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Abstract

General intelligence requires systems that acquire new skills efficiently and gener-
alize beyond their training distributions. Although program synthesis approaches
have strong generalization power, they face scaling issues due to large combinato-
rial spaces that quickly make them impractical and require human-generated DSLs
or pre-trained priors to narrow this search space. On the other hand, deep learning
methods have had high successes, but they lack structured test-time adaptation and
rely on heavy stochastic sampling or expensive gradient updates for fine-tuning. In
this work, we propose the Latent Program Network (LPN), a new architecture that
builds in test-time search directly into neural models. LPN learns a latent space
of implicit programs—neurally mapping inputs to outputs—through which it can
search using gradients at test time. LPN combines the adaptability of symbolic
approaches and the scalability of neural methods. It searches through a compact
latent space at test time and bypasses the need for pre-defined domain-specific
languages. On a range of programming-by-examples tasks, LPN either outperforms
or matches performance compared to in-context learning and test-time training
methods. Tested on the ARC-AGI benchmark, we demonstrate that LPN can both
learn a compact program space and search through it at test time to adapt to novel
tasks. LPN doubles its performance on out-of-distribution tasks when test-time
search is switched on.

1 Introduction

The central goal of artificial intelligence has long been to create generally intelligent systems with
human-like cognitive capabilities. While recent years have seen remarkable achievements in narrow
AI domains, with systems achieving superhuman performance in games [Campbell et al., 2002, Silver
et al., 2017, Vinyals et al., 2019] and specialized tasks [He et al., 2015, Jumper et al., 2021], we
face a fundamental challenge: our systems struggle to generalize beyond their training distribution
[Yu et al., 2024a] or effectively adapt to novelty [Zhang et al., 2021]. This highlights a critical gap
between optimizing for task-specific performance and achieving true general intelligence.

In On the Measure of Intelligence, Chollet [2019] argues that traditional benchmarks that measure
skills alone are insufficient for developing generally intelligent systems. Such benchmarks can be
"gamed" through either unlimited prior knowledge of the task encoded by developers or massive
amounts of training data, masking a system’s true ability to generalize and adapt. Instead, it is argued
we need to measure skill-acquisition efficiency—how effectively a system can learn new tasks with
minimal experience—and evaluate generalization capability in a way that controls for both prior
knowledge and training data.

By controlling for prior knowledge and experience, the Abstraction and Reasoning Corpus (ARC-
AGI) [Chollet, 2019] is a benchmark that measures skill acquisition efficiency rather than pure skills.
Its few-shot learning setup requires systems to adapt to novel tasks with very limited data, highlighting
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learning efficiency. Importantly, ARC-AGI is designed to evaluate artificial intelligence systems
while calibrated to human performance. Therefore, it serves as a useful compass when comparing
general intelligence between humans and machines.

Current approaches to solving ARC-AGI and program synthesis benchmarks generally fall into two
categories: inductive and transductive methods. (1) Inductive approaches [Parisotto et al., 2016,
Devlin et al., 2017b, Butt et al., 2024] infer underlying programs from examples by generating
explicit programs using a domain-specific language (DSL). However, handcrafting problem-specific
DSLs is inherently unscalable for real-world applications and relies on the unrealistic assumption that
a human-generated DSL is always provided. Progress on AI-generated DSLs[Ellis et al., 2021] has
also been limited. In this work, we investigate methods that solve problems using only input-output
example data. (2) In-context learning—also called transductive—methods [Devlin et al., 2017a,
Kolev et al., 2020, Li et al., 2024a] train neural models to condition on a few examples and produce
the desired output for a new input, implicitly inferring the program within the model’s activations.
These methods benefit from greater scalability by removing the need for a predefined DSL. However,
in-context learning struggles with consistency [Devlin et al., 2017b], i.e., being able to map the inputs
to the outputs of the specification itself. Performing fine-tuning at test time is a powerful way to
resolve consistency, but happens to be extremely costly on large models and is also prone to over-
fitting given limited data [Li et al., 2021]. Additionally, in-context learning in transformers [Vaswani
et al., 2017] suffers from the quadratic complexity of self-attention [Hübotter et al., 2024], which
hinders scaling specification sizes.

As an attempt to get the best of both inductive and transductive worlds, we introduce the Latent
Program Network (LPN), which integrates the benefits of a scalable neural architecture with program
induction. By representing implicit programs in a continuous latent space, LPN allows for efficient
test-time program search. LPN is more efficient than test-time fine-tuning methods like in Devlin
et al. [2017a] because it performs backpropagation only through a fraction of the total parameters.
Also, by performing latent program aggregation and recombination in latent space, LPN removes the
quadratic cost of attention when scaling specification size.

Our contributions are as follows. (1) We introduce a new architecture named the Latent Program
Network (LPN) that builds in test-time adaptation by learning a latent space of programs and searching
for the best latent representation given new data. (2) We show that gradient-based latent search during
training optimizes the latent space for effective test-time adaptation, yielding significant performance
improvements. (3) We demonstrate that LPN generalizes to specification sizes beyond those seen
during training, even improving performance, unlike in-context learning, which fails to generalize
without parameter fine-tuning at large specification sizes.

2 Related Work

The challenge of navigating vast program spaces has driven diverse approaches to program synthesis.
Early researchers focused on deductive methods, using theorem-proving techniques to construct
provably correct programs based on formal specifications [Manna and Waldinger, 1980]. How-
ever, the difficulty of obtaining formal specifications led to a shift toward inductive approaches
[Solomonoff, 1964]. These methods instead infer programs from input-output examples [Shaw et al.,
1975, Summers, 1977, Biermann, 1978], making program synthesis more practical for real-world
applications.

However, for real-world problems, the exponential search space is a significant challenge for inductive
program synthesis methods [Lee et al., 2018]. Three distinct paradigms have emerged to narrow
down the search space, all leveraging learning. (1) Researchers have developed differentiable
programming languages that integrate symbolic reasoning with continuous optimization [Feser et al.,
2016, 2017, Gaunt et al., 2017]. (2) Neural networks have been trained as priors to constrain the
search space and enhance the efficiency of program search techniques [Balog et al., 2016, Devlin
et al., 2017b]. In this paradigm of leveraging neural priors for search, large language models
(LLMs) have been demonstrated to be valuable for navigating complex search spaces, including
discrete program synthesis [Wang et al., 2024, Li et al., 2024d, Barke et al., 2024]. CodeIt [Butt
et al., 2024] leverages the pre-trained CodeT5 model [Wang et al., 2023] to guide discrete program
search. (3) In-context/transductive approaches bypass intermediate program representations entirely
by (meta-) training neural networks to directly map input to output examples and a new input
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to its corresponding output [Devlin et al., 2017a,b, Kolev et al., 2020]. Neural networks offer a
fully differentiable program representation, allowing program induction through gradient descent
in parameter space, where network weights encode the program structure [Graves, 2014, Zaremba
and Sutskever, 2014, Neelakantan et al., 2015, Kaiser and Sutskever, 2015, Kurach et al., 2015].
While early research focused on learning individual programs, more recent works have broadened
the scope to learning multiple programs [Devlin et al., 2017a, Kolev et al., 2020, Li et al., 2024a].
Pre-trained LLMs can also be used to perform transductive reasoning, where they directly generate
outputs from specifications included in the prompt—a process known as in-context learning [Gendron
et al., 2023, Mitchell et al., 2023, Li et al., 2024a, Brown et al., 2020]. Recent works by Hendel
et al. [2023], Yang et al. [2024] demonstrate the emergence of task vectors within LLM activations.
LPN advances this approach by explicitly learning and disentangling the program space from other
activation information. This separation yields two benefits: enhanced program representations and
more efficient program space exploration. While such neural approaches eliminate the need for
formal programming languages or DSLs, they sacrifice both interpretability and the ability to perform
systematic search during inference. As Devlin et al. [2017b] demonstrated, neural approaches struggle
to maintain consistency with given specifications and underperform compared to neural-symbolic
methods [Parisotto et al., 2016].

Recent work has explored fine-tuning model parameters at test time—test-time training (TTT)—to
resolve this inability to be consistent with the specification [Devlin et al., 2017a, Hottung et al., 2021b,
Hübotter et al., 2024, Li et al., 2024a, Akyürek et al., 2024]. TTT treats the network parameters
as a program, where test-time fine-tuning becomes a search through program space via parameter
optimization. Since neural networks are universal function approximators [Hornik et al., 1989],
the target program is likely to exist somewhere in this parameter space. Meta-learning approaches
such as MAML [Finn et al., 2017], perform gradient updates on few-shot data in the full parameter
space. LEO [Rusu et al., 2018] similar to our work explore a version of MAML, introducing a
bottleneck, such that the inner loop optimisation is performed in latent space. Their decoder is then
a hypernetwork [Ha et al., 2016] which conditions on the latent to generate the raw parameters for
inference. LPN removes the need for such a hypernetwork leveraging the in-context learning abilities
of transformers to directly perform generation conditioned on the latent variable.

Conditioning neural models on latent spaces has emerged as a powerful approach across diverse do-
mains. Latent space optimization has been applied to molecule generation [Gómez-Bombarelli et al.,
2018] and combinatorial optimization challenges, including the traveling salesman problem [Hot-
tung et al., 2021a, Chalumeau et al., 2023]. Recent work has extended latent-based approaches to
black-box optimization through energy-based models [Yu et al., 2024b], and symbolic mathematics,
where latent optimization helps balance equation complexity with accuracy [Meidani et al., 2023]. In
program synthesis, LEAPS [Trivedi et al., 2021] demonstrated how reinforcement learning could
search latent program spaces for Karel programs [Pattis, 1994].

LPN can be interpreted through the lens of semi-amortised variational inference (SVI) [Kim et al.,
2018, Marino et al., 2018]. SVI operates in two phases: first, it performs amortized variational
inference using an encoder trained on the complete dataset. Then, for each data point, it performs ad-
ditional updates to minimize the amortization gap [Gershman and Goodman, 2014]—the discrepancy
between the log-likelihood and the evidence lower bound (ELBO) [Krishnan et al., 2018, Cremer
et al., 2018]. The LPN equivalent of these updates for test examples is performing gradient descent in
the latent space.

3 Background

Program Synthesis aims to generate deterministic programs in a target language, such that outputs
generated from inputs are consistent with the given specification. Typically, the problem space Y
consists of programs formulated within a domain-specific language (DSL). Each task is defined by a
specification set X , where each specification, Xm ∈ X , is described by a set of input/output (I/O)
examples:

Xm = {(xm
1 , ym1 ), . . . , (xm

n , ymn )} (1)

A program f ∈ Y is considered to solve the task associated with Xm if it satisfies: ∀j ∈
[1, n], f(xm

j ) = ymj . This definition requires that the program replicates the output for each
input in the specification. We denote Fm to represent the true function that generates the I/O pairs.
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Program Synthesis Generalization. We consider the problem of applying a learned program to a
new input rather than explaining the specification. Given a set of input-output examples generated by
a program Fm (not necessarily constrained to a DSL), along with an additional input xm

n+1,

Pm = {(xm
1 , ym1 ), . . . , (xm

n , ymn ), xm
n+1}. (2)

The objective is to generalize from the provided examples and predict the corresponding output
for xm

n+1. This can be done via induction or transduction [Li et al., 2024a]. If we do not limit
the Kolmogorov complexity of programs [Kolmogorov, 1965, Solomonoff, 1964], we can find an
explanation for any given specification, whether or not it corresponds to the true program that
underlies the specification. Evaluating generalization performance not only tests the ability to explain
a specification but also whether it can successfully infer the underlying program in its generality and
apply it to a new input. This problem bears a resemblance to few-shot learning, with the difference of
having only one task. The ARC-AGI benchmark [Chollet, 2019] falls under this program synthesis
formulation. Each of its tasks is composed of input-output pairs represented as 2D grid of shape up
to 30x30, whose cells can take any of 10 colors.

4 Latent Program Network (LPN)

Decoder

Latent Optimization

Decoder
Encoder

Figure 1: Inference of the Latent Program Network (LPN) model. (Left): the encoder maps I/O pairs
to a latent space of encoded programs. (Middle): the latent program is refined during an optimization
process to best explain the given I/O pairs (figure detailed in the appendix at Figure 18). (Right): the
decoder executes the latent program to generate the desired output for a newly given input.

Prior work tackling programming by example with a neural approach has focused on directly
training models to maximize the likelihood of decoding the correct output given a specification
(in context) [Kolev et al., 2020]. However, we diverge from such transduction-based methods, as
they cannot inherently adapt at test time or ensure specification consistency. Instead, we explicitly
factorize inference into three core components visualized in Figure 1. First, we introduce a bottleneck
that encourages the network to learn an explicit representation of programs via a compact latent
space. Secondly, we introduce a method for searching this latent space to explain the given data
effectively. Lastly, conditioned on the latent program and a new input, we predict the output. Despite
this added structure, the Latent Program Network (LPN) remains fully differentiable end-to-end. This
structure provides several key benefits. Firstly, explicitly learning program representations acts as a
good neural network prior for generalization. Secondly, we can use this program encoding to verify
that our initial guess for a latent program explains the given data. If not, the program latent can be
refined at test-time to best explain the given data. Lastly, LPN removes issues faced by transductive
approaches that overfit to specification sizes (number of input-output pairs) seen during training.

4.1 Latent Program Inference

LPN is composed of three core architectural components to perform inference. A neural encoder, a
neural decoder, and a latent space optimization. In this section, we discuss each component and then
outline how to train the full system in later sections.

Encoder. The probabilistic encoder is trained to approximate the Bayesian posterior over program
latents. Specifically, it maps an input-output pair (x, y) to a distribution in the latent space qϕ(z|x, y),
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representing possible programs that could explain the given input-output mapping. Using a variational
approach is important because, for any given input-output pair, there exists a broad range of possible
programs that map the input to the output, even when restricting to, e.g., programs of low Kolmogorov
complexity [Solomonoff, 1964, Kolmogorov, 1965]. We discuss LPN as semi-amortised variational
inference in Appendix D. Intuitively, the encoder is trained to learn an abstract representation of
programs in a continuous latent space by implicitly encoding input-output pair examples. In practice,
we use a multivariate normal distribution whose mean µ and diagonal covariance Σ parameters are
inferred by the encoder. To take advantage of hardware parallelization, the encoder can process all the
I/O pairs in a given specification in parallel. By encoding each pair independently and aggregating
using the mean LPN is permutation invariant to the specification order, as opposed to a naive sequence
model that would concatenate I/O pairs.

Decoder. The probabilistic decoder is responsible for mapping a latent program and an input to its
expected corresponding output, directly predicting the output pixel-by-pixel instead of via a DSL. It
models the distribution of possible outputs y given an input x and a latent z. Note that even if the
underlying I/O mappings are deterministic, we still use a probabilistic decoding framework pθ(y|x, z)
to be compatible with maximum likelihood learning. Figure 18 shows the decoder generating different
outputs by keeping the input fixed but varying the latent program, which in this figure represents a
specific grid pattern to reproduce. In a real task, the aim of this encoder-decoder system is to learn
a compressed representation of the space of possible programs we care about (e.g., in the case of
ARC-AGI, this would correspond to programs that use the Core Knowledge priors [Chollet, 2019]).

Latent Optimization. The encoder is trained to approximate the posterior over programs and may
not encode the right abstraction given an I/O pair. Especially if the task is very novel, the encoder
may fail at producing the right latent program, which, fed to the decoder, would generate the wrong
output. Therefore, we include a middle stage of latent optimization where, starting from the encoder’s
prediction z, we search for a better latent program z′, one that would better explain the observed data
according to the decoder pθ. The search process is generally denoted z′ = f(pθ, z, x, y) and can be
implemented in several ways (c.f. section 4.2). Analogous to system 1 / system 2 thinking [Kahneman,
2011], we can think of the encoder generating an intuitive first guess as to what the observed program
may be (system 1), and the latent optimization process executing a search for hypotheses that would
better explain the observations (system 2). See Appendix C for test-time inference pseudo-code.

Encoder

z ∼ qϕ(z|x, y)
Latent Optimization

z′ = f(pθ, z, x, y)

Decoder

ŷ ∼ pθ(y|x, z′)
(3)

4.2 Search Methods for Latent Optimization

Given n input-output pairs {(xi, yi)}i=1...n, the search process z′ = f(pθ, z, x, y) attempts to find a
z′ that satisfies:

z′ ∈ argmax
z

n∑
i=1

log pθ(yi|xi, z) (4)

This means we search for the latent that would most likely make the decoder generate the right
outputs given the corresponding inputs. By finding a latent that can explain all the input-output pairs,
the latent solution to the optimization problem is more likely to generalize to a new input-output pair.
We describe here two instantiations of the search process, namely a sampling and a gradient ascent
algorithm, both acting in the latent space of programs. We leave for future work the exploration of
other search methods like evolutionary strategies [Hansen and Ostermeier, 2001, Chalumeau et al.,
2023] that could better trade-off exploration and exploitation of the latent space.

Sampling. A naive version of the latent search process is to sample a batch of latents from either
the prior distribution p(z) or around the approximate Bayesian posterior qϕ(z|xi, yi) and select the
latent that gives the highest log likelihood of decoding the given input-output pairs. Specifically,
for all k ∈ [1,K], zk ∼ p(z), and we select z′ ∈ argmaxzk

∑n
i=1 log pθ(yi|xi, zk). Sampling

asymptotically converges to the true maximum-likelihood latent (equation 4) and can prove useful
when the function to optimize (here, the decoder log-likelihood) is not differentiable. However, the
efficiency of sampling-based search decreases exponentially with the dimension of the latent space,
which makes it impractical for most applications.
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Gradient Ascent. Since the decoder is a differentiable neural network, its log-likelihood
log pθ(y|x, z) is also differentiable with respect to z and one can use first-order methods like gradient-
ascent to efficiently search through the latent space for a solution to the latent optimization problem
(equation 4, see Figure 18 for a visualization of a 2D latent space trained on grid patterns). This
visualization highlights that only a small portion of the latent space can explain all the input-output
pairs, corresponding to high decoding likelihood. Notably, poor initialization can lead the search
to converge to different local minima, highlighting the importance of amortized inference from the
encoder. We initialize z′0 as the mean of all the pair latents sampled from the encoder, and refine it
iteratively as follows:

∀k ∈ [1,K], z′k = z′k−1 + α · ∇z

n∑
i=1

log pθ(yi | xi, z)
∣∣
z=z′

k−1

(5)

The series (z′k)k∈[1,K] should exhibit increasing decoding likelihood if the step size α is small enough.
In practice, we generate the output with the best latent found during the gradient ascent algorithm,
which may not always be the one that is obtained after taking the last gradient step (z′K).

4.3 Training

To train the LPN system end-to-end, we assume we have a dataset of tasks, where a task is defined
as n input-output pairs (xi, yi) generated by the same program. To simulate the test conditions of
predicting a new input from a given specification, we design the training procedure to reconstruct
each of the outputs yi from their inputs xi and all the n− 1 other pairs (xj , yj)j ̸=i. We emphasize
that we do not use the specific pair (xi, yi) to reconstruct yi, which would lead to the encoder directly
compressing the output yi as a shortcut without learning program-related abstractions.

When reconstructing output yi, we first sample latents zj from the encoder qϕ(z|xj , yj) for all j ̸= i.
We then aggregate them by computing their mean 1

n−1

∑
j ̸=i zj , then we perform latent optimization

using e.g., gradient ascent to obtain z′i. Finally, we compute the negative log-likelihood of the
right output yi using its corresponding input xi and the refined latent z′i. In practice, we compute
the cross-entropy loss of the decoder logits pθ(ŷi|xi, z

′
i) and the labels yi, which is derived from

maximizing the likelihood of a categorical distribution. The full training pipeline is detailed in
Appendix C. Specifically, we compute the reconstruction loss Lrec and the KL loss LKL between the
approximate posterior and the prior:

Lrec(ϕ, θ) =

n∑
i=1

− log pθ(yi|xi, z
′
i) LKL(ϕ) =

n∑
i=1

DKL (qϕ(z|xi, yi) ∥ N (0, I)) (6)

The dependence of the reconstruction loss Lrec(ϕ, θ) in ϕ arises from using the reparameterization
trick [Kingma, 2013] when sampling each latent zj . Indeed, we first sample a normal random
vector ϵj ∼ N (0, I), then we infer the mean µj and diagonal covariance Σj using the encoder and
recompose the latent zj = µj + ϵj · Σj . Then, z′i is used by the decoder to reconstruct the output.
Note that we can decide whether to let the decoder gradient flow through the latent update. Indeed,
it is more computationally efficient to stop the gradient through the update, by changing line 9 of
algorithm 2 with z′i = z′i + α · g′i, where g′i = ∇z

∑
j ̸=i log pθ(yj |xj , z)|z=z′

i
, with g′i notating a

stop-gradient on g′i.

We denote β as the weighting factor that balances the reconstruction and KL terms [Burgess et al.,
2018], which gives the combined training objective: Ltotal(ϕ, θ) = Lrec(ϕ, θ) + βLKL(ϕ). This
training procedure offers some freedom in the latent optimization, i.e., how to compute z′i from
zi. Training with gradient ascent latent optimization (as detailed in Algorithm 2) incurs a compute
overhead due to the cost of the latent gradient computation through the decoder. Although we may
use a high compute budget at test-time, we propose to use a small number of gradient ascent steps
during training, ranging from 0 to 5 steps.
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Inference
Training Grad 0 Grad 1 Grad 5 Grad 20 Grad 100 Sample 250
Grad 0 3.2 (2.7) 3.6 (3.0) 18.8 (14.4) 52.5 (25.0) 67.5 (20.0) 3.2 (2.7)
Grad 1 8.6 (4.4) 44.6 (10.9) 85.4 (7.6) 98.4 (1.4) 99.5 (0.5) 10.2 (5.3)
Grad 1 ⋆⋆ 0.6 (0.1) 13.7 (3.0) 60.2 (7.5) 88.9 (6.0) 94.1 (3.8) 0.7 (0.2)
Grad 5 0.0 (0.0) 0.4 (0.3) 31.9 (11.2) 88.5 (11.9) 98.1 (2.1) 0.5 (0.4)
Sample 5 6.1 (4.4) 8.2 (6.5) 27.7 (21.6) 56.3 (27.5) 72.2 (21.2) 6.1 (4.4)

Table 1: Ablation of LPN training and inference methods on the Pattern task. Rows/columns represent
different training/inference methods, differing only in the latent optimization. "Grad [N]" stands for
N gradient ascent steps, "Sample [N]" for N samples from the encoder distribution without leveraging
any gradients, and "Grad 1 ⋆⋆" means that the decoder parameter gradient flows through the latent
optimization update. Training was performed for 20k steps with 3 seeds, aggregating performance
as mean (and standard deviation in brackets) over the 3 runs. Bold values indicate the best training
method for each inference regime. See expanded table in Appendix B.1

5 Experiments

5.1 Setup

We consider the ARC-AGI 2024 challenge [Chollet et al., 2024] as the testing domain for our method.
This program synthesis benchmark encompasses diverse tasks designed to test adaptation and out-
of-distribution generalization, rather than memorization. We implement both the LPN encoder and
decoder as small transformers [Vaswani et al., 2017], see Appendix G for full architecture details. We
fully open-source the codebase used to run all experiments in the paper in the supplementary material.
We introduce the simpler Pattern task to investigate LPN’s dynamics before large-scale ARC-AGI
training, see Appendix A. It generates 10x10 black input grids with a blue pixel indicating where a
4x4 program-specific pattern should be pasted. This task is sufficient to demonstrate weaknesses in
deep learning models that do not leverage test-time computation (see Section 5.4).

Baselines. We compare LPN to an in-context learning method Kolev et al. [2020], Li et al. [2024a],
which encodes each of the input-output pairs and then concatenates these embeddings to condition
output prediction, notably never producing any intermediate program embeddings. We discuss the
motivation for this design in Appendix H. Then, we also compare to test-time fine-tuning [Devlin
et al., 2017a, Akyürek et al., 2024], which, given a test-time specification, performs parameter-based
gradient updates on the in-context model. See Appendix H for details on baseline implementations
and Appendix E for hyperparameters.

5.2 Pattern Task

We compare a variety of LPN training and inference methods in Table 1, to better understand the
dynamics of LPN. We aim to first answer whether LPN can self-improve at test-time by searching
its latent space, and then how the training inference strategy affects performance. For each training
method, we train a small 1M parameter model for 20k steps with a batch size of 128 and evaluate it
with different inference modes. We find that inference using no test-time adaptation performs poorly
across all instances of LPN (and in-context baselines, see Appendix B.2). This shows that amortizing
inference is difficult for models of this size and training time.

All variations of LPN training show strong scaling in performance as the number of gradient steps
at test time is scaled. This demonstrates that LPN is capable of test-time adaptation to improve
pre-trained amortization performance. We visualise the decoded outputs at many points in the latent
space of LPN on a simple pattern task in Appendix B.4 showing structure in the latent program
representations, and Appendix B.4 shows the likelihood of the specification is smooth across the
space, enabling gradient based test time search.

When comparing different LPN training inference strategies, 1 gradient ascent step of latent op-
timization shows higher returns than training with mean pooling, with the difference particularly
pronounced when scaling the inference budget. With 100 steps of gradient ascent at inference time,
LPN training with grad 0 gets an accuracy of 67.5%, whereas training with one gradient step (Grad
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1) reaches 99.5%. This demonstrates the benefits of training the latent space with the awareness that
gradient ascent will be performed at test-time, an important inductive bias for the LPN architecture.
We also observe that gradient ascent vastly outperforms sampling-based search, validating that a
search without any gradient signal is highly inefficient. Lastly we perform training with and without
the stop gradient on the gradient update itself. We found that using the stop gradient actually leads to
higher test time performance while also being more computationally efficient.

5.3 Starting test-time search from the encoder

0 20 40 60 80 100
Accuracy (%)

Sample 5

Grad 5

Grad 1

Grad 0

Tr
ai

ni
ng

 M
et

ho
d

Inference Method
Grad 0 Grad 100 no encoder Grad 100

Figure 2: Ablation on the role of the encoder and
latent optimization. Latents are initialized from
the mean of the encoder latents (except for orange).
Grad N stands for doing latent optimization with
N gradient steps. Both the encoder initialization
and the latent optimization matter for LPN.

In addition, we ablate the impact of initializing
latent optimization with the encoder versus us-
ing the prior, in order to assess the benefits of
amortizing inference. In Figure 2, we specifi-
cally compare no latent search (blue), to doing
latent optimization in two ways: sampling from
the prior z ∼ p(z) (orange), and sampling from
the encoder z ∼ qϕ(z|x, y) (green). Initializ-
ing latent search with the encoder is critical for
performance across all training methods. This
validates the intuition that LPN can perform fast
system 1-like reasoning using the encoder and
then narrow down the search space during latent
optimization, simulating system 2 reasoning.

5.4 Adapting Out-Of-Distribution

Inference
Training Grad 0 Grad 10 Grad 100
In-Context 0.0 (0.0) - -
TTT 0.0 (0.0) 1.8 (0.7) 0.3 (0.1)
LPN Grad 0 0.3 (0.5) 18.8 (14.5) 41.1 (29.6)
LPN Grad 1 0.0 (0.0) 59.9 (11.6) 88.0 (5.3)
LPN Grad 2 0.0 (0.0) 38.5 (13.0) 81.8 (10.9)

Table 2: Out-of-distribution (OOD) performance
on the Pattern task. Performance is averaged over
3 training runs with different seeds, with standard
deviation in parentheses.

A significant challenge to deep learning meth-
ods is generalizing to out-of-distribution (OOD)
tasks. We study the OOD behavior of LPN, in-
context learning, and parameter fine-tuning on
the Pattern task in Table 2. In-context learning
has no test time adaptation performance as it has
no inherent mechanism to scale compute beyond
a single forward pass. We include full experi-
ments on a range of varying OOD settings in
Appendix B.2. When trained with 1 step of gra-
dient ascent, LPN recovers high accuracy (88%)
using 100 steps of gradient ascent at inference
time. TTT and in-context learning are incapable
of recovering the right OOD pattern at inference
time. We perform a similar experiment in Appendix B.7 on a synthetic integer sequence task with
less spatial structure, with the same conclusions.

5.5 Scaling Specification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Specification Size

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LPN grad 0
LPN grad 100
TTT grad 100
In-Context

Figure 3: Scaling specification sizes on the OOD
pattern task.

For any learning method that can handle vary-
ing amounts of data, an important question is
how the method scales to handling more data
than it was trained on. In Figure 3 we evalu-
ate in-context learning, TTT, and LPN with and
without gradient search in the OOD setting of
the pattern task, with varying specification sizes.
LPN smoothly generalizes to different specifica-
tion sizes, with only a small drop in performance
with less data, and keeps improving with more
data. In-context learning overfits to the specifica-
tion size it is trained on, and TTT only performs
well once given a sufficiently large specification and high inference compute. We ablate this in
Appendix B.5, repeating the experiment for varying training specification sizes.
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FLOPs In-Distribution Out-of-Distribution
LPN TTT CodeIt Mirchandani LPN TTT CodeIt Mirchandani

2E+11 68.75 45.75 - - 7.75 5.85 - -
2E+12 75.95 51.75 - - 10.25 7.35 - -
2E+13 80.00 58.50 - - 15.25 13.50 - -
2E+14 76.25 58.75 - - 15.50 16.00 - -
2E+15 78.50 57.00 - - 15.50 15.25 - -
» 2E+15 - - - 14.00 - - 14.75 6.75

Table 3: Results on ARC-AGI for varying values of FLOPs. In-Distribution refers to puzzles in the
ARC train set not trained on but are in-distribution relative to re-ARC. Out-of-distribution refers to
puzzles from the eval set. LPN and TTT stand for Latent Program Network (ours), and Test-Time
Training. CodeIt and Mirchandani are baselines from prior work.

5.6 ARC-AGI 2024

Setup We train on the re-arc dataset [Hodel, 2024], designed to be in distribution relative to
the ARC training set (which we don’t train on) Li et al. [2024b]. The evaluation set is significantly
OOD, representing a challenging generalization experiment. We train a 178M-parameter LPN with a
256-dim latent space for 100k steps for 2 days on a TPU v4-32, see Appendix E. Leveraging insights
from pattern task experiments, we use gradient ascent in LPN during training. To remain efficient,
we train LPN in Grad 0 mode for 95k steps and then fine-tune in Grad 1 for a further 5k steps, which
we find gives a marginal boost in performance at lower levels of test time compute Appendix B.8.

Results Table 3 shows top-2 accuracy on ARC-AGI (standard to ensure resolvability of all prob-
lems). Even after significant amortization of inference, we observe large performance gains from
scaling gradient search at test time. LPN significantly outperforms TTT in-distribution. We also see
strong evidence that the LPN has learned a structured latent space for representing programs, demon-
strated by a t-SNE plot of the embeddings of different programs in the training set, see Appendix F.
Out of distribution, LPN doubles its performance by using latent space search at test-time (scaling
FLOPs from 2e11 to 2e15). Using from 2E+11 to 2E+13 FLOPs, LPN outperforms TTT, until we
scale test-time compute to much higher levels, where TTT achieves higher performance. This finding
is likely due to the lack of diversity in programs seen by LPN during training, relative to experiments
on other datasets, limiting the ability to have a smooth expressive latent space. Relative to the pattern
task, TTT is less susceptible to overfitting on ARC-AGI, possibly due to the use of larger model sizes.
Both methods outperform two ARC specific LLM approaches that leverage far larger pre-trained
models, including CodeT5 [Butt et al., 2024] (220M parameters) and text-davinci [Mirchandani
et al., 2023] (175B parameters). This work represents an improvement over such methods due
to significantly lower inference and training cost, and greater generalization from limited training
distribution. The current highest performing model on ARC-AGI is o3-preview(low) (LLM) which
achieves 75.7% at a cost of $200 per task. Both the training and inference costs are far beyond this
work, there is an opportunity for future work to investigate scaling up this work to such a scale.

6 Conclusion

We introduced Latent Program Network (LPN), a novel approach to inductive program synthesis
leveraging continuous latent spaces for efficient test-time adaptation. LPN integrates adaptation
directly into its architecture, refining latent representations through gradient-based search, which
we identify as an efficient adaptation method. We show that LPN generalizes beyond the training
distribution, relying on test-time adaptation rather than expanded synthetic datasets.

Limitations and Future Work. A limitation of this work is the limited diversity of programs on
which LPN is trained. While augmentations are used during training, the distribution of programs
remains narrow and restricts the potential for learning an expressive complex latent space. We limit
gradient-based search to standard optimizers. Future work could explore alternative optimization
methods, such as evolution strategies, and explore discrete program representations to enhance
compositional generalization.
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A Datasets

A.1 Pattern Task

The ARC-AGI challenge contains many diverse programs leveraging different knowledge priors.
Injecting these priors into LPN by training the model to master ARC-like tasks requires significant
compute resources when training from scratch, without an LLM-based initialization. Therefore,
to investigate the training dynamics and properties of LPN before such a large-scale training, we
develop a simpler task called Pattern task (see figure 4) within the same domain, but using a narrow
distribution of pattern-like programs. This specific task always generates fully-black 10x10 inputs
with a single blue pixel at a random location that defines where the output pastes a 4x4 pattern
sampled from a uniform distribution. The pattern is program-specific, meaning it is the same across
different pairs but varies from specification to specification. This task demonstrates how deep learning
methods without test-time computation may still make errors on such tasks. We then extend this task
to study an out-of-distribution setting in section 5.4.

Figure 4: Example of input (top row) and output (bottom row) pairs of a specification sampled from
the Pattern task. Each sample is a batch of 4 pairs that share the same pattern.

A.2 ARC-AGI

We evaluate LPN on the ARC-AGI benchmark by training it on the re-arc dataset [Hodel, 2024],a
dataset designed to be in distribution relative to the ARC training set, previously used for training
large language models and ARC specific transformers to solve ARC-AGI Li et al. [2024b], Akyürek
et al. [2024]. Most previous works however expand beyond this dataset, usually synthetically adding
additional programs [Butt et al., 2024], or crafted datasets. We restrict training to tasks from only
this dataset with the goal of assessing generalization instead of closing a performance gap with more
data. This also ensures LPN solely learns from core knowledge priors without data leakage from
the evaluation set. The evaluation set is known to be significantly out of distribution and therefore
represents a challenging generalization experiment. We train a 178M-parameter LPN with a 256-dim
latent space for 100k steps (batch size 256) for 2 days on a TPU v4-32, see Appendix E for further
details, in terms of data, this amounts to 51M I/O pairs. Leveraging insights from smaller scale
experiments we make use of gradient in LPN during training. We train LPN in Grad 0 mode for 95k
steps and then fine tune in Grad 1 for a further 5k steps. We outline our hyperparameter procedure for
both LPN and TTT for ARC-AGI in Appendix E.
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B Expanded Experiments

B.1 LPN Training Extended

We provide an expanded version of Table 1 with additional ablations for both the training and
inference axes.

Inference
Training Grad 0 Grad 1 Grad 5 Grad 20 Grad 100 Sample 250
Grad 0 3.2 (2.7) 3.6 (3.0) 18.8 (14.4) 52.5 (25.0) 67.5 (20.0) 3.2 (2.7)
Grad 1 8.6 (4.4) 44.6 (10.9) 85.4 (7.6) 98.4 (1.4) 99.5 (0.5) 10.2 (5.3)
Grad 1 ** 0.6 (0.1) 13.7 (3.0) 60.2 (7.5) 88.9 (6.0) 94.1 (3.8) 0.7 (0.2)
Grad 5 0.0 (0.0) 0.4 (0.3) 31.9 (11.2) 88.5 (11.9) 98.1 (2.1) 0.5 (0.4)
Grad 5 ** 0.0 (0.0) 0.0 (0.0) 9.9 (2.9) 87.1 (6.0) 95.1 (3.3) 0.0 (0.0)
Sample 5 6.1 (4.4) 8.2 (6.5) 27.7 (21.6) 56.3 (27.5) 72.2 (21.2) 6.1 (4.4)
Sample 25 10.8 (8.0) 13.3 (10.1) 39.9 (21.4) 72.3 (18.5) 87.9 (9.2) 10.8 (8.0)

Table 4: Ablation study of LPN training and inference methods on the Pattern task. Rows represent
training methods: LPN Grad [N] for N gradient steps, LPN Grad [N] ** with gradient flow through
latent optimization (analogous to meta-learning), and Sample [N] for N random samples. Columns
represent inference methods: Grad [N] for N gradient ascent steps and Sample [N] for random search
with N samples. Training was performed for 20k steps with 3 seeds, with performance reported
as mean (standard deviation) over 3 runs. Bold values indicate the best performance per inference
method.

B.2 Adapting Out-Of-Distribution

We provide expanded results for the out-of-distribution (OOD) experiments outlined in Section 5.4.
We include results for varying levels of OOD starting with in-distribution, weak OOD, and strong
OOD.
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Inference
Training Grad 0 Grad 10 Grad 100
In-Context 15.3 (0.6) - -
Test Time Training 15.3 (0.6) 17.0 (1.7) 0.78 (0.69)
LPN Grad 0 30.2 (15.7) 72.8 (29.5) 82.2 (21.3)
LPN Grad 1 26.6 (7.4) 98.0 (0.6) 99.2 (0.6)
LPN Grad 2 14.4 (3.5) 97.2 (1.6) 98.9 (1.2)
LPN Grad 3 1.0 (0.7) 85.7 (6.3) 98.3 (1.9)
LPN Grad 1 ⋆⋆ 10.6 (6.4) 93.8 (5.1) 97.4 (1.9)

In-distribution

Inference
Training Grad 0 Grad 10 Grad 100
In-Context 2.1 (0.9) - -
Test Time Training 2.1 (0.9) 2.1 (1.1) 0.00 (0.00)
LPN Grad 0 7.6 (5.6) 51.3 (35.7) 62.8 (38.3)
LPN Grad 1 7.4 (4.4) 93.1 (4.3) 97.7 (2.2)
LPN Grad 2 3.0 (2.6) 86.1 (6.0) 95.9 (2.1)
LPN Grad 3 0.0 (0.0) 55.0 (7.8) 93.9 (3.8)
LPN Grad 1 ⋆⋆ 1.3 (1.0) 81.7 (13.3) 91.5 (5.5)

Weakly out-of-distribution

Inference
Training Grad 0 Grad 10 Grad 100
In-Context 0.0 (0.0) - -
Test Time Training 0.0 (0.0) 1.8 (0.7) 0.3 (0.1)
LPN Grad 0 0.3 (0.5) 18.8 (14.5) 41.1 (29.6)
LPN Grad 1 0.0 (0.0) 59.9 (11.6) 88.0 (5.3)
LPN Grad 2 0.0 (0.0) 38.5 (13.0) 81.8 (10.9)
LPN Grad 3 0.0 (0.0) 11.3 (9.3) 72.0 (14.0)
LPN Grad 1 ⋆⋆ 0.0 (0.0) 40.9 (19.8) 71.1 (14.3)

Strongly out-of-distribution

Table 5: Study of the out-of-distribution (OOD) performance on the Pattern task. Models are
trained on patterns that have a density of 50% (half black, half colored), then evaluated on the same
distribution, on a density of 75% (weakly OOD) and 100% (strongly OOD). Performance is averaged
over 3 training runs with different seeds, with standard deviation in parentheses.
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B.3 Validating the Decoder

Training deep networks from scratch to solve ARC-like tasks has been challenging [Li et al., 2024c].
If it is the case that neural networks struggle even to learn to execute single programs this represents a
significant bottleneck to training models from scratch on a broad distribution of programs. Therefore,
before training LPN end-to-end, we conclusively show that our decoder architecture does not suffer
from such a bottleneck, and can learn individual programs.

We show 5 of the 400 total tasks from the ARC-AGI training set, and for each of these tasks,
we train a small LPN architecture of 800k parameters (except for the last task which required a
bigger model with 8.7M parameters) on the corresponding task generator from re-arc [Hodel,
2024]. Specifically, we select the first five tasks from the arc-agi_training_challenges json
file (007bbfb7, 00d62c1b, 017c7c7b, 025d127b, 045e512c) shown in figure Figure 5.

007bbfb7 00d62c1b
017c7c7b

025d127b
045e512c

Figure 5: Overfit training on the first 5 ARC-AGI training tasks. The captions correspond to task IDs.
For each task, the top row contains the input grids, and the bottom row the output grids. Each task
consists of observing all pairs but the first and inferring the output of the leftmost pair given its input.
Each curve corresponds to a separate training run.

We evaluate both the distribution of re-arc generated tasks on which it is trained and on the true
task from the ARC-AGI training set in figure Figure 6. We show that for each task, the small LPN
decoder-only model successfully learns individual programs and manages to solve the corresponding
ARC-AGI task. Therefore, our model outperforms previously reported results in Li et al. [2024c],
and concludes that our architecture does not suffer from a decoder bottleneck. Note that the encoder
is not helpful in this experiment since the task is always the same. Our later results on ARC-AGI
Section 5.6 take this a step further and show that we can learn a single transformer architecture
capable of executing over 270 programs in the ARC training dataset.
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(a) Training loss

Pixel Accuracy

Task re-arc ARC-AGI

007bbfb7 100 100

00d62c1b 96.5 100

017c7c7b 99.7 100

025d127b 100 100

045e512c 98.3 100

(b) Performance after 10k steps of training

Figure 6: Training loss and performance of LPN training on 5 of the re-arc distributions. For each
task, only samples from the re-arc generators are used for training. The corresponding ARC-AGI
tasks are never seen during training.
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B.4 Analyzing the Latent Space
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Figure 7: (Left) A 2D pattern task with inputs containing marker points where patterns should be
placed, with patterns varying for each program. (Right) The latent traversal visualizes the effect of
traversing the latent space, on the predicted pattern by the decoder at marker points.

To validate that the encoder is learning programs in its latent space, we design an even simpler task
with small 4x4 grids that have 2x2 patterns. We train a small LPN model until convergence with
a latent space of dimension 2 to easily visualize it in figure Figure 7. Due to the simplicity of the
task we train the model with mean training, i.e. no latent optimization. Because we are using a 2D
Gaussian prior for the latent space, we can convert R2 to the unit square using the normal cumulative
distribution function (CDF), and then plot on the unit square at coordinates (x, y) the decoder’s output
when conditioned by the latent CDF(z) = (x, y), or equivalently, z = (PPF(x),PPF(y)) using the
percent-point function (PPF). These results demonstrate the diversity and smoothness of the latent
space, showing structure in terms of color patterns, which motivates performing gradient ascent latent
optimization in more complex tasks. This shows that the latent space can encode a wide range of
diversity in its latent space which is especially important for adapting to unseen patterns.
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The figures on the left show a
random initialization in the latent
space and a corresponding latent
trajectory following the gradient as-
cent algorithm. The log-likelihood
for each latent is shown during op-
timization. The decoded pattern is
traced until convergence in the la-
tent space, giving insights into how
LPN performs latent optimization
at test time to find the optimal latent
program.
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B.5 Scaling Specification Size
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Figure 8: Accuracy of Latent Program Network (LPN) and Test-Time Training (TTT) models as
we scale specification size. Higher specification sizes improve accuracy across different training
methods. The dashed vertical line at specification size 3 indicates the fixed size used during training.

To analyze the effect of scaling specification size, we conduct an ablation using models trained on
the pattern task for a single seed. We compare both in-context learning and LPN. We then evaluate
different inference strategies on the in-distribution dataset and analyze their performance as the test
specification size increases.

Our results indicate that LPN generalizes effectively across varying specification sizes. This robust-
ness is primarily due to the use of mean pooling, which prevents overfitting to specific context lengths
and enables the model to gracefully handle both slightly larger and significantly larger specifica-
tion sizes. Furthermore, mean pooling encourages representations of the same program to remain
structurally similar, improving generalization.

In contrast, in-context learning exhibits strong overfitting to the training specification size, with a
noticeable drop in performance as the specification size deviates from the training distribution. How-
ever, we observe that fine-tuning-based inference can scale effectively with increasing specification
sizes, provided that a sufficient amount of data is available. The effectiveness of fine-tuning is highly
dependent on the choice of hyperparameters, requiring substantial amounts of data to maintain strong
performance as the specification size grows.

B.5.1 Performance Across Training Sizes

To further explore the impact of training specification size on model performance, we present results
for training sizes 1, 7, and 11, evaluated across test sizes 1, 3, 7, 11, 15, and 19 on the pattern task.
The following tables report accuracy for LPN with and without gradient ascent, In-Context Learning,
and Test-Time Training (TTT). Notably, In-context learning consistently overfits to specific test sizes
that align closely with the training size. In contrast, LPN, particularly with 100 gradient ascent
steps, demonstrates robust generalization, maintaining high accuracy across all test sizes and training
sizes. TTT shows improved performance as test sizes increase, approaching LPN’s accuracy at larger
specification sizes when also trained on large specification sizes.

Method Test Size
1 3 7 11 15 19

LPN grad 0 38.9 44.1 47.5 44.7 48.8 45.9
LPN grad 100 89.8 92.1 94.1 94.1 95.3 96.3
In-Context 2.1 0.0 0.0 0.0 0.0 0.0
TTT grad 100 7.8 19.9 50.9 72.4 81.8 90.4

Table 6: Performance (top-2 accuracy, percentage) for training size 1 on the pattern task.
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Method Test Size
1 3 7 11 15 19

LPN grad 0 14.6 27.7 32.8 33.4 33.2 35.1
LPN grad 100 87.7 89.3 92.7 91.0 92.6 93.6
In-Context 0.0 0.0 78.3 0.0 0.0 0.0
TTT grad 100 11.3 34.7 77.9 90.6 94.7 93.2

Table 7: Performance (top-2 accuracy, percentage) for training size 7 on the pattern task.

Method Test Size
1 3 7 11 15 19

LPN grad 0 11.1 26.6 40.8 43.2 50.0 48.8
LPN grad 100 91.4 97.1 97.5 96.9 98.0 97.9
In-Context 0.0 0.0 0.1 94.1 0.1 0.0
TTT grad 100 0.1 16.2 56.1 78.3 93.7 92.2

Table 8: Performance (top-2 accuracy, percentage) for training size 11 on the pattern task.
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B.6 Measuring Floating Point Operations

To evaluate the computational efficiency of different methods, we measure the number of floating-
point operations (FLOPs) required for performing inference on a single task. The reported FLOP
measurements correspond to the cost of generating an entire 30x30 grid given 3 input-output pairs
(specification size).

While gradient-based approaches do not require an additional computational budget in terms of trial
attempts, their inference mechanisms involve performing gradient updates, either in parameter space
or latent space, which adds a computational overhead. A key distinction between TTT and LPN is
their computational cost: LPN updates only the latent space by backpropagating through the decoder,
whereas TTT requires backpropagation through all model parameters. This makes TTT significantly
more expensive and less efficient for real-time applications.

LPN grad 0

In-Context

LPN Sampling 1

LPN grad 1

TTT grad 1

LPN Sampling 10

LPN grad 10

TTT grad 10

LPN Sampling 100

LPN grad 100

TTT grad 100

1012

1013

1014
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OP
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Figure 9: Floating-point operations (FLOPs) required for test-time inference across different methods.

The LPN Sampling results can be understood as ablation of LPN without gradient-based search, but
only sampling multiple latents from the encoder computing the decoder likelihood for each, avoiding
the computational cost of backpropagating through the decoder. However, this efficiency gain comes
at a significant cost in performance, as shown in the pattern task results Table 1.
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B.7 Sequence Ablation

B.7.1 Dataset

To investigate the generalizability of our results beyond environments with significant spatial structure,
we perform an ablation on a synthetic sequence task and replicate the analysis previously conducted
on the pattern dataset. This synthetic dataset features a vast program space, with over 100 million
unique programs, each defined by composing 3 to 5 parameterized rules that transform sequences of
numbers (ranging from 0 to 4). Programs are composed of 3 to 5 rules with specific integer-based
parameters (e.g., thresholds or operation values). These rules are then applied in their chosen order:
for each rule, we process the sequence from left to right, transforming each position according to the
rule’s condition and operation, producing an intermediate sequence that serves as input to the next
rule. This sequential, rule-by-rule application, with each rule scanning left to right, enables complex
transformations and vast numbers of programs with meaningfully different outputs. The core rules
are defined as follows:

• If a number is greater than its right neighbor by a threshold k, decrease it by a value m,
modulo 5.

• If a number has identical neighbors on both sides, multiply its value by a factor n and clip
the result to 4.

• If a number is greater than its left neighbor by a threshold k, add a value m, modulo 5.
• If a number is less than its right neighbor by a threshold k, subtract a value m, modulo 5.
• Replace the number with a function of its neighbors (e.g., sum, average, maximum, or

minimum), modulo 5.

These parameterized rules may interact at the same position across their sequential applications,
creating cascading effects that result in complex transformations. While a single input-output pair may
not uniquely identify the underlying program, multiple pairs typically provide sufficient information
to determine it. The table below presents accuracy metrics for models evaluated on this task.

B.7.2 Results

Our experiments demonstrate that Test-Time Training (TTT) exhibits overfitting, as evidenced by
their performance degradation when gradient fine tuning is performed. In contrast, LPN maintains
robust performance without overfitting. Furthermore, incorporating a single gradient step during
training enhances LPN performance marginally at higher inference gradients.

Inference (Avg ± Std)
Training Grad 0 Grad 10 Grad 100
In-Context 0.78 (0.01) - -
Test-Time Training 0.78 (0.01) 0.73 (0.01) 0.12 (0.01)
LPN Grad 0 0.76 (0.02) 0.83 (0.01) 0.81 (0.01)
LPN Grad 1 0.71 (0.00) 0.86 (0.01) 0.82 (0.02)
LPN Grad 2 0.63 (0.01) 0.85 (0.00) 0.80 (0.01)
LPN Grad 3 0.49 (0.04) 0.85 (0.00) 0.82 (0.02)
LPN Grad 1 ** 0.68 (0.01) 0.85 (0.00) 0.81 (0.01)

Table 9: Study of model performance across different inference gradients for methods: In-Context,
Test-Time Training with learning rate of 1e-4, LPN Grad 0, LPN Grad 1, LPN Grad 2, LPN Grad 3
(all with learning rates of 1e-1), LPN Grad 1 **. Performance is averaged over 3 training runs, with
standard deviation in parentheses.
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B.8 LPN fine tuning

We also ablate LPN training by training in full Grad 0 mode for 100k steps. We show the results
compared to fine tuning for 5k steps in Grad 1 mode.

FLOPs LPN Grad 1 Tune LPN Grad 0 Tune
2E+11 7.75 8.25
2E+12 10.25 10.25
2E+13 15.25 13.60
2E+14 15.50 15.10
2E+15 15.50 15.10

Table 10: Performance of LPN with and without gradient tuning on ARC-AGI for 10k steps

We find a marginal performance gain at higher computational budgets from fine-tuning with one
gradient step, so we adopt this approach in the main method. However, we note a slight perfor-
mance drop in Grad 0 inference, which is expected as the network begins to optimize with gradient
adaptation.
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B.9 ARC-AGI Solution Analysis

In this section we investigate whether there are differences between the types of tasks in ARC-AGI
evaluation dataset that LPN solves vs Test-Time Training. We run both methods at the budget of
2E+14 and analyze the problems solved. We first analyze the overlap between problems solved
between the two methods. We see that there is a spread of the different problems being solved by the
different architectures, a roughly even split between problems only solved by TTT, problems solved
only by LPN and problems solved by both.
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Figure 10: Bar Chart showing Problems Uniquely solved by LPN and TTT and tasks solved when at
least one solves the problem

If we measure the accuracy when either LPN or TTT solves an ARC puzzle. We achieve a combined
score of 22%. We also show 3 examples of problems solved only by LPN and 3 examples only solved
by Test-Time Training to understand the differences between the problems each method solved.

25



Figure 11: LPN Example 1
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Figure 12: LPN Example 2
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Figure 13: LPN Example 2
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Figure 14: TTT Example 1
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Figure 15: TTT Example 2
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Figure 16: TTT Example 3
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C LPN Algorithm

Below we outline two algorithms: first, LPN test-time inference (Algorithm 1) and its mechanism
for performing inductive inference. Second, we provide the full algorithm for LPN during training
(Algorithm 2).

Algorithm 1 LPN Test-Time Inference with Gradient Ascent Latent Optimization

Require: n input-output pairs (xi, yi), a test input xn+1, number of gradient steps K
1: for i = 1, . . . , n do ▷ Can be done in parallel
2: Sample zi ∼ qϕ(z|xi, yi)
3: end for
4: Initialize latent z′ ← 1

n

∑n
i=1 zi

5: for k = 1, . . . ,K do ▷ Perform gradient ascent
6: z′ ← z′ + α · ∇z

∑n
i=1 log pθ(yi|xi, z)|z=z′

7: end for
8: return yn+1 ∼ pθ(y|xn+1, z

′)

Algorithm 2 LPN Training with Gradient Ascent Latent Optimization

Require: Encoder parameters ϕ, decoder parameters θ
1: for t = 1, . . . , num_training_steps do
2: Sample n input-output pairs (xi, yi) from the same program
3: for i = 1, . . . , n do ▷ Can be done in parallel
4: Sample zi ∼ qϕ(z|xi, yi) ▷ Using the reparameterization trick
5: end for
6: for i = 1, . . . , n do ▷ Can be done in parallel
7: z′i ← 1

n−1

∑n
j=1
j ̸=i

zj

8: for k = 1, . . . ,K do ▷ Perform gradient ascent in the latent space
9: z′i ← z′i + α · ∇z

∑n
j=1
j ̸=i

log pθ(yj |xj , z)|z=z′
i
▷ Optional stop-grad on the 2nd term

10: end for
11: Li ← − log pθ(yi|xi, z

′
i) + β ·DKL(qϕ(z|xi, yi) ∥ N (0, I))

12: end for
13: L ← 1

n

∑n
i=1 Li ▷ Total loss for all pairs

14: Update ϕ and θ via gradient descent on L
15: end for
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D Variational Inference

Latent Program Networks (LPNs), when operated in grad 0 mode, perform a form of variational
inference. Updating the latent representation using gradients from the encoder constitutes semi-
amortized variational inference [Kim et al., 2018, Marino et al., 2018].

In prior work, such as LEAPs Trivedi et al. [2021], it is assumed during training that the full
representation of a program f is observable. In this setting, variational inference on programs can be
conducted using a standard Variational Autoencoder (VAE) restricted to the program space. LEAPs
introduce a form of variational inference via an Execution Evidence Lower Bound (ELBO), where
function reconstruction is based on correctly executing the function for a given input rather than
reconstructing the full program representation. The Execution ELBO is defined as:

Ez∼qϕ(z|f)
[
Ex∼p(x) [log pθ(y = f(x) | x, z)]

]
− KL(qϕ(z|f) ∥ p(z)).

This formulation is advantageous because it enables learning a function that directly executes the
program without requiring explicit reconstruction of the program followed by execution. In LPNs,
this is critical, as the differentiable parameterization of the function executor allows backpropagation
through the executor to perform program search in the latent space.

In this work, we assume that the functions generating the underlying input-output pairs are not
fully observable, aligning with real-world scenarios where the data-generating functions are rarely
fully known. Instead, we observe only partial data for each function, represented as a dataset
Xd = {(xi,d, yi,d)}Nd

i=1, where each dataset d corresponds to a set of input-output pairs generated by
a particular unseen function. Across D such datasets, the following objective serves as a practical
approximation to the Execution ELBO:

D∑
d=1

Nd∑
i=1

Ez∼qϕ(z|Xd) [log pθ(yi,d | xi,d, z)]− KL(qϕ(z|Xd) ∥ p(z)), (7)

where D is the number of datasets, each representing input-output pairs from a distinct unseen
function, and Nd is the number of samples in dataset d. However, this standard objective is flawed
because the encoder qϕ(z|Xd) can “cheat” by encoding specific details of the pair (xi,d, yi,d) it needs
to reconstruct, leading to memorization rather than capturing the general function f . To address this,
we propose the Leave-One-Out (LOO) objective:

D∑
d=1

Nd∑
i=1

Ez∼qϕ(z|X−i,d) [log pθ(yi,d | xi,d, z)]− KL(qϕ(z|Xd) ∥ p(z)), (8)

where X−i,d = Xd \ {(xi,d, yi,d)} denotes the dataset Xd excluding the i-th input-output pair.
This objective prevents memorization by denying the encoder access to (xi,d, yi,d) when producing
the latent representation z used for its reconstruction. Consequently, qϕ must infer the underlying
function from the remaining data X−i,d, making the LOO objective a better functional approximation
of the Execution ELBO’s intent by directly promoting generalization. Training optimizes the encoder
qϕ(z|Xd) and decoder pθ(y | x, z) across multiple datasets, resulting in an amortized inference
model qϕ that efficiently proposes an approximate posterior for any given dataset Xd.

For optimal performance on a specific test dataset Xtest, we employ semi-amortized variational
inference. First, the trained amortized encoder qϕ(z|Xtest) rapidly generates an initial latent rep-
resentation z0. Then, with the encoder parameters ϕ and decoder parameters θ fixed, we perform
instance-specific optimization starting from z0 to find a refined latent representation z∗. This is
achieved by directly maximizing the ELBO via latent z. This combination of an efficient amortized
proposal and instance-specific ELBO refinement yields a superior latent program representation z∗

tailored to the test problem. This procedure, known as semi-amortized variational inference, balances
computational efficiency with high-quality inference.
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E Hyperparameters

In this section, we outline our approach to hyperparameter search and provide full documentation of
all the hyperparameters used in all reported experiments.

Hyperparameter Search To ensure a fair comparison between LPN and in-context learning, which
share the same core architecture for embedding inputs and generating outputs, we kept all architectural
parameters identical across methods. We conducted hyperparameter testing to determine whether to
use rotational embeddings. We performed testing by repeating the decoder validation experiment
with and without rotational embeddings. Rotational embeddings improved performance across all
individual tasks and so was selected to be used in both the encoder and decoder of LPN.

For the ARC-AGI results, we performed a hyperparameter search over the learning rate for test time
adaptation for both test-time tuning and LPN. Since these methods operate in different spaces, they
are unlikely to require similar parameters, making it fairer to tune this parameter independently for
each baseline. We validated on a held-out test set of unseen problems from the RE-ARC dataset. We
searched over learning rates ranging from 10−1 to 10−7. Performance was evaluated by measuring
average accuracy across five FLOP measures (ranging from 2E+11 to 2E+15). For the baseline pattern
task in Table 1 we choose a learning rate of 0.1 without performing hyperparameter optimisation as
the experiment is simply to understand the behavior of LPN and not to optimize performance. For
pattern OOD task we perform grid search for LPN and TTT over a dataset of from the strongly OOD
task for 10 gradient steps, filtering out learning rates that do not decrease the test-time loss by at least
1.0%. We use these learning rates for the scaling specification size ablation also.

Validating the Decoder In section B.3, we train an LPN model on each of the re-arc generators
corresponding to the first 5 tasks from the training set. For each task, we train the model for 10k
gradient steps with a batch size of 128 and 4 pairs per specification, resulting in 5,120,000 input-
output pairs. We gather all hyperparameters in table 11, common to all the tasks except 045e512c
which had 4 encoder layers, 8 heads, 32 embedding dimensions per head, an MLP factor of 2.0, for a
total of 8.7M parameters.

Component Hyperparameter Value

Encoder Transformer

Number of Layers 0
Number of Heads 6
Embedding Dimension per Head 16
Latent Dimension 32
RoPE False

Decoder Transformer

Number of Layers 3
Number of Heads 6
Embedding Dimension per Head 16
MLP Dimension Factor 1.0
RoPE False

Training

Number of Parameters 829k
Training Steps 10k
Batch Size 128
Optimizer AdamW
Gradient Clipping Norm 1.0
Learning Rate 4e-4
Number of Rows & Columns 30, 30

Table 11: Hyperparameters for the experiments from section B.3, validating the decoder.
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Pattern Task In section 5.2, we train an LPN model on a 10x10 task with 4x4 patterns. We train
each method (mean, gradient ascent, etc) for a total of 20k steps with a batch size of 128 and 4 pairs
per specification, resulting in a total of 10M input-output pairs.

Component Hyperparameter Value

Encoder Transformer

Number of Layers 2
Number of Heads 6
Embedding Dimension per Head 16
MLP Dimension Factor 1.0
Latent Dimension 32
RoPE False

Decoder Transformer

Number of Layers 2
Number of Heads 6
Embedding Dimension per Head 16
MLP Dimension Factor 1.0
RoPE False

Training

Number of Parameters 973k
Training Steps 20k
Batch Size 128
Prior KL Coeff 1e-4
Optimizer AdamW
Gradient Clipping Norm 1.0
Learning Rate 4e-4
Number of Rows & Columns 10, 10

Testing

TTT Learning Rate 1e-4
LPN Learning Rate 1e-1
Optimizer Adam

Table 12: Hyperparameters for the experiments from section 5.2, i.e. the pattern task.
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Analyzing the Latent Space In section B.4, we train a small LPN model on a reduced version of the
Pattern task with grids of size 4x4 and patterns of size 2x2. We used the following hyperparameters
for training in table 13.

Component Hyperparameter Value

Encoder Transformer

Number of Layers 2
Number of Heads 6
Embedding Dimension per Head 12
MLP Dimension Factor 4.0
Latent Dimension 2
RoPE False

Decoder Transformer

Number of Layers 2
Number of Heads 6
Embedding Dimension per Head 12
MLP Dimension Factor 4.0
RoPE False

Training

Number of Parameters 1M
Training Steps 200k
Batch Size 128
Prior KL Coeff 1e-3
Optimizer AdamW
Gradient Clipping Norm 1.0
Learning Rate 4e-4
Number of Rows & Columns 4, 4

Testing

TTT Learning Rate 1e-4
LPN Learning Rate 1e-1
Optimizer Adam

Table 13: Hyperparameters for the experiment in section B.4, i.e. analyzing the latent space.
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Out-Of-Distribution In section 5.4, we train LPN models similar to those above in the Pattern task
and evaluate them on different distributions. We gather hyperparameters used for training in table 14.

Component Hyperparameter Value

Encoder Transformer

Number of Layers 4
Number of Heads 8
Embedding Dimension per Head 8
MLP Dimension Factor 2.0
Latent Dimension 32
RoPE False

Decoder Transformer

Number of Layers 2
Number of Heads 8
Embedding Dimension per Head 4
MLP Dimension Factor 1.0
RoPE False

Training

Number of Parameters 1M
Training Steps 100k
Batch Size 128
Prior KL Coeff 1e-4
Optimizer AdamW
Gradient Clipping Norm 1.0
Learning Rate 4e-4
Number of Rows & Columns 10, 10

Testing

TTT Learning Rate 1e-5
LPN Learning Rate 1e-1
Optimizer Adam

Table 14: Hyperparameters for the experiments from section 5.4, i.e. the study of out-of-distribution
performance of LPN on the Pattern task.
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ARC-AGI In table 15, we finally present the hyperparameters used for experiments on ARC-AGI
(section 5.6).

Component Hyperparameter Value

Encoder Transformer

Number of Layers 8
Number of Heads 8
Embedding Dimension per Head 64
MLP Dimension Factor 4.0
Latent Dimension 256
RoPE True
RoPE max freq 10

Decoder Transformer

Number of Layers 6
Number of Heads 8
Embedding Dimension per Head 64
MLP Dimension Factor 4.0
RoPE True
RoPE max freq 10

Training

Number of Parameters 178M
Training Steps 100k
Batch Size 256
Prior KL Coeff 1e-4
Optimizer AdamW
Gradient Clipping Norm 1.0
Learning Rate 3e-4
Number of Rows & Columns 30, 30

Testing

TTT Learning Rate 1e-4
LPN Learning Rate 5e-2
Optimizer Adam

Table 15: Hyperparameters for the experiment in section 5.6, i.e. training LPN to solve the ARC-AGI
benchmark.
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F Additional Charts

F.1 Latent Program Embeddings

Figure 17: T-SNE visualization of the latent space of input-output pairs sampled from the re-arc
generators. We see strong evidence that the latent embeddings encode information about programs
with significant clustering in the latent space for the same programs across different input output
pairs.
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F.2 Decoder Gradient Field

Figure 18 visualizes the likelihood landscape of decoding the correct output conditioned on the given
input for a single pattern task, while varying the latent input. The gradient contours overlaid on the
plot illustrate the optimization dynamics when performing gradient-based updates in this space. The
trajectories depict how gradient ascent seeks to maximize the decoding likelihood, revealing the
structure of the landscape. Certain regions form basins of attraction that lead to valid solutions, while
others correspond to local optima where the likelihood of decoding the correct output stagnates. This
visualization highlights both the feasibility of optimizing the latent representation and the potential
challenges of escaping suboptimal regions in the latent space.
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Figure 18: Visualization of the likelihood landscape for decoding the correct output conditioned on
the input, as a function of the latent space.
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G Architecture

In all our experiments, programs are defined in the input-output space of ARC-AGI, i.e., 2D grids
whose cells can take 10 different values and have shapes (n,m) with n,m ∈ [1, 30]. We implement
both the encoder and decoder as small transformers [Vaswani et al., 2017] specifically designed for
this benchmark, in contrast to the more general large language models (LLMs) typically used [Wang
et al., 2023].
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Figure 19: LPN architecture for ARC-AGI. Both the encoder and decoder are small transformers that
take flattened padded grids as inputs. The actual number of rows and columns is prefixed to each
sequence.

We model the input and output images as 2D grids, which we pad and flatten in a raster-scan fashion
to form sequences of pixel values, each of size 30× 30 = 900 (see Figure 19). Each grid sequence
is prefixed with shape information, namely two extra values for the number of rows and columns,
resulting in sequences of 902 values. For both the Encoder and Decoder grid positions are encoded
using RoPE [Su et al., 2024]2 for both row and column indices.

G.1 Encoder

The encoder processes both the input and output grids from a given pair and returns a distribution
of inferred program latents underlying the task. Specifically, it outputs the mean and diagonal
covariance of a multivariate normal distribution from which latents can be sampled. Each grid
sequence contains 902 values, and we add an extra CLS token for the output embedding, resulting
in a total sequence length of 1805 for the encoder transformer. The encoder is implemented as a
standard transformer [Vaswani et al., 2017] with pre-layer normalization [Baevski and Auli, 2018,
Xiong et al., 2020] and multi-head attention. To incorporate identify the input from the output we
add an embedding emb(c), c ∈ {0, 1} is the channel index (0 for input, 1 for output). All 1800 color
values (0 to 9), four shape values (1 to 30), and the CLS token are separately embedded into RH

using lookup tables. Padded tokens, determined by the shape values, are masked, and the sequence is
fed into multiple transformer blocks, see Appendix E for hyperparameter details. In the encoder the
attention mask is non-causal, allowing all non-padded tokens to attend to each other during encoding.
The CLS embedding is passed through a layer normalization and two parallel dense layers to output
the mean and diagonal log-covariance of the multivariate normal distribution over latents. Sampled
program latents have dimension d, which may differ from the embedding dimension H .

2https://github.com/crowsonkb/rope-flax
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G.2 Decoder

The decoder takes an input grid and a latent program and autoregressively generates an output grid.
Its design is similar to the encoder, with key differences. First, the flattened sequence is prefixed with
a projection of the latent embedding. Since the decoder generates the output autoregressively, the
attention mask is causal on the output grid portion of the sequence (the second half). The attention
mask also dynamically accounts for padding tokens based on the predicted output shapes. The
sequence embeddings corresponding to the output are extracted and projected to either shape logits
for the first two embeddings or grid logits for the 900 output grid embeddings. Each output token
embedding maps to logits for the next token in a raster-scan fashion. However, due to padding at
each row, the last embedding of each row is mapped to the first token of the next row.
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H Baselines

H.1 Transductive Baseline

We compare LPN against a transductive baseline that directly conditions on the specification without
explicitly constructing a latent program representation. This approach, similar to Kolev et al. [2020],
Li et al. [2024a], processes the specification by encoding and concatenating each input-output pair
separately.

Encoder: The encoder maps each input-output pair to an encoding vector:

zi = eϕ(xi, yi) ∀i ∈ [1, n] (9)

where eϕ is a neural network parameterized by ϕ that processes individual input-output pairs.

Concatenation: Unlike LPN which searches for a single latent program, the transductive baseline
uses each encoding as a token embedding in the input sequence to the transformer. Specifically, the
encodings are concatenated as:

zcat = [z1; z2; . . . ; zn] (10)
where [; ] denotes sequence concatenation and each zi serves as a token embedding in the transformer’s
input sequence.

Decoder: The transformer decoder processes this sequence of embeddings along with the new input
to generate the output:

ŷn+1 ∼ pθ(y|xn+1, zcat) (11)
where the decoder attends to both the new input xn+1 and the sequence of specification embeddings
zcat.

By concatenating per-pair embeddings, we ensure a joint representation of all input-output pairs,
allowing the decoder to access information from all grids during inference. Processing input-output
pairs independently in the encoder serves as a strong prior for capturing high-level program features,
reducing the risk of learning spurious correlations between pixels of different pairs. In contrast,
methods that process all raw pairs jointly increase the encoder’s computational demands. Additionally,
feeding all raw pairs directly to the decoder would complicate positional encodings, requiring
simultaneous modeling of both within-pair and across-pair positions. Our approach mitigates this
by encoding positional information separately within each pair at the encoder stage. The decoder
then receives each pair’s embedding in a distinct position within the concatenated sequence, enabling
clear differentiation between examples.

H.2 Test-Time Fine-Tuning

We implement the following test-time parameter tuning approach where the transductive model’s
parameters are fine-tuned on the specification itself. Given a specification of n input-output pairs, we
perform gradient updates on the model parameters to better predict each output given its input and
the remaining pairs.

Update Process: Starting from the pre-trained parameters θ and ϕ (decoder and encoder respectively),
for each pair (xi, yi) in the specification, we compute the loss:

Li
TTT(ϕ, θ) = − log pθ(yi|xi, z

−i
cat ) (12)

where z−i
cat = [eϕ(x1, y1); . . . ; eϕ(xi−1, yi−1); eϕ(xi+1, yi+1); . . . ; eϕ(xn, yn)] represents the con-

catenated embeddings of all pairs except the i-th.

We then update the parameters using gradient descent:

ϕ′ = ϕ− α∇ϕ

n∑
i=1

Li
TTT(ϕ, θ) (13)

θ′ = θ − α∇θ

n∑
i=1

Li
TTT(ϕ, θ) (14)

where α is the learning rate for test-time adaptation.
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Inference: After K steps of parameter updates, we use the tuned parameters ϕ′ and θ′ to make
predictions on new inputs. The prediction process remains the same as the transductive baseline but
uses the adapted parameters:

ŷn+1 ∼ pθ′(y|xn+1, [eϕ′(x1, y1); . . . ; eϕ′(xn, yn)]) (15)
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