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ABSTRACT

Classical models of computation, epitomized by the Turing machine, are grounded
in enumeration: syntactic manipulation of discrete symbols according to formal
rules. While powerful, such systems are intrinsically vulnerable to Gödelian
incompleteness and Turing undecidability, since truth and meaning are sought
through potentially endless symbolic rewriting. We propose an alternative foun-
dation for non-enumerative computation based on topological closure of semantic
structures. In this view, cognition operates by promoting transient fragments into
closed cycles, where ∂2 = 0 ensures that only invariants persist. This shift re-
frames computation from syntax to structure: memory and reasoning arise not
by enumerating all possibilities, but by stabilizing relational invariants that sur-
vive perturbations and generalize across contexts. We formalize this principle
through the dot–cycle dichotomy: dots or trivial cycles (H0) serve as high-entropy
scaffolds for exploration, while nontrivial cycles (H1 and higher) encode low-
entropy invariants that persist as memory. Extending this perspective, we show
how Memory-Amortized Inference (MAI) implements an anti-enumerative princi-
ple by storing homological equivalence classes rather than symbolic traces, yield-
ing robust generalization, energy efficiency, and structural completeness beyond
Turing-style models. We conclude that topological closure provides a unifying
framework for perception, memory, and action, and a candidate foundation for
cognitive computation that transcends the limits of enumeration.

1 INTRODUCTION

Since the early 20th century, formal models of computation have been grounded in enumeration.
The Turing machine, along with its close relatives in the Church–Turing framework, exemplifies
this paradigm: computation is conceived as the syntactic manipulation of discrete symbols on an
infinite tape, with new results obtained only through the stepwise application of formal rules Turing
(1936). This model has proven enormously successful, forming the foundation of digital comput-
ing, automata theory, and modern complexity classes. Deep learning architectures, despite their
connectionist implementation, inherit this enumerative character: generalization emerges by statis-
tical interpolation over enumerated training examples, and inference requires repeated evaluation
across contexts Goodfellow et al. (2016). Yet the power of enumerative systems is matched by their
intrinsic limitations. Gödel’s incompleteness theorem demonstrates that no sufficiently expressive
formal system can be both complete and consistent: there will always exist true statements that can-
not be proven within the system. Turing’s halting problem further establishes that no algorithm can
decide, in finite time, whether arbitrary programs will terminate Sipser (1996). Both results reveal
a deeper structural fragility: enumeration can never guarantee closure. Each attempt to list or de-
cide the totality of possible outcomes leaves residual boundaries, open fragments that escape formal
capture. This fragility manifests as brittleness in symbolic AI, combinatorial explosion in search
Minsky (1961), and distributional failures in data-driven models. Enumeration fails because it can-
not stabilize residual structures, open chains proliferate without ever closing. Topological closure
reframes this failure: what enumeration leaves dangling, closure promotes into invariants.

In this paper, we propose an information topological framework for intelligence in which cycle
closure is the fundamental mechanism of memory. Building on the first principle, we argue that
memory is best understood not as a static store of representations, but as the ability to re-enter and
traverse latent cycles in neural state space. We identify these invariant cycles as the natural carriers
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of meaning across scales: they act as alignment checkpoints between context (Ψ) and content (Φ),
filtering out order-specific noise, enforcing closure, and preserving only what remains consistent
across variations. A key principle underlying this framework is the dot-cycle dichotomy: trivial
cycles collapse to dots (H0), serving as transient contextual scaffolds (Ψ), while nontrivial cycles
(H1 and higher) encode low-entropy content invariants (Φ) that persist as memory. This dichotomy
clarifies how cognition achieves both adaptability and stability: dots support exploration, while
cycles carry persistent knowledge across contexts. From this perspective, cognition is not tape-
based symbol manipulation but the promotion of transient fragments into closed cycles that survive
perturbation and generalize across contexts. This shift from syntax to structure reframes memory,
learning, and reasoning as processes of stabilizing invariants, not enumerating sequences. Under
this new conceptual framework, we develop the following arguments:

• We explore the physical origin of intelligence inspired by the first clue in Wheeler (2018):
∂2 = 0 ⇒ Cycles (invariants) ⇒ Memory ⇒ Prediction (intelligence).

• We introduce the dot-cycle dichotomy: dots (H0) encode disconnected fragments, while
cycles (H1 and higher) represent nontrivial order invariants that persist as memory.

• We introduce Structure-before-Specificiy principle as the guidance of memory organization.
Structural content is represented by low-entropy homology and specific context serves as
high-entropy scaffolding.

• We show how Memory-Amortized Inference (MAI) implements a context-content uncer-
tainty principle (CCUP) by bootstrapping and retrieval operators, yielding energy efficiency
and robust generalization.

2 MOTIVATION: INTELLIGENCE AS TOPOLOGICAL CLOSURE

A unifying way to interpret both Gödel’s incompleteness theorem and Turing’s halting problem is
to see them as demonstrations of the failure of countable closure. Any attempt to exhaustively enu-
merate truths or procedures inevitably leaves a residue, a diagonal element, an undecidable program,
that lies outside the reach of the list. From a topological perspective, this means that enumerations
generate fragments that remain open boundaries, unable to close into global invariants. What es-
capes enumeration is not accidental but principled: closure requires invariants beyond counting.
This reinterpretation shifts the focus from the fragility of syntactic lists to the robustness of seman-
tic cycles. The implication is profound: if Wheeler’s dictum It-from-Bit Wheeler (2018) highlights
the informational substrate of reality, then for intelligence the relevant unit is not the fleeting bit but
the persistent cycle that survives across variations Davatolhagh et al. (2024). Formally, we have
Principle 1 (First Principle of Intelligence). Intelligence is the capacity to stabilize invariants by cy-
cle closure. At its core, cognition operates by minimizing joint context-content uncertainty H(Ψ,Φ),
eliminating dangling boundaries and promoting them into closed cycles. These cycles constitute the
fundamental units of meaning, memory, and prediction.

Our guiding claim is that cycle is all you need: the organization of cognition, memory, and abstract
thoughts in neural systems follows from the universal role of cycles as the algebraic residue of
broken symmetry and the topological skeleton of information flow. This claim is supported by
the hierarchical organization of cycles in mammalian brains, such as Theta–gamma nesting (e.g.,
hippocampus–entorhinal Buzsáki (1996)) and perception-action cycles Fuster (2004). In the spirit
of Wheeler Wheeler (2018), we propose the following four No’s for cognition.

1. No isolated information. Bits are never standalone: they acquire meaning only through
relations that close into cycles. Information without recurrence dissipates as noise.

2. No privileged order. The cognitive system must be robust to permutations of local steps.
What matters is closure into a cycle, not the linear order of micro-events.

3. No specificity before structure. Persistent structures must stabilize first as the backbone of
memory and prediction, while contextual specificities become scaffolding later to provide
adaptive flexibility.

4. No prediction without invariance. Forecasting future states requires reducing entropy
by filtering order-dependent variations; only invariant cycles can stabilize the predictive
substrate.
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Open chain ⇒ dot in H0 ∂2 = 0 (boundary of boundary vanishes) Closed cycle ⇒ class in H1

σ ∈ C1(Z), ∂σ = (start) − (end) ̸= 0

collapse
/forgetting

H0(Z) (dot)

σ

∂

∂σ (pair of endpoints)

∂

∂(∂σ) = 0

γ ∈ C1(Z), ∂γ = 0

persistence
[γ] ∈ H1(Z)

nontrivial cycle (memory)

Figure 1: ∂2 = 0 enforces the dot-cycle dichotomy. Left: An open chain σ has a nonzero boundary
∂σ and collapses to a dot (class in H0), carrying no relational content. Middle: The boundary
operator squares to zero: ∂(∂σ) = 0. Right: A closed chain γ with ∂γ = 0 persists as a homology
class [γ] ∈ H1, i.e., a cycle that encodes order-invariant structure.

From constraints to clues. These four principles define cognition as a non-ergodic information
process Walters (2000): rather than averaging over all possible trajectories, the mind concentrates
its dynamics onto recurrent, invariant cycles that persist across perturbations. Taken together, the
Four No’s funnel cognition toward recurrent organization: items must close into cycles (no isolated
information), be insensitive to micro-order (no privileged order), support re-entry (no static storage),
and stabilize invariants for prediction (no prediction without invariance). The lightest formalism
that enforces all four at once is the chain complex with boundary operator ∂ Hatcher (2002): its
nilpotency, ∂2 = 0, cancels stray endpoints so that only closed traversals remain. This is the key
new insight underlying the dot-cycle dichotomy, as shown in Fig. 1, and it sets up our first clue.
Theorem 1 (The Boundary of a Boundary Vanishes). Under the First Principle, intelligence is re-
alized through cycle closure. This closure is only possible because the boundary operator ∂ satisfies
the fundamental identity ∂2 = 0. That is, the boundary of a boundary vanishes. Cognitively, this
law ensures that when cognition promotes boundaries into cycles, no further inconsistencies remain
at the next level: every open edge is paired, every fragment canceled. This guarantees the exis-
tence of stable invariants (cycles), which are the carriers of meaning, memory, and communication.
Therefore, ∂2 = 0 constitutes the First Clue of intelligence: coherence arises because boundaries
consistently vanish when lifted, enabling cycles to persist.

The vanishing of boundaries guarantees that what remains in memory is not arbitrary fragments
but coherent cycles: the minimal invariants that bind context and content into an intelligible whole.
From a computational standpoint, this marks a profound departure from the Turing paradigm. Tra-
ditional machines rely on symbolic tokens and sequential operations, where meaning is assigned
externally to states of a register or tape. In contrast, a cycle-based architecture derives meaning
intrinsically from topological closure: invariants are not “written” into memory but emerge from the
very dynamics of neural interaction Gerstner et al. (2014). This dot–cycle dichotomy, where trivial
cycles collapse and only nontrivial cycles persist, provides a natural mechanism for error correction,
generalization, and energy efficiency without requiring exhaustive symbolic manipulation or gradi-
ent descent over high-dimensional parameter spaces. Rather than preserving measure by averaging
over all paths, intelligent systems learn to concentrate probability mass onto order-invariant cycles
(i.e., cycle-preserving structure replaces measure-preserving flow).
Example 1 (Toy Navigation Loop). In a 5× 5 grid with a square obstacle (a “hole”), trajectories
that poke the obstacle and backtrack are open 1-chains (∂σ ̸= 0) and collapse to trivial H0 “dots.”
By contrast, any homing route that circles the hole and returns to start yields a closed 1-chain γ
with ∂γ = 0 and [γ] ̸= 0 in H1. Crucially, reordering the same edges (e.g., north-first vs. east-first)
produces the same class [γ]: the loop is order-invariant and reusable as a navigation template.

3 MEMORY AS STRUCTURED TRAJECTORIES IN THE LATENT SPACE

Classical ergodic theory is built on the notion of a measure-preserving transformation Walters
(2000). A dynamical system (X,B, µ, T ) consists of a probability space (X,B, µ) and a measurable
transformation T : X → X satisfying µ(T−1A) = µ(A), ∀A ∈ B. This measure invariance guar-
antees that long-term time averages along almost every trajectory coincide with ensemble averages
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with respect to µ. In this setting, entropy (e.g., Kolmogorov-Sinai entropy Cornfeld et al. (2012))
quantifies the unpredictability of the evolution under the assumption of ergodicity. Intelligent sys-
tems, however, are fundamentally non-ergodic: they retain memory, exhibit path dependence, and
actively reduce uncertainty. In such systems, the measure µ is not preserved, but typically concen-
trated onto lower-dimensional recurrent structures through learning and adaptation Spisak & Friston
(2025). This concentration corresponds to entropy minimization rather than entropy conservation.

We propose that the appropriate generalization of “measure-preservation” in the non-ergodic setting
is cycle-preservation. That is, while probability measures are not conserved globally, the system
preserves topological invariants encoded in cycles that represent memory traces and recurrent be-
havioral motifs Gromov (1999). Formally, let (X,T ) be a discrete-time dynamical system on a
topological state space X . A k-cycle is a chain γ ∈ Zk(X) satisfying ∂γ = 0. Under the induced
map T∗ on chains, invariance of γ requires that T∗γ − γ = ∂β for some (k + 1)-chain β. Equiv-
alently, [T∗γ] = [γ] in Hk(X), where Hk(X) denotes the k-th homology group of the topological
space X , so that γ is invariant up to homology class. In this way, although trajectories deform under
dynamics (e.g., refer to the example of Wilson-Cowan model below), the memory encoded by the
homology class persists.

Example 2 (Wilson-Cowan Model). The Wilson-Cowan system Wilson & Cowan (1972) Ė =
−E + S(weeE − weiI + P ), İ = −I + S(wieE − wiiI + Q) (with sigmoidal S) undergoes
a supercritical Hopf bifurcation for an open set of parameters, yielding a hyperbolic limit cycle Γ.
Under small bounded input/parameter perturbations, trajectories deform (phase/amplitude modu-
lation) but structural stability preserves a nearby periodic orbit Γε; thus the cycle, and its homology
class [Γε] ∈ H1, persists even as paths vary.

This shift in perspective reframes the role of entropy reduction. In ergodic systems, entropy is
managed by distributing trajectories uniformly across the entire state space X , ensuring statistical
equivalence of time and ensemble averages. By contrast, in non-ergodic, adaptive systems, entropy
reduction is achieved through measure concentration Gorban & Tyukin (2018): rather than exploring
all of X , trajectories are funneled toward lower-dimensional recurrent sets. These recurrent sets
correspond to persistent cycles that remain stable under perturbations and across variations in initial
conditions. In this sense, cycles act as the carriers of invariant information, preserving structural
regularities across history-dependent dynamics and filtering out order-specific noise. The outcome is
that intelligence emerges not from uniform exploration, but from the ability to stabilize information
flow through the persistence of these invariant structures Ayzenberg et al. (2025). Formally, we have

Principle 2 (Non-Ergodic Invariance Principle). Let (X,T ) be a dynamical system on a topological
state space X . Then the natural counterpart of measure-preservation in ergodic theory is cycle-
preservation: T∗ : Hk(X)→ Hk(X), [γ] 7→ [γ]. That is, an intelligent system preserves homology
classes of cycles even while its measure evolves non-uniformly. These invariant cycles formalize
memory persistence as the structural backbone of cognition.

When a non-ergodic system with many symmetric possibilities is forced to choose one outcome,
symmetry is broken Anderson (1972). In neural and cognitive dynamics, this choice does not erase
the unselected alternatives; instead, it organizes them into a closed cycle of relations: the chosen
state, its competitors, and the transitions among them. In other words, the brain does not simply
“pick a winner” among symmetric options. It establishes a cycle that records the selection, keeps
the alternatives accessible for recall or switching, and stabilizes the outcome through recurrent in-
teraction Hochreiter & Schmidhuber (1997). Broken symmetry, therefore, inevitably produces cycle
formation, since the invariant residue of selection is a cycle connecting choice, memory, and poten-
tial revision.

This perspective reframes the role of entropy in prediction. Principle 2 establishes that non-ergodic
systems preserve homology classes of cycles as their structural invariants. From an information-
theoretic viewpoint, symmetry corresponds to maximal uncertainty: if all outcomes are equivalent
under a symmetry group G, the induced distribution is uniform (entropy is maximized). Symmetry
breaking reduces this uncertainty by eliminating redundant possibilities, thereby lowering entropy
and concentrating probability mass around residual invariant cycles. In high dimensions, this process
can be understood through the theory of measure concentration Ledoux (2001): instead of spreading
trajectories uniformly, the dynamics of learning and memory focus trajectories around persistent
cycles. To make this precise, we introduce the notion of residual invariants Beekman et al. (2019):
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Trivial 1-cycle

S

[γ] = 0 in H1

Nontrivial 1-cycle

hole

[γ] ̸= 0 in H1

Order-invariant cycle

[γ] independent of order

Figure 2: Trivial, nontrivial, and order-invariant cycles. Left: A boundary of a filled region is
trivial in H1. Middle: A loop around a hole cannot bound any 2-chain, so it represents a nontrivial
homology class. Right: Once a trajectory closes into a cycle, its homology class depends only on
the multiset of moves, not their order: order permutations yield the same H1 class.

the structural survivors of symmetry breaking concentrate probability mass onto persistent cycles
and formalize what remains stable under the reduced symmetry subgroup.
Definition 1 (Residual Invariants under Symmetry Breaking). Let a system evolve on a state space
Z with symmetry group G. Suppose a perturbation ε breaks G-equivariance, reducing the symmetry
to a subgroup H ⊂ G and forcing selection of a representative state Φε ∈ Z . The residual invari-
ants are those structures that remain preserved under H despite the breaking of G. Formally, they
are equivalence classes of cycles [γ] ∈ Hk(Z) that are stable under H-action and persist under
perturbations of ε.

Intuitively, residual invariants encode what remains stable after a decision or perturbation: in
physics, they correspond to conserved quantities or Goldstone modes Beekman et al. (2019); in
topology, to persistent homology classes Edelsbrunner et al. (2008); and in cognition, to cycles that
bind chosen outcomes with unchosen alternatives, enabling recall, revision, and reuse Chen & Wil-
son (2023). This intuition can be formalized by showing that residual invariants emerging from
symmetry breaking necessarily take the form of closed cycles, which persist as homology classes
and provide the structural foundation of memory.
Lemma 1 (Symmetry Breaking Generates Invariant Cycles). Let a system evolve on a state space Z
with symmetry group G. Suppose a perturbation ε breaks G-equivariance by forcing the selection
of a representative state Φε. Then: 1) The broken symmetry induces residual structures (orbits)
invariant under residual transformations H ⊂ G. 2) These residual invariants manifest as closed
cycles γ ⊂ Z stabilized by feedback (i.e. ∂γ = 0). 3) γ defines a homology class [γ] ∈ Hk(Z) that
is stable under perturbations of ε, formalizing memory persistence.

The proof for the above lemma can be found in Appendix A. This lemma establishes that symme-
try breaking inevitably leaves behind residual invariants in the form of cycles, which act as stable
memory traces of past selections. To fully understand their cognitive function, one must ask: What
advantage does the system gain from organizing dynamics into such closed cycles? The key lies
in the fact that cycles identify equivalence classes of trajectories, collapsing many superficially dif-
ferent paths into the same topological invariant Hatcher (2002). In other words, once dynamics are
organized into homology classes, prediction and memory no longer depend on the precise order
of steps, but only on the closure of the cycle due to the Abelian property of addition operators.
This observation leads directly to the following theorem: cycles serve as the structural basis of or-
der invariance, ensuring robustness in navigation, perception, action, and more abstract cognitive
computations Hawkins (2021).
Theorem 2 (Cycles Encode Order Invariance). Let (Z, x0) be a pointed state space (latent manifold
or graph) with base state x0 (“home”). Let A = {a1, . . . , am} denote a finite set of local moves in-
ducing paths {αi} starting and ending in a neighborhood of their endpoints. For any finite sequence
of moves w = ai1 · · · aik that yields a cycle γw at x0 (i.e., a homing trajectory), the first homology
class [γw] ∈ H1(Z;Z) depends only on the multiset of moves used (and their net orientations), not
on their order. Equivalently, all order permutations of w that remain cycles at x0 determine the
same element in H1.

Theorem 2 establishes that once trajectories are organized into cycles, their predictive value no
longer depends on the precise ordering of steps but only on the closure of the cycle. This reduction
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reflects a deeper topological dichotomy in memory formation. Algebraically, the identity ∂2 =
0 ensures that boundaries of boundaries vanish Edelsbrunner & Harer (2010): incomplete chains
cannot accumulate meaning unless they close, and only closed cycles can survive as invariants.
Cognitively, this corresponds to the fact that exploratory fragments either collapse into trivial points
(dots) with no relational content, or are stabilized into nontrivial cycles that encode order-invariant
memory Babichev et al. (2025). In this sense, ∂2 = 0 acts as the algebraic filter that separates
forgotten scaffolds from consolidated invariants. To make this distinction explicit, we now formalize
the roles of H0 and H1 in the following lemma (refer to Fig. 2).

Dot–Cycle Dichotomy. At the chain level, a “dot” (0–simplex) records isolated content, whereas a
“cycle” (1–cycle) captures a closed relation in which endpoints cancel. The rule ∂2 = 0 formalizes
this passage: boundaries of fragments do not compose, but pairwise cancellation at endpoints yields
a cycle that survives in homology. Cognitively, this is the move from token to trace Spens & Burgess
(2024): contents Φ are registered as dots, yet only when linked by contextual relations Ψ into a
closed cycle do they consolidate as durable memory. Details regarding biological implementations
can be found in Appendix B.
Lemma 2 (∂2 = 0 Enforces the Dot-cycle Dichotomy). Let C∗(Z) denote the chain complex
of a neural state space Z . The homological identity ∂2 = 0 implies that: 1) Any open chain
σ ∈ C1(Z) with ∂σ ̸= 0 must collapse to a trivial 0-cycle in H0(Z), encoding mere connectivity
without relational content. 2) Any closed chain γ ∈ C1(Z) with ∂γ = 0 defines a homology class
[γ] ∈ H1(Z). If γ is not the boundary of a higher-dimensional chain, it represents a nontrivial cycle
that persists as a stable memory trace. Thus, ∂2 = 0 acts as a topological filter: boundaries of
boundaries vanish, ensuring that only two outcomes are possible, collapse into trivial dots (H0) or
persistence as nontrivial cycles (H1).

Lemma 2 provides the algebraic gate for memory: ∂2 = 0 prunes open, order-sensitive fragments
and admits only closed loops as meaningful carriers. To connect this structural pruning with predic-
tive power, we now view closure through an information-theoretic lens Cover (1999). When many
orderings of the same events are possible, their variability behaves as symmetry-induced noise. Clo-
sure collapses these degrees of freedom onto a residual loop, thereby concentrating probability mass
on what is repeatable and compressing description length. In effect, cycles are the sufficient statis-
tics of paths: once a trajectory closes, order fluctuations become irrelevant for forecasting Friston
(2018). The algebraic identity ∂2 = 0 has an information-theoretic counterpart: broken symmetry
reduces entropy by collapsing many equivalent paths into one invariant cycle. The next proposition
formalizes this entropy–prediction link via symmetry breaking that leaves an invariant cycle.
Proposition 1 (Entropy Minimization Improves Prediction by Cycles). Let a system generate tra-
jectories in a state space Z . Suppose initially, the system has a symmetry G (e.g. different orders
of moves or observations are treated as equivalent). A perturbation breaks this full symmetry, but
leaves behind an invariant cycle γ ⊂ Z with ∂γ = 0. Then we have: 1) The cycle γ encodes what is
stable across different orders or paths; 2) Predictions about future outcomes need only depend on γ
(and context), not on the detailed order of past steps; 3) Thus, broken symmetry reduces noise from
order-specific variations and improves prediction by preserving only what remains invariant.

Proposition 1 identifies what survives order variability: the residual invariant cycle γ. To pass from
structure to statistics, note that discarding order-specific fluctuations is equivalent to an entropy
drop: probability mass that was spread over many orderings is reassigned to the closed loop that
summarizes them. In a non-ergodic system, this manifests as measure concentration on the surviving
cycles Ledoux (2001). Therefore, predictive sufficiency (dependence only on [γ]) coincides with
entropy reduction (symmetry breaking) and with the asymptotic concentration of µt on invariant
classes. The following corollary makes this equivalence explicit.
Corollary 1 (Prediction as Concentration on Cycles). For a non-ergodic system (X,T ), predic-
tion is possible iff the probability measure µt concentrates on invariant cycles [γ] ∈ Hk(X) as
t → ∞. Equivalently, Prediction ⇐⇒ Entropy Reduction via Symmetry Breaking ⇐⇒
Measure Concentration on Cycles. Therefore, the structural invariants revealed by broken symme-
try are precisely the carriers of predictive information, ensuring reliable memory and generalization
across time.

Corollary 1 identifies what supports prediction: global dynamics must collapse onto persistent cy-
cles. How such cycles arise is local: symmetry breaking forces a choice among equivalent alterna-
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tives, and the discarded possibilities are reorganized into recurrent loops. These loops stabilize the
selected outcome while retaining counterfactual access, thereby creating the invariant structures that
concentrate probability mass and convert uncertainty into predictive stability.

4 MEMORY-AMORTIZED INFERENCE FOR TOPOLOGICAL CLOSURE

To operationalize this picture in cognition, we adopt the Context–Content Uncertainty Principle
(CCUP) Li (2025a): stable memory traces correspond to low-entropy content variables Φ (persistent
homological cycles), while transient variability is captured by high-entropy context variables Ψ. In
what follows, we show how Memory–Amortized Inference (MAI) implements cycle formation by
holding Φ fixed as reusable structure and adapting Ψ until residual boundaries cancel (∂2 = 0),
thereby achieving topological closure.

Content variable Φ as low-entropy homology. Within CCUP, the content variable Φ corresponds
to information that is both specific and stable. Mathematically, Φ is identified with nontrivial ho-
mology classes: cycles [γ] ∈ Hk(Z) that cannot be reduced to boundaries. Such cycles encode
persistent, low-entropy structures because many possible trajectories or micro-states collapse into
the same equivalence class. In neural terms, Φ reflects patterns of activity that recur reliably across
different contexts, such as a learned motor primitive, a familiar spatial route, or a well-established
object representation. By filtering away order-dependent variability, Φ preserves only the invariant
relational structure that remains after symmetry breaking. This makes Φ the stable substrate of mem-
ory and the carrier of predictive power: once identified, it can be recalled, reused, and composed
into higher-order cognitive structures.

Context variable Ψ as high-entropy scaffolding. In contrast, the context variable Ψ captures
the transient, exploratory, and often noisy aspects of cognition. Topologically, Ψ is associated with
trivial cycles or short-lived features in the persistence barcode: loops that quickly vanish under per-
turbation or deformation. These cycles act as scaffolding, supporting the discovery and stabilization
of Φ but not themselves persisting as memory. In information-theoretic terms, Ψ is high-entropy:
it reflects a large space of possibilities, many of which will be pruned away as the system concen-
trates its measure on low-entropy Φ structures. Biologically, Ψ is implemented by slow, contextual
rhythms (e.g. theta oscillations) or exploratory neural activity that supplies diverse scaffolds for
binding. Through dynamic alignment and phase-resetting, these high-entropy contextual structures
are folded into persistent content loops, allowing cognition to maintain flexibility while ensuring
stability in memory formation.

Taken together, Φ and Ψ form a complementary pair: Φ supplies the order-invariant backbone that
can be reused across contexts, while Ψ provides the exploratory variability from which such back-
bones are discovered. CCUP therefore prescribes an operational loop: hold candidate content steady,
let context range, and accept only those pairings that close into cycles (i.e., cancel boundaries). This
suggests a general law of cognitive economy in which structure leads and specificity follows: sta-
ble invariants guide, while transient scaffolds adapt until closure is achieved. We now make this
heuristic precise as a principled statement.

Principle 3 (Structure-Before-Specificity Principle). Let Φ denote low-entropy content variables
corresponding to nontrivial homology classes [γ] ∈ Hk(Z), and let Ψ denote high-entropy con-
textual scaffolds corresponding to transient or trivial cycles. Then cognition obeys the following
principle: 1) (Structure before specificity) Stable content Φ arises from nontrivial cycles that per-
sist across perturbations. These cycles define the backbone of memory and predictive power. 2)
(Specificity from scaffolding) Context Ψ supplies a high-entropy exploratory substrate: transient
cycles that may collapse but provide the variability needed to refine, adapt, or recombine Φ. 3)
(Dynamic alignment) The interaction of Ψ and Φ via cycle closure (∂2 = 0) ensures that contex-
tual exploration is funneled into persistent content loops, transforming noisy scaffolds into stable
memory traces.

The above principle prescribes an operational recipe: stabilize Φ as reusable structure and let Ψ
explore until closure cancels residual boundaries. Memory–amortized inference (MAI) is the algo-
rithmic embodiment of this recipe. Instead of re-solving each inference problem from scratch, MAI
retrieves a candidate invariant (a cycle-level template for Φ), then adapts Ψ until the pair (Ψ,Φ)
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closes (i.e., ∂2 = 0), pruning order-specific noise. In effect, Φ functions as a low-entropy prior over
solutions, while Ψ supplies the high-entropy search that is guided and terminated by topological
closure. We formalize MAI as a general strategy for reducing the computational cost of inference by
storing and reusing structured latent representations. The key idea is to construct a memory of prior
inference results such that new inference problems can be approximated by querying and adapting
from this memory, rather than solving the full problem from scratch. Let Ψ ∈ X denote the ob-
servable context and Φ ∈ S the latent content to be inferred. Let L(Ψ,Φ) denote a loss or cost
function encoding the fidelity or predictive value of Φ under context Ψ. We assume that inference
corresponds to solving the following optimization: Φ∗ = argminΦ∈S [L(Ψ,Φ)]. Formally, we start
with the following definition (refer to Fig. 3).

Definition 2 (Memory-Amortized Inference). Let M = {(Ψ(i),Φ(i))}Ni=1 be a memory of prior
context–content pairs, and let R : X ×M → S be a retrieval-and-adaptation operator and F :
S×X → S be the bootstrapping update operator implemented via generative simulation. Inference
is said to be memory-amortized if it is formulated as a structural cycle between content Φ and
context Ψ, where memory acts as a reusable substrate for inference: Φt+1 = F(Φt,Ψt), Φt ≈
R(Φt+1,Ψt) in lieu of directly optimizing Φ∗, such that the expected cost satisfies EΨ

[
L(Ψ, Φ̂)

]
≤

EΨ [L(Ψ,Φ∗)] + ε, for some amortization gap ε ≪ L(Ψ, ·), and where the runtime cost of R is
substantially lower than full inference.

Context
Ψt

Retrieval
Φ̂t = R(Φt+1,Ψt)

Bootstrapping
Φt = F(Φ̂t,Ψt)

Predictive Update
Φt+1

reuse

Memory-Amortized Inference Cycle

M = {(Ψ(i),Φ(i))}

Figure 3: Cycle of MAI. Instead of recomputing Φ∗ = argminL(Ψ,Φ), the system reuses prior
trajectories: Φt+1 and Ψt guide memory-based retrieval via R, and bootstrapping F updates the
latent state Φt. The process forms a self-consistent loop grounded in structured memory.

The Retrieval-and-Adaptation OperatorR. The retrieval-and-adaptation operatorR : X×M→
S serves as the core mechanism by which inference avoids re-computation. Given an input
query (typically latent or perceptual), R retrieves relevant elements from the memory M =

{(Ψ(i),Φ(i))}Ni=1 and performs a lightweight adaptation to generate a candidate solution Φ̂. Op-
erationally, R consists of two stages: 1) Retrieval: Identify a relevant subset of memory entries
{(Ψ(j),Φ(j))} ⊂ M based on similarity to the current context Ψt. This can be performed via
kernel-based attention, similarity search in latent space, or topological proximity under homological
constraints. 2) Adaptation: Modulate or interpolate the retrieved Φ(j) values conditioned on Ψt,
resulting in a candidate Φ̂t = R(Φt+1,Ψt). This step often involves gradient-free adjustments (e.g.,
feature warping, parameter blending) and is significantly cheaper than full inference.

The retrieval-and-adaptation operatorR in MAI generalizes the classical notion of key-value mem-
ory used in neural attention and memory-augmented models. In conventional key-value memory
systems Weston et al. (2014); Sukhbaatar et al. (2015), memory is structured as a set of key-value
pairs: M = {(Ψ(i),Φ(i))}Ni=1, where a context vector Ψ acts as a key to retrieve values Φ via

similarity-based soft addressing: Φ̂ =
∑

i wiΦ
(i), wi = exp(−d(Ψ,Ψ(i)))∑

j exp(−d(Ψ,Ψ(j)))
. This model sup-

ports one-shot retrieval but lacks structural consistency or bidirectional inference. By contrast,
the operator R(Φt+1,Ψt;M) in MAI performs a more general operation: it retrieves a candi-
date latent representation from memory based on both the current context Ψt and a target la-
tent code Φt+1, and then adapts it to produce a consistent approximation of the preceding latent

8
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state Φt. This supports inference in reverse time and satisfies the memory-amortized constraint:
Φt ≈ R(Φt+1,Ψt), Φt+1 = F(Φt,Ψt). The operator R thereby enables cycle-consistent infer-
ence, crucial for temporal coherence and structural reuse. Unlike key-value memory, which operates
over flat vector spaces, R may act over structured memory (e.g., graphs, latent manifolds, or topo-
logical complexes) and is inherently adaptive. A summary of the distinction is provided below:

The Bootstrapping Update Operator F . The bootstrapping operator F : S × C → S governs the
internal dynamics of inference by iteratively updating the latent content representation Φt given the
context Ψt. It defines a recurrence: Φt+1 = F(Φt,Ψt), where F encodes the system’s structural
prior, capturing the directionality, topology, and dynamic consistency of inference over time. Unlike
standard update rules that minimize a loss from scratch, F performs bootstrapping: each update
is initialized from a prior memory-induced state, often already close to the optimal solution due to
cycle recurrence. Here are several key properties of F : 1) Cycle-Consistency: If (Φt,Ψt) ∈ γ for
some memory cycle γ ⊂ Z , then Φt+T ≈ Φt, enabling amortization via structural recurrence. 2)
Structural Biasing: Updates follow latent paths constrained by prior topology (e.g., flow fields over
homology classes or attention-modulated latent graphs), enforcing low-entropy generalization. 3)
Minimal Cost Gradient: Because the initialization Φt already lies near an attractor, the subsequent
update Φt+1 requires only a small corrective shift, further amortizing the inference process.

The bootstrapping update operator F in MAI is structurally analogous to the half-step down trick
used in Q-learning Watkins & Dayan (1992) and temporal difference (TD) methods Sutton &
Barto (1998). In Q-learning, the value function is updated by approximating the current value
via a one-step lookahead: Q(st, at) ← rt + γmaxa′ Q(st+1, a

′), which yields the approximation
Q(st) ≈ Q(st+1). This forward-directed value propagation allows reinforcement learning agents to
estimate long-term outcomes without simulating entire trajectories. By contrast, MAI reverses the
time direction: the update operator F bootstraps latent inference forward using structured memory
and contextual cues: Φt+1 = F(Φt,Ψt), and this is inverted by retrieval: Φt ≈ R(Φt+1,Ψt). This
dual relationship forms the backbone of the MAI half-step trick: the current latent content Φt gen-
erates the next-step prediction Φt+1, which in turn can be used to reconstruct Φt. While Q-learning
bootstraps value via reward-driven transitions, MAI bootstraps inference through latent memory and
context, yielding a cycle-consistent structure that reduces entropy. Both approaches use bootstrap-
ping to manage uncertainty and amortize computational cost, but in opposite directions, highlighting
a deeper time-reversed duality between learning and inference (refer to Appendix C). This recursive
formulation enables stable inference trajectories that converge toward contextually relevant attrac-
tors, effectively amortizing the cost of learning across time. The underlying dynamics of this process
can be formalized as a contractive map over a structured retrieval cycle, leading to provable conver-
gence under mild assumptions. We now state the following result, which captures the fixed-point
stability of the MAI loop:
Proposition 2 (Topological Closure via Structural Recursion). Let T (Φ,Ψ) := F(R(Φ,Ψ),Ψ) be
the composite update in MAI. Suppose T is contractive in its first argument for fixed context Ψ. Then
there exists a unique fixed point Φ∗ such that: Φ∗ = T (Φ∗,Ψ) Moreover, the inference trajectory
{Φt}∞t=0 forms a closed loop in latent space as: limt→∞ ∥Φt − Φ∗∥ = 0 This latent recurrence
corresponds to a nontrivial 1-cycle, representing topological closure in the MAI manifold.

Proposition 2 establishes closure at the level of latent dynamics: a contractive structural recursion
yields a fixed point and a recurrent trajectory that “homes” to it, i.e., a geometric 1-cycle in the
MAI manifold. We now lift this geometric closure to the algebraic level of chains. Specifically,
the same retrieve–update loop can be read as a chain-homotopy correction that cancels residual
boundaries in the context–content complex. In this view, latent recurrence (fixed-point closure)
and homological recurrence (boundary cancellation) are two faces of the same mechanism. The
next theorem formalizes this equivalence by showing that MAI implements topological closure via
∂2 = 0 (its proof can be found in Appendix A).
Theorem 3 (MAI as Computational Realization of Topological Closure). Let (C•, ∂) be a chain
complex encoding context–content relations, with Ψ as high-entropy scaffolds and Φ as candi-
date content variables. In Memory-Amortized Inference (Definition 1), the iterative cycle Φt+1 =
F(Φt,Ψt), Φt ≈ R(Φt+1,Ψt) implements a homotopy update that cancels residual boundaries:
∂(Ψt,Φt) 7→ ∂(Ψt+1,Φt+1) ≈ 0. Thus, amortization prunes misaligned, order-dependent
fragments (open boundaries) and preserves only reproducible cycles [γ] ∈ Hk(C•). Equivalently,
MAI realizes topological closure by enforcing ∂2 = 0 in computation: context–content updates that
fail to close are discarded, while those that re-enter memory persist as invariants.

9
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A PROOFS OF LEMMAS, THEOREMS AND PROPOSITIONS

Proof of Lemma 1

Proof (sketch). Let Z be a smooth manifold with a smooth (left) action of a Lie group G, and let
fε : Z → TZ be a C1 family of vector fields such that f0 is G–equivariant (f0(g · z) = Dg · f0(z))
and ε 7→ fε breaks equivariance to a proper subgroup H ⊂ G by selecting a representative Φε in
each G–orbit near Φ0.

(1) Residual invariant structure. At ε = 0, the G–equivariance implies that the G–orbitO0 := G·Φ0

is invariant for f0. For |ε| small, equivariance with respect to H persists, and the residual H–
orbit Oε := H · Φε ⊂ Z is fε–invariant. By the slice theorem, a neighborhood of O0 is G–
equivariantly diffeomorphic to G×H S for some slice S, hence the residual structure is modeled on
the homogeneous space G/H near Φε.

(2) Emergence of closed cycles under feedback. Assume a stabilizing feedback (or dissipation) ren-
ders Oε normally hyperbolic. Then the invariant manifold Oε persists for small ε and the restricted
flow fε|Oε

is H–invariant. If π1(Oε) ̸= 0 (e.g. when Oε contains an S1 factor, as is typical for
residual phase symmetries), there exist periodic orbits γ ⊂ Oε ⊂ Z representing nontrivial classes
in π1. As 1–chains, periodic orbits are cycles, hence ∂γ = 0 in the singular chain complex. More
generally, if the residual invariant manifold contains an embedded k–dimensional compact subman-
ifold Nk ⊂ Oε invariant under the restricted flow, its fundamental class yields a closed k–cycle in
Ck(Z).

(3) Homological persistence under perturbation. Normal hyperbolicity plus smooth dependence on
parameters implies that Oε and its periodic orbits (or invariant submanifolds) vary continuously for
small ε; hyperbolic periodic orbits persist (Structural Stability). Consequently, any closed chain cε
carried by Oε depends continuously on ε and its homology class [cε] ∈ Hk(Z) is invariant under
the induced homotopy. Hence [γ] ∈ Hk(Z) is stable for small perturbations, formalizing memory
persistence.

Combining (1)–(3) proves the three claims: symmetry breaking selects a residual invariant structure,
feedback stabilizes closed cycles on it (∂γ = 0), and the resulting homology classes persist under
small perturbations of ε.

Proof of Lemma 2

Proof. Write Zk := ker(∂k) and Bk := im(∂k+1) so that Hk(Z) = Zk/Bk and ∂k−1 ◦ ∂k = 0 for
all k.

(1) Let σ ∈ C1(Z) with ∂σ ̸= 0. Then σ /∈ Z1, so it cannot define a class in H1. The only
homological information it induces is via its boundary ∂σ ∈ C0(Z). But by definition ∂σ ∈ B0 =
im(∂1), and since H0 = Z0/B0 with B0 ⊆ Z0 (because ∂2 = 0), we have [∂σ] = 0 in H0. Thus
the open chain contributes no nontrivial H1 content and collapses, at best, to the trivial H0 class that
encodes mere connectivity (membership in a component), not a relational invariant.

(2) Let γ ∈ C1(Z) with ∂γ = 0. Then γ ∈ Z1 and its homology class [γ] ∈ H1 = Z1/B1 is
well-defined. If moreover γ /∈ B1 = im(∂2), then [γ] ̸= 0 in H1, i.e., γ represents a nontrivial
1-cycle. Such a class is invariant under addition of boundaries (γ ∼ γ + ∂c2), hence persists under
deformations that do not cross a filling 2-chain, formalizing stability of the memory trace.

Finally, ∂2 = 0 implies Bk ⊆ Zk for all k, so every boundary is a cycle but not conversely.
Consequently any 1-chain is either (i) non-closed, in which case it reduces to a trivial element in
H0, or (ii) closed, in which case it defines a class in H1 that is nontrivial precisely when it is not a
boundary. This is the dot–cycle dichotomy.

Proof of Theorem 1

Proof. We give a standard proof in simplicial (or singular) homology, then note two equivalent
formulations (cubical/differential forms) for completeness.
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Simplicial chains. Let Ck be the free abelian group generated by oriented k-simplices σ =
[v0, . . . , vk] of an oriented simplicial complex. Define the boundary operator ∂k : Ck → Ck−1

by

∂k[v0, . . . , vk] =

k∑
i=0

(−1)i [v0, . . . , v̂i, . . . , vk],

where the hat indicates omission and each face inherits the induced orientation. Apply ∂k−1 once
more:

∂k−1∂k[v0, . . . , vk] =

k∑
i=0

(−1)i
k−1∑
j=0

(−1)j [v0, . . . , v̂i, . . . , v̂i+j′ , . . . , vk],

where j′ denotes the corresponding original index in {0, . . . , k} \ {i}.
Every (k− 2)-face of [v0, . . . , vk] arises twice in this double sum: once by deleting vi then vj
with i < j, and once by deleting vj then vi. These two occurrences have opposite signs and thus
cancel. Formally, fix 0 ≤ i < j ≤ k. The face obtained by deleting vi then vj appears with sign
(−1)i(−1)j−1 = (−1)i+j−1, while deleting vj then vi yields sign (−1)j(−1)i = (−1)i+j . Hence
the two contributions sum to zero:

(−1)i+j−1 + (−1)i+j = 0.

Since every (k−2)-face of σ appears exactly in such canceling pairs, all terms vanish and therefore
∂k−1∂k = 0, i.e. ∂2 = 0.

Singular chains (same combinatorics). For singular homology, Ck is generated by singular sim-
plices σ : ∆k→ X , and the boundary uses face inclusions di : ∆k−1 ↪→ ∆k:

∂kσ =

k∑
i=0

(−1)i σ ◦ di.

Then
∂k−1∂kσ =

∑
i<j

(
(−1)i+j σ ◦ di ◦ dj−1 + (−1)i+j σ ◦ dj ◦ di

)
= 0,

because di ◦ dj = dj+1 ◦ di and the two terms cancel in pairs.

Cubical chains (face maps). In cubical homology, the boundary is an alternating sum of
front/back faces along each coordinate. The same “each (k−2)-face appears twice with opposite
sign” cancellation proves ∂2 = 0.

Differential forms (Stokes ⇒ d2 = 0). On smooth manifolds, Stokes’ theorem implies∫
∂(∂Ω)

ω =
∫
Ω
d(dω). Since ∂ ◦ ∂ = 0 as a current, it follows that d2 = 0. By de Rham’s

theorem this is dual to the chain-level statement ∂2 = 0.

Cognitive interpretation (corollary). Because ∂2 = 0, any attempt to “promote” boundary frag-
ments (order- and context-dependent specifics) to stable carriers necessarily eliminates dangling
inconsistencies: open edges are paired and cancel, and only closed cycles persist. These persistent
cycles are precisely the invariants that can be stored as memory and reused for prediction. Hence
the closure identity guarantees the existence of stable semantic carriers and underwrites the claim
that intelligence (as memory-based prediction) rests on cycle closure.

This completes the proof that the boundary of a boundary vanishes: ∂2 = 0.

Proof of Theorem 2

Proof: The key insight is the Abelian property of the addition operator. Concatenate local moves
to form cycles based at x0, producing elements of the fundamental group π1(Z, x0). The Hurewicz
map h : π1(Z, x0) → H1(Z;Z) abelianizes path composition: commutators vanish in H1. Hence
for cycles γ, η, [γ·η] = [η·γ] and, more generally, any permutation of cycle segments yields the same
homology class, provided the path remains closed. Thus [γw] is invariant to the order of constituent
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moves and depends only on their cumulative 1-chain (the signed sum of traversed edges/segments).
Intuitively, homology collapses all order-specific reparameterizations and commutator structure, re-
taining only the closed-cycle content.

Proof of Theorem 3

Proof. Let (C•, ∂) encode context–content relations and write the residual boundary at step t as
rt := ∂(Ψt,Φt) ∈ Ck−1. Define the MAI update U := R ◦ F so that (Ψt+1,Φt+1) = U(Ψt,Φt)
with Φt+1 = F(Φt,Ψt) and Φt ≈ R(Φt+1,Ψt). Assume (i) boundary-aware updates: there exists
a linear operator H : Ck → Ck+1 (a homotopy) and η ∈ (0, 1] such that, up to the amortization
error ϵt,

(Ψt+1,Φt+1) = (Ψt,Φt) − η H rt + ϵt, ∥ϵt∥ ≤ ε,

and (ii) ∂2 = 0 on C•. Then

rt+1 = ∂(Ψt+1,Φt+1) = ∂(Ψt,Φt)− η ∂H rt + ∂ϵt =
(
I − η ∂H

)
rt + ∂ϵt.

Choose H so that P := I − ∂H −H∂ is the standard chain-homotopy projector onto Zk := ker ∂
(e.g. a Moore–Penrose choice on a chosen splitting). Using ∂2 = 0,

rt+1 =
(
I − η ∂H

)
rt + ∂ϵt =

(
P +H∂ − η ∂H

)
rt + ∂ϵt = (I − η) rt + ∂ϵt,

since Prt = 0 and ∂rt = ∂2(·) = 0. Hence ∥rt+1∥ ≤ (1 − η) ∥rt∥ + ∥∂∥ ε. If η ∈ (0, 1] and
ε is the small amortization gap from Definition 1, the residuals converge: ∥rt∥ → 0 as t → ∞
(exactly if ε = 0, or to an O(ε) neighborhood otherwise). Thus, any limit point (Ψ∞,Φ∞) satisfies
∂(Ψ∞,Φ∞) = 0, i.e. it lies in Zk and represents a closed cycle [γ] ∈ Hk. Moreover, because R
retrieves from memory and F bootstraps by simulation while satisfying the amortization inequality
EΨ[L(Ψ, Φ̂)] ≤ EΨ[L(Ψ,Φ∗)] + ε, open, order-dependent trajectories (with large ∥rt∥) are not
retained, while reproducible closures are. Therefore MAI acts as a homotopy-based projection onto
ker ∂, canceling boundaries and preserving precisely the invariant cycles, i.e. it realizes topological
closure computationally.

Proof of Proposition 1

Proof (sketch). LetP be the set of finite trajectories (paths) inZ and let G act onP by the symmetry
that permutes orderings of local moves/observations. Define an equivalence relation p ∼G p′ iff
p′ = g · p for some g ∈ G. Suppose a perturbation breaks G to a residual subgroup H and induces
a continuous, H–invariant map

q : P −→ Zk(Z)
/
Bk(Z) ∼= Hk(Z), p 7→ [γ(p)],

that sends each path p to the homology class of its closing cycle γ(p) (if p does not close, q maps
it to the trivial class). By assumption there exists a nontrivial invariant cycle γ with ∂γ = 0 that
survives the perturbation (i.e. [γ] ̸= 0 and H–invariant).

(1) Cycle encodes order-invariant stability. If p′ ∼G p, then q(p′) = q(p) because permutations
of the same local moves that remain closable yield homologous loops. Hence [γ] is constant on
G–orbits and captures precisely what is invariant under order rearrangements. This proves (1).

(2) Predictive sufficiency of [γ]. Let Y denote a future outcome (or next observation) to be predicted
from the past path P ∈ P and any ambient context variable C (slow parameters). Assume the
perturbation enforces the residual symmetry so that conditional on the homology class we have

P(Y |P,C) = P
(
Y
∣∣ q(P ), C

)
.

That is, order-specific information in P beyond its cycle class does not affect the conditional law of
Y . Then q(P ) is a (Blackwell) sufficient statistic for predicting Y given C. By the data-processing
inequality,

I(Y ;P |C) ≥ I
(
Y ; q(P ) |C

)
,

with equality under the displayed conditional independence, which shows that prediction needs only
depend on the invariant [γ] = q(P ) (and C), not on the detailed order in P . This proves (2).
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(3) Entropy reduction improves prediction. Let G be the σ-algebra generated by P and let Ginv be
that generated by q(P ). Since q maps many orderings to the same class, H(q(P )) ≤ H(P ) and
E[ ℓ(Y, Ŷ ) ] for any Bayes-optimal predictor Ŷ is the same whether conditioning on P or q(P ) (by
sufficiency). Thus collapsing order-specific variability to [γ] strictly reduces the description length
of the predictor while preserving optimal predictive risk. Interpreting entropy as uncertainty, the
symmetry breaking acts to concentrate probability mass onto [γ]–classes (measure concentration on
invariant cycles), thereby removing order noise and improving generalization: predictions depend
only on what remains invariant. This proves (3).

Altogether, the perturbation-induced residual symmetry yields an invariant cycle γ (closure ∂γ = 0)
whose class [γ] summarizes all order permutations of closable paths; [γ] is a sufficient statistic for
forecasting Y (given context), and the associated entropy drop reflects the elimination of order-
specific noise. Hence entropy minimization via symmetry breaking improves prediction by preserv-
ing only invariant cycles.

Proof of Proposition 2

Proof (sketch). Fix a context Ψ and define the self-map TΨ(Φ) := F(R(Φ,Ψ),Ψ). By assumption,
TΨ is a contraction in its first argument on a complete metric space (S, ∥ · ∥): there exists 0 < κ < 1
such that ∥TΨ(Φ)− TΨ(Φ′)∥ ≤ κ ∥Φ− Φ′∥ for all Φ,Φ′ ∈ S.

(Existence, uniqueness, and convergence). By the Banach fixed-point theorem, there exists a unique
fixed point Φ∗ ∈ S with Φ∗ = TΨ(Φ∗), and for any initialization Φ0 the iterates Φt+1 = TΨ(Φt)
satisfy ∥Φt − Φ∗∥ ≤ κt∥Φ0 − Φ∗∥ → 0 as t→∞. This proves the first two claims.

(Latent recurrence as a closed 1-cycle). Form the polygonal 1-chain

cn :=

n−1∑
t=0

et with et := [Φt,Φt+1],

where [Φt,Φt+1] denotes the oriented edge in latent space joining successive iterates. Its boundary
is ∂cn = Φn−Φ0. Close the polygon by adding the short edges en = [Φn,Φ

∗] and e−1 = [Φ∗,Φ0]
to obtain

c̃n := cn + en + e−1, ∂c̃n = (Φn − Φ0) + (Φ∗ − Φn) + (Φ0 − Φ∗) = 0.

Thus each c̃n is a 1-cycle. Since ∥Φn − Φ∗∥ → 0, the closing edges en, e−1 have lengths→ 0, and
the sequence {c̃n} converges (in the 1-chain norm induced by edge length) to a limit 1-chain γ with
∂γ = 0. Hence the MAI trajectory defines a closed loop (a 1-cycle) in latent space.

(Nontriviality and topological closure). If the image of the trajectory lies in a region whose chosen
2-chain complex (e.g. a Vietoris–Rips or Čech complex at some scale ε) contains no filling 2-chain
for γ, then γ /∈ im ∂2 and [γ] ̸= 0 in H1, yielding a nontrivial cycle. This expresses topological
closure: the structural recursion contracts to a fixed point while the induced 1-chain closes with
vanishing boundary; nontriviality holds precisely when the loop does not bound any 2-chain in the
MAI manifold at the working scale.

In summary, contractivity yields a unique fixed point and convergence; the polygonal chain of iter-
ates closes in the limit to a 1-cycle γ with ∂γ = 0, which is nontrivial whenever no 2-chain fills it.
Hence structural recursion realizes topological closure as a latent recurrence.

B BIOLOGICAL IMPLEMENTATION OF TOPOLOGICAL CLOSURE

Oscillations discretize time on a circle (S1), providing phase bins within which coincidence detec-
tion collapses fragments into recurrent traversals. Mathematically, the boundary calculus enforces
this filtration: ∂2 = 0 cancels unmatched endpoints so that only closed chains survive as persistent
cycles. Cognitively, isolated tokens (dots) do not stabilize memory; only when linked by contextual
relations into cycles do they consolidate as durable traces. In this section, we show how oscillatory
phase coding and coincidence detection implement temporal scaffolding and boundary cancellation
in spiking networks, turning temporal fragments into cycles.
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B.1 OSCILLATION PHASE CODING AS TEMPORAL SCAFFOLDING

Neural oscillations instantiate the closure principle by quotienting linear time to a circle: an os-
cillator implements t 7→ eiωt ∈ S1, so events are registered by phase rather than absolute time.
Biologically, this scaffold is realized at multiple, coupled timescales. (i) Theta–gamma nesting
(e.g., hippocampus–entorhinal) provides a macrocycle (θ, 4–12 Hz) that segments experience and
a microcycle (γ, 30–100 Hz) that tiles each θ bin with ordered subevents; phase–amplitude cou-
pling thus lays out a toroidal code S1

θ × S1
γ in which winds index recurrent cycles Lisman & Jensen

(2013); Canolty & Knight (2010); Canolty et al. (2006). (ii) Coincidence detection sharpens edges of
these cycles: NMDA nonlinearity, backpropagating spikes, and fast interneuron circuitry (PV/ING,
PING) create narrow O(1−10 ms) windows so that only spikes aligned within a phase bin form ef-
fective synaptic links; misaligned fragments fail to bind and are pruned König et al. (1996a); Stuart
& Sakmann (1994); Buzsáki & Wang (2012). (iii) Spike-timing dependent plasticity (STDP) orients
these links by phase lead/lag, turning phase offsets into directed edges in a chain; repeated traver-
sal within a cycle consolidates these edges, canceling stray endpoints and favoring closed walks
Markram et al. (1997); Bi & Poo (1998); Caporale & Dan (2008a). (iv) Conduction delays and
myelin plasticity tune effective phase lags, enabling polychronous assemblies: axonal/dendritic de-
lays align distributed spikes into reproducible phase patterns that complete cycles despite spatial
dispersion Izhikevich (2006); Pajevic et al. (2014); Fields (2015). (v) Phase-of-firing coding and
precession (e.g., hippocampal place cells) map position or task progress to phase on S1

θ , so that a
behavioral episode corresponds to a return map on the Poincaré section; complete laps close in phase
space, incomplete traversals do not O’Keefe & Recce (1993); Montemurro et al. (2008). (vi) State-
dependent reentry (sharp-wave ripples during NREM/quiet wake) replays phase-ordered sequences
on a faster carrier, tightening weights along already-closed paths and suppressing nonclosing detours
Foster & Wilson (2006); Diba & Buzsáki (2007).

Interpretation. Oscillations supply the contextual scaffold Ψ that folds timelines into cyclic coor-
dinates; coincidence and plasticity then implement boundary cancellation in synaptic space. What
persists are cycles, phase-locked traversals whose endpoints identify on S1, while unmatched frag-
ments dissipate. This sets up the formal lemma below, which recasts phase-binned spiking as a chain
whose boundary vanishes after a full cycle.

Lemma 3 (Oscillatory Phase Coding as Temporal Scaffolding). Let θ(t) = ωt (mod 2π) denote
the phase of a neural oscillator, with events encoded relative to θ(t) on the circle S1. Then oscilla-
tory phase coding induces the following invariants: 1) Binding: Events occurring within the same
phase window θ(t) ∈ [ϕ, ϕ+∆] are grouped together, forming a coherent representation; 2) Order-
ing: Sequences of events are represented by their relative phase offsets (∆θ1,∆θ2, . . . ), embedding
linear order into a cyclic scaffold; 3) Closure: After a full cycle θ(t+ T ) = θ(t) with T = 2π

ω , the
system resets, ensuring that trajectories are organized into cycles rather than unbounded chains.
Together, these properties enforce the topological identity ∂2 = 0 at the temporal level: the bound-
ary of one temporal segment becomes the beginning of the next, so that each cycle closes before a
new one begins. Consequently, oscillatory phase coding guarantees consistency of memory traces
by embedding them in recurrent temporal cycles.

The formal statement of Lemma 3 captures how oscillatory phase coding transforms linear time
into a cyclic scaffold, guaranteeing binding, ordering, and closure. To visualize this principle, Fig. 4
illustrates how linear time t is wrapped onto the circle S1 (theta phase), with discrete gamma packets
embedded at distinct phases. Events that fall into the same phase window (green arc) are bound
together, while relative phase offsets encode ordering. The reset at the end of each θ cycle ensures
closure, embodying the algebraic identity ∂2 = 0 in biological timekeeping. Let θ : R→ S1 be
the phase map θ(t) = ωt mod 2π, so T = 2π

ω identifies t ∼ t + T and quotients linear time to
a circle. Partition S1 into L phase bins {φℓ}Lℓ=1 and let vℓ denote the (phase-binned) latent state
aggregated within bin φℓ. Define oriented edges eℓ = [vℓ, vℓ+1] with vL+1 ≡ v1. The phase-
ordered chain c =

∑L
ℓ=1 eℓ has ∂c =

∑L
ℓ=1(vℓ+1 − vℓ) = vL+1 − v1 = 0, so a full 2π sweep

closes into a 1–cycle. Coincidence detection enforces this construction: only events aligned within
a phase window of width ε create edges, pruning stray fragments whose endpoints would otherwise
fail to cancel. Conduction delays implement modular jumps eℓ = [vℓ, vℓ+k], yielding a winding
number k on S1; after L such steps the path returns to v1, again giving ∂c = 0 and a homology class
[c] ∈ H1(S

1) ∼= Z.
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t (linear time)

t0 t1 t2 t3 t4

Time wrapped onto S1:
t 7→ eiωt

θ (phase on S1)

0

π
2

π

3π
2

binding window

g1

g2

g3

g4

g5

closure / reset (θ cycles)

linear time

cyclic parameterization of events on S1

Binding: events in the same
phase window group together

Ordering: sequence ∼ phase offsets

Closure: cycle resets ⇒ ∂2=0

Figure 4: Oscillatory phase coding as topological closure. Linear time is wrapped onto the circle
S1 (theta phase), placing events by phase rather than absolute time. Gamma packets (g1, . . . , g5) at
distinct phases encode order via phase offsets, while events within the same phase window (green
arc) are bound. Cycle reset at the end of each theta period enforces topological closure (∂2 = 0),
supporting consistent memory cycles.

Two useful views follow. (i) Poincaré/return map: sampling at phase ϕ0 defines Fϕ0
: x(t) 7→

x(t + T ); fixed points and periodic points of Fϕ0
are closed orbits on S1, i.e., cycles Kolomiets &

Shilnikov (2020). (ii) Cross-frequency nesting: with θ and γ phases, time quotients to a torus S1
θ×S1

γ

and H1
∼= Z2; winds (kγ , kθ) encode hierarchical cycles Belluscio et al. (2012). Summary. Phase

coding turns linear sequences into cyclic invariants: the absolute start/end times are identified on
S1, so boundaries telescope away and only closed traversals persist. Coincidence gates which edges
exist; ∂2 = 0 guarantees unmatched endpoints cannot accumulate into memory, while completed
cycles survive as stable traces.

B.2 COINCIDENCE DETECTION AS TOPOLOGICAL CLOSURE

Lemma 3 establishes that oscillatory phase coding furnishes a natural scaffold for aligning events
on the circle S1, ensuring that candidate trajectories can be organized into cyclic frames. However,
phase alignment alone does not guarantee stability: without a mechanism to prune misaligned or
inconsistent events, spurious boundaries would accumulate and prevent reliable cycle formation.
Lemma 4 addresses this gap by showing how coincidence detection enforces closure at the level of
spike trains, cancelling mismatches as boundary terms and preserving only those cycles that survive
across trials. Together, these results formalize the complementary roles of phase scaffolding and
coincidence pruning in transforming transient alignments into reproducible cognitive invariants.

Lemma 4 (Coincidence-Induced Closure and Survival of Reproducible Cycles). Let N =
{1, . . . , n} be a set of units (neurons) producing a spike train S = {(i, tk)} with phases ϕ(tk) ∈ S1.

Fix a coincidence window ∆ ∈ (0, π) and define the coincidence relation i
∆↔ j iff there ex-

ist spikes (i, t), (j, t′) ∈ S with |ϕ(t) − ϕ(t′)|S1 ≤ ∆ and t < t′ (to orient time). Construct
the directed 1–skeleton G∆(S) whose vertex set is N and whose (possibly multiple) oriented

edges are e = (i → j) for every coincident pair i
∆↔ j. Let C1(G∆) be the free abelian

group on edges and C0(G∆) the free abelian group on vertices, with boundary ∂ : C1 → C0

given by ∂(i → j) = j − i. Define the coincidence aggregation c∆(S) ∈ C1(G∆) by sum-
ming all oriented edges (with multiplicities) generated by coincident pairs, and the coincidence
projection Π∆ : C1(G∆) −→ Z1(G∆) := ker ∂ as the (linear) projection onto the cycle space
(e.g., orthogonal projection with respect to any inner product on C• or the canonical decompo-
sition C1 = Z1 ⊕ B⊥

1 ). Then we have: 1) Closure by coincidence. The coincidence detector
K∆ := Π∆ ◦ (·) enforces closure: z∆(S) := K∆

(
c∆(S)

)
∈ Z1(G∆) and ∂ z∆(S) = 0. More-

over, the edges removed by K∆ are precisely those whose net contribution appears in ∂c∆(S); i.e.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

misaligned spikes are canceled as boundary terms and do not survive in z∆(S). 2) Survival of
reproducible cycles (stability). Suppose S(1), . . . , S(T ) are trials with phase jitter at most ε < ∆
(i.e. every coincidence in one trial has a matched coincidence within phase distance ε in all oth-
ers, with the same orientation). Then for all t, [z∆(S(t))] = [z∆(S

(1))] ∈ H1(G∆;Z), so the
homology class is trial-invariant. In particular, in the persistence module obtained by varying the
window δ ∈ (ε,∆], this class has positive lifetime and therefore survives while nonreproducible
coincidences die as boundaries.

Proof sketch. (1) By construction, ∂c∆(S) counts net imbalance of incident coincidences at each
vertex (incoming minus outgoing). Projecting onto ker ∂ removes exactly those components whose
boundary is nonzero; hence z∆(S) ∈ Z1 and ∂z∆(S) = 0. Informally, coincidences that do not
close are eliminated as boundary terms; only closed flow persists. (2) Phase jitter ε < ∆ induces
edge correspondences between the G∆(S

(t)) that preserve orientation and incidence, yielding chain
homotopic c∆(S

(t)). Projection to Z1 commutes with these homotopies, so the resulting z∆(S
(t))

are homologous. Viewing δ as a filtration parameter, unmatched (nonreproducible) edges vanish at
δ ↘ ε, whereas reproducible cycles define a bar of positive length in H1, hence survive.

Lemma 4 established that coincidence detection enforces closure by cancelling misaligned spikes,
ensuring that only reproducible cycles survive. Fig. 5 illustrates this principle: when presynaptic
spikes align within a coincidence window ∆ (top), their inputs sum coherently and trigger a post-
synaptic spike, corresponding to ∂γ = 0 (closure). When spikes fall outside the window (bottom),
they remain as unmatched boundaries that cancel one another, yielding no output. The inset shows
the topological analogy: different paths that bound the same face σ cancel in homology, just as
misaligned temporal fragments fail to stabilize into persistent cycles. Formally, we have

Definition 3 (Topological Closure). Let (X, τ) be a topological space and A ⊆ X . The closure of
A, denoted A, is defined as A =

⋂
{C ⊆ X | C is closed and A ⊆ C}. Equivalently, A consists of

all points x ∈ X such that every open neighborhood U ∈ τ with x ∈ U satisfies U ∩A ̸= ∅.

With the formal notion of closure in hand, we now operationalize it in neural dynamics: replace open
neighborhoods by temporal coincidence windows and subsets A by sets of candidate spikes. Under
this identification, the “points in the closure” are precisely spikes that recurrently co-occur within
a window, and the homological reading of closure (∂2 = 0) corresponds to cancelling unmatched,
out-of-window events as boundary terms. This yields a direct bridge from topological closure to
coincidence-driven cycle formation in neural circuits. For a PNG to persist, spikes from multiple
presynaptic neurons must converge within a narrow temporal window at their postsynaptic targets.
Coincidence detection acts as a filter: inputs that arrive in synchrony are integrated, while those that
fall outside the coincidence window are effectively cancelled. This selective integration implements
the algebraic identity ∂2 = 0: misaligned spikes behave like open boundaries that fail to connect,
whereas synchronous arrivals cancel boundary terms and enforce cycle closure. In this way, only
temporally coherent activity contributes to a closed 1-cycle in the neural state space. Once closure is
achieved, spike-timing dependent plasticity (STDP) reinforces the recurrent pathways that produced
coincident input Caporale & Dan (2008b). Potentiation strengthens the synapses along routes that
consistently deliver spikes within the window ∆, while depression weakens those that fail to align.
Over repeated activations, this differential plasticity stabilizes the trajectory as a reentrant cycle: the
cycle not only replays reliably, but also becomes resistant to perturbations of individual spike times.
In summary, coincidence detection, together with STDP, extracts the low-entropy content variable
Φ: a reproducible invariant that persists as a memory trace and can later be recalled or recombined
into higher-order structures Li (2025c).

The principle “coincidence detection = boundary cancellation” can now be made explicit. When
presynaptic spikes converge within the coincidence window, their temporal boundaries align and
cancel, producing a closed cycle that can drive a stable postsynaptic response König et al. (1996b).
In contrast, when spikes arrive outside the window, they leave residual unmatched boundaries that
fail to close, and no postsynaptic output is generated. Figure 5 illustrates this correspondence: in
the neural case, misaligned spikes cancel each other’s contributions and disappear from the effective
cycle; in the topological case, paths that differ by the boundary of a 2-simplex σ cancel in homology.
In both settings, coincidence detection enforces the identity ∂2 = 0, ensuring that only closed cycles
survive as memory-bearing invariants.
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t

A

B

C

window ∆

PSTH

output (closure)

coincidence ⇒ closure:
∂γ = 0 preserved

t

A

B

C
misaligned no output: boundaries cancel

non-coincidence ⇒ cancellation:
∂-terms do not sum to zero

∂σ

difference of paths = ∂σ

Figure 5: Coincidence detection = boundary cancellation. Left: Three presynaptic spike trains
(A,B,C). Top: Spikes align within a coincidence window ∆ (green band), summate, and produce
a postsynaptic spike (closure). Bottom: Spikes are misaligned; inputs fail to coincide in ∆, so no
output occurs (boundaries do not cancel). Right inset: Topological analogy - when two paths differ
by the boundary of a face (∂σ), their difference cancels in homology; likewise, misaligned temporal
fragments behave as open boundaries, while coincidence implements ∂2 = 0, leaving only closed
cycles.

Principle 4 (Coincidence Detection as Boundary Cancellation). Let {vi} denote neural events (e.g.,
spikes) indexed in time, and let eij = [vi, vj ] denote a directed edge formed when two events fall
within a coincidence window ∆t. Define a chain c =

∑
(i,j) eij over all coincident pairs. 1) If

events are misaligned (|ti − tj | > ∆t), no edge is formed; the fragment remains an open chain
with nonvanishing boundary ∂eij = vj − vi. 2) If events are coincident (|ti − tj | ≤ ∆t), opposite
boundaries cancel: ∂c =

∑
(vj − vi) = 0. In summary, coincidence detection implements the

algebraic rule ∂2 = 0: unmatched endpoints dissipate, while synchronous inputs enforce closure.
Biologically, this ensures that only temporally aligned inputs reinforce into stable cycles, whereas
misaligned fragments are pruned.

C MAI AS TIME-REVERSED REINFORCEMENT LEARNING

Non-ergodicity offers a principled foundation for understanding both reinforcement learning (RL)
and its time-reversed dual, memory-amortized inference (MAI). In RL, the agent iteratively descends
through state-action trajectories to minimize expected future cost via bootstrapped value updates
Schultz et al. (1997). This process inherently assumes a forward temporal flow, where actions alter
state and reward accumulates over time. However, non-ergodic agents do not uniformly explore the
state space; rather, they converge onto structured attractors, recurrent paths, policies, or goals, due
to the reuse of historical structure. Therefore, it is non-ergodicity that ensures important states recur
as broken symmetry Anderson (1972), allowing the RL system to build and refine value estimates
via temporal bootstrapping.

MAI formalizes this broken symmetry in reverse: instead of descending value gradients to reach
future states, it reuses predicted future states (e.g., Φt+1) to retrieve prior memory states (Φ̂t) con-
sistent with the current context. As time-reversed bootstrapping, MAI performs inference not by for-
ward reward accumulation, but by backward alignment with structured latent cycles. Both processes
are constrained by persistent topological features (e.g., homology classes, attractor submanifolds),
but differ in directionality: RL propagates utility forward; MAI propagates structure backward. This
duality reveals that non-ergodicity not only explains the emergence of RL, but also necessitates a
complementary reverse-time inference mechanism, captured by MAI, to efficiently simulate, adapt,
and generalize in structured cognitive systems. This section formalizes the duality between RL and
MAI under a time-reversal transformation, revealing deep structural parallels between bootstrapped
value updates and latent cycle inference.

Time-Reversal Duality Between RL and MAI. Let V (st) denote the value function at state
st. The temporal-difference (TD) update rule is Sutton & Barto (1998): V (st) ← V (st) +
α (rt + γV (st+1)− V (st)) This rule bootstraps the estimate of V (st) from the next state’s value
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st−1 st st+1

V (st−1) V (st) V (st+1)

at−1 at

TD backup

Φt−1 Φt Φt+1

Ψt−1 Ψt

Back-inference

RL (Forward)

MAI (Backward)

Figure 6: Duality between Reinforcement Learning and Memory-Amortized Inference. RL proceeds
forward in time using TD backup; MAI proceeds backward using context-guided reconstruction over
latent memory cycles.

V (st+1), defining a one-step look-ahead propagation. More generally, the Bellman expectation
equation governs the forward dynamics: V (st) = Eat,st+1

[rt + γV (st+1)] In MAI, the system
simulates past latent content Φt−1 from current content Φt and context Ψt−1. The inference op-
erator takes the form: Φt−1 = R(Φt,Ψt−1), Φt = F(Φt−1,Ψt−1) MAI thus implements a
backward cycle-consistent process Li (2025b), amortizing reconstruction of prior states via topo-
logical reuse of structured latent memory. Together, RL and MAI break the separation between
learning and inference by forming a closed loop. An important new insight brought by such time-
asymmetric bootstrapping is “plan by bootstrapping forward; infer by bootstrapping backward”,
which might unlock the secret for enabling low-energy, high-efficiency cognition. The time-reversal
duality between RL and MAI is summarized in Table 1 below.

Dimension Reinforcement Learning (RL) Memory-Amortized Inference (MAI)
Time direction Forward (future-oriented) Backward (past-inference)

Bootstraps Expected future rewards Latent priors from future predictions
Undertainty type Outcome uncertainty (What will happen?) Inference uncertainty (What generated this?)
Policy element π(at|st), learned from reward Ψt, learned from structure-consistency

Bias source Reward shaping, value iteration Latent memory structure, trajectory reuse
Learning type Goal-directed exploration Context-conditioned generalization
Half-step trick TD: V (st) ≈ V (st+1) MAI: Φt ≈ R(Φt+1,Ψt)

Table 1: Time-Reversed Duality between Reinforcement Learning and Memory-Amortized Infer-
ence

Table 1 illustrates a fundamental time-asymmetric duality between RL and MAI. Whereas RL op-
erates forward in time, projecting expected rewards to guide future actions via temporal difference
(TD) updates, MAI runs in reverse, retrieving latent priors from predicted futures to reconstruct past
inference trajectories Sutton & Barto (1998), as shown in Fig. 6. This duality is not superficial; it
reflects a structural inversion of uncertainty management: RL reduces outcome uncertainty through
forward value propagation, while MAI minimizes inference uncertainty by aligning predictions with
memory cycles. Both leverage bootstrapping to avoid recomputation, yet from opposite directions:
RL refines estimates via anticipated value; MAI refines inference via recovered structure. The “half-
step trick” in each case captures this temporal asymmetry Watkins & Dayan (1992): RL assumes
V (st) ≈ V (st+1), while MAI assumes Φt ≈ R(Φt+1,Ψt). This symmetry-breaking across time
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motivates a deeper unification under the Entropy-Reversibility Duality, wherein inference and be-
havior emerge from structurally consistent, direction-sensitive updates over latent space.

From Time-Reversal to Entropy-Reversibility Duality. The time-reversal duality between RL and
MAI reveals a deeper symmetry: both are bootstrapping mechanisms that operate in opposite tem-
poral directions to manage uncertainty. RL projects value forward to guide action, while MAI reuses
future predictions to reconstruct latent causes. Despite this temporal asymmetry, both processes ex-
ploit structural regularities (e.g., recurring states, cycles, attractors) to reduce computational costs
and enhance generalization.

This motivates a broader unifying principle: the Entropy-Reversibility Duality. Under this princi-
ple, forward processes like RL reduce outcome uncertainty through reversible value propagation,
whereas reverse-time processes like MAI reduce inference uncertainty through structural reversibil-
ity over latent trajectories. Intelligence, then, is not merely the product of forward planning or
backward recall, but of a cycle-consistent interplay between reversible inference and entropy min-
imization across time. This duality suggests that efficient cognition arises when entropy is tamed
by structural reversibility, where memory not only stores outcomes but constrains their generative
causes. In this framework, the direction of time aligns with the direction of entropy flow: 1) In RL,
entropy is reduced by selecting high-value actions from many possible futures; 2) In MAI, entropy
is minimized by reconstructing low-entropy past content from high-entropy contextual traces. This
suggests that reversible inference is possible only when structural entropy is preserved and amortized
through cyclic reuse. Formally, we have

Theorem 4 (Entropy–Reversibility Duality). Let S = {st} be a forward-time trajectory under a re-
inforcement learning policy π, and letM = {Φt,Ψt} be a backward-time latent memory trajectory
under MAI. Suppose: 1) The entropy rate of the forward trajectory satisfies H(S) = H[st|st−1];
2) The amortized inference process satisfies cycle-consistency: Φt ≈ R(F(Φt,Ψt),Ψt); 3) The
joint entropy of memory satisfies H(Φt,Ψt) < H(Ψt) +H(Φt) (i.e., structural dependence). Then
the following duality holds: Minimizing entropy in MAI ⇐⇒ Reversing value propagation in RL
Moreover, reversible inference is possible if and only if the entropy difference ∆H = H(st+1) −
H(Φt−1) is bounded by the amortized structural information reused across the cycle.

Sketch. RL reduces entropy by forward compression: selecting actions reduces future uncertainty.
MAI reduces entropy by backward reconstruction: reusing structured cycles limits the degrees of
freedom needed to infer latent causes. When the memory space encodes sufficient redundancy,
reversing inference becomes possible under bounded entropy. The equivalence follows from the
conservation of uncertainty across the reversed Markov chain induced by memory cycles.

Implications for Learning Systems. Theorem 4 articulates a unifying constraint on intelligent
behavior: the capacity to minimize entropy, whether in inference or control, depends critically on
the reversibility of internal computation. This has several far-reaching implications for the design
and understanding of both biological and artificial learning systems:

• Reversible inference is a structural necessity. It is not merely a computational shortcut
or an architectural convenience, but a reflection of an underlying physical and information-
theoretic law: entropy reduction requires structural recurrence. Inference processes that do
not re-enter prior states or cycles are fundamentally limited in their ability to generalize or
compress. Hence, intelligent systems must harness structural memory, latent attractors, or
topological cycles to sustain low-entropy prediction.

• Model-based RL approximates MAI through reuse. RL agents that construct inter-
nal models of state dynamics increasingly resemble memory-amortized systems. When
these agents simulate or plan using cached transitions, they implicitly rely on structure-
preserving reuse, thus operating within the MAI regime. This suggests that the histori-
cal separation between planning and inference may be artificial, as both emerge from re-
versible, memory-centered architectures.

• General intelligence emerges near the reversibility threshold. Whether in the brain or
artificial agents, the hallmark of general intelligence is not brute-force exploration or sta-
tistical averaging, but the ability to cyclically refine predictions and actions using compact,
reusable representations. This occurs near a critical point, which we term the reversibility
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threshold, where entropy reduction and structural conservation are co-optimized. Systems
operating at this threshold exhibit high energy efficiency, fast adaptation, and robustness to
uncertainty, suggesting it may be a necessary condition for superintelligent cognition.

Example 3 (Reversibility Threshold in Route Replanning). Consider an agent navigating a spatial
environment (e.g., a robot exploring a maze or a human traversing a familiar city). Initially, the
agent explores via stochastic policies, with high entropy over possible trajectories due to a lack of
structural knowledge. As it accumulates experience, it begins to form latent memory cycles that en-
code recurrent paths (e.g., loops through landmarks). When a roadblock appears, the agent does not
re-explore from scratch; instead, it performs a localized inference over prior trajectories, retrieving
structurally similar detours from memory. At this stage, the agent operates near the reversibility
threshold: its predictions and actions are no longer purely exploratory (high entropy), nor fully
deterministic (low flexibility). Instead, the system achieves a critical balance where entropy is min-
imized through reuse of past cycles (low-entropy inference). Meantime, structural representations
(e.g., topological homology classes over trajectories) are preserved across updates; and adaptation
remains possible through bootstrapped generalization of known paths. This regime exemplifies co-
optimization of entropy and structure: inference proceeds efficiently with minimal recomputation,
while remaining reversible through cyclic memory access. If structural reuse were impaired (e.g.,
due to memory corruption), the agent would regress to high-entropy re-exploration. Conversely,
if flexibility were lost (e.g., overfit to a single path), the agent could not adapt. Thus, intelligence
manifests most effectively at this reversibility threshold.

RL models reward uncertainty by estimating the expected return over stochastic transitions and ac-
tions, i.e., E[r], which underpins policy optimization via value iteration or temporal difference learn-
ing Sutton & Barto (1998). However, such formulations assume that reward signals are available
and semantically meaningful at each state, and that learning progresses through direct interaction
with the environment. MAI offers a principled generalization: rather than modeling uncertainty
solely over scalar rewards, MAI models the uncertainty over latent causes of observed outcomes,
conditioned on context Ψ. Specifically, MAI replaces the simple expected reward E[r] with a nested
expectation EΨ [E[r|Ψ]], where the inner expectation is over memory-retrieved experiences struc-
turally consistent with Ψ. This shift enables inference over abstract, context-sensitive value func-
tions even in the absence of immediate feedback, unifying reward estimation with memory reuse
and structural generalization under a single retrieval-and-adaptation framework. Formally, we have
Theorem 5 (Contextual Expectation in Memory-Amortized Inference). Let DΨ be a distribution
over contexts Ψ ∈ XΨ, and suppose there exists a latent memory storeM = {(Ψ(i),Φ(i), r(i))}Ni=1,
where each tuple stores context, content, and a reward-like utility signal. Let R : XΨ ×M → XΦ

be a retrieval operator such that Φ̂(Ψ) := R(Ψ;M) ≈ EΦ(i)∼M|Ψ[Φ
(i)]. Then the expected

utility of amortized inference is given by a doubly nested expectation: EΨ∼DΨ

[
EΦ(i)∼M|Ψ[r

(i)]
]
,

which generalizes reinforcement learning’s expected reward: E[r]⇝ EΨ [E[r|Ψ]]. This formulation
enables structure-aware generalization via context-conditioned reuse of past experience.
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