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Abstract
We study the parameter complexity of robust memorization for ReLU networks: the number of

parameters required to interpolate any dataset with ϵ-separation between differently labeled points,
while ensuring predictions remain consistent within a µ-ball around each training example. We
establish upper and lower bounds on the parameter count as a function of the robustness ratio
ρ = µ/ϵ. Unlike prior work, we provide a fine-grained analysis across the entire range ρ ∈ (0, 1)
and obtain tighter upper and lower bounds that improve upon existing results. Our findings reveal
that the parameter complexity of robust memorization matches that of non-robust memorization
when ρ is small, but grows with increasing ρ.

1. Introduction

The topic of memorization investigates the expressive power of neural networks required to fit any
dataset exactly. This line of inquiry seeks to determine the minimal network size—measured in
the number of parameters, or equivalently, parameter complexity—needed to interpolate any finite
collection of N labeled examples.

We now turn to a more challenging task beyond mere interpolation of data: robust memoriza-
tion. We aim to quantify the additional parameter complexity required for a network to remain
robust against adversarial attacks, going beyond standard non-robust memorization. To address the
sensitivity of neural networks to small adversarial perturbations [2, 3, 6, 7, 10, 14], we consider
the setting in which not only the data points but all points within a distance µ—referred to as
the robustness radius—from each data point must be mapped to the corresponding label. More
concretely, for any dataset with ϵ-separation between differently labeled data points, the network
must memorize the dataset and the prediction must remain consistent within a µ-ball centered at
each training example. As will be seen shortly, the parameter complexity for robust memorization
is governed by the robustness ratio ρ = µ/ϵ ∈ (0, 1) rather than the individual values of µ and ϵ.
However, a precise understanding of how this complexity scales with ρ remains limited.

1.1. Summary of Contribution

We study how the number of ReLU network parameters required for robust memorization varies with
the robustness ratio ρ. We present improved upper and lower bounds for all ρ ∈ (0, 1), which are tight
in some regimes and substantially reduce the gap elsewhere. Figure 1 illustrates the improvement,
and Appendix B discusses the prior bounds in detail.

• Necessary Conditions for Robust Memorization. We show that the first hidden layer must have a
width of at least ρ2min{N, d}, by constructing a simple dataset that cannot be robustly memorized
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Figure 1: Summary of parameter bounds on a log-log scale when d = Θ(
√
N). We omit constant

factors in both axes. Solid blue and red curves show the sufficient (Theorem 7) and necessary
(Theorem 3) numbers of parameters, respectively; the solid black lines are the best prior bound.
Light-blue shading highlights our improvement in the upper bound, and light-red shading highlights
our improvement in the lower bound. The cross-hatched area marks the remaining gap. The yellow
and green dashed line denotes the first term (Theorem 4) and the second term (Theorem 5) in
Theorem 3, respectively. The upper bounds interpolate the existing upper bounds.

using a smaller width. Consequently, the network must have at least Ω(ρ2min{N, d}d) parameters.
Moreover, we prove that at least Ω(

√
N/(1− ρ2)) parameters are necessary by analyzing the

VC-dimension. Combining these two results, we obtain a tighter lower bound on the parameter
complexity of robust memorization of the form

P = Ω
(
(ρ2min{N, d}+ 1)d+min

{ 1√
1− ρ2

,
√
d
}√

N
)
.

• Sufficiency Conditions for Robust Memorization. We establish the upper bound on the
parameter count by analyzing three regimes of ρ. For ρ ∈

(
0, 1

5N
√
d

]
, we achieve robust

memorization using Õ(
√
N) parameters. For ρ ∈

(
1

5N
√
d
, 1
5
√
d

]
, we obtain robust memorization

with Õ(Nd1/4ρ1/2) parameters up to an arbitrary small error. Finally, for larger values of ρ, where
ρ ∈

(
1

5
√
d
, 1
]
, robust memorization is achieved with Õ(Nd2ρ4) parameters. In log-log figure as

Figure 1, the graphs are linear.

We provide, to the best of our knowledge, the first theoretical characterization showing that
the number of parameters required for robust memorization increases with the robustness radius ρ.
Notably, when ρ < 1

5N
√
d

, the same number of parameters as in classical (non-robust) memorization
suffices for robust memorization. Together, these results indicate that robust memorization becomes
more demanding as the robustness radius grows, in the sense that more parameters are required.

2. Preliminaries
2.1. Notation and the Network Architecture
Throughout the paper, we use d to denote the input dimension of the data, N to denote the number
of data points in a dataset, and C to denote the number of classes for classification. For a natural
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number n ∈ N, [n] denotes the set {1, 2, . . . , n}. We use B2(x, µ) to denote an open ℓ2-ball centered
at x with a radius µ. We use Õ(·) to hide the poly-logarithmic dependencies in problem parameters
such as N , d, and p.

We define the neural network recursively over the layers. With a0 = x, we let

al = σ(Wlal−1(x) + bl) for l = 1, 2, . . . , L− 1

fθ(x) = WL(aL) + bL,

where the activation σ(u) := max{0,u} is the element-wise ReLU. We count the number of
parameters P of fθ as the number of all parameters, including zero-valued elements. The detailed
definition is referred to Equation (1).

We denote the set of neural networks with input dimension d and at most P parameters by

Fd,P =
{
f : Rd → R | f is a neural network with at most P parameters

}
.

2.2. Dataset and Robust Memorization

For d ≥ 1, N ≥ 2, and C ≥ 2, let Dd,N,C be the collection of all dataset of the form D =
{(xi, yi)}Ni=1 ⊂ Rd × [C], such that xi ̸= xj for all i ̸= j. Hence, any D ∈ Dd,N,C is a pairwise
distinct d-dimensional dataset of size N with labels in [C].

Definition 1 For D ∈ Dd,N,C the separation constant ϵD is defined as

ϵD :=
1

2
min {∥xi − xj∥2 | (xi, yi), (xj , yj) ∈ D, yi ̸= yj} .

As we consider D with xi ̸= xj for all i ̸= j, we have ϵD > 0. Next, we define robust
memorization of the given dataset.

Definition 2 For D ∈ Dd,N,C and a given robustness ratio ρ ∈ (0, 1), define the robustness radius
as µ := ρϵD. We say that a function f : Rd → R ρ-robustly memorizes D if

f(x′) = yi, for all (xi, yi) ∈ D and x′ ∈ B2(xi, µ),

and B2(xi, µ) is referred to as the robustness ball of xi.

We emphasize that the range ρ ∈ (0, 1) covers the entire regime in which robust memorization is
possible. Specifically, for ρ > 1, requiring memorization of ρϵD-radius neighbor of each data point
leads to a contradiction as B2(xi, ρϵD) ∩ B2(xj , ρϵD) ̸= ∅ for some yi ̸= yj . Moreover, if ρ = 1,
any continuous function f cannot ρ-robustly memorize D. If f is continuous 1-robust memorizer of
D, it leads to a constradiction that B2(xi, ϵD) ∩ B2(xj , ϵD) ̸= ∅ for some yi ̸= yj .

We provide a clarification on why considering only the robustness ratio ρ is both necessary and
sufficient for robust memorization in Appendix C.

3. Necessary Number of Parameters for Robust Memorization

In this section, we present lower bounds on the number of parameters and width required for robust
memorization over ρ ∈ (0, 1). Theorem 3 presents our main lower bound result.
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Theorem 3 Let ρ ∈ (0, 1). Suppose for any D ∈ Dd,N,2, there exists a neural network f ∈ Fd,P

that can ρ-robustly memorize D. Then, the number of parameters P must satisfy

P = Ω
(
(ρ2min{N, d}+ 1)d+min

{ 1√
1− ρ2

,
√
d
}√

N
)
.

While stated for C = 2, the result extends trivially to C > 2. The bound combines constraints
from the first-layer width and VC dimension. We extend the results to the ℓp-norm in Appendix H.
First Term: Necessity Condition by the First Hidden Layer Width. The first term Ω((ρ2min{N, d}+
1)d) comes from the following proposition on the first hidden layer width.
Proposition 4 There exists D ∈ Dd,N,2 such that, for any ρ ∈ (0, 1), any neural network f : Rd →
R that ρ-robustly memorizes D must have the first hidden layer width at least ρ2min{N − 1, d}.

The detailed proof of Theorem 4 is in Appendix F.1, and we provide a sketch of ideas in
Appendix E.1. We now discuss the implications of the proposition on the parameter complexity in
Theorem 3, and compare it with prior works.

Let us compare our results with some prior works. First, Egosi et al. [4] show that logarithmic
width in N is both necessary and sufficient for robust memorization. However, their sufficiency holds
only for ρ ≤ 1√

d
, and our result does not contradict theirs. The necessity condition on width by Egosi

et al. [4] for ρ = Õ(1) is given as Ω(logN/ log(2416ρ−1)). Theorem 4 together with the trivial
lower bound 1 provides a tighter lower bound over all ρ ∈ (0, 1) up to a polylogarithmic factor.

For ℓ∞-norm, Yu et al. [13] prove that the first hidden layer width d is necessary for ρ-robustly
memorizing a certain dataset under ℓ∞-norm, provided that N > d and ρ = 0.8. To compare this
existing result against our Theorem 4, we show in Theorem 33 that their result can in fact be refined
to a width requirement min{N − 1, d} for any ρ ∈ (1/2, 1), without the condition N > d. Then, we
carefully translate our Theorem 4 (under ℓ2-norm) to other ℓp-norms in Appendix H. In particular,
for every ρ ∈ (0, 1), the analysis reveals that the same lower bound on width Ω(ρ2min{N, d})
holds whenever p ≥ 2. When ρ ∈ (1/2, 1), the result translated to ℓ∞-norm has necessity on width
Ω(ρ2min{N, d}) = Ω(min{N, d}), recovering Theorem 33 and hence the result by Yu et al. [13].
Second Term: Necessity Condition by the VC-Dimension. Now, let us look at the necessary
number of parameters given by the VC-Dimension of the function class.

Proposition 5 Let ρ ∈
(
0,
√

1− 1
d

]
. Suppose for any D ∈ Dd,N,2, there exists f ∈ Fd,P that

ρ-robustly memorizes D. Then, the number of parameters P must satisfy P = Ω
(√

N/(1− ρ2)
)
.

The detailed proof of Theorem 5 is in Appendix F.2. In Theorem 5, we carefully characterize how
the VC-dimension scales over the range ρ ∈ (0,

√
1− 1/d]. In this range of ρ, we show whenever

Fd,P contains ρ-robust memorizer of any D ∈ Dd,N,2, then VC-dim(Fd,P ) = Ω(N/(1− ρ2)); this
thus gives P = Ω(

√
N/(1− ρ2)). Compared to prior work, Theorem 5 improves the necessity

condition over all ρ ∈ (0,
√
1− 1/d]. Also note that our result at the endpoint ρ =

√
1− 1/d

recovers the existing bound Ω(
√
Nd).

Combining Theorem 5 over ρ ∈ (0,
√

1− 1/d] and the existing Ω(
√
Nd) bound over ρ ∈

[
√

1− 1/d, 1), we obtain the second term Ω(min{1/
√
1− ρ2,

√
d}

√
N) in Theorem 3.

4. Sufficient Number of Parameters for Robust Memorization

In this section, we present sufficiency conditions on the number of parameters for robust memoriza-
tion. One of our upper bounds is based on a relaxed notion of robust memorization, for which we
define the ρ-robust memorization error of a neural network.
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Definition 6 For any D ∈ Dd,N,C , we define the ρ-robust memorization error of a network f :
Rd → R on D as

Lρ(f,D) := max
(xi,yi)∈D

Px′∼Unif(B(xi,µ))[f(x
′) ̸= yi],

where µ = ρϵD. When Lρ(f,D) < η, we say f can ρ-robustly memorize D with error at most η.
Note that if a network f ρ-robustly memorizes D, then the error is zero; that is, by definition
Lρ(f,D) = 0. We now state our main upper bounds, showing that a network with appropriately
chosen parameters can ρ-robustly memorize any dataset in Dd,N,C , depending on the value of ρ.

Theorem 7 For any dataset D ∈ Dd,N,C and η ∈ (0, 1), the following statements hold:

(i) If ρ ∈
(
0, 1

5N
√
d

]
, there exists f ∈ Fd,P with P = Õ(

√
N) that ρ-robustly memorizes D.

(ii) If ρ ∈
(

1
5N

√
d
, 1
5
√
d

]
, there exists f ∈ Fd,P with P = Õ(Nd

1
4 ρ

1
2 ) that ρ-robustly memorizes

D with error at most η.

(iii) If ρ ∈
(

1
5
√
d
, 1
)

, there exists f ∈ Fd,P with P = Õ(Nd2ρ4+d2ρ2) that ρ-robustly memorizes
D.

We note that we omitted the trivial additive factor d that accounts for parameters connected
to input neurons. The three regimes in the theorem collectively cover all values of ρ ∈ (0, 1) and
provide upper bounds. The proof of Theorem 7 is provided in Appendix G, and its extension to the
ℓp-norm setting is discussed in Appendix H.2. We present a proof sketch in Appendix E.2.

In contrast to prior results, Theorems 7(i) and 7(ii) provide the first upper bounds for robust
memorization that are sublinear in N . Notably, our construction reveals a continuous interpolation—
driven by the robustness ratio ρ—from the classical memorization complexity of Θ(

√
N) to the

existing upper bound of Õ(N) in Theorem 7(ii), and further from Õ(N) to Õ(Nd) as shown
in Theorem 7(iii). This demonstrates how the parameter complexity increases gradually with ρ,
capturing the full spectrum of the robustness ratio.
Tight Bounds for Robust Memorization with Small ρ. Theorem 7(i) establishes a tight upper
bound Õ(

√
N) on the number of parameters required for robust memorization when the robustness

ratio satisfies ρ < 1
5N

√
d

. This shows that, for sufficiently small ρ, robust memorization requires the

same parameter complexity Θ̃(
√
N) as classical (non-robust) memorization.

Perfect Robust Memorization with Threshold Activation Function. Theorem 7(ii) requires
the allowance of an arbitrarily small robust memorization error, which arises from the fact that
ReLU-only networks can represent only continuous functions. In contrast, if we are allowed to use
discontinuous threshold activation in combination with ReLU network, we can achieve ρ-robust
memorization—and therefore zero robust memorization error— in the same rate as Theorem 7(ii).
Tight Bounds of Width with Large ρ. In the large ρ regime, the network construction in
Theorem 7(iii) for ρ-robust memorization has width Õ(ρ2min{N − 1, d}). This shows that width
Õ(ρ2min{N − 1, d}) is sufficient for ρ-robust memorization. The complementary lower bound by
Theorem 4 states that a width of at least ρ2min{N − 1, d} is also necessary, tightly characterizing
the minimum width for robust memorization up to logarithmic factors for this case. The details are
provided in Theorem 22.

Moreover, Egosi et al. [4] as mentioned in Section 3 show that logarithmic width is necessary and
sufficient for ρ = Õ(1/

√
d), covering the small and moderate ρ regimes. Our result, complemented

with Egosi et al. [4], tightly characterizes the required width along the entire ρ ∈ (0, 1).

5



THE COST OF ROBUSTNESS

References

[1] Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-
dimension and pseudodimension bounds for piecewise linear neural networks. Journal of
Machine Learning Research, 20(63):1–17, 2019.

[2] Alexander Bastounis, Anders C Hansen, and Verner Vlačić. The mathematics of adversarial
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Appendix A. Definition of the Number of Parameters

We now define the number of parameters as the count of all parameters including zeros in a neural
network. Let d1, . . . , dL−1 be the widths of L− 1 hidden layers, with d0 = d (input dimension) and
dL = 1 (output). Then, we count the number of parameters, including the biases, as

Number of Parameters =
L∑
l=1

(dl−1 + 1) · dl. (1)

This reflects how parameters are handled in practice.

Appendix B. What is Known So Far?

Existing Lower Bounds. Since classical memorization requires Ω(
√
N) parameters, it follows

that robust memorization must also satisfy a lower bound of at least Ω(
√
N) parameters for any

ρ ∈ (0, 1). A lower bound specific to robust memorization is established by the work of Li et al.
[8], which shows that Ω(

√
Nd) parameters are necessary when ρ = 1. However, the authors did not

characterize the range of ρ over which this lower bound remains valid. Our Theorem 5 presented later
shows that the Ω(

√
Nd) lower bound can be extended to the range ρ ∈

(√
1− 1/d, 1

)
. Combining

these observations, we obtain the following unified lower bound: suppose that for any dataset D
with input dimension d and size N , there exists a neural network with P parameters that robustly
memorizes D with robustness ratio ρ under ℓ2-norm. Then, the number of parameters P must satisfy

P = Ω

((
1 +

√
d · 1

ρ≥
√

1− 1
d

)√
N + d

)
, (2)

where the d term accounts for the parameters connected to the input neurons. When d = O(
√
N),

the lower bounds jump from
√
N to

√
Nd, with the case d = Θ(

√
N) shown in Figure 1.

Yu et al. [13] show that, under the ℓ∞-norm and certain assumptions, ρ-robust memorization
requires the first hidden layer to have width at least d, though the result does not extend to the ℓ2
case. In contrast, our bound in the ℓ∞ regime improves upon theirs and holds without requiring the
number of data points to be exponential in d.

Existing Upper Bounds. Yu et al. [13] prove that O(Nd) parameters suffice for ρ = 1, which
in turn implies sufficiency for all ρ ∈ (0, 1). Furthermore, Egosi et al. [4] show that for ρ ∈

(
0, 1√

d

)
,

a network of width logN suffices for ρ-robust memorization. Although they did not explicitly
quantify the total number of parameters, their result, combined with the O(Nd) upper bound, implies
a total parameter count of O(N logN) = Õ(N), as shown in Appendix I.1. Additionally, their
construction implicitly yields a smooth interpolation between O(N) and O(Nd) as ρ varies within
the intermediate range (1/

√
d, 1/ 4

√
d).

To sum up, the existing upper bound states that for any dataset D with input dimension d and
size N , there exist a neural network that achieves robust memorization on D with the robustness
ratio ρ under ℓ2-norm, with the number of parameters P bounded as follows:

P =


Õ(N + d) if ρ ∈ (0, 1/

√
d].

Õ(Nd3ρ6 + d) if ρ ∈ (1/
√
d, 1/ 4

√
d].

Õ(Nd2) if ρ ∈ (1/ 4
√
d, 1).

(3)
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When d = O(N), the upper bound transitions continuously from Õ(N) to Õ(Nd); Figure 1 shows
an example when d = Θ(

√
N).

Appendix C. Why Only ρ = µ/ϵD Matters

We describe both necessity and sufficiency conditions for robust memorization in terms of the ratio
ρ = µ/ϵD, rather than describing it in terms of individual values µ and ϵD. This is because the results
remain invariant under scaling of the dataset.

Specifically regarding the sufficiency condition, suppose f ρ-robustly memorizes D, and we
have robustness radius µ = ρϵD. Then for any c > 0, the scaled dataset cD := {(cxi, yi)}Ni=1 with
separation ϵcD = cϵD can be ρ-robustly memorized by the scaled function x 7→ f(1cx) where the
robustness radius is cµ for this case. Moreover, the scaled function can be implemented through a
network with the same number of parameters as the neural network f via scaling the first hidden
layer weight matrix by 1/c.

On the other hand, this implies that the necessity condition can also be characterized in terms of
ρ. Suppose we have a dataset D with a fixed ϵD for which ρ-robustly memorizing it requires a certain
number of parameters P . Then, the scaled dataset cD with ϵcD = cϵD also requires the same number
of parameters for ρ-robust memorization. If cD can be memorized with less than P parameters, then
by parameter rescaling from the previous paragraph, D can also be memorized with less than P
parameters, leading to a contradiction.

Hence, the robustness ratio ρ = µ/ϵD captures the essential difficulty of robust memorization,
independent of scaling. We henceforth state our upper and lower bounds in terms of ρ.

Appendix D. Conclusion

We presented a tighter characterization of the parameter complexity necessary and sufficient for
robust memorization across the full range of robustness ratio ρ ∈ (0, 1). Our results established
matching upper and lower bounds for small ρ, and showed that robustness demands significantly
more parameters than classical memorization as ρ grows. These findings highlight how robustness
fundamentally increases memorization difficulty under adversarial attacks.

We establish tight complexity bounds in the regime where d = Ω(N), as well as when d = o(N)
and ρ < 1

N
√
d

. However, in the remaining cases, a gap between the upper and lower bounds persists.
A precise characterization of the parameter complexity in terms of ρ remains open and is essential
for a more complete understanding of the trade-off between robustness and network complexity.

11
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Appendix E. Key Proof Ideas

In this section, we outline the sketch of proof for some of the results from Sections 3 and 4.

E.1. Proof Sketch for Theorem 4

For simplicity, we sketch the case N = d + 1, where the proposition reduces to showing that
the first hidden layer must have width at least ρ2d. To this end, we construct the dataset D =
{(ej , 1)}j∈[d] ∪ {(0, 2)}, assigning label 1 to the standard basis points and label 2 to the origin, as
shown in Appendix E.1.

Let f be an ρ-robust memorizer of D with the first hidden layer width m, and let W ∈ Rm×d

denote the weight matrix of the first hidden layer. Since ϵD = 1/2, the robustness radius is
µ = ρϵD = ρ/2. For any j ∈ [d], take any x ∈ B2(ej , µ) and x′ ∈ B2(0, µ). Then, f(x) = 1 and
f(x′) = 2 must hold, implying Wx ̸= Wx′. Therefore, x− x′ should not lie in the null space of
W . All such differences x−x′ form a ball of radius 2µ around each standard basis point, illustrated
as the gray ball in Appendix E.1. Thus, the distance between each standard basis point and the null
space of W must be at least 2µ; otherwise, some gray balls intersect with the null space.

The null space of W is a d − m dimensional space, assuming W has a full row rank (note
that the full proof generalizes even if this assumption is dropped). By Theorem 10, the distance
between the set of standard basis points and any subspace of dimension d −m is at most

√
m/d.

Therefore, ρ = 2µ ≤ dist2({ej}j∈[d],Null(W )) ≤
√

m/d and thus the first hidden layer width
satisfies m ≥ ρ2d.

y

z

x

e2

e3

e1

0 µ

(a) Dataset for Theorem 4.

z

x

y
e2

e3

e1

Null(W ) = {(x, y, z) ∈ R3 | z = x+ y}

dist2(e2,Null(W ))

2µ

(b) Null(W ) ⊂ R3 and the standard basis

Figure 2: In (a), blue balls have label 1; the red ball has label 2. (b) illustrates the distance between
Null(W ) ⊂ R3 and the standard basis for W =

[
1 1 −1

]
with the first hidden layer width 1.

E.2. Proof Sketch for Theorem 7

We now highlight the key construction techniques used to prove Theorem 7.

Rd

µ

2ϵD

Rm

µ

4
5

√
m
d ϵD

Figure 3: Separation-Preserving Projection

Separation-Preserving Dimensionality Reduction
All three results in Theorem 7 leverage the Johnson-
Lindenstrauss (JL) lemma to project data from a
high-dimensional space Rd (left in Figure 3) to a

12
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lower-dimensional space Rm (right), while preserv-
ing pairwise distances up to a multiplicative factor.
Specifically, any pair of points that are 2ϵD-separated
in Rd remain at least 4

5

√
m
d ϵD-separated after the

projection. Meanwhile, each robustness ball of ra-
dius µ is preserved under the projection. As we utilize the proof of the JL lemma, which uses
randomized orthonormal projection, the robustness balls in a higher dimension are mapped exactly
to lower-dimensional ones with the same radius [9]. Since the separation is preserved by the factor
Ω(
√
m/d) and the robustness radius remains the same after the projection, we can concatenate the

memorizing network in Rm after the projection.
In Theorems 7(i) and 7(ii), the data is projected to Rm with m = O(logN), and the network

width is also logarithmic in N , and therefore the technique applies to ρ = O(1/
√
d). If ρ is larger

than the scale O(1/
√
d), the projected robustness balls may overlap one another. On the other

hand, Theorem 7(iii), which deals with the largest ρ range, projects the data to a dimension that is
proportional to ρ2, allowing larger ρ at the cost of using more parameters.

The idea of separation-preserving dimension reduction and deriving conditions under which
robustness balls remain disjoint after projection is concurrently proposed by Egosi et al. [4]. However,
their approach to ensuring the separability of robustness balls is substantially different from ours.
Since the classical JL lemma does not inherently guarantee the preservation of ball separability,
they do not rely on the JL lemma directly. Instead, they establish a probabilistic analogue through
a technically involved analysis that bounds the probability that a random projection satisfies the
required separation property. In contrast, we utilize the proof of the JL lemma, and show that
there exists a projection that preserves separability in a more straightforward manner, as shown in
Appendix G.5.

Mapping to Lattices from Grid For Theorem 7(i) and 7(ii), we utilize the Õ(
√
N)-parameter

memorization developed by Vardi et al. [12]. In order to adopt the technique, it is necessary to assign
a scalar value in R to each data point. This is because the construction memorizes the data after
projecting them onto R. Furthermore, this scalar assignment must meaningfully reflect the spatial
structure of the data—preserving relative distances and neighborhood relationships of robustness
ball.

We achieve this using a coordinate map induced by spatial discretizations. Specifically, we reduce
the dimension to m = O(logN) and partition the space Rm into a regular grid, assign an integer
index to each grid cell—through the grid indexing, mapping each unit interval

∏
j∈[m][zj , zj + 1) to

z1R
m−1+ z2R

m−2+ · · ·+ zm for each z = (z1, · · · , zm) ∈ Zm and some sufficiently large integer
R—and associate each index with the label of the projected robustness ball contained in that cell.
The network then memorizes the mapping from each grid index to its corresponding label.

Under the stricter condition on ρ in Theorem 7(i), we show that after an appropriate translation,
each projected robustness ball lies entirely within a single grid cell, and no two balls with different
labels occupy the same cell, as shown in Appendix E.2. The main challenge in implementing the grid
indexing is its discontinuity, which cannot be exactly represented by continuous ReLU networks.
As a result, approximating it with ReLU introduces an error region where the ReLU approximation
fails to implement the indexing correctly, as indicated by the purple shaded bands in Appendix E.2.

13
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To address this, we ensure that all (projected) robustness balls remain un-intersected with the
purple error region through a translation. This allows each point within the robustness ball to be safely
mapped to a unique grid index, enabling ρ-robust memorization using only Õ(

√
N) parameters.

In Theorem 7(ii), we allow arbitrarily small error in order to cover a larger range of ρ. Here, we
no longer require every robustness ball to lie entirely within a single grid cell. We adopt a sequential
memorization strategy. At each step, a subset of data points is robustly memorized using the method
from Theorem 7(i). We translate the data so that the subset of interest at the current step avoids the
error region. Since only a few points are of interest per step, a larger ρ is allowed at the step. Other
balls may cross cell boundaries as long as they do not interfere with the currently active cells, as
shown in Appendix E.2. When a robustness ball that is not of interest intersects the error region, it
may incur an error proportional to the intersection. However, we can make the error region—and
thus the error at each step—arbitrarily small. Repeating this process yields robust memorization of
all N data points with arbitrarily small error.

z1

z2

10

11

02 22

(a) The setting for Theorem 7(i), where each
robust ball is entirely contained within a single
grid cell, and no two balls with different labels
occupy the same cell. This guarantees well-
defined indexing without ambiguity.

z1

z2

10

11

(b) The relaxed setting in Theorem 7(ii) allows
some balls to extend across adjacent grid cell
boundaries, as long as they do not interfere with
the specific cells being memorized at that step.

Figure 4: Grid-based Lattice Mapping.
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Appendix F. Proofs for Section 3

F.1. Necessary Condition on Width for Robust Memorization

Proposition 8 There exists D ∈ Dd,N,2 such that, for any ρ ∈ (0, 1), any neural network f : Rd →
R that ρ-robustly memorizes D must have the first hidden layer width at least ρ2min{N − 1, d}.

Proof To prove Theorem 4, we consider two cases based on the relationship between N − 1 and d.
In the first case, where N − 1 ≤ d, establishing the proposition requires that the first hidden layer has
width at least ρ2(N − 1). In the second case, where N − 1 > d, the required width is at least ρ2d.
For each case, we construct a dataset D ∈ Dd,N,2 such that any network that ρ-robustly memorizes
D must have a first hidden layer of width no smaller than the corresponding bound.

Case I : N − 1 ≤ d. Let D = {(ej , 2)}j∈[N−1] ∪ {(0, 1)}. Then, D has separation constant
ϵD = 1/2. Let f be a neural network that ρ-robust memorizes D, and denote the width of its first
hidden layer as m. Denote by W ∈ Rd×m the weight matrix of the first hidden layer of f . Assume
for contradiction that m < ρ2(N − 1).

Let µ = ρϵD denote the robustness radius. Then, the network f must distinguish every point in
B2(ej , µ) from every point in Bµ(0), for all j ∈ [N − 1]. Therefore, for any x ∈ B2(ej , µ) and
x′ ∈ B2(0, µ), we must have

Wx ̸= Wx′,

or equivalently, x− x′ /∈ Null(W ), where Null(·) denotes the null space of a given matrix. Note
that

B2(ej , µ)−B2(0, µ) := {x− x′ | x ∈ B2(ej , µ) and x′ ∈ B2(0, µ)} = B2(ej , 2µ).

Hence, it is necessary that B2(ej , 2µ) ∩Null(W ) = ∅ for all j ∈ [N − 1], or equivalently,

dist2(ej ,Null(W )) ≥ 2µ for all j ∈ [N − 1]. (4)

Since dim(Col(W⊤)) ≤ m, where Col(·) denotes the column space of the given matrix, it
follows that dim(Null(W )) ≥ d−m. Using Theorem 11, we can upper bound the distance between
the set {ej}j∈[N−1] ⊆ Rd and any subspace of dimension d−m.

Let Z ⊆ Null(W ) be a subspace such that dim(Z) = d − m, and apply Theorem 11 with
substitutions d = d, t = N − 1, k = d−m and Z = Z. The conditions of lemma, namely t ≤ d
and k ≥ d− t, are satisfied since N − 1 ≤ d and m < ρ2(N − 1) ≤ N − 1. Therefore, we obtain
the bound

min
j∈[N−1]

dist2(ej , Z) ≤
√

m

N − 1
.

By combining the above inequality with Equation (4), we obtain

2µ ≤ min
j∈[N−1]

dist2(ej ,Null(W ))
(a)

≤ min
j∈[N−1]

dist2(ej , Z) ≤
√

m

N − 1
, (5)
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where (a) follows from that Z ⊆ Null(W ). Since ϵD = 1/2, we have 2µ = 2ρϵD = ρ, so
Equation (5) becomes

ρ ≤
√

m

N − 1
.

This implies that m ≥ ρ2(N − 1), contradicting the assumption m < ρ2(N − 1). Therefore, the
width requirement m ≥ ρ2(N−1) is necessary. This concludes the statement for the case N−1 ≤ d.

Case II : N −1 > d. We construct the first d+1 data points in the same manner as in Case I, using
the construction for N = d+ 1. For the remaining N − d− 1 data points, we set them sufficiently
distant from the first d+ 1 data points to ensure that the separation constant remains ϵD = 1/2.

In particular, we set xd+2 = 2e1,xd+3 = 3e1, · · · ,xN = (N − d)e1 and assign yd+2 =
yd+3 = · · · = yN = 2. Compared to the case N = d + 1, this construction preserves ϵD while
adding more data points to memorize. Since the first d+ 1 data points are constructed as in the case
N = d + 1, the same lower bound applies. Specifically, by the result of Case I, any network that
ρ-robustly memorizes this dataset mus have a first hidden layer of width at least ρ2(d+1− 1) = ρ2d.
This concludes the arguement for the case N − 1 > d.

Combining the result from the two cases N − 1 ≤ d and N − 1 > d completes the proof of the
theorem.

F.2. Necessary Condition on Parameters for Robust Memorization

For sufficiently large ρ, Gao et al. [5] and Li et al. [8] prove that, for any D ∈ Dd,N,C , if there exists
f ∈ Fd,P that ρ-robustly memorizes D, the number of parameters P should satisfy P = Ω(

√
Nd).

However, the authors do not characterize the range of ρ over which this lower bound remains valid.
In our work, we establish a lower bound that depends on ρ in the regime ρ ≤

√
1− 1/d, which

becomes
√
Nd when ρ =

√
1− 1/d. This implies that the existing lower bound

√
Nd remains valid

for ρ ∈ [
√
1− 1/d, 1). As a result, we obtain a lower bound that holds continuously from ρ ≈ 0 up

to ρ ≈ 1, and thus interpolate the existing lower bound
√
Nd.

Proposition 9 Let ρ ∈
(
0,
√

1− 1
d

]
. Suppose for any D ∈ Dd,N,2, there exists f ∈ Fd,P that

ρ-robustly memorizes D. Then, the number of parameters P must satisfy P = Ω
(√

N/(1− ρ2)
)
.

Proof To prove the statement, we show that for any D ∈ Dd,N,2, if there exists a network f ∈ Fd,P

that ρ-robustly memorize D, then

VC-dim(Fd,P ) = Ω

(
N

1− ρ2

)
.1 (6)

Since VC-dim(Fd,P ) = O(P 2), it follows that P = Ω(
√
N/(1− ρ2)).

1. We follow the definition of VC-dimension by Bartlett et al. [1]. Note that the VC-dimension of a real-valued function
class is defined as the VC-dimension of sign(F) := {sign ◦ f | f ∈ F}. Since we consider the label set [2] = {1, 2}
for robust memorization while the VC-dimension requires the label set {+1,−1}, we take an additional step of an
affine transformation in the last step of the proof.
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Let k := ⌊ 1
1−ρ2

⌋. To establish the desired VC-dimension lower bound, it suffices to show that

VC-dim(Fd,P ) ≥ k · ⌊N
2
⌋.

This implies Equation (6), as desired. To this end, it suffices to construct k · ⌊N2 ⌋ points in Rd that
can be shattered by Fd,P . These points are organized as ⌊N2 ⌋ groups, each consisting of k elements.

We begin by constructing the first group. Since ρ ∈
(
0,
√

d−1
d

]
, we have k = ⌊ 1

1−ρ2
⌋ ∈ (1, d].

Define the first group X1 := {ej}kj=1 ⊆ Rd, consisting of the first k standard basis vectors in Rd.
The remaining ⌊N2 ⌋ − 1 groups are constructed by translating X1. For each l = 1, · · · ⌊N2 ⌋, define

Xl := cl + X1 = {cl + x | x ∈ X1} ,

where cl := 2d2(l − 1) · e1 ensures that the groups are sufficiently distant from one another. Note
that c1 = 0, so that X1 is consistent with the definition above. Now, define X := ∪l∈[⌊N/2⌋]Xl as the
union of all groups, comprising k × ⌊N2 ⌋ points in total.

We claim that for any D ∈ Dd,N,2, if there exists a network f ∈ Fd,P that ρ-robustly memorizes
D, then the point set X is shattered by Fd,P . To prove the claim, consider an arbitrary labeling
Y = {yl,j}l∈[⌊N/2⌋],j∈[k] ⊂ {±1} of the points in X , where each label yl,j corresponds to the point
xl,j := cl + ej ∈ X .

Given the labeling Y , we construct D ∈ Dd,N,2 with labels in {1, 2} such that any function
f ∈ Fd,P that ρ-robustly memorizes D can be affinely transformed to f ′ = 2f − 3 ∈ Fd,P , which
satisfies f ′(xl,j) = yl,j ∈ {±1} for all xl,j ∈ X . In other words, f ′ exactly memorizes the given
labeling Y over X , thereby showing that X is shatterd by Fd,P . The affine transformation is necessary
to match the {1, 2}-valued outputs of f with the {±1} labeling required for the shattering argument.

For each l ∈ [⌊N/2⌋], define the index sets

J+
l = {j ∈ [k] | yl,j = +1} , J−

l = {j ∈ [k] | yl,j = −1} ,

which partition the group-wise labeling {yl,j}j∈[k] ⊂ Y into positive and negative indices. We then
define

x2l−1 = cl +
∑
j∈J+

l

ej −
∑
j∈J−

l

ej ,

x2l = cl +
∑
j∈J−

l

ej −
∑
j∈J+

l

ej .

Let y2l−1 = 2, y2l = 1, and define the dataset D = {(xi, yi)}i∈[N ] ∈ Dd,N,2. Figure 5 illustrates the
case l = 1 with J+

1 = {1, 3} and J−
1 = {2}, where the blue and red dots denote the points x1 and

x2, respectively.
To analyze the separation constant ϵD, we consider the distance between pairs of points with

different labels. Specifically, for each l, the two points x2l−1 and x2l have opposite labels by
construction. Consider their distance:

∥x2l−1 − x2l∥2 =

∥∥∥∥∥∥∥2
∑

j∈J+
l

ej −
∑
j∈J−

l

ej


∥∥∥∥∥∥∥
2

(a)
= 2

√
k,
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×

×

×
y

z

x

e2

e3

e1
µ

Figure 5: Reduction of Shattering to Robust Memorization. The cross marks refer to the points to be
shattered, and the circular dots refer to the points for robust memorization. The centers of robustness
balls change with respect to the labels of the points to be shattered.

where (a) holds since J+
l ∩ J−

l = ∅ and J+
l ∪ J−

l = [k]. Now, for l ̸= l′, consider the distance
between x2l−1 and x2l′ , which again correspond to different labels. We have:

dist2(x2l−1,x2l′)
(a)

≥dist2(cl, cl′)− dist2(cl,x2l−1)− dist2(cl′ ,x2l′)

(b)

≥2d2 −
√
k −

√
k

(c)

≥2d2 − 2
√
d

(d)

≥2
√
d

(e)

≥2
√
k,

where (a) follows from the triangle inequality, (b) uses dist2(cl,x2l−1) = dist2(cl′ ,x2l′) =
√
k, (c)

and (e) use k ≤ d, and (d) holds for all d ≥ 2. Thus, we conclude that ϵD ≥
√
k.

Let f ∈ Fd,P be a function that ρ-robustly memorizes D. We begin by deriving a lower bound
on the robustness radius µ in order to verify that f ′ = 2f − 3 correctly memorizes the given labeling

Y over X . Define ϕ(t) :=
√

t−1
t . The function ϕ is strictly increasing for t ≥ 1, and maps [1,∞)

onto [0, 1). Hence, it admits an inverse ϕ−1 : [0, 1) → [1,∞), defined as ϕ−1(ρ) = 1
1−ρ2

. Therefore,
we have

ρ = ϕ(ϕ−1(ρ)) = ϕ

(
1

1− ρ2

)
≥ ϕ

(
⌊ 1

1− ρ2
⌋
)

= ϕ(k) =

√
k − 1

k
.

Given ϵD ≥
√
k and ρ ≥

√
k−1
k , it follows that µ = ρϵD ≥

√
k − 1. Thus, any function f that

ρ-robustly memorizes D must also memorize all points within an ℓ2-ball of radius
√
k − 1 centered

at each point in D.
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Next, for xl,j ∈ X with positive label yl,j = +1, we have

∥xl,j − x2l−1∥2 =

∥∥∥∥∥∥∥(cl + ej)− (cl +
∑
j′∈J+

l

ej′ −
∑

j′∈J−
l

ej′)

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥
∑
j′∈J+

l
j′ ̸=j

ej′ −
∑

j′∈J−
l

ej′

∥∥∥∥∥∥∥∥∥
2

=
√
k − 1.

Now consider a sequence {zn}n∈N such that zn → xl,j as n → ∞ and

∥zn − x2l−1∥2 <
√
k − 1 for all n ∈ N.

In particular, we take

zn :=
n− 1

n
xl,j +

1

n
x2l−1,

which satisfies such properties. Then, zn ∈ B(x2l−1, µ) for all n, and by robustness of f , f(zn) =
f(x2l−1) = 2. By continuity of f , we have

f(xl,j) = f( lim
n→∞

zn) = lim
n→∞

f(zn) = lim
n→∞

2 = 2.

Similarly, for xl,j ∈ X with negative label yl,j = −1, we have ∥xl,j − x2l∥2 =
√
k − 1, so that

f(xl,j) = 1.
Since we can adjust the weight and the bias of the last hidden layer, Fd,P is closed under affine

transformation; that is, af + b ∈ Fd,P whenever f ∈ Fd,P . In particular, f ′ := 2f − 3 ∈ Fd,P .
This f ′ satisfies f ′(xl,j) = 2f(xl,j) − 3 = 2 · 2 − 3 = +1 whenever yl,j = +1 and f ′(xl,j) =
2f(xl,j)− 3 = 2 · 1− 3 = −1 whenever yl,j = −1. Thus, sign ◦f ′ perfectly classifies X according
to the given labeling Y . Since the labeling f ′ ∈ Fd,P was arbitrary, it follows that Fd,P shatters X ,
completing the proof of the theorem.

F.3. Lemmas for Appendix F

The following lemma upper bounds the ℓ2-distance between the standard basis and any subspace of a
given dimension.

Lemma 10 Let {ej}j∈[d] ⊆ Rd denote the standard basis of Rd. Then, for any k-dimensional
subspace Z ⊆ Rd,

max
j∈[d]

∥ProjZ(ej)∥2 ≥
√

k

d
.

In particular,

min
j∈[d]

dist2(ej , Z) ≤
√

d− k

d

19



THE COST OF ROBUSTNESS

Proof Let {u1,u2, · · · ,uk} ⊆ Rd be an orthonormal basis of Z, and denote each uj = (uj1, uj2, · · · , ujd)⊤.
Let U ∈ Rd×k be the matrix whose colums are u1, · · · ,uk, so that

U =

 | | |
u1 u2 · · · uk

| | |

 .

Then the projection matrix P onto Z is given by

P = U(U⊤U)−1U⊤ = UU⊤ =
k∑

l=1

ulu
⊤
l ∈ Rd×d.

Now, for each standard basis vector ej , the squared norm of its projection onto Z is:

∥Pej∥22 =

∥∥∥∥∥
k∑

l=1

ulu
⊤
l ej

∥∥∥∥∥
2

2

=

∥∥∥∥∥
k∑

l=1

uljul

∥∥∥∥∥
2

2

=

k∑
l=1

(ulj)
2,

where the last equality holds as ul are orthonormal. Moreover,

max
j∈[d]

∥Pej∥22 ≥
1

d

∑
j∈[d]

∥Pej∥22 =
1

d

∑
j∈[d]

k∑
l=1

(ulj)
2 =

1

d

k∑
l=1

∑
j∈[d]

(ulj)
2 =

1

d

k∑
l=1

1 =
k

d
.

This proves the first statement of the lemma. To prove the second statement, observe that for any
v ∈ Rd, we can write

v = ProjZ(v) + ProjZ⊥(v),

so that ∥v∥22 = ∥ProjZ(v)∥
2
2 + ∥ProjZ⊥(v)∥22. Noticing dist2(v, Z) = ∥ProjZ⊥(v)∥2 together

with the first statement,

min
j∈[d]

dist2(ej , Z) = min
j∈[d]

∥ProjZ⊥(ej)∥2 = max
j∈[d]

√
1− ∥ProjZ(ej)∥

2
2 ≤

√
1− k

d
=

√
d− k

d
,

concludes the second statement.

The next lemma generalizes Theorem 10 to the case where we consider only the distance to a
subset of the standard basis, instead of the whole standard basis.

Lemma 11 Let 1 ≤ t ≤ d, and let {ej}j∈[t] ⊆ Rd denote the first t standard basis vectors. Then,
for any k-dimensional subspace Z ⊆ Rd with k ≥ d− t, we have

max
j∈[t]

∥ProjZ(ej)∥2 ≥
√

k − (d− t)

t
.

In particular,

min
j∈[t]

dist2(ej , Z) ≤
√

d− k

t
.
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Proof Let Q = [e1e2 · · · et]⊤ ∈ Rt×d. Then, we have the orthogonal decomposition:

Rd = Col(Q⊤)⊕Null(Q) = (Z ∩ Col(Q⊤))⊕ (Z⊥ ∩ Col(Q⊤))⊕Null(Q)

By taking dimensions,

dim(Z ∩ Col(Q⊤)) = dim(Rd)− dim(Z⊥ ∩ Col(Q⊤))− dim(Null(Q))

≥ dim(Rd)− dim(Z⊥)− dim(Null(Q))

= d− (d− k)− (d− t)

= k − (d− t).

Now, consider the restriction of Rd to Rt by the linear map

ϕ : span{e1, . . . , et} ⊂ Rd → Rt, ϕ

(
t∑

i=1

aiej

)
=

a1...
at

 .

Since Col(Q⊤) = span{e1, . . . , et}, the projection satisfies:

max
j∈[t]

∥∥∥ProjZ∩Col(Q⊤)(ej)
∥∥∥
2
= max

j∈[t]

∥∥∥Projϕ(Z∩Col(Q⊤))(ϕ(ej))
∥∥∥
2
.

By applying Theorem 10 with the restricted space Rt, we obtain

max
j∈[t]

∥∥∥ProjZ∩Col(Q⊤)(ej)
∥∥∥
2
≥
√

k − (d− t)

t
.

Since Z ⊇ Z ∩ Col(Q⊤), it follows that

max
j∈[t]

∥ProjZ(ej)∥2 ≥ max
j∈[t]

∥∥∥ProjZ∩Col(Q⊤)(ej)
∥∥∥
2
≥
√

k − (d− t)

t
.

This proves the first statement. To prove the second statement, for any v ∈ Rd, decompose v as

v = ProjZ(v) + ProjZ⊥(v),

and note that ∥v∥22 = ∥ProjZ(v)∥
2
2 + ∥ProjZ⊥(v)∥22. Using dist2(v, Z) = ∥ProjZ⊥(v)∥2 together

with the first statement, we have

min
j∈[t]

dist2(ej , Z) = min
j∈[t]

∥ProjZ⊥(ej)∥2

= max
j∈[t]

√
1− ∥ProjZ(ej)∥

2
2

≤
√
1− k − (d− t)

t

=

√
d− k

t
,

concludes the second statement.
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F.4. Explicit Proof of Theorem 3

While we have mentioned how Theorems 4 and 5 can imply Theorem 3 in Section 3, we elaborate on
a more detailed proof here.

Theorem 3 Let ρ ∈ (0, 1). Suppose for any D ∈ Dd,N,2, there exists a neural network f ∈ Fd,P

that can ρ-robustly memorize D. Then, the number of parameters P must satisfy

P = Ω
(
(ρ2min{N, d}+ 1)d+min

{ 1√
1− ρ2

,
√
d
}√

N
)
.

Proof Let f ∈ Fd,P be a neural network that ρ-robustly memorizes D and let m denote the width of
first hidden layer. We first note the trivial lower bound that m ≥ 1. From Theorem 4, we also have
the lower bound m ≥ ρ2min{N − 1, d}. Thus,

m ≥ max{ρ2min{N − 1, d}, 1} ≥ 1

2
(ρ2min{N − 1, d}+ 1).

Since we count all parameters as Equation (1), the number of parameters in the first layer is
(d+ 1)m. Therefore,

P ≥ (d+ 1) ·m ≥ (d+ 1) · 1
2
(ρ2min{N − 1, d}+ 1) = Ω(d(ρ2min{N, d}+ 1)).

In addition, For ρ ∈
(
0,
√
1− 1

d

]
, by Theorem 5, we get the lower bound of parameters

P = Ω

(√
N

1− ρ2

)
.

Note that the inequality 1√
1−ρ2

≤
√
d holds, so we may write

min{ 1√
1− ρ2

,
√
d} =

1√
1− ρ2

.

For ρ ∈
(√

1− 1
d , 1
)

, observe that 1√
1−ρ2

>
√
d, and since ρ =

√
1− 1

d yields
√

N
1−ρ2

=
√
Nd, we also require

√
Nd parameters in this regime. Thus, by combining both regimes, we obtain:

P = Ω

(
min{ 1√

1− ρ2
,
√
d}

√
N

)
.

By combining the bounds from Theorem 4 and Theorem 5, we conclude:

P =Ω

(
max

{
(ρ2min{N, d}+ 1)d,min{ 1√

1− ρ2,
√
d
}
√
N

})

=Ω

(
(ρ2min{N, d}+ 1)d+min{ 1√

1− ρ2,
√
d
}
√
N

)
.
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Appendix G. Proofs for Section 4

In this section, we prove Theorem 7. An extension of Theorem 7 to ℓp-norm is provided in
Appendix H.2.

Theorem 7 For any dataset D ∈ Dd,N,C and η ∈ (0, 1), the following statements hold:

(i) If ρ ∈
(
0, 1

5N
√
d

]
, there exists f ∈ Fd,P with P = Õ(

√
N) that ρ-robustly memorizes D.

(ii) If ρ ∈
(

1
5N

√
d
, 1
5
√
d

]
, there exists f ∈ Fd,P with P = Õ(Nd

1
4 ρ

1
2 ) that ρ-robustly memorizes

D with error at most η.

(iii) If ρ ∈
(

1
5
√
d
, 1
)

, there exists f ∈ Fd,P with P = Õ(Nd2ρ4+d2ρ2) that ρ-robustly memorizes
D.

To prove Theorem 7, we decompose it into three theorems (Theorems 12, 14 and 22), each
corresponding to one of the cases in the statement. Their proofs are provided in Appendices G.1
to G.3, respectively.

G.1. Sufficient Condition for Robust Memorization with Small Robustness Radius

Theorem 12 Let ρ ∈
(
0, 1

5N
√
d

]
. For any dataset D ∈ Dd,N,C , there exists a neural network

f ∈ Fd,P that ρ-robustly memorizes D, where the number of parameters satisfies P = Õ(
√
N).

Proof For given ρ and D = {(xi, yi)}i∈[N ] ∈ Dd,N,C , we construct f ∈ Fd,P that satisfies the stated
condition. The construction consists of four steps. In each step, we construct a function that can be
implemented via a neural network so that when all four functions are composed together, it forms a
ρ-robust memorizer of D.

Stage I (Projection onto log-scale Dimension and Scaling via the First Layer Hidden Weight
Matrix). In the first step, we map the data into m := max{⌈600 logN⌉, ⌈10 log d⌉} dimension via
linear transformation. We construct the linear mapping by dividing the cases into d < 600 logN or
d ≥ 600 logN .

For the case d < 600 logN , we have d < m. We consider the natural (linear) embedding

from Rd to Rm defined by (x1, · · · , xd)
ϕ7→ (x1, · · · , xd, 0, · · · , 0). The ϕ is 1-Lipchitz, and

D′ := {(ϕ(xi), yi)}i∈[N ] ∈ Dm,N,C satisfies ϵD′ ≥ ϵD.
Otherwise, for the case d ≥ 600 logN , we first confirm that m ≤ d. First, 600 logN ≤ d

implies

⌈600 logN⌉ ≤ d. (7)

Additionally, as N ≥ 2, we have d ≥ 600 logN ≥ 600 log 2 ≥ 400. By Theorem 23, this implies
10 log d ≤ d and therefore

⌈10 log d⌉ ≤ d. (8)

By Equations (7) and (8), we have m ≤ d.
By Theorem 28, there exists 1-Lipschitz linear mapping ϕ : Rd → Rm and β > 0 such

that D′ := {(ϕ(xi), yi)}i∈[N ] ∈ Dm,N,C satisfies ϵD′ ≥ 4
5βϵD. As m ≥ 10 log d, the inequality

β ≥ 1
2

√
m
d is satisfied by Theorem 28. Therefore, ϵD′ ≥ 4

5βϵD ≥ 2
5

√
m
d ϵD.
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In both cases, we have 1-Lipschitz linear map ϕ such that D′ = {(ϕ(xi), yi)}i∈[N ] has separation

ϵD′ ≥ 2

5

√
m

d
ϵD. (9)

. We use this ϕ to construct the first hidden layer. Set the first hidden layer matrix as the matrix W

corresponding to 5
4 ·

√
d

ϵD
ϕ under the standard basis of Rd and Rm. Set the first hidden layer bias b so

that

Wx+ b ≥ 0 for all x ∈ B2(xi, µ) and for all i ∈ [N ], (10)

where the comparison between two vectors is element-wise. Define f1 : Rd → Rm as f1(x) =
Wx+ b.

We claim that for D′′ = {(ReLU(f1(xi)), yi)}i∈[N ], we have (i) ϵD′′ ≥
√
m/2 and (ii) for

ρ′′ = 1
2N

√
m

, whenever g ∈ Fm,P is a ρ′′-robust memorizer of D′′, then g ◦ ReLU ◦ f1 is a ρ-robust
memorizer of D. For any yi ̸= yj , we have

∥ReLU(f1(xi))− ReLU(f1(xj))∥
(a)
= ∥f1(xi)− f1(xj)∥2
= ∥(Wxi + b)− (Wxj + b)∥2
= ∥W (xi)−W (xj)∥2
(b)
=

5

4
·
√
d

ϵD
∥ϕ(xi)− ϕ(xj)∥2

(c)

≥ 5

4
·
√
d

ϵD
· 2ϵD′

(d)

≥ 5

4
·
√
d

ϵD
× 2 · 2

5

√
m

d
ϵD

=
√
m,

where (a) is because f1(xi) ≥ 0 for all i ∈ [N ], (b) is by the definition of W , (c) is by the definition
of D′, and (d) is by Equation (9). This proves the first claim ϵD′′ ≥

√
m/2. To prove the second

claim, let µ := ρϵD and µ′′ := ρ′′ϵD′′ . Then,

ReLU(f1(B2(xi, µ)))
(a)
= f1(B2(xi, µ))

(b)
= B2(f1(xi),

5

4
·
√
d

ϵD
× µ)

(c)
= B2(f1(xi),

5

4
·
√
dρ)

(d)

⊆ B2(f1(xi),
1

4N
)

(e)

⊆ B2(f1(xi), ρ
′′ϵD′′)

(f)

⊆ B2(ReLU(f1(xi)), ρ
′′ϵD′′),
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where (a),(f) are by Equation (10), (b) is because f1 is 5
4 ·

√
d
ϵ -Lipschitz, (c) use µ = ρϵD, (d) use

ρ ≤ 1
5N

√
d

, and (e) is because ρ′′ϵD′′ =
ϵD′′

2N
√
m

≥ 1
4N , as ϵD′′ ≥

√
m/2.

Hence, g memorizing the robustness ball B2(ReLU(f1(xi)), ρ
′′ϵD′′) on projected space leads

to g ◦ ReLU ◦ f1 memorizing the robustness ball for D. In other words, whenever g is a ρ′′-robust
memorizer of D′′, then g ◦ ReLU ◦ f1 is a ρ-robust memorizer of D. With ρ′′ = 1

N
√
m

, Stage II to
IV aims to find a ρ′′-robust memorizer g of D′′.

Stage II (Translation for Distancing from Lattice via the Bias) For simplicity of the notation, let us
denote zi = ReLU(f1(xi)) so that D′′ = {(zi, yi)}i∈[N ]. Recall that ϵD′′ =

√
m
2 and ρ′′ = 1

2N
√
m

,

the robustness radius is µ′′ = ρ′′ϵD′′ = 1
4N .

By applying Theorem 24 to z1, · · · , zN , there exist a translation vector b2 = (b21, · · · , b2m) ∈
Rm such that

dist(zi,j − bj ,Z) ≥
1

2N
, ∀i ∈ [N ], j ∈ [d], (11)

i.e., the translated points {zi − b2}i∈[N ] are coordinate-wise far from the integer lattice. Moreover,
by additional translation zi (by some natural number, coordinate-wise), we can ensure all coordinates
are positive while keeping the property Equation (11). Hence, we may assume without loss of
generality b2 also has the property

zi − b2 ≥ 0 for all i ∈ [N ] (12)

Let us denote D′′′ = {(z′
i, yi)}i∈[N ], where z′

i := zi − b. We have ϵD′′′ = ϵD′′ . For ρ′′′ := ρ′′ =
1

2N
√
m

, we have the robustness radius µ′′′ := µ′′ = 1
4N .

Upon the two layers constructed from stages I, II, it suffices to construct a network that ρ′′′-
robustly memorizes D′′′. Note that the robustness balls after stage II are not affected when passing
the ReLU, by Equations (11) and (12).

Stage III (Grid Indexing) By Equation (11), each z′
i ∈ Rm is at least 2µ′′′ distant away from

any lattice hyperplane Hz,j := {z ∈ Rm | zj = z} for with any j ∈ [m] and z ∈ Z. Thus,
each robustness ball of D′′′ lies completely within a single integer lattice (or unit grid) of the form∏m

j=1[nj , nj + 1), where (n1, · · · , nm) ∈ Zm.
Since ϵD′′′ ≥

√
m/2, we have

∥∥z′
i − z′

i′

∥∥
2
≥

√
m for all i, i′ with yi ̸= yi′ . As sup{∥z − z′∥2 |

z, z′ ∈
∏m

j=1[nj , nj + 1)} =
√
m, no two data-points with data points lie within the same integer

lattice. Since each µ′′′-ball lies within a single grid, we conclude that no two µ′′′-ball with different
labels lie within the same grid.

We define R = maxi∈[N ] ∥z′
i∥∞ (= maxi∈[N ],j∈[m](z

′
i,j)). Our goal in this step is to construct

Flatten mapping defined as

Flatten(x) := Rm−1⌊x1⌋+Rm−2⌊x2⌋+ · · ·+ ⌊xm⌋.

This maps a grid
∏m

j=1[nj , nj+1) onto
∑m

j=1R
j−1nj .

Since Flatten is discontinuous in nature, we construct Flatten, which is continuous and matches
Flatten in the region of our interest. By applying Theorem 25 to γ = 1

4N and n = ⌈log2R⌉, we
obtain the network Floor := Floor⌈log2 R⌉ with O(log2R) parameters such that

Floor(x) = ⌊x⌋ ∀x ∈ B2(xi, µ
′).
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We define our network Flatten as

Flatten(x) = Rm−1Floor(x1) + · · ·+ Floor(xd).

We can construct Flatten with O(m log2R) parameters. Flatten maps each robustness ball
B2(z

′
i, µ

′′′) to Flatten = Flatten(zi) ∈ Z. Let us denote mi := Flatten(zi). Then, mi ∈ Z ∈
[0, Rm+1] for all i ∈ [N ].

Stage IV (Memorization) Finally, it remains to memorize N points {(mi, yi)}Ni=1 ⊂ N× [C].
Since multiple balls with the same label may correspond to the same grid index, it is possible that
for some i ̸= j with yi = yj , we have mi = mj . Let N ′ ≤ N denote the number of distinct pairs
(mi, yi). It suffices to memorize only these N ′ distinct data points in Rm.

We apply Theorem 13 by Vardi et al. [12], using r = Rm since mi = Flatten(xi) ≤ Rm+1

to construct fmem with Õ(
√
M · log(5RmN2ϵ−1√πm)) = Õ(m

√
M) = Õ(logN

√
M) =

Õ(
√
M) = Õ(

√
N) parameters such that fmem(mi) = yi.

The final network is f : Rd → R is defined as

f(x) = fmem ◦ ReLU ◦ Flatten ◦ ReLU ◦ (ReLU(f1(x))− b2)

The total construction requires Õ(md+m+m log2R+
√
N) = Õ(d+

√
N) parameters.

The following is the classical memorization upper bound of parameters used in the proof of
Theorem 12

Theorem 13 (Classical Memorization, Theorem 3.1 from Vardi et al. [12]) Let N, d,C ∈ N,
and r, ϵ > 0, and let (x1, y1), . . . , (xN , yN ) ∈ Rd × [C] be a set of N labeled samples with
∥xi∥ ≤ r for every i and ∥xi − xj∥ ≥ 2ϵ for every i ̸= j. Denote R := 5rN2ϵ−1

√
πd. Then, there

exists a neural network F : Rd → R with width 12 and depth

O

(√
N logN +

√
N

logN
·max {log(R), log(C)}

)
,

such that F (xi) = yi for every i ∈ [N ].

G.2. Sufficient Condition for Near-Perfect Robust Memorization with Moderate Robustness
Radius

Theorem 14 Let ρ ∈
(
0, 1

5
√
d

]
, and η ∈ (0, 1). For any dataset D ∈ Dd,N,C , there exists a neural

network f ∈ Fd,P that ρ-robustly memorizes D with error at most η, where the number of parameters
satisfies P = Õ(Nd

1
4 ρ

1
2 ).

Proof Let D = {(xi, yi)}i∈[N ] ∈ Dd,N,C , and suppose the robustness ratio satisfies ρ < 1
5
√
d
. We

aim to construct a network f that ρ-robustly memorizes D with Õ(Nd
1
4 ρ

1
2 ) parameters.

Stage I (Projecting the Balls onto logN -scale Dimensional Space): If d > ⌈600 logN⌉, we
begin by projecting the data points and their balls from Rd to Rm where m = ⌈600 logN⌉. By
applying Theorem 28, we can get 1-Lipschitz linear mapping ϕ : Rd → Rm such that

∥ϕ(xi)− ϕ(xj)∥2 ≥
4

5

√
m

d
ϵD ∀yi ̸= yj .
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By the 1-Lipschitzness of ϕ, it holds that

ϕ (B2(xi, ρϵD)) ⊂ B2 (ϕ(xi), ρϵD) .

We define the projection network fproj := ϕ(x), which can be implemented as a linear layer
with dm = O(d logN) parameters. Let x′ := fproj(x). We now work with the dataset (x′

i, yi) ⊂
Rm × [C] with new separation 2

5

√
m
d ϵD. We denote the new robustness ratio as

ρ′ :=
5

2

√
d

m
ρ <

1

2
√
m
.

Stage II (Memorizing Nα Points at Each Layer): We group N data points to ⌈N1−α⌉ groups
with index {Ij}N

1−α

j=1 , each with |Ij | ≤ ⌊Nα⌋+ 1.
For each j ∈ [N1−α], we apply Theorem 21 to the group {(x′

i, yi)}i∈Ij using failure probability
η

N1−α and α satisfying ⌈Nα⌉ = ⌊ 1
2ρ′

√
m
⌋ ≤ 1

2ρ′
√
m

where 1
2ρ′

√
m

> 1. Then, ρ′ satisfies ρ′ ≤
1

2⌈Nα⌉
√
m

< 1
2Nα

√
m

. We obtain a neural network f̃j with Õ
(
N

α
2

)
parameters such that:

f̃j(x) = yi ∀x ∈ B(xi, ρϵD,p), i ∈ Ij ,

Px∈Unif(B(xi,ρϵD,p))

[
f̃j(x) ∈ {0, yi}

]
≥ 1− η

N1−α
∀i ∈ [N ]\Ij .

Thus, we have

Px∈Unif(B(xi,ρϵD,p))

[
f̃j(x) ∈ {0, yi}

]
≥ 1− η

N1−α
∀i ∈ [N ], j ∈ [N1−α]. (13)

We define for each j:

fj

((
x
y

))
=

(
x

y + σ
(
f̃j(x)− y

)) ,

so that the last coordinate y + σ
(
f̃j(x)− y

)
= max{f̃j(x), y}. Finally, we define the network

f(x) :=

(
0
1

)⊤
fN1−α ◦ · · · ◦ f2 ◦ f1

(
fproj(x)

0

)
.

We now verify the correctness of the construction. For any x ∈ B(xi, ρϵD,p), since we partition
[N ] into disjoint groups {Ij}j∈[N1−α], there exists a unique index j such that i ∈ Ij and thus
f̃j(x) = yi holds. For all j′ ̸= j, the networks satisfy f̃j′(x) ∈ {0, yi} with high probability, so none
of them can exceed yi. Since the final network outputs the maximum among y and all f̃j(x), we
have f(x) = yi as long as each f̃j(x) ∈ {0, yi}. Therefore,[

f̃j(x) ∈ {0, yi} ∀j ∈ [N1−α]
]
⇒ f(x) = yi.

Since each f̃j satisfies Px∼Unif(B(xi,ρϵD,p))[f̃j(x) ∈ {0, yi}] ≥ 1− η
N1−α for all j ∈ [N1−α], we

lower bound the success probability using the product:
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Thus, we have:

Px∈Unif(B(xi,ρϵD,p)) [f(x) = yi] ≥Px∈Unif(B(xi,ρϵD,p))

[
f̃j(x) ∈ {0, yi} ∀j ∈ [N1−α]

]
≥

∏
j∈[N1−α]

Px∈Unif(B(xi,ρϵD,p))

[
f̃j(x) ∈ {0, yi}

]
(a)

≥
(
1− η

N1−α

)N1−α

≥1− η,

where (a) holds by Equation (13).
We verify the number of parameters of f . The network fproj needs dm = O(d logN) parameters.

When we obtain f̃j by Theorem 21, data points need to be translated. It needs m2 = O((logN)2)

parameters. Each f̃j has Õ
(
N

α
2

)
parameters so the number of parameters is

Õ
(
N1−α ×N

α
2

)
= Õ

(
N1−α

2

)
(a)
= Õ(Nρ′

1
2m

1
4 )

(b)
= Õ

(
Nd

1
4 ρ

1
2

)
,

where (a) holds by ⌈Nα⌉ = ⌊ 1
2ρ′

√
m
⌋ and (b) holds by the definition of ρ′ = 5

2

√
d
mρ.

This construction is motivated by the need to handle overlapped robustness balls with same label.
We transform the construction of classical memorization in Vardi et al. [12] in two key directions: first,
from memorizing isolated data points xi to memorizing entire robustness neighborhoods Bp(xi, µ);
and second, to ensuring correct classification even within regions where multiple robustness balls with
same label overlap. To accomplish this, we introduce disjoint, integer-aligned interval encodings and
carefully control the error propagation caused by dimension reduction, as addressed in Theorem 20.

G.2.1. MEMORIZATION OF INTEGERS WITH SUBLINEAR PARAMETERS IN N

Lemmas in this section are slight extension of those in Vardi et al. [12], adapted to our integer-based
encoding scheme.

From here, BINi:j(n) denotes the bit string from position i to j (inclusive) in the binary rep-
resentation of n. For example, BIN1:3(37) = 4, since (37)10 = (100101)2 so that BIN1:3(37) =
(100)2 = (4)10.

Lemma 15 Let η > 0 and m,n ∈ N with m < n. Then, there exists a neural network F : R → R
with width 2 and depth 2 such that F (x) = 1 for x ∈ [m,n− η] and F (x) = 0 for x ≤ m− η or
x ≥ n.

Proof We construct a network F :

F (x) = σ

(
1− σ

(
−1

η
(x−m)

))
+ σ

(
1− σ

(
1

η
(x− (n− η))

))
+ 1.

It satisfies the requirements with depth 2 and width 2.
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Lemma 16 Let η ∈ (0, 1), and let m1 < · · · < mN be natural numbers. Let N1, N2 ∈ N satisfy
N1 · N2 ≥ N , and let w1, . . . , wN1 ∈ N. Then, there exists a neural network F : R → R with
width 4 and depth 3N1 + 2 such that, for all i ∈ [N ] and all x ∈ [mi,mi + 1− η],

F (x) = w⌈ i
N2

⌉,

and F (x) = 0 for x ∈ R\
⋃

j∈[N1]
(m(j−1)N2+1 − η, mjN2 + 1).

Proof Let j ∈ [N1]. We define network blocks F̃j : R → R and Fj : R2 → R2 as follows. By
applying Theorem 15, we construct F̃j such that:

F̃j(x) =

{
1 if x ∈

[
m(j−1)N2+1, mjN2 + 1− η

]
,

0 if x ≤ m(j−1)N2+1 − η or x ≥ mjN2 + 1.

In other words, for any x ∈ [mi,mi + 1 − η], F̃i(x) = 1 if i ∈ [(j − 1) · N2 + 1, j · N2], and
F̃j(x) = 0 otherwise.

Next, we define:

Fj

((
x
y

))
=

(
x

y + wj · F̃j(x)

)
.

Finally, we define the network F (x) =

(
0
1

)⊤
FN1 ◦ · · · ◦ F1

((
x
0

))
.

We now verify the correctness of the construction. For i ∈ [N ], and let x ∈ [mi,mi + 1− η].
For j = ⌈ i

N2
⌉, we have F̃j(x̃i) = 1, and for all j′ ̸= j, F̃j′(x̃i) = 0. Therefore, the output of F

satisfies F (x̃i) = wj = w⌈ i
N2

⌉.

The width of each Fj is at most the width required to implement F̃j , plus two additional units to
carry the values of x and y. Since the width of F̃j is 2, the width of F is at most 4. Each block Fj

has depth 3, and F is a composition of N1 blocks. Additionally, one layer is used for the input to get

x 7→
(
x
0

)
, and another to extract the last coordinate of the final input. Thus, the total depth of F is

3N1 + 2.

Lemma 17 (Lemma A.7, Vardi et al. [12]) Let n ∈ N and let i, j ∈ N with i < j ≤ n. Denote
Telgarsky’s triangle function by φ(z) := σ(σ(2z)− σ(4z − 2)). Then, there exists a neural network
F : R2 → R3 with width 5 and depth 3(j − i+ 1), such that for any x ∈ N with len(x) ≤ n, if the

input of F is
(
φ(i−1)

(
x
2n + 1

2n+1

)
φ(i−1)

(
x
2n + 1

2n+2

)), then it outputs:

φ(j)
(

x
2n + 1

2n+1

)
φ(j)

(
x
2n + 1

2n+2

)
BINi:j(x)

.

Lemma 18 (Extension of Lemma A.5, Vardi et al. [12]) Let η > 0, and let n, ρ, c ∈ N and
u,w ∈ N. Assume that for all ℓ, k ∈ {0, 1, . . . , n − 1} with ℓ ̸= k, the bit segments of u sat-
isfy

BINρ·ℓ+1:ρ·(ℓ+1)(u) ̸= BINρ·k+1:ρ·(k+1)(u).

Then, there exists a neural network F : R3 → R with width 12 and depth 3n ·max{ρ, c}+ 2n+ 2,
such that the following holds:
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For every x > 0, if there exist j ∈ {0, 1, . . . , n− 1} such that

x ∈ [BINρ·j+1:ρ·(j+1)(u),BINρ·j+1:ρ·(j+1)(u) + 1− η],

then the network satisfies

F

x
w
u

 = BINc·j+1:c·(j+1)(w) .

Moreover, F

x
w
u

 = 0 for

x ∈ R \
⋃

j∈{0,··· ,n−1}

(BINρ·j+1:ρ·(j+1)(u)− η,BINρ·j+1:ρ·(j+1)(u) + 1).

Proof We define the triangle function φ(z) := σ(σ(2z)− σ(4z − 2)) as introduced by Telgarsky
[11]. For i ∈ {0, 1, . . . , n− 1}, we construct a network block Fi:

Fi :



x

φ(i·ρ) ( u
2n·ρ + 1

2n·ρ+1

)
φ(i·ρ) ( u

2n·ρ + 1
2n·ρ+2

)
φ(i·c) ( w

2n·c +
1

2n·c+1

)
φ(i·c) ( w

2n·c +
1

2n·c+2

)
y

 7→



x

φ((i+1)·ρ) ( u
2n·ρ + 1

2n·ρ+1

)
φ((i+1)·ρ)

(
u

2n·ρ + 1
2n·ρ+2

)
φ((i+1)·c) ( w

2n·c +
1

2n·c+1

)
φ((i+1)·c) ( w

2n·c +
1

2n·c+2

)
y + yi


where yi = BINi·c+1:(i+1)·c(w) if x ∈ [BINi·ρ+1:(i+1)·ρ(u), BINi·ρ+1:(i+1)·ρ(u)+1−η], and yi = 0
if x ≤ BINi·ρ+1:(i+1)·ρ(u)− η or x ≥ BINi·ρ+1:(i+1)·ρ(u) + 1.

To compute yi, we first extract the relevant bit segments from u and w using Theorem 17. We
define two subnetworks Fw

i , F u
i :

F u
i :

(
φ(i·ρ) ( u

2n·ρ + 1
2n·ρ+1

)
φ(i·ρ) ( u

2n·ρ + 1
2n·ρ+2

)) 7→

φ((i+1)·ρ) ( u
2n·ρ + 1

2n·ρ+1

)
φ((i+1)·ρ) ( u

2n·ρ + 1
2n·ρ+2

)
BINi·ρ+1:(i+1)·ρ(u)


Fw
i :

(
φ(i·c) ( w

2n·c +
1

2n·c+1

)
φ(i·c) ( w

2n·c +
1

2n·c+2

)) 7→

φ((i+1)·c) ( w
2n·c +

1
2n·c+1

)
φ((i+1)·c) ( w

2n·c +
1

2n·c+2

)
BINi·c+1:(i+1)·c(w)

 .

A subnetwork F u
i maps the pair of triangle encodings of u to the updated encodings for i + 1,

along with the extracted bits BINi·ρ+1:(i+1)·ρ(u). A subnetwork Fw
i does the same for w, yielding

BINi·c+1:(i+1)·c(w).
We then construct a network with width 2 and depth 2 to obtain yi from inputs BINi·ρ+1:(i+1)·ρ(u)

and x. Firstly, we use Theorem 15 to construct a network that output ỹi:

ỹi =

{
1 if x ∈ [BINi·ρ+1:(i+1)·ρ(u), BINi·ρ+1:(i+1)·ρ(u) + 1− η],

0 if x ≤ BINi·ρ+1:(i+1)·ρ(u)− η or x ≥ BINi·ρ+1:(i+1)·ρ(u) + 1.
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Secondly, we construct the following 1-layer network that use ỹi as input:(
ỹi

BINi·c+1:(i+1)·c(w)

)
7→ σ

(
ỹi · 2c+1 − 2c+1 +BINi·c+1:(i+1)·c(w)

)
This ensures that the output is BINi·c+1:(i+1)·c(w) if ỹi = 1, and the output is 0 if ỹi = 0 since
BINi·c+1:(i+1)·c(w) ≤ 2c.

Finally, the full network F is constructed as a composition:

F := G ◦ Fn−1 ◦ · · · ◦ F0 ◦H ,

where for x,w, u > 0: (1) H : R3 → R6 is a 1-layer network that maps (x,w, u) to the required
initial encoding inputs, namely:

H :

x
w
u

 7→



x
u

2n·ρ + 1
2n·ρ+1

u
2n·ρ + 1

2n·ρ+2

w
2n·c +

1
2n·c+1

w
2n·c +

1
2n·c+2

0

 ,

(2) G : R5 → R is a 1-layer network that outputs the last coordinate.
We verify the correctness of the construction. The output of the full network is given by:

F

x
w
u

 =

n−1∑
i=0

yi.

If there exists j ∈ {0, 1 . . . , n−1} such that x ∈ [BINρ·j+1:ρ·(j+1)(u),BINρ·j+1:ρ·(j+1)(u)+1−η],
then by the construction we obtain yj = BINc·j+1:c·(j+1)(w), while yℓ = 0 for all ℓ ̸= j. This is
because the bit-encoded intervals are disjoint as BINρ·ℓ+1:ρ·(ℓ+1)(u) ̸= BINρ·k+1:ρ·(k+1)(u). Hence,
the final output of F is:

n−1∑
i=0

yi = yj = BINc·j+1:c·(j+1)(w).

We now analyze the width and depth of the constructed network F . Each block Fi comprises Fw
i

and F u
i , each of width 5. In addition, two neurons are used to process x and y, resulting in a total

width of 12. The outputs ỹi and yi are produced by additional layers with width 2 and 1, respectively,
both of which are smaller than 12. We also compose the networks H and G, with width 6 and 1,
respectively, again remaining within 12.

Each of the networks F u
i and Fw

i has depth at most 3max{ρ, c}. The layers obtaining ỹi and
yi contribute an additional 2 layers, resulting in a total depth of 3max{ρ, c}+ 2 for each block Fi.
Composing all n such blocks, and including one additional layer each for H and G, the total depth
of network F is 3n ·max{ρ, c}+ 2n+ 2.
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G.2.2. PRECISE CONTROL OF ROBUST MEMORIZATION ERROR

Theorem 21 constructs the network for Stage II in Theorem 14, while the robust memorization error
is controlled in Theorem 20.

Lemma 19 Let N, d,C ∈ N, and let (m1, y1), . . . , (mN , yN ) ∈ D1,N,C ⊂ N× [C] be a set of N
labeled samples with mi ̸= mj for every i ̸= j. Then, there exists a neural network F : Rd → R
with Õ(

√
N) parameters such that

F (m) =

{
yi for every m ∈ {mi}i∈N ,

0 for every m ∈ N\{mi}i∈N .

Proof Let M = {mi}i∈N . We group the elements in M to ⌈
√
N⌉ groups, each containing at most

⌊
√
N⌋+ 1 natural numbers inside. For each interval indexed by j ∈ {1, . . . , ⌈

√
N⌉}, we define two

integers wj , uj ∈ N to encode the integer mi ∈ M and the corresponding labels yi as follows.

For each i ∈ [N ], letting j :=
⌈

i
⌊
√
N⌋+1

⌉
, k := i mod (⌊

√
N⌋ + 1) and R := maxi∈[N ] mi,

we define:

BINk·log2 R+1:(k+1)·log2 R(uj) = mi

BINk·log2 C+1:(k+1)·log2 C(wj) = yi .

Thus, in each group j, the integer uj contains log2R bits per integer, which represent the k-th integer
in this group. In the same manner, wj contains log2C bits per integer, which represent the label of
the k-th integer in this group.

By applying Theorem 16 to η = 1
2 , we construct a neural network F1 that maps m ∈ M to

their corresponding groups, and maps m ∈ N\
⋃

j∈[⌈
√
N⌉][m(j−1)(⌊

√
N⌋+1)+1, mj(⌊

√
N⌋+1) + 1) to

0. Thus, all natural numbers are assigned to their corresponding group or 0.
For each i ∈ [N ], we define the group index

ji :=

⌈
i

⌊
√
N⌋+ 1

⌉
.

Then, the network F1 maps any input m ∈ M to the representation

F1(m) =

m
wji

uji

 ,

and F1(m) =

m
0
0

 for m ∈ N\
⋃

j∈[⌈
√
N⌉][m(j−1)(⌊

√
N⌋+1)+1, mj(⌊

√
N⌋+1) + 1). The network

F2 has width 9 and depth O(
√
N).

Now, we apply Theorem 18 to construct a network F2 : R3 → R with the following property.
For each i ∈ [N ], j ∈

[
⌈
√
N⌉
]
, and k ∈

{
0, . . . , ⌊

√
N⌋
}

, suppose that mi is the k-th integer in the
j-th group. Then, the network satisfies :

F2

mi

wj

uj

 = BINk·log2 C+1:(k+1)·log2 C(wj) = yi.
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Moreover, for m ∈ N \M, F2

m
wj

uj

 = 0 or F2

m
0
0

 = 0. Thus, the network F3 extracts

the label corresponding to each data point from the encoded label set of the group to which the
interval belongs or outputs 0. The network F3 has width 12, depth O(

√
N).

Finally, we define the classifier network F : Rd → R as

F (x) = F2 ◦ F1(x).

The overall network F has width 12 and depth Õ(
√
N), which correspond to the maximum

width and total depth of its component networks.

Lemma 20 Let B2(x0, µ) be a Euclidean ball with center x0 ∈ Rd and radius µ > 0. Let u ∈ Rd

be a unit vector, and define the affine function f(x) := 1
2µ(u

⊤x+ b) for some b ∈ R. Then for any
interval I ⊂ R of length η, the volume fraction of the ball mapped into I satisfies:

Vol ({x ∈ B2(x0, µ) | f(x) ∈ I})
Vol (B2(x0, µ))

≤ 2η

B
(
1
2 ,

d+1
2

) ,
where B(·, ·) denotes the Beta function.

Proof Let x = x0 + µy, so that y ∈ Bd(0, 1). Under this change of variables,

f(x) =
1

2µ
(u⊤(x0 + µy) + b) =

1

2
(u⊤y) +

1

2µ
(u⊤x0 + b).

Thus, f(x) ∈ I if and only if u⊤y ∈ J , where

J := 2I − 1

µ
(u⊤x0 + b) ⊂ R

is an interval of length 2η. We define the preimage set

A := {x ∈ B2(x0, µ) | f(x) ∈ I} .

Then,
Vol(A) = µd ·Vol

({
y ∈ Bd(0, 1)

∣∣∣u⊤y ∈ J
})

.

The distribution of u⊤y, where y ∼ Unif(B2(0, 1)), has density

p(t) =
1

Zd
(1− t2)

d−1
2 for t ∈ [−1, 1], Zd = B

(
1

2
,
d+ 1

2

)
.

Thus,

Vol(A) = µd

∫
J
p(t)dt ≤ µd ·

∫
J
1 dt = µd · 2η,

Vol(B2(x0, µ)) = µd · Zd.

Hence,
Vol (x ∈ B2(x0, µ) : f(x) ∈ I)

Vol (B2(x0, µ))
=

Vol(A)

Vol(B2(x0, µ))
≤ 2η

Zd
=

2η

B
(
1
2 ,

d+1
2

) .
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Lemma 21 Let η ∈ (0, 1), α ∈ [0, 1] and let {(xi, yi)}i∈[N ] = D ∈ Dd,N,C be a class-separated
dataset. Suppose the robustness ratio ρ satisfies ρ < 1

2Nα
√
d

. Then, for any I ⊂ [N ] with |I| = ⌊Nα⌋,

there exist a neural network f with Õ
(
N

α
2

)
parameters such that:

f(x) = yi ∀x ∈ B(xi, ρϵD,p), i ∈ I,

Px∈Unif(B(xi,ρϵD,p)) [f(x) ∈ {0, yi}] ≥ 1− η ∀i ∈ [N ]\I.

Proof We begin with the same assumptions on the dataset {(xi, yi)}i∈I as used in the proof of
Theorem 12 without loss of generability. Given the robustness ratio ρ, we scale the dataset D by a
factor of 1

4⌊Nα⌋ρϵD,p
. Then, applying Theorem 24, we translate the data points so that:

dist(xi,j − bj ,Z) ≥
1

2⌊Nα⌋
, ∀i ∈ I, j ∈ [d]. (14)

We now consider the scaled and translated dataset D′ such that (i) is point-separated with ϵ†D′,p = 1
4⌊Nα⌋ρ

separation (ii) holds Equation (14), and (iii) all coordinates of data points are positive. Moreover, we
consider µ′ = 1

4⌊Nα⌋ -ball.

The construction closely follows that of Theorem 12. Define a neural network Flatten : Rd → R
as

Flatten(x) = Rd−1Floor(x1) + · · ·+ Floor(xd),

where Floor := Floor⌈log2 R⌉ is the approximate floor function with O(log2R) parameters obtained

from Theorem 25 with γ = η′ ≤ µ′B( 1
2
, d+1

2 )
2d η.

We also define:

Flatten(x) := Rd−1⌊x1⌋+Rd−2⌊x2⌋+ · · ·+ ⌊xd⌋.

By construction of Floor, for any x satisfying:

xj − ⌊xj⌋ > η′ ∀j ∈ [d], (15)

we have:
Flatten(x) = Flatten(x).

From Equation (14), each coordinate of the data points xi for i ∈ I has a distance at least 2µ′

from the integer lattice. Thus, for x in µ′-ball centered with at xi, namely, x ∈ B2(xi, µ
′), it has a

distance at least µ′ from the integer lattice. Thus, the ball lies within a grid, and we have:

xj − ⌊xj⌋ ≥ µ′ (a)>
µ′B

(
1
2 ,

d+1
2

)
2d

η
(b)

≥ η′,

where (a) holds since B
(
1
2 ,

d+1
2

)
≤ π

2 and η < 1, and (b) holds from the definition of η′. Thus, for
any i ∈ I and any x ∈ B2(xi, µ

′), the point x is mapped to the same integer value mi := Flatten(x),
namely,

Flatten(x) = Flatten(x) = mi ∈ N ∀x ∈ B(xi, µ
′), i ∈ I.

Note that the lattice distance condition in Equation (14) applies only to the subset {(xi, yi)}i∈I ,
rather than the entire dataset. As a result, for indices i ∈ [N ] \ I , the distance from the lattice is not
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guaranteed. Thus, it can lie across the lattice. However, it guarantees that data points with different
labels are assigned to different grid cells since:

ϵD′,p =
1

4⌊Nα⌋ρ
(a)
>

Nα
√
d

2⌊Nα⌋
≥

√
d

2
,

where (a) holds form the ρ condition. So for any i ̸= j such that yi ̸= yj , two balls B(xi, µ
′) and

B(xj , µ
′) never intersect the same grid cells. For c ∈ [C], let

Gc :=
⋃
i∈[I]

s.t. yi=c

{mi},

then, we define G :=
⋃

c∈[C]Gc = {mi}i∈[N ].
For x ∈ B(xi, µ

′),
Flatten(x) /∈

⋃
c∈[C]

s.t.yi ̸=c

Gc.

Since Flatten(x) is integer, it is equivalent with the following:

Flatten(x) /∈
⋃

c∈[C]
s.t.yi ̸=c

Gc ⇐⇒ [Flatten(x) /∈ G or Flatten(x) ∈ Gyi ] (16)

Applying Theorem 19 to the dataset {(mi, yi)}i∈I , we obtain a neural network fmem with Õ(N
α
2 )

parameters satisfying:

fmem(m) =

{
yi for every m ∈ {mi}i∈N = G,

0 for every m ∈ N\{mi}i∈N = N\G.

We define the final network as

f := fmem ◦ Flatten.

It has Õ(N
α
2 + d log2R) parameters. Neglecting the trivial linear term in d, the total parameter

count is Õ(N
α
2 ).

For i ∈ I and any x ∈ B(xi, µ
′), we have

f(x) = fmem ◦ Flatten(x) = fmem(mi) = yi.

Next, consider i ∈ [N ] \ I . For any x ∈ B(xi, µ
′), it satisfies Equation (16). Let’s consider each

case. First, if Flatten(x) /∈ G, it holds fmem ◦Flatten(x) = 0 by the construction of fmem. Second,
if Flatten(x) ∈ Gyi , it holds fmem ◦ Flatten(x) = yi.

From the construction of Flatten, if x holds Equation (15), we have

fmem ◦ Flatten(x) = fmem ◦ Flatten(x) ∈ {0, yi}.

What is left here is to consider the probability of when Equation (15) holds.
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To bound the probability of when Equation (15) does not hold, observe that

Px∈Unif(B(xi,ρϵD,p)) [f(x) /∈ {0, yi}]
=Px∈Unif(B(xi,µ′))

[
xj − ⌊xj⌋ ≤ η′ ∃j ∈ [d]

]
≤
∑
j∈[d]

Px∈Unif(B(xi,µ′))

[
xj − ⌊xj⌋ ≤ η′

]
≤
∑
j∈[d]

max
Ij

s.t. Len(Ij)=η′

Px∈Unif(B(xi,µ′)) [xj ∈ Ij ]

(a)

≤
∑
j∈[d]

2η′

µ′B
(
1
2 ,

d+1
2

)
=

2η′d

µ′B
(
1
2 ,

d+1
2

)
≤η

The inequality (a) follows from Theorem 20 applied to a unit vector u = ej, b = 0, and an
interval Ij

µ′ . This concludes the proof.

G.3. Sufficient Condition for Robust Memorization with Large Robustness Radius

Theorem 22 Let ρ ∈
(

1
5
√
d
, 1
)

. For any dataset D ∈ Dd,N,C , there exists f ∈ Fd,P that ρ-robustly

memorizes D, where the number of parameters satisfies P = O(Nd2ρ4 + d2ρ2).

Proof Let D = {(xi, yi)}i∈[N ] ∈ Dd,N,C be given. We divide the proof into three cases, the first
case under ρ ∈ [1/3, 1), the second case under ρ ∈ (1/5

√
d, 1/3) and d < 600 logN , and finally the

third case under ρ ∈ (1/5
√
d, 1/3) and d ≥ 600 logN . The first two cases follow easily from the

prior works, while the third case requires a careful analysis using the dimension reduction technique
that follows from the Johnson-Lindenstrauss lemma. Let us deal with each case one by one.

Case I: ρ ∈ [1/3, 1). In the first case, where ρ ∈ [1/3, 1), the result directly follows from the prior
result by Yu et al. [13]. In particular, we apply Theorem 43. Let us denote R := maxi∈[N ] ∥xi∥2
and γ := (1− ρ)ϵD,p. Note that R ≥ ∥xi∥∞ for all i ∈ [N ] as ∥x∥2 ≥ ∥x∥∞ for all x ∈ Rd. By
applying Theorem 43, there exists f ∈ Fd,P with P = O(Nd2(log( d

γ2 + logR)) parameters that
ρ-robustly memorize D. The number of parameters can be further bounded as follows:

O(Nd2(log(
d

γ2
+ logR))

(a)
= O(Nd2ρ4 · (log( d

γ2
+ logR))

(b)
= Õ(Nd2ρ4),

where (a) is due to ρ = Ω(1), (b) hides the logarithmic factors.

Case II: ρ ∈ (1/5
√
d, 1/3) and d < 600 logN . In the second case, where d < 600 logN and

(1/5
√
d, 1/3), the result also directly follows from the prior result by Yu et al. [13]. In particular,

we apply Theorem 43. Let us denote R := maxi∈[N ] ∥xi∥2 and γ := (1 − ρ)ϵD,p. Note that
R ≥ ∥xi∥∞ for all i ∈ [N ] as ∥x∥2 ≥ ∥x∥∞ for all x ∈ Rd. By Theorem 43, there exists
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f ∈ Fd,P with P = O(Nd2(log( d
γ2 + logR)) parameters that ρ-robustly memorize D. The number

of parameters can be further bounded as follows:

O(Nd2(log(
d

γ2
+ logR))

(a)
= O(N(logN)2 · (log( d

γ2
+ logR))

(b)
= Õ(N)

(c)
= Õ(Nd2ρ4),

where (a) is due to d ≤ 600 logN , (b) hides the logarithmic factors, and (c) is because N ≤ 625Nd2ρ4

for all ρ ∈
(

1
5
√
d
, 13

)
.

Case III: ρ ∈ (1/5
√
d, 1/3) and d ≥ 600 logN . In the third case, where d ≥ 600 logN , we

utilize the dimension reduction technique by Theorem 28. We apply Theorem 28 with m =
max{⌈9dρ2⌉, ⌈600 logN⌉, ⌈10 log d⌉} and α = 1/5. Let us first check that the specified m satisfies
the condition 24α−2 logN ≤ m ≤ d for the proposition to be applied. α = 1/5 and m ≥ 600 logN
ensure the first inequality 24α−2 logN ≤ m. The second inequality m ≤ d is decomposed into
three parts. Since ρ ≤ 1

3 , we have 9dρ2 ≤ d so that

⌈9dρ2⌉ ≤ d. (17)

Moreover, 600 logN ≤ d implies

⌈600 logN⌉ ≤ d. (18)

Additionally, as N ≥ 2, we have d ≥ 600 logN ≥ 600 log 2 ≥ 400. By Theorem 23, this implies
10 log d ≤ d and therefore

⌈10 log d⌉ ≤ d. (19)

Gathering Equations (17) to (19) proves m ≤ d.
By the Theorem 28, there exists 1-Lipchitz linear mapping ϕ : Rd → Rm and β > 0 such that

D′ := {(ϕ(xi), yi)}i∈[N ] ∈ Dm,N,C satisfies

ϵD′ ≥ 4

5
βϵD. (20)

As m ≥ 10 log d, the inequality β ≥ 1
2

√
m
d is satisfied by Theorem 28. Therefore, we have

β ≥ 1

2

√
m

d

(a)

≥ 1

2

√
⌈9dρ2⌉

d
≥ 1

2

√
9dρ2

d
=

3

2
ρ, (21)

where (a) is by the definition of m. Moreover, since ϕ is 1-Lipchitz,

∥ϕ(xi)∥2 = ∥ϕ(xi − 0)∥2 = ∥ϕ(xi)− ϕ(0)∥2 ≤ ∥xi − 0∥2 = ∥xi∥2 , (22)

for all i ∈ [N ]. Hence, by letting R := maxi∈[N ]{∥xi∥2}, we have ∥ϕ(xi)∥2 ≤ R for all i ∈ [N ].
Now, we set the first layer hidden matrix as the matrix W corresponding to ϕ under the standard

basis of Rd and Rm. Moreover, set the first hidden layer bias as b := 2R1 = 2R(1, 1, · · · , 1) ∈ Rm.
Then, we have

Wx+ b ≥ 0, (23)
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for all x ∈ B2(xi, ϵD,2) for all i ∈ [N ], where the comparison between two vectors are element-wise.
This is because for all i ∈ [N ], j ∈ [m] and x ∈ B2(x, ϵD,2), we have

(Wx+ b)j = (Wx)j + 2R ≥ 2R− ∥Wx∥2
(a)

≥ 2R− ∥x∥2
(b)

≥ 2R− (R+ ϵD,2)
(c)

≥ 0,

where (a) is by Equation (22), (b) is by the triangle inequality, and (c) is due to R > ϵD,2.
We construct the first layer of the neural network as f1(x) := σ(Wx+ b) which includes the

activation σ. Then, by above properties, D′′ := {(f1(xi), yi)}i∈[N ] satisfies

ϵD′′ ≥ 6

5
ρϵD. (24)

This is because for i ̸= j with yi ̸= yj we have

∥f1(xi)− f1(xj)∥2 = ∥σ(Wxi + b)− σ(Wxj + b)∥2
(a)
= ∥(Wxi + b)− (Wxj + b)∥2
= ∥ϕ(xi)− ϕ(xk)∥2
(b)

≥ 2ϵD′

(c)

≥ 2× 4

5
βϵD

(d)

≥ 2× 4

5
× 3

2
ρϵD

=
12

5
ρϵD,

where (a) is by Equation (23), (b) is by the definition of the ϵD′ , (c) is by Equation (20), and
(d) is by Equation (21). By Theorem 43 applied to D′′ ∈ Dm,N,C , there exists f2 ∈ Fm,P with
P = O(Nm2(log( d

(γ′′)2 + logR′′)) number of parameters that 5
6 -robustly memorize D′′, where

γ′′ := (1− 5

6
)ϵD′′

(a)

≥ 1

6
× 12

5
ρϵD =

2

5
ρϵD,

R′′ := max
i∈[N ]

∥f1(xi)∥2 = max
i∈[N ]

∥σ(Wxi + b)∥2 = max
i∈[N ]

∥Wxi + b∥2

≤ max
i∈[N ]

∥Wxi∥2 + ∥b∥2 ≤ 3R,

where (a) is by Equation (24).
Now, we claim that f := f2◦f1 ρ-robustly memorize D. For any i ∈ [N ], take x ∈ B2(xi, ρϵD,2).

Then, by Equation (23), we have f1(x) = Wx+ b and f1(xi) = Wxi + b so that

∥f1(x)− f1(xi)∥2 = ∥Wx−Wxi∥2 ≤ ∥x− xi∥2 ≤ ρϵD. (25)

Moreover, combining Equations (24) and (25) results ∥f1(x)− f1(xi)∥2 ≤ 5
6ρϵD′′,2. Since f2

5
6 -robustly memorize D′′, we have

f(x) = f2(f1(x)) = f2(f1(xi)) = yi.
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In particular, f(x) = yi for any x ∈ B2(xi, ρϵD,2), concluding that f is a ρ-robust memorizer D.
Regarding the number of parameters to construct f , notice that f1 consists of (d+ 1)m = Õ(d2ρ2)
parameters as m = Õ(dρ2). f2 consists of Õ(Nm2) = Õ(Nd2ρ4) parameters. Therefore, f in total
consists of Õ(Nd2ρ4 + d2ρ2) number of parameters. This proves the theorem for the third case.

Here is a lemma that is used to prove Theorem 22.

Lemma 23 For t ≥ e5, we have t ≥ 10 log t.

Proof Define u(t) := t− 10 log t on the domain (0,∞). Then, for all t > 10,

du

dt
= 1− 10

t
> 0,

so that u is an increasing function on (10,∞). In particular,

u(e5) = e5 − 10 log(e5) = e5 − 50 ≥ 0

This concludes that u(t) ≥ 0 for all t ≥ e5, or equivalently, t ≥ 10 log t for all t ≥ e5.

G.4. Lemmas for Lattice Mapping

Lemma 24 (Avoiding Being Near Grid) Let N, d ∈ N and x1, · · · ,xN ∈ Rd. Then, there exists
a translation vector b ∈ Rd such that:

dist([xi]j − bj ,Z) ≥
1

2N
, ∀i ∈ [N ], j ∈ [d],

i.e., the translated points {xi − b}i∈[N ] are coordinate-wise far from the integer lattice.

Proof
For each coordinate j ∈ [d], consider the set {xi,j}i∈[N ] of all j-th coordinate values. Let

{x} := x = ⌊x⌋ denote the fractional part of x. We consider the collection of fractional parts
{{xi,j}}i∈[N ], and without loss of generality, assume {x1,j} < {x2,j} < · · · < {xN,j}. Define the
maximum fractional gap as

gj := max

(
max

i∈[N−1]
({xi+1,j} − {xi,j}) , 1− {xN,j}+ {x1,j}

)
.

We claim:
gj ≥

1

N
.

Otherwise, we have:

{xN,j} − {x1,j} =
N−1∑
i=1

({xi+1,j} − {xi,j}) <
N − 1

N
,

1− {xN,j}+ {x1,j} <
1

N
⇐⇒ {xN,j} − {x1,j} >

N − 1

N
,
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which leads to a contradiction.
Now, we define the translation coordinate bj ∈ R based on the location where the maximum gj

is attained. If the maximum occurs at some consecutive pair ({xi,j}, {xi+1,j}) satisfying {xi+1,j} −
{xi,j} = gj , we set

bj =
xi,j + xi+1,j

2
.

Otherwise, if the maximum is attained as 1− xN,j + x1,j = gj , we define

bj =
1 + x1,j + xN,j

2
.

We define the full translation vector b = (b1, . . . , bd) ∈ Rd. Then the translated points {xi −
b}i∈[N ] satisfy:

dist(xi,j − bj ,Z) = min({xi,j − bj}, 1− {xi,j − bj}) ≥
1

2
gj ≥

1

2N
, for all i ∈ [N ], j ∈ [d].

This holds because bj is chosen as the midpoint of the widest gap between fractional values, ensuring
that all fractional parts are at least gj

2 away from the nearest integer. Therefore, the translated points
are coordinate-wise far from lattice points.

The following lemma shows that we can approximate the floor function using a logarithmic
number of ReLU units with respect to the length of the interval of interest.

Lemma 25 (Floor Function Approximation) For any n ∈ N and any γ ∈ (0, 1), there exists a
n-layer network Floorn with 4n number of ReLU units such that

Floorn(x) = ⌊x⌋ for all x ∈ [0, 2n) such that x− ⌊x⌋ > γ.

Proof
To reconcile the discontinuity of the floor function with the continuity of ReLU networks, we

first define a discontinuous ideal building block that exactly replicates the floor function on the target
interval [0, 2n). We then approximate this building block using a continuous neural network with
ReLU activations.

The ideal building block ∆ is defined as:

∆(x) :=


2x if x ∈ (0, 12 ]

2x− 1 if x ∈ (12 , 1]

0 otherwise

.

For n ∈ N, define the function Floorn by:

Floorn(x) = ∆n(− x

2n
+ 1) + x− 1.

We will show by induction that Floorn = ⌊x⌋ for all x ∈ [0, 2n).
For the base case n = 1,

Floor1(x) = ∆(−x

2
+ 1) + x− 1 =


2(−x

2 + 1)− 1 + x− 1 = 0 if x ∈ [0, 1)

2(−x
2 + 1) + x− 1 = 1 if x ∈ [1, 2)

0 + x− 1 = x− 1 otherwise

.
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This proves the base case: for all x ∈ [0, 2), we have Floor1(x) = ⌊x⌋.
For the inductive step, assume that Floorn(x) = ⌊x⌋ holds for all x ∈ [0, 2n). We aim to prove

that Floorn+1(x) = ⌊x⌋ for all x ∈ [0, 2n+1). Recall that:

∆(− x

2n+1
+ 1) =


− x

2n
+ 1 if x ∈ [0, 2n) (⇔ − x

2n+1
+ 1 ∈ (12 , 1])

− x

2n
+ 2 = −x− 2n

2n
+ 1 if x ∈ [2n, 2n+1) (⇔ − x

2n+1
+ 1 ∈ (0, 12 ])

0 otherwise

Thus, we have

Floorn+1(x) = ∆n+1(− x

2n+1
+ 1) + x− 1

= ∆n(∆(− x

2n+1
+ 1)) + x− 1

=


∆n(− x

2n + 1) + x− 1 = Floorn(x) = ⌊x⌋ if x ∈ [0, 2n)

∆n(−x−2n

2n + 1) + x− 1 = Floorn(x− 2n) + 2n = ⌊x⌋ if x ∈ [2n, 2n+1)

∆n(0) + x− 1 = x− 1 otherwise

.

Therefore, by induction,
Floorn = ⌊x⌋ for all x ∈ [0, 2n).

Next, we define the ReLU approximation ∆n of the discontinuous block ∆ as:

∆n(x) := 2σ(x)− 1

γn
σ

(
x− 1

2
+ γn

)
+

(
1

γn
+ 2

)
σ

(
x− 1

2

)
+

1

γn
σ (x− 1 + γn) ,

where γn = γ
2n . It can be shown that:

∆n(x) = ∆(x) for all x ∈ [0,
1

2
− γn] ∪ [

1

2
, 1− γn].

x

y

1
2 − γn

1
2

1− γn1

1
y = ∆n(x)

Figure 6: Plot of the ReLU-based approximation ∆n(x) of the ideal discontinuous building block
∆(x).
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We now explain why this approximation remains valid under recursive composition up to depth
n.

Let us define the variable x′ := − x
2n + 1, so that x = 2n(1 − x′) and x′ ∈ (0, 1]. Our target

function is:
Floorn(x) = ∆n(− x

2n
+ 1) + x− 1 = ∆n(x′) + x− 1.

We are given the assumption x − ⌊x⌋ > γ, and we aim to express this in terms of x′ to ensure
∆n

n
(x′) = ∆n(x′). We proceed step-by-step:

x− ⌊x⌋ > γ

⇐⇒ 2n(1− x′)− ⌊2n(1− x′)⌋ > γ

⇐⇒ − 2nx′ − ⌊−2nx′⌋ > γ

⇐⇒ − 2nx′ + ⌈2nx′⌉ > γ

⇐⇒ 2nx′ < ⌈2nx′⌉ − γ

⇐⇒ 2nx′ ∈ (⌈2nx′⌉ − 1, ⌈2nx′⌉ − γ)

⇐⇒ 2nx′ ∈
⋃
k∈Z

(k − 1, k − γ)

⇐⇒ x′ ∈
⋃
k∈Z

(
k − 1

2n
,
k − γ

2n

)
.

Since x′ ∈ (0, 1], we only need to consider k ∈ [2n], i.e.,

x′ ∈
⋃

k∈[2n]

(
k − 1

2n
,
k − γ

2n

)
.

We will now prove by induction on n the following statement:

∆n
n
(x) = ∆n(x) for x ∈

⋃
k∈[2n]

(
k − 1

2n
,
k − γ

2n

)
.

For the base case n = 1, by construction of ∆1(x), we know ∆1(x) = ∆(x) for all x ∈
[0, 12 − γ

2 ] ∪ [12 , 1−
γ
2 ], which contains the union

⋃
k∈[2]

(
k−1
2 , k−γ

2

)
. Hence the base case holds.

For the inductive step, assume the claim holds for n. We show it holds for n + 1. Let x ∈⋃
k∈[2n+1]

(
k−1
2n+1 ,

k−γ
2n+1

)
. We analyze two cases based on x ∈ [0, 12) or x ∈ [12 , 1).

First, let x ∈
⋃

k∈[2n]

(
k−1
2n+1 ,

k−γ
2n+1

)
⊂ [0, 12). Then x < k−γ

2n+1 ≤ 1
2 − γn+1, so ∆n+1(x) = 2x.

Let y := 2x. Then:

y ∈
⋃

k∈[2n]

(
k − 1

2n
,
k − γ

2n

)
.

Therefore:

∆n+1
n+1

(x) = ∆n+1
n
(∆n+1(x)) = ∆n+1

n
(2x) =∆n+1

n
(y)

(a)
=∆n

n
(y)
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(b)
=∆n(y)

=∆n(2x) = ∆n+1(x).

The equation (a) follows from the fact that ∆n+1(x) = ∆n(x) for x ∈ [0, 12 − γn] ∪ [12 , 1− γn].
The equation (b) follows directly from the induction hypothesis.

Second, let x ∈
⋃

k∈[2n+1]\[2n]

(
k−1
2n+1 ,

k−γ
2n+1

)
⊂ [12 , 1). Then 1

2 ≤ x < k−γ
2n+1 ≤ 1 − γn+1, so

∆n+1(x) = 2x− 1.
Let y := 2x− 1. Then:

y ∈
⋃

k∈[2n+1]\[2n]

(
k − 2n − 1

2n
,
k − 2n − γ

2n

)
.

Thus,

∆n+1
n+1

(x) = ∆n+1
n
(∆n+1(x)) = ∆n+1

n
(2x− 1) =∆n+1

n
(y)

(a)
=∆n

n
(y)

(b)
=∆n(y)

=∆n(2x− 1) = ∆n+1(x).

The equation (a) follows from the fact that ∆n+1(x) = ∆n(x) for x ∈ [0, 12 − γn] ∪ [12 , 1− γn].
The equation (b) follows directly from the induction hypothesis.

Therefore, by induction, we have shown that

∆
n
n (x

′) = ∆n(x′) for all x′ ∈
⋃

k∈[2n]

(
k − 1

2n
,
k − γ

2n

)
.

We now define the ReLU-based floor approximation by

Floorn(x) := ∆
n
n

(
− x

2n
+ 1
)
+ x− 1.

Recall that the ideal target function is given by

Floorn(x) = ∆n
(
− x

2n
+ 1
)
+ x− 1,

and let x′ := − x
2n + 1. When x− ⌊x⌋ > γ, the value x′ satisfies

x′ ∈
⋃

k∈[2n]

(
k − 1

2n
,
k − γ

2n

)
,

so that ∆n
n (x

′) = ∆n(x′) by the result above.
Therefore, we conclude:

Floorn(x) = Floorn(x) = ⌊x⌋ for all x ∈ [0, 2n) such that x− ⌊x⌋ > γ.
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G.5. Dimension Reduction via Careful Analysis of the Johnson-Lindenstrauss Lemma

We begin with a lemma that states a concentration of the length of the projection.

Lemma 26 (Lemma 15.2.2, Matousek [9]) For a unit vector x ∈ Sd−1, let

ϕ(x) = (x1, x2, · · · , xm)

be the mapping of x onto the subspace spanned by the first k coordinates. Consider x ∈ Sd−1

chosen uniformly at random. Then, there exists β such that ∥ϕ(x)∥2 is sharply concentrated around
β,

P[∥ϕ(x)∥2 ≥ β + t] ≤ 2e−t2d/2 and P[∥ϕ(x)∥2 ≤ β − t] ≤ 2e−t2d/2,

where for m ≥ 10 log d, we have β ≥ 1
2

√
m
d .

Based on the above concentration inequality, we state the Johnson-Lindenstrauss lemma, in a
version which reflects the benefit on the ratio of the norm preserved when the projecting dimension
increases. The proof follows that of Theorem 15.2.1 in Matousek [9] with a slight modification.

Lemma 27 For N ≥ 2, let X ⊆ Rd be an N point set. Then, for any α ∈ (0, 1) and
24α−2 logN ≤ m ≤ d, there exists a 1-Lipschitz linear mapping ϕ : Rd → Rm and β > 0
such that

(1− α)β
∥∥x− x′∥∥

2
≤
∥∥ϕ(x)− ϕ(x′)

∥∥
2
≤ (1 + α)β

∥∥x− x′∥∥
2
, (26)

for all x,x′ ∈ X . Moreover, β ≥ 1
2

√
m
d whenever m ≥ 10 log d.

Proof If x = x′, the inequality trivially holds for any ϕ. Hence, it suffices to find ϕ that satisfies
Equation (26) for all x,x′ ∈ X with x ̸= x′. Consider a random k-dimensional subspace L, and
ϕ be a projection onto L. For any fixed x ̸= x′ ∈ X , Theorem 26 implies that

∥∥∥ϕ( x−x′

∥x−x′∥2
)
∥∥∥
2

is
concentrated around some constant β. i.e.

P
[∥∥∥∥ϕ( x− x′

∥x− x′∥2

)∥∥∥∥
2

≥ (1 + α)β

]
≤ 2e−α2β2d/2

(a)

≤ 2e−α2m/8
(b)

≤ 2e−3 logN =
2

N3

(c)

≤ 1

N2
,

where we use β ≥ 1
2

√
m
d at (a), m ≥ 24α−2 logN at (b), and N ≥ 2 at (c). Similarly,

P
[∥∥∥∥ϕ( x− x′

∥x− x′∥2

)∥∥∥∥
2

≤ (1− α)β

]
≤ 1

N2
.

By linearity of ϕ, we have ϕ(x − x′) = ϕ(x) − ϕ(x). Taking the union bound over the two
probability bounds above, the following event happens with probability at most 2/N2:∥∥ϕ(x)− ϕ(x′)

∥∥
2
≥ (1 + α)β

∥∥x− x′∥∥
2

or
∥∥ϕ(x)− ϕ(x′)

∥∥
2
≤ (1− α)β

∥∥x− x′∥∥
2
. (27)

Next, we take a union bound over all N(N−1)
2 pairs x,x′ ∈ X with x ̸= x′. Then, the probability

that Equation (27) happens for any x,x′ ∈ X with x ̸= x′ is at most 2
N2 × N(N−1)

2 = 1− 1
N < 1.
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Hence, there exists a k-dimensional subspace L such that Equation (27) does not hold for any pair of
x,x′ ∈ X . In other words, there exists a k-dimensional subspace L such that

(1− α)β
∥∥x− x′∥∥

2
≤
∥∥ϕ(x)− ϕ(x′)

∥∥
2
≤ (1 + α)β

∥∥x− x′∥∥
2
,

for all x ̸= x′. By Theorem 26, β ≥ 1
2

√
m
d whenever m ≥ 10 log d. This concludes the lemma.

Proposition 28 (Lipschitz Projection with Separation) For N ≥ 2, let D = {(xi, yi)}Ni=1 ∈
Dd,N,C . For any α ∈ (0, 1) and 24α−2 logN ≤ m ≤ d, there exists 1-Lipschitz linear mapping
ϕ : Rd → Rm and β > 0 such that D′ := {(ϕ(xi), yi)}Ni=1 ∈ Dm,N,C satisfies

ϵ′D ≥ (1− α)βϵD.

In particular, D′ ∈ Dm,N,C whenever D ∈ Dd,N,C . Moreover, β ≥ 1
2

√
m
d whenever m ≥ 10 log d.

Proof Let X = {xi}Ni=1. By Theorem 27, there exists 1-Lipchitz linear mapping ϕ : Rd → Rm and
β > 0 such that

(1− α)β ∥xi − xj∥2 ≤ ∥ϕ(xi)− ϕ(xj)∥2 ≤ (1 + α)β ∥xi − xj∥2 (28)

for all i, j ∈ [N ].
The inequality ϵD′,2 ≥ (1−α)βϵD,2 follows from the inequality from Theorem 27. In particular,

ϵD′,2 =
1

2
min{∥ϕ(xi)− ϕ(xj)∥2 | i, j ∈ [N ] and yi ̸= yj}

(a)

≥ 1

2
min{(1− α)β ∥xi − xj∥2 | i, j ∈ [N ] and yi ̸= yj}

= (1− α)β × 1

2
min{∥xi − xj∥2 | i, j ∈ [N ] and yi ̸= yj}

= (1− α)βϵD,2,

where we use Equation (28) at (a).
We next show D′ ∈ Dm,N,C whenever D ∈ Dd,N,C . To show this, we need to prove ϕ(xi) ̸=

ϕ(xj) for all i ̸= j. Since 1−α > 0 and β > 0, we have ∥ϕ(xi)− ϕ(xj)∥2 ≥ (1−α)β ∥xi − xj∥2 >
0 whenever xi ̸= xj . Moreover, D ∈ Dd,N,C indicates that xi ̸= xj whenever i ̸= j. All together,
we have ϕ(xi) ̸= ϕ(xj) for all i ̸= j so that D′ ∈ Dm,N,C .
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Appendix H. Extension to ℓp-norm

In this section, we extend the previous results on ℓ2-norm to arbitrary p-norm, where p ∈ [1,∞].
In the following, we use distp(·, ·) to denote the ℓp-norm distance between two points, a point

and a set, or two sets. For the case d = 1, we omit the notation p since every ℓp-norm in 1-dimension
denotes the absolute value.

We denote Bp(x, µ) =
{
x′ ∈ Rd

∣∣∥x′ − x∥p < µ
}

an open ℓp-ball centered at x with a radius
µ.

Definition 29 For D ∈ Dd,N,C , the separation constant ϵD,p under ℓp-norm is defined as

ϵD,p :=
1

2
min {∥xi − xj∥p | (xi, yi), (xj , yj) ∈ D, yi ̸= yj} .

As we consider D with xi ̸= xj for all i ̸= j, we have ϵD,p > 0. Next, we define robust
memorization under ℓp-norm.

Definition 30 For D ∈ Dd,N,C , p ∈ [1,∞], and a given robustness ratio ρ ∈ (0, 1), define the
robustness radius as µ = ρϵD,p. We say that a function f : Rd → R ρ-robustly memorizes D under
the ℓp-norm if

f(x′) = yi, for all (xi, yi) ∈ D and x′ ∈ Bp(xi, µ),

and Bp(xi, µ) is referred as the robustness ball of xi.

Similarly, we extend the notion of ρ-robust memorization error to ℓp-norm.

Definition 31 Let D ∈ Dd,N,C be a class(or point)-separated dataset. The ρ-robust error of a
network f : Rd → R on D under the ℓp-norm is defined as

Lρ,p(f,D) = max
(xi,yi)∈D

Px′∼Unif(Bp(xi,µ))[f(x
′) ̸= yi], where µ = ρϵD,p (or µ = ρϵ′D,p).

Lemma 32 (Inclusion Between Balls) Let 0 < p < q ≤ ∞. Then, for any x ∈ Rd and µ > 0,

Bp(x, µ) ⊆ Bq(x, µ) ⊆ Bp(x, d
1
p
− 1

qµ),

or equivalently,

Bq(x, d
1
q
− 1

pµ) ⊆ Bp(x, µ) ⊆ Bq(x, µ).

For any p ∈ [1,∞], let us denote γp(d) := d

∣∣∣ 12− 1
p

∣∣∣ throughout this section. For 0 < p < q ≤ ∞,
we have

ϵD,q ≤ ϵD,p ≤ d
1
p
− 1

q ϵD,q, (29)

since ∥x∥q ≤ ∥x∥p ≤ d
1
p
− 1

q ∥x∥q. In particular, we have

ϵD,p ≤ ϵD,2 when p ≥ 2, (30)

ϵD,p ≤ γp(d)ϵD,2 when p < 2. (31)
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H.1. Extension of Necessity Condition to ℓp-norm

H.1.1. RESULTS USING CAREFUL ANALYSIS OF ℓp-DISTANCE

Theorem 33 Let N ≥ 2, d ≥ 1 and ρ ∈ (1/2, 1). Then, there exists a point separated D ∈ Dd,N,2

such that any neural network that ρ-robustly memorizes D under ℓ∞-norm should have the first
hidden layer width at least min{d,N − 1}.

Proof We first prove the statement for the case N − 1 ≤ d. To prove the statement for this case,
we construct D ∈ Dd,N,2 in which ρ-robustly memorizing the dataset requires the first hidden layer
width at least N − 1.

Let D = {(ej , 2)}j∈[N−1] ∪ {(0, 1)}. Then, D has a separation constant ϵD,∞ = 1/2 under
ℓ∞-norm. Let f be a ρ-robust memorizer of D under ℓ∞-norm whose first hidden layer width is m.
Let W ∈ Rd×m denote the first hidden weight matrix. Suppose for a contradiction, m < N − 1.

Let µ = ρϵD,∞ denote the robustness radius. Then, f has to distinguish every point in each
Bµ(ej) from every point in Bµ(0) for all j ∈ [N − 1]. Therefore, for x ∈ B∞(ej , µ) and
x′ ∈ B∞(0, µ), we have

Wx ̸= Wx′,

or equivalently, x− x′ /∈ Null(W ). Moreover

B∞(ej , µ)−B∞(0, µ) := {x− x′ : x ∈ B∞(ej , µ) and x′ ∈ B∞(0, µ)} = B∞(ej , 2µ).

Hence, it is necessary to have B∞(ej , 2µ) ∩Null(W ) = ∅ for all j ∈ [N − 1], or equivalently,

dist∞(ej ,Null(W )) ≥ 2µ (32)

for all j ∈ [N − 1].
Since dimCol(W⊤) ≤ dimRm = m, we have dimNull(W ) ≥ d−m. Using Theorem 37, we

can upper bounds the maximum possible distance between {ej}j∈[N−1] ⊆ Rd and arbitrary subspace
of a fixed dimension.

Take Z ⊆ Null(W ) such that dimZ = d−m and substitute d = d, t = N − 1, k = d−m and
Z = Z into Theorem 37. The assumptions t ≤ d for the lemma are satisfied since N − 1 ≤ d. The
additional assumption k ≥ d− t+1 is equivalent to d−m ≥ d− (N − 1)+ 1 and is satisfied since
m < N − 1. Therefore, we have

min
j∈[N−1]

dist∞(ej , Z) ≤ 1

2
.

By combining the above inequality with Equation (32),

2µ ≤ min
j∈[N−1]

dist∞(ej ,Null(W ))
(a)

≤ min
j∈[N−1]

dist∞(ej , Z) ≤ 1

2
, (33)

where (a) is due to Z ⊆ Null(W ). Since ϵD,∞ = 1/2, we have 2µ = 2ρϵD,∞ = ρ so that
Equation (33) becomes ρ ≤ 1/2. This contradicts our assumption ρ ∈ (1/2, 1), and therefore the
width requirement m ≥ N − 1 is necessary. This concludes the proof for the case N − 1 ≤ d.

For the case N − 1 > d, we construct the first d+ 1 data points as for the case N = d+ 1. For
the remaining N − d− 1 data points, we set them sufficiently distant from the first d+ 1 data points
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to keep ϵD,∞ = 1/2. In particular, we can set xd+2 = 2e1,xd+3 = 3e1, · · · ,xN = (N − d)e1 and
yd+2 = yd+3 = · · · = yN = 2. Compared to the case N = d+ 1, we have ϵD,∞ unchanged while
having more data points to memorize. By the necessity for the case N = d + 1, this dataset also
requires the first hidden layer width at least (d+ 1)− 1 = d. This concludes the statement for the
case N − 1 > d.

Combining the result of the two cases N − 1 ≤ d and N − 1 > d concludes the proof of the
theorem.

Theorem 34 For p ∈ [1,∞], let ρ ∈
(
0,
(
1− 1

d

)1/p]. Suppose for any D ∈ Dd,N,2 there exists
f ∈ Fd,P that ρ-robustly memorizes D under ℓp-norm. Then, the number of parameters P must

satisfy P = Ω(
√

N
1−ρp ).

Proof The main idea of the proof is the same as Theorem 5. We construct ⌊N2 ⌋ × ⌊ 1
1−ρp ⌋ number

of data points that can be shattered by Fd,P . This proves VC-dim(Fd,P ) ≥ ⌊N2 ⌋ × ⌊ 1
1−ρp ⌋ =

Ω(N/(1− ρp). Since VC-dim(Fd,P ) = O(P 2), this proves P = Ω(
√

N/(1− ρp)).
For simplicity of the notation, let us denote k := ⌊ 1

1−ρp ⌋. To prove the lower bound on the
VC-dimension, we construct k × ⌊N2 ⌋ points in Rd that can be shattered by Fd,P . As in the proof of
Theorem 4, we define ⌊N2 ⌋ × k number of points as ⌊N2 ⌋ groups, where each group consists of k
points.

We start by constructing the first group. Since ρ ∈ (0,
(
d−1
d

)1/p
], we have k = ⌊ 1

1−ρp ⌋ ∈ [1, d].
The first group X1 := {ej}kj=1 ⊆ Rd is defined as the set of the first k vectors in the standard basis
of Rd. The remaining ⌊N2 ⌋ − 1 groups are simply constructed as a translation of X1. In particular,
for l ∈ [⌊N2 ⌋], we define

Xl := cl + X1 = {cl + x | x ∈ X1}

where cl := 2d2(l − 1)× e1 ensures that each group is sufficiently far from one another. Note that
c1 = 0 ensures X1 also satisfies the consistency of the notation. Now, define X = ∪l∈[⌊N/2⌋]Xl, the
union of all ⌊N2 ⌋ groups which consists of k × ⌊N2 ⌋ points.

We claim that if for any D ∈ Dd,N,2, there exists f ∈ Fd,P that ρ-robustly memorizes D under
ℓp-norm, then X is shattered by Fd,P . To prove the claim, suppose we are given arbitrary label
Y = {yl,j}l∈[⌊N/2⌋],j∈[d] of X , where yl,j ∈ {±1} denotes the label for xl,j := cl + ej ∈ X . Given
the label Y , we construct D ∈ Dd,N,2 such that whenever f ∈ Fd,P ρ-robustly memorize D under
ℓp-norm, then its affine translation f ′ = 2f − 3 ∈ Fd,P satisfies f ′(xl,j) = yl,j for all xl,j ∈ X .

For each l ∈ [⌊N/2⌋], let J+
l = {j ∈ [k] | yl,j = +1} and J−

l = {j ∈ [k] | yl,j = −1}. Define

x2l−1 = cl +
∑
j∈J+

l

ej −
∑
j∈J−

l

ej

x2l = cl +
∑
j∈J−

l

ej −
∑
j∈J+

l

ej
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Furthermore, define y2l−1 = 2, y2l = 1 and let D = {(xi, yi)}i∈[N ] ∈ Dd,N,2. To consider the
separation ϵD,2, notice that

∥x2l−1 − x2l∥p =

∥∥∥∥∥∥∥2
∑

j∈J+
l

ej −
∑
j∈J−

l

ej


∥∥∥∥∥∥∥
p

(a)
= 2k1/p,

where (a) is due to J+
l ∩ J−

l = ∅ and J+
l ∪ J−

l = [k]. For l ̸= l′,

dp(x2l−1,x2l′)
(a)

≥ dp(cl, cl′)− dp(cl,x2l−1)− dp(cl′ ,x2l′)

(b)

≥ 2d2 − k1/p − k1/p

(c)

≥ 2d2 − 2d1/p

(d)

≥ 2d1/p

(e)

≥ 2k1/p,

where (a) is by the triangle inequality under ℓp-norm (namely, the Minkowski inequality), (b) uses
dp(cl,x2l−1) = dp(cl′ ,x2l′) = k1/p, (c),(e) is by k ≤ d, and (d) holds for all d ≥ 2 and p ≥ 1.
Thus, we have ϵD,p ≥ k1/p.

Take f ∈ Fd,P that ρ-robustly memorize D. We first lower bound the robustness radius µ. Since

t
ϕ7→ p

√
t−1
t is an strictly increasing function from t ≥ 1 onto [0, 1) 2 , it has a well defined inverse

mapping ϕ−1 : [0, 1) → [1,∞) defined as ϕ−1(ρ) = 1
1−ρp . Therefore,

ρ = ϕ(ϕ−1(ρ)) = ϕ

(
1

1− ρp

)
≥ ϕ

(
⌊ 1

1− ρp
⌋
)

= ϕ(k) =
p

√
k − 1

k
.

Since ϵD,p ≥ k1/p and ρ ≥ (k−1
k )1/p, we have µ = ρϵD,p ≥ ρk1/p ≥ (k − 1)1/p. Thus, every f

that ρ-robustly memorizes D must also memorize (k − 1)1/p radius open ℓp-ball around each point
in D as the same label as the data point.

Moreover, for xl,j ∈ X with positive label yl,j = +1, we have

∥xl,j − x2l−1∥p =

∥∥∥∥∥∥∥(cl + ej)− (cl +
∑
j′∈J+

l

ej′ −
∑

j′∈J−
l

ej′)

∥∥∥∥∥∥∥
p

=

∥∥∥∥∥∥∥∥∥
∑
j′∈J+

l
j′ ̸=j

ej′ −
∑

j′∈J−
l

ej′

∥∥∥∥∥∥∥∥∥
p

2. ϕ is a composition of two strictly increasing one-to-one corresponding functions t 7→ t−1
t

from [1,∞) onto [0, 1) and
u 7→ p

√
u from [0, 1) onto [0, 1)
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= (k − 1)1/p.

Take a sequence of points {zn}n∈N such that zn → xl,j as n → ∞ 3 and

∥zn − x2l−1∥p < (k − 1)1/p,

for all n ∈ N. In particular,

zn :=
n− 1

n
xl,j +

1

n
x2l−1

satisfies such properties. Then, we have f(zn) = f(x2l−1) = 2 for all n ∈ N. Moreover, by the
continuity of f (under the usual topology),

f(xl,j) = f( lim
n→∞

zn) = lim
n→∞

f(zn) = lim
n→∞

2 = 2.

Similarly, for xl,jwith negative label yl,j = −1, we have ∥xl,j − x2l∥p = (k − 1)1/p, so that
f(xl,j) = 1.

Since we can adjust the weight and the bias of the last hidden layer, Fd,P is closed under affine
transformation; that is, af + b ∈ Fd,P whenever f ∈ Fd,P . In particular, f ′ := 2f − 3 ∈ Fd,P .
This f ′ satisfies f ′(xl,j) = 2f(xl,j) − 3 = 2 · 2 − 3 = +1 whenever yl,j = +1 and f ′(xl,j) =
2f(xl,j) − 3 = 2 · 1 − 3 = −1 whenever yl,j = −1. Thus, sign ◦f ′ perfectly classify X with the
label Y . Since we can take such f ′ ∈ Fd,P given an arbitrary label Y of X , it follows that Fd,P

shatters X , concluding the proof of the theorem.

H.1.2. RESULTS USING INCLUSION BETWEEN BALLS

Proposition 35 There exists D ∈ Dd,N,2 such that any neural network f : Rd → R that ρ-robustly
memorizes D under ℓp-norm must have the first hidden layer width at least

• ρ2min{N − 1, d} if p ≥ 2

•
(

ρ2

γp(d)

)2
min{N − 1, d} if 1 ≤ p < 2

Proof We take D the same dataset as in Theorem 4. Recall that in the proof of Theorem 4, we
take the dataset D = {ej , 2}j∈[N−1] ∪ {0, 1} when N ≤ d + 1, with additional data points
(2e1, 2), (3e1, 2), · · · , ((N − d)e1, 2) when N > d + 1. This has a separation ϵD,p = 1

2 under
ℓp-norm for all p ≥ 1, on the both case N ≤ d+ 1 and N > d+ 1. Let f be a neural network that
robustly memorizes D under ℓp-norm. Since ϵD,p = ϵD,2, the robustness radius µ under ℓ2-norm
satisfies µ = ρϵD,p = ρϵD,2. With this in mind, we now prove the proposition. The statement of the
proposition consists of two parts, p ≥ 2 and 1 ≤ p < 2.

Part I: p ≥ 2. First, we prove the result under p ≥ 2 Robust memorization under ℓp-norm implies

f(x) = yi for all (xi, yi) ∈ D and x ∈ Bp(xi, µ),

where µ = ρϵD,p = ρϵD,2. For p ≥ 2, we have B2(xi, µ) ≤ Bp(xi, µ) by Theorem 32. Thus,

f(x) = yi for all (xi, yi) ∈ D and x ∈ B2(xi, µ).

Since µ = ρϵD,2 this implies that f ρ-robustly memorize D under ℓ2-norm. By Theorem 4, f should
have the first hidden layer width at least ρ2min{N − 1, d}.

3. We consider the convergence of the sequence on the usual topology induced by ℓ2-norm.
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Part II: 1 ≤ p < 2. Next, we prove the result under 1 ≤ p < 2. Robust memorization under
ℓp-norm implies

f(x) = yi for all (xi, yi) ∈ D and x ∈ Bp(xi, µ),

where µ = ρϵD,p = ρϵD,2. For 1 ≤ p < 2, we have B2(x, d
1
2
− 1

pµ) ⊆ Bp(xi, µ) by applying

p = p and q = 2 to Theorem 32. Since γp(d) = d
1
p
− 1

2 , we have B2(xi, µ/γp(d)) ⊆ Bp(xi, µ). In
particular, f memorize every µ/γp(d) neighbor around the data point under ℓ2-norm. Let

ρ′ :=
µ/γp(d)

ϵD,2
=

ρϵD,2/γp(d)

ϵD,2
=

ρ

γp(d)

Then, f memorize every µ/γp(d) = ρ′ϵD,2 radius neighbor around each data point under ℓ2-norm.
In other words, f ρ′-robustly memorize D under ℓ2-norm. By Theorem 4, f should have the first
hidden layer width at least (ρ′)2min{N − 1, d}. Putting back ρ′ = ρ

γp(d)
concludes the desired

statement.

H.1.3. LEMMAS FOR APPENDIX H.1

Lemma 36 Let {ej}j∈[d] ⊆ Rd denote the standard basis in Rd. Then, for any k-dimensional
subspace Z of Rd with k ≥ 1 we have,

min
j∈[d]

dist∞(ej , Z) ≤ 1

2
.

Proof For any subspace Z ′ of Z, we have

min
j∈[d]

dist∞(ej , Z) ≤ min
j∈[d]

dist∞(ej , Z
′).

As every k-dimensional subspace of Rd with k ≥ 1 has a one-dimensional subspace, it suffices to
prove the second statement for k = 1. i.e., for any one-dimensional subspace Z of Rd,

min
j∈[d]

dist∞(ej , Z) ≤ 1

2
.

Let Z = Span(z), where z = (z1, · · · , zd) ̸= 0. Without loss of generality, let ∥z∥∞ = 1 and
take j ∈ [d] such that |zj | = 1. Let z′ =

zj
2 z ∈ Z. Then,∥∥z′ − ej

∥∥
∞ =

∥∥∥(zjz1
2

, · · · , zjzj−1

2
,
zjzj
2

− 1,
zjzj+1

2
, · · · , zjzd

2
)
∥∥∥

(a)
=

∥∥∥∥(zjz12 , · · · , zjzj−1

2
,−1

2
,
zjzj+1

2
, · · · , zjzd

2
)

∥∥∥∥
(b)

≤ 1

2
,
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where (a) is by |zj | = 1, and (b) is by ∥z∥∞ = 1. Therefore,

min
j′∈[d]

dist∞(e′j , Z) ≤ dist∞(ej , Z) ≤
∥∥z′ − ej

∥∥ ≤ 1

2
,

concluding the statement.

The following lemma generalizes Theorem 36 to the case where we consider only the distance to
a subset of the standard basis, instead of the whole standard basis.

Lemma 37 For 1 ≤ t ≤ d, let {ej}j∈[t] ⊆ Rd denote the first t vectors from the standard basis in
Rd. Then, for any k-dimensional subspace Z of Rd with k ≥ d− t+ 1,

min
j∈[t]

dist∞(ej , Z) ≤ 1

2
.

Proof Similar to Theorem 11, we start by considering the dimension of the intersection between Z
and Rt, both as a subspace of Rd. Let Q = [e1e2 · · · et]⊤ ∈ Rt×d. Then,

Rd = Col(Q⊤)⊕Null(Q) = (Z ∩ Col(Q⊤))⊕ (Z⊥ ∩ Col(Q⊤))⊕Null(Q).

By considering the dimension,

dim(Z ∩ Col(Q⊤)) = dimRd − dim(Z⊥ ∩ Col(Q⊤))− dimNull(Q)

≥ dimRd − dimZ⊥ − dimNull(Q)

= d− (d− k)− (d− t)

= k − (d− t)

Under the assumption k ≥ d− t+ 1, we have

dim(Z ∩ Col(Q⊤) = dimϕ(Z ∩ Col(Q⊤) ≥ k − (d− t) ≥ 1.

Then,

min
j∈[t]

dist∞(ej , Z) ≤ min
j∈[t]

dist∞(ej , Z ∩ Col(Q⊤))

= min
j∈[t]

dist∞(ϕ(ej), ϕ(Z ∩ Col(Q⊤))

(b)

≤ 1

2
,

where (b) is by Theorem 36.
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H.2. Extension of Sufficiency Condition to ℓp-norm

Theorem 38 Let p ∈ [1,∞]. For any dataset D ∈ Dd,N,C and η ∈ (0, 1), the following statements
hold:

(i) If ρ ∈
(
0, 1

2N
√
dγp(d)

]
, there exists f ∈ Fd,P with P = Õ(

√
N) that ρ-robustly memorizes D

under ℓp-norm.

(ii) If ρ ∈
(

1
2N

√
dγp(d)

, 1
5
√
dγp(d)

]
, there exists f ∈ Fd,P with P = Õ(Nd

1
4 ρ

1
2γp(d)

1
2 ) that

ρ-robustly memorizes D under ℓp-norm with error at most η.

(iii) If ρ ∈
(

1
5
√
dγp(d)

, 1
γp(d)

)
, there exists f ∈ Fd,P with P = Õ(Ndρ2γp(d)

2) that ρ-robustly
memorizes D under ℓp-norm.

To prove Theorem 7, we decompose it into three theorems (Theorems 39 to 41), each correspond-
ing to one of the cases in the statement. They are following.

Lemma 39 Let ρ ∈
(
0, 1

2N
√
dγp(d)

]
and p ∈ [1,∞]. For any dataset D ∈ Dd,N,C , there exists

f ∈ Fd,P with P = Õ(
√
N) that ρ-robustly memorizes D under ℓp-norm.

Proof Let ρ′ = γp(d)ρ. Then, we have ρ′ ∈
(
0, 1

2N
√
d

]
from the condition of ρ. By Theorem 7(i),

there exists f ∈ Fd,P with P = Õ(
√
N) that ρ′-robustly memorizes D under ℓp-norm. In other

words, it holds f(x′) = yi, for all (xi, yi) ∈ D and x′ ∈ B2(xi, ρ
′ϵD,2).

We consider two cases depending on whether p ≥ 2 or p < 2, which affect the direction of
inclusion between ℓp and ℓ2 balls.

Case I : p ≥ 2. In this case, we have

Bp(xi, ρϵD,p)
(a)

⊆ Bp(xi, ρϵD,2)
(b)

⊆ B2(xi, γp(d)ρϵD,2) = B2(xi, ρ
′ϵD,2),

where (a) holds by Equation (30) and (b) holds by Theorem 32 applying p = 2 and q = p.
Thus, for all (xi, yi) ∈ D and x′ ∈ Bp(xi, ρϵD,p), it also holds f(x′) = yi. In other words, f

ρ-robustly memorizes D under ℓp-norm with Õ(
√
N) parameters.

Case II : p < 2. In this case, we have

Bp(xi, ρϵD,p)
(a)

⊆ Bp(xi, γp(d)ρϵD,2)
(b)

⊆ B2(xi, γp(d)ρϵD,2) = B2(xi, ρ
′ϵD,2),

where (a) holds by Equation (31) and (b) holds by Theorem 32 applying p = p and q = 2.
Thus, for all (xi, yi) ∈ D and x′ ∈ Bp(xi, ρϵD,p), it also holds f(x′) = yi. In other words, f

ρ-robustly memorizes D under ℓp-norm with Õ(
√
N) parameters.

Lemma 40 Let ρ ∈
(

1
2N

√
dγp(d)

, 1
5
√
dγp(d)

]
and p ∈ [1,∞]. For any dataset D ∈ Dd,N,C , there

exists f ∈ Fd,P with P = Õ(Nd
1
4 ρ

1
2γp(d)

1
2 ) that ρ-robustly memorizes D under ℓp-norm with error

at most η.
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Proof Let ρ′ = γp(d)ρ. Then, we have ρ′ ∈
(

1
2N

√
d
, 1
5
√
d

)
from the condition of ρ.

We consider two cases depending on whether p ≥ 2 or p < 2, which affect the direction of
inclusion between ℓp and ℓ2 balls.

Case I : p ≥ 2. In this case, we have:

Bp(xi, ρϵD,p)
(a)

⊆ Bp(xi, ρϵD,2)
(b)

⊆ B2(xi, γp(d)ρϵD,2) = B2(xi, ρ
′ϵD,2),

where (a) holds by Equation (30) and (b) holds by Theorem 32 applying p = 2 and q = p.

Case II : p < 2. In this case, we have:

Bp(xi, ρϵD,p)
(a)

⊆ Bp(xi, γp(d)ρϵD,2)
(b)

⊆ B2(xi, γp(d)ρϵD,2) = B2(xi, ρ
′ϵD,2),

where (a) holds by Equation (31) and (b) holds by Theorem 32 applying p = p and q = 2.
Thus, in both cases, it holds:

Bp(xi, ρϵD,p) ⊆ B2(xi, ρ
′ϵD,2). (34)

We define η′ = η
Vol(Bp(xi,ρϵD,p))
Vol(B2(xi,ρ′ϵD,2)

. We apply Theorem 7(ii) with the robustness ratio ρ′ and the

error rate η′, then we obtain f ∈ Fd,P with P = Õ(Nd
1
4 ρ′

1
2 ) = Õ(Nd

1
4 ρ

1
2γp(d)

1
2 ) that ρ′-robustly

memorizes D with error at most η′ under ℓp-norm. In other words, for all (xi, yi) ∈ D, it holds that

Px′∼Unif(B2(xi,ρ′ϵD,2))[f(x
′) ̸= yi] < η′. (35)

For simplicity, we denote E = {x ∈ Rd | f(x′) ̸= yi}. Then, we have

Px′∼Unif(Bp(xi,ρϵD,p))[f(x
′) ̸= yi]

=Px′∼Unif(Bp(xi,ρϵD,p))[x ∈ E]

=
Vol(E ∩ Bp(xi, ρϵD,p))

Vol(Bp(xi, ρϵD,p))

(a)

≤
Vol(E ∩ B2(xi, ρ

′ϵD,2))

Vol(Bp(xi, ρϵD,p))

=
Vol(E ∩ B2(xi, ρ

′ϵD,2))

Vol(B2(xi, ρ′ϵD,2))

Vol(B2(xi, ρ
′ϵD,2))

Vol(Bp(xi, ρϵD,p))

=Px′∼Unif(B2(xi,ρ′ϵD,2))[x ∈ E] ·
Vol(B2(xi, ρ

′ϵD,2))

Vol(Bp(xi, ρϵD,p))

=Px′∼Unif(B2(xi,ρ′ϵD,2))[f(x
′) ̸= yi] ·

Vol(B2(xi, ρ
′ϵD,2))

Vol(Bp(xi, ρϵD,p))

(b)
<η′

Vol(B2(xi, ρ
′ϵD,2))

Vol(Bp(xi, ρϵD,p))

(c)
=η,

where (a) holds by Equation (34), (b) holds by Equation (35), and (c) holds by the definition of η′.
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Thus, for all (xi, yi) ∈ D, it holds:

Px′∼Unif(Bp(xi,ρϵD,p))[f(x
′) ̸= yi] < η.

In other words, f ρ-robustly memorizes D under ℓp-norm with error at most η and Õ(Nd
1
4 ρ

1
2γp(d)

1
2 )

parameters.

Lemma 41 Let ρ ∈
(

1
5
√
dγp(d)

, 1
γp(d)

)
and p ∈ [1,∞]. For any dataset D ∈ Dd,N,C , there exists

f ∈ Fd,P with P = Õ(Ndρ2γp(d)
2) that ρ-robustly memorizes D under ℓp-norm.

Proof Let ρ′ = γp(d)ρ. Then, we have ρ′ ∈
(

1
5
√
d
, 1
)

from the condition of ρ. By Theorem 7(iii),

there exists f ∈ Fd,P with P = Õ(Ndρ′2) = Õ(Ndρ2γp(d)
2) that ρ′-robustly memorizes D under

ℓp-norm. In other words, it holds f(x′) = yi, for all (xi, yi) ∈ D and x′ ∈ B2(xi, ρ
′ϵD,2).

We consider two cases depending on whether p ≥ 2 or p < 2, which affect the direction of
inclusion between ℓp and ℓ2 balls.

Case I : p ≥ 2. In this case, we have:

Bp(xi, ρϵD,p)
(a)

⊆ Bp(xi, ρϵD,2)
(b)

⊆ B2(xi, γp(d)ρϵD,2) = B2(xi, ρ
′ϵD,2),

where (a) holds by Equation (30) and (b) holds by Theorem 32 applying p = 2 and q = p.
Thus, for all (xi, yi) ∈ D and x′ ∈ Bp(xi, ρϵD,p), it also holds f(x′) = yi. In other words, f

ρ-robustly memorizes D under ℓp-norm with Õ(Ndρ2γp(d)
2) parameters.

Case II : p < 2. In this case, we have:

Bp(xi, ρϵD,p)
(a)

⊆ Bp(xi, γp(d)ρϵD,2)
(b)

⊆ B2(xi, γp(d)ρϵD,2) = B2(xi, ρ
′ϵD,2),

where (a) holds by Equation (31) and (b) holds by Theorem 32 applying p = p and q = 2.
Thus, for all (xi, yi) ∈ D and x′ ∈ Bp(xi, ρϵD,p), it also holds f(x′) = yi. In other words, f

ρ-robustly memorizes D under ℓp-norm with Õ(Ndρ2γp(d)
2) parameters.
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Appendix I. Comparision to Existing Bounds

I.1. Parameter Complexity of the Construction by Egosi et al. [4]

We observe that although Egosi et al. [4] do not explicitly quantify the total number of parameters in
their construction, it implicitly yields a network with O(Nd3ρ6) parameters. Specifically, we can
establish the following:

For any D ∈ Dd,N,C and ρ ∈ ( 1√
d
, 1), there exists a neural network f that ρ-robustly

memorizes D using Õ(Nd3ρ6) parameters.

This results follows from the network constructed in Theorem 4.4 of Egosi et al. [4]. The proof

of Theorem 4.4 proceeds under the assumption that for 7 ≤ k ≤ d+ 5, and ρ ≤ 1
4
√
e

√
k−6
d N− 2

k−6 .
Given this range, Theorem 4.2 of Egosi et al. [4] is applied to construct a robust memorizer of
the projected data from Rd to Rk. Figure 4 and 5 in their paper illustrate this construction. In
this construction, projected point propagates through the network Θ(Nk) times. The width of the
network scales with k, while the other component that is not propagating the point remain constant
in width. Thus, the number of parameters is given by:

L∑
l=1

(dl−1 + 1) · dl =
Θ(Nk)∑
l=1

Θ(k2) = Θ(Nk · k2) = Θ(Nk3).

To translate this to a bound in terms of ρ, we analyze the relationship between ρ and k. For
k ≥ 4 logN + 6, we verify the following inequality:

1

4
√
e

√
k − 6

d
N− 2

k−6 ≥ 1

4
√
e

√
k − 6

d
N

− 1
2 logN

(a)
=

1

4e

√
k − 6

d

where (a) holds by N = elogN . Therefore, for ρ = 1
4e

√
k−6
d , the network ρ-robustly memorizes D

with Θ(Nk3) parameters. From the relationship between ρ and k, solving for k in terms of ρ yields
k = Θ(dρ2). Since the minimum value of k under the assumption is 7, the minimum achievable ρ is
1
4e

1√
d

.

Thus, for ρ > 1√
d
, the construction yields a network that ρ-robustly memorizes D with

Θ(Nk3) = Θ(Nd3ρ6) parameters, as desired.

I.2. Parameter Complexity of the Construction by Yu et al. [13]

We now analyze the number of parameters of the network construction proposed by Yu et al. [13],
which gives the upper bound not depending on ρ, but applying to all ρ ∈ (0, 1).

Lemma 42 (Theorem B.6, Yu et al. [13]) Let p ∈ N. For any class-separated D = {(xi, yi)}i∈[N ] ∈
Dd,N,C , let R > 1 by any real value with ∥xi∥∞ ≤ R for all i ∈ [N ]. For ρ ∈ (0, 1), define
γ := (1− ρ)ϵD,p > 0. Then, there exists a network with width O(d), and depth O(Np(log( d

γp ) +
p logR+ log p) that ρ-robustly memorize D under ℓp-norm.

We note that in the Yu et al. [13] uses the notation λp
D/2 for ϵD,p and the radius λp

D/2− γ in the
original statement corresponds to the value µ := ρϵD,p in our notation.
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Lemma 43 For any D ∈ Dd,N,C and ρ ∈ (0, 1), define γ := (1 − ρ)ϵD,p > 0 and R > 1 with
∥xi∥∞ ≤ R for all i ∈ [N ]. Then, there exists a neural network f such that ρ-robustly memorizes D
using at most O(Nd2(log( d

γ2 ) + logR)) parameters.

Proof By applying Theorem 42 with p = 2, we obtain a neural network f that ρ-robustly memorizes
D with width O(d), and depth O(N(log( d

γ2 + logR))). We count all parameters as defined in
Equation (1), so we can upper bound the number of parameters of f as following:

L∑
l=1

(dl−1 + 1) · dl =
L∑
l=1

O(d) ·O(d)

= O(N(log(
d

γ2
+ logR))) ·O(d2)

= O(Nd2(log(
d

γ2
) + logR)).
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