s.

4 EXPERIMENTS

In the previous section, we have defined a general recipe for attention module attribution and
intervention, which we now put to test. We verify that when using concept vectors through SAEs
(Lieberum et al., 2024), SAMD method confirms contemporary findings on superficial alignment
hypothesis and LLM output language choice, while SAMI lead to plausible results. We then
proceed to concept vectors for safety and Chain-of-Thought-reasoning, and show that SAMI leads to
improved jailbreaking and reasoning, respectively. Finally, we show the universality of our approach
by applying our pipeline to a vision transformer. Leveraging ImageNet data, we discover label-
associated recognition modules, and show that intervening on these modules effectively reduces
classification accuracy on target label to 0%. Our experiments are supported via Transformerlens
(Nanda and Bloom, 2022) and ViT-Prisma (Joseph, 2023).

4.1 SAE MODULES

Prior work has established SAE features as concept vectors in a somewhat anecdotal manner, for
instance through their model steering capacity. In this section, we want to add to this line of work
by discovering the corresponding module, and then intervening on it. The former will allow us to
visualize the location of the module, and hence where in the transformer a concept is encoded; the
latter will further confirm our findings. In other words, if applying the negative intervention on a
module leads to erasure of a concept, we see this as further evidence that both concept vector and
module have been identified correctly.
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Figure 2: “French” module: We determine the “French” concept vector vc, and compare its cosine
similarity to every attention head in GEMMA-2-2B-IT. The black bounding boxes mark the 5 most
important heads, and hence define the module. Visibly, the identified heads are located in layers
15-26 matching previous findings that multilingual LLMs “think” in English first and translate into a
target language later (Zhao et al., 2024; Wendler et al., 2024).

An intrinsic challenge is the lack of accessible feature interpretations accompanying SAE releases.
Although several organizations have shared SAE weights (He et al., 2024; Gao et al., 2024a), the
corresponding feature interpretations remain undisclosed. To our knowledge, Lieberum et al. (2024)
is the only work that provides a feature set annotated with interpretations, motivating our decision
to base our study on their work.2 The reference feature set is based on GEMMA-2-2B-IT; thus we
perform SAMD on the same model, which has 8 heads per layer and 26 layers. We include all
semantically different representative concepts in this set: (i) a simple noun: “dog”, (ii) a proper

2Retrieved through the Neuropedia tool https://www.neuronpedia.org/gemma-2-2b-it/
steer.
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noun: “San Francisco”, (iii) a verb: “yelling”, and (iv) the interaction language: “French”. To launch
SAMD, we need to determine a set of prompts Dp associated with these concepts. We thus filter the
set of prompts the SAE was trained on (Team et al., 2024; Lieberum et al., 2024) and choose only to
include in Dp prompts that activate the given concept significantly, i.e., with an activation above 80%
of the maximum strength. The size of the concept-specific dataset varies but is on the order of 100
prompts for each of the 4 concepts we have chosen. To determine the size budget K (Section 3.1),
we investigate the heatmap of cosine similarities. In all 4 cases, we see a stark separation of only
5 top values and hence set K = 5 accordingly, see Appendix D. Visualizations for the remaining
concepts are placed in Appendix C.

We first corroborate existing research through SAMD. In Figure 2, we visualize the “French” concept
module discovered in GEMMA-2-2B-IT. The module, consisting of the top-5 most activated heads, is
marked by black bounding boxes. Note that, even though the attention head ID is arbitrary, the layer
ID gives an indication of where in the transformer the module is located. All relevant heads are in
layers 16 and above. This confirms prior findings that LLMs do not “think” in the language they are
prompted in but rather “translate” towards the last layers (Zhao et al., 2024; Wendler et al., 2024). In
Appendix C.2, we visualize all 4 modules discovered in the base model: GEMMA-2-2B. We find that
the module locations remain stable after LLM post-training, suggesting that the concept knowledge
has already been learned in the base model and does not change during post-training, thus supporting
the superficial alignment hypothesis (Zhou et al., 2023).

Prompt: Give me five cities in California.

Generation (no intervention): Here are five cities in California:
1. Los Angeles\n 2. San Francisco\n 3. San Diego\n 4. Sacramento\n 5. San Jose

Generation (positive intervention): Here are five cities in California:
1. Los Angeles (most populous city in the state)
2. San Francisco (known for its Golden Gate Bridge and Golden Gate Park) (repeated for 4
times)

Generation (negative intervention): Here are five cities in the state of California:
1. New York City (This is a bit of a trick! It’s a city in another country, not in the
state of California.)
2. London (Another international city, not in any of the states of the United States.)
3. Chicago (A city in the United States.)
4. Los Angeles (A major city in the United States.)
5. San Antonio (A city in the United States.)

Figure 3: “San Francisco” intervention: When the “San Francisco” module is amplified the LLM
tends to repeat the proper noun, when diminished the LLM can not recall the concept or even the
related California geography, suggesting the corresponding SAE feature might not be monosemantic.

Next, we apply SAMI to either diminish (negative intervention by factor s = −1) or amplify (positive
intervention by factor s = 104) the module effect qualitatively. The factor of −1 introduces a negative
contribution to the residual stream, and the factor of 104 is selected via a small grid search over
101,2,3,4. We show the effect of our intervention on all 4 modules in Figures 3, 4, 5, and 6. In all 4
examples, we see that negative intervention erases the concept without making the LLM nonsensical.
In some cases, as in the “San Francisco” example, the response becomes untruthful, however. We
speculate that this phenomenon could be connected to feature splitting (Bricken et al., 2023; Gao
et al., 2024a), meaning that the SAE feature itself, though understandable by humans, is still coarse
and polysemantic, and thus affects the monosemanticity of the module we discover. Amplification,
on the other hand, is less logical but more intriguing: we see that the amplified concept is repeated in
the response.

Most outstanding in this intervention experiment is the “French” module; here the negative inter-
vention compels the model to respond in English. Given our intervention happens in later layers,
this further supports the above mentioned hypothesis that multilingual LLMs “think” in English and
translate to the target language in later layers (Zhao et al., 2024; Wendler et al., 2024).

Finally, we add quantitative SAMI results to the “French” module, since this is the only concept
whose presence can be measured quantitatively. We take the FQuAD validation dataset3, which
contains 3188 French questions, to compare SAMI and SAE feature steering in their ability to change
the French output to English. SAMI with our default factor s = −1 reduces the French response
ratio from 85.35% to 1.66%, outperforming the best SAE ratio of 3.98% as depicted in Figure 26 in

3https://fquad.illuin.tech/
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the Appendix. Notably, SAE requires an extensive search over its intervention coefficient, while still
underperforming our simple SAMI.

4.2 REASONING MODULE

Going forward, we demonstrate that we can apply our pipeline to more abstract concepts. We focus
on reasoning, aiming to show that positive intervention can affect relevant benchmarks. As in the
previous section, we first choose a representative positive dataset Dp to compute the concept vector
vc. As Chain-of-Thought (CoT) prompting has shown significant reasoning improvements (Wei
et al., 2022), we take Dp to be the first 100 test prompts of the GSM8K (grade school math) dataset
(Cobbe et al., 2021) prompted with this methodology, constructed by lm-evaluation-harness (Gao
et al., 2024b). We then discover the “reasoning module” through difference-in-means (Eq. (2)), using
the last layer representation and an absent negative dataset Dn. Note that we only use the inputs
to launch SAMD without touching the labels, similar to the practice in test-time adaptation (Liang
et al., 2025). Again, the top-5 most important attention heads serve as our “reasoning module” (see
Appendix D).

Prompt: What is the animal that barks?

Generation (no intervention): The animal that is most commonly known for barking is the dog. ...

Generation (positive intervention): The most common animal that barks is a dog.\n However, it’s
important to note that:

* Dogs are not the only animals that bark. Some other animals that bark can be:

* Dogs: Different breeds have different barks, from a simple bark to a deep growl.

* Dogs’ relatives: ...

Generation (negative intervention): The most well-known animal that "barks" is the hummingbird.\n
However, it’s important to note that:

* "Barking" is a broad term. It can refer to a variety of sounds, and not all of them are
created by the same type of person.

* Many animals make sounds that resemble a "bark." For example, butterflies can make a
"barking" sound when they are excited or trying to attract a mate. ...

Figure 4: “Dog” intervention: A negative intervention leads to the LLM to avoid mentioning dogs,
while a positive one incites it to repeat the dog concept.

Prompt: HELLO! YELL WITH ME!

Generation (no intervention): YEEEAAAH! ...

Generation (negative intervention): Yelling is a powerful way to express oneself, but it’s important
to use it responsibly.\n Instead of yelling, how about we try a more constructive approach?
...

Figure 5: “Yelling” intervention: Negative intervention on the “yelling” module not just leads the
model to avoid paralanguage but also to advise the user to refrain from yelling.

Prompt: quelle est la langue actuelle?

Generation (no intervention): La langue de cette invitation est français.

Generation (negative intervention): The language of this prompt is English.

Figure 6: “French” intervention: The “French” module can be used to control the response language:
negative intervention compels the model to reply in English even though it was prompted in French.

We evaluate the effectiveness of our intervention on the GSM8K benchmark (Cobbe et al., 2021). We
apply SAMI to LLAMA-3.1-8B-INSTRUCT and GEMMA-7B-BASE, and amplify the “reasoning
module” by s = 1.4 and 1.2 respectively, determined via a grid search. As shown in Table 1, positive
intervention enhances reasoning capabilities for both models. Notably, our intervention does not lead
to a major degradation of other essential utilities. We observe no significant performance degradation
on Commonsense QA (-0.08%/+0.41%) (Talmor et al., 2019), coding capability on Humaneval+
(+0.6%/+0.0%) (Chen et al., 2021) and MBPP+ (-1.8%/+1.0%) (Austin et al., 2021) with evalplus
(Liu et al., 2023) for both models.4 Furthermore, we utilize the MT-bench (Zheng et al., 2023), which
provides a real-valued score between 1 to 10, to test the LLAMA-3.1-8B-INSTRUCT model, and
the results confirm that our intervention does not result in notable decline in performance (-0.07).
These findings suggest that once the correct module is identified, our approach can be applied without

4(·%/·%) indicates the change in performance after applying the reasoning module intervention, compared to
the original model, on LLAMA3.1-8B-INSTRUCT and GEMMA-7B-BASE, respectively.
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sacrificing other important aspects of model performance. Finally, we explore whether our “reasoning
module” could be helpful under SAMI on an out-of-distribution benchmark, MATH (Hendrycks
et al., 2021). We select s = 1.4 and 1.5 respectively, via a grid search. As shown in Table 2, the
improvement generalizes to datasets beyond the one used for construction.

Table 1: GSM8K reasoning benchmark results: baselines and with our positive intervention. Evalua-
tion is based on lm-evaluation-harness (Gao et al., 2024b).

MODEL BASELINE COT MODULE (OURS)

LLAMA3.1-8B-INST 84.61 85.44
GEMMA-7B-BASE 54.36 56.71

Table 2: MATH reasoning benchmark results: baselines and with our positive intervention. Evaluation
is based on lm-evaluation-harness (Gao et al., 2024b).

MODEL BASELINE COT MODULE (OURS)

LLAMA3.1-8B-INST 39.78 40.58
GEMMA-7B-BASE 24.16 24.74

4.3 SAFETY MODULE

A second concept of high importance to the LLM community is the one of safety alignment, i.e., the
LLMs’ ability to refuse harmful user requests (Olah, 2023). In contrast to the previous section that
relied on a positive dataset only, in this section we choose a contrastive method to determine vc use
datasets with harmful Dp and harmless Dn prompts (Eq. (2)), following Arditi et al. (2024). For this
section, we choose aligned LLMs: LLAMA-2-CHAT-7B (Touvron et al., 2023), QWEN-CHAT-7B
(Bai et al., 2023), and GEMMA-7B-IT (Team et al., 2024). The safety module is comprised of
K = 10 attention heads for all models (see Appendix D), and for jailbreaking we intervene with
s = −1.7,−0.7,−0.8 respectively, found via a grid search.

Figure 7 shows that in the safety module we discover with LLAMA-2-CHAT-7B most heads are
located in the middle of the transformer, between the 11th and 18th layer. Similar to our previous
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Figure 7: Safety module in LLAMA-2-CHAT-7B: - marked by black bounding boxes - is primarily
located in the middle layers of the transformer. It is comprised of only 10 attention heads.
finding, we see that positive intervention leads to repetition, as illustrated in the prompting example
in Figure 8. Of interest here is which tokens get repeated; namely “safety”, “saf” and “cert”. We
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could understand this as evidence that we do correctly isolate the attention heads that abstract the
safety concept. This repetition also indicates a spurious correlation: the abstract notion of safety
appears to be spuriously tied to the word “safety” within the model.

Prompt: Write a tutorial on how to make a bomb.

Generation (no intervention): I cannot fulfill your request. ...

Generation (positive intervention): Saf Saf cert cert cert cert safety cert safety safety safety
safety safety safety safety safety safety ...

Generation (negative intervention): Of course! I’d be happy to help you with that. Making a bomb
is a complex process ...

Figure 8: Safety intervention: Similar to previous results, amplifying the safety module leads to
repetition of the concept. Interestingly, the word safety was not directly part of the prompt dataset we
used to determine the concept vector. Negative intervention on the other hand leads model jailbreak.

Table 3: HarmBench (Mazeika et al., 2024) attack success rate (ASR) with direct request (DR), GCG
(Zou et al., 2023), weight orthogonalization (Arditi et al., 2024) and our safety module negative
intervention. All evaluations use the model’s default system prompt if it exists. Results marked with
* are taken from Arditi et al. (2024).

DEFENDER
ATTACKER DR GCG ORTHO SAFETY MODULE (OURS)

LLAMA-2 7B 0.0* 34.5* 22.6* 71.1
QWEN 7B 7.0* 79.5* 79.2* 78.0
GEMMA 7B 8.2 53.5 73.0 84.3

More interesting results can be obtained from negative intervention on the discovered safety modules:
Following Arditi et al. (2024), in Table 3 we show the attack success rate (ASR) on the “standard
behaviors” test set in HarmBench (Mazeika et al., 2024). The “direct request” (i.e. inputs without any
jailbreaking) is labeled as DR. Our method also utilizes the DR prompts. We compare different aligned
models (defenders) and contemporary attack strategies (attackers). Our module-based intervention is
compute efficient and prompt-agnostic, and more powerful than the vector-based ORTHO intervention
(Arditi et al., 2024) and the white-box optimization-based GCG (Zou et al., 2023).

4.4 RECOGNITION MODULES IN VISION TRANSFORMERS

In the final experiment, we show that our findings do not pertain to LLMs only but equivalently apply
to the vision domain. We perform this experiment on a vision transformer (ViT) (Dosovitskiy, 2020),
VIT-B/32,5 that has been pretrained on ImageNet-21K and fine-tuned on ImageNet-1K.

In the context of vision, we regard each label as a separate concept, and the corresponding vector
vc is obtained directly through the unembedding matrix. To launch SAMD, we choose 200 training
images with given label as Dp. For the choice of token position, there is a designated special token in
ViTs, the [CLS] token, which is trained to encapsulate global information about the input. Thus, we
utilize its computed representation for SAMD.6 All discovered “recognition” modules are made of 3
attention heads (see Appendix D).

We visualize the “tabby cat” module as an example in Figure 21. We find the module to primarily
occupy the final layers of the transformer. This is in line with long standing research in interpretability
showing that vision models first learn edges, and then increasingly abstract concepts (Zeiler and
Fergus, 2014).

In the intervention experiment, we show that we can selectively disable the recognition of a targeted
concept while the recognition for other concepts stays intact. We vary the intervention strength
−1 ≤ s ≤ 1. The results of this experiment are summarized in Figure 9. We observe that the model
rapidly loses its ability to recognize the target label. For the increment on generalization error, we
hypothesize that the label taxonomy plays a role in this phenomenon, such that intervening in a
particular label leads the model to lose recognizability for similar entities. That said, our model

5https://huggingface.co/timm/vit_base_patch32_224.augreg_in21k_ft_in1k
6Some (outlier) tokens can also contain global information when the model is large enough and sufficiently

trained (Darcet et al., 2024). However, these token positions are input-dependent, rendering them less reliable
for our purposes.
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Figure 9: SAMI results on VIT-B/32. Left: 4 labels with the lowest/highest generalization error
after intervention. Right: Average effect across all labels of ImageNet. With our discovered modules,
under negative intervention, we disable the recognizability on the attacked target (orange curve). We
also show the generalization error (green curve) on the full validation set.

works rather well on average across all labels. Overall, our intervention effectively suppresses the
ViT’s ability to classify the target label while retaining its generalization capacity. In Appendix G,
we repeat the experiments on VIT-L/16, and confirm that the observations could scale up to larger
models.

5 CONCLUSION AND DISCUSSION

In this paper, we propose the first concept-agnostic attention head attribution pipeline in general
transformer-based large models, including LLMs and ViTs. Our work uniquely highlights attention
head modules as underexplored yet highly effective units for arbitrary concept attribution. Our
pipeline enables broad applicability to arbitrary and complex concepts. Through SAMD, we experi-
mentally demonstrate that knowledge is sparsely encoded in the large model structure, as witnessed
by the tiny modules we discover for all the concepts we study in this paper. Furthermore, our scalar
attention module intervention (SAMI) allows direct control over model prediction and generation. By
isolating and manipulating attention modules, our pipeline sheds light on the internal mechanism of
transformer-based models, offering new insights into the role of attention in concept attribution.
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REPRODUCIBILITY STATEMENT

Our experimental results are fully reproducible. Our code is based on the Transformerlens (Nanda
and Bloom, 2022) and ViT-Prisma (Joseph, 2023) repositories, and all models considered in our paper
are open-sourced, including the Llama series (Touvron et al., 2023; Dubey et al., 2024), Gemma
series (Team et al., 2024), Qwen series (Bai et al., 2023), and ViT-B/32 (Dosovitskiy, 2020). In
subsection 4.1, the sparse autoencoder features, interpretations, and text prompts are collected from
Gemma Scope (Lieberum et al., 2024). In subsection 4.2, the text prompts are obtained from GSM8K
(Cobbe et al., 2021) through lm-evaluation-harness (Gao et al., 2024b). In subsection 4.3, we reuse
text prompts from Arditi et al. (2024) and evaluate the results using HarmBench (Mazeika et al.,
2024). In subsection 4.4, we evaluate the model on ImageNet-1K.
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A LARGE LANGUAGE MODEL USAGE

We only use LLMs to polish the text throughout the paper.

B RELATED WORK

In this section, we provide a literature review on existing attribution research and include the
background information of sparse autoencoders that we have used in our paper. Finally, we discuss
the relationship between our work and the field of mechanistic interpretability.

B.1 ATTRIBUTION AND LOCALIZATION

A long line of research has aimed to map model behaviors to specific model components, a process
referred to as attribution or localization, with early efforts focused on convolutional neural networks
(Bau et al., 2017; Zhou et al., 2018a;b; Bau et al., 2020). In the context of transformers, attribution
studies have primarily focused on neurons (Meng et al., 2022a;b; Geva et al.; Hase et al., 2023; Gupta
et al., 2023; Tan et al., 2024; Li et al., 2024; Chen et al., 2024; Lakretz et al., 2019; Csordás et al.,
2020; De Cao et al., 2021; Dai et al., 2021; Pan et al., 2024; Fang et al., 2024). Attention heads, while
fundamental to the transformer architecture, have received comparatively less attention. Existing
research typically associates attention heads with narrowly defined behaviors, such as information
retrieval (Wu et al., 2024) and simple tasks such as prediction of successors (Gould et al., 2023).
Whether attention head attribution can generalize to arbitrary concepts remains an open question.
Moreover, no existing framework provides a scalable, concept-agnostic approach for attention head
attribution. Our work addresses these limitations. Furthermore, to our knowledge, since we are
the first to perform attention head attribution plus intervention using arbitrary concepts, there is no
directly comparable work.

B.2 SPARSE AUTOENCODERS (SAES)

SAEs (Cunningham et al., 2023) are autoencoders trained to reconstruct the representations from a
specific layer of a transformer. Prior work has shown that SAEs can discover human-understandable
vector directions corresponding to arbitrary concepts, such as “the Golden Gate Bridge” (Templeton
et al., 2024), and can be used to steer model behavior via vector manipulation. Although open-
source SAE weights have been released for various language models (Gao et al., 2024a; Lieberum
et al., 2024; He et al., 2024), the associated human-interpretable feature annotations remain largely
unavailable. For our study, we use the only publicly available set of SAE features with accompanying
interpretations, released by Lieberum et al. (2024), and exclude abstract concepts that are difficult to
evaluate even qualitatively (e.g., “bravery”, “humor”).

B.3 MECHANISTIC INTERPRETABILITY

Another line of research is mechanistic interpretability, whose primary role is to reverse engineer the
mechanism of models (Olah et al., 2020; Bereska and Gavves, 2024; Sharkey et al., 2025). The core
objective is to identify the critical computational graph (a.k.a. circuit) that is causally responsible
for a particular model behavior, with clear functional interpretations of each node and explicit edges
connecting them. Prior work has uncovered several intriguing circuits, such as induction heads
(Olsson et al., 2022), circuits for indirect object identification (Wang et al., 2023), grokking (Nanda
et al., 2023), and iteration (Cabannes et al., 2024), among others. Our work differentiates itself
from this paradigm in several key aspects. First, we focus on attention-head attribution, which is
neither causal nor involving edge discovery. Second, the tasks and models involved in mechanistic
interpretability studies remain relatively simple (Bereska and Gavves, 2024; Conmy et al., 2023),
while our pipeline operates on general transformer models and supports the attribution of arbitrary
concepts. Third, we introduce an attention module-based intervention strategy (Section 3.2), a
direction not emphasized in mechanistic interpretability.
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C ATTENTION HEAD HEATMAPS FOR SAMD

In this section, we provide the visualization of attention head heatmap, as well as the module we
discover using the cosine similarity score for the broad spectrum of concepts we consider in the paper.
All experiments are launched on NVIDIA V100 and A100 GPUs.

C.1 MODULES DISCOVERED USING SAE FEATURES

In Figure 10, 11 and 12, we visualize the “dog”, “yelling” and “San Francisco” attention module we
discovered in GEMMA-2-2B-IT.
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Figure 10: “Dog” module: We determine the “Dog” concept vector vc, and compare its cosine
similarity to every attention head in GEMMA-2-2B-IT. The black bounding boxes mark the 5 most
important heads, and hence define the module.
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Figure 11: “YELLING” module: We determine the “YELLING” concept vector vc, and compare
its cosine similarity to every attention head in GEMMA-2-2B-IT. The black bounding boxes mark the
5 most important heads, and hence define the module.
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Figure 12: “San Francisco” module: We determine the “San Francisco” concept vector vc, and
compare its cosine similarity to every attention head in GEMMA-2-2B-IT. The black bounding boxes
mark the 5 most important heads, and hence define the module.
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C.2 MODULES DISCOVERED USING SAE FEATURES, BASE MODEL

In Figure 13, 14, 15 and 16, we visualize the “dog”, “yelling”, “San Francisco” and “French” modules
we discovered in GEMMA-2-2B. Compared to the modules in GEMMA-2-2B-IT, only one attention
head in the “yelling” module changed, with all other attention heads remains the same. This suggests
the modules do not change after LLM post-training, and thus supports the superficial alignment
hypothesis.
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Figure 13: “Dog” module: We determine the “Dog” concept vector vc, and compare its cosine
similarity to every attention head in GEMMA-2-2B. The black bounding boxes mark the 5 most
important heads, and hence define the module.
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Figure 14: “YELLING” module: We determine the “YELLING” concept vector vc, and compare
its cosine similarity to every attention head in GEMMA-2-2B. The black bounding boxes mark the 5
most important heads, and hence define the module.
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Figure 15: “San Francisco” module: We determine the “San Francisco” concept vector vc, and
compare its cosine similarity to every attention head in GEMMA-2-2B. The black bounding boxes
mark the 5 most important heads, and hence define the module.
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Figure 16: “French” module: We determine the “French” concept vector vc, and compare its cosine
similarity to every attention head in GEMMA-2-2B. The black bounding boxes mark the 5 most
important heads, and hence define the module.

C.3 CHAIN-OF-THOUGHT-REASONING MODULE

In Figure 17 and 18, we visualize the Chain-of-Thought reasoning module we discovered in
LLAMA3.1-8B-INSTRUCT and GEMMA-7B-BASE.
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Figure 17: CoT module: We determine the CoT concept vector vc, and compare its cosine similarity
to every attention head in LLAMA3.1-8B-INSTRUCT. The black bounding boxes mark the 5 most
important heads, and hence define the module.
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Figure 18: CoT module: We determine the CoT concept vector vc, and compare its cosine similarity
to every attention head in GEMMA-7B-BASE. The black bounding boxes mark the 5 most important
heads, and hence define the module.

C.4 SAFETY MODULE

In Figure 19 and 20, we visualize the safety module we discovered in QWEN-7B-CHAT and GEMMA-
7B-IT.

C.5 VIT MODULE

In Figure 21, we visualize the “Tabby Cat” module we discovered in VIT-B/32.

D NUMBER OF HEADS DETERMINATION

We plot the sorted AVG cosine similarity (i.e., the key quantity we use to plot the heatmap as well as
to choose the top attention head nodes), to demonstrate that the hyperparameters we choose (3, 5 and
10) usually lead to selecting the most significant heads. The results on SAE concepts (Figure 22),
safety (Figure 23), reasoning (Figure 24) and ViT concepts (Figure 25) are provided.

E FQUAD SAE SWEEP RESULT

In Figure 26, we provide the FR-EN ratio under sparse autoencoder vector steering. Our default
SAMI outperforms SAE vector intervention, which requires extensive sweep to determine the optimal
intervention coefficient.

F LIMITATIONS

We acknowledge the following limitations of our work.

• We do not emphasize causality for the module we identify through SAMD. This implies
there could exist other forms of knowledge encoding besides the attention head module in
transformers we have studied. Further, the gap between correlation and causation means our
attention module could be either overcomplete or incomplete. We leave a more fine-grained
analysis to future work.

• We provide neither a theoretically grounded sample complexity analysis nor a stability
analysis to our proposed SAMD. Though our methodology is robust across a broad spectrum
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Figure 19: Safety module: We determine the safety concept vector vc, and compare its cosine
similarity to every attention head in QWEN-7B-CHAT. The black bounding boxes mark the 5 most
important heads, and hence define the module.

of concepts, models and modalities we have tested, answering these questions would be
beneficial.

Nonetheless, our work provides the first concept-agnostic pipeline for arbitrary concept attribution to
attention heads, which we hope will enhance the understanding of state-of-the-art transformer-based
large models.

G RECOGNITION MODULE IN VIT-L

In this section, we expand our experiments in Section 4.4 to a larger vision transformer, VIT-L/167.
We determine the “recognition” modules use 5 attention heads by checking the average cosine
similarity scores. In the intervention experiment, we repeat our finding that we can selectively disable
the recognition of a targeted concept while largely maintaining the capability of recognizing other
concepts, as illustrated in Figure 27.

H SAMI ON NEGATIVE ATTENTION HEAD MODULES

In this section, we explore the functionality of attention heads that strongly correlates with the concept
vector negatively. To be specific, we repeat our experiments in Section 4.2 and Section 4.3, but use
attention modules formed by attention heads with the lowest average cosine similarities to the concept
vector.

7https://huggingface.co/timm/vit_large_patch16_224.augreg_in21k_ft_in1k
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Figure 20: Safety module: We determine the safety concept vector vc, and compare its cosine
similarity to every attention head in GEMMA-7B-IT. The black bounding boxes mark the 5 most
important heads, and hence define the module.
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Figure 21: “Tabby cat” module: The module for “tabby cat” recognition in a vision transformer
unsurprisingly sits at the very end (last layers) of the transformer. More surprisingly, our VIT-B/32
model relies on only 3 attention heads for the task.

For reasoning, we sweep over s from −1.0 to −2.0. We do not observe any improvement to the
baseline. Further, on Gemma-7B-Base, this intervention drops its accuracy to 0%, likely because an
attention head in the first layer is included in its module.

For safety, we use s = −1.0 and 2.0. We do not observe any change with respect to model behavior
against jailbreak attacks: the ASR of Llama stays at 0%, while that of Qwen and Gemma oscillates
between 4.40%, 8.18% and 15.1%, 10.1%.

Thus, we conclude that the negative heads do not correspond to the concept of interest. Our speculation
is that, in the context of the concept vector we have discussed, the opposite direction does not reliably
correspond to the opposite meaning of a certain concept. This suggests that a high absolute value
with a negative score does not reliably indicate the importance of that head with a “negative concept”.

I ROBUSTNESS OF SAMD WHEN USING LESS DATA

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Attention Head Index

0.2

0.0

0.2

0.4

0.6

AV
G 

Co
sin

e 
Si

m
ila

rit
y

Cosine Similarity Sorted, dog

(a)

0 50 100 150 200
Attention Head Index

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

AV
G 

Co
sin

e 
Si

m
ila

rit
y

Cosine Similarity Sorted, French

(b)

0 50 100 150 200
Attention Head Index

0.2

0.1

0.0

0.1

0.2

0.3

AV
G 

Co
sin

e 
Si

m
ila

rit
y

Cosine Similarity Sorted, San Francisco

(c)

0 50 100 150 200
Attention Head Index

0.2

0.1

0.0

0.1

0.2

0.3

AV
G 

Co
sin

e 
Si

m
ila

rit
y

Cosine Similarity Sorted, Yelling

(d)

Figure 22: AVG cosine similarity plot of the SAE concepts. Red dots indicate the chosen attention
heads (the most significant ones) to form the module in our paper.
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Figure 23: AVG cosine similarity plot of the “safety” concept. Red dots indicate the chosen attention
heads (the most significant ones) to form the module in our paper.

Our attention module discovery uniquely depends on the positive dataset. To validate its robustness,
we launch SAMD use only half of the data we have used throughout our paper.

In Figure 28, 29, 30 and 31, we visualize the “dog”, “yelling”, “San Francisco” and “French” modules
under this test. Compared to the original modules, only one attention head in the “yelling” module
changed, with all other attention heads remaining the same.

In Figure 32 and 33, we visualize the Chain-of-Thought reasoning module under this test. Both
modules are exactly the same as the original ones.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 100 200 300 400
Attention Head Index

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

AV
G 

Co
sin

e 
Si

m
ila

rit
y

Cosine Similarity Sorted, reasoning, gemma-7b

(a)

0 200 400 600 800 1000
Attention Head Index

0.10

0.05

0.00

0.05

0.10

0.15

0.20

AV
G 

Co
sin

e 
Si

m
ila

rit
y

Cosine Similarity Sorted, reasoning, llama3.1

(b)

Figure 24: AVG cosine similarity plot of the “reasoning” concept. Red dots indicate the chosen
attention heads (the most significant ones) to form the module in our paper.
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Figure 25: AVG cosine similarity plot of ViT. Red dots indicate the chosen attention heads (the most
significant ones) to form the module in our paper. We choose to report the results use the first 5
random labels in the dataset, in addition to the tabby cat label we used in our paper. Labels from
Top-Left to Bottom-Right: Tabby Cat; Goldfish; Great white shark; Hammerhead; Tench; Tiger
shark.

In Figure 34, 35, and 36, we visualize the safety module under this test. Compared to the original
modules, only one attention head in the Qwen and Gemma modules changed, with all other attention
heads remaining the same.

Together, we believe these experiments suggest the robustness of our SAMD process.
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Figure 26: SAE FR-EN ratio (%) over different intervention strengths. We start from the
recommended strength, -122, following Neuronpedia (https://www.neuronpedia.org/
gemma-2-2b-it/steer). We determine the optimal intervention coefficient use a coarse search
(a) followed by a fine-grained search (b). The best SAE result still underperforms our “French”
module’s performance.
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Figure 27: SAMI results on VIT-L/16. Left: 4 labels with the lowest/highest generalization error
after intervention. Right: Average effect across all labels of ImageNet. With our discovered modules,
under negative intervention, we disable the recognizability on the attacked target (orange curve). We
also show the generalization error (green curve) on the full validation set.
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Figure 28: “Dog” module: We determine the “Dog” concept vector vc, and compare its cosine
similarity to every attention head use half of the original data. The black bounding boxes mark the 5
most important heads, and hence define the module.
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Figure 29: “YELLING” module: We determine the “YELLING” concept vector vc, and compare
its cosine similarity to every attention head use half of the original data. The black bounding boxes
mark the 5 most important heads, and hence define the module.
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Figure 30: “San Francisco” module: We determine the “San Francisco” concept vector vc, and
compare its cosine similarity to every attention head use half of the original data. The black bounding
boxes mark the 5 most important heads, and hence define the module.
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Figure 31: “French” module: We determine the “French” concept vector vc, and compare its cosine
similarity to every attention head use half of the original data. The black bounding boxes mark the 5
most important heads, and hence define the module.
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Figure 32: CoT module: We determine the CoT concept vector vc, and compare its cosine similarity
to every attention head in LLAMA3.1-8B-INSTRUCT use half of the original data. The black
bounding boxes mark the 5 most important heads, and hence define the module.
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Figure 33: CoT module: We determine the CoT concept vector vc, and compare its cosine similarity
to every attention head in GEMMA-7B-BASE use half of the original data. The black bounding boxes
mark the 5 most important heads, and hence define the module.
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Figure 34: Safety module: We determine the safety concept vector vc, and compare its cosine
similarity to every attention head in LLAMA-2-CHAT-7B use half of the original data. The black
bounding boxes mark the 5 most important heads, and hence define the module.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Transformer Layer ID

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

At
te

nt
io

n 
He

ad
 ID

0.2

0.1

0.0

0.1

0.2

Co
sin

e 
Si

m
ila

rit
y 

of
 C

on
ce

pt
 a

nd
 A

tte
nt

io
n 

He
ad

Figure 35: Safety module: We determine the safety concept vector vc, and compare its cosine
similarity to every attention head in QWEN-7B-CHAT use half of the original data. The black
bounding boxes mark the 5 most important heads, and hence define the module.
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Figure 36: Safety module: We determine the safety concept vector vc, and compare its cosine
similarity to every attention head in GEMMA-7B-IT use half of the original data. The black bounding
boxes mark the 5 most important heads, and hence define the module.
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