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Abstract
In the realm of household robotics, the Zero-Shot
Object Navigation (ZSON) task empowers agents
to adeptly traverse unfamiliar environments and
locate objects from novel categories without prior
explicit training. This paper introduces VoroNav,
a novel semantic exploration framework that pro-
poses the Reduced Voronoi Graph to extract ex-
ploratory paths and planning nodes from a seman-
tic map constructed in real time. By harnessing
topological and semantic information, VoroNav
designs text-based descriptions of paths and im-
ages that are readily interpretable by a large lan-
guage model (LLM). In particular, our approach
presents a synergy of path and farsight descrip-
tions to represent the environmental context, en-
abling LLM to apply commonsense reasoning
to ascertain waypoints for navigation. Exten-
sive evaluation on HM3D and HSSD validates
VoroNav surpasses existing benchmarks in both
success rate and exploration efficiency (absolute
improvement: +2.8% Success and +3.7% SPL
on HM3D, +2.6% Success and +3.8% SPL on
HSSD). Additionally introduced metrics that eval-
uate obstacle avoidance proficiency and percep-
tual efficiency further corroborate the enhance-
ments achieved by our method in ZSON planning.
Project page: https://voro-nav.github.io

1. Introduction
Navigation capability holds great significance for household
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Figure 1. Voronoi-based Navigation with LLM. Our model fo-
cuses on optimizing the decision-making process in ZSON. It
enables the agent to pinpoint intersections rich in observation
on the map by Voronoi sparsification, which act as navigation
waypoints. The agent perceives the environment at intersections,
collects scene information from nearby waypoints, and performs
reasoning guided by LLM to ascertain the most plausible waypoint
leading to the desired target. The five images presented in (a) de-
pict the agent’s corresponding perspectives as it faces five adjacent
navigation waypoints at the intersection illustrated in (b), with the
indices showing the correspondence.

robots, empowering these autonomous machines to reach
designated areas effectively and complete various subse-
quent tasks. Within this context, Zero-Shot Object Navi-
gation (ZSON) demands that an agent have the ability to
move toward a target object of an unfamiliar category by
leveraging scene reasoning, a capability essential for the
performance of diverse complex tasks by household robots.
The core of ZSON centers on leveraging general common-
sense to steer agents for exploration with minimal movement
cost and accurate localization of a novel target object.
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Current ZSON methods can be categorized into two types:
end-to-end, network-based navigation (Majumdar et al.,
2022; Park et al., 2023; Zhao et al., 2023; Chen et al.,
2023a; Gadre et al., 2023); and modular, map-based navi-
gation (Zhou et al., 2023; Gadre et al., 2023; Chen et al.,
2023b). The end-to-end methods use reinforcement or imita-
tion learning for training policy networks, and are designed
for mapping directly from RGB-D images to actions. How-
ever, the end-to-end model’s output lacks interpretability
and necessitates a substantial amount of training data, and
exhibits serious inefficiency problems of back-and-forth
redundant movement regarding the actual performance.

Map-based methods leverage maps to store historical topol-
ogy information for planning purposes. Map-based naviga-
tion frameworks usually plan new waypoints either every
predetermined number of steps or when the increment in
map building reaches a specific threshold. However, the
selected waypoints usually come short of optimal positions
for decision-making. This occurs because the agent could
arrive at an intersection with massive information and poten-
tially uncover expansive unseen areas by just one more step
from here, which can bring huge benefits to scene reasoning
and task planning. Yet, such benefits may not be obtained
using the traditional strategy of choosing waypoints, for they
would not actively identify informative points as waypoints.
Just imagine that you are looking for an object, walking
down a long corridor, and encountering the scene shown
in Figure 1 (b). Would you be more inclined to halt at the
intersection, take a moment to observe your surroundings,
and then make a thoughtful decision after comparing the
adjacent areas? Therefore, this study puts insight into the
positive impact of making decisions at intersections in the
field of navigation, and develops a Reduced Voronoi Graph
(RVG) generation approach to distill intersection points and
viable pathways from the real-time built map. Utilizing
graph-structured RVG, we systematize the planning process
as navigation subtasks across graph nodes.

Another significant issue faced by existing navigation algo-
rithms is the integral representation of observed scenes for
subsequent planning. When presented with RGB images,
network-based approaches leverage semantic embeddings to
identify novel object categories and utilize recurrent policy
networks to directly predict optimal actions (Khandelwal
et al., 2022); Conversely, map-based methods mostly em-
ploy an open-set detector to segment RGB images, which,
in conjunction with depth data and pose information, are
utilized to construct a semantic map. By interpreting the
representation of the semantic map, the next subgoal point
is selected (Chaplot et al., 2020). Each method, however,
presents distinct limitations: network-based methods strug-
gle with low exploration efficiency and constrained planning
memory that is limited by implicit scene representation and
network size, whereas map-based methods only build maps

within the field of view of the depth camera, thus unable to
integrate information beyond the depth sensing range to plan
informed waypoints. To overcome these limitations, it is
essential for the agent to fuse the observations of both maps
and images, comprehensively understand both modalities,
and make appropriate decisions.

To provide a direct response, we adopt the large language
model (LLM) as a cognitive engine for spatial reasoning to
understand various scenes. The custom-designed prompts
are developed to effectively integrate observations of maps
and images, considering the preference of LLM. Previous
studies (Zhou et al., 2023; Yu et al., 2023b) have collected
objects around frontier points to depict the scenes of the ex-
ploration areas, and then employed LLMs to infer probable
locations of the target. While these foundational applica-
tions established a groundwork for guiding navigation with
LLM, we reimagine these principles by imitating human
exploratory behaviors. Specifically, human exploration typi-
cally involves scene description from two perspectives: the
egocentric view and the scenes along traversable paths. De-
scriptions that align analogously with human cognition en-
sure that the resulting prompts are closer to human corpora
(Beckner et al., 2009; Lai et al., 2018), and previous works
(Brown et al., 2020; Naveed et al., 2023) show that LLM
typically exhibits enhanced performance when dealing with
natural language problems similar to the corpora. Starting
from this standpoint, we formulate the prompt by generat-
ing descriptions of paths (scenes along traversable paths)
and farsight images (egocentric view), thereby promoting
LLM’s understanding of the observed scenes.

The ZSON task requires the agent to find the target at the
lowest path cost. The reasoning results of LLM can guide
the agent in predicting the probable locations of the target,
but struggle to handle the problem of exploration. So we
design a hierarchical reward mechanism that combines the
topological information of the map and the suggestions pro-
vided by LLM. This mechanism evaluates the exploration
significance, path efficiency, and commonsense tendencies
of each candidate waypoint on the RVG, thereby facilitating
more informed decision-making.

Our contributions can be summarized as follows:

• We introduce Voronoi-based scene graph generation for
ZSON, designed to select waypoints that provide a wealth
of observation data to facilitate subsequent planning pro-
cesses.

• We design an innovative prompting strategy of scene
representation that combines both path and farsight de-
scriptions to provide holistic scene descriptions for LLM
to analyze and evaluate.

• We propose a decision-making policy that necessitates
deliberation among exploration, path efficiency, and com-
monsense tendencies to yield rational actions.
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• We achieve state-of-the-art results on the ZSON task
and outperform benchmark methods on representative
datasets, i.e., HM3D (Ramakrishnan et al., 2021) and
HSSD (Khanna et al., 2023).

2. Related Work
2.1. Zero-shot Object Navigation

In contrast to conventional object navigation, ZSON aims
to locate objects of unfamiliar categories and attain high ex-
ploration efficiency. Image-based ZSON works (Majumdar
et al., 2022; Al-Halah et al., 2022; Gadre et al., 2023; Lian &
Zhang, 2024) directly map the egocentric images and target
object instructions to the embedding spaces and utilize a
trained policy network to predict subsequent actions in an
end-to-end manner. Such methods offer convenient porta-
bility and do not require explicitly designed frameworks
like hierarchical methods. However, their performance in
practice significantly lags behind those of map-based naviga-
tion methods (Chaplot et al., 2020). In contrast, map-based
ZSON works typically adopt hierarchical structures that
explicitly maintain and link perception, planning, and con-
trol modules. These approaches are usually integrated with
zero-shot object detectors to identify target objects, making
informed decisions by leveraging prior knowledge of object
relationships (Chen et al., 2023b) or by employing large
language models (Zhou et al., 2023; Yu et al., 2023b; Shah
et al., 2023). However, these methods focus solely on the
environment around the frontier points, neglecting the in-
termediate process of robot navigation to the frontiers. Our
method records the scenes along the routes to unexplored ar-
eas, providing a more organized description of observations
for robot planning.

2.2. Scene Representation for Navigation

In the hierarchical framework of visual navigation, scene
representation is used to process the received observation
information into an explicit structure that can be directly uti-
lized by subsequent decision-making. Frontier-based works
(Ramakrishnan et al., 2022; Chen et al., 2023b; Gadre et al.,
2023; Gervet et al., 2023) embed semantic information of
the scene into frontier points to model the exploration bound-
ary’s scene situation, achieving a trade-off between explo-
ration and semantic motivation. However, most of these
methods adopt a strategy of making decisions at fixed inter-
vals, resulting in mid-term decisions frequently occurring at
moments when the observation information gain is scarce.
Graph-based works predict waypoints directly from RGB-D
images (Krantz et al., 2020; 2021; An et al., 2023; Hong
et al., 2022; Chen et al., 2022) to represent the environment
as topological maps, integrating geographic and semantic
information into nodes for waypoint navigation. These way-
point prediction methods require collecting house structures

from similar scenarios as training sets, and the generated
waypoints often fall into obstacles (Yue et al., 2024), re-
sulting in navigation failure. In contrast, our method does
not require training and can explicitly predict waypoints,
thereby providing robust planning for navigation.

2.3. LLM Guided Navigation

LLMs have become a new way of prior-knowledge reason-
ing in navigation due to its powerful information processing
and generative capabilities. For example, Zhou et al. (2023)
use LLM to predict the degree of correlation with the target
object at the object level and the room level to infer the most
likely location of the target object. Yu et al. (2023b) gener-
ate clusters of unexplored areas by frontiers, and leverage
LLM to infer the correlation between the target object and
the objects within each cluster to navigate to the scene closer
to the target object. Gadre et al. (2023) adopt LLM to pro-
vide prior information at the object level to assist in target
object localization. Shah et al. (2023) feed chain-of-thought
(CoT) into LLM for navigation that encourages exploration
of areas with higher relevance while concurrently avoiding
moving to areas unrelated to the target object. Cai et al.
(2023) cluster panoramic images into scene nodes by LLM,
use CoT of LLM to determine exploration or exploitation,
select the image with the highest likelihood of finding the
target object, and navigate accordingly based on the chosen
image. Yu et al. (2023a) apply the decision-making of LLM
for multi-robot collaborative navigation, and the LLM cen-
trally plans the mid-term goal for each robot by extracting
information such as obstacles, frontiers, object coordinates,
and robot states from online maps. In this paper, we present
a novel prompt generation technique by integrating path and
farsight descriptions to guide LLMs for zero-shot object
navigation, providing more holistic information for LLMs
to reason and make plans.

3. VoroNav Approach
This section first introduces the task definition of ZSON
(Section 3.1). Subsequently, the modules of the VoroNav
framework are introduced. As shown in Figure 2, VoroNav
constructs a semantic map in Semantic Mapping Module
(Section 3.2), then determines the mid-term goal in Global
Decision Module (Section 3.3), and finally plans local mo-
tion and selects a discrete action in Local Policy Module
(Section 3.4).

3.1. Task Definition of ZSON

Traditional supervised object navigation relies on the knowl-
edge or reward from the training data to predict the optimal
action at and is limited to navigating to targets within a
closed set of known categories K. However, the ZSON
task requires neither purposeful training nor closely linked
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Figure 2. Components of VoroNav. VoroNav includes three modules. Perceptual inputs include RGB-D images and real-time pose,
while the output of the agent is “Action”. The RGB-D and pose observation are processed by the Semantic Mapping Module (light blue
module) to form a semantic map. The Global Decision Module (light yellow module) generates RVG, which is used to produce textual
descriptions of surrounding neighbor nodes and exploratory paths. This module then employs an LLM to assist in selecting the promising
neighbor node as a mid-term goal by inferring the fused prompt of scene descriptions. The Local Policy Module (light green module)
plans the low-level actions of the agent to reach the target point.

prior knowledge for navigation toward a novel set of object
types N . Initially, the agent is placed at a designated start
point p0 and is given the category G ∈ N of the target to
find. The agent’s observation includes RGB-D images It
and the real-time pose pt in the environment E . An effec-
tive decision-making framework needs to be developed to
leverage these observed data Ot = {{p0, I0}, . . . , {pt, It}}
to understand and deduce the environment, aiming to predict
the likely position of the target object. The agent is required
to explore the environment according to its planning module
until it discovers the target, after which it should proceed to-
ward the target. Success is achieved when the agent reaches
a geodesic distance of less than 0.1 meters from the tar-
get and executes a “Stop” command. Conversely, the task
is deemed failed if the agent either exceeds the maximum
step count without finding the target or executes the “Stop”
action at a distance greater than 0.1 meters from the target.

3.2. The Semantic Mapping Module

We maintain a 2D semantic mapMt by processing RGB-D
images {I0, . . . , It} and poses {p0, . . . , pt}. This seman-
tic map is structured as a (K + 2) ×M ×M grid, where
M denotes the dimensions of the map’s width and height,
and (K + 2) indicates the total number of channels within
the map. These channels comprise K categorical maps, an
obstacle map, and an explored map, which correspond to de-
tected object regions, obstacle regions, and observed regions,
respectively. Given the depth image and the agent’s pose,
3D point clouds are generated. All point clouds near the

floor are assigned to the explored map representing the feasi-
ble area to travel through, whereas those at other heights are
mapped into the obstacle map. Meanwhile, we predict the
category masks of the RGB image by Grounded-SAM (Liu
et al., 2023; Kirillov et al., 2023) and map the masks into
3D semantic point clouds using the depth information and
the agent’s pose. The 3D point clouds with K categorical
information are correspondingly mapped to K categorical
map channels.

3.3. The Global Decision Module

Graph Extraction. The Generalized Voronoi Diagram
(GVD) of a map depicts a set of points that are equidistant
from the two closest obstacle points, representing the medial-
axis pathway of unoccupied space outside the obstacles
of arbitrary shape (Choset & Burdick, 1995; Lau et al.,
2013). Let X ∈ R2 be the map space and Ω denote the area
occupied by obstacles on the map. The point set V of GVD
can be represented as follows:

V = {x ∈ X\Ω|∃ωi ̸= ωj ∈ Ω, d(x, ωi) = d(x, ωj) = f(x)}
(1)

where ω(·) represents any point within the obstacles Ω, the
function d(·, ·) denotes the Euclidean distance between two
points, while f(·) signifies the positive Euclidean Signed
Distance Field (ESDF), which is defined as follows:

f(x) = inf
y∈∂Ω

d(x, y) (2)

where ∂Ω indicates the boundary of the obstacles.

Given the obstacle and explored maps, we can obtain the
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(a) Path Descriptor

(b) Semantic Exploration Planner

Now, you have 3 areas to go:
l Area 1: there is a bedroom with a couch, a bed and pillows, you 

will pass by a bedroom with bed, chair and refrigerator on the way.
l Area 2: there is a meeting room with dining-table and chairs.
l Area 3: there is a bathroom with a bathtub, you will pass by a 

bathroom with toilet and sink on the way.
Please estimate the probability of couch appearing at these areas in 
[0,1].

Scene Description:

LLM Response:

Area 1 : 0.9     Area 2 : 0.3      Area 3 : 0.1

Objects Along the Path:

Path Description:

You are given the center point coordinates of 
objects that appear on a path: Bed (62,120); 
Chair (98,171); Refrigerator (117,122). You 
need to describe this path.

You will pass by a bedroom with bed, chair and 
refrigerator on the way.

Figure 3. Commonsense Reasoning with LLM. (a) LLM ana-
lyzes the objects and their coordinates that appear on the path and
depicts the scene along the path. (b) LLM predicts the probability
of the target object appearing in each area by comprehending the
fused text descriptions of the scene.

GVD points from these maps and construct RVG G to repre-
sent the observed spaces1. We then classify the RVG nodes
into four categories based on the node positions: agent
nodes, neighbor nodes, exploratory nodes, and ordinary
nodes. Specifically, the node closest to the agent is desig-
nated as the agent node, representing the agent’s current
decision-making position; The nodes directly connected to
the agent node are considered neighbor nodes for subsequent
planning; The nodes adjacent to unexplored areas with a
single connecting edge are classified as exploratory nodes.
All the other nodes are categorized as ordinary nodes.

Path Description. We generate navigable paths formed
by RVG edges and create text descriptions that embody
the scene along each path, as shown in Figure 3 (a). To
be specific, given m exploratory nodes, we leverage the
Wavefront Propagation method (Kalra et al., 2009) to ob-
tain the shortest path Pj from the agent node to the jth

exploratory node on the GVD and compile all the paths
into a set P = {P1, . . . , Pm}, as shown in Figure 6
(c). To generate the semantic description of each path
Pj , we gather from the semantic map the occurrence of
c objects {oj,1, . . . , oj,c} along the exploratory path Pj

and the objects’ central locations {lj,1, . . . , lj,c}. Assum-
ing paths within the set {Pa, . . . , Pb} all pass through the
neighbor node Ni, prompts of the form Template({Pa :

(oa,1, la,1), . . .}
⋃
. . .

⋃
{Pb : (ob,1, lb,1), . . . }) are generated

for the neighbor node Ni, by collecting and summarizing
the semantic information along the paths in {Pa, . . . , Pb}.
The function Template(·) processes the input data, convert-

1The process for generating RVG is detailed in Appendix A.1

Caption 2: There is a meeting room
with dining-table and chairs . 

Caption 3: There is a bathroom
with a bathtub. 

Caption 1: There is a bedroom 
with a couch, a bed and pillows. 

Figure 4. Farsight Image Captioning. The agent selects all RGB
images that capture the views of neighbor nodes and uses BLIP to
generate captions of these images.

ing it into the textual form and integrating it with prede-
fined templates to create a format conducive to conversa-
tional interactions with LLM (refer to Figure 3 (a): Objects
Along the Path). Afterward, to distill the fragmented and
unstructured path information into a coherent format, we
employ GPT-3.5 (Ouyang et al., 2022), which possesses
robust comprehension and generative capabilities, for cre-
ating the scene descriptions Dp

i along paths that traverse
each neighbor node Ni (refer to Figure 3 (a): Path Descrip-
tion). Similarly, assuming there involve n neighbor nodes,
we describe the scenes of the paths each neighbor node
Ni leads to and compile the path descriptions into a set
Dp = {Dp

1 , . . . , D
p
n}. This process textualizes the scenar-

ios the agent will encounter along possible navigable paths
after reaching each neighbor node.

Farsight Description. Path description generation is the
process of converting the semantic map into scene descrip-
tions of path form; however, the semantic map is constrained
by the depth camera’s limited range, precluding the incorpo-
ration of map information beyond its scope. Consequently,
semantic descriptions of RGB images of unexplored areas
add crucial complementary context for robot navigation. As
shown in Figure 4, at the onset of the ZSON task or upon
reaching an RVG node, the agent executes a full rotation
to capture panoramic images. We then determine the ray
Ri on the map that extends from the agent’s current node
(agent node) to each neighbor node Ni. The RGB image
Ik collected from the full rotation It = {It−11, . . . , It} (a
full rotation includes 12 turns), whose central Line of Sight
(LoS) Tk exhibits the least angular deviation from the ray
Ri, is identified as the one (Ifi ) oriented towards the corre-
sponding neighbor node Ni. Let Tt = {Tt−11, . . . , Tt} be
the central LoS set of It, the process of matching images
with each neighbor node Ni can be defined as follows:

argmin
Tk

g(Ri, Tk)

s.t. Tk ∈ Tt
(3)
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where the function g(·, ·) indicates the angle between two
rays on the map. The BLIP model (Li et al., 2022) is then
employed to generate descriptionsDf = {Df

1 , . . . , D
f
n} for

those images {If1 , . . . , Ifn} facing different neighbor nodes
{N1, . . . , Nn}.

Planning with LLM. We select the mid-term target points
by considering three distinct factors: exploration objective,
locomotion efficiency (traversed path length), and alignment
with typical scene layouts. The rewards for exploration
and efficiency are space reasoning results stemming from
spatial topology. To encourage the agent to explore the
environment, we design a binary exploration reward vector
P to indicate if there exists an exploratory path from the
agent node to each exploratory node that traverses through
neighbor nodes. Considering exploration efficiency, we
design an efficiency reward vector C and assess whether
each neighbor node lies within the previously traversed area.

Semantic rewards are reasoning feedback grounded in em-
pirical knowledge and commonsense. The Global Decision
Module utilizes the commonsense reasoning capabilities
of the large language model, GPT-3.5, to select the most
promising goal node for finding or approaching the target
object among all neighbor nodes. To this end, we com-
bine the path and farsight descriptions of each neighbor
node to generate a specially designed form of prompt that is
amenable for GPT-3.5. This enables the LLM to more accu-
rately estimate the probability of the target object’s presence
on each neighbor node by detailed prompts, as illustrated in
Figure 3 (b). The probabilities given by the LLM’s response
are compiled into a semantic reward vector L and serve
as varying levels of semantic incentive to navigate towards
neighbor nodes.

When the agent simultaneously considers exploration, effi-
ciency, and semantic aspects of decision-making, balancing
the priority among these factors becomes challenging. To
mitigate potential conflicts, we have implemented a hierar-
chical structure within the reward system. Assuming there
are a total of n neighbor nodes, the cumulative reward vec-
tor W ∈ Rn is the sum of exploration reward vector P,
efficiency reward vector C and semantic reward vector L.
The next navigation point selection can be formulated as
follows:

argmax
S

WTS

s.t. S ∈ En
(4)

where En = {e1, e2, . . . , en} is the standard orthogonal
basis composed of n-dimensional coordinate vectors. The
decision variable S = ei if ith neighbor node is selected for
next navigation waypoint. The reward vectors are defined
as follows:



W = P+C+ L,
P = 2 (α1e1 + . . .+ αnen) ,
C = β1e1 + . . .+ βnen,
0 ≤ L ≤ 1,
αi, βi ∈ {0, 1},
W,P,C,L ∈ Rn.

(5)

where the ith dimensional component of L is the semantic
score of the ith neighbor node provided by LLM within the
interval (0, 1). The binary coefficient αi ∈ {0, 1} stands
for whether the ith neighbor node is traversed through by
exploratory paths (αi = 1) or not (αi = 0), and βi ∈ {0, 1}
denotes whether the ith neighbor node is covered by histori-
cal trajectories (βi = 0) or not (βi = 1). We establish the
hierarchy of priorities for each aspect by assigning different
reward weights of the reward vectors as shown in Equa-
tion (5) (1st : Exploration; 2nd : Efficiency; 3rd : Semantic).

We select the neighbor node that offers the highest cumu-
lative reward as the next target waypoint for navigation. If
the agent’s vision model identifies the target object G while
exploring, the Semantic Mapping module will map the tar-
get’s point cloud onto the existing mapM, enabling direct
path planning toward the target’s location.

3.4. The Local Policy Module

Given the agent’s pose, obstacle map, and target point, we
use the Fast Marching Method (Sethian, 1996) to find the
shortest path from the current position to the target, which
is composed of a sequence of discrete points in the map.
The nearest coordinate on this shortest path is selected as an
immediate navigation objective for executing actions such
as moving forward or turning. Once arriving at a Voronoi
node, the agent will rotate and repeat the selection of the
mid-term goal.

4. Experiments
In order to assess the navigation capability and exploration
efficiency of VoroNav, we carry out extensive experiments
on two representative datasets: HM3D and HSSD datasets.

4.1. Baselines and Metrics

Datasets. The HM3D dataset provides 20 high-fidelity re-
constructions of entire buildings and contains 2K validation
episodes for object navigation tasks. The HSSD dataset
provides 40 high-quality synthetic scenes and contains 1.2K
validation episodes for object navigation.

Metrics. We adopt Success rate (Success) and Success
weighted by Path Length (SPL) as the evaluation metrics
(Anderson et al., 2018), which are defined as follows:

• Success represents the percentage of successful episodes
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Table 1. Comprison with ZSON Baselines. Our proposed VoroNav outperforms the ZSON baselines on both HM3D and HSSD. To
guarantee the zero-shot navigation capability of each method, we use Grounded-SAM to replace the vision modules of methods marked
by an asteroid (∗), which aligns with our model.

Method Planner Training-free LLM HM3D HSSD

Success↑ SPL↑ Success↑ SPL↑
Random Exploration∗ Random ✓ - 26.5 9.2 30.2 12.7

Frontier (Yamauchi, 1997)∗ Topological ✓ - 33.7 15.3 36.0 17.7
Voronoi∗ ✓ - 38.7 23.3 40.3 22.2

L3MVN (Yu et al., 2023b)∗

Semantic

✓ GPT-2 35.2 16.5 38.4 19.4
Pixel-Nav (Cai et al., 2023) × GPT-4 37.9 20.5 - -
ESC (Zhou et al., 2023) ✓ GPT-3.5 39.2 22.3 - -
VoroNav (Ours) ✓ GPT-3.5 42.0 26.0 41.0 23.2

to the total number of episodes.
• SPL quantifies the agent’s mobility efficiency in goal-

oriented navigation by calculating the inverse ratio of the
actual path length traversed to the optimal path length
weighted by success rate.

Baselines. We conduct comparative evaluations of VoroNav
and several representative baseline planners, including:

• Random Exploration drives the robot to march to ran-
domly sampled points in unexplored areas.

• Frontier (Yamauchi, 1997) is an exploration method that
selects the nearest boundary points of unexplored areas
and unoccupied areas as the mid-term goals.

• Voronoi corresponds to VoroNav but without considering
the semantic reward.

• L3MVN (Yu et al., 2023b) is a region-oriented navigation
method that leverages LLM to select the optimal mid-
term waypoint by evaluating regions clustered by the
frontier points.

• Pixel-Nav (Cai et al., 2023) is image-based zero-shot
navigation that analyzes panoramic images and utilizes
LLM to determine optimal pixel for exploration.

• ESC (Zhou et al., 2023) is a pioneering method employ-
ing an LLM to determine the mid-term goal from the
frontier points during exploration.

Note that Random Exploration, Frontier, and Voronoi meth-
ods only utilize topological information of the map for plan-
ning, while L3MVN, Pixel-Nav, and ESC additionally re-
quire semantic information.

4.2. Results and Analysis

4.2.1. COMPARISON WITH SOTA METHODS

As shown in Table 1, our approach outperforms the best-
performing competitor (+2.8% Success and +3.7% SPL on
HM3D, +2.6% Success and +3.8% SPL on HSSD). As ex-
pected, the Random Exploration method suffers from the
blind exploration strategy, resulting in a high likelihood of

targeting the wrong areas and walking back and forth dur-
ing exploration. The Frontier method consistently pursues
the closest unexplored boundary, resulting in a more rapid
exploration compared to the Random Exploration. Yet, the
Frontier method suffers from relatively low efficiency as
it fails to prioritize rapidly locating the target at the per-
ception level. The Voronoi method shares similarities with
the Frontier method in search for the nearest unexplored
point. However, Voronoi enhances the navigation process
by proceeding to informative neighbor nodes along the RVG
paths, thereby pursuing to uncover larger areas with very
few steps. Both L3MVN and ESC adopt the frontier explo-
ration strategy and leverage an LLM to select appropriate
frontier points, whereas Pixel-Nav makes decisions after
a fixed number of steps, utilizing LLMs to predict the di-
rection with the highest probability of leading to the target,
and subsequently employing an RGB-based policy to plan a
route and navigate accordingly. These three semantic plan-
ning methods uniformly make decisions at predetermined
intervals, which can lead to agents determining the mid-term
goal in suboptimal positions with insufficient observations,
thereby failing to fully unleash the reasoning power of LLM.
Our VoroNav method further improves the navigation pro-
cess while using scene descriptions of broader observations
to assist LLM in reasoning and decision-making, thereby
achieving better performance.

Figure 5 illustrates a successful episode of VoroNav nav-
igating to the target with the help of the RVG and LLM.
It visualizes the observations and the environments at four
key global decisions in this episode, and the details of a
representative LLM decision-making process.

4.2.2. ABLATION STUDY

To manifest the contribution of each module, we compare
VoroNav with three ablation models on both HM3D and
HSSD datasets. The Voronoi method keeps the same set-
tings as in Section 4.1. The Voro-path method omits the
farsight descriptions in VoroNav and depends entirely on
the path descriptions, whereas the Voro-farsight method ex-
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1 1
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Area 1 : 0.3
Area 2 : 0.9
Area 3 : 0.1

See the target!

Exploration Approaching

Now, you have 3 areas to go.
l Area 1: there is a dining room with chairs and 

table , you will pass by chair and table on the way.
l Area 2: there is a living room with sofa and clock 

and stairs, you will pass by sofa on the way.
l Area 3: there is a kitchen with an oven and fridge.

Please estimate the probability of  “bed” appearing
at these areas in [0,1].

1

2

Figure 5. Simulation Experiments. Utilizing LLM, the agent explores efficiently, discovers the target with a minimal path cost, and
finally navigates to the target object with success. In this figure, we visualize the RGB images and semantic maps of the four global
decision instances, and the dialog box on the left exhibits the conversation between the agent and LLM in the first global decision process.

Table 2. Ablation Study. We compare VoroNav with three abla-
tion models: (1) Voronoi: Voronoi-based navigation without any
semantic guidance; (2) Voro-path: VoroNav that eliminates the
farsight descriptions; (3) Voro-farsight: VoroNav that eliminates
the path descriptions.

Method HM3D HSSD

Success↑ SPL↑ Success↑ SPL↑
Voronoi 38.7 23.3 40.3 22.2

Voro-path 40.0 24.2 40.6 23.0
Voro-farsight 41.2 25.2 40.8 22.7

VoroNav 42.0 26.0 41.0 23.2

cludes the path descriptions in VoroNav and depends merely
on the farsight descriptions for decision-making. As in-
dicated in Table 2, both Voro-path and Voro-farsight show
higher Success and SPL than Voronoi, indicating the benefits
of integrating semantic information to augment navigation
capabilities. Furthermore, VoroNav exhibits superior perfor-
mance compared to all ablation models, demonstrating the
positive outcomes of integrating both path and farsight de-
scriptions to enhance the performance of LLM’s reasoning.

4.2.3. PLANNING STUDY

To verify that Voronoi-based methods are more suitable
for visual navigation compared to Frontier-based methods,
we introduce two metrics to evaluate the planning effect of
each method: the Success weighted by Collision Avoidance
(SCA) and the Success weighted by Explored Area (SEA).

The metric SCA quantifies the proportion of non-collision
steps to the total number of agent forward steps weighted by
success rate, manifesting the tendency of obstacle avoidance
in navigation, which is defined as follows:

SCA =
1

N

N∑
i=1

Si

(
1− η

Ci

Fi

)
, (6)

Table 3. Planning Study. We analyze the planning capability of
different methods by comparing SCA and SEA. Our VoroNav
method achieves the highest SCA and SEA scores, indicating ad-
vanced capability for obstacle avoidance and low-cost exploration.

Method HM3D HSSD

SCA↑ SEA↑ SCA↑ SEA↑
Frontier 24.2 17.4 35.5 16.5
Voronoi 29.4 17.9 40.2 18.6
L3MVN 27.5 17.7 37.6 16.6
VoroNav 39.8 20.9 40.9 19.3

where N is the total number of episodes, the binary variable
Si ∈ {0, 1} indicates whether the ith episode is successful
(Si = 1) or not (Si = 0). The discount factor η is predeter-
mined and varies across datasets. We set η = 0.1 in HM3D
and η = 1 in HSSD. The variables Ci and Fi represent the
number of collisions and forward steps in the ith episode.

The metric SEA measures the normalized ratio of the ob-
served region to the path length weighted by success rate,
denoting the efficiency of perceiving the surrounding envi-
ronment, which is defined as follows:

SEA =
1

N

N∑
i=1

Si

(
γ

√
Ai

Li

)
, (7)

where Ai and Li signify the area of the explored region and
path length in the ith episode, respectively. The discount
factor γ is also predetermined, and we set γ = 0.002 in
HM3D and γ = 0.01 in HSSD.

As demonstrated in Table 3, we find that the SCA and SEA
of Voronoi-based methods (Voronoi and VoroNav) signifi-
cantly surpass those of Frontier-based methods (Frontier and
L3MVN). The higher SCA score suggests that, throughout
the exploration process, the mid-term goals of the Voronoi-
based methods are typically chosen at intersections within
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Table 4. Performance on Different LLMs. The VoroNav frame-
work with a stronger LLM performs better in navigation perfor-
mance.

Method LLM Success↑ SPL↑ SCA↑ SEA↑

VoroNav
Gemini-pro 41.4 24.3 36.7 19.6

GPT-3.5 46.4 23.8 37.9 19.6
GPT-4 46.5 25.7 39.9 23.9

Table 5. Statistics of Time Consumption. The time unit utilized
in this table is represented in seconds.

Segmentation BLIP Mapping GVD RVG Local

0.15 0.12 0.20 5.2e-3 7.5e-2 0.75

Path Description (GPT) Planning (GPT) Global

3.7 6.1 10.2

unoccupied regions, which are less likely to be in proximity
to obstacles, thereby reducing the incidence of collisions
compared to the frontier-based methods. Specifically, if
the agent gets too close to obstacles during navigation, it is
easy to encounter blind spots in perceiving the surrounding
environment, which can lead to collisions with undetected
obstacles that lie within these blind spots during subsequent
movement. In contrast, our method involves less movement
near obstacles during exploration, allowing for wider unob-
structed views and thus more comprehensive observations,
resulting in safer navigation. Similarly, a higher SEA score
indicates that the Voronoi-based methods favor intersections
rich in information, enabling broader areas to be observed
with minimal movement. The enhanced perceptual range
increases the probability of the agent discovering the target
directly. Meanwhile, this strategy yields potentially more
valuable scene hints generated by comprehensive percep-
tion to inform LLM’s decision-making, thus heightening the
chances of locating the target object.

4.2.4. IMPACT OF DIFFERENT LLMS ON NAVIGATION

Here we have added experiments under different LLM mod-
els, randomly sampling 100 episodes from HM3D datasets
for comparison and evaluation. The experimental results are
listed in Table 4.

4.2.5. STATISTICS OF TIME CONSUMPTION

The coherence and real-time quality of the robot’s output
actions is crucial for ensuring seamless navigation and inter-
action within its environment. We have recorded the average
time consumption of all parts in the framework, as shown
in Table 5. These experimental results were obtained using
a computer equipped with a 13th-generation Intel Core i7-
13700KF CPU and an Nvidia RTX 4070 GPU with 12GB
of memory. The Local step represents the time interval
between each step taken by the robot, and the Global step
represents the total time consumption of the robot in select-

ing the mid-term target point. It is worth noting that we
use GPT solely for decision-making at sparse waypoints
(RVG nodes) during navigation, ensuring minimal impact
of GPT’s latency on the robot’s real-time operation. The
critical factor influencing real-time performance most is the
time consumption of the Local step.

5. Conclusion
We have presented the VoroNav framework that explores a
novel form of graph representation for navigation space and
substantially enhances ZSON by using a structured graph-
based exploration strategy. Our approach circumvents the
limitations of traditional end-to-end and map-based meth-
ods by generating informative waypoints and representing
the environment with an innovative fusion of text informa-
tion. The RVG generation module, together with the use of
GPT-3.5 for decision-making, leads to more strategic nav-
igation and efficient exploration. By making use of LLM
and topologically structured scene graphs, VoroNav sets a
new benchmark for ZSON and opens up new pathways for
intelligent robotic systems to interact with environments.

Future work will focus on expanding the capabilities of
VoroNav to handle more complex tasks, improving the
framework’s robustness and adaptability to dynamic en-
vironments (Ma et al., 2024).
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Impact Statement
VoroNav addresses the challenges of autonomous navigation
in robotics, holding significant implications for the future of
household robotics. By leveraging the synergy of semantic
mapping and LLMs, it promises enhanced efficiency and
effectiveness in robotic navigation tasks. Ethically, VoroNav
represents a step forward in responsible AI application, bal-
ancing technological advancement with the need for safe,
reliable, and intuitive robot behavior in domestic settings.
To address safety and ethical concerns, our experiments are
conducted in controlled, simulated environments using open-
source datasets. This approach ensures the predictability
and safety of the agent’s behaviors. However, the reliability
of generative models in practical applications remains an
area for future research. Key to this advancement is im-
proving the accuracy and precision of LLMs in planning
and action prediction, which is crucial for ensuring safety
in real-world deployment.
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A. Method Details
A.1. RVG Generation

Given the obstacle and explored maps, we can obtain the
unoccupied map by logically subtracting the obstacle map
from the explored map, representing the traversable areas
within the observed regions. We then preprocess the unoccu-
pied map by using the morphology methods (Van der Walt
et al., 2014) to fill holes and smooth boundaries. To obtain
the GVD, we extract a set of Voronoi points V by skeletoniz-
ing the unoccupied map (Figure 6 (a)). Subsequently, to
manifest the connectivity and accessibility of the unoccu-
pied map, the GVD can be processed into RVG G, a graph
form with nodes V and edges E (Figure 6 (b)). The nodes
correspond to GVD points that are either at intersections
or on the endpoint of GVD, while the segments directly
connecting two adjacent nodes are identified as edges. The
raw graph is then preprocessed through operations such as
merging proximate nodes and eliminating trivial forks.

(a) GVD Generation

(b) Graph Extraction

Skeletonize

Search

(c) Exploratory Path Generation

Filter

Figure 6. The Voronoi Processing Module. In (a), we skeletonize
the areas that are not occupied by obstacles in the explored area
and obtain the GVD (blue lines). In (b), the nodes and edges are
extracted in GVD to form the RVG. The agent nodes (robot icon),
neighbor nodes (red circles), ordinary nodes (green circles), and
exploratory nodes (orange circles) are filtered by the location of
the nodes. In (c), the exploratory paths (blue arrows) are generated
by searching for the shortest paths on the GVD from the agent
node to the exploratory nodes.
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Figure 7. A Worst-case Example. This figure depicts the explo-
ration process on RVG and the cumulative rewards of neighbor
nodes when LLM alone makes undesirable decisions. (a) Three
neighbor nodes are traversed by exploratory paths, one of which
has been passed by the agent, and the agent compares LLM scores
between the other two to make a choice. (b) Two nodes have
not been passed by the agent but are not traversed by exploratory
paths, and another node that the agent has passed by but with an
exploratory path traversed is selected as a mid-term goal. (c) Three
neighbor nodes have all been passed by the agent, but one of them
leads to an unexplored area and is selected as a mid-term goal. (d)
The agent finds the target object after exploration.

A.2. Reward Roles

To illustrate the robustness of VoroNav in various challeng-
ing scenarios and the roles played by distinct reward vectors,
we have visualized a worst-case navigation example and the
details of cumulative rewards, as shown in Figure 7. For
exploration purposes, only neighbor nodes traversed along
the exploratory path indicate its heading toward unexplored
areas, which is foremost for the exploration process (refer to
Figure 7 (c)); Concerning efficiency, we rely on the agent’s
historical decisions, considering the current agent node as
the optimal choice from previous decisions and discourag-
ing turning back. If there is one or more extensions from
the agent node leading to unexplored areas, the agent is in-
clined to continue its ongoing exploration (refer to Figure 7
(a)). Conversely, if no extension offers exploratory paths, it
indicates that unexplored regions exist elsewhere, and histor-
ically traversed nodes will be revisited, prompting the agent
to return to previously traveled paths (refer to Figure 7 (b)).
Thus, the agent prioritizes exploration and efficiency from
topological perspectives in the navigation. In cases where
multiple nodes hold equivalent exploration and efficiency
rewards, the agent will proceed to the neighbor node where
the target object is more likely to be found, as indicated by
the higher predicted semantic probability (refer to Figure 7
(a)).

A.3. Navigation Process

A complete process of a navigation episode is illustrated in
Algorithm 1. The code snippet of the LookAround proce-
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dure, as presented in Algorithm 1, is further elaborated in
Algorithm 2. At the beginning of each episode, the subgoal
is initially empty. At each step, the agent updates the seman-
tic map of its surroundings and the RVG accordingly (Line
4-8). If the agent detects the target object at any time, it
will immediately plan a direct route to approach the object
(Line 9-10). Conversely, if the target remains undetected,
the agent performs a complete rotation to establish a pre-
liminary RVG scene representation (Line 13, Algorithm 2).
The agent then navigates to the closest RVG node (Line 14).
Upon reaching the RVG node or the mid-term goal(Line 16),
the agent rotates a full circle again (Line 17, Algorithm 2),
derives the exploratory paths (Line 18) and surrounding
images (Line 19), generates corresponding descriptions of
paths (Line 20-21) and farsight (Line22) integrated with the
respective neighbor nodes. A large language model is then
employed to evaluate the fused descriptions of each neigh-
bor node, obtaining semantic rewards based on the results
of scene reasoning (Line 23). Concurrently, the agent ac-
quires exploration rewards (Line 24) and efficiency rewards
(Line 25) on the neighbor nodes by analyzing the layout of
unexplored areas and historical trajectories. The neighbor
node with the highest cumulative reward will be selected as
the optimal mid-term goal point for exploration (Line 26).
Finally, low-level motion planning is utilized to devise a
sequence of actions targeting the mid-term goal (Line 29).
If the agent reaches the vicinity of the identified target or
takes actions surpassing the maximum number of steps, it
will immediately issue a “Stop” action and the episode ends.

B. Experiment Details
B.1. Experiment Setup

Evaluations on HM3D follow settings outlined in the Habitat
ObjectNav challenge 2022 (Yadav et al., 2022). Evaluations
on HSSD adopt the same validation parameters utilized
in (Khanna et al., 2023). In both datasets, the agent is a
LoCoBot (Gupta et al., 2018) with a base radius of 0.18m,
outfitted with an RGB-D camera mounted at a height of 0.88
meters and a pose sensor that provides accurate localization.
The camera has a 79◦ Horizontal Field of View (HFoV)
and frame dimensions of 480 × 640 pixels. The agent’s
action space is {Stop, MoveForward, TurnLeft, TurnRight,
LookUp, LookDown}, with a discrete movement increment
of 0.25m and discrete rotations of 30◦. The object goal
categories in episodes include “bed”, “chair”, “sofa”, “tv”,
“plant”, and “toilet”. Our framework incorporates the open-
source code from L3MVN (Yu et al., 2023b) and SemExp
(Chaplot et al., 2020), utilizing L3MVN’s mapping and
simulator-building modules.

Algorithm 1 Navigation Process of VoroNav
1: Input: Target object G
2: Initialize: Initial observation O0 ← ∅

Initial semantic mapM0 ← ∅
Step Number t← 1
SubGoal← None

3: while Episode is not done do
4: Ot ← Ot−1

⋃
{pt, It}

5: ObjectMasks← GroundedSAM(It)
6: Mt ←Mapping(Mt−1,Ot,ObjectMasks)
7: V ← Skeletonize(Mt)
8: G ← (V,E)← Filter(Mt,V)
9: if G exists inMt then

10: SubGoal← Location(Mt, G)
11: else
12: if SubGoal is None then
13: LookAround;
14: SubGoal← Nearest(pt, V )
15: end if
16: if Agent reaches node in V then
17: LookAround
18: P ← Search(pt,G)
19: NeighborImages← Select(It,Mt, V )
20: PathPrompt← Template(Mt,G,P)
21: Dp ← LLM(PathPrompt)
22: Df ← BLIP(NeighborImages)
23: L← LLM(G,Dp,Df )
24: P← Exploration(V,E)
25: C← Efficiency(Mt,Ot, V )
26: SubGoal← Decision(V,P,C,L)
27: end if
28: end if
29: at ← FMM(Mt, pt, SubGoal)
30: t← t+ 1
31: end while
32: Result: Episode ends.

Algorithm 2 LookAround
1: It+12 ← ∅
2: for i← 1 to 12 do
3: at ← TurnRight
4: t← t+ 1
5: Ot ← Ot−1

⋃
{pt, It}

6: ObjectMasks← GroundedSAM(It)
7: Mt ←Mapping(Mt−1,Ot,ObjectMasks)
8: V ← Skeletonize(Mt)
9: G ← (V,E)← Filter(Mt,V)

10: It+12−i ← It+12−i

⋃
{It}

11: end for
12: if G exists inMt then
13: SubGoal← Location(Mt, G)
14: continue
15: end if
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Table 6. Ground-truth Semantics. We find that after replacing
the Grounded-SAM with ground truth semantic segmentation, our
VoroNav still achieves the best performance, revealing the superi-
ority of our planning module.

Method HM3D HSSD

Success↑ SPL↑ Success↑ SPL↑
Frontier 63.5 33.0 51.2 20.6
Voronoi 67.3 37.4 57.2 32.7
L3MVN 65.5 36.5 58.0 28.0
VoroNav 67.6 40.5 59.7 34.1

43.9 46.6 44.2 49.2

28.9 28.3 32 32.1

26.4 24.2 23.6
22.3 63.9 63.8 62 61.3

29.7 29.2 32.2 28.5

7.2 7.9 6 6.6
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Figure 8. Failure Cases Percentage. In the failure statistics on
HM3D and HSSD datasets, our VoroNav experiences the fewest
planning failures.

B.2. Failure Case Study

We have collected the reasons and frequencies of failures
across all episodes, categorizing them into detection failures,
planning failures, and exploration failures. Detection fail-
ure occurs when the agent mistakenly identifies non-target
items as targets or overlooks the actual targets within the
agent’s field of view. Planning failure arises when the agent
gets stuck or fails to navigate to the target location despite
having accurately detected the target. Exploration failure is
attributed to the situation where the agent has not encoun-
tered the target within the assigned maximum number of
steps. As shown in Figure 8, we find that most failures are
caused by incorrect detection in HM3D and by abnormal
planning in HSSD.

B.3. Ground-truth Vision Experiments

To eliminate the impact of detection errors during naviga-
tion and analyze the planning and exploration effects of
navigation methods, we uniformly replace the RGB images
across all methods with ground-truth semantic images. As
shown in Table 6, when semantic priors of reasoning and
planning are absent, the Voronoi method exhibits consid-

erably superior performance in terms of both Success and
SPL compared to the Frontier method. This enhancement
in performance proves that within the topological domain,
the Voronoi planning approach is more suitable for goal-
oriented navigation than the Frontier exploration method.
With the guidance of LLM, VoroNav outperforms L3MVN
by a large margin, further demonstrating that VoroNav’s
information processing and decision-making are more effec-
tive for robot navigation with lower step cost and a higher
success rate compared to L3MVN.
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B.4. Prompt Template

In Figure 9 and Figure 10, we present the specific prompt templates for path description generation and decision-making.
The red font in the prompt templates refers to the parts that vary according to different scenarios.

You are given the objects and coordinates appearing along a path, 
you should guess the type of room the path passes through and 
describe them like "You will pass by {room type} with {objects}". 
The objects and coordinates are:
[Objects and coordinates]
You need to describe the scene along this path with a sentence.

Figure 9. Prompt Template for Generating Path Description.

You have areas to go:
[Area: farsight descriptions and path descriptions]
Please estimate the probability of [Target] appearing at these areas 
for me in [0,1] and explain the reasons.
Reply with the JSON form :{{"area_number": $area_number,
"probability": $probability,"reason": $reason}}

Figure 10. Prompt Template for LLM Decision.

B.5. Examples of LLM Conversation

We show supplemental examples of path description generation in Figure 11. LLM decision examples are shown in Figure 12
and Figure 13.
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Bed

Chair TV Oven

Toilet

Table(39, 116); TV(31,140)
Couch(14, 111);  

Couch

Sink Table

You will pass by a living 
room with a couch, a table, 
and a TV.

Bed(227,134)

You will pass by a bedroom 
with a bed.

Toilet(72,103); Sink(98,95)

You will pass by a bathroom 
with a toilet and a sink

Chair(22, 92); Oven(24, 141)

You will pass by a kitchen 
with a chair and an oven.

Chair(121,132); Chair(150,135)
Bed(136,98);

You will pass by a bedroom 
with a bed and two chairs.

Bed(107,147); Chair(85,161) 
TV(92,169)

You will pass by a bedroom 
with a bed, chair, and TV.

Figure 11. Examples of Path Description Generation.
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"area_number": 1,
"probability": 0.8,
"reason": "The presence of a washer suggests that this area
is likely to contain bathroom facilities, including a toilet."

"area_number": 2,
"probability": 0.3,
"reason": "While it is less likely for a toilet to be in this area
as it is a living room, there is still a small chance that a toilet
will be located nearby, perhaps in an adjacent bathroom."

"area_number": 3,
"probability": 0.9,
"reason": "The presence of a bedroom with a bed and
dresser suggests that this area is likely to contain an attached
or nearby bathroom, making it highly probable for a toilet to
be present."

Area 1 : there is a room with a bed, a washer and a lamp;
Area 2 : there is a picture of a living room with a flat screen 
tv, and you will pass by a living room with a couch and a TV; 
Area 3 : there is a view of a bedroom with a bed, dresser, 
and television, and you will pass by  a bedroom with a TV 
and a bed;

Area 1 : there is a kitchen with a sink and a mirror;
Area 2 : there is a table with a potted plant on it in a room;
Area 3 : there is view of a living room with a couch, a table,
and a television, and you will pass by a living room with a
chair and a couch;
Area 4 : there is a view of a kitchen with a black refrigerator
and a black stove, and you will pass by a kitchen with a
refrigerator;

"area_number": 1,
"probability": 0,
"reason": "Based on the description, this area includes a
kitchen with a sink and a mirror, but there is no mention of a
television."

"area_number": 2,
"probability": 0,
"reason": "There is a table with a potted plant in a room, but
no mention of a television."

"area_number": 3,
"probability": 1,
"reason": "The description includes a living room with a
couch, a table, and a television, indicating a high probability
of a television appearing in this area."

"area_number": 4,
"probability": 0.3,
"reason": "The view includes a kitchen with a black
refrigerator and a black stove, and there is a high likelihood
of a television appearing in this area as well."

Area 1 : there is a living room with a brick wall and a large 
window;
Area 2 : there is a living room with a dining table and chairs, 
and you will pass by a living room with a chair;
Area 3 : there is a plant in a pot in front of a window;
Area 4 : there is a room with a table and chairs and a picture 
on the wall;

"area_number": 1,
"probability": 0.8,
"reason": "The living room with a brick wall and a large
window is a common area for a couch to be placed for
seating and relaxation."

"area_number": 2,
"probability": 0.9,
"reason": "In a living room with a dining table and chairs, it
is likely that there would also be a couch for additional
seating and comfort."

"area_number": 3,
"probability": 0.5,
"reason": "The presence of a plant in a pot in front of a
window suggests that there will not be enough space for a
couch in this area."

"area_number": 4,
"probability": 0.7,
"reason": "A room with a table and chairs and a picture on
the wall is a common area for a couch to be placed for
relaxation and entertainment."

Find a TVFind a couch

Area 1 : there is a dining room with a table and chairs and a 
television;
Area 2 : there is a plant in a vase on a table in a room;
Area 3 : there is a living room with a brick wall and a dining 
table, and you will pass by  a room with a chair";

"area_number": 1,
"probability": 0.8,
"reason": "A dining room with a television is likely to have
a couch for seating and relaxation.”

"area_number": 2,
"probability": 0.3,
"reason": "The presence of a plant in a vase on a table
suggests a decorative focus rather than seating, so the
probability of a couch is lower.”

"area_number": 3,
"probability": 0.7,
"reason": "A living room with a dining table and a brick
wall indicates a space designed for seating and socializing,
making it likely to have a couch."

Find a couchFind a toilet 

Figure 12. Examples of LLM Decision.
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"area_number": 1,
"probability": 0.1,
"reason": "The presence of a bedroom with a bed and a
ceiling fan indicates that it is less likely to have a toilet in
this area."

"area_number": 2,
"probability": 0.7,
"reason": "The presence of a sink and a mirror in the
hallway suggests that it is likely to lead to a bathroom with a
sink."

"area_number": 3,
"probability": 0.3,
"reason": "The room with a desk, chair, and a window does
not typically indicate the presence of a toilet."

Area 1 : there is a bedroom with a bed and a ceiling fan, and
you will pass by a bedroom with a bed;
Area 2 : there is a hallway with a sink and a mirror in it, and
you will pass by a bathroom with a sink;
Area 3 : there is a room with a desk, chair, and a window;

Area 1 : there is a chair and a table in a room with a 
painting on the wall;
Area 2 : there is a living room with a table and a fan;
Area 3 : there is a bedroom with a bed, dresser, mirror and a 
television, and you will pass by a bedroom with a potted 
plant and a bed

"area_number": 1,
"probability": 0.1,
"reason": "This area seems to be more of a common sitting
area or a study room with a chair and table, and there is no
mention of a bathroom or plumbing facilities."

"area_number": 2,
"probability": 0.05,
"reason": "This area seems to be a living room with a table
and a fan, and living rooms typically do not have toilet
facilities."

"area_number": 3,
"probability": 0.4,
"reason": "This area is a bedroom with a bed, dresser,
mirror, and a television, and bedrooms are commonly
adjacent to bathrooms. Additionally, the presence of a potted
plant often suggests the proximity of a bathroom. Thus, the
probability is relatively high."

Area 1 : there is a 3d image of a staircase in a room, and you
will pass by a living room with potted plant, chair, and TV;
Area 2 : there is a picture of a room with a toilet and a plant;
Area 3 : there is a plant that is sitting in a vase on a table;
Area 4 : there is a living room with a couch, chair, and a
television, and you will pass by a lounge with couch and chair;

"area_number": 1,
"probability": 0,
"reason": "The 3d image of a staircase does not typically
include a toilet, and the adjacent living room would not
likely have a toilet."

"area_number": 2,
"probability": 1,
"reason": "The picture of a room with a toilet makes it
highly probable for a toilet to appear in this area."

"area_number": 3,
"probability": 0,
"reason": "A plant sitting in a vase on a table does not
typically indicate the presence of a toilet in this area."

"area_number": 4,
"probability": 0,
"reason": "The rendering of a living room and a lounge with
a couch and chair do not typically include a toilet."

Find a toiletFind a toilet

Area 1 : there is a bed with two pillows and a picture on the
wall;
Area 2 : there is a bathroom with a toilet and a sink with a
hole in the wall;
Area 3 : there is a white closet with a mirror on the wall, and
you will pass by a bedroom with a bed;

"area_number": 1,
"probability": 0.8,
"reason": "It's common for bedrooms to have a chair or
seating area for relaxation or reading, and the presence of a
bed and pillows suggests that a chair will be present for
comfort or utility."

"area_number": 2,
"probability": 0.2,
"reason": "Bathrooms usually do not have chairs due to
space constraints and moisture, and the presence of a toilet
and sink with a hole in the wall does not indicate the
presence of a chair."

"area_number": 3,
"probability": 0.6,
"reason": “Closets are not typical places for chairs, but the
presence of a mirror and bed suggests that it could be a
dressing area where a chair will be present for dressing or
putting on shoes.”

Find a chairFind a toilet

Figure 13. Examples of LLM Decision.
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