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Abstract
Deep learning has achieved significant success but
poses increasing concerns about energy consump-
tion and sustainability. Despite these concerns,
there is a lack of understanding of their energy
efficiency during inference. In this study, we con-
duct a comprehensive analysis of the inference
energy consumption of 1,200 ImageNet classifi-
cation models—the largest evaluation of its kind
to date. Our findings reveal a steep decline in
accuracy gains relative to the increase in energy
usage, highlighting sustainability concerns in the
pursuit of marginal improvements. We identify
key factors contributing to energy consumption
and demonstrate methods to improve energy effi-
ciency. To promote more sustainable AI practices,
we introduce an energy efficiency scoring system
and develop an interactive web application that al-
lows users to compare models based on accuracy
and energy consumption. By providing extensive
empirical data and practical tools, we aim to fa-
cilitate informed decision-making and encourage
collaborative efforts in the development of energy-
efficient AI technologies.

1. Introduction
Over the past decade, AI has achieved remarkable capa-
bilities in various fields. However, these accomplishments
have come at the cost of significant computational demands.
AI research has traditionally prioritized achieving the high-
est possible accuracy, often disregarding considerations of
model size, complexity, and data requirements.

As the field matures and more AI products and services tran-
sition into commercial deployment, computational cost is

1Department of Engineering Science, University
of Oxford, Oxford, UK. Correspondence to: Zeyu
Yang <zeyu.yang@eng.ox.ac.uk>, Wesley Armour
<wes.armour@oerc.ox.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

becoming a major concern. Google reported that the energy
consumption of machine learning workloads constituted
10–15% of its total energy usage from 2019 to 2021, with
training accounting for 40% and inference for 60% (Patter-
son et al., 2022). Similarly, Meta observed a power capacity
distribution of 10:20:70 among experimentation, training,
and inference in their AI infrastructure (Wu et al., 2022).

Moreover, the electricity consumption of these tech giants
has been rising steadily. Google’s electricity usage increased
by an average of 21% per year over the past decade, grow-
ing from 3.7 TWh in 2013 to 25.3 TWh in 2023 (Google,
2019; 2024). Meta’s electricity consumption grew by an
average of 32% per year over the past five years, from 4.9
TWh in 2018 to 15.0 TWh in 2023 (Meta, 2024). Data
centers globally were estimated to consume about 1% of
global electricity and contribute 0.3% of greenhouse gas
emissions in 2018 (Masanet et al., 2020; Jones et al., 2018).
Furthermore, the widespread adoption of autonomous ve-
hicles could require as much electricity as all current data
centers combined (Sudhakar et al., 2022).

The high energy consumption associated with AI leads to
several negative consequences. Economically, it results in
higher capital costs for purchasing computing hardware and
increased operating expenses for electricity and cooling.
Environmentally, it produces a large carbon footprint, ex-
acerbating climate change. Additionally, the substantial
computational demands impede further development and
innovation in AI. The soaring costs of purchasing or rent-
ing computing power close the door to many researchers,
leaving only large tech companies as major players in the
field. This centralization contradicts the open-source ethos
that has traditionally driven AI and software development.
Moreover, high energy consumption hinders the deployment
of AI in edge scenarios where battery life and thermal de-
sign power (TDP) are constrained (Yang et al., 2022; Pereira
et al., 2023).

Despite these concerns, there is a lack of comprehensive
understanding of the energy consumption during inference
and the energy efficiency of different models. In this study,
we address this gap by measuring the inference energy con-
sumption of 1,200 ImageNet classification models—a scale
that is orders of magnitude larger than any previous work.
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Our research aims to answer the following questions: How
much additional cost are we incurring for marginal increases
in accuracy? What are the contributing factors to energy
consumption in AI models? Do current acceleration tech-
niques improve energy efficiency? How to trade-off between
energy consumption and accuracy?

Our key contributions are as follows:

• Extensive Dataset: We provide a comprehensive
dataset of inference energy consumption metrics for
1,200 ImageNet classification models, enabling better
understanding and comparison of model efficiencies.

• Insights into Energy Consumption Factors: We identify
factors contributing to energy consumption, correct
existing misunderstandings, and assess the impact of
throughput improvements on energy consumption.

• Two new ways to quickly estimate the energy consump-
tion of a model: 34% error just from model param,
gmacs and activation count, and less than 1% error
from throughput and TDP of GPU.

• Energy Efficiency Scoring System: We introduce a
scoring system to rank models based on their energy
efficiency, providing a standardized metric for evalua-
tion and informed decision-making.

• Interactive Web Application: We develop a web app
that allows users to visualize and compare models
based on energy efficiency and other metrics, promot-
ing energy-conscious choices within the community.

Our study empirically confirms that current deep learning
models are significantly less energy-proportional than ideal-
ized hardware expectations suggest, aligning with insights
from (Barroso & Hölzle, 2007). The steep diminishing
returns we identify reinforce the need for more energy-
proportional model architectures and inference methods.

Our findings directly support the goals outlined
by (Schwartz et al., 2020), advocating for Green AI
principles that prioritize energy efficiency alongside
accuracy. By demonstrating the marginal gains in accuracy
versus exponential energy demands, our work underscores
the urgency emphasized by the Sustainable AI move-
ment (Van Wynsberghe, 2021) to embed sustainability
criteria into AI model evaluation and selection.

2. Related Work
Several researchers have called on the AI community to
raise awareness of the energy consumption of AI models and
their subsequent environmental consequences. Schwartz et
al. (Schwartz et al., 2020) proposed the concept of Green
AI, which emphasizes computational efficiency alongside
model quality, as opposed to Red AI that prioritizes higher

accuracy regardless of computational cost - a norm in the
field. They also advocated for reporting a model’s FLOP
count as a standard practice in publications. Van Wyns-
berghe (Van Wynsberghe, 2021) introduced the Sustainable
AI movement to promote changes throughout the AI life
cycle - including training, fine-tuning, implementation, and
governance - towards ecological integrity and sustainable
development.

Li et al.(Li et al., 2016) were among the first to investigate
energy efficiency on GPUs, testing both the training and
inference of AlexNet, OverFeat, VGG, and GoogleNet on
NVIDIA K20m and TITAN X GPUs. They identified the
energy consumption of different CNN layers and analyzed
the impact of hardware settings such as batch size, hyper-
threading, ECC, and DVFS on energy efficiency.

Canziani et al.(Canziani et al., 2016) conducted a compara-
tive analysis of more than a dozen models, including variants
of Inception, VGG, and ResNet, evaluating metrics such as
accuracy, memory usage, inference time, and power con-
sumption on an NVIDIA Jetson TX1. Their work aimed
to guide efficient DNN design for practical applications by
highlighting the trade-offs between accuracy and compu-
tational requirements. Yao et al. (Yao et al., 2021) tested
three CNNs - VGG16, ResNet50, and Inception-V3 - on
three GPUs: NVIDIA Tesla M40, P4, and V100. They
highlighted the impact of different configurations and opti-
mizations, including quantization and the use of TensorRT
and Tensor Cores, on energy consumption, providing in-
sights for more energy-efficient deployment of CNNs in
high-performance computing environments. Overall, the
number of models evaluated in these works is limited, and
the GPUs used are outdated by today’s standards.

Henderson et al. (Henderson et al., 2020) proposed a stan-
dardized framework for consistent reporting of energy and
carbon emissions in ML research, aiming to raise awareness,
enable cost-benefit analyses, and promote energy-efficient
practices in model development and deployment. One of
their main arguments was that a model’s parameter count
and FLOPs do not necessarily correlate with energy con-
sumption. They tested over 20 models, including VGG,
ResNet, MobileNet, and SqueezeNet. However, they did
not specify which GPU they used. Most importantly, they
ran all models with a batch size of one, which underutilizes
any reasonably modern GPU and gives larger models an
unfair advantage.

Desislavov et al. (Desislavov et al., 2023) conducted one
of the most extensive analyses to date, examining 94 dif-
ferent ImageNet classification models. They showed that
efficiency gains from hardware advances and algorithmic
improvements mitigate energy growth despite increasing
model complexity. However, they estimated the energy con-
sumption of a model by dividing the model’s FLOPs by the
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GPU’s FLOPs per second and multiplying by the GPU’s
TDP. This is a highly idealized and optimistic assumption,
which, as we show in our results section, differs significantly
from real-world scenarios.

Shifting focus away from computer vision, Samsi et
al.(Samsi et al., 2023) benchmarked the inference energy
and compute requirements of various configurations of the
LLaMA model across GPU setups to highlight energy us-
age patterns and identify optimization opportunities for re-
source efficiency. Luccioni et al.(Luccioni et al., 2024)
benchmarked 80 models across 10 specific tasks and 8
general-purpose models, providing a systematic comparison
of energy consumption and carbon emissions in deployment.
They emphasized the significantly higher costs of deploying
general-purpose models compared to task-specific ones and
urged careful consideration of these environmental impacts.

Beyond evaluating 50–100× more models, our work ad-
dresses key limitations of prior studies, such as using batch
size = 1 and TDP-based energy estimates. Our rigorous
methodology yields accurate, realistic conclusions. We clar-
ify deployment details often omitted in past work, showing
PyTorch can be up to 10× more energy-consuming than
TensorRT. Measurements were conducted under an industry-
standard inference scenario to ensure real-world relevance.
Prior studies also used outdated models and GPUs. By
evaluating models up to 2024 on Hopper and Blackwell
Generation GPUs, our study offers the most comprehensive
analysis to date. Our open-source framework on GitHub1

supports easy evaluation of new models and GPUs. We
invite the community to contribute by utilizing our frame-
work to assess their models and GPUs and contribute to our
GitHub repo and web app.

3. Methodology & Experimental Setup
Model Selection To comprehensively analyze energy ef-
ficiency across diverse model architectures, we included
all available pre-trained models from the Hugging Face
PyTorch Image Models (Timm) library (Wightman, 2019).
Timm is widely used for its extensive collection of state-of-
the-art vision models—encompassing convolutional neural
networks, vision transformers, and hybrid architectures. We
ultimately selected over 1,200 models in order to capture
distinct energy–accuracy trade-offs across various architec-
tures, depths, and publication times. This breadth ensures
our results are not simply redundant and that they capture
the true diversity of existing approaches, covering a wide
range of model sizes, complexities, and design philosophies.

Hardware Configuration All main experiments used
two NVIDIA GPUs: the A100 PCIe 40GB (NVIDIA,

1https://github.com/JimZeyuYang/
DL-Inference-Energy-Efficiency

2020) from the “Ampere” generation and the H100 PCIe
80GB (NVIDIA, 2023) from the “Hopper” generation. Both
deliver state-of-the-art performance and efficiency in deep
learning computations. Key hardware and software configu-
rations can be found in the appendix.

Inference Deployment Methods We evaluated the mod-
els with two inference methods: standard PyTorch (Ansel
et al., 2024) at FP32 precision and NVIDIA TensorRT
at FP16 precision. Standard PyTorch serves as a non-
optimized baseline, while TensorRT represents a production-
level optimization for NVIDIA GPUs.

Accuracy Metrics To thoroughly evaluate the models’
accuracy, robustness, and generalization, we used six val-
idation/test datasets: the original ImageNet validation
set (Russakovsky et al., 2015), along with five widely
recognized datasets: ImageNet Real Labels (Beyer et al.,
2020), ImageNet V2 Matched Frequency (Recht et al.,
2019), ImageNet Sketch (Wang et al., 2019), ImageNet
Adversarial (Hendrycks et al., 2021b), and ImageNet Rendi-
tion (Hendrycks et al., 2021a). These datasets assess stan-
dard classification accuracy as well as performance across
diverse visual domains and distribution shifts.

Measurement Procedure We developed an automated
script to evaluate all selected models. We iteratively in-
creased the batch size, starting from 1 and doubling until
reaching the GPU’s memory limit, ensuring maximum hard-
ware utilization and fair comparisons across different model
sizes. For each batch size, we performed two runs: a warm-
up to handle potential out-of-memory errors and prepare the
GPU, followed by a measured run. Inference was continued
until more than 13 repetitions and 10 seconds of runtime
were reached, ensuring sufficient data for both large and
small models. More details can be found in the Appendix.

Energy Measurement Following the guidelines in (Yang
et al., 2024), we measured GPU energy consumption using
onboard power sensors via nvidia-smi. We recorded power
usage and other GPU metrics at 100 Hz, then logged the
data for subsequent analysis.

Additional Metrics We collected key model statis-
tics—such as parameter counts and FLOPs—using pt-
flops (Sovrasov, 2018-2024) and torchinfo (Yep, 2020). We
also recorded GPU utilization, VRAM usage, and tempera-
ture to investigate how these metrics relate to model charac-
teristics, performance, and energy consumption.

Result Integrity & Reproducibility We had exclusive
machine access during experimentation, preventing interfer-
ence from other processes. All experiments used the same
A100 and H100 GPU cards for consistency. The servers
were housed in a data center with controlled cooling, and
GPU temperatures remained within operational ranges. We
have made our source code available in a GitHub repository
to facilitate replication and verification of our results.
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Figure 1. Energy consumption data plotted against the ImageNet
accuracy for the H100 TensorRT FP16 inference setup. Models are
categorized into general architectures, and the large black markers
shows the center of the individual clusters.

Table 1. Pearson Correlation Coefficient (PCC) and Spearman’s
Rank Correlation Coefficient (ρ) of the energy consumption of
models across different deployment setups: comparing same GPU
with different software and different GPU with same software.

PCC / ρ A100 - PT H100 - TRT

A100 - TRT 0.8553 / 0.9345 0.9840 / 0.9943
H100 - PT 0.9939 / 0.9904 0.8299 / 0.9201

4. Results
In this section, we present our findings in four parts. First,
we provide the overall energy consumption data of all tested
models, analyzing observations and trends. Next, we in-
vestigate the factors that contribute to energy consumption,
aiming to correct common misunderstandings. We then ex-
plore methods that improve energy efficiency and examine
the relationship between other metrics. Finally, we discuss
the trade-off between accuracy and energy consumption and
introduce our interactive web app designed to facilitate this
and promote efficient and responsible Machine Learning.

4.1. Energy Consumption Results and Trends

Overall Results Fig.1 plots the energy consumption of
each model against its ImageNet classification accuracy for
the most efficient H100 TensorRT FP16 setup. The model
distribution remains largely consistent across different in-
ference methods (see Table 1), and data for the other three
setups appear in the Appendix.

These models are categorized by their architecture into
Multi-Layer Perceptrons, Convolutional Neural Networks,
Transformers, and hybrid CNN-Transformer models. Note
that the energy consumption axis is on a logarithmic scale.

A prominent finding is the steep diminishing returns in ac-
curacy as energy consumption grows. Energy usage spans
four orders of magnitude (a factor of 10,000). In the first or-
der of magnitude, a tenfold increase in energy consumption
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Figure 2. Six highlighted models that largely forms the efficient
frontier. ML veteran VGG is also highlighted for reference.

approximately doubles accuracy (from 40% to 80%). The
second decade increases accuracy by only 7% (to 87%), and
a further tenfold increase gains just 3% (to 90%), with neg-
ligible improvements thereafter. This pattern exhibits loga-
rithmic growth on a logarithmic scale, indicating a nested
logarithmic relationship. We fit this growth function to
the models on the efficient Pareto front of the H100 Ten-
sorRT data (gray line in Fig.1). Extrapolating suggests that
achieving 100% accuracy would require about 207 MWh of
electricity per image—enough to power San Francisco for
approximately 15 minutes.

When comparing architectures, MLPs generally yield lower
accuracy at higher energy consumption, CNNs occupy the
lower accuracy and energy range, and Transformers re-
side in the higher accuracy and energy range. Hybrid
CNN–Transformers lie between these extremes. The large
black markers in Fig.1 show the centers of these clusters.

Efficient Frontier Models As shown in Fig.2, Models
on the efficient frontier primarily come from just six fami-
lies — MobileNet-V4 (Qin et al., 2025), GENet (Lin et al.,
2020), HGNet-V2 (Contributors, 2023), BEiT-V2 (Peng
et al., 2022), EVA (Fang et al., 2023), and EVA02 (Fang
et al., 2024) — ranging from lower to higher accuracy and
energy consumption. The first three are CNN-based, while
the latter three are Transformers, indicating no single archi-
tecture uniformly maximizes energy efficiency.

MobileNet-V4, originally designed for resource-constrained
edge devices, remains highly efficient on the H100 80G,
one of the largest GPU. However, as the model scales up,
other families surpass its performance. Both GENet and
HGNet-V2 are optimized for low-latency GPU inference
via grouped and depthwise-separable convolutions, tuned
network depth and width, residual bottlenecks, memory-
efficient access patterns, and parallel-friendly operations.
Although energy consumption correlates strongly with
throughput (shown in later sections), it is notable that these
latency-oriented designs also excel in energy efficiency.
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Moving to higher accuracy and energy consumption, BEiT-
V2, EVA, and EVA02 were not explicitly designed for effi-
ciency. Rather than reducing energy for the same accuracy,
they offer higher accuracy at equivalent energy levels —
totally another valid path toward more efficient progress.

Performance on Other Datasets As the original Ima-
geNet dataset has largely reached performance saturation,
Fig.3 plots energy consumption against the average accuracy
across the other five datasets described in the Methodology.
Accuracy naturally decreases here because some of these
datasets are more challenging. Notably, lower-energy CNNs
experience larger performance drops, whereas higher-energy
Transformers maintain stronger accuracy, consistent with
the expectation that larger Transformer models offer greater
robustness against domain shifts. Although the diminishing-
return effect appears less pronounced than on ImageNet, it
still follows a beyond-exponential pattern.

One might wonder if the efficient frontier models for the
original ImageNet lose their advantage on these additional
datasets. The red line in Fig.3 marks the Pareto front for
ImageNet. We find that most frontier models remain effi-
cient, except in the 60%–70% accuracy range, where several
ResNeXt (Xie et al., 2017) models surpass them. This result
likely arises from ResNeXt’s relatively high accuracy on
ImageNet Sketch, attributable to its wider “cardinality” ar-
chitecture that enhance the out-of-distribution performance.

Other GPUs To check whether the observed trends are
generalizable to other GPUs, we tested the 128 most effi-
cient models on H100 on 4 other GPUs: RTX 3090, 4090,
5090 and a mobile laptop GTX 1650 Ti. The results, shown
in Fig. 4, strongly confirm the original trends observed on
A100 and H100, further validating the broad applicability
of our findings.

We found that the RTX 5090 offered limited efficiency gains.
Across 128 models, the RTX 4090 achieved a 21.0% geo-
metric mean energy reduction over the RTX 3090, while the
RTX 5090 improved by only 5.7% over the RTX 4090. This
slowdown in GPU generational energy efficiency gains high-
lights the importance of our research, as relying on newer
GPUs being more efficient alone is no longer sufficient.

4.2. Understanding of Energy consumption

We investigate the relationship between energy consumption
and various model metrics, including the number of parame-
ters, FLOPs, activations, and input image size. Additionally,
we aim to correct some misconceptions about the energy
consumption of models.

Error of Naive Energy Estimation As mentioned in the
related work section, (Desislavov et al., 2023) estimated
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Figure 3. Energy consumption plotted against average accuracy of
the five other datasets for robustness analysis. The red line high-
lights the pareto front models for the original ImageNet dataset.
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Figure 5. Error in naive estimation of energy consumption based
on FLOPs compared with actual measurements on the A100 GPU.
The geometric mean of the underestimation factor is 3.13 and 3.16.

the energy consumption of a model by dividing the model’s
FLOPs by the GPU’s FLOP/second and multiplying by the
GPU’s TDP. We replicated this calculation and compared
the estimated energy consumption with our actual measure-
ments. Fig.5 shows the distribution of underestimation. On
average, this method underestimates energy consumption by
approximately three times and can underestimate by nearly
40 times in some cases.
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Parameters, FLOPs, and Activations Intuitively, larger
and more complex models demand more computation and
thus consume more energy. However, (Henderson et al.,
2020) concluded that “FPOs and Params have no strong
correlation with Energy Consumption.” In contrast, our re-
sults reveal a moderately strong linear correlation between
parameter count and energy consumption, and a very strong
correlation for both FLOPs and activations (Fig.6). Build-
ing on these correlations, we fitted a simple multiple linear
regression (MLR) model to estimate energy consumption
from Params, Gmacs, and activations, achieving a Mean
Absolute Percentage Error of 34.73%. Although this em-
pirical model is not highly accurate, it offers a quick way
to gauge energy efficiency from basic model statistics - an
improvement of nearly an order of magnitude over the naive
FLOPs estimates mentioned above. Details of the fitted
formula are provided in the Appendix.

Input Image Size For models that accept variable input
sizes, increasing the input size yields only negligible im-
provements in accuracy but results in a substantial increase
in energy consumption. Fig.7 illustrates the increase in ac-
curacy and energy consumption as the input size increases
for a subset of models that support variable input sizes.

4.3. Efforts to improve energy efficiency

GPU Utilization We examine how GPU utilization affects
inference energy consumption. Larger batch sizes process
multiple inputs in parallel to increase hardware utilization,
hence reducing per-sample overhead, thereby increasing
efficiency. Fig.8A shows the energy consumption of Effi-
cientViT on the A100 GPU with progressively larger batch
sizes up to the GPU memory limit. Energy consumption
drops significantly as batch size grows—until memory band-
width and processing units become fully utilized. Beyond
this point, further increases yield minimal improvements.
In some extreme cases, CUDA libraries may adopt less effi-
cient strategies to fit larger batches into memory, ultimately
increasing energy consumption.

Energy consumption, Throughput, and TDP Fig.8B
shows the throughput and latency achieved at varying batch
sizes. Latency increases linearly with batch size, while
throughput increases initially and then plateaus. We ob-
served an inverse relationship between throughput and en-
ergy consumption. Throughput is measured in images per
second, and energy consumption is measured in joules per
image. The product of these two gives the average power
draw of the GPU during model execution:

Imgs

s
× Joules

Img
=

Joules

s
= Watt = AvgPwrDraw

(1)

The maximum power a GPU can draw is its Thermal Design
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Figure 6. Relationship between energy consumption per image
and number of parameters, FLOPs, and activations (A100 with Py-
Torch FP32). Pearson Correlation Coefficients are 0.6679, 0.8021,
and 0.9023, respectively. The plot on the lower left shows the
predicted energy using the emprical model vs. the actual Energy
consumption per image.
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Figure 7. Increase in accuracy and energy consumption as the input
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racy is minimal, whereas energy consumption is almost directly
proportional with input size.

Power (TDP), and the GPU maintains power draw not to
exceed the TDP under heavy load.

To confirm this inverse relationship, we plotted through-
put against energy consumption in Fig.8C, along with the
maximum possible product of the two (the TDP line). As
batch size increases, energy consumption decreases, while
throughput increases. Although the relationship is not
strictly linear, when batch size is small, the GPU is under-
utilized, resulting in an average power draw below the TDP.
As batch size increases, GPU utilization improves, and the
throughput-energy consumption combination approaches
the TDP limit. The conclusion, although counterintuitive,
is that higher average power draw leads to greater energy
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Figure 8. Analysis of batch size effects on EfficientViT on H100:
(A) Energy consumption at different batch sizes, (B) Throughput
and latency, (C) Throughput vs energy consumption with the TDP
limit indicated, and (D) Average power draw relative to batch size.

efficiency due to better GPU utilization.

This observation underscores the importance of making sure
the inference setup for a particular model fully utilize the
hardware of a particular GPU, ensuring a fair comparison
between different models. Simply performing inference
with a batch size of one (as mentioned in related works)
would unfairly favor larger and more complex models, as
they naturally consume more GPU resources.

Infer Energy Consumption from Throughput Fig.9A
plots energy consumption against throughput for all models
at their most efficient batch size on the A100 GPU. Each
model lies on the TDP line. One can accurately estimate
a model’s energy usage from its throughput alone with a
Mean Absolute Percentage Error of 0.97% (e.g., when the
GPU is unavailable, but throughput is reported in a paper).
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and TDP: (A) Energy consumption versus throughput for all mod-
els, showing the TDP limit, and (B) Improvement in energy con-
sumption versus throughput when using TensorRT instead of Py-
Torch on the A100 GPU.
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instead of PyTorch on the A100. The geometric mean reduction
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Fig.9B illustrates the proportional relationship between
increased throughput and decreased energy consumption
when switching from PyTorch FP32 to TensorRT FP16.
Since many inference accelerators focus on throughput, and
the TDP ceiling enforces a fixed power limit, any improve-
ment in throughput directly translates into lower energy
consumption.

Energy Savings from TensorRT FP16 Fig.10 shows
the reduction in energy consumption for each model when
switching from PyTorch FP32 to TensorRT FP16. On aver-
age, energy consumption decreases by about fourfold. This
improvement stems from lower computational and mem-
ory overhead with FP16, as well as the layer/kernel fusion
and kernel tuning provided by TensorRT. Notably, mod-
els that were highly energy-intensive under PyTorch see
greater gains (up to 10×), likely due to less efficient Py-
Torch implementations. This also explains the relatively
weak correlation between PyTorch and TensorRT energy
consumption on the same GPU compared to using the same
software on different GPUs.
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Figure 11. Screenshot of the interactive web application. The top menu lets users to select inference setups, test datasets, scoring
metrics, and plotting options. The scatter plot shows energy consumption versus accuracy for all models based on these selections.
Hovering over a point reveals the model’s details, and clicking opens its Hugging Face page. The red lines indicate user-defined
accuracy and energy thresholds, while the background displays a contour map of the selected efficiency score. The bar plot on the right
highlights the top-performing models under the chosen metric. The web app is available at: https://jimzeyuyang.github.io/
DL-Inference-Energy-Efficiency/.

4.4. Trade-off between Model Accuracy & Energy

We propose two methods to evaluate the trade-off between
energy consumption and achieved accuracy. A standard
“bang for the buck” calculation measures efficiency as the
ratio of accuracy to energy consumption (in percentage per
joule). However, this metric may unfairly favor less accurate
models. For instance, a trivial model that always outputs
“goldfish” could achieve 0.1% accuracy on ImageNet-1K
while consuming negligible energy, yielding a misleadingly
high efficiency score despite being practically useless.

To mitigate this issue, we recommend using the efficiency
ratio alongside a minimum accuracy threshold. This ap-
proach ranks models based on energy efficiency only if they
meet a baseline level of accuracy. Additionally, as with
prioritizing accuracy, maximizing efficiency alone may not
be ideal in certain use cases. In critical applications such
as autonomous driving or medical diagnostics, accuracy is
often paramount, regardless of power constraints.

Therefore, we propose a second metric based on a weighted
Manhattan distance to the ideal point (100% accuracy and 0

energy consumption):

score = 100−
(
W

(
E

N

)
+ (1−W ) (100−A)

)
(2)

where E is the energy consumption, A is accuracy, N is
the maximum energy consumption among all models (for
normalization), and W is a weight between 0 and 100. A
weight of 100 prioritizes energy consumption entirely, while
0 prioritizes accuracy. Users can adjust W to suit specific
requirements: for example, a medical diagnostic model
might use W = 5 for high accuracy, whereas categorizing
personal photo albums might work well with W = 90.

To help researchers and practitioners explore these trade-
offs, we developed an interactive web application that vi-
sualizes and compares the energy efficiency and accuracy
of all models in our dataset under various configurations.
Users can select inference setups (e.g., GPU type or soft-
ware library), evaluate accuracy on specific or combined
test sets, and apply different scoring metrics—all in real
time. One of the primary aims of this tool is to promote
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energy efficiency in machine learning by guiding the selec-
tion of feature backbones for broader tasks such as image
segmentation and detection. Models that excel on ImageNet
Adversarial or Rendition may suit security-critical appli-
cations, while those performing well on ImageNet Sketch
could be ideal for abstract or low-resolution imagery. A
screenshot of the webpage is shown in Fig. 11, illustrating
how users can tailor parameters to their needs and instantly
observe the impact on model rankings.

Through these complementary evaluation methods and our
interactive tool, we hope to provide a balanced perspective
on how to select architectures that meet both performance
and sustainability goals.

5. Discussion
Our extensive benchmarking demonstrates that while state-
of-the-art models achieve higher accuracy, they also incur
substantial energy costs with diminishing returns. The log-
arithmic rise in energy consumption for minimal accuracy
gains raises sustainability concerns, both environmentally
and economically.

Practitioners must balance accuracy, throughput, and energy
consumption—the “iron triangle.” As shown in Section 4.3,
throughput and energy consumption are bounded by the
GPU’s TDP, emphasizing the need for efficiency-oriented
model design. To aid in navigating these trade-offs, the
interactive tool introduced in Section 4.4 allows users to
visualize and balance key performance metrics, promoting
informed decision-making.

Our study significantly extends previous work by bench-
marking 1,200 models on the latest A100 and H100 GPUs,
offering a fair comparison and comprehensive insights. Al-
though our experiments focus on these specific GPUs, the
trends observed—especially the high correlation of power
consumption across different GPUs—suggest broader appli-
cability. The comprehensive coverage of vision backbones
would also help downstream tasks like object detection and
semantic segmentation.

The considerable energy costs tied to marginal accuracy
gains highlight the need to adopt more sustainable AI prac-
tices. By prioritizing efficiency and providing practical tools
to measure energy consumption, we encourage the develop-
ment and deployment of models that balance performance
with environmental impact, aligning with the growing em-
phasis on Sustainable AI (Van Wynsberghe, 2021).

Looking ahead, we plan to update our dataset and inter-
active web application as new models and GPUs emerge.
We invite the community to use our open-source code to
measure additional models and submit their findings. Such
collaborative efforts will build a comprehensive resource to

track energy efficiency trends over time, foster transparency,
and accelerate sustainable AI innovation.

This comprehensive study establishes a strong foundation
in the underexplored field of energy-efficient machine learn-
ing and sustainable AI by this comprehensive study on the
current trends, factors that influence energy consumption,
rectified existing misconceptions, best practices for efficient
model deployment, and provided various tools to estimate
energy consumption and tradeoff between accuracy. The
data, results, and conclusions presented in our study are
entirely novel, offering groundbreaking insights into the
energy efficiency of deep learning models. We hope this
work serves as a catalyst for the development of sustainable
AI.

6. Conclusion
In summary, our work provides a comprehensive analysis of
the energy consumption of 1200 vision models, illuminat-
ing the significant trade-offs between model accuracy and
energy efficiency. By highlighting the diminishing returns
in accuracy gains and introducing practical tools and met-
rics, we hope to shift the focus towards more sustainable
AI practices. Our findings lay the groundwork for further
exploration into optimizing deep learning models for energy
efficiency, encouraging a paradigm shift in how we evaluate
and prioritize model performance.
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The increasing energy consumption of deep learning mod-
els, particularly in computer vision, presents critical eco-
nomic and environmental challenges. This study provides
the most comprehensive analysis to date of inference energy
consumption across 1,200 ImageNet classification models,
offering empirical insights and practical tools to promote
more energy-efficient AI development.

Our findings reveal that improvements in model accuracy
come with steeply diminishing returns in energy efficiency,
raising concerns about the sustainability of current AI scal-
ing trends. The introduction of an energy efficiency scoring
system and an interactive web tool empowers researchers
and practitioners to make informed decisions, balancing
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model performance with environmental impact.

From an ethical standpoint, this work aligns with the grow-
ing emphasis on Sustainable AI, encouraging a shift towards
more responsible AI development and deployment. By pro-
viding transparency on the energy trade-offs associated with
different architectures and inference methods, this study fos-
ters awareness and accountability within the AI community.

While our focus is on vision backbones and possible down-
stream tasks, the implications extend to broader AI applica-
tions, including natural language processing and edge com-
puting. We anticipate that this research will contribute to
industry-wide efforts in reducing AI’s carbon footprint and
driving innovations in energy-efficient model design. Ulti-
mately, we hope this work serves as a catalyst for greener
AI solutions that balance computational advancements with
long-term sustainability.
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A. Appendix
A.1. Source Code

All the code used in this work are available at:

https://github.com/JimZeyuYang/DL-Inference-Energy-Efficiency

A.2. Hardware and Software Configurations

A100 PCIe 40G H100 PCIe 80G

TDP 250W 310W
CPU EPYC 7452 Xeon Gold 6342
RAM 1TB 512GB
OEM GIGABYTE DELL

OS CentOS 8.1.1911 CentOS 8.1.1911
GPU Driver 525.116.04 525.116.04
CUDA vers. 11.8 11.8
PyTorch vers. 2.4 2.4

Table 2. Key hardware and software configurations.

A.3. Automated Measurement Procedure
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Figure 12. Automated model testing procedure.
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A.4. Overall Result for the other 3 Inference Setups
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Figure 13. The overall scatter plot for the other 3 inference setups.
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A.5. Fitted MLR Model for Energy Consumption Estimation

Since the all four of the Energy Consumption, Params, Gmacs and Activations exhibits uniformly in log-scale, the data
follows a power-law or multiplicative distribution. Hence the Multiple Linear Regression model was done after taking the
natural logarithm of both the depend and independent variables. The Log-Linear Regression Model has the form:

log(Energy Consumption) = const+A log(params) +B log(gmacs) + C log(activations) (3)

Energy Consumption = econst × paramsA × gmacsB × activationsC (4)

The parameters for the 4 inference setups are as follows:

const A B C

A100 PyTorch FP32 -14.1597 0.1426 0.1328 0.7687
A100 TensorRT FP16 -15.5186 0.1560 0.1622 0.7280
H100 PyTorch FP32 -14.0926 0.1348 0.0952 0.8103
H100 TensorRT FP16 -15.0298 0.1062 0.1141 0.7961

Table 3. Energy Estimation Model Parameters

A.6. Additional Justifications on Experiment Design Choices

Quantization and Pruning We acknowledge the ability of quantization and pruning to improve efficiency. The TensorRT
inference setup used FP16. We excluded a more detailed investigation because: 1 - Quantization and pruning are not
architecture changes, but rather optimization techniques applied to any existing architectures. Our study focuses on the
inherent energy efficiency characteristics of different architectures themselves; 2 - Often needs post-quantization fine-tuning
or QAT, and similar for pruning. This process is infeasible for a large-scale study like this; 3 - There are some existing works
already on this topic (Tmamna et al., 2024; Hashemi et al., 2017).

nvidia-smi Query Frequency nvidia-smi updates the power draw reading at 10Hz to 50Hz. Querying nvidia-smi at 100
Hz was intentional, balancing the need to capture recent updates without unnecessary polling overhead. According to the
Nyquist theorem, sampling above twice the signal frequency preserves all information. A higher sampling frequency would
not do any harm.

A.7. Training & Year-on-year Improvement
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Figure 14. Yearly progress on model accuracy and energy consumption. (A100 TensorRT FP16 as an example for illustration).

Training has significantly evolved over the past decade, involving larger datasets (LAION), self-supervised methods, and
various training recipes. We categorized the models by the year their corresponding papers were published. Fig.14 illustrates
how each year’s new models push the existing convex hull of models towards greater accuracy and efficiency. As the
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field evolved and more models were introduced, the efficient frontier expanded in both the high accuracy, high energy
consumption direction and the low accuracy, low energy consumption direction. Notably, we observe a consistent vertical
increase in accuracy in the high consumption region and a somewhat inconsistent horizontal shift towards lower consumption
in the lower accuracy region. However, improvements in the middle region—towards the top-left corner representing high
accuracy and low consumption—appear to be more stagnant compared to others.

vit base patch16 clip 224 trained with laion2b are 0.2% more accurate than the openai version, but with significantly more
training data. While selecting a pretrained model for inference, one would pick the higher accuracy version; the question of
whether consuming significantly more energy during training for marginal accuracy gains (e.g., 0.2%) is justified is beyond
the scope of this work. This topic alone deserves a future investigation by itself.

A.8. Robustness Analysis
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Figure 15. Drop in accuracy by energy consumption percentile.
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Figure 16. Drop in accuracy by model architecture type.

We performed some additional analysis on the robustness of the models. We measured and calculated the absolute and
relative accuracy decrease from the original ImageNet dataset with the average of the other 5 robustness datasets. We
grouped models into 10 deciles by energy consumption, as shown in Fig. 15, and observed that higher-energy-consuming
models experience smaller accuracy drops, aligning with our findings presented in paper Fig. 3. Looking at different model
architectures, as shown in Fig. 16, drop in accuracy for CNNs are 29.7%, hybrid models are 27.6%, and Transformers
are 24.0%. We also observed that CLIP models only droped by 15%, demonstrating notably stronger out-of-distribution
robustness.
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A.9. Extension

Down-stream Tasks While our study directly evaluates image classification backbones, many popular detection and
segmentation models (e.g., Faster R-CNN, Mask R-CNN, RetinaNet, DeepLab) commonly reuse these vision backbones
as feature extractors. Given this standard practice, the energy efficiency characteristics we observed for various architec-
tures—such as CNN, Transformer, and Hybrid models—serve as meaningful indicators for downstream task efficiency. For
instance, backbones identified as energy-efficient at classification tasks could likely translate to efficient feature extraction in
detection and segmentation pipelines, influencing overall inference efficiency. However, we do recognize the additional
computational complexity and varying bottlenecks introduced by downstream modules (e.g., region proposal networks, mask
heads, upsampling layers). Hence, explicitly measuring these downstream tasks remains important for precise validation.
We plan to extend our methodology to directly measure and confirm how the observed backbone energy characteristics
generalize to these more complex tasks in future work.

LLMs Our current evaluation framework was specifically tailored toward vision backbones. However, we fully recognize
the importance and widespread use of large language models (LLMs) in various real-world applications, making their energy
efficiency evaluation critically relevant to the sustainable AI community. Although our current study does not include LLMs
explicitly, the core principles of our measurement methodology—such as GPU utilization optimization, real-time energy
monitoring, and accuracy-performance trade-off metrics—are inherently transferable to large-scale LLM inference scenarios.
To adapt our framework effectively to LLMs, we would primarily need to consider: 1 - Different inference characteristics:
Token-based generation and longer context windows in LLM inference, compared to fixed-size image inference in vision
models; 2 - Adaptation of evaluation metrics: Metrics such as perplexity, generation quality (e.g., BLEU, ROUGE), or
task-specific evaluations (e.g., accuracy on reasoning benchmarks) instead of classification accuracy; 3 - Adjustments in
batching strategies: Optimal GPU utilization patterns for LLM inference, including considerations for sequence length
and context size variability. In future research, we plan to explicitly extend our methodology to evaluate and analyze
energy-accuracy trade-offs for large-scale language models, providing analogous insights that could significantly benefit the
LLM research and deployment community.
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