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Abstract

Tables, found in PDF documents, contain valu-
able quantitative information. Unfortunately,
extracting this information is difficult due to
high variability in the table structure as well as
content. We propose statements, a novel data-
structure to self-contain quantitative facts and
related information. We propose translating ta-
bles to statements as a new supervised deep-
learning information extraction task. We intro-
duce SemTabNet — a dataset of over 100K anno-
tated tables. Investigating a family of T5-based
Statement Extraction Models, our best model
predicts statements which are 82% similar to
the ground-truth (F1 score of 0.97 for extracting
entities). We demonstrate the advantages of rep-
resenting information as statements by apply-
ing our model to over 2700 tables from ESG re-
ports. The homogeneous nature of statements
permits data-science analysis on expansive in-
formation found in large collections of tables.

1 Introduction

The publishing rate of technical content has in-
creased exponentially (information explosion), in
both the academic (Arxiv), legal (USPTO), medical
(PubMed) and the commercial domains (annual fi-
nancial & corporate ESG reports). Many technical
documents present their key information in tables.
Hence, understanding document tables is important
for the field of information extraction.

Large Language Models (LLMs) have been
shown to be excellent tools for information extrac-
tion, due to their ability to parse, understand, and
reason over textual data (OpenAl et al., 2023; Tou-
vron et al., 2023). This, in combination with their
ability with zero-shot learning, makes them excel-
lent in information extraction from text (Brown
et al., 2020). This approach breaks-down when
applying the same techniques on tables (Zhu et al.,
2021).

The challenge for understanding tables comes
primarily from the high variability in both con-
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Figure 1: Example table from an ESG report with a
complicated layout. To extract the information content
of a single cell (highlighted in red), the content and
relationships (lines drawn in red) to many other cells
(highlighted in orange) also needs to be understood.

tent and (spatial) design of document tables. The
latter offer a flexible design choice for authors to
represent information in a compact format, espe-
cially when column and row headers are merged
in a hierarchical fashion (see Fig. 1 for an ex-
ample). This results in a large variability (Kadra
et al., 2021; Borisov et al., 2022), with no stan-
dardization across domains (e.g. financial reports,
corporate ESG reports, scientific papers, patents,
books, etc.). Liu et al. (2023) demonstrated that
minor perturbations on the structure of a table can
seriously undermine the performance of LLMs on
downstream tasks. While a lot of progress has been
made in table structure recognition, understanding
the content of a table is still challenging.

In this paper, we present a general approach for
(quantitative) information extraction from tables.
First, we propose a new tree-like data-structure,
called ‘Statement’, which can combine multiple
(named) entities and (n-ary) relations (Fig. 2).
It allows us to represent information in a homo-
geneous domain agnostic fashion. Due to their
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Figure 2: The knowledge model of Statements repre-
sented as a tree. From the root node, individual state-
ments emerge as branches. Associated with each indi-
vidual statement node are the leaf predicate nodes.

knowledge model, statements solve the problem
of the variability in table-structure. The nodes of
a statement tree can contain content from dif-
ferent subjects, allowing for a general informa-
tion extraction approach to tables from various do-
mains. Statements can represent information with
arbitrary conditions accurately, a must when deal-
ing with complex table layouts containing several
multi-column/row headers. With the introduction
of statements, the information extraction prob-
lem from tables becomes a translation problem
which we call ‘statement extraction’ — translating
the original table into a set of statements.

We begin, in Sect. 2 discussing related works.
In Sect. 3 we explain the concept of ‘Statements’
and present the SemTabNet dataset used for train-
ing our models in Sect. 4. In sect. 5, we discuss
the various experiments we performed and their re-
sults. We end the paper with an application of our
model on ESG reports. Environment, Social, and
Governance (ESG) reports which are published by
organizations for disclosing their status, and per-
formance on ESG topics. These reports are are
notoriously hard to parse due to a lack of standard-
ization (Mishra et al., 2023). ESG reports, to this
day, are manually analyzed by consultancy firms
and professional organisations (Henisz et al., 2019).
With our proposed statement extraction, this pro-
cess can now be fully automated.

2 Related works

LLMs have been widely adopted for information
extraction (Xu et al., 2023). Using pre-trained lan-
guage models, Wang et al. (2022b) perform infor-
mation extraction in two steps: argument extraction
and predicate extraction. Based on this, they in-
troduced a text-based open information extraction
benchmark. Wang et al. (2021) presented DeepEx
for extracting structured triplets from text based
data. Wang et al. (2022a) demonstrate that pre-
training models on task-agnostic corpus lead to
performance improvement on tasks like informa-
tion extraction, entity recognition, etc. However,
these approaches are limited to textual data.

The application of deep learning to tables has
increased due to the availability of large datasets
like PubTables-1M (Smock et al., 2021), PubTab-
Net (Zhong et al., 2020), FinTabNet (Zheng et al.,
2020), TabRecSet (Yang et al., 2023), SynthTabNet
(Nassar et al., 2022). These datasets focus only on
table detection (identifying tables from document
images), table structure recognition (parsing table
structure) and cell structure recognition (classifying
cells as header or data). Additionally, most tables
in these datasets are structurally simple, missing
out on the complexities of tables encountered in
the wild.

A major drawbacks of present approaches is that
the semantic meaning of cell content is ignored.
This limits the models trained on these datasets.
Despite the availability of several attention-based
models dedicated to tabular data (TabNet (Arik and
Pfister, 2021), TabTransformer (Huang et al., 2020),
TableFormer (Nassar et al., 2022), TableFormer
(Yang et al., 2022)), Grinsztajn et al. (2022) showed
that classic machine learning still performs better
than deep neural networks on tabular data.

3 Definition of Statements

The statements data structure aims to homoge-
nize the data representation of information coming
from complex, irregular, heterogeneous document
tables. At its core, the statements data structure
is a tree structure (fig. 2). From the root of the tree,
we have ‘subject’-nodes, which contain informa-
tion regarding the ‘subject’ and the ‘subject-value’
keys. From each subject-node, there are one or
more predicate nodes, which define the ‘property’,
‘property-value’, and ‘unit’ keys. Each predicate
node carries an atomic piece of quantitative infor-
mation.
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Figure 3: A diagram explaining the framework introduced in this paper. We fine-tune LLMs on the task of ‘Statement
Extraction’ leading to a family of “Statement Extraction Models" (SEM). Quantitative facts are extracted from
heterogenous unstructured data (only tables in this paper) and stored as Statements.

The statement knowledge model can be ap-
plied to both text and tables. In Fig. 3, we show
the same statements structure which could be ob-
tained from a text or a corresponding table. As
such, the statements structure is not bound only
to tables, however, it shows its usefulness particu-
larly when normalising information from heteroge-
neous tables.

Beyond the uniform layout, statements pro-
vide a natural way to quantify how much infor-
mation any source provides. Simply counting the
number of nodes in the tree, provides an estimate
on the information richness of given source. A
statement is complete when it contains all predi-
cates needed to completely specify objective knowl-
edge pertaining to a subject, i.e. all co-dependent
predicates.

The tree structure of statements allows us to
quantify, with a single number, the transformation
of information from a table. This is accomplished
by computing the Tree Editing Distance (Pawlik
and Augsten, 2016; Schwarz et al., 2017) between
predicted and ground-truth statements. TED is
defined as the minimum-cost sequence of node op-
erations that transform one tree into another. Two
trees are identical if their TED is O and maximally
distinct if their normalized TED is 1. Like the Lev-
enshtein distances on strings (Levenshtein, 1966),
TED involves three kinds of operations: node in-
sertions, deletions, and renaming. The cost of each
operation can be freely defined, which makes this
metric both flexible and powerful.

For comparing two statement trees, we setup

strict costs for each edit operation. The predictions
are maximally punished for any structural deviation
from the ground truth, i.e. deletion and insertion
each have a cost of 1. For renaming, we only allow
two nodes to be renamed if they are of the same
type. If both nodes’ value attribute is of type string,
then we calculate a normalized Levenshtein edit
distance between the two strings. If both nodes’
value attribute is of numerical type, then the two
values are directly compared. In this case, the cost
1s 0 if the two values are the same, and 1 in all other
cases. If the value attribute of both the ground truth
and the prediction node is empty, then the cost
operation is 0. Normalized TED (%) is the ratio
of the tree edit distance to the number of edits
between two trees. Using the normalized TED, a
normalized Tree Similarity score can be computed
asty=1—+¢.

It is also instructive to look at the edit types
which converted the predicted statements into
ground-truth statements. For this, we measure
the ratio of edit type to the total number of edits.
The ratio of insertions/deletions carries informa-
tion about the structural similarity. If two trees
are structurally similar, the edits are dominated by
renaming. While tree-based metrics are sensitive
to both entity and relationship extraction, we also
evaluate entity extraction. For this, we collect all
entities from a statement and count true positives
when an entity is found in both model prediction
and ground truth, and similarly for true negatives
and false positives. Based on these, we measure
the standard accuracy, recall and F1 measures.



4 SemTabNet: Statements Data

We used the Deep Search toolkit ' to collect over
10K ESG reports from over 2000 corporations.
Deep Search crawled these PDF reports, converted
them into machine readable format, and provided
this data along with the metadata of each report in
json format.

We compiled a list of important keywords which
capture many important concepts in ESG reports
(see appendix A). Next, we select only those tables
which have some relevance with the keywords. For
this we used the following conditions: the ROUGE-
L precision (longest common sub-sequence) score
between raw data and keywords must be greater
than 0.75 and there must be quantitative informa-
tion in the table.

We need a strategy for understanding the con-
tent of a table and extracting statements from it.
After manually observing hundreds of table, we
decided a two step approach to prepare our ground-
truth data. First, we classify all the cells in a ta-
ble based on the semantic meaning of their con-
tent into 16 categories which helps us in construct-
ing statements. For each table, this step creates a
‘labels-table’ with the same shape and structure as
the original, but the cells of this labels-table only
contain category labels (see fig. 4). Secondly, we
create a program which reads both the labels-table
and the original table and extracts statements in a
rule-based approach. The algorithm is described in
appendix B. The 16 labels are:

* Property, Property Value

* Sub-property

* Subject, Subject Value

e Unit, Unit Value

* Time, Time Value

* Key, Key Value

e Header 1, Header 2, Header 3
* Empty, Rubbish

During annotation, all cells of a table are mapped
to one of the above labels. For cells which contain
information pertaining to more than one label, we
pick the labels which is higher in our ordered list
of labels. So a cell with content “Revenue (US$)",
is labelled as property. The ‘property’ and ‘sub-
property’ cells always have associated ‘property
value’ cell(s). The ‘header’ cells never have an
associated value and often divide the table into
smaller sections. Empty cells are labelled ‘empty’.

!Available via: https://ds4sd.github.io.

Table 1: Counts of data in SemTabNet®.

TASK TRAIN TEST VAL
SE DIRECT 103,455 11,682 5,445
SE INDIRECT 1D 72,580 8,489 3,821
SE INDIRECT 2D 93,153 22,839 4,903

When a table contain unnecessary parts due to
faulty table recovery or non-quantitative informa-
tion. We label such cells as ‘rubbish’. When a
property/property value pair carries supplementary
information, those cells are annotated as ‘key’/‘key
values’.

Additionally, we observed that most tables can
be reasonably classified into three baskets: sim-
ple, complex, and qualitative. There are simple
tables whose structure cannot be further subdivided
into any smaller table. There are complex tables
whose structure can be further divided into mul-
tiple smaller tables. Finally, there are qualitative
tables (like table of contents) which contain little
valuable information for our endeavour. We col-
lected about 2,800 tables and found ~ 20% were
simple, ~ 20% complex, and ~ 60% were qual-
itative. We discarded all qualitative tables from
any further analysis. To ensure that our data is not
biased towards either simple or complex tables, we
manually annotated all the cells of 569 simple ta-
bles and 538 complex tables. In total, we annotated
1,107 tables (84,890 individual cells) giving rise to
42,982 statements.

We further augmented the annotated tables to cre-
ate a large training data. We shuffle the rows and
columns of tables corresponding to property-values
to create new augmented tables, while keeping their
contents the same. While this is straightforward for
simple tables, special care was taken for complex
tables such that only rows/columns which belonged
together within a category were shuffled. The max-
imum number of augmented tables emerging from
the shuffling operations was limited to 130, leading
to over 120K tables. To promote further research
and development, we open source this large dataset
of semantic cell annotations as SemTabNet?. Table
1 shows the counts of (in)-direct statement extrac-
tion in SemTabNet.

The data can be found here. LINK

3The counts differ slightly due to the manner in which the
final data was harmonized. The SE Indirect 1D data consists
of the 84 890 original cells annotated from 1 107 tables. The
test/train split of tables for SE Indirect 1D was prepared by
stratifying across all cell labels. This split was augmented
(as described in text) to prepare data for SE Indirect 2D. The
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Original PDF <table> Model Input
- S B RS
| - | 2020 | 2020 | 2021 | 2021 |
| - | Female | Male | Female | Male |
| Global workforce | 28% | 72% | 28% | 72% |
| Senior leaders | 24% | 76% | 26% | 74% |
| Board of directors | 17% | 83% | 25% | 75% |
</table>
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</response> | | | | |<br>

| Global workforce | 28 | % | | |<br>
| category | Female | | | |<br>
| time | 2020 | | | |
<sep>
</response>

Figure 4: Input and output for the task of “Statement Extraction". Top Left: Page from an ESG report containing
tables. Top Right: One of the table, from the same page, prepared as markdown for model input. Bottom Left: Model
output for the task of indirect statement extraction. Bottom Right: Model output for the task of direct statement

extraction.

S Experiments & Results

Fig 4 presents Statement Extraction as a supervised
deep learning task. Due to the nature of how ta-
bles are annotated (see section 4), it is possible to
train models for statement extraction statements
both directly and indirectly. We consider the fol-
lowing three experiments: (1) SE Direct: the model
is presented with an input table as markdown in
a prompt. The model generates the tabular repre-
sentation of the resulting statements as markdown.
(2) SE Indirect 1D: In this experiment, the model
input is the individual table cell contents. For a
table with n cells, we predict n labels sequentially
(hence, 1D) and then use this information to con-
struct statements. Individual cell labels predicted
by the model are stitched together to form the labels
table, which is then used to construct the predicted
statement by using our rule-based algorithm. (3)
SE Indirect 2D: As opposed to SE Indirect 1D, in
this experiment, we predict the cell labels of all
cells in a table simultaneously. The entire table, as
markdown, is input to the model (hence 2D) and
the model generates the labels table, as markdown.
Using the rule-based algorithm, the predicted labels

test/train split and augmentation for SE Direct was done inde-
pendently.

table is converted into predicted statements.
We use six special tokens, which allow us to
control and parse model output.

* Input table start token: <table>
* Input table stop token: </table>
* Output start token: <response>
* Output stop token: </response>
* Newline token: <br>

* Separate list item token: <sep>

This allows us to parse the predicted statements
from a LLM. Once successfully parsed, the output
statements can be trivially converted from one rep-
resentation to another. This is crucial because we
compare model predicted statements with ground
truth by converting statements into a tree structure.
These tokens are added to the tokenizer vocabulary
before fine-tuning any model.

Since the nature of these tasks naturally fits the
paradigm of sequence-to-sequence models, we fine-
tune TS models (Raffel et al., 2020). TS models are
encoder-decoder transformer architecture models
which are suitable for many sequence-to-sequence
tasks. In our experiments, we train TS5 variants
(Small, Base, Large, and 3B) to create a family of
Statement Extraction Models (SEM).



Table 2: Results of comparing model predicted statements with ground truth data (bold indicates the best in each
experiment). For all reported values, the 99% confidence interval, assuming a Gaussian distribution, is ~ 0.1%.
The standard error of the mean in all cases is below 0.005%.

Statement Extraction Context Ratio Tree Edits [%] Average [%]
Task Model Length | Insert Delete Rename | F1 ts

SEM-T5-small 512 | 98.13  00.00 1.87 62.32  00.86

Indirect 1D SEM-T5-base 512 | 83.95 01.68 14.37 | 83.46 09.21
SEM-T5-large 512 | 34.68 12.03 53.30 | 94.67 55.68

SEM-T5-3b 512 | 36.70 2324  40.05 | 90.49 2224

SEM-T5-small 512 | 1734 1336 6930 | 97.06 75.15

SEM-T5-base 512 | 1553 21.60  62.86 | 96.85 73.87

SEM-T5-large 512 | 09.58 2280 67.62 | 97.55 80.83

Indirect 2D SEM-T5-3b 512 | 08.00 28.40  63.59 | 97.38 81.76
SEM-T5-small 1024 | 18.53 18.71 62.75 | 95.85 68.45

SEM-T5-base 1024 | 17.80 16.04  66.16 | 96.15 69.27

SEM-T5-large 1024 | 08.20 17.00 7479 | 97.53 79.89

SEM-T5-small 512 | 98.14 00.04 01.82 | 60.65 00.62

SEM-T5-base 512 1 97.86 00.06  02.09 | 68.62 04.46

SEM-T5-large 512 | 98.18 00.02 01.80 | 67.41 04.23

Direct SEM-T5-3b 512 1 9798 0.01 02.01 | 70.06 03.47
SEM-T5-small 1024 | 9293 00.14 0693 | 70.35 02.98

SEM-T5-base 1024 | 88.42 00.22 11.35 | 76.99 11.11

SEM-T5-large 1024 | 89.34 00.21 10.45 | 76.59 06.06

In our training data for tables, the input token = iments. For each table, we evaluate the state-

count is less than 512 for 50% of the data, and it is
less than 1024 for 90% of the data. Thus, except
where mentioned, we train TS5 models (small, base,
large) with context windows of 512 and 1024, and
T5-3b with context window of 512. All models are
fine-tuned in a distributed data parallel (DDP) man-
ner simultaneously across 4 GPU devices (Nvidia
A100-40GB for T5-Small, T5-Base, T5-Large and
NVIDIA A100-80GB for T5-3B). Additionally, the
largest possible batch size was used for all models.
The batch size is impacted by factors like model
size, GPU memory, and context window. In turn it
affects the number of epochs we can fine-tune in a
reasonable time.

For all tasks, we stop the fine-tuning process ei-
ther after 500,000 steps or after 7 days. We use the
AdamW optimizer with 5; = 0.9 and B2 = 0.999.
All models are trained with a maximum learning
rate of 5 x 104, There is a warm-up phase of 1000
steps in which the learning rate increases linearly
from 10710 to 5 x 10~*. After another 1000 steps,
the learning rate is exponentially decayed until it
reaches its lowest value of 10~5, where it remains
until the end of the training.

Table 2 presents the key results of our exper-

ments predicted by the model (directly or indi-
rectly) against the ground truth statements. For
each task and each model therein, we present the
averaged tree similarity score (¢5) (measuring en-
tity & relationship extraction) and the averaged F1
score (measuring entity extraction). Also present
are the averaged ratios of tree edit types, which
helps us understand ¢,. For all reported values, as-
suming a normal distribution, the standard error of
the mean is below 5 x 10> and the 99% confidence
interval for all values is about ~ 0.1%.

Statement Extraction Indirect 1D: All models
trained on this task have context window of 512.
Their performance tends to scale with model size.
Although the F1 score for entity extraction shows
promising value, the tree similarity score for all
models is poor. This implies that while these mod-
els can learn to extract entities, relationship extrac-
tion is difficult for these models. The ratio of tree
edits helps us understand these scores. For SEM-
T5-small, the ratio of insertion is ~ 98% which
means that the predicted statements does not have
enough nodes. As the model size increases, the
insertion ratio decreases, and the deletion and re-
naming ratio increases. Thus, increasing the model



size improves the structural similarity of the pre-
dicted tree but the overall performance remains
unacceptable.

Statement Extraction Indirect 2D: All models
trained on this task perform well on entity extrac-
tion with average F1 scores of over 95%. The
highest performing model is the SEM-T5-3b (512)
with an average tree similarity score of 81.76% and
an F1 score of 97.38%. The ratio of insertion edits
for this model is the lowest amongst all models
across all three tasks. Since the most type of ed-
its required for all model’s predictions in this task
are renaming, it implies that the predicted tree has
similar structure to the ground truth.

Models with large context window have sim-
ilar performance on entity extraction but do not
perform well on entity and relationship extraction.
Since model training cost is quadratic to the se-
quence length, and we allocate equal training re-
sources to all models, this explains why models
with 1024 context window do not show improved
performance. We believe that with further training,
these models may show better performance than
reported here.

Statement Extraction Direct:Based on tree sim-
ilarity score, most models show poor performance
in direct SE. The best performing model, given our
training constraints, is SEM-T5-base with a con-
text window of 1024. It gets an average F1 score of
76.99% and an average tree similarity score of only
11%. To understand, why these models performs
so poorly on direct SE, we look at the ratio of tree
edits.

We note that the ratio of deletions for all models
in this task is close to 0. On the other hand, the
ratio of insertions for all models is high (from 88%
to 98%). This suggests that the statement trees
produced by these models is missing vast number
of nodes compared to the ground truth. In fact,
perusing the model output shows that while the
output is of high quality, it contains significantly
less nodes than ground truth statements.

Discussion: SE Indirect 1D shows good perfor-
mance on entity extraction, but performs poorly
for both entity and relationship extraction. In this
task, the model only sees the content of one cell at
a time which makes it easy to extract entities. How-
ever, this does not allow the model to develop a
strong capability to learn tabular relationships. On
the other hand, SE Direct, gives poor performance
on both entity extraction and relationship extrac-
tion. Direct SE expects the models to unravel a

dense table into statements, for which they must
produce many output tokens. For example, the
average number of output tokens in the test data
for SE direct is 5773 £ 51, which is significantly
larger than the number of tokens for SE indirect
2D (346 % 1). Thus, direct SE is a very challeng-
ing task and might require different strategies to be
executed successfully.

SE Indirect 2D, avoids the disadvantages of both
the tasks. In this case, the model sees the entire
input table (has the chance to learn tabular relation-
ships) and is only tasked with producing a labels
table (can finish generation in a reasonable number
of tokens). Our experiments clearly demonstrate
that statement extraction via the Indirect 2D ap-
proach gives better results. This is an unexpected
finding of our study, and we hope it motivates other
researchers to improve zero-shot statement extrac-
tion capability.

6 Application to ESG results

Due to their homogeneous structure, statements
enable large-scale exploratory analysis and data
science. To demonstrate the advantage of state-
ments over traditional tabular data science, we ap-
plied SEM-T5-large (512) over 2700 tables pub-
lished in over 1000 ESG reports in 2022 using the
SE Indirect 2D methodology. This lead to 14,766
statements containing over 100k predicates. This
dataset containing ESG related KPIs is invaluable
to researchers, policy-makers, and analysts.

We filter this large dataset to contain only those
predicates with quantitative property values. This
subset contains 47901 predicates from 601 cor-
porate ESG reports. We search the properties in
this dataset for some keywords representative of
ESG KPIs. Fig. 5 (top) shows the distribution
of the number of predicates and the number of
distinct organizations which matched our simple
keyword search. For example, using ‘emission’ as
a keyword, we obtain over 4000 hits with results
coming from over 300 distinct corporations. This
demonstrates that statements allowed us to pull
data from multiple sources and homogenize it for
down-stream consumption.

Some of the common properties in this subset
are also shown along with their frequency in fig. 5.
This shows the breadth and diversity of the nature
of information we pulled out from a large corpus of
documents. Many of these properties are important
ESG KPIs. The ability to extract homogeneously
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Figure 5: Exploratory analysis of statements from over 2700 Tables published in ESG reports in 2022. Top:
We searched about 50,000 predicates using keywords (shown on the x-axis) related to environment (left), social
(middle), and governance (right). The plot shows the distribution of predicates and the number of organizations
from this search. Bottom: Frequency chart demonstrating some of the common properties found in our data. This
properties are important KPIs in the ESG domain and represent an invaluable data to all stakeholders.

information from a large collection of PDF reports
demonstrates the advantage of the statement extrac-
tion framework presented in this paper.

7 Conclusion & Future Works

We have presented a novel approach to map com-
plex, irregular, and heterogeneous information to
a uniform structure, Statements. We showed
how information extraction can be seen as a su-
pervised deep-learning translation task which we
called Statement Extraction. We advance the field
of table understanding by open-sourcing SemTab-
Net. SemTabNet consists of 100K tables wherein
all cells are annotated reflecting their semantic con-
tent. To the best of our knowledge, this is the first
work which focuses on the semantic meaning of
tabular data.

Investigating three variations of the statement
extraction task, we found that using a model
to generate table annotations and then construct

statements produces best results. This approach
has the advantage, that it produces hallucination-
free homogeneous structured data. Statements
are an advantageous vehicle for quantitative factual
information. They enable down-stream tasks like
data science over a large collection of documents.
We extracted over 100K facts (predicates) from
only 1000 ESG reports.

This work can be easily extended to include do-
mains other than ESG. It can also be extended to-
wards multi-modality by including text data. We
leave for future exploration, the use of statements
in downstream tasks like QA or document summa-
rization.

8 Limitations

Although, the ideas and the techniques we describe
in this paper are domain agnostic, we limit the
scope of this paper to the domain of corporate En-
vironment, Social, and Governance (ESG) reports.



This choice is motivated by two observations. First,
corporations report valuable quantitative data re-
garding their efforts to improve their carbon emis-
sions, working conditions, and company culture
in ESG reports. These reports contain valuable in-
formation regarding the environmental impact of
businesses, and the urgency of climate change mo-
tivates us to target this domain. Secondly, there is
a large variety and diversity of tabular representa-
tions used in these reports. Despite efforts to stan-
dardize these reports, this diversity makes the task
of extracting information from these documents
extremely challenging, motivating our choice.

The scope of this work is limited to declarative,
explicit knowledge only. All other kinds of knowl-
edge such as cultural, implicit, conceptual, tacit,
procedural, conditional, etc. are ignored. We fo-
cus on information which one colloquially refers
to as ‘hard facts’. Additionally, we limit the scope
of this work to quantitative statements i.e. state-
ments whose property values are numerical quan-
tities. We implement this restriction in the notion
that we avoid qualitative statements i.e. statements
which are not quantitative.

Our model training strategy was biased against
large models. We trained all models for either SO0K
steps or 7 days using the largest possible batch size.
This means smaller models learn more frequently
(more epochs) than larger models. However, we
do not believe this severely impacted the outcome
of our experiments. Our resources were enough
to recover well-known trends: improved model
performance with model size and context-length.
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A ESG Keywords

Environment

1. Scope 1 GHG Emissions
Scope 1 are all direct emissions from the ac-
tivities of an organization under their control.
This includes fuel combustion on site such as
gas boilers, fleet vehicles and air-conditioning
leaks.

2. Scope 2 GHG Emissions Market Volume
Scope 2 are indirect emissions from electricity
purchased and used by the organization. Emis-
sions are created during the production of the
energy and eventually used by the organiza-
tion. A market-based method reflects emis-
sions from electricity that companies have ac-
tively chosen to purchase or reflects their lack
of choice.

3. Scope 2 GHG Emissions Location Volume
Scope 2 emissions are indirect emissions
from the generation of purchased energy. A
location-based method reflects the average
emissions intensity of grids on which en-
ergy consumption occurs (using mostly grid-
average emission factor data)

4. Scope 2 GHG Emissions Other Volume
Scope 2 emissions are indirect emissions from
the generation of purchased energy. Overall, if
not clearly defined whether it is market-based
calculation or location-based calculation
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Scope 3 GHG Emissions

Scope 3 emissions are all other indirect emis-
sions (excluding Scope 2) that occur in the
value chain of the reporting company, includ-
ing both upstream and downstream emissions.

. Environmental Restoration and Investment

Initiatives Monetary Value
The fields represent the monetary value spent
on environmental initiatives.

. Total Water Discharged

The fields represent the overall volume of wa-
ter discharged by a company.

. Total Water Withdrawal

The fields represent the total volume of water
withdrawn by a company.

. Total Water Recycled

The fields represent the total volume of water
recycled or reused by a company.

Toxic Air Emissions - NOx

The fields represent the total amount of nitrous
oxide (NOx )emissions emitted by a company.
Toxic Air Emissions - SOx

The fields represent the total amount of sulfur
oxide (Sox) emissions emitted by a company.
Toxic Air Emissions - Overall

The fields represent the total amount of air
emissions emitted by a company.

Toxic Air Emissions - VOC

The fields represent the total amount of
volatile organic compound (VOC) emissions
emitted by the company.

Hazardous Waste - Disposed to Aquatic
The fields represent the total amount of haz-
ardous waste disposed to aquatic environment.
Hazardous Waste - Disposed to Land

The fields represent the total amount of haz-
ardous waste disposed to non aquatic or land
environment.

Hazardous Waste - Total Recycled

The fields represent the total amount of haz-
ardous waste recycled.

Hazardous Waste - Total Amount Gener-
ated

The fields represent the total amount of haz-
ardous waste generated by a company.
Hazardous Waste - Total Amount Disposed
The fields represent the total amount of haz-
ardous waste disposed.

Non-Hazardous Waste - Disposed to
Aquatic

The fields represent the total amount of non-
hazardous waste disposed to the aquatic envi-
ronment.
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20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Non-Hazardous Waste - Disposed to Land
The fields represent the total amount of non-
hazardous waste to non aquatic or land envi-
ronment

Non-Hazardous Waste - Total Recycled
The field represents the total amount of non-
hazardous waste recycled.

Non-Hazardous Waste - Total Amount Gen-
erated

The fields represent the total amount of non-
hazardous waste Generated by a company.
Non-Hazardous Waste - Total Amount Dis-
posed

The fields represent the total amount of non-
hazardous waste disposed.

Total Waste Produced

The fields represent the total amount of waste
produced by a company.

Total Waste Recycled

The fields represents the total amount of waste
recycled by a company.

Total Waste Disposed

This fields represent the total amount of waste
disposed by a company.

Number of Sites in Water Stress Areas
The field represents the number of sites lo-
cated in water stress areas.

E-Waste Produced

The field identifies the mass volume of f E-
waste produced which are electronic products
that are unwanted, not working, and nearing or
at the end of their life. Examples of electronic
waste include, but not limited to : computers,
printers, monitors, and mobile phones
E-Waste Recycled

The field identifies the mass volume of E-
Waste Recycled.

E-Waste Disposed

The field identifies the mass volume of E-
waste disposed.

Number of Sites Operating in Protected
and/or High Biodiversity Areas

The field identifies the number of sites or facil-
ities owned,leased, managed in or adjacent to
protected areas and areas of high biodiversity
value outside protected areas.

Impacted Number of Species on Interna-
tional Union of Conservation of Nature
(IUCN) List

The field identifies the number of impacted
species on International Union of Conserva-
tion of Nature (IUCN) red list.
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33.

34.

35.

36.

37.

38.

39.

40.

41.

Impacted Number of Species on National
listed Species
The field identifies the number of impacted

species on National Listed Species.
Baseline Level

The field identifies the value at baseline or

year that target is set against.
Target Year

The field identifies the year in which the re-

newable energy goal is set to be completed.
Target Goal

The field identifies the target goal for renew-

able energy.
Actual Achieved

The fields identifies the actual value achieved

for the renewable energy goal.
Baseline Level

The field identifies the baseline emissions

value.
Target Year

The field identifies the year in which GHG

emission goal is set to be completed.
Target Goal

The field identifies the target goal for GHG

emission reduction.
Actual Achieved

The field identifies the value achieved of GHG
emissions reduced compare - in metric tons.

Social

1.

Training Hours Per Employee
The fields identifies the numerical value of
training hours per employee.

. Training Hours Annually

The fields identifies the numerical values of
training hours conducted within a year.

. Lost Time Injury Overall Rate

The fields identifies the total number of in-
juries that caused the employees and contrac-
tors to lose at least a working day.

. Lost Time Injury Rate Contractors

The fields identifies the number of injuries
that caused the contractors to lose at least a
working day.

. Lost Time Injury Rate Employees

The fields identifies the number of injuries
that caused the employees to lose at least a
working day.

. Employee Fatalities

The fields identifies the number of employee
fatalities during a one year period.

. Contractor Fatalities

The fields identifies the number of contractor
fatalities during a one year period.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Public Fatalities

The fields identifies the number of general
public fatalities during a one year period.
Number of Other Fatalities

The fields identifies the number of fatalities
during a one year period not broken down by
employee, contractor, or public.

Total Incident Rate Overall Workers

The field identifies the number of work-related
injuries per 100 overall workers during a one
year period for both employees and contrac-
tors.

Total Incident Rate Contractors

The field identifies the number of contractor
work-related injuries per 100 overall workers
during a one year period.

Total Incident Rate Employees

The field identifies the number of work-related
injuries per 100 overall workers during a one
year period for employees.

Employee Turnover - Gender Male Rate
The field identifies the absolute number
turnover rate by males in a company .
Employee Turnover - Gender Female Rate
The field identifies the absolute number
turnover rate by females in a company.
Employee Turnover Overall Rate

The field identifies the absolute number
turnover rate for overall employees in a com-
pany.

Median Gender Pay Gap - Global

The field identifies the gender pay gap median
value of the company at a global level.
Mean Gender Pay Gap - Global

The field identifies the gender pay gap mean
or average value of the company at a global
level.

Median Gender Pay Gap by Location

The field represents the gender pay gap me-
dian value of the company at a location or
country level.

Mean Gender Pay Gap by Location

The field represents the gender pay gap
mean/average value of the company at a loca-
tion or country level.

Employee Turnover by Age - Lower Value
The field Identifies the minimum age in a
given range for employee turnover statistics.
Employee Turnover by Age - Upper Value
The field identifies the maximum age in a
given range for employee turnover statistics.
Employee Turnover by Age - Rate

The field identifies the employee turnover rate.
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23.

24.

25.

26.

27.

Employee Turnover by Location Rate
The field identifies the absolute number of

employee turnover rate by location.
Workforce Breakdown Rate

The field identifies the absolute number of
employees of a company based on seniority,
ethnicity or gender.

Workforce Breakdown Job Category Data:
Value (ABS)

The field represents the employee count abso-
lute value at a category level within a work-
force.

Number Of Product Recalls

The fields identifies the number of product
recalls.

Product Recalls Annual Recall Rate

The fields identifies the product recall rate of
a company.

Governance

1.

Percentage of Negative Votes on Pay
Practices Year

Board of Director Term Limit
The field identifies maximum amount of years
a board member can serve.

. Board of Director Term Duration

The field identifies number of years a board
member can serve before reelection.

Auditor Election Year

The field identifies when the current lead au-
ditor elected.

. Independent Auditor Start Year

The field represents the start year the com-
pany started having the audit company as its
independent auditor.

Average/Mean Compensation of Company
Employees-Global

The field represents the average or mean com-
pensation for company employeesat a global
level.

. Ratio Average Compensation of CEO to

Employee - CEO- Global

The field represents the ratio between the com-
pensation paid to the companies CEO and the
average compensations received by employ-
ees at a global level.

Compensation of Company Employees by
Location

The field identifies the average compensation
for company employees at a location level.
Number of Suppliers Complying with Code
of Conduct



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

The field identifies the number of suppliers
that comply with companies supplier code of
conduct.

Share Class Numeric

The field identifies the share class numeric
component.

Voting Rights

The field identifies the number of voting rights
per each share of stock within each class.
Shares Outstanding

The field identifies the number of shares out-
standing within a companies common stock.
Chairman Effective Begin Year

The field indicates the year when the current
chairman assume his or her position. This
field is used if a full effective date is not avail-
able.

Chairman Effective End Year

The field indicates the year when the chairman
left the position.

CEOQ Effective Begin Year

The field identifies the year the CEO assumed
his or her position.

CEOQ Effective End Year

The field indicates the year when the CEO left
the position.

CEO Compensation Salary

The field identifies the current CEO salary.
CEO Compensation Overall

The field identifies the CEO’s overall com-
pensation including salary, bonuses and all
awards.

CEOQO Cash Bonus

The field identifies the cash bonus value for
the CEO.

CEO Stock Award Bonus

The CEO Stock Award Bonus value

CEO Option Awards

The CEO Option Awards bonus value

CEO Other Awards

The fields identifies other compensation out-
side of salary, cash bonus, stock award bonus
and option awards. This could include change
in pension and values categorized as "all other
compensation”

CEO Pension

The fields identifies the CEO pension amount.
Cash Severance Value

The fields identifies the amount of cash the
severance policy for each category.

Total Severance Value

The fields identifies the total value amount of
the severance policy.
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26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

CEO Share Ownership

The field identifies the number of shares the
CEO owns in the company.

CEO Share Class Numeric

The field identifies the share class numeric
component.

Board Member Age

The field identifies the age of the members of
the board.

Board Member Term in Years

The fields identifies how long the individual
board member has been on the board which is
determined in years.

Board Member Effective Year (Director
Since)

The fields identifies the year the individual
board member started serving on the board.
Board Profile As of Year

The field identifies the year of the board infor-
mation. An example would be the year of the
proxy statement.

Participation On Other Company Board
The field identifies the number of boards a
member is part of outside of the organization.
For Value Negative Votes on Directors

The field identifies the number of for value
votes the director received.

Against Value Negative Votes on Directors
The field identifies the number of against votes
the director received.

Abstain Value Negative Votes on Directors
The field identifies the number of votes that
were abstained for a given director.

Broker Non Vote Value Negative Votes on
Directors

The field identifies the number of broker non
votes for given director.

Number of Board Meetings Attended by
Board Member

The field identifies the number of board meet-
ings attended by a board member.

Number of Board Meetings Held by Com-
pany

The field identifies the number of board meet-
ings held by a company while member was on
the board.

Total Members on Board per Skill Set

The field identifies the number of board mem-
bers within a specific skillset type.



B Algorithm for Statement Extraction

We present the algorithm we used to extract statements. For this algorithm, the inputs are the original
table and the labels table.

Algorithm 1 Extract Statements

1: procedure EXTRACT STATEMENTS(Table, LabelsTable)

2 Input: Table, LabelsTable: Table and Table of cell annotations
3 AllStatements <— empty list

4 for all row in LabelsTable do

5: for all column in LabelsTable do

6

7

8

if LabelsTable[row][column] = Property Value then
Search in the same row and column for (Sub)-Property
if Property is found then

Append Headers in hierarchy to Property, if any, starting from the minimum level
10: Construct Statement with Property, Row and Column
11: else if SubProperty is found then
12: Append Property to the SubProperty
13: Append Headers in hierarchy to SubProperty, if any, starting from the maximum level
14: Construct Statement with SubProperty, Row and Column
15: else
16: Property is not found, continue to the next iteration
17: end if
18: Append Statement to AllStatements
19: end if
20: end for
21: end for

22: Return AllStatements
23: end procedure
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1: procedure CONSTRUCT STATEMENT(Row, Column, Property)

2: Input: Row, Column, Property: Row and Column of the Property Value, with its related Property
3 Output: Statement: list

4: Statement <— empty list

5: Predicate <— empty dictionary

6 Predicate [Property Value] <— Table[Row][Column]

7 Predicate [Property] < Property

8 Search in the same row and column(Unit Value)

Predicate[Unit] <— Table[row.,, ][column.,]
10: Search for a Subject - Subject Value pair
11: Predicate[Subject] <— Table[row][column;]
12: Predicate[Subject_Value] <— Table[row, ][column, ]
13: Add Predicate to the Statement
14: Search in the same row and column(Time Value)
15: if Time Value is found then
16: Predicate <— empty dictionary
17: Predicate [Property Value] <— Table[row, ][columny, ]
18: Predicate [Property] <— "Time"
19: Add Predicate to the Statement
20: end if

21: Search for all Key - Key Value pairs
22: for all Key - Key Value pairs found do

23: Predicate < empty dictionary

24 Predicate[Property] <— Table[row][columny]

25: Predicate[Property Value] <— Table[rowy,, ][columny,]
26: Add Predicate to the Statement

27: end for

28: Return Statement
29: end procedure

1: procedure APPEND HEADERS(Row, Column, Propery, Level)
2: Input: Row, Column, Property, Level: Row, Column, value of a Property cell and the level of the header to search for.
3: Output: Property: string
4: for all Row, above Row do
5: for all Column; on the left of Column do
6: if LabelsTable[Row, ][Column;] is a header with a higher level than Level then
7: Append Table[Row, ][Column; ] on top of Property
8: if the level of LabelsTable[Row, ][Column;] is maximum then
9: Return Property
10: else
11: Append Headers in hierarchy to Property starting from the level of LabelsTable[Row,, ][Column;]
12: Return Property
13: end if
14: end if
15: end for
16: end for

17: Return Property
18: end procedure

Algorithm 2 Utility Functions

1: procedure APPEND PROPERTY(Row, Column, SubProperty)

2: Input: Row, Column, SubProperty: Row,Column and Value of a SubProperty cell
3: Output: Subproperty: string

4: for all Row, above Row do

5: for all Column; on the left of Column do

6: if LabelsTable[Row, ][Column;] is a Property then

7: Append Table[Row, ][Column;] on top of SubProperty

8: Return SubProperty

9: end if
10: end for
11: end for

12: Return SubProperty
13: end procedure
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: procedure SEARCH IN THE SAME ROW AND COLUMN(Row, Column, Key)
Input: Row, Column, Key: Row and Column where to search the specified Key
Output: Rowy, Columnj: Row and column of the designated Key, if found
for all Cell respectively on the Left, Above, and Right to the cell at LabelsTable[Row][Column] do
if Cell is Key then
Return Row, Column of Cell
end if
end for
Return Null
: end procedure

VRN E RN

—

Algorithm 3 Utility Functions

1: procedure SEARCH FOR A PAIR(Row, Column, Key, Key Value)

2 Input: Row, Column, Key: Row and Column where to search the specified Key

3 Output: Rowy,, Columny: Row and column of the designated Key, if found

4 for all Celly,, respectively on the Left, Above, and Right to the cell at LabelsTable[Row][Column] do

5: if Celly, is Key Value then

6: for all Cell, in the Orthogonal Direction with respect to Cell, from LabelsTable[Row][Column] do
7 if Celly, is Key then

8: Return Coordinates of Cellg, Cellg,
9: end if

10: end for
11: end if
12: end for

13: Return Null
14: end procedure
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