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Abstract

Spiking neural networks (SNNs) are emerging as a promising alternative to tra-
ditional artificial neural networks (ANNs), offering biological plausibility and
energy efficiency. Despite these merits, SNNs are frequently hampered by limited
capacity and insufficient representation power, yet remain underexplored in remote
sensing image (RSI) super-resolution (SR) tasks. In this paper, we first observe
that spiking signals exhibit drastic intensity variations across diverse textures,
highlighting an active learning state of the neurons. This observation motivates
us to apply SNNs for efficient SR of RSIs. Inspired by the success of attention
mechanisms in representing salient information, we devise the spiking attention
block (SAB), a concise yet effective component that optimizes membrane poten-
tials through inferred attention weights, which, in turn, regulates spiking activity
for superior feature representation. Our key contributions include: 1) we bridge
the independent modulation between temporal and channel dimensions, facili-
tating joint feature correlation learning, and 2) we access the global self-similar
patterns in large-scale remote sensing scenarios to infer spatial attention weights,
incorporating effective priors for realistic and faithful reconstruction. Building
upon SAB, we proposed SpikeSR, which achieves state-of-the-art performance
across various remote sensing benchmarks such as AID, DOTA, and DIOR, while
maintaining high computational efficiency. Code of SpikeSR will be available at
https://github.com/XY-boy/SpikeSR.

High-resolution remote sensing images (RSIs) contain fine-grained object structures and textures,
which are critical for accurate interpretation in downstream tasks [42, 11, 6]. However, limited by the
intrinsic resolution of airborne sensors, RSI can merely capture partial spatial details, resulting in
suboptimal scene representation and visual quality. Image super-resolution (SR) aims to alleviate this
problem by reconstructing high-resolution (HR) images from low-resolution (LR) observations [53,
60]. Despite this, SR remains a challenging ill-posed issue, as a degraded input may correspond to
multiple plausible outputs.

Early efforts rely on hand-crafted priors to tame the ill-posedness, e.g., nonlocal mean [67, 7] and gra-
dient profile [48], but they are often trapped in limited performance and scalability. Recent advances
in artificial neural networks (ANNs), e.g., CNNs and Transformers, have witnessed remarkable
progress in SR with large-capacity models [49, 50, 3, 4, 71]. However, they often come with a
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Figure 1: (a) The visualization of pixel intensity and neuron voltage in images under various degradation factors
reveals important insights. The pixel intensity map illustrates that the high-frequency components of the image
tend to be smooth, indicating a reduction in sharp details during progressive downsampling. Neuron intensity
maps, derived from a LIF model [37, 14], show that high-frequency details persist with drastic fluctuations,
suggesting that the neurons remain in an active state. (b) FLOPs and PSNR performance comparison. The circle
sizes represent the number of parameters. Our SpikeSR outperforms SOTA efficient SR methods with high
efficiency. PSNR results are averaged on the AID, DOTA, and DIOR datasets.

trade-off of increased computational overhead and growing storage costs, making them less efficient
in practical scenarios, particularly when reconstructing large-scale RSIs.

More recently, brain-inspired spiking neural networks (SNNs), as the third generation of neural
networks, have emerged as a promising alternative for energy-efficient intelligence [25, 59, 40].
Different from ANNs that encode features as continuous values, SNNs can emulate biological com-
munication with discrete spiking signals and propagate them by neurons, thus enjoying lower power
consumption. As depicted in Fig. 1(a), our experiments reveal a novel finding that spiking neurons
maintain an active learning state across LR RSIs, even in severely damaged textures. Specifically, we
observed that degraded RSIs exhibit smoothed pixel intensities and obscured sharp details, posing
a significant challenge to characterize high-frequency representations. In contrast, spiking signals
retain drastic responses and pronounced spike rates, highlighting that neurons remain in an active
learning state. This naturally arises a question: Can SNNs leverage their inherent properties to handle
image degradation for efficient yet high-quality RSI SR?

In fact, to effectively grasp complex and diverse spatial details in RSIs, the network must possess
adequate capacity and representation power. Unfortunately, there are two critical challenges when
adapting SNNs for SR tasks. Firstly, spiking activity in SNNs inevitably causes pixel-wise
information loss, which hampers the representation capacity of SNNs, especially when the network
deepens. This stems from the discrete nature of binary spiking signals, leading to undesirable
spiking degradation problems [61, 15]. Secondly, SNNs remain constrained by suboptimal
membrane potential dynamics, restricting effective exploration of global context during spiking
communications. This necessitates a customized strategy to optimize membrane potentials, but is
barely explored before.

To address these limitations, we propose SpikeSR, an SNN-based framework inspired by human
visual attention mechanisms, which can actively represent image degradation and modulate synaptic
weights to focus on salient regions, which, in turn, regulate the spiking activity for improved capacity
and representation power. Specifically, SpikeSR employs a concise yet effective spiking attention
block (SAB) to optimize feature emphasis through spiking response dynamics, which integrates
three key innovations: 1) the combination of CNN and SNN layers to mitigate information loss
induced by discrete spiking activity; 2) introducing hybrid dimension attention (HDA) to recalibrate
spiking response across both temporal and channel dimensions, facilitating a joint feature correlations
learning; 3) accessing global self-similarity patterns in RSIs to infer spatial attention weights,
incorporating effective priors for realistic and faithful reconstruction. Compared to state-of-the-art
(SOTA) ANN-based efficient SR models, our SpikeSR demonstrates lower model complexity and
superior performance, as shown in Fig. 1(b).

2



Our contributions are summarized as follows:

• We pioneer an attention spiking neural network for efficient SR of RSIs, providing a new
perspective on developing efficient models in large-scale Earth observation scenarios.

• We devise a concise yet effective SAB, which mitigates the information loss and regulates
membrane potentials of spiking activity for improved representation of SNNs.

• Extensive experimental results on various remote sensing datasets demonstrate that our
SpikeSR achieves competitive SR performance against SOTA ANN-based methods.

1 Related Work

Deep Networks for SR. Inspired by the pioneering SRCNN [10], CNN-based SR methods have
achieved remarkable progress, dominating the field for years. They mainly elaborated on the network
design to tame the ill-posedness, with notable advances in residual connections [21, 32] and attention
mechanisms [69, 39]. However, these methods often suffer from high computational complexity, e.g.,
exhaustive non-local modeling [28, 38], making them less efficient in large-scale RSIs.

Recently, transformer-based SR models have demonstrated impressive performance, benefiting from
their ability to model long-range dependencies. IPT [2] first introduces Transformers in SR field, but
requires massive parameters and laborious pre-training processes. SwinIR [31] effectively reduces
the model size by partitioning the image into smaller windows when applying multi-head attention
mechanisms, while maintaining favorable performance. Against transformer, Mamba-based SR
methods achieve comparable global model capacity with linear complexity [18, 57, 17]. Despite
these advancements, advanced SR models are often trapped by rising computational overhead and
growing storage costs, posing significant concerns in real-world applications, particularly in remote
sensing scenarios.

Efficient SR Models. To reduce computational budget, CARN [1] utilizes grouped convolutions and
a cascading mechanism to improve the residual architecture. IMDN [20] progressively distills useful
information during feature extraction and applies network pruning to further decrease complexity.
FMEN [12] optimizes residual modules to accelerate inference. In Transformer-based SR methods,
SPIN [66] enhances long-range modeling by combining self-attention with pixel clustering, facili-
tating interactions between superpixels. HiT-SR [68] expands the self-attention receptive field by
applying different window sizes of hierarchal layers. Despite these successes, there is still room to
further boost SR performance. Moreover, the potential of energy-efficient SNNs for SR tasks remains
largely unexplored.

Spiking Neural Networks. Recent advances in neuromorphic computing have shown the great
potential of SNNs in computational efficiency and power as CNNs [63, 64]. Currently, SNNs have
been successfully applied to various tasks, such as image classification [25, 44], object detection and
tracking [22, 59], optical flow estimation [26, 40], etc.

A common solution to build SNNs is converting pre-trained ANN models [8, 62]. Li et al. [30]
proposed a layer-wise calibration to minimize activation mismatch during conversion. Ding et al.
[9] replaced ReLU with the rate norm layer, enabling direct conversion from a trained ANN to an
SNN. Stockl et al. [46] used time-varying multi-bit spikes to better approximate activation functions.
However, conversion-based methods face accuracy gaps and high latency due to extensive time-step
simulations, resulting in increased latency and energy consumption.

An alternative involves using agent gradient functions for continuous relaxation of non-smooth
spike activities, enabling direct training via backpropagation through time. Lee et al. [27] treated
membrane potential as a signal to overcome discontinuities, enabling direct training from spikes.
Wang et al. [54] introduced an iterative LIF model and proposed spatiotemporal backpropagation
based on approximate peak activity derivatives. Later, Zheng et al. [70] proposed temporal delay
batch normalization, which significantly enhanced the depth of SNNs. To bridge the performance gap
between ANNs and SNNs, some methods borrowed insights from CNNs, applying residual learning
[15, 19] and attention mechanisms [65, 41] to SNNs. Nonetheless, there has been limited exploration
of pixel-level regression tasks, such as SR.

3



U
p

d
ate o

r R
eset 

0 1 0 1 0 0 1

0 1 0 0 1 0 1

C
o

n
v

S
A

G

SAB SAB

S
C

B

Temporal Duplication

SCB SCB

Conv tdBN

Hybrid

Dimension

Attention

(HDA)

LIF Conv LIF Conv tdBN

x0

xj

Wi,0

Wi,j

Σ V

X

Potential

Vthr

VreFire

Fire

0 1 0 0 0 0 1

t

t

t

Neuron i

···

Leaky Integrate and Fire Neuron (LIF)Spiking Attention Block (SAB)

Spiking Convolution Block (SCB)

,

1Xt n

,

2Xt n

Deformable

Similarity

Attention

(DSA)

,Xt n, 1Xt n−

, 1Xt n−

C
o

n
v

P
ix

el
S

h
u

ff
le

Spiking Attention Group (SAG)

F
u

si
o

n
 B

lo
ck

Fusion Block

TA SA

SigmoidSigmoid

1-FF

Addition

TA Temporal Attention

SA Spatial Attention

Multiplication

T

……

LR Input SR OutputLR Sequence

Figure 2: Overall network architecture of SpikeSR. The LR input is replicated along the temporal dimension and
then processed through a convolution to extract shallow features. The core module of SpikeSR is SAG, which
employs SABs to capture deep spiking representations. Each SAB contains three main components: (1) SCB,
(2) HDA, and (3) DSA. The fusion block (FB) aggregates the spatial-temporal sequences, and pixelshuffle is
used to reconstruct the SR output.

2 Method

The architecture of the proposed SpikeSR is illustrated in Fig. 2, which mainly consists of SAGs.
Before SAGs, we utilize a 3× 3 convolution to extract high-dimensional features from the LR input.
These features are then processed through m stacked SAGs to explore deeper representations. Each
SAG includes n SABs, a SCB, and a residual connection. In the SCB, leaky integrate-and-fire (LIF)
neurons [37, 14] are used to convert the inputs into binary spike sequences (i.e., 0 or 1). As shown in
Fig. 2, the output of the LIF neuron is 1 when the membrane potential exceeds the threshold, and 0
otherwise. To optimize the membrane potential, we introduce HDA, which refines the spiking activity
using an efficient temporal-channel joint attention [72]. Furthermore, the proposed DSA is employed
to introduce global context for accurate SR. After the terminal SAG, an FB is utilized to convert the
spike sequence features into continuous values. Finally, SpikeSR generates super-resolved output
from the fused features by applying pixel-shuffle [43] and a 3× 3 convolutional layer.

2.1 Spiking Attention Block

As evidenced in Fig. 1, regions degraded by different factors exhibit noticeable fluctuations when
encoded by LIF, highlighting pronounced firing spike rates of neurons. This provides robust and latent
informative spiking cues from LR images. Unlike ANNs that encode images into continuous decimal
values, SNNs use discrete binary spike values for neuronal communication, and thus demonstrate
undesirable information loss [24, 65], resulting in limited capacity to represent degraded LR images.
To address this, the design philosophy of the SAB is focused on leveraging CNNs and attention
mechanisms to regulate membrane potentials, facilitating high-quality feature representation for SR,
which in turn affects the spiking activity.

As shown in Fig. 2, in particular, the output of the n-th SAB at the t-th time step is denoted as Xt,n,
and can be obtained by the following:

Xt,n = Xt,n−1 +DSA(HDA(X̄t,n
1 + X̄t,n

2 )), (1)

where X̄t,n
1 and X̄t,n

2 are two feature representations obtained from parallel branches, defined by:

X̄t,n
1 = SCB(SCB(Xt,n−1)),

X̄t,n
2 = tdBN(Conv(Xt,n−1)),

(2)

where Conv represents a 3× 3 convolution layer, and tdBN means the threshold-dependent batch
normalization.

Different from previous works that focus solely on separate temporal and channel modulation
[61, 65, 45], SAB adheres to temporal-channel joint attention [72] to realize joint adjustment of the
spike response in HDA, effectively achieving interdependencies between the temporal and channel
scopes. More details of HDA can be found in the Appendix.

4



Self-

Similarity

Self-

Similarity

Self-

Similarity *

P7

P4

P1
P8

P5

P2

P9

P6

P3

FD
Deformable 

Convolution Block

K V

Q

CA MLP
Reshape

Average

Pooling

Average

Pooling
Reshape

Reshape
Average

Pooling

F Similarity Matrix

F

3×3×C 9×C

9×9

3×3×C 9×C

3×3×C 9×C

9×9

9×9

Max Indices

F

Deformable Sampling Positions

Reference Position Addition

* Matrix Product Multiplication

↓×2

↓×2 3P
3P 2P

3P
5P

5P

1P

9P4P

Figure 3: The illustration of our DSA. Note that we set the diagonal elements of the similarity matrix to zero
before selecting the indices of the highest scores. The deformable convolution operates at the patch level,
alleviating the mismatch between the most similar patches.

2.2 Deformable Similarity Attention

Non-local self-similarity has been recognized as an effective prior for SR tasks [47]. However,
existing non-local attention mechanisms are computationally expensive due to exhaustive non-local
operations, which impedes their efficiency in large-scale RSIs. In contrast, the proposed DSA
efficiently grasps complex self-similar patterns in RSIs at the patch level to infer intricate spatial
weights. Then, we utilize the cross-attention (CA) paradigm to enhance long-range communication,
facilitating the fusion of useful context.

The details of DSA are shown in Fig. 3. Considering that the object scale exhibits explicit diversity in
RSIs, the input feature F is downsampled using bilinear interpolation, forming a multi-scale feature
pyramid. For clarity, we demonstrate this process by dividing the initial features into 9 patches.
Following the design in [33], the final DSA exploits a cascaded patch division strategy. Specifically,
each patch is first average-pooled to capture its spatial characteristics, then reshaped and subjected to
self-similarity computation, yielding a similarity matrix. The final self-similarity scores are fused via
matrix multiplication to enhance the multi-scale representation. The best-matching patch P̄i with Pi

can be obtained by:

P̄i = argmax
Pj

E(Pi)
TE(Pj), j ̸= i, (3)

where P̄i is the patch in F̄, and E means the operation of average pooling and feature reshaping. We
adopt the Gumbel-Softmax [52] to achieve the non-differentiable argmax function.

Although matched patches contain highly relevant similarity, they are inevitably subject to mismatches
and geometric transformations. Hence, we use deformable convolution (DConv) to reduce the
generation of hallucinated textures. The deformable feature FD at location p0 is computed as follows:

FD(p0) =
∑

pm∈R
ω(pm) · F(p0 + pm +∆pm), (4)

where ω(pm) is the convolution weight at relative location pm, ∆pm is a 2D vector that represents
the learnable offsets, R is a regular grid that determines the receptive field of the convolution kernel.
For a 3× 3 kernel, R = {(−1,−1), (−1, 0), · · · , (1, 1)}. To fuse the self-similar features FD with
F̄, we embed FD to Q, and F̄ to K, V using fully connected layers, then perform aggregation by:

V̄ = softmax(QKT/
√
d)V, (5)

Finally, the fused features are summarized with the original features F and fed into the multilayer
perceptron (MLP) to obtain the final output:

F̃ = MLP(F+ V̄). (6)
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Table 1: Quantitative comparison of SpikeSR with SOTA methods on three remote sensing datasets. FLOPs are
measured corresponding to an LR image of 160× 160 pixels. Note that we set T = 1 to evaluate the model
complexity of SpikeSR for fair comparison.

Methods #Param. FLOPs
AID [56] DOTA [55] DIOR [29] Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic - - 28.86 0.7382 31.16 0.7947 28.57 0.7432 29.53 0.7587
SRCNN [10] 20K 0.512G 29.70 0.7741 32.10 0.8264 29.49 0.7768 30.43 0.7924
VDSR [21] 667K 17.08G 30.44 0.8004 33.22 0.8569 30.36 0.8036 31.34 0.8203
EDSR [32] 1518K 50.77G 30.65 0.8086 33.64 0.8648 30.63 0.8116 31.64 0.8283
CARN [1] 1112K 40.39G 30.66 0.8068 33.66 0.8633 30.64 0.8102 31.65 0.8268
IMDN [20] 715K 18.18G 30.71 0.8076 33.70 0.8641 30.73 0.8115 31.71 0.8277
RFDN-L [34] 681K 16.49G 30.69 0.8074 33.73 0.8642 30.72 0.8114 31.71 0.8277
LatticeNet [36] 777K 19.39G 30.73 0.8089 33.75 0.8653 30.75 0.8126 31.74 0.8289
HNCT [13] 364K 8.48G 30.79 0.8104 33.83 0.8664 30.80 0.8136 31.81 0.8301
FMEN [12] 1046K 26.72G 30.65 0.8063 33.66 0.8631 30.66 0.8104 31.66 0.8266
RLFN [23] 544K 13.25G 30.70 0.8074 33.69 0.8636 30.70 0.8110 31.70 0.8273
ESRT [35] 752K 26.06G 30.77 0.8102 33.75 0.8668 30.81 0.8142 31.78 0.8304
SwinIR-light [31] 897K 23.56G 30.83 0.8114 33.94 0.8677 30.85 0.8149 31.87 0.8313
Omni-SR [51] 2803K 70.98G 30.89 0.8142 33.94 0.8695 30.89 0.8170 31.91 0.8336
NGswin [5] 995K 12.73G 30.79 0.8107 33.87 0.8667 30.79 0.8140 31.82 0.8305
SPIN [66] 555K 18.91G 30.78 0.8098 33.85 0.8673 30.82 0.8139 31.82 0.8303
HiT-SR [68] 792K 21.04G 30.87 0.8138 33.93 0.8689 30.89 0.8167 31.90 0.8331

SpikeSR-S (Ours) 472K 15.21G 30.86 0.8126 33.89 0.8687 30.89 0.8162 31.88 0.8325
SpikeSR-M (Ours) 763K 24.00G 30.88 0.8133 33.92 0.8689 30.90 0.8163 31.90 0.8328
SpikeSR (Ours) 1042K 33.05G 30.91 0.8142 33.98 0.8700 30.95 0.8175 31.95 0.8339

Figure 4: Qualitative comparison of SOTA efficient models for ×4 SR task on AID test set.

2.3 Fusion Block

To transform discrete spiking sequences into continuous pixel values, a common approach is to
apply mean sampling along the time dimension. However, this naive process may lead to the loss of
crucial spatial details, potentially affecting the SR quality. Therefore, we introduce a fusion block
that adaptively aggregates spiking sequences and mitigates information loss. Given an input spike
input Y, the computation process of FB can be formulated as:

Y1 = σ(TA(Y))⊗Y,
Y2 = σ(SA(Y))⊗ (1−Y1),

(7)

where TA and SA denote temporal and spatial attention [65], σ means a sigmoid function and ⊗
denotes feature multiplication. The final output of FB is obtained by summing Y1 and Y2.

3 Experiments

Datasets. We use the AID dataset [56] as the training set, a large-scale remote sensing benchmark
for scene classification, consisting of 30 different scene categories. The AID dataset includes 10,000
HR images, where we randomly select 3,000 for training and 900 for validation. The LR samples
are generated by bicubic downsampling. Following TTST [58], we also evaluate our method on the
DOTA [55] and DIOR [29] datasets, which contain 900 and 1,000 images, respectively.

Implementation Details. During model training, the learning rate is fixed to 10−4, and the training
procedure stops after 1000 epochs with a batch size of 4. Adam optimizer is used with β1 = 0.9
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Table 2: Quantitative comparison of SpikeSR with SOTA methods on 30 scene types of AID datasets.

Scene types
EDSR [32] CARN [1] IMDN [20] ESRT [35] SwinIR-L [31] SPIN [66] HiT-SR [68] SpikeSR

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Airport 29.93 0.8282 29.96 0.8264 30.00 0.8270 30.09 0.8292 30.14 0.8307 30.11 0.8295 30.21 0.8325 30.27 0.8336
Bare Land 36.94 0.8837 36.92 0.8829 36.93 0.8834 36.90 0.8840 36.99 0.8841 36.96 0.8843 37.00 0.8846 36.98 0.8846
Baseball Field 33.05 0.8765 33.06 0.8753 33.17 0.8763 33.21 0.8773 33.27 0.8782 33.14 0.8759 33.29 0.8791 33.32 0.8794
Beach 34.18 0.8727 34.27 0.8737 34.29 0.8739 34.35 0.8755 34.39 0.8756 34.36 0.8757 34.38 0.8762 34.41 0.8764
Bridge 32.93 0.8800 32.86 0.8774 32.93 0.8784 33.05 0.8803 33.15 0.8810 33.05 0.8803 33.14 0.8820 33.27 0.8827
Center 28.77 0.7921 28.71 0.7881 28.79 0.7892 28.88 0.7923 29.00 0.7954 28.88 0.7919 29.03 0.7974 29.09 0.7985
Church 26.30 0.7469 26.41 0.7449 26.46 0.7467 26.52 0.7489 26.59 0.7512 26.56 0.7507 26.64 0.7549 26.70 0.7560
Commercial 29.01 0.7940 29.11 0.7944 29.17 0.7958 29.22 0.7975 29.28 0.7996 29.27 0.7989 29.33 0.8021 29.37 0.8033
D-Residential 24.38 0.6839 24.56 0.6856 24.60 0.6864 24.67 0.6898 24.71 0.6924 24.63 0.6872 24.80 0.6998 24.80 0.6978
Desert 40.20 0.9268 40.22 0.9259 40.17 0.9264 40.06 0.9276 40.31 0.9275 40.24 0.9279 40.27 0.9282 40.25 0.9283
Farmland 35.00 0.8683 34.89 0.8656 34.94 0.8667 34.99 0.8679 35.02 0.8681 34.98 0.8678 35.09 0.8696 35.09 0.8700
Forest 29.85 0.7315 29.88 0.7304 29.90 0.7312 29.99 0.7365 29.98 0.7350 29.97 0.7350 30.05 0.7395 30.05 0.7380
Industrial 28.88 0.7931 28.84 0.7894 28.88 0.7904 28.98 0.7942 29.03 0.7959 28.98 0.7932 29.11 0.7998 29.16 0.8007
Meadow 34.63 0.7804 34.53 0.7769 34.55 0.7784 34.63 0.7814 34.66 0.7807 34.64 0.7813 34.58 0.7807 34.68 0.7820
M-Residential 28.34 0.7365 28.39 0.7347 28.42 0.7349 28.47 0.7370 28.56 0.7401 28.39 0.7334 28.64 0.7443 28.63 0.7436
Mountain 30.63 0.7885 30.70 0.7892 30.70 0.7895 30.74 0.7909 30.78 0.7921 30.75 0.7911 30.79 0.7930 30.79 0.7930
Park 30.54 0.8130 30.63 0.8136 30.65 0.8141 30.72 0.8169 30.76 0.8177 30.73 0.8162 30.81 0.8198 30.82 0.8203
Parking 27.25 0.8317 27.08 0.8245 27.23 0.8270 27.47 0.8352 27.42 0.8354 27.50 0.8363 27.70 0.8435 27.72 0.8424
Playground 35.37 0.8943 35.27 0.892 35.42 0.8929 35.47 0.8942 35.49 0.8946 35.45 0.8946 35.59 0.8968 35.70 0.8976
Pond 32.11 0.8542 32.10 0.8532 32.11 0.8534 32.17 0.8546 32.22 0.8553 32.15 0.8545 32.23 0.8561 32.25 0.8563
Port 28.50 0.8596 28.61 0.8593 28.67 0.8597 28.75 0.8620 28.81 0.8631 28.79 0.8624 28.85 0.8651 28.94 0.8658
Railway Station 28.72 0.7738 28.68 0.7699 28.77 0.7718 28.84 0.7744 28.92 0.7777 28.89 0.7759 28.97 0.7802 29.02 0.7816
Resort 28.52 0.7799 28.59 0.7791 28.62 0.7795 28.68 0.7819 28.74 0.7837 28.66 0.7801 28.78 0.7864 28.82 0.7869
River 31.55 0.7891 31.55 0.7882 31.57 0.7885 31.60 0.7900 31.64 0.7905 31.61 0.7904 31.66 0.7918 31.68 0.7922
School 29.36 0.8044 29.41 0.8033 29.45 0.8041 29.51 0.8067 29.59 0.8091 29.50 0.8048 29.67 0.8123 29.68 0.8124
S-Residential 27.71 0.6728 27.79 0.6723 27.80 0.6725 27.85 0.6752 27.88 0.6758 27.80 0.6728 27.91 0.6782 27.92 0.6775
Square 30.84 0.8200 30.83 0.8181 30.87 0.8183 30.97 0.8218 31.06 0.8236 30.98 0.821 31.11 0.8256 31.15 0.8266
Stadium 29.63 0.8387 29.51 0.834 29.62 0.8358 29.74 0.8388 29.82 0.8413 29.76 0.8394 29.80 0.8420 29.93 0.8439
Storage Tanks 27.44 0.7664 27.50 0.7649 27.52 0.7648 27.58 0.7671 27.63 0.7692 27.58 0.767 27.66 0.7720 27.68 0.7718
Viaduct 28.99 0.7757 28.92 0.7711 28.96 0.7722 29.06 0.7759 29.14 0.7784 29.05 0.7753 29.16 0.7811 29.25 0.7831
Average 30.65 0.8086 30.66 0.8068 30.71 0.8076 30.77 0.8102 30.83 0.8114 30.78 0.8098 30.87 0.8138 30.91 0.8142

Figure 5: Qualitative comparison of SOTA efficient SR models for ×4 SR task on DOTA dataset.

and β2 = 0.999. Data augmentation includes random rotations of 90°, 180°, 270°, and horizontal
flips on 64× 64 patches. The channel number, embedding dimension of cross-attention, and MLP
rate of small, medium, and final SpikeSR are set to {40, 24, 72}, {56, 24, 72}, and {64, 32, 100},
respectively. The number of SAGs is 4, with 2 SABs in each SAG. Time step is set to T = 4.

Metrics. The widely used peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) are
used to evaluate SR performance. The results are measured on the Y channel after converting RGB to
YCbCr space. For a fair comparison, all SR methods are retained on an RTX 4090 GPU from scratch
using the AID dataset, adhering to their official implementation settings.

3.1 Comparison with Efficient Models

We compare our SpikeSR with state-of-the-art (SOTA) efficient SR methods, including CNN-based
models of CARN [1], LatticeNet [36], RLFN [23], etc, and transformer-based approaches of SwinIR
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Figure 6: Qualitative comparison of SOTA efficient SR models for ×4 SR task on DIOR dataset.

[31], SPIN [66], HiT-SR [68], etc. We also report results for the small and medium versions of our
SpikeSR, denoted as SpikeSR-S and Spike-M, respectively.

Quantitative comparisons. The quantitative results of various methods are reported in Table 1. We
can observe that our SpikeSR achieves the best performance across three benchmarks, outperforming
SOTA CNN- and transformer-based SR models. For example, on AID, DOTA, and DIOR datasets,
SpikeSR improves PSNR by 0.08 dB, 0.04 dB, and 0.1 dB, respectively, compared to the impressive
SwinIR. Moreover, the small version of SpikeSR requires fewer parameters (472K vs. 897K) and
FLOPs (15.21G vs. 23.56G) than SwinIR, yet achieves superior average performance.

Qualitative comparisons. Fig. 4, Fig. 5, and Fig. 6 present visual comparisons on AID, DOTA, and
DIOR datasets, respectively. As shown in Fig. 4, SpikeSR effectively restores severely damaged
textures, e.g., the runway line in the playground. By contrast, other SR models fail to recover such
weak high-frequency details. In Fig. 5, the reconstruction of “img_591” highlights that SpikeSR
produces results closest to the GT, while other methods like SPIN recovers unrealistic results.
Moreover, Fig. 6 further demonstrates that SpikeSR consistently delivers superior visual quality,
restoring more textural information compared to large-capacity ANN-based model like Omni-SR.

4 Ablation Study

We conduct ablation studies to assess the impact of key components in SpikeSR. The experimental
results in Table 3 are measured on the AID-tiny dataset [58]. In particular, the Baseline model is
constructed by removing the HDA and DSA and replacing them with standard temporal attention
(TA), channel attention (CA), and spatial attention (SA) mechanisms. For a fair comparison, we
increase the number of m, n, and channel dimensions to 8, 4, and 256, respectively, which ensures a
similar number of parameters with our SpikeSR. Similarly, those settings of Variant-A are modified
to 10, 5, and 128, respectively.

Effectiveness of HDA and DSA. Table 3 indicates how the SR performance is influenced by the HDA
and DSA. Comparing the PSNR values of the Baseline and Variant-A reveals that HDA contributes a
0.12 dB improvement. This suggests that enhancing the correlation between the temporal and channel
dimensions delivers better recalibration of the membrane potentials. More intuitively, we visualize
the feature maps to highlight the impact of HDA, as shown in Fig. 7(b). The results illustrate that
HDA effectively refines the feature representation by emphasizing salient details and suppressing
irrelevant information.

By introducing the proposed DSA to the Baseline model, the PSNR results can be improved by a large
margin of 0.21 dB. When employing HDA and DSA simultaneously, the resulting SpikeSR achieves
an additional 0.08 dB improvement compared to Variant-B. To better demonstrate its effectiveness
in capturing global self-similarity priors, we provide the LAM visualization and diffusion index in
Fig. 7(a). As observed, DSA generates more pronounced LAMs and significantly increases the DI,
indicating that the model activates more valuable pixels for accurate SR.
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Figure 7: (a) Analysis of local attribution maps (LAMs) [16] and diffusion index (DI). The proposed DAS helps
SpikeSR exploit more useful information against CARN and HiT-SR. (b) Feature visualizations. The feature
obtained by HDA is sharper and preserves more details, indicating high-quality feature representations.

Table 3: Ablation on different variants of our SpikeSR.

Methods TA CA SA HDA DSA #Param. PSNR (dB)

Baseline ✓ ✓ ✓ 1120K 27.80
Variant-A ✓ ✓ 1062K 27.92
Variant-B ✓ ✓ ✓ 1009K 28.11
SpikeSR ✓ ✓ 1042K 28.19

Table 4: Ablation on feature pyramid and de-
formable convolution.

Methods w/o Pyramid w/o DConv DSA (Full)

#Param. 1042K 918K 1042K
FLOPs 31.41G 28.86G 33.00G
PSNR (dB) 28.14 28.07 28.19

Table 5: Performance and complexity analysis
of SpikeSR with different numbers of blocks.

Blocks 2 3 4 5 6

#Param. 558K 800K 1042K 1284K 1526K
FLOPs 17.47G 25.26G 33.00G 40.84G 48.60G
PSNR (dB) 28.11 28.17 28.19 28.16 28.20

Feature Pyramid and DConv. Due to the scale diversity of objects in RSIs, we constructed a feature
pyramid to grasp the self-similarity in multiple levels. As listed in Table 4, the use of feature pyramid
improves the performance by 0.05 dB without introducing additional parameters. Furthermore, to
demonstrate the effectiveness of deformable convolution, we remove this component, which leads to
a severe performance drop by 0.12 dB. This illustrates that the self-similar patches contain massive
irrelevant and misaligned contents, and direct fusion may introduce interference, thus resulting in
suboptimal performance.

Network Depth. We evaluate the impact of the network depth by changing the number of SAGs of
our SpikeSR from 2 to 6 blocks. As reported in Table 5, SpikeSR achieves the highest SR performance
when m = 3. While increasing the number of m may further improve the reconstruction, it also
brings larger model size. Therefore, we set m = 4 in our final model, considering the trade-off
between performance and computational complexity.

5 Conclusion and Limitation

In this paper, we investigate the application of SNNs for efficient SR of remote sensing images.
Motivated by the observation that LIF neurons exhibit a higher spike rate in degraded images, we
integrate SNNs with convolutions for improved feature representation. Besides, a hybrid dimension
attention is employed to modulate the spike response, further refining salient information. To incor-
porate valuable prior knowledge for more accurate SR, we propose a deformable similarity attention
module, capturing global self-similarity across multiple feature levels. Extensive experiments on
various remote sensing datasets demonstrate the efficacy and effectiveness of the proposed SpikeSR
model. We believe our exploration can facilitate the practical application of energy-efficient models
in remote sensing area.
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SpikeSR still has some limitations. First, its representational capacity remains improvable. Sec-
ond, the reliance on attention mechanisms introduces additional computational overhead, limiting
efficiency. We leave these issues for future exploration.
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The adopted remote sensing datasets are publicly available. The datasets used
in this work are properly described and cited in Section 3, and will be released alongside
our code if the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the details in this regard are provided in Section 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our SpikeSR is trained on a single NVIDIA RTX 4090 GPU, as detailed in
Section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and understood the NeurIPS Code of Ethics and the associated
policies, and we believe that the research in the paper fully conforms to the NeurIPS Code
of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: There is no negative societal impact associated with our paper. Our work
focuses on deep-learning-based methods for potential remote sensing applications, which is
discussed in the conclusion of the main paper.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: We are aware of no potential risk for any misuse of our work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have properly cited the open datasets in Section 3. Their licenses permit
use within academic scope.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release any new assets, except for our codes, which are made
publicly accessible alongside documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing. The human data are acquired from
public datasets, properly cited in the manuscript.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not include LLMs as any important, original, or non-standard
components of the core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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