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Abstract
Tables, found in PDF documents, contain valu-001
able quantitative information. Unfortunately,002
extracting this information is difficult due to003
high variability in the table structure as well as004
content. We propose statements, a novel data-005
structure to self-contain quantitative facts and006
related information. We propose translating ta-007
bles to statements as a new supervised deep-008
learning information extraction task. We intro-009
duce SemTabNet – a dataset of over 100K anno-010
tated tables. Investigating a family of T5-based011
Statement Extraction Models, our best model012
predicts statements which are 82% similar to013
the ground-truth (F1 score of 0.97 for extracting014
entities). We demonstrate the advantages of rep-015
resenting information as statements by apply-016
ing our model to over 2700 tables from ESG re-017
ports. The homogeneous nature of statements018
permits data-science analysis on expansive in-019
formation found in large collections of tables.020

1 Introduction021

The publishing rate of technical content has in-022

creased exponentially (information explosion), in023

both the academic (Arxiv), legal (USPTO), medical024

(PubMed) and the commercial domains (annual fi-025

nancial & corporate ESG reports). Many technical026

documents present their key information in tables.027

Hence, understanding document tables is important028

for the field of information extraction.029

Large Language Models (LLMs) have been030

shown to be excellent tools for information extrac-031

tion, due to their ability to parse, understand, and032

reason over textual data (OpenAI et al., 2023; Tou-033

vron et al., 2023). This, in combination with their034

ability with zero-shot learning, makes them excel-035

lent in information extraction from text (Brown036

et al., 2020). This approach breaks-down when037

applying the same techniques on tables (Zhu et al.,038

2021).039

The challenge for understanding tables comes040

primarily from the high variability in both con-041

Figure 1: Example table from an ESG report with a
complicated layout. To extract the information content
of a single cell (highlighted in red), the content and
relationships (lines drawn in red) to many other cells
(highlighted in orange) also needs to be understood.

tent and (spatial) design of document tables. The 042

latter offer a flexible design choice for authors to 043

represent information in a compact format, espe- 044

cially when column and row headers are merged 045

in a hierarchical fashion (see Fig. 1 for an ex- 046

ample). This results in a large variability (Kadra 047

et al., 2021; Borisov et al., 2022), with no stan- 048

dardization across domains (e.g. financial reports, 049

corporate ESG reports, scientific papers, patents, 050

books, etc.). Liu et al. (2023) demonstrated that 051

minor perturbations on the structure of a table can 052

seriously undermine the performance of LLMs on 053

downstream tasks. While a lot of progress has been 054

made in table structure recognition, understanding 055

the content of a table is still challenging. 056

In this paper, we present a general approach for 057

(quantitative) information extraction from tables. 058

First, we propose a new tree-like data-structure, 059

called ‘Statement’, which can combine multiple 060

(named) entities and (n-ary) relations (Fig. 2). 061

It allows us to represent information in a homo- 062

geneous domain agnostic fashion. Due to their 063
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Figure 2: The knowledge model of Statements repre-
sented as a tree. From the root node, individual state-
ments emerge as branches. Associated with each indi-
vidual statement node are the leaf predicate nodes.

knowledge model, statements solve the problem064

of the variability in table-structure. The nodes of065

a statement tree can contain content from dif-066

ferent subjects, allowing for a general informa-067

tion extraction approach to tables from various do-068

mains. Statements can represent information with069

arbitrary conditions accurately, a must when deal-070

ing with complex table layouts containing several071

multi-column/row headers. With the introduction072

of statements, the information extraction prob-073

lem from tables becomes a translation problem074

which we call ‘statement extraction’ – translating075

the original table into a set of statements.076

We begin, in Sect. 2 discussing related works.077

In Sect. 3 we explain the concept of ‘Statements’078

and present the SemTabNet dataset used for train-079

ing our models in Sect. 4. In sect. 5, we discuss080

the various experiments we performed and their re-081

sults. We end the paper with an application of our082

model on ESG reports. Environment, Social, and083

Governance (ESG) reports which are published by084

organizations for disclosing their status, and per-085

formance on ESG topics. These reports are are086

notoriously hard to parse due to a lack of standard-087

ization (Mishra et al., 2023). ESG reports, to this088

day, are manually analyzed by consultancy firms089

and professional organisations (Henisz et al., 2019).090

With our proposed statement extraction, this pro-091

cess can now be fully automated.092

2 Related works 093

LLMs have been widely adopted for information 094

extraction (Xu et al., 2023). Using pre-trained lan- 095

guage models, Wang et al. (2022b) perform infor- 096

mation extraction in two steps: argument extraction 097

and predicate extraction. Based on this, they in- 098

troduced a text-based open information extraction 099

benchmark. Wang et al. (2021) presented DeepEx 100

for extracting structured triplets from text based 101

data. Wang et al. (2022a) demonstrate that pre- 102

training models on task-agnostic corpus lead to 103

performance improvement on tasks like informa- 104

tion extraction, entity recognition, etc. However, 105

these approaches are limited to textual data. 106

The application of deep learning to tables has 107

increased due to the availability of large datasets 108

like PubTables-1M (Smock et al., 2021), PubTab- 109

Net (Zhong et al., 2020), FinTabNet (Zheng et al., 110

2020), TabRecSet (Yang et al., 2023), SynthTabNet 111

(Nassar et al., 2022). These datasets focus only on 112

table detection (identifying tables from document 113

images), table structure recognition (parsing table 114

structure) and cell structure recognition (classifying 115

cells as header or data). Additionally, most tables 116

in these datasets are structurally simple, missing 117

out on the complexities of tables encountered in 118

the wild. 119

A major drawbacks of present approaches is that 120

the semantic meaning of cell content is ignored. 121

This limits the models trained on these datasets. 122

Despite the availability of several attention-based 123

models dedicated to tabular data (TabNet (Arik and 124

Pfister, 2021), TabTransformer (Huang et al., 2020), 125

TableFormer (Nassar et al., 2022), TableFormer 126

(Yang et al., 2022)), Grinsztajn et al. (2022) showed 127

that classic machine learning still performs better 128

than deep neural networks on tabular data. 129

3 Definition of Statements 130

The statements data structure aims to homoge- 131

nize the data representation of information coming 132

from complex, irregular, heterogeneous document 133

tables. At its core, the statements data structure 134

is a tree structure (fig. 2). From the root of the tree, 135

we have ‘subject’-nodes, which contain informa- 136

tion regarding the ‘subject’ and the ‘subject-value’ 137

keys. From each subject-node, there are one or 138

more predicate nodes, which define the ‘property’, 139

‘property-value’, and ‘unit’ keys. Each predicate 140

node carries an atomic piece of quantitative infor- 141

mation. 142
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Figure 3: A diagram explaining the framework introduced in this paper. We fine-tune LLMs on the task of ‘Statement
Extraction’ leading to a family of “Statement Extraction Models" (SEM). Quantitative facts are extracted from
heterogenous unstructured data (only tables in this paper) and stored as Statements.

The statement knowledge model can be ap-143

plied to both text and tables. In Fig. 3, we show144

the same statements structure which could be ob-145

tained from a text or a corresponding table. As146

such, the statements structure is not bound only147

to tables, however, it shows its usefulness particu-148

larly when normalising information from heteroge-149

neous tables.150

Beyond the uniform layout, statements pro-151

vide a natural way to quantify how much infor-152

mation any source provides. Simply counting the153

number of nodes in the tree, provides an estimate154

on the information richness of given source. A155

statement is complete when it contains all predi-156

cates needed to completely specify objective knowl-157

edge pertaining to a subject, i.e. all co-dependent158

predicates.159

The tree structure of statements allows us to160

quantify, with a single number, the transformation161

of information from a table. This is accomplished162

by computing the Tree Editing Distance (Pawlik163

and Augsten, 2016; Schwarz et al., 2017) between164

predicted and ground-truth statements. TED is165

defined as the minimum-cost sequence of node op-166

erations that transform one tree into another. Two167

trees are identical if their TED is 0 and maximally168

distinct if their normalized TED is 1. Like the Lev-169

enshtein distances on strings (Levenshtein, 1966),170

TED involves three kinds of operations: node in-171

sertions, deletions, and renaming. The cost of each172

operation can be freely defined, which makes this173

metric both flexible and powerful.174

For comparing two statement trees, we setup175

strict costs for each edit operation. The predictions 176

are maximally punished for any structural deviation 177

from the ground truth, i.e. deletion and insertion 178

each have a cost of 1. For renaming, we only allow 179

two nodes to be renamed if they are of the same 180

type. If both nodes’ value attribute is of type string, 181

then we calculate a normalized Levenshtein edit 182

distance between the two strings. If both nodes’ 183

value attribute is of numerical type, then the two 184

values are directly compared. In this case, the cost 185

is 0 if the two values are the same, and 1 in all other 186

cases. If the value attribute of both the ground truth 187

and the prediction node is empty, then the cost 188

operation is 0. Normalized TED (t) is the ratio 189

of the tree edit distance to the number of edits 190

between two trees. Using the normalized TED, a 191

normalized Tree Similarity score can be computed 192

as ts = 1− t. 193

It is also instructive to look at the edit types 194

which converted the predicted statements into 195

ground-truth statements. For this, we measure 196

the ratio of edit type to the total number of edits. 197

The ratio of insertions/deletions carries informa- 198

tion about the structural similarity. If two trees 199

are structurally similar, the edits are dominated by 200

renaming. While tree-based metrics are sensitive 201

to both entity and relationship extraction, we also 202

evaluate entity extraction. For this, we collect all 203

entities from a statement and count true positives 204

when an entity is found in both model prediction 205

and ground truth, and similarly for true negatives 206

and false positives. Based on these, we measure 207

the standard accuracy, recall and F1 measures. 208

3



4 SemTabNet: Statements Data209

We used the Deep Search toolkit 1 to collect over210

10K ESG reports from over 2000 corporations.211

Deep Search crawled these PDF reports, converted212

them into machine readable format, and provided213

this data along with the metadata of each report in214

json format.215

We compiled a list of important keywords which216

capture many important concepts in ESG reports217

(see appendix A). Next, we select only those tables218

which have some relevance with the keywords. For219

this we used the following conditions: the ROUGE-220

L precision (longest common sub-sequence) score221

between raw data and keywords must be greater222

than 0.75 and there must be quantitative informa-223

tion in the table.224

We need a strategy for understanding the con-225

tent of a table and extracting statements from it.226

After manually observing hundreds of table, we227

decided a two step approach to prepare our ground-228

truth data. First, we classify all the cells in a ta-229

ble based on the semantic meaning of their con-230

tent into 16 categories which helps us in construct-231

ing statements. For each table, this step creates a232

‘labels-table’ with the same shape and structure as233

the original, but the cells of this labels-table only234

contain category labels (see fig. 4). Secondly, we235

create a program which reads both the labels-table236

and the original table and extracts statements in a237

rule-based approach. The algorithm is described in238

appendix B. The 16 labels are:239

• Property, Property Value240

• Sub-property241

• Subject, Subject Value242

• Unit, Unit Value243

• Time, Time Value244

• Key, Key Value245

• Header 1, Header 2, Header 3246

• Empty, Rubbish247

During annotation, all cells of a table are mapped248

to one of the above labels. For cells which contain249

information pertaining to more than one label, we250

pick the labels which is higher in our ordered list251

of labels. So a cell with content “Revenue (US$)",252

is labelled as property. The ‘property’ and ‘sub-253

property’ cells always have associated ‘property254

value’ cell(s). The ‘header’ cells never have an255

associated value and often divide the table into256

smaller sections. Empty cells are labelled ‘empty’.257

1Available via: https://ds4sd.github.io.

Table 1: Counts of data in SemTabNet3.

TASK TRAIN TEST VAL
SE DIRECT 103,455 11,682 5,445
SE INDIRECT 1D 72,580 8,489 3,821
SE INDIRECT 2D 93,153 22,839 4,903

When a table contain unnecessary parts due to 258

faulty table recovery or non-quantitative informa- 259

tion. We label such cells as ‘rubbish’. When a 260

property/property value pair carries supplementary 261

information, those cells are annotated as ‘key’/‘key 262

values’. 263

Additionally, we observed that most tables can 264

be reasonably classified into three baskets: sim- 265

ple, complex, and qualitative. There are simple 266

tables whose structure cannot be further subdivided 267

into any smaller table. There are complex tables 268

whose structure can be further divided into mul- 269

tiple smaller tables. Finally, there are qualitative 270

tables (like table of contents) which contain little 271

valuable information for our endeavour. We col- 272

lected about 2,800 tables and found ∼ 20% were 273

simple, ∼ 20% complex, and ∼ 60% were qual- 274

itative. We discarded all qualitative tables from 275

any further analysis. To ensure that our data is not 276

biased towards either simple or complex tables, we 277

manually annotated all the cells of 569 simple ta- 278

bles and 538 complex tables. In total, we annotated 279

1,107 tables (84,890 individual cells) giving rise to 280

42,982 statements. 281

We further augmented the annotated tables to cre- 282

ate a large training data. We shuffle the rows and 283

columns of tables corresponding to property-values 284

to create new augmented tables, while keeping their 285

contents the same. While this is straightforward for 286

simple tables, special care was taken for complex 287

tables such that only rows/columns which belonged 288

together within a category were shuffled. The max- 289

imum number of augmented tables emerging from 290

the shuffling operations was limited to 130, leading 291

to over 120K tables. To promote further research 292

and development, we open source this large dataset 293

of semantic cell annotations as SemTabNet2. Table 294

1 shows the counts of (in)-direct statement extrac- 295

tion in SemTabNet. 296

2The data can be found here.LINK
3The counts differ slightly due to the manner in which the

final data was harmonized. The SE Indirect 1D data consists
of the 84 890 original cells annotated from 1 107 tables. The
test/train split of tables for SE Indirect 1D was prepared by
stratifying across all cell labels. This split was augmented
(as described in text) to prepare data for SE Indirect 2D. The
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Figure 4: Input and output for the task of “Statement Extraction". Top Left: Page from an ESG report containing
tables. Top Right: One of the table, from the same page, prepared as markdown for model input. Bottom Left: Model
output for the task of indirect statement extraction. Bottom Right: Model output for the task of direct statement
extraction.

5 Experiments & Results297

Fig 4 presents Statement Extraction as a supervised298

deep learning task. Due to the nature of how ta-299

bles are annotated (see section 4), it is possible to300

train models for statement extraction statements301

both directly and indirectly. We consider the fol-302

lowing three experiments: (1) SE Direct: the model303

is presented with an input table as markdown in304

a prompt. The model generates the tabular repre-305

sentation of the resulting statements as markdown.306

(2) SE Indirect 1D: In this experiment, the model307

input is the individual table cell contents. For a308

table with n cells, we predict n labels sequentially309

(hence, 1D) and then use this information to con-310

struct statements. Individual cell labels predicted311

by the model are stitched together to form the labels312

table, which is then used to construct the predicted313

statement by using our rule-based algorithm. (3)314

SE Indirect 2D: As opposed to SE Indirect 1D, in315

this experiment, we predict the cell labels of all316

cells in a table simultaneously. The entire table, as317

markdown, is input to the model (hence 2D) and318

the model generates the labels table, as markdown.319

Using the rule-based algorithm, the predicted labels320

test/train split and augmentation for SE Direct was done inde-
pendently.

table is converted into predicted statements. 321

We use six special tokens, which allow us to 322

control and parse model output. 323

• Input table start token: <table> 324

• Input table stop token: </table> 325

• Output start token: <response> 326

• Output stop token: </response> 327

• Newline token: <br> 328

• Separate list item token: <sep> 329

This allows us to parse the predicted statements 330

from a LLM. Once successfully parsed, the output 331

statements can be trivially converted from one rep- 332

resentation to another. This is crucial because we 333

compare model predicted statements with ground 334

truth by converting statements into a tree structure. 335

These tokens are added to the tokenizer vocabulary 336

before fine-tuning any model. 337

Since the nature of these tasks naturally fits the 338

paradigm of sequence-to-sequence models, we fine- 339

tune T5 models (Raffel et al., 2020). T5 models are 340

encoder-decoder transformer architecture models 341

which are suitable for many sequence-to-sequence 342

tasks. In our experiments, we train T5 variants 343

(Small, Base, Large, and 3B) to create a family of 344

Statement Extraction Models (SEM). 345
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Table 2: Results of comparing model predicted statements with ground truth data (bold indicates the best in each
experiment). For all reported values, the 99% confidence interval, assuming a Gaussian distribution, is ∼ 0.1%.
The standard error of the mean in all cases is below 0.005%.

Statement Extraction Context Ratio Tree Edits [%] Average [%]
Task Model Length Insert Delete Rename F1 ts

SEM-T5-small 512 98.13 00.00 1.87 62.32 00.86
Indirect 1D SEM-T5-base 512 83.95 01.68 14.37 83.46 09.21

SEM-T5-large 512 34.68 12.03 53.30 94.67 55.68
SEM-T5-3b 512 36.70 23.24 40.05 90.49 22.24
SEM-T5-small 512 17.34 13.36 69.30 97.06 75.15
SEM-T5-base 512 15.53 21.60 62.86 96.85 73.87
SEM-T5-large 512 09.58 22.80 67.62 97.55 80.83

Indirect 2D SEM-T5-3b 512 08.00 28.40 63.59 97.38 81.76
SEM-T5-small 1024 18.53 18.71 62.75 95.85 68.45
SEM-T5-base 1024 17.80 16.04 66.16 96.15 69.27
SEM-T5-large 1024 08.20 17.00 74.79 97.53 79.89
SEM-T5-small 512 98.14 00.04 01.82 60.65 00.62
SEM-T5-base 512 97.86 00.06 02.09 68.62 04.46
SEM-T5-large 512 98.18 00.02 01.80 67.41 04.23

Direct SEM-T5-3b 512 97.98 0.01 02.01 70.06 03.47
SEM-T5-small 1024 92.93 00.14 06.93 70.35 02.98
SEM-T5-base 1024 88.42 00.22 11.35 76.99 11.11
SEM-T5-large 1024 89.34 00.21 10.45 76.59 06.06

In our training data for tables, the input token346

count is less than 512 for 50% of the data, and it is347

less than 1024 for 90% of the data. Thus, except348

where mentioned, we train T5 models (small, base,349

large) with context windows of 512 and 1024, and350

T5-3b with context window of 512. All models are351

fine-tuned in a distributed data parallel (DDP) man-352

ner simultaneously across 4 GPU devices (Nvidia353

A100-40GB for T5-Small, T5-Base, T5-Large and354

NVIDIA A100-80GB for T5-3B). Additionally, the355

largest possible batch size was used for all models.356

The batch size is impacted by factors like model357

size, GPU memory, and context window. In turn it358

affects the number of epochs we can fine-tune in a359

reasonable time.360

For all tasks, we stop the fine-tuning process ei-361

ther after 500,000 steps or after 7 days. We use the362

AdamW optimizer with β1 = 0.9 and β2 = 0.999.363

All models are trained with a maximum learning364

rate of 5×10−4. There is a warm-up phase of 1000365

steps in which the learning rate increases linearly366

from 10−10 to 5× 10−4. After another 1000 steps,367

the learning rate is exponentially decayed until it368

reaches its lowest value of 10−6, where it remains369

until the end of the training.370

Table 2 presents the key results of our exper-371

iments. For each table, we evaluate the state- 372

ments predicted by the model (directly or indi- 373

rectly) against the ground truth statements. For 374

each task and each model therein, we present the 375

averaged tree similarity score (ts) (measuring en- 376

tity & relationship extraction) and the averaged F1 377

score (measuring entity extraction). Also present 378

are the averaged ratios of tree edit types, which 379

helps us understand ts. For all reported values, as- 380

suming a normal distribution, the standard error of 381

the mean is below 5×10−5 and the 99% confidence 382

interval for all values is about ∼ 0.1%. 383

Statement Extraction Indirect 1D: All models 384

trained on this task have context window of 512. 385

Their performance tends to scale with model size. 386

Although the F1 score for entity extraction shows 387

promising value, the tree similarity score for all 388

models is poor. This implies that while these mod- 389

els can learn to extract entities, relationship extrac- 390

tion is difficult for these models. The ratio of tree 391

edits helps us understand these scores. For SEM- 392

T5-small, the ratio of insertion is ≈ 98% which 393

means that the predicted statements does not have 394

enough nodes. As the model size increases, the 395

insertion ratio decreases, and the deletion and re- 396

naming ratio increases. Thus, increasing the model 397
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size improves the structural similarity of the pre-398

dicted tree but the overall performance remains399

unacceptable.400

Statement Extraction Indirect 2D: All models401

trained on this task perform well on entity extrac-402

tion with average F1 scores of over 95%. The403

highest performing model is the SEM-T5-3b (512)404

with an average tree similarity score of 81.76% and405

an F1 score of 97.38%. The ratio of insertion edits406

for this model is the lowest amongst all models407

across all three tasks. Since the most type of ed-408

its required for all model’s predictions in this task409

are renaming, it implies that the predicted tree has410

similar structure to the ground truth.411

Models with large context window have sim-412

ilar performance on entity extraction but do not413

perform well on entity and relationship extraction.414

Since model training cost is quadratic to the se-415

quence length, and we allocate equal training re-416

sources to all models, this explains why models417

with 1024 context window do not show improved418

performance. We believe that with further training,419

these models may show better performance than420

reported here.421

Statement Extraction Direct:Based on tree sim-422

ilarity score, most models show poor performance423

in direct SE. The best performing model, given our424

training constraints, is SEM-T5-base with a con-425

text window of 1024. It gets an average F1 score of426

76.99% and an average tree similarity score of only427

11%. To understand, why these models performs428

so poorly on direct SE, we look at the ratio of tree429

edits.430

We note that the ratio of deletions for all models431

in this task is close to 0. On the other hand, the432

ratio of insertions for all models is high (from 88%433

to 98%). This suggests that the statement trees434

produced by these models is missing vast number435

of nodes compared to the ground truth. In fact,436

perusing the model output shows that while the437

output is of high quality, it contains significantly438

less nodes than ground truth statements.439

Discussion: SE Indirect 1D shows good perfor-440

mance on entity extraction, but performs poorly441

for both entity and relationship extraction. In this442

task, the model only sees the content of one cell at443

a time which makes it easy to extract entities. How-444

ever, this does not allow the model to develop a445

strong capability to learn tabular relationships. On446

the other hand, SE Direct, gives poor performance447

on both entity extraction and relationship extrac-448

tion. Direct SE expects the models to unravel a449

dense table into statements, for which they must 450

produce many output tokens. For example, the 451

average number of output tokens in the test data 452

for SE direct is 5773 ± 51, which is significantly 453

larger than the number of tokens for SE indirect 454

2D (346 ± 1). Thus, direct SE is a very challeng- 455

ing task and might require different strategies to be 456

executed successfully. 457

SE Indirect 2D, avoids the disadvantages of both 458

the tasks. In this case, the model sees the entire 459

input table (has the chance to learn tabular relation- 460

ships) and is only tasked with producing a labels 461

table (can finish generation in a reasonable number 462

of tokens). Our experiments clearly demonstrate 463

that statement extraction via the Indirect 2D ap- 464

proach gives better results. This is an unexpected 465

finding of our study, and we hope it motivates other 466

researchers to improve zero-shot statement extrac- 467

tion capability. 468

6 Application to ESG results 469

Due to their homogeneous structure, statements 470

enable large-scale exploratory analysis and data 471

science. To demonstrate the advantage of state- 472

ments over traditional tabular data science, we ap- 473

plied SEM-T5-large (512) over 2700 tables pub- 474

lished in over 1000 ESG reports in 2022 using the 475

SE Indirect 2D methodology. This lead to 14,766 476

statements containing over 100k predicates. This 477

dataset containing ESG related KPIs is invaluable 478

to researchers, policy-makers, and analysts. 479

We filter this large dataset to contain only those 480

predicates with quantitative property values. This 481

subset contains 47 901 predicates from 601 cor- 482

porate ESG reports. We search the properties in 483

this dataset for some keywords representative of 484

ESG KPIs. Fig. 5 (top) shows the distribution 485

of the number of predicates and the number of 486

distinct organizations which matched our simple 487

keyword search. For example, using ‘emission’ as 488

a keyword, we obtain over 4000 hits with results 489

coming from over 300 distinct corporations. This 490

demonstrates that statements allowed us to pull 491

data from multiple sources and homogenize it for 492

down-stream consumption. 493

Some of the common properties in this subset 494

are also shown along with their frequency in fig. 5. 495

This shows the breadth and diversity of the nature 496

of information we pulled out from a large corpus of 497

documents. Many of these properties are important 498

ESG KPIs. The ability to extract homogeneously 499
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Figure 5: Exploratory analysis of statements from over 2700 Tables published in ESG reports in 2022. Top:
We searched about 50,000 predicates using keywords (shown on the x-axis) related to environment (left), social
(middle), and governance (right). The plot shows the distribution of predicates and the number of organizations
from this search. Bottom: Frequency chart demonstrating some of the common properties found in our data. This
properties are important KPIs in the ESG domain and represent an invaluable data to all stakeholders.

information from a large collection of PDF reports500

demonstrates the advantage of the statement extrac-501

tion framework presented in this paper.502

7 Conclusion & Future Works503

We have presented a novel approach to map com-504

plex, irregular, and heterogeneous information to505

a uniform structure, Statements. We showed506

how information extraction can be seen as a su-507

pervised deep-learning translation task which we508

called Statement Extraction. We advance the field509

of table understanding by open-sourcing SemTab-510

Net. SemTabNet consists of 100K tables wherein511

all cells are annotated reflecting their semantic con-512

tent. To the best of our knowledge, this is the first513

work which focuses on the semantic meaning of514

tabular data.515

Investigating three variations of the statement516

extraction task, we found that using a model517

to generate table annotations and then construct518

statements produces best results. This approach 519

has the advantage, that it produces hallucination- 520

free homogeneous structured data. Statements 521

are an advantageous vehicle for quantitative factual 522

information. They enable down-stream tasks like 523

data science over a large collection of documents. 524

We extracted over 100K facts (predicates) from 525

only 1000 ESG reports. 526

This work can be easily extended to include do- 527

mains other than ESG. It can also be extended to- 528

wards multi-modality by including text data. We 529

leave for future exploration, the use of statements 530

in downstream tasks like QA or document summa- 531

rization. 532

8 Limitations 533

Although, the ideas and the techniques we describe 534

in this paper are domain agnostic, we limit the 535

scope of this paper to the domain of corporate En- 536

vironment, Social, and Governance (ESG) reports. 537
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This choice is motivated by two observations. First,538

corporations report valuable quantitative data re-539

garding their efforts to improve their carbon emis-540

sions, working conditions, and company culture541

in ESG reports. These reports contain valuable in-542

formation regarding the environmental impact of543

businesses, and the urgency of climate change mo-544

tivates us to target this domain. Secondly, there is545

a large variety and diversity of tabular representa-546

tions used in these reports. Despite efforts to stan-547

dardize these reports, this diversity makes the task548

of extracting information from these documents549

extremely challenging, motivating our choice.550

The scope of this work is limited to declarative,551

explicit knowledge only. All other kinds of knowl-552

edge such as cultural, implicit, conceptual, tacit,553

procedural, conditional, etc. are ignored. We fo-554

cus on information which one colloquially refers555

to as ‘hard facts’. Additionally, we limit the scope556

of this work to quantitative statements i.e. state-557

ments whose property values are numerical quan-558

tities. We implement this restriction in the notion559

that we avoid qualitative statements i.e. statements560

which are not quantitative.561

Our model training strategy was biased against562

large models. We trained all models for either 500K563

steps or 7 days using the largest possible batch size.564

This means smaller models learn more frequently565

(more epochs) than larger models. However, we566

do not believe this severely impacted the outcome567

of our experiments. Our resources were enough568

to recover well-known trends: improved model569

performance with model size and context-length.570
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A ESG Keywords788

Environment789

1. Scope 1 GHG Emissions790

Scope 1 are all direct emissions from the ac-791

tivities of an organization under their control.792

This includes fuel combustion on site such as793

gas boilers, fleet vehicles and air-conditioning794

leaks.795

2. Scope 2 GHG Emissions Market Volume796

Scope 2 are indirect emissions from electricity797

purchased and used by the organization. Emis-798

sions are created during the production of the799

energy and eventually used by the organiza-800

tion. A market-based method reflects emis-801

sions from electricity that companies have ac-802

tively chosen to purchase or reflects their lack803

of choice.804

3. Scope 2 GHG Emissions Location Volume805

Scope 2 emissions are indirect emissions806

from the generation of purchased energy. A807

location-based method reflects the average808

emissions intensity of grids on which en-809

ergy consumption occurs (using mostly grid-810

average emission factor data)811

4. Scope 2 GHG Emissions Other Volume812

Scope 2 emissions are indirect emissions from813

the generation of purchased energy. Overall, if814

not clearly defined whether it is market-based815

calculation or location-based calculation816

5. Scope 3 GHG Emissions 817

Scope 3 emissions are all other indirect emis- 818

sions (excluding Scope 2) that occur in the 819

value chain of the reporting company, includ- 820

ing both upstream and downstream emissions. 821

6. Environmental Restoration and Investment 822

Initiatives Monetary Value 823

The fields represent the monetary value spent 824

on environmental initiatives. 825

7. Total Water Discharged 826

The fields represent the overall volume of wa- 827

ter discharged by a company. 828

8. Total Water Withdrawal 829

The fields represent the total volume of water 830

withdrawn by a company. 831

9. Total Water Recycled 832

The fields represent the total volume of water 833

recycled or reused by a company. 834

10. Toxic Air Emissions - NOx 835

The fields represent the total amount of nitrous 836

oxide (NOx )emissions emitted by a company. 837

11. Toxic Air Emissions - SOx 838

The fields represent the total amount of sulfur 839

oxide (Sox) emissions emitted by a company. 840

12. Toxic Air Emissions - Overall 841

The fields represent the total amount of air 842

emissions emitted by a company. 843

13. Toxic Air Emissions - VOC 844

The fields represent the total amount of 845

volatile organic compound (VOC) emissions 846

emitted by the company. 847

14. Hazardous Waste - Disposed to Aquatic 848

The fields represent the total amount of haz- 849

ardous waste disposed to aquatic environment. 850

15. Hazardous Waste - Disposed to Land 851

The fields represent the total amount of haz- 852

ardous waste disposed to non aquatic or land 853

environment. 854

16. Hazardous Waste - Total Recycled 855

The fields represent the total amount of haz- 856

ardous waste recycled. 857

17. Hazardous Waste - Total Amount Gener- 858

ated 859

The fields represent the total amount of haz- 860

ardous waste generated by a company. 861

18. Hazardous Waste - Total Amount Disposed 862

The fields represent the total amount of haz- 863

ardous waste disposed. 864

19. Non-Hazardous Waste - Disposed to 865

Aquatic 866

The fields represent the total amount of non- 867

hazardous waste disposed to the aquatic envi- 868

ronment. 869
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20. Non-Hazardous Waste - Disposed to Land870

The fields represent the total amount of non-871

hazardous waste to non aquatic or land envi-872

ronment873

21. Non-Hazardous Waste - Total Recycled874

The field represents the total amount of non-875

hazardous waste recycled.876

22. Non-Hazardous Waste - Total Amount Gen-877

erated878

The fields represent the total amount of non-879

hazardous waste Generated by a company.880

23. Non-Hazardous Waste - Total Amount Dis-881

posed882

The fields represent the total amount of non-883

hazardous waste disposed.884

24. Total Waste Produced885

The fields represent the total amount of waste886

produced by a company.887

25. Total Waste Recycled888

The fields represents the total amount of waste889

recycled by a company.890

26. Total Waste Disposed891

This fields represent the total amount of waste892

disposed by a company.893

27. Number of Sites in Water Stress Areas894

The field represents the number of sites lo-895

cated in water stress areas.896

28. E-Waste Produced897

The field identifies the mass volume of f E-898

waste produced which are electronic products899

that are unwanted, not working, and nearing or900

at the end of their life. Examples of electronic901

waste include, but not limited to : computers,902

printers, monitors, and mobile phones903

29. E-Waste Recycled904

The field identifies the mass volume of E-905

Waste Recycled.906

30. E-Waste Disposed907

The field identifies the mass volume of E-908

waste disposed.909

31. Number of Sites Operating in Protected910

and/or High Biodiversity Areas911

The field identifies the number of sites or facil-912

ities owned,leased, managed in or adjacent to913

protected areas and areas of high biodiversity914

value outside protected areas.915

32. Impacted Number of Species on Interna-916

tional Union of Conservation of Nature917

(IUCN) List918

The field identifies the number of impacted919

species on International Union of Conserva-920

tion of Nature (IUCN) red list.921

33. Impacted Number of Species on National 922

listed Species 923

The field identifies the number of impacted 924

species on National Listed Species. 925
34. Baseline Level 926

The field identifies the value at baseline or 927

year that target is set against. 928
35. Target Year 929

The field identifies the year in which the re- 930

newable energy goal is set to be completed. 931
36. Target Goal 932

The field identifies the target goal for renew- 933

able energy. 934
37. Actual Achieved 935

The fields identifies the actual value achieved 936

for the renewable energy goal. 937
38. Baseline Level 938

The field identifies the baseline emissions 939

value. 940
39. Target Year 941

The field identifies the year in which GHG 942

emission goal is set to be completed. 943
40. Target Goal 944

The field identifies the target goal for GHG 945

emission reduction. 946
41. Actual Achieved 947

The field identifies the value achieved of GHG 948

emissions reduced compare - in metric tons. 949

Social 950

1. Training Hours Per Employee 951

The fields identifies the numerical value of 952

training hours per employee. 953
2. Training Hours Annually 954

The fields identifies the numerical values of 955

training hours conducted within a year. 956
3. Lost Time Injury Overall Rate 957

The fields identifies the total number of in- 958

juries that caused the employees and contrac- 959

tors to lose at least a working day. 960
4. Lost Time Injury Rate Contractors 961

The fields identifies the number of injuries 962

that caused the contractors to lose at least a 963

working day. 964
5. Lost Time Injury Rate Employees 965

The fields identifies the number of injuries 966

that caused the employees to lose at least a 967

working day. 968
6. Employee Fatalities 969

The fields identifies the number of employee 970

fatalities during a one year period. 971
7. Contractor Fatalities 972

The fields identifies the number of contractor 973

fatalities during a one year period. 974
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8. Public Fatalities975

The fields identifies the number of general976

public fatalities during a one year period.977

9. Number of Other Fatalities978

The fields identifies the number of fatalities979

during a one year period not broken down by980

employee, contractor, or public.981

10. Total Incident Rate Overall Workers982

The field identifies the number of work-related983

injuries per 100 overall workers during a one984

year period for both employees and contrac-985

tors.986

11. Total Incident Rate Contractors987

The field identifies the number of contractor988

work-related injuries per 100 overall workers989

during a one year period.990

12. Total Incident Rate Employees991

The field identifies the number of work-related992

injuries per 100 overall workers during a one993

year period for employees.994

13. Employee Turnover - Gender Male Rate995

The field identifies the absolute number996

turnover rate by males in a company .997

14. Employee Turnover - Gender Female Rate998

The field identifies the absolute number999

turnover rate by females in a company.1000

15. Employee Turnover Overall Rate1001

The field identifies the absolute number1002

turnover rate for overall employees in a com-1003

pany.1004

16. Median Gender Pay Gap - Global1005

The field identifies the gender pay gap median1006

value of the company at a global level.1007

17. Mean Gender Pay Gap - Global1008

The field identifies the gender pay gap mean1009

or average value of the company at a global1010

level.1011

18. Median Gender Pay Gap by Location1012

The field represents the gender pay gap me-1013

dian value of the company at a location or1014

country level.1015

19. Mean Gender Pay Gap by Location1016

The field represents the gender pay gap1017

mean/average value of the company at a loca-1018

tion or country level.1019

20. Employee Turnover by Age - Lower Value1020

The field Identifies the minimum age in a1021

given range for employee turnover statistics.1022

21. Employee Turnover by Age - Upper Value1023

The field identifies the maximum age in a1024

given range for employee turnover statistics.1025

22. Employee Turnover by Age - Rate1026

The field identifies the employee turnover rate.1027

23. Employee Turnover by Location Rate 1028

The field identifies the absolute number of 1029

employee turnover rate by location. 1030
24. Workforce Breakdown Rate 1031

The field identifies the absolute number of 1032

employees of a company based on seniority, 1033

ethnicity or gender. 1034
25. Workforce Breakdown Job Category Data: 1035

Value (ABS) 1036

The field represents the employee count abso- 1037

lute value at a category level within a work- 1038

force. 1039
26. Number Of Product Recalls 1040

The fields identifies the number of product 1041

recalls. 1042
27. Product Recalls Annual Recall Rate 1043

The fields identifies the product recall rate of 1044

a company. 1045

Governance 1046

1. Percentage of Negative Votes on Pay 1047

Practices Year 1048

1049
2. Board of Director Term Limit 1050

The field identifies maximum amount of years 1051

a board member can serve. 1052
3. Board of Director Term Duration 1053

The field identifies number of years a board 1054

member can serve before reelection. 1055
4. Auditor Election Year 1056

The field identifies when the current lead au- 1057

ditor elected. 1058
5. Independent Auditor Start Year 1059

The field represents the start year the com- 1060

pany started having the audit company as its 1061

independent auditor. 1062
6. Average/Mean Compensation of Company 1063

Employees-Global 1064

The field represents the average or mean com- 1065

pensation for company employeesat a global 1066

level. 1067
7. Ratio Average Compensation of CEO to 1068

Employee - CEO- Global 1069

The field represents the ratio between the com- 1070

pensation paid to the companies CEO and the 1071

average compensations received by employ- 1072

ees at a global level. 1073
8. Compensation of Company Employees by 1074

Location 1075

The field identifies the average compensation 1076

for company employees at a location level. 1077
9. Number of Suppliers Complying with Code 1078

of Conduct 1079
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The field identifies the number of suppliers1080

that comply with companies supplier code of1081

conduct.1082

10. Share Class Numeric1083

The field identifies the share class numeric1084

component.1085

11. Voting Rights1086

The field identifies the number of voting rights1087

per each share of stock within each class.1088

12. Shares Outstanding1089

The field identifies the number of shares out-1090

standing within a companies common stock.1091

13. Chairman Effective Begin Year1092

The field indicates the year when the current1093

chairman assume his or her position. This1094

field is used if a full effective date is not avail-1095

able.1096

14. Chairman Effective End Year1097

The field indicates the year when the chairman1098

left the position.1099

15. CEO Effective Begin Year1100

The field identifies the year the CEO assumed1101

his or her position.1102

16. CEO Effective End Year1103

The field indicates the year when the CEO left1104

the position.1105

17. CEO Compensation Salary1106

The field identifies the current CEO salary.1107

18. CEO Compensation Overall1108

The field identifies the CEO’s overall com-1109

pensation including salary, bonuses and all1110

awards.1111

19. CEO Cash Bonus1112

The field identifies the cash bonus value for1113

the CEO.1114

20. CEO Stock Award Bonus1115

The CEO Stock Award Bonus value1116

21. CEO Option Awards1117

The CEO Option Awards bonus value1118

22. CEO Other Awards1119

The fields identifies other compensation out-1120

side of salary, cash bonus, stock award bonus1121

and option awards. This could include change1122

in pension and values categorized as "all other1123

compensation"1124

23. CEO Pension1125

The fields identifies the CEO pension amount.1126

24. Cash Severance Value1127

The fields identifies the amount of cash the1128

severance policy for each category.1129

25. Total Severance Value1130

The fields identifies the total value amount of1131

the severance policy.1132

26. CEO Share Ownership 1133

The field identifies the number of shares the 1134

CEO owns in the company. 1135

27. CEO Share Class Numeric 1136

The field identifies the share class numeric 1137

component. 1138

28. Board Member Age 1139

The field identifies the age of the members of 1140

the board. 1141

29. Board Member Term in Years 1142

The fields identifies how long the individual 1143

board member has been on the board which is 1144

determined in years. 1145

30. Board Member Effective Year (Director 1146

Since) 1147

The fields identifies the year the individual 1148

board member started serving on the board. 1149

31. Board Profile As of Year 1150

The field identifies the year of the board infor- 1151

mation. An example would be the year of the 1152

proxy statement. 1153

32. Participation On Other Company Board 1154

The field identifies the number of boards a 1155

member is part of outside of the organization. 1156

33. For Value Negative Votes on Directors 1157

The field identifies the number of for value 1158

votes the director received. 1159

34. Against Value Negative Votes on Directors 1160

The field identifies the number of against votes 1161

the director received. 1162

35. Abstain Value Negative Votes on Directors 1163

The field identifies the number of votes that 1164

were abstained for a given director. 1165

36. Broker Non Vote Value Negative Votes on 1166

Directors 1167

The field identifies the number of broker non 1168

votes for given director. 1169

37. Number of Board Meetings Attended by 1170

Board Member 1171

The field identifies the number of board meet- 1172

ings attended by a board member. 1173

38. Number of Board Meetings Held by Com- 1174

pany 1175

The field identifies the number of board meet- 1176

ings held by a company while member was on 1177

the board. 1178

39. Total Members on Board per Skill Set 1179

The field identifies the number of board mem- 1180

bers within a specific skillset type. 1181
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B Algorithm for Statement Extraction 1182

We present the algorithm we used to extract statements. For this algorithm, the inputs are the original 1183

table and the labels table. 1184

Algorithm 1 Extract Statements
1: procedure EXTRACT STATEMENTS(Table, LabelsTable)
2: Input: Table, LabelsTable: Table and Table of cell annotations
3: AllStatements← empty list
4: for all row in LabelsTable do
5: for all column in LabelsTable do
6: if LabelsTable[row][column] = Property Value then
7: Search in the same row and column for (Sub)-Property
8: if Property is found then
9: Append Headers in hierarchy to Property, if any, starting from the minimum level

10: Construct Statement with Property, Row and Column
11: else if SubProperty is found then
12: Append Property to the SubProperty
13: Append Headers in hierarchy to SubProperty, if any, starting from the maximum level
14: Construct Statement with SubProperty, Row and Column
15: else
16: Property is not found, continue to the next iteration
17: end if
18: Append Statement to AllStatements
19: end if
20: end for
21: end for
22: Return AllStatements
23: end procedure
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1: procedure CONSTRUCT STATEMENT(Row, Column, Property)
2: Input: Row, Column, Property: Row and Column of the Property Value, with its related Property
3: Output: Statement: list
4: Statement← empty list
5: Predicate← empty dictionary
6: Predicate [Property Value]← Table[Row][Column]
7: Predicate [Property]← Property
8: Search in the same row and column(Unit Value)
9: Predicate[Unit]← Table[rowuv][columnuv]

10: Search for a Subject - Subject Value pair
11: Predicate[Subject]← Table[rows][columns]
12: Predicate[Subject_Value]← Table[rowsv][columnsv]
13: Add Predicate to the Statement
14: Search in the same row and column(Time Value)
15: if Time Value is found then
16: Predicate← empty dictionary
17: Predicate [Property Value]← Table[rowtv][columntv]
18: Predicate [Property]← "Time"
19: Add Predicate to the Statement
20: end if
21: Search for all Key - Key Value pairs
22: for all Key - Key Value pairs found do
23: Predicate← empty dictionary
24: Predicate[Property]← Table[rowk][columnk]
25: Predicate[Property Value]← Table[rowkv][columnkv]
26: Add Predicate to the Statement
27: end for
28: Return Statement
29: end procedure

1: procedure APPEND HEADERS(Row, Column, Propery, Level)
2: Input: Row, Column, Property, Level: Row, Column, value of a Property cell and the level of the header to search for.
3: Output: Property: string
4: for all Rowa above Row do
5: for all Columnl on the left of Column do
6: if LabelsTable[Rowa][Columnl] is a header with a higher level than Level then
7: Append Table[Rowa][Columnl] on top of Property
8: if the level of LabelsTable[Rowa][Columnl] is maximum then
9: Return Property

10: else
11: Append Headers in hierarchy to Property starting from the level of LabelsTable[Rowa][Columnl]
12: Return Property
13: end if
14: end if
15: end for
16: end for
17: Return Property
18: end procedure

Algorithm 2 Utility Functions
1: procedure APPEND PROPERTY(Row, Column, SubProperty)
2: Input: Row, Column, SubProperty: Row,Column and Value of a SubProperty cell
3: Output: Subproperty: string
4: for all Rowa above Row do
5: for all Columnl on the left of Column do
6: if LabelsTable[Rowa][Columnl] is a Property then
7: Append Table[Rowa][Columnl] on top of SubProperty
8: Return SubProperty
9: end if

10: end for
11: end for
12: Return SubProperty
13: end procedure
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1: procedure SEARCH IN THE SAME ROW AND COLUMN(Row, Column, Key)
2: Input: Row, Column, Key: Row and Column where to search the specified Key
3: Output: Rowk, Columnk: Row and column of the designated Key, if found
4: for all Cell respectively on the Left, Above, and Right to the cell at LabelsTable[Row][Column] do
5: if Cell is Key then
6: Return Row, Column of Cell
7: end if
8: end for
9: Return Null

10: end procedure

Algorithm 3 Utility Functions
1: procedure SEARCH FOR A PAIR(Row, Column, Key, Key Value)
2: Input: Row, Column, Key: Row and Column where to search the specified Key
3: Output: Rowk, Columnk: Row and column of the designated Key, if found
4: for all Cellkv respectively on the Left, Above, and Right to the cell at LabelsTable[Row][Column] do
5: if Cellkv is Key Value then
6: for all Cellk in the Orthogonal Direction with respect to Cellkv from LabelsTable[Row][Column] do
7: if Cellk is Key then
8: Return Coordinates of Cellk, Cellkv
9: end if

10: end for
11: end if
12: end for
13: Return Null
14: end procedure
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