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ABSTRACT

Document-level knowledge graph (KG) construction faces a fundamental scal-
ing challenge: existing methods either rely on expensive large language models
(LLMs), making them economically unviable for large-scale corpora, or employ
smaller models that produce incomplete and inconsistent graphs. We identify that
this limitation stems not from model capabilities but from the absence of high-
quality training data for document-level KG construction. To address this gap, we
introduce SynthKG, a multi-step data synthesis pipeline that generates high-quality
document-KG pairs through systematic chunking, decontextualization, and struc-
tured extraction using LLMs. By further fine-tuning a smaller LLM on synthesized
document-KG pairs, we streamline the multi-step process into a single-step KG
generation approach called Distill-SynthKG. Furthermore, we re-purpose existing
question-answering datasets to establish KG evaluation datasets and introduce new
evaluation metrics. Using KGs produced by Distill-SynthKG, we also design a
novel graph-based retrieval framework for RAG. Experimental results demonstrate
that Distill-SynthKG not only surpasses all baseline models in KG quality (includ-
ing models up to eight times larger) but also consistently excels in retrieval and
question-answering tasks. Additionally, our proposed graph retrieval framework
outperforms all KG-retrieval methods across multiple benchmark datasets. We
make SynthKG and Distill-SynthKG publicly available.

1 INTRODUCTION

Retrieval Augmented Generation (RAG) has gained widespread application for effectively connecting
large language models (LLMs) with external knowledge sources. Recently, Knowledge Graph (KG)
augmented RAG methods have demonstrated strong potential, offering several advantages such as
effective corpus-level information summarization Edge et al. (2024), improved reasoning capabilities
Gutiérrez et al. (2024); Li et al. (2024), and accurate modeling of historical customer issue resolutions
for QA Xu et al. (2024).

Recent works Edge et al. (2024); Gutiérrez et al. (2024) have begun exploring the use of LLMs
to automate the construction of KGs, which then serve as knowledge sources for specific tasks
such as question answering or building intelligent agentic frameworks. However, these existing
approaches face a fundamental scaling challenge. They rely on simple zero-shot or few-shot in-
context learning methods to construct KGs in a single step using LLMs like GPT-4o OpenAI (2024).
Consequently, such approaches can incur significant inference costs when applied across large
corpora due to the need for many commercial API calls. These methods also lack a rigorous and
reliable design specifically tailored for KG construction. Having LLMs process entire documents,
particularly long texts, has been shown to potentially lead to issues such as information loss Edge
et al. (2024). Additionally, there is a lack of existing datasets or evaluation methods to effectively
evaluate document-level ontology-free KGs. This absence makes it difficult to identify whether errors
in RAG systems stem from issues in specific reasoning components or from poor-quality KGs that
propagate errors throughout the system.

We identify that these limitations stem not from model capabilities, but from the absence of high-
quality training data for document-level KG construction. While other structured extraction tasks
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benefit from supervised datasets, ontology-free KG construction lacks substantial training corpora,
forcing reliance on expensive zero-shot inference. To address this data gap, we introduce SynthKG,
a novel data synthesis pipeline for KG construction. We further distill this pipeline into a smaller
LLM named Distill-SynthKG, which enables efficient, one-step generation of high-quality document-
level KGs. In SynthKG, we begin by splitting the input document into manageable, semantically
complete text chunks. Each chunk is then processed through a decontextualization step where
entity disambiguation occurs based on the previous context, making each chunk an independent,
self-contained unit. We then prompt the LLM to extract entities, relations, and relevant propositions
from each text chunk, which are combined to form the final KG. By fine-tuning Distill-SynthKG
on the synthetic document-KG pairs produced by SynthKG, we enable smaller models to generate
high-quality KGs for a given document in a single inference step.

Additionally, we propose a method for constructing an evaluation dataset for document-level ontology-
free KGs, along with a corresponding KG evaluation framework. Specifically, we re-purpose existing
multihop QA datasets by converting questions and answers into ground truth relation triplets, where
the answer appears as either the head, tail, or predicate in a triplet. Using these ground truth triplets for
each document, we introduce semantic similarity and keyword-based metrics to assess the coverage
of triplets from a KG. Finally, we present a new graph-based retrieval framework based on the KGs
generated by Distill-SynthKG. We design a progressive retrieval method that begins with proposition
retrieval, leveraging the graph structure to retrieve related triplets, propositions, and text chunks
relevant to the input query. Our proposed retriever outperforms state-of-the-art retrieval methods
in both retrieval accuracy and question-answering accuracy, showing improvements across three
multihop QA datasets: MuSiQue Trivedi et al. (2022), 2WikiMultiHopQA Ho et al. (2020), and
HotpotQA Yang et al. (2018). Furthermore, our KG coverage evaluation framework correlates
strongly with both QA and retrieval performance, demonstrating its effectiveness in evaluating
document-level KG coverage.

Long

Document

Step 1

Chunking

LLM

Step 2

Decontextualization

The preferred stock is 

convertible into OWCP OWC 

Pharmaceutical Research Corp

common stock at a price of 

$0.20 per share.

Entity Extraction

Step 3

LLM

…

Entity Name: OWC 

Pharmaceutical Research Corp

Entity Type: ORG

…

Proposition: OWC Pharmaceutical Research Corp preferred stock 

is convertible to common stock at $0.20 per share.

Triplets: [('OWC Pharmaceutical Research Corp preferred stock', 

'convertible to', 'OWC Pharmaceutical Research Corp common 

stock'),

(OWC Pharmaceutical Research Corp common stock, has price, 

$0.20 per share)]

Proposition-Entity KG
Proposition and Relation 

Triplet Extraction

Step 4

LLM

…

Distillation Smaller

LLM

SynthKG: Multi-step Framework 
Distill-SynthKG: 

Single-step Framework 

Long

Document

KG Construction

Question Answering

Graph Retrieval

Figure 1: Our SynthKG data synthesis method (left) generates high-coverage, ontology-free,
document-level KGs. We distill this synthetic data into Distill-SynthKG (right), which is applied to
multiple downstream applications. Long document refers to multi-paragraph documents.

In summary, our contributions are as follows: (1) We introduce SynthKG, a systematic data synthesis
pipeline that generates high-quality document-level ontology-free KGs, addressing the training data
scarcity in KG construction. (2) We present Distill-SynthKG, demonstrating that smaller LLMs
can achieve large-model KG construction quality when trained on appropriate synthetic data. (3)
We establish comprehensive KG evaluation datasets and metrics by re-purposing existing multi-hop
QA datasets. (4) We design a novel graph-based retrieval framework that effectively leverages KG
structure for RAG. (5) Our experiments demonstrate that Distill-SynthKG produces KGs of higher
quality than all baselines—including models up to eight times larger—while consistently excelling in
retrieval and question-answering tasks.

2 RELATED WORK

Recently, there has been a growing interest in using KGs for different Retrieval-Augmented Gen-
eration (RAG) applications. For instance, GraphRAG Edge et al. (2024) shows the advantages of
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using KGs over a text corpus for answering global queries that require summarizing information from
multiple documents. HippoRAG Gutiérrez et al. (2024) demonstrates that applying personalized
PageRank algorithms on LLM-derived KG can enhance retrieval accuracy for complex multi-hop
reasoning questions. GraphReader Li et al. (2024) shows how KGs can enable LLM agents to plan
and reason in a long context to answer complex questions. These approaches focus on maximizing
KG utility.

All the above work, along with many others such as Chia et al. (2022); Trajanoska et al. (2023);
Chen & Bertozzi (2023); Kai Zhang (2023); Nayak & Timmapathini (2023); Mihindukulasooriya
et al. (2023); Zhu et al. (2024); Jiao et al. (2023); Khorashadizadeh et al. (2023); Han et al. (2024);
Yao et al. (2024); Bi et al. (2024); Ding et al. (2024); Sanmartin (2024); Sun et al. (2024); Yao et al.
(2023); Chase (2022) have used LLM prompting to build KGs or extract semantic relation triplets
from text. However, all prior works have overlooked improving the efficiency of ontology-free KG
construction. We are the first to develop a specialized LLM for KG construction, enhancing efficiency
by shifting from large models to smaller, more efficient models without sacrificing performance.

3 DISTILL-SYNTHKG

We present Distill-SynthKG, a data-centric approach to scaling KG construction. Rather than relying
on increasingly larger models, we generate high-quality training data through a systematic pipeline
(SynthKG) and use it to teach smaller models the KG construction task. This enables efficient,
single-step KG generation from documents using smaller-scale LLMs that match the quality of
expensive multi-step pipelines.

3.1 SYNTHKG: A DATA SYNTHESIS ENGINE

Traditional prompt-based KG extraction treats each document as an isolated zero-shot problem,
leading to inconsistent outputs and preventing systematic learning. SynthKG addresses this by
decomposing KG construction into reproducible stages that generate consistent, high-quality training
data. The pipeline consists of two main steps: (1) document chunking and decontextualization,
followed by (2) entity, relation and proposition extraction. These steps ensure high coverage of
extracted entities and relations while minimizing information loss. We present an overview of
SynthKG in Figure 1, with detailed prompts in Section C.

Document Chunking and Decontextualization Directly inputting long texts into an LLM has
been shown to result in information loss Edge et al. (2024). To mitigate this risk, we first split each
input document into smaller, more manageable chunks before processing them with the LLM in
subsequent steps. This chunking is done along sentence boundaries, without overlap, to preserve
semantic coherence and avoid redundancy.

However, processing each chunk in isolation can lead to a loss of prior context. For example, if
“John Doe” appears in one chunk and “John” in another, we might lose track of who “John” refers
to. To prevent this, we apply a “decontextualization” step, where we prompt the LLM to rewrite
each chunk, replacing all entity mentions with their most informative form based on the context of
the preceding chunk. This step serves a critical dual purpose: ensuring entity consistency across
chunks and creating self-contained text units that can be independently processed. For example, if
“John Doe” is introduced in a previous chunk, subsequent mentions of “John D.” “John,” or related
pronouns are replaced with “John Doe.” This not only preserves context but also prevents the same
entity from being represented in different forms, which could lead to redundancy, discontinuous KG
paths, and reduced accuracy at inference time. The first chunk of a document is not decontextualized,
as chunking does not lead to context loss in this case. We provide an example of a decontextualized
chunk in Figure 8.

To verify that the preceding chunk is sufficient for decontextualization, we calculate the average
chunk distance for the same entity within each document in our generated dataset of 100K samples
(details of this dataset are described in Section 6.1). Specifically, we measure the distance between
the first occurrence of each entity and its subsequent mentions. The overall average chunk distance
per entity is 0.9, indicating that, on average, entities are mentioned again within less than one chunk
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after their first mention. This suggests that using only the preceding chunk is sufficient and that no
significant number of entities remain unresolved due to the chunk-based decontextualization process.

One potential downside of prompting the LLM to rewrite chunks is that the rewritten version may
deviate from the original, potentially introducing information loss or hallucination. To mitigate this,
we use ROUGE scores to compare the original and decontextualized chunks, filtering out those
that exhibit significant deviations. Detailed experimental settings are provided in Section 6.1. To
further assess the accuracy of our decontextualization process, we manually annotate 75 randomly
selected decontextualized chunks. Three authors each annotate 25 chunks, with access to both the
original chunk and the full document. They evaluate whether modifications are made, whether those
modifications are correct, and whether any information is lost.

Among the 75 annotated chunks, we identify a total of 593 edits, with only six containing incorrect
modifications and four showing information loss. These results indicate that the decontextualization
process generally produces high-quality, self-contained text. Moreover, our annotations reveal
that most modifications enhance specificity—for example, replacing a general term like “scientists”
with “Darwinian scientists” This suggests that the rewritten chunks are typically self-contained and
comprehensible on their own.

Entity and Relation Extraction Similar to Edge et al. (2024) and Gutiérrez et al. (2024), we first
prompt the LLM to extract all entities and their corresponding types from each text chunk, as shown
in Step 3 of Figure 1. Then, we prompt the LLM again to generate all propositions and corresponding
relation triplets based on the text chunk and previously extracted entities. Each relation is represented
by quadruplets consisting of a source entity, predicate, target entity, and a proposition (see Figure 1
for examples). The proposition is a sentence that describes the semantic relation between the source
and target entities, encapsulating all key details of that relation.

We extend traditional KG triples by adding a proposition component, which functions as an inter-
mediate chain of thought Wei et al. (2022) enabling the LLM to first articulate the relevant context
coherently before extracting the corresponding triplets. This approach therefore better leverages
contextual information. Additionally, the proposition acts as a fine-grained, self-contained retrieval
unit, which facilitates the construction of KG-based retrieval indices. Beyond triplets and text chunks,
our final KG incorporates these clear, independent propositions. For example, the proposition “OWC
Pharmaceutical Research Corp preferred stock is convertible to common stock at $0.20 per share.”
provides important contextual details, such as the “conversion price $0.20 per share,” and also serves
as a precise, indexable unit.

Crucially, this multi-step decomposition creates consistent patterns that can be learned. Unlike
single-step prompting which produces variable outputs, our pipeline generates KGs with predictable
structure: consistent entity naming from decontextualization, systematic coverage from chunk-
by-chunk processing, and interpretable intermediate representations through propositions. These
properties make the outputs suitable as training data for smaller models.

3.2 DISTILLING SYNTHKG

While the detailed, chunk-by-chunk approach in SynthKG enables the generation of high-quality
KGs using LLMs, it introduces efficiency challenges. Each time we construct a KG from a document,
multiple LLM calls are required, leading to high computational or API costs and limiting the scalabil-
ity of KG construction. For example, processing a 1000-word document requires 12 LLM inference
calls: the document is split into 4 chunks, and each chunk involves 3 calls for decontextualization,
entity extraction, and relation extraction.

To achieve scalability, we distill the entire multi-step SynthKG pipeline into a single-step model, as
shown in Figure 1. The key insight is that KG construction, when decomposed into systematic steps,
becomes a pattern recognition task that can be learned from examples rather than requiring complex
reasoning at each inference. Specifically, we fine-tune a smaller LLM on the document-KG pairs
generated by SynthKG, enabling it to directly process entire documents and produce high-quality
KGs in one inference step. This approach addresses the limitations of direct prompting because the
synthetic training data provides two critical elements: (1) consistent examples of how to handle long
documents without information loss, learned from the chunk-aggregated outputs, and (2) implicit
encoding of the multi-step reasoning process into the model’s parameters. The model learns not
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just to extract triplets, but to maintain entity consistency and coverage patterns demonstrated in the
training data. However, there is currently no large-scale dataset available for this type of training,
making SynthKG essential for creating the data necessary to enable such model distillation.

4 KG COVERAGE EVALUATION

Evaluating the quality of the extracted KG is essential for our data-centric approach, as it enables
systematic assessment of both the synthetic training data and the distilled models. However, there is
a lack of document-level evaluation resources for ontology-free KGs. Although DocRED Yao et al.
(2019) is one existing dataset, it is limited to just 96 relations, making it unsuitable for open-domain
KGs that require diverse, unconstrained relations. To address this gap and enable scalable evaluation,
we propose a framework that repurposes multihop QA datasets to create proxy ground truth triplets,
providing the first systematic evaluation method for document-level ontology-free KG construction.

Proxy Triplets Generation We leverage multihop QA datasets as they inherently encode the
structured facts needed for answering complex questions—exactly the type of information KGs should
capture. We use GPT-4o to generate triplets from QA pairs, as each multihop question implicitly
contains multiple interconnected facts. In datasets where these facts are present as subquestion-
answer pairs, we create triplets using these pairs while ensuring that the answer is used as the head,
relation, or tail in the triplet. In cases where facts or subquestions are unavailable, we use GPT-4o to
first generate the required subquestions before subsequently generating the corresponding triplets.
While this approach relies on synthetic generation, it provides a scalable and consistent evaluation
framework that would be infeasible through manual annotation at the scale required for training
data validation. The prompts used for generating the triplets and decomposed questions, along with
relevant examples, are provided in Appendix D.1. In human evaluations, we found a high degree of
validity in triplets extracted by GPT-4o with this approach (86% accuracy); see Appendix D.2 for
details.

KG Coverage Evaluation Metrics Existing KG evaluation metrics typically depend on exact
match or F1 score at the text level, assuming relations are derived from a predefined set. However,
this approach is ineffective for ontology-free KGs, where entities and relations are not constrained.
To address this, we use semantic matching to align the extracted triplets with the ground truth triplets,
and propose three complementary metrics: semantic scores, triplet coverage, and F1 scores. Our
evaluation focuses on coverage rather than precision for a deliberate reason: in RAG applications,
missing critical information (low recall) is more detrimental than including extra information (lower
precision), as the latter can be filtered during retrieval while the former leads to unanswerable queries.
Therefore, these metrics are designed to verify whether the important triplets—those critical for
answering questions—are included in the graph. As a proxy for comprehensiveness, we additionally
report the total number of extracted triplets.

Our three proposed metrics are defined as follows:

• Semantic score: We calculate the cosine similarity between the vector representation of each ground
truth triplet and the triplets in the KG, taking the highest similarity score as the semantic score for
that ground truth triplet. A higher semantic score indicates a closer match between the ground truth
and the extracted graph.

• Triplet Coverage: If the semantic score for a ground truth triplet exceeds a cutoff threshold, it is
marked as covered (coverage = 1); otherwise, the triplet is not covered (coverage = 0).

• F1 score: We use the semantic score to identify the triplet from the KG that most closely matches
the ground truth triplet. Then, we compute the F1 score by comparing the text of the extracted and
ground truth triplets.

These metrics collectively provide a comprehensive view of KG quality: semantic score captures
conceptual alignment, coverage measures recall of critical information, and F1 score assesses surface-
level accuracy. Together, they enable systematic comparison across different KG construction
methods and validate the effectiveness of our data-centric approach.

5 PROPOSITION-ENTITY GRAPH RETRIEVER
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Figure 2: Our Proposition-Entity Graph
Retriever for multi-hop reasoning retrieves
semantically similar propositions, uses
graph traversal to select those connected
through query entities, and then re-ranks
selected propositions using LLMs.

We introduce a retrieval framework that leverages the
unique structure of our synthesized KGs, particularly
the proposition-entity bipartite graph (Figure 2). Un-
like traditional graph-based retrieval that operates on
sparse triplets, our approach uses propositions—rich,
self-contained text units—as primary retrieval candi-
dates while exploiting graph topology to ensure logi-
cal connectivity. This design is enabled by the consis-
tent structure of KGs produced through our data-centric
pipeline.

Given a question, we first retrieve the top-M most rele-
vant propositions from the KG using embedding simi-
larity, narrowing the search space to a smaller subset of
relevant information. This initial semantic retrieval is
crucial because propositions, unlike raw triplets, contain
sufficient context for meaningful similarity computation.
In step 2, we construct a sub-graph consisting of these
propositions and their linked entities, capturing the rela-
tions among the retrieved propositions. In step 3, we tra-
verse the sub-graph starting from the entities mentioned
in the question, selecting only propositions within their
N-hop neighborhood. This graph-constrained filtering
addresses a key challenge in multi-hop reasoning: dis-
tinguishing between semantically related but logically
disconnected information. For instance, propositions
about “Washington” the president versus “Washington”
the state may have high embedding similarity but different graph neighborhoods. We then include
text chunks corresponding to the selected propositions within N-hop distance to question entities,
ranked by their embedding similarity to the query, until the top-K chunks are selected. We call this
approach Graph Retriever.

Additionally, as shown in step 4 of Figure 2, we enhance the retrieval with LLM-based re-ranking.
We prompt an LLM to identify the necessary propositions to answer the question from those retrieved
in the Graph Retriever process, effectively using LLM reasoning capabilities to re-rank the selected
propositions. This step leverages the interpretability of propositions—unlike triplets, propositions
can be directly evaluated by LLMs for relevance. Following this LLM-based re-ranking, we include
the chunks corresponding to the LLM-identified propositions first, and then fall back to the Graph
Retriever to select additional chunks until the top-K chunks are selected. We refer to this combined
approach as Graph+LLM in Section 6.

The design of this retrieval framework is tightly coupled with our data synthesis approach: the consis-
tent entity naming from decontextualization ensures reliable graph traversal, while the proposition
generation provides semantically rich retrieval units.

KG Source MuSiQue 2wiki HotpotQA

Triplets Semantic Coverage F1 Triplets Semantic Coverage F1 Triplets Semantic Coverage F1

Llama-3-8b 93855 0.8111 32.09 0.51 41384 0.8281 43.39 0.56 76906 0.8343 41.79 0.58
SynthKG-8b 125197 0.8341 38.84 0.55 56178 0.8275 44.56 0.54 108031 0.8448 47.72 0.60

Llama-3-70b 102119 0.8346 40.34 0.56 46100 0.8475 54.10 0.58 82948 0.8440 47.20 0.61
SynthKG-70b 140527 0.8559 47.18 0.59 71305 0.8778 63.30 0.61 124460 0.8633 54.54 0.63

D-SynthKG-8b 139376 0.8546 46.90 0.59 68800 0.8693 58.27 0.59 123458 0.8693 55.26 0.64

Table 1: KG coverage performance. The best scores are bolded, and the second-best scores are
underlined.

6 EXPERIMENTS

Our experiments are designed to validate the data-centric approach across three dimensions: (1) the
quality of synthetic training data, (2) the effectiveness of distillation, and (3) the performance of
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downstream applications. We address the following research questions: (RQ1) Does the multi-step
SynthKG pipeline produce higher-quality KGs than direct prompting? (RQ2) Can an 8B model
achieve large-model performance through distillation on synthetic data? (RQ3) How does data scale
affect the performance of distilled models? (RQ4) Does improved KG quality translate to better
retrieval and QA performance?

6.1 KG SYNTHESIS AND DISTILLATION SETTINGS

SynthKG Dataset and Model: To create a large-scale training resource, we use Llama-3.1-70b-
Instruct AI@Meta (2024) to synthesize KGs from 100K documents from IndustryCorpus (by BAAI).
We ensure domain diversity by sampling equally from ten categories: politics, news, medicine,
literature, finance, film & TV, computer science, automotive, technology, and education. We use the
SentenceSplitter from the Llama-Index Liu (2022) framework to split documents into chunks, setting
the chunk size to 256 tokens and chunk overlap to 0 tokens. We apply a filtering criterion based on
the ROUGE-1 F1 score Lin (2004), setting a threshold of 0.70 to minimize the risk of hallucinations
from decontextualization. We perform the KG synthesis using VLLM Kwon et al. (2023) on 160
Intel® Gaudi 2 AI accelerators in the Intel® Tiber™ AI Cloud. Our 100K generated document-KG
pairs represent the first large-scale training resource for ontology-free KG construction and will be
publicly released.

SynthKG Distillation: We validate that synthetic data enables effective distillation by training
Meta-Llama-3-8b-Instruct AI@Meta (2024) on 30K synthesized documents. The model learns to
directly generate corresponding KGs for entire input documents in a single pass. Training uses 8
Intel® Gaudi 2 AI accelerators with a learning rate of 5e-5, batch size of 32, for one epoch. We name
our model Distill-SynthKG and refer to it subsequently as D-SynthKG-8b.

KG Source Retriever MuSiQue 2wiki HotpotQA

Hits@2 Hits@10 MRR MAP Hits@2 Hits@10 MRR MAP Hits@2 Hits@10 MRR MAP

None Dense 41.32 64.19 79.89 40.17 62.22 74.72 97.86 55.73 66.55 89.45 91.98 60.68
None Dense+LLM 47.60 67.02 84.44 44.26 72.63 76.70 97.77 58.65 83.10 92.10 96.79 67.58

Llama-3-8b Graph + LLM 31.33 42.68 60.67 29.49 41.55 45.60 66.53 36.70 50.65 57.45 73.72 45.06
SynthKG-8b Graph + LLM 50.62 65.17 86.65 45.43 65.25 69.65 95.54 54.79 76.55 86.35 92.69 63.44

Llama-3-70b Graph + LLM 48.64 68.93 85.24 45.20 68.73 74.47 97.32 57.42 79.10 93.75 93.27 65.78
SynthKG-70b Graph + LLM 53.70 72.23 88.81 48.32 73.23 78.80 98.80 60.09 81.90 94.40 94.62 66.93

D-SynthKG-8b Graph + LLM 53.35 72.78 87.41 48.04 73.15 78.57 98.74 59.91 81.85 94.70 94.53 67.22
GPT-4o Graph + LLM 53.90 70.38 90.46 48.66 74.35 79.25 99.02 60.52 82.90 94.95 93.98 67.15

Table 2: Retrieval performance. The best scores are bolded, and the second-best scores are underlined.

6.2 EVALUATION SETTINGS

Datasets We evaluate on three multi-hop reasoning datasets that require complex information
integration: MuSiQue, 2WikiMultiHopQA (2wiki), and HotpotQA. These datasets are ideal for KG
evaluation as they inherently require structured reasoning over multiple facts—exactly what KGs
should capture. We follow the settings of HippoRAG Gutiérrez et al. (2024) and use the same 1000
questions and candidate passages, including both supporting and distractor passages, ensuring fair
comparison. For KG coverage evaluation, we generate proxy ground-truth triplets using GPT-4o as
described in Section 4.

Baselines We compare against multiple baseline categories for comprehensive evaluations:

• Direct prompting baselines: Llama-3-8b and Llama-3-70b1 for single-step KG extraction
• Multi-step baselines: Full SynthKG pipeline with Llama-3-8b (SynthKG-8b) and Llama-3-70b

(SynthKG-70b) to assess distillation effectiveness
• Retrieval baselines: Standard dense vector retrieval and a two-stage approach combining dense

retrieval with LLM-based re-ranking (Dense+LLM) to establish non-KG performance benchmarks
• KG-based retrieval: Retrieval using GPT-4o-based KGs

1We use the Instruct variants of both models throughout
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• KG-RAG systems: GraphRAG and HippoRAG using GPT-4o-extracted KGs, representing state-of-
the-art KG-based approaches2

• Closed-book QA: LLM using only parametric knowledge, establishing the lower bound

We provide full experimental details including hyperparameters in Section F.

Multihop QA Frameworks To demonstrate the versatility of our KGs, we evaluate using three
distinct retrieval frameworks using LlamaIndex’s TreeSummarize with GPT-4o for answer generation:

• LlamaIndex: Standard KG-based retrieval using LlamaIndex’s KnowledgeGraphIndex with hybrid
keyword and semantic search

• Chain-of-Triplet: Direct KG reasoning by decomposing questions into sub-queries and retrieving
matching triplets (details in Appendix F.3.2)

• Graph+LLM: Our proposition-entity graph retriever with LLM re-ranking, leveraging the unique
structure of our synthesized KGs

7 RESULTS

MuSiQue 2wiki HotpotQA Average

KG Source Retrieval EM F1 EM F1 EM F1 EM F1

None None 0.100 0.220 0.190 0.340 0.290 0.440 0.193 0.333
None Dense Retriever 0.237 0.376 0.380 0.497 0.471 0.641 0.363 0.505
None Dense + LLM 0.260 0.398 0.414 0.531 0.509 0.678 0.394 0.536

GPT-4o GraphRAG (local) 0.291 0.412 0.432 0.491 0.448 0.569 0.390 0.491
GPT-4o GraphRAG (drift) 0.222 0.350 0.497 0.629 0.434 0.561 0.384 0.513
GPT-4o HippoRAG 0.224 0.368 0.493 0.627 0.492 0.644 0.403 0.546

Ours

Llama-3-8b LlamaIndex 0.155 0.259 0.366 0.461 0.405 0.555 0.308 0.425
Llama-3-70b LlamaIndex 0.202 0.309 0.417 0.507 0.424 0.563 0.347 0.459
D-SynthKG-8b LlamaIndex 0.217 0.320 0.435 0.528 0.451 0.608 0.367 0.485

Llama-3-8b Chain-of-Triplet 0.131 0.244 0.305 0.381 0.278 0.469 0.238 0.365
Llama-3-70b Chain-of-Triplet 0.188 0.299 0.351 0.428 0.370 0.517 0.303 0.415
D-SynthKG-8b Chain-of-Triplet 0.243 0.383 0.410 0.507 0.400 0.579 0.354 0.490

Llama-3-8b Graph + LLM 0.181 0.299 0.291 0.394 0.373 0.515 0.281 0.402
Llama-3-70b Graph + LLM 0.297 0.437 0.400 0.501 0.544 0.705 0.413 0.548
D-SynthKG-8b Graph + LLM 0.320 0.459 0.440 0.544 0.539 0.706 0.433 0.569

Table 3: Multi-hop QA evaluation (EM and F1 score). Best scores for each framework are underlined.

We present experimental results that validate our data-centric approach to KG construction, directly
addressing the research questions posed in Section 6.

7.1 KG COVERAGE RESULTS (RQ1: MULTI-STEP VS DIRECT PROMPTING)

The multi-step SynthKG pipeline consistently generates more triplets and achieves higher coverage
than the commonly used single-step LLM prompting approach across all three datasets, for both
LLaMA-3-8b and 70b models (Table 1). This validates our hypothesis that decomposing KG
construction into systematic steps prevents the information loss inherent in single-pass processing.
Furthermore, our D-SynthKG-8bmodel outperforms the untrained Llama-3-8b, Llama-3-70b, and
SynthKG-8b baselines, demonstrating the benefit of distilling the SynthKG pipeline using Llama-
3-70b as the teacher. Remarkably, D-SynthKG-8bis also highly competitive with SynthKG-70b,
despite being approximately ∼8× smaller and relying on a single-step inference process. These
results underscore that high-quality training data can bridge the gap between model sizes. As our
KG coverage metric emphasizes recall of critical information, we also verified precision through
manual inspection. Among 150 randomly sampled triplets from D-SynthKG-8b’s predictions, only 4
were incorrect and 5 meaningless, indicating that the generated triplets largely align with the source
content while maintaining high coverage.

2To improve GraphRAG performance, we append the instruction: “Only provide the answer without any
context. For yes/no questions, just mention yes or no. Do not cite data sources.” at the end of each query. For
GraphRAG, we report results using the local and drift modes, which yield the best performance; the global
mode is excluded. For HippoRAG, we use GPT-4o for KG construction and apply our query synthesizer to the
retrieved text chunks to generate the final answer, ensuring a fair comparison.
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7.2 RETRIEVAL (RQ2 & RQ4: DISTILLATION EFFECTIVENESS AND DOWNSTREAM IMPACT)

Our D-SynthKG-8bmodel yields an average absolute improvement of 28.27 in Hits@2 over the pre-
trained Llama-3-8b, 5.31 over SynthKG-8b, and 3.96 over the larger Llama-3-70b (Table 2). These
gains demonstrate that training on synthetic data fundamentally changes the model’s capability, not
just incrementally improving it. Notably, D-SynthKG-8bis highly competitive with the full SynthKG-
70b pipeline—despite being significantly smaller and using single-step inference—validating that the
multi-step reasoning can be successfully internalized through distillation. It also performs comparably
to GPT-4o (details in Appendix B.2). Additionally, our graph+LLM retriever achieves an average
improvement of 12.75 in hits@2 over standard dense retrieval and 1.67 in hits@2 over the dense
retriever with an LLM-based reranker, demonstrating that the structured KGs enable more effective
retrieval strategies.

7.3 MULTI-HOP QA RESULTS (RQ4: END-TO-END PERFORMANCE)

D-SynthKG-8bachieves the best overall performance across all three frameworks—LlamaIndex,
Chain-of-Triplet, and Graph+LLM—outperforming both the Llama-3-8b and the larger Llama-3-
70b models. This consistent improvement across diverse frameworks demonstrates the general
applicability and robustness of our synthesized KGs. In the Graph + LLM framework, D-SynthKG-
8bachieves the highest gain, with a +15.2% absolute improvement in EM accuracy over Llama-3-8b
and a +2.0% gain over Llama-3-70b, leading to the best overall results. Notably, it surpasses
GraphRAG and HippoRAG—two strong KG-based RAG systems built using KGs generated by the
state-of-the-art GPT-4o model—highlighting that our data-centric approach enables a smaller model
to compete with much larger ones in practical applications.

7.4 ANALYSIS (RQ3: SCALING AND DESIGN VALIDATION)

How effective is multi-step SynthKG in processing documents of increasing length? We com-
pare our multi-step SynthKG framework with a single-step LLM prompting approach by examining
the number of triples generated per 100 words for documents of varying lengths (Figure 4, Ap-
pendix B). For the single-step method, the proportion of extracted relations decreases as document
length increases, with triple density dropping by about 60% when moving from 100-word documents
to 1,200-word documents. In contrast, SynthKG’s triple density remains nearly constant across
all lengths. This validates our chunking strategy and demonstrates why the multi-step approach is
essential for creating consistent training data.

What is the optimal retrieval source? Our KGs support multiple retrieval strategies. In Fig-
ure 3(a) in Appendix B, we compare retrieval using triples, propositions, and the full graph structure.
Proposition retrieval outperforms triples (+0.89 Hits@10) due to richer context, while graph-based
retrieval achieves the best performance (+2.50 over propositions). This validates our design choice of
including propositions as first-class components of the KG, not just intermediate representations.

How can our KG improve RAG beyond retrieval? Our ablation study (Figure 3(b) in Appendix B)
shows that enriching retrieved context with structured signals improves QA performance. Adding
propositions (+2 EM) or 2-hop paths (+2.7 EM) to retrieved chunks improves accuracy, with 2-
hop paths offering slightly better gains due to their ability to capture complex relationships. This
demonstrates that our KGs provide value beyond simple retrieval, enabling structured reasoning.

8 CONCLUSION

We presented SynthKG, a data synthesis pipeline that generates high-quality document-KG pairs,
and Distill-SynthKG, which distills this multi-step process into an efficient single-step model. Our
experiments demonstrate that an 8B model trained on synthetic data matches or exceeds the perfor-
mance of models eight times larger across KG quality, retrieval, and QA tasks. This work shifts
the paradigm from scaling models to generating training data, showing that structured extraction
capabilities can be transferred through synthetic examples rather than parameter count. We release
our 100K document-KG pairs to enable future research in data-centric approaches to knowledge
extraction.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed experimental settings and hyperparameters in Section 6
and Appendix F. All prompts used in the SynthKG pipeline are included in Appendix C. The 100K
synthetic document-KG pairs dataset will be made publicly available. The core implementation
code, including the KG synthesis pipeline and evaluation metrics, will be released to facilitate the
reproduction of our results.
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A APPENDIX

B ADDITIONAL ANALYSES

(a) Retrieval methods comparison (b) Input context combinations

Figure 3: Ablation studies: (a) Performance comparison of different KG-based retrieval methods on
multi-hop QA. (b) Results on different combinations of input context for multi-hop QA.

B.1 EFFICIENCY AND GENERALIZABILITY OF DISTILL-SYNTHKG

In Table 4, we study three key important questions for developing Distill-SynthKG: 1. the efficiency
of training Distill-SynthKG, 2. the effectiveness of various powerful LLMs for synthesizing training
data, and 3. the generalizability of fine-tuning other smaller LLMs on synthesized data. To address
these questions, we employ QLoRA Dettmers et al. (2023) fine-tuning on approximately 1,000
synthetic Document-KG pairs, generated using GPT-4o and Llama-3.1-70b-Instruct. We provide
fine-tuning configurations in Section E.1. Additionally, to answer the third question, we fine-tune
another well-known base LLM, Mistral-7b-Instruct-v0.3 Jiang et al. (2023).

12

https://aclanthology.org/D18-1259
https://arxiv.org/abs/2308.13916
https://aclanthology.org/P19-1074
https://aclanthology.org/P19-1074
https://doi.org/10.1145/3539618.3591763
https://arxiv.org/abs/2305.13168


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Number of Words in a Document

A
ve

ra
ge

 n
um

be
r o

f T
rip

le
ts

 p
er

 1
00

 W
or

ds

0

5

10

15

200 400 600 800 1000 1200

SynthKG Document-Level KG Extraction

Figure 4: SynthKG maintains the triplet density consistently across documents of different lengths.

Retrieval Evaluation QA Evaluation

KG Source Hits@2 Hits@5 Hits@10 MRR MAP EM F1

D-SynthKG-7bGPT
Mistral 0.680 0.776 0.809 0.932 0.575 0.417 0.556

D-SynthKG-7bLlama-3
Mistral 0.685 0.780 0.811 0.931 0.578 0.433 0.565

D-SynthKG-8b 0.695 0.792 0.820 0.936 0.584 0.433 0.569

Table 4: Efficiency and Generalizability results for Distill-SynthKG. The results show aver-
age performance across MuSiQue, 2wiki, and HotpotQA datasets. D-SynthKG-7bGPT

Mistral and
D-SynthKG-7bLlama-3

Mistral are Mistral-7b-Instruct-v0.3 models fine-tuned using QLoRA on 1000
document-KG pairs annotated by GPT-4o and Llama-3.1-70b-Instruct (respectively).

We observe that both QLoRA fine-tuned models perform slightly below the fully fine-tuned model
on retrieval and multi-hop QA tasks. However, the performance gap is minimal, demonstrating
that QLoRA fine-tuning, even on a small dataset, remains competitive while requiring significantly
fewer compute resources. The model fine-tuned on GPT-4o synthesized KGs shows slightly lower
performance, which we attribute to more abstractive and atomic propositions in the synthesized data.

B.2 COMPARISON OF RETRIEVAL PERFORMANCE WITH PROPRIETARY FOUNDATION MODELS

We include additional comparisons between our distilled model D-SynthKG-8b and a state-of-the-art
proprietary foundation model, GPT-4o from OpenAI. We evaluate retrieval performance on three
multihop QA benchmarks: 2Wiki, HotpotQA, and MuSiQue. We present the results in Table 5.
The results show that D-SynthKG-8b achieves retrieval performance that is highly competitive with
GPT-4o across all datasets. Notably, D-SynthKG-8b yields a slightly higher average Hits@10 (82.02
vs. 81.52), despite being significantly more cost-efficient. GPT-4o incurs $2.50 per million input
tokens and $10 per million output tokens, while D-SynthKG-8b operates at only $0.20 per million
tokens (input or output), representing roughly 3% of the inference cost. These findings highlight the
practical advantages of our approach in cost-sensitive deployment scenarios.
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Dataset Model Hits@2 Hits@10 MAP MRR

2Wiki GPT-4o (OpenAI) 74.35 79.25 60.52 99.02
D-SynthKG-8b 73.15 78.57 59.91 98.74

HotpotQA GPT-4o (OpenAI) 82.90 94.95 67.15 93.98
D-SynthKG-8b 81.85 94.70 67.22 94.53

MuSiQue GPT-4o (OpenAI) 53.90 70.38 48.66 90.46
D-SynthKG-8b 53.35 72.78 48.04 87.41

Table 5: Retrieval performance comparison between D-SynthKG-8b and GPT-4o across three
multihop QA datasets.

B.3 ENTITY DISTRIBUTION ANALYSIS

When analyzing entity references across document chunks, we find that the overall average chunk
distance per entity is 0.9. This metric represents the average number of chunks between an entity
mention and its most recent previous mention. Further analysis reveals that 80.03% of entities have
their most recent mention within a single paragraph, indicating that the majority of entity references
are relatively localized within the document.

These findings support our design decision to only reference the immediately preceding chunk during
decontextualization, as this approach effectively balances computational efficiency with adequate
contextual information.

C LLM PROMPTS FOR SYNTHKG

We use prompts Figure 5, Figure 6 and Figure 7 for decontextualization, entity extraction and relation
extraction respectively within SynthKG. We also provide an example of decontextualized chunk in
Figure 8.

D KG COVERAGE EVALUATION

D.1 PROMPTS AND EXAMPLES

Figure 9 shows the prompt that we used to generate the triplets, and Figure 10 the prompts that we
used to instruct the model to generate the decomposed questions. Table 6 shows a question from
HotpotQA dataset, and the generated decomposed questions and the triplet for the question answer
pair.

D.2 HUMAN EVALUATION OF EXTRACTED TRIPLETS

To evaluate the quality of the GPT-4-generated KG coverage evaluation data, three authors of this
work reviewed and validated both the decomposed questions and the proxy triplets. A random sample
of 50 instances from each dataset was selected for human assessment, where evaluators rated the
validity of the generated outputs. For decomposed questions from the HotpotQA dataset, the validity
rate was found to be 85%, while the generated triplets for both the Musique and HotpotQA datasets
showed a validity rate of 86%. Annotators also provided reasons for any invalid ratings. Common
issues with decomposed questions included the presence of previously unseen entities in the first
sub-question or a poorly structured second sub-question. For triplets, the most frequent problem was
the omission of minor details, such as dates, which did not necessarily make the triplet incorrect but
affected its completeness. Only 4% of the cases involved an incorrect relation being extracted.
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Previous paragraph from Document:
Gualala, the isolated Mendocino Coast town with a name that leaves most visitors tongue-tied, is on a new list of the 50 best places to live in the United States.
Men’s Journal magazine describes Gualala as an öutpost of adventure lifestyleïn its latest edition, which goes on sale today. The magazine describes Gualala
(pronounced wa-LA-la by locals) as one of the b̈elow-the-radar places to a make a move on before the word gets out.T̈here were five such cities. The others
were Homer, Alaska; Newport, Vt.; Logan, Utah; and Walla Walla, Wash. Rolling Stone magazine’s Jann Wenner publishes Men’s Journal, which has a
paid circulation of about 620,000. Gualala joined three other California communities on the magazine’s list: Santa Cruz, Mammoth Lakes and Bishop. Ẅe
were looking for places that combined affordability, proximity to outdoor adventure and a generally undiscovered quality of life,s̈aid Erica Kestenbaum, a
spokeswoman for Men’s Journal.
Instruction:
Rewrite the below paragraph by resolving all entity coreferences with the preceding paragraph from document.
- Resolve all inter-sentence pronoun references.
- Make sure that all pronouns in a sentence refers to some named entity with in the same sentence.
- Explicitly mention entity names wherever necessary to remove ambiguity from a sentence. Remember to make each sentence clear and unambiguous.
- For each entity, use only the one most informative name.
- Do not generate anything except the rewritten paragraph.
Paragraph:
She said isolation played a factor. Ïn Northern California, it’s particularly difficult to find a beautiful coastal setting that isn’t entirely overrun,s̈he said. Gualala
residents Monday were largely unaware of the magazine listing or the attention it could bring to the old logging town turned tourist center. A few coastal
residents chuckled about any notion of affordability, given an influx of newcomers who’ve driven the median housing price to $580,000 compared to the median
family income of $47,778. Others recalled an era when the Gualala region was better known for the logging of ancient redwoods, marijuana growing and
boisterous beer drinking at the historic Gualala Hotel. Still there was a certain pride to the magazine’s designation. Yvette White, a 25-year resident who works
at the Gualala Sport; Tackle shop, said she’s proud her town made it on the list.
Output:
Erica Kestenbaum said isolation played a factor. Ïn Northern California, it’s particularly difficult to find a beautiful coastal setting that isn’t entirely
overrun,Ërica Kestenbaum said. Gualala residents Monday were largely unaware of the Men’s Journal magazine listing or the attention it could bring to the old
logging town turned tourist center. A few coastal residents of Gualala chuckled about any notion of affordability, given an influx of newcomers who’ve driven
the Gualala’s median housing price to $580,000 compared to the median family income of $47,778. Other Gualala residents recalled an era when the Gualala
region was better known for the logging of ancient redwoods, marijuana growing and boisterous beer drinking at the historic Gualala Hotel. Still there was a
certain pride to the Men’s Journal magazine’s designation. Yvette White, a 25-year Gualala resident who works at the Gualala Sport; Tackle shop, said she’s
proud her town made it on the list.
Previous paragraph from Document: [previous paragraph]
Instruction:
Rewrite the below paragraph by resolving all entity coreferences with the preceding paragraph from document.
- Resolve all inter-sentence pronoun references.
- Make sure that all pronouns in a sentence refers to some named entity with in the same sentence.
- Explicitly mention entity names wherever necessary to remove ambiguity from a sentence. Remember to make each sentence clear and unambiguous.
- For each entity, use only the one most informative name.
- Do not generate anything except the rewritten paragraph.
Paragraph: [paragraph ]
Output:

Figure 5: The prompt for chunk decontextualization.

Extract all named entities from the document. Also generate the type for each entity.
Instructions
- Generate only the most informative name for each named entity. Example: if John P., Parker, John Parker are coreferential, only generate John Parker.
- Use your best understanding best on the domain of paragraph to decide appropriate entity types.
- Respond using json format provided below.

{
"n1":{"name": "entity_name", "type": "entity_type_label"},
"n2":{},

}

Below is an example for reference.
Paragraph: Tucked into Eli Lilly’s year-end earnings report, the company revealed positive results from Synergy-NASH—its phase 2 study of tirzepatide in
adults in nonalcoholic steatohepatitis (NASH), also known as metabolic dysfunction-associated steatohepatitis (MASH).
Output:

{
"n1": {"name": "Eli Lilly", "type": "Organization"},
"n2": {"name": "Synergy-NASH", "type": "Clinical Trial"},
"n4": {"name": "tirzepatide", "type": "Drug"},
"n5": {"name": "nonalcoholic steatohepatitis", "type": "Disease"},
"n6": {"name": "metabolic dysfunction-associated steatohepatitis", "type": "Disease"},
"n7": {"name": "year-end earnings report", "type": "Document"}

}

Figure 6: The prompt for graph node extraction

E EXPERIMENTAL SETTINGS

E.1 QLORA FINE-TUNING SETUP

In our experiments detailed in Section B.1, we employ the QLoRA fine-tuning. The training
configuration used is as follows: we train models for 3 epochs, with an alpha value of 256 and a rank
of 128. The learning rate, warmup steps and batch size are set to 0.00003, 50 and 8 respectively.
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Extract all facts from the document. For each fact, also generate all semantic triplets.
Instructions
- Consistently use the most informative name for each named entity in all facts and triplets.
- Avoid pronouns or ambiguous references in facts and triplets. Instead, directly include all relevant named entities in facts.
- Ensure that each semantic triplet contains head entity, predicate, and tail entity.
- Ensure that at least one (preferably both) entity in each semantic triplet is present in the given entities list.
- Respond using json format provided below:

{
"f1":{

"fact": "A factual statement describing important information (preferably about some entities) from the paragraph",
"triplets: [["entity 1", "predicate", "entity 2"], ["entity 1", "predicate", "entity 3"]]

},
"f2":{},

}

Below is an example for reference.
Paragraph: Locked in a heated battle with Novo Nordisk’s semaglutide franchise, Eli Lilly’s tirzepatide is beginning to come into its own—both with regards to
sales and amid attempts to show the dual GIP/GLP-1 agonist can strike out beyond diabetes and obesity. As Mounjaro, tirzepatide won its first FDA nod in
Type 2 diabetes back in May 2022. An obesity approval followed last November, with that formulation of tirzepatide adopting the commercial moniker
Zepbound. In 2023’s fourth quarter, Mounjaro generated a whopping $2.2 billion in sales, a nearly eight-fold increase over the $279 million it pulled down
during the same stretch in 2022. Year-to-date, the drug brought home around $5.2 billion in revenues, Lilly said in an earnings release Tuesday. Zepbound, for
its part, generated $175.8 million during its first quarter on the market. Overall, Lilly reeled in around $9.4 billion in fourth-quarter sales, growing 28% over the
$7.3 billion it made for the quarter in 2022.
Entities: Eli Lilly, Novo Nordisk, Tirzepatide, Semaglutide, GLP-1, GIP, FDA, Mounjaro, Zepbound
Output:

{
"f1": {

"fact": "Eli Lilly's tirzepatide is competing with Novo Nordisk's semaglutide franchise.",
"triplets": [["Eli Lilly", "competing with", "Novo Nordisk"], ["Tirzepatide", "is competing with", "Semaglutide"]]

},
"f2": {

"fact": "Eli Lilly is trying to show tirzepatide, the dual GIP/GLP-1 agonist, can strike out beyond diabetes and obesity.",
"triplets": [["Eli Lilly", "is trying to show", "Tirzepatide"], ["Tirzepatide", "is a", "dual GIP/GLP-1 agonist"],

["Tirzepatide", "can treat beyond", "Diabetes"], ["Tirzepatide", "can treat beyond", "Obesity"]]
},
"f3": {

"fact": "Tirzepatide, under the brand name Mounjaro, received its first FDA approval for Type 2 diabetes in May 2022.",
"triplets": [["Tirzepatide", "branded as", "Mounjaro"], ["Mounjaro", "won", "FDA approval"],

["FDA approval", "for", "Type 2 diabetes"], ["FDA approval", "was in", "May 2022"]]
},
"f4": {

"fact": "Tirzepatide, under the brand name Zepbound, received an obesity approval in November 2022.",
"triplets": [["Tirzepatide", "was branded as", "Zepbound"], ["Zepbound", "received", "Obesity approval"],

["Obesity approval", "was in", "November 2022"]]
},
"f5": {

"fact": "Mounjaro generated $2.2 billion in sales in the fourth quarter of 2023,
an eight-fold increase from the $279 million during the same period in 2022.",

"triplets": [["Mounjaro", "2023's fourth quarter sales", "$2.2 billion sales"],
["Mounjaro", "2022's fourth quarter sales", "$279 million"]]

},
"f6": {
"fact": "Mounjaro brought in around $5.2 billion in revenues year-to-date in 2023, Lilly said in an earnings release Tuesday",

"triplets": [["Mounjaro", "2023 sales year-to-date", "$5.2 billion revenues"]]
},
"f7": {

"fact": "Zepbound generated $175.8 million in sales in its first quarter on the market.",
"triplets": [["Zepbound", "first quarter sales", "$175.8 million"]]

},
"f8": {

"fact": "Eli Lilly's fourth-quarter sales were around $9.4 billion,
a 28% increase over the $7.3 billion during the same period in 2022.",

"triplets": [["Eli Lilly", "2023 fourth-quarter sales", "$9.4 billion,"],
["Eli Lilly", "2022 fourth-quarter sales", "$7.3 billion,"]]

}
}

Figure 7: The prompt for relation extraction

F TASK-SPECIFIC EVALUATION SETTINGS

F.1 KG COVERAGE TASK

We use the ‘all-MiniLM-L6-v2’ checkpoint to embed the triplets for semantic matching. For the
coverage, we use threshold 0.88 as we manually check that this threshold representing a desirable
semantic match.
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Figure 8: An example of decontextualization chunk.

You are given a question answer pair, please generate a relation triplet to represent the relationship.
Generate output in the format described below. “‘ head || relation || tail “‘ Note: - Must include relation, head entity and tail entity. Ensure that head entity is a
subject of relation, and tail entity is a direct object of relation. - You must use the given answer as the head or tail entity. - Specific entity is more preferable than
generic entity. - Do NOT generate pronouns or references in head and tail entities. —- Example 1:
Question: To whom was Messi’s goal in the first leg of the Copa del Rey compared? Answer: Diego Maradona
Output: Messi’s goal || was compared to || Diego Maradona
Example 2:
Question: The father of Chiang Hsiao-wen is whom? Answer: Chiang Ching-kuo
Output: Chiang Ching-kuo || the father of || Chiang Hsiao-wen
Question: {question}
Answer: {answer}
Output:

Figure 9: The prompt for generating triplet given a question and the answer.

You are given a multihop question, some facts that are used to reach the correct answer, and the correct answer. Your goal is to decompose the question into
sub-question, and the corresponding answer to each sub question.
Example 1
Question: What relationship does Fred Gehrke have to the 23rd overall pick in the 2010 Major League Baseball Draft?
Facts: He is the great-grandfather of Miami Marlin Christian Yelich Yelich was drafted out of high school by the Marlins in the 1st round (23rd overall) of the
2010 Major League Baseball Draft.
Answer: great-grandfather
Decompose question answer pairs:
Who was the 23rd overall pick in the 2010 Major League Baseball Draft? Christian Yelich
What relationship does Fred Gehrke have to Christian Yelich? Great-grandfather
Question: {question}
Facts: {facts}
Answer: {answer}
Decompose question answer pairs:

Figure 10: The prompt for decomposing question into sub-questions and answers.

F.2 RETRIEVAL TASK

We use ‘text-embedding-3-small’ for both dense retrieval and embedding propositions in KG-based
retrievers. For both the graph and graph + LLM retrievers, we first construct the sub-graph by
selecting the 200 propositions (M = 200) most similar to the question based on embedding similarity.
Within the sub-graph, we traverse the KG, starting from the question entity, and select propositions
within a 5-hop neighborhood (N = 5). For re-ranking the propositions in the LLM-based retriever and
also for re-ranking chunks in Dense+LLM retriever, we use the GPT-4o model. The Dense+LLM
retriever uses LlamaIndex’s implementation of the LLMRerank post-processor.

We evaluate retrieval performance at the passage level, following the setup used in HippoRAG .
For each query, we evaluate whether the retrieved passages contain all ground-truth information
required to answer the question. Retrieval metrics include Hits@2 and Mean Reciprocal Rank
(MRR), computed based on the rank positions of the passages associated with ground-truth triplets.
Specifically, a passage is considered relevant if it contains all the facts (triplets or propositions)
needed for correct multi-hop reasoning. The evaluation code is directly adopted from HippoRAG.
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To ensure comparability, we use the same benchmark datasets and experimental setup as HippoRAG,
including 1,000 questions and a fixed set of candidate passages. The number of ground-truth passages
per question is consistent with the original annotations. Our experiments are conducted on three
multi-hop QA datasets: MuSiQue (11,656 passages), 2WikiMultiHopQA (6,119 passages), and
HotpotQA (9,221 passages).

F.3 MULTI-HOP QUESTION ANSWERING TASK

F.3.1 LLAMAINDEX CONFIGURATION

Table 7 presents the complete configuration of our LlamaIndex query engine setup.

F.3.2 CHAIN-OF-TRIPLET

We design a triplet retrieval method that first breaks down the question into sub-queries in a triplet
format. These triplet queries are then used to retrieve the most semantically matching triplet facts
from the extracted KG. Specifically, it includes three steps to generate the final answer.

Step 1: Generate the Chain of Triplet Queries: given a question, we convert it into a series of
triplet queries. Specifically, since our downstream task involves multi-hop QA, instead of generating
a single triplet, we prompt the model to generate a chain of triplets. The generated triplets may
contain placeholders that represent unknown entities. The prompt is shown in Figure 11.

There is a knowledge graph (entities and relations). Now, you are given a question, your task is to decompose this question into a chain of triplets used for
searching fact from the graph.
The triplet should be in this format: head || relation || tail
Note: - Ensure that head entity is a subject of relation, and tail entity is a direct object of relation. - Do NOT generate pronouns or references in head and tail
entities. - Do NOT generate entities that are not appeared in the question. - If an triplet includes an intermediate answer or the final answer, you can use #
followed by an digit for reference. - The triplets order should be the same order for retrieving the facts from a knowledge graph.
Example 1:
Question: Who is older, Hampton Del Ruth or Ted Kotcheff?
Decompose Triplets:
Hampton Del Ruth || was born on || #1 Ted Kotcheff || was born on || #2
Example 2:
Question: In what town is Suffolk county hamlet that was served by the Suffolk Traction Company?
Decompose Triplets:
Suffolk Traction Company || served || #1 #1 || is located in || #2
Now please generate the decompose Triplets for the question: {question}
Decompose Triplets:

Figure 11: The prompt for generating chain of triplet query given a question, which are then used for
triplet retrieval.

Step 2: Triplet Retrieval: once the chain of triplet queries is generated, we retrieve the top 20
triplets for each query. During retrieval, if any of the triplets contain placeholders for uncertain entities,
we attempt to resolve those entities by filling them with entities or relations from the previously
retrieved triplets. For subsequent triplet queries in the chain, placeholders are updated with these
resolved entities, thus refining the triplet queries progressively.

Step 3: Question Answering: with the question, the chain of triplet queries, and the retrieved
triplets, we prompt the model to generate the answer. If the graph extraction method also retrieves
associated propositions alongside the triplets, these propositions are provided to the model to further
enhance the answer generation. The prompt is shown in Figure 12.

You are given a natural language question, triplets chain for this question, a set of retrieved tripletes, and a set of facts, please answer the question.
Question: {question}
Question Triplets Chain: {question triplets}
Retrieved Triplets: {retrieved triplets}
Retrieved Facts: {retrieved facts}
Short Answer no more than 3 words:

Figure 12: The prompt for generating the final answer given the original question, chain of triplet
query, retrieved triplets and the facts.
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Graph + LLM : We use the same graph + LLM retriever hyper-parameters as in section F.2.

G DATA RELEASE AND TRAINING/ INFERENCE COST CONSIDERATIONS

We will make our annotated 100K data samples publicly available to support future research. With
the rapid advancements in LLMs, researchers may choose to resynthesize data to better align with
their specific applications. In such cases, we recommend using our cost-efficient approach, detailed
in Section B.1, which provides a practical balance between performance and computational cost.

Below, we present the detailed training and inference costs, highlighting the efficiency of our SynthKG
and DistilSynthKG methods.

Cost of Data Synthesis: With the Llama-3.1-70b-Instruct model, running the entire SynthKG
pipeline on a single document requires processing an average of 11,849 input tokens. This results in a
total of 2,675 average output tokens, distributed across intermediate steps such as decontextualization
and the final entities, relations, and proposition generation. At a cost of $0.90 per million tokens3, the
total annotation cost per document is $0.0131. This translates to $13.08 for synthesizing training data
for the D-SynthKG-7bLlama-3

Mistral model and $392.28 for the D-SynthKG-8bmodel.

Cost of Model Training: After consolidating the data synthesized by SynthKG, each document
contains an average of 1,723 input tokens (including prompts) and 1,248 output tokens, totaling
2,971 tokens per document. For a dataset of 30,000 documents, the total training token count is
89.13 million tokens. Fine-tuning Llama-3.1-8b-Instruct for one epoch on this dataset to obtain
D-SynthKG-8bwould cost $36.65. Additionally, fine-tuning Mistral-7b-Instruct-v0.2 for 3 epochs to
obtain the D-SynthKG-7bLlama-3

Mistral model would cost $3.67.

Combining data synthesis and fine-tuning costs, training D-SynthKG-8bwould cost $428.93, while
training D-SynthKG-7bLlama-3

Mistral would cost $16.75.

Inference Cost: As mentioned in the cost of data synthesis, processing a single document using the
SynthKG pipeline requires an average of 11,849 input tokens and 2,675 output tokens, totaling 14,524
tokens per document. At a cost of $0.90 per million tokens, this amounts to $0.031 per document. In
contrast, with D-SynthKG-8band D-SynthKG-7bLlama-3

Mistral , each document requires 1,723 input tokens
and 1,248 output tokens, totaling 2,971 tokens, with a cost of $0.00267 per document. This is
only 8.6% of the cost of SynthKG, demonstrating the significant efficiency gains from fine-tuning a
distilled model.

Question Decomposed Question and Answer Triplet (head || relation || tail)

The birthplace of
George McCall
Theal is a port city
of what bay?

Where was George McCall Theal born?
Saint John, New Brunswick

George McCall Theal || was born in ||
Saint John, New Brunswick

Saint John is a port city of what bay? Bay
of Fundy

Saint John || is a port city of || Bay of
Fundy

Table 6: Example from HotpotQA dataset: the generated decomposed question answer pair and the
triplet.

H LICENSE INFORMATION

We respect the license and intended use of all models and datasets employed in this study. Detailed
license information is provided below.

3https://www.together.ai/pricing
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Parameter Value

QA Prompt

You are an expert Q&A system that is trusted around the world. Always answer
the query using the provided context information, and not prior knowledge.
Some rules to follow:
1. Never directly reference the given context in your answer.
2. Avoid statements like ’Based on the context, ...’ or ’The context information
...’ or anything along those lines.
3. Provide only the essential information. Answer as briefly as possible, using
keywords, phrases, or dates. Avoid full sentences or unnecessary details.

include_text True
response_mode tree_summarize
retriever_model hybrid
num_chunks_per_query 10
similarity_top_k 2
graph_store_query_depth 2

Table 7: LlamaIndex query engine parameter settings.

Models. The Llama-3 models utilized in our study are licensed under the Meta Llama 3 Community
License Agreement. The Llama-3.1 models utilized in our study are licensed under the Llama 3.1
Community License Agreement. The Mistral-7b-v0.3 model is licensed under the Apache 2.0 license.

Datasets. The BAAI/IndustryCorpus dataset used for extracting our synthetic training data is
available under the Apache 2.0 license. The 2WikiMultihopQA dataset used in our evaluations is
available under the Apache 2.0 license. The Musique dataset used in our evaluations is available
under the Creative Commons Attribution 4.0 International license. The HotpotQA dataset used in our
evaluations is available under the Apache 2.0 license. We will make our synthetic dataset publicly
available under the MIT license, subject to terms and conditions of the Llama 3.1 Community License
Agreement related to the use of Llama-3.1 outputs.

I DISCUSSION ON THE SEGMENTATION STRATEGY AND DOCUMENT
STRUCTURE PRESERVATION

While our segmentation and de-semanticization approach may appear simple, our design choice is
guided by both empirical findings and practical considerations. First, our analysis (see Figure 4) shows
that model performance consistently degrades as document length increases. Preserving structural
associations in segmentation might result in longer input spans, which, based on our experiments,
would still harm performance. Second, while we agree that capturing structural dependencies across
multiple pages is a meaningful goal, it remains an open research challenge—particularly in open-
ontology settings. Even state-of-the-art models like GPT-4o lack robust, generalizable pipelines
for reliably preserving cross-page structure in a way that could be distilled into a smaller model.
Given these limitations, we prioritize practicality and scalability by adopting a fixed-size ( 1K token)
chunking approach. This method aligns with the constraints of retrieval-augmented generation
(RAG) and enables effective, document-level KG construction at scale. We believe our approach
provides a strong balance between empirical performance and real-world applicability under current
technological constraints.

J DISCUSSION ON MANUAL HYPERPARAMETER SELECTION

We manually tune two key hyperparameters in our framework: the semantic match score threshold for
triplet coverage evaluation and the ROUGE score threshold for decontextualization. For the semantic
match score, we intentionally select a higher threshold to ensure accuracy when determining whether
two triplets are semantically equivalent. It is important to note that this threshold is only used for
evaluation purposes and does not affect model training, inference, or RAG evaluation, thus having no
impact on the model’s learning or predictions. While the threshold is manually adjusted, downstream
task performance reflects the reliability of our model.
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For the ROUGE score threshold used in decontextualization, we conduct careful manual analysis to
ensure its effectiveness. For both Llama-3.1-70b and GPT-4o, we examine a small subset of chunks
with low ROUGE scores and find that most rewritings are accurate. We identify 593 edits in this
subset, with only six containing incorrect modifications and four showing some loss of information.
These results suggest that the decontextualization process generally yields high-quality, self-contained
text.

The low ROUGE scores typically result from document footers or metadata, which are removed
during the LLM’s decontextualization process, and not from factual errors or information loss. Our
analysis shows that approximately 72% of the chunks achieve a ROUGE score of 90 or higher,
reflecting strong alignment with the original content. Chunks with scores below 0.70 make up less
than 3%, and these are filtered out during the process to avoid any omission or extreme paraphrasing.

K LLM USAGE STATEMENT

We used ChatGPT and Claude as writing assistants to improve the clarity and grammar of our
manuscript. All scientific content, experimental design, and technical contributions are the original
work of the authors.
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