

000 001 002 003 004 005 006 007 008 009 010 DO WE NEED ALL THE SYNTHETIC DATA? TARGETED IMAGE AUGMENTATION VIA DIFFUSION MODELS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Synthetically augmenting training datasets with diffusion models has been an
 012 effective strategy for improving generalization of image classifiers. However,
 013 existing techniques struggle to ensure the diversity of generation and increase the
 014 size of the data by up to $10\text{-}30\times$ to improve the in-distribution performance. In this
 015 work, we show that synthetically augmenting part of the data that is not learned
 016 early in training with faithful images—containing same features but different
 017 noise—outperforms augmenting the entire dataset. By analyzing a two-layer CNN,
 018 we prove that this strategy improves generalization by promoting homogeneity in
 019 feature learning speed without amplifying noise. Our extensive experiments show
 020 that by augmenting only 30%-40% of the data, our method boosts generalization
 021 by up to 2.8% in a variety of scenarios, including training ResNet, ViT, ConvNeXt,
 022 and Swin Transformer on CIFAR-10/100, and TinyImageNet, with various
 023 optimizers including SGD and SAM. Notably, our method applied with SGD
 024 outperforms the SOTA optimizer, SAM, on CIFAR-100 and TinyImageNet.

025 1 INTRODUCTION

027 Data augmentation has been essential to obtaining state-of-the-art in image classification tasks. In
 028 particular, adding synthetic images generated by diffusion models (Rombach et al., 2022; Nichol
 029 et al., 2021; Saharia et al., 2022) improves the accuracy (Azizi et al., 2023) and effective robustness
 030 (Bansal & Grover, 2023) of image classification, beyond what is achieved by weak (random crop, flip,
 031 color jitter, etc) and strong data augmentation strategies (PixMix, DeepAugment, etc) (Hendrycks
 032 et al., 2021; 2022) or data augmentation using traditional generative models (Goodfellow et al.,
 033 2020; Brock et al., 2018). Existing works, however, generate synthetic images by conditioning
 034 the diffusion model on class labels (Bansal & Grover, 2023; Azizi et al., 2023), or noisy versions
 035 of entire training data (Zhou et al., 2023). Unlike weak and strong augmentation techniques, data
 036 augmentation techniques based on diffusion models often struggle to ensure diversity and increase
 037 the size of the training data by up to $10\times$ (Azizi et al., 2023) to $30\times$ (Fu et al., 2024) to yield
 038 satisfactory performance improvement. This raises a key question:

039 *Does synthetically augmenting the full data yields optimal performance? Can we identify a part of*
 040 *the data that outperforms full data, when synthetically augmented?*

041 At first, this seems implausible as adding synthetic images corresponding to only a part of the training
 042 data introduces a shift between training and test data distributions and harms the in-distribution
 043 performance. However, recent results in the optimization literature have revealed that learning
 044 features at a more uniform speed during training improves the generalization performance (Nguyen
 045 et al., 2024). This is shown by comparing learning dynamics of Sharpness-Aware-Minimization
 046 (SAM) with Gradient Descent (GD) optimizers. SAM is a state-of-the-art optimizer that finds flatter
 047 local minima by simultaneously minimizing the value and sharpness of the loss (Foret et al., 2020).
 048 In doing so, SAM learns slow-learnable features faster than GD and achieves superior performance.
 049 This suggests that augmenting the slow-learnable part of the data to accelerate their learning can
 050 improve the generalization performance, despite slight distribution shift. Yet, how to generate such
 051 synthetic data remains an open question.

052 In our work, we provide a rigorous answer to the above question. First, by analyzing a two-layer
 053 convolutional neural network (CNN), we show that SAM suppresses learning noise from the data,
 while speeding up learning slow-learnable features. Then, we prove that generating *faithful* synthetic

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
Figure 1: Examples of slow- and fast-learnable images and our *faithful* synthetic images corresponding to slow-learnable examples generated for CIFAR-10. Our synthetic data preserves features in slow-learnable images but replace noise. This amplifies slow-learnable features without magnifying noise. This is difficult to achieve with standard augmentations like random cropping or flipping, highlighting the value of generative augmentation. Additional images are given in Figure 6.

images containing slow-learnable features with different noise effectively speeds up learning such features without causing noise overfitting. To find examples with slow-learnable features, we partition the data to two parts by clustering model outputs early in training and identify the cluster with higher average loss. Then, we generate faithful images corresponding to the slow-learnable examples, by using real data to guide the diffusion process. That is, we add noise to examples that are not learned early in training and denoise them to generate faithful synthetic data (see examples in Figure 1). This enables synthetically augmenting only the slow-learnable part of the data by up to 5x to get further performance improvement. In contrast, upsampling slow-learnable examples—which appears to be a simpler and more intuitive approach—more than once could amplify the noise and significantly harm the performance, suggesting the necessity of using synthetic data. Finally, we prove the convergence properties of training on our synthetically augmented data with stochastic gradient methods.

We conduct extensive experiments for training ResNet, ViT, DenseNet, and Swin Transformer on CIFAR10, CIFAR100 (Krizhevsky et al., 2009) and TinyImageNet (Le & Yang, 2015). We show that our synthetic data augmentation outperforms upsampling or synthetically augmenting the full dataset, and improves SGD and SAM by up to 2.8% by augmenting only 30%-40% of the data. Notably, our method applied with SGD outperforms SAM on CIFAR-100 and TinyImageNet and yields state-of-the-art performance. It remains effective across different diffusion models and easily stacks with existing weak and strong augmentation strategies to further boost the performance.

2 RELATED WORKS

Generative Models for Augmentation. There has been a recent surge of studies on synthetic data augmentation using diffusion models. For example, Azizi et al. (2023) applied diffusion models to ImageNet classification, while further studies (Trabucco et al., 2023; He et al., 2023) explored their application in zero- or few-shot settings. **Despite promising results, this line of research faces fundamental challenges in achieving diversity, faithfulness, and efficiency.** Recent work attempts to overcome this through intricate prompt-conditioning mechanisms, customized embedding optimizations, or multi-stage diffusion processes. For example, DiffuseMix (Islam et al., 2024a) and GenMix (Islam et al., 2024b) use prompt-guided editing with complex mixing strategies to avoid unrealistic artifacts, while Diff-Mix (Wang et al., 2024) balances foreground fidelity and background diversity through inter-class mixup. Diff-II (Wang & Chen, 2025) introduces a novel inversion-circle interpolation and a two-stage denoising process to jointly promote diversity and faithfulness. For fine-grained image classification, SasPA (Michaeli & Fried, 2024) preserves structural integrity by conditioning on edges and subject representations, and DiffCoRe-Mix (Islam & AKHTAR, 2025) uses constrained diffusion with negative prompting and hard-cosine filtering to maintain semantic consistency.

Although these approaches improve synthetic image quality and diversity, they typically require generating extremely large synthetic datasets—often 10 \times to 30 \times the size of the original data—to achieve meaningful performance gains, making them computationally expensive. A few recent works, such as Boomerang (Luzi et al., 2022) and DiffCoRe-Mix, address this cost by performing local manifold sampling, enabling strong performance with a 1 \times augmentation ratio. However, these methods still involve substantial system-level complexity and high generation costs.

108 Our approach departs from this trend by focusing on *which* examples to augment rather than de-
 109 signing increasingly complex generation pipelines. We theoretically and empirically show that
 110 augmenting only the 30%–40% of examples that are not learned early in training is sufficient—and
 111 often superior—to full-data augmentation. Our method is simple, computationally lightweight, and
 112 generator-agnostic. It can be seamlessly combined with state-of-the-art diffusion-based augmentation
 113 methods, as demonstrated with both DiffuseMix and Boomerang in our experiments.

114 **Sharpness-aware-minimization (SAM).** SAM is an optimization technique that obtains state-of-the-
 115 art performance on a variety of tasks, by simultaneously minimizing the loss and its sharpness (Foret
 116 et al., 2020; Zheng et al., 2021). In doing so, it improves the generalization in expense of doubling
 117 the training time. SAM has also been shown to be beneficial in settings such as label noise (Foret
 118 et al., 2020; Zheng et al., 2021), out-of-distribution (Springer et al., 2024), and domain generalization
 119 (Cha et al., 2021; Wang et al., 2023). The superior generalization performance of SAM has been
 120 contributed to smaller Hessian spectra (Foret et al., 2020; Kaur et al., 2023; Wen et al., 2022; Bartlett
 121 et al., 2023), sparser solution (Andriushchenko & Flammarion, 2022), and benign overfitting in
 122 presence of weaker signal (Chen et al., 2022). Most recently, SAM is shown to learn features at
 123 a more uniform speed (Nguyen et al., 2024). In our work, we show that targeted synthetic data
 124 augmentation can improve generalization by making training dynamics more similar to SAM.

125 3 PRELIMINARY

126 In this section, we introduce our theoretical framework for analyzing synthetic data augmentation
 127 with diffusion models. We also discuss SAM’s ability in learning features at a more uniform speed.

128 **Data Distribution.** We adopt a similar data distribution used in recent works on feature learning
 129 (Allen-Zhu & Li, 2020; Chen et al., 2022; Jelassi & Li, 2022; Cao et al., 2022; Kou et al., 2023;
 130 Deng et al., 2023; Chen et al., 2023) to model data containing two features $\mathbf{v}_d, \mathbf{v}_e$ and noise patches.

131 **Definition 3.1** (Data distribution). A data point has the form $(\mathbf{x}, y) \sim \mathcal{D}(\beta_e, \beta_d, \alpha) \in (\mathbb{R}^d)^P \times \{\pm 1\}$,
 132 where $y \sim \text{Radamacher}(0.5)$, $0 \leq \beta_d < \beta_e \in \mathbb{R}$, and $\mathbf{x} = (\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(P)})$ contains P patches.

133

- 134 • Exactly one patch is given by the *fast-learnable* feature $\beta_e \cdot y \cdot \mathbf{v}_e$ for some unit vector \mathbf{v}_e with
 135 probability $\alpha > 0$. Otherwise, the patch is given by the *slow-learnable* feature $\beta_d \cdot y \cdot \mathbf{v}_d$ for
 136 some unit vector $\mathbf{v}_e \cdot \mathbf{v}_d = 0$.
- 137 • The other $P - 1$ patches are i.i.d. Gaussian noise ξ from $\mathcal{N}(0, (\sigma_p^2/d)\mathbf{I}_d)$ for some constant σ_p .

138 Probability α controls the frequency of feature \mathbf{v}_e in the data distribution. The distribution parameters
 139 β_e, β_d characterize the feature strength in the data. $\beta_e > \beta_d$ ensures that the fast-learnable feature is
 140 represented better in the population and thus learned faster. The faster speed of learning captures
 141 various notions of simplicity, such as simpler shape, larger magnitude, and less variation. Note
 142 that image data in practice are high-dimensional and the noises become dispersed. For simplicity,
 143 we assume $P = 2$, that the noise patch is orthogonal from the two features, and that summations
 144 involving noise cross-terms $\langle \xi_i, \xi_j \rangle$ become negligible.

145 **Two-layer CNN Model.** We use a dataset $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ from distribution 3.1 to train a
 146 two-layer nonlinear CNN with activation functions $\sigma(z) = z^3$.

147 **Definition 3.2** (Two-layer CNN). For one data point (\mathbf{x}, y) , the two-layer Convolutional Neural
 148 Network (CNN) with weights $\mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_J] \in \mathbb{R}^{d \times J}$, where \mathbf{w}_j is weight of the j -th
 149 neuron (filter), has the form:

$$150 f(\mathbf{x}; \mathbf{W}) = \sum_{j=1}^J \sum_{p=1}^P \langle \mathbf{w}_j, \mathbf{x}^{(p)} \rangle^3 = \sum_{j=1}^J \left(\langle \mathbf{w}_j, \xi \rangle^3 + y \begin{cases} \beta_d^3 \langle \mathbf{w}_j, \mathbf{v}_d \rangle^3 & \text{if } \mathbf{v}_d \\ \beta_e^3 \langle \mathbf{w}_j, \mathbf{v}_e \rangle^3 & \text{if } \mathbf{v}_e \end{cases} \right) \quad \text{for our } P = 2.$$

151 **Empirical Risk Minimization.** We consider minimizing the following empirical logistic loss:

$$152 \mathcal{L}(\mathbf{W}) = \frac{1}{N} \sum_{i=1}^N l(y_i f(\mathbf{x}_i; \mathbf{W})) := \frac{1}{N} \sum_{i=1}^N \log(1 + \exp(-y_i f(\mathbf{x}_i; \mathbf{W})). \quad (1)$$

162 via (1) sharpness-aware minimization (SAM) (Foret et al., 2020) and (2) gradient descent (GD),
 163 whose filter-wise update rules, with some learning rate $\eta > 0$, are respectively given by:
 164

$$165 \text{SAM : } \mathbf{w}_j^{(t+1)} = \mathbf{w}_j^{(t)} - \eta \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)} + \rho^{(t)} \nabla \mathcal{L}(\mathbf{W}^{(t)})), \text{ where } \rho^{(t)} = \rho / \|\nabla \mathcal{L}(\mathbf{W}^{(t)})\|_F, \rho > 0,$$

$$167 \text{GD : } \mathbf{w}_j^{(t+1)} = \mathbf{w}_j^{(t)} - \eta \frac{1}{N} \sum_{i=1}^N \nabla_{i, \mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}) = \mathbf{w}_j^{(t)} - \eta \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}).$$

170 Here $\nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)})$ denotes the full gradient w.r.t. filter \mathbf{w}_j at iteration t , $\nabla_{i, \mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)})$ denotes
 171 the per-example gradient for $i \in [N]$, and $\nabla \mathcal{L}(\mathbf{W}^{(t)})$ denotes the full gradient matrix.
 172

173 **High-level idea of SAM.** By perturbing the weights with gradient ascent ($\epsilon^{(t)} = \rho^{(t)} \nabla \mathcal{L}(\mathbf{W}^{(t)})$),
 174 SAM looks ahead in the *worst* weight direction and forces the training algorithm to escape an unstable
 175 (sharp) local minimum. In practice, this leads to more generalizable solutions.

176 **SAM Learns Features More Homogeneously.** With the above setting, the alignment of $\mathbf{v}_d, \mathbf{v}_e$ with
 177 weights, i.e., $\langle \mathbf{w}^{(t)}, \mathbf{v}_d \rangle$ and $\langle \mathbf{w}^{(t)}, \mathbf{v}_e \rangle$, indicate how much they are learned by the CNN at iteration t .
 178 SAM’s (normalized) gradient for the *slow-learnable* feature is larger than GD by a factor of (Nguyen
 179 et al., 2024):

$$180 \quad k = \left(\frac{1 - \rho^{(t)} \beta_d^3 \langle \mathbf{w}, \mathbf{v}_d \rangle}{1 - \rho^{(t)} \beta_e^3 \langle \mathbf{w}, \mathbf{v}_e \rangle} \right)^{2/3}. \quad (2)$$

183 That is, SAM amplifies the slow-learnable feature and learns it faster than GD. In doing so, it learns fea-
 184 tures at a more homogeneous speed. While Eq. 2 suggests that the empirical choice of k should depend
 185 on the relative strength and difficulty of the features, simply upsampling examples with slow-learnable
 186 features more than once results in performance degradation, as we confirm in our experiments.

4 LEARNING FEATURES HOMOGENEOUSLY WITHOUT OVERTFITTING NOISE

190 In this section, we first prove that SAM suppresses learning noise from the data, while promoting ho-
 191 mogeneous feature learning. Then, we discuss generating synthetic data to amplify features in images
 192 without magnifying their noise. This allows amplifying slow-learnable features by $k > 2$ to further
 193 boost performance. Finally, we show convergence of training on our synthetically augmented data.

4.1 SAM SUPPRESSES LEARNING NOISE FROM THE DATA

197 First, we theoretically analyze how SAM suppresses learning noise in the above setting. Intuitively,
 198 as SAM pushes the learning dynamics away from sharp landscapes, it simultaneously helps the model
 199 avoid areas where certain noises concentrate. This becomes a natural defense against noise overfitting
 200 in high-curvature areas. On the other hand, gradient descent is unaware of local smoothness, so it
 201 finds solutions that may sit in a flat, noise-resilient basin.

202 Formally, we prove that starting with the same weights $\mathbf{W}^{(t)}$, a SAM step suppresses the model’s
 203 alignment with noise directions more effectively than an equivalent gradient descent step. Let Φ
 204 denote the sets of noises for dataset D . Let $\mathbf{w}_{j, \epsilon}$ denote the perturbed weights of filter j for SAM.
 205 We then define $\mathcal{I}_{j, \epsilon, +}^{(t)} = \{\phi_i \in \Phi : i \in [N], \text{ sgn}(\langle \mathbf{w}_{j, \epsilon}^{(t)}, \phi_i \rangle) = \text{sgn}(y_i)\}$ and $\mathcal{I}_{j, \epsilon, -}^{(t)} = \{\phi_i \in \Phi : i \in [N], \text{ sgn}(\langle \mathbf{w}_{j, \epsilon}^{(t)}, \phi_i \rangle) \neq \text{sgn}(y_i)\}$ be the sets of noises where the sign of alignment matches
 206 or mismatches the sign of the label. We define $\mathcal{I}_{j, +}^{(t)}, \mathcal{I}_{j, -}^{(t)}$ accordingly for each GD weight $\mathbf{w}_j^{(t)}$.
 207 We measure filter-wise noise learning for a set of noises using the metric $\text{NoiseAlign}(\mathcal{I}, \mathbf{w}_j^{(t)}) =$
 208 $\frac{1}{|\mathcal{I}|} \sum_{\phi \in \mathcal{I}} |\langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \phi \rangle|$, which intuitively measures how much noise is learned by the model.
 209

212 The following theorem quantifies how SAM learns noise to a smaller extent compared to GD. For sim-
 213 plicity, we analyze the early training phase. However, our results should hold throughout the training.

214 **Theorem 4.1.** *With controlled logit terms $l_i^{(t)} = \text{sigmoid}(-y_i f(\mathbf{x}_i; \mathbf{W}^{(t)}))$, large data size N , small
 215 learning rate η , and small SAM perturbation parameter ρ (see Appendix A), SAM and GD updates
 216 from the same parameters have the following property, early in training:*

216 1. **Inert Noises:** Alignment with noises that belong to $\mathcal{I}_{j,-}^{(t)}$ and $\mathcal{I}_{j,\epsilon,-}^{(t)}$ will get closer to 0 after
 217 each update, so they will not be learned eventually by GD or SAM.

218 2. **Noise Learning:** The other noises will continue being learned in the sense that $|\langle \mathbf{w}_j, \xi_i \rangle|$ is
 219 monotonically increasing. For these noises, SAM slows down noise learning by looking ahead
 220 to noise-sensitive (sharp) directions, while GD updates “blindly”. The following SAM and GD
 221 learning dynamics hold for $\xi_i \in \mathcal{I}_{j,\epsilon,+}^{(t)}$ and $\xi_i \in \mathcal{I}_{j,+}^{(t)}$ in terms of noise gradient:

223 **SAM:** $|\langle \nabla_{\mathbf{w}_{j,\epsilon}} \mathcal{L}(\mathbf{W}^{(t)} + \epsilon^{(t)}), \xi_i \rangle| = \frac{3}{N} l_i^{(t)} \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \left(1 - \frac{3\rho^{(t)}}{N} l_i^{(t)} |\langle \mathbf{w}_j^{(t)}, \xi_i \rangle| \|\xi_i\|^2\right)^2 \|\xi_i\|^2,$

224 **GD:** $|\langle \nabla_{\mathbf{w}_j} \mathcal{L}(\mathbf{W}^{(t)}), \xi_i \rangle| = \frac{3}{N} l_i^{(t)} \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \|\xi_i\|^2.$

225 Furthermore, on average, the perturbed SAM gradient aligns strictly less with these noises,

226 $\text{NoiseAlign}(\mathcal{I}_{j,\epsilon,+}^{(t)}, \mathbf{w}_{j,\epsilon}^{(t)}) < \text{NoiseAlign}(\mathcal{I}_{j,+}^{(t)}, \mathbf{w}_j^{(t)}).$

227 A special case of this theorem is that with the same initializations $\mathbf{W}^{(0)} \sim \mathcal{N}(0, \sigma_0^2)$, nearly half of
 228 the noises will not be learned, and SAM in early training prevents overfitting, while GD does not.

229 All the proof can be found in Appendix A. Our results are aligned with (Chen et al., 2023) which
 230 showed, in a different setting, that SAM can achieve benign overfitting when SGD cannot.

231 **Remark.** Theorem 4.1 implies that to resemble feature learning with SAM and ensure superior
 232 convergence, it is also crucial to avoid magnifying noise when amplifying the slow-learnable feature.

233 4.2 SYNTHETIC DATA AUGMENTATION TO AMPLIFY FEATURES BUT NOT NOISE

234 Next, we discuss finding examples containing slow-learnable features and generating synthetic data
 235 to amplify slow-learnable features without magnifying the noise in the data.

236 **Identifying slow-learnable examples.** To find slow-learnable features in the data, we find examples
 237 that are not learned robustly at the early phase of training. If an example contains at least one
 238 fast-learnable feature that is learned by the model early in training, the model relies on such features
 239 to lower the loss and potentially correctly classify the example early in training. Thus, examples
 240 that only include slow-learnable features can be identified based on loss or misclassification, or by
 241 partitioning model outputs to two clusters after a few training epochs and selecting the cluster with the
 242 higher average loss. In our experiments, we use clustering to identify examples with slow-learnable
 243 features as it yields better performance, as we confirm in our ablation studies. We note that finding
 244 examples with slow-learnable features is not the main focus of our work. Our main contribution is
 245 characterizing *how* to amplify slow-learnable features without amplifying noise in the data.

246 **Amplifying slow-learnable features.** Next, we show that generating synthetic data containing
 247 slow-learnable features with different noise considerably boosts the generalization performance,
 248 while upsampling slow-learnable examples amplifies the noise in the data and harms generalization.

249 Recall that D is the original dataset with $|D| = N$. We assume exactly $(1 - \alpha)N \in \mathbb{Z}$ samples have
 250 only \mathbf{v}_d , and let D_U, D_G be the modified datasets via upsampling and generation with factor k and
 251 new size $N_{new} = \alpha N + k(1 - \alpha)N$. For D_U , the replicated noises $\{\xi_i : i = \alpha N + 1, \dots, N\}$
 252 introduce a dependence. Additionally, for D_G , the generative model will have its own noises γ_i
 253 (potentially higher) for synthetic data, and we assume the noises are i.i.d., orthogonal to features, and
 254 independent from feature noise from some distribution \mathcal{D}_γ .

255 With similar notations, let Φ_G, Φ_U denote the multi-sets¹ of all the noises for D_G, D_U respectively.
 256 We define $\mathcal{I}_{j,+}^{G,(t)} = \{\phi_i \in \Phi_G : i \in [N_{new}], \text{ sgn}(\langle \mathbf{w}_j^{(t)}, \phi_i \rangle) = \text{sgn}(y_i)\}$, $\mathcal{I}_{j,-}^{G,(t)}, \mathcal{I}_{j,+}^{U,(t)}, \mathcal{I}_{j,-}^{U,(t)}$ in a
 257 similar fashion for D_G and D_U as before.

258 Next, we show that early in training, upsampling and generation contribute similarly to feature
 259 learning, but upsampling accelerates learning noises in $\mathcal{I}_{j,+}^{U,(t)}$, while synthetic generation does not.

260 ¹Due to identical noises in D_U . The following $\mathcal{I}_{j,+}^{U,(t)}$ and $\mathcal{I}_{j,-}^{U,(t)}$ are also defined via multi-sets to keep their
 261 sizes consistent with the generation counterparts, meaning that we count all the replicated noises.

270 **Theorem 4.2** (Comparison of feature & noise learning). *Let $\nabla_{\mathbf{w}_j^{(t)}}^U(\mathcal{L}(\mathbf{W}^{(t)}))$ and $\nabla_{\mathbf{w}_j^{(t)}}^G(\mathcal{L}(\mathbf{W}^{(t)}))$ 271 denote the full gradients w.r.t the j -th neuron for upsampling and generation at iteration t respectively. 272 When dropping the index i , the term is treated as a random variable. Then for one gradient update,*

274 **1. Feature Learning & Inert Noises:** *Both gradients attempt to contribute equally to feature 275 learning and will not eventually learn certain noises (that are those in $\mathcal{I}_{j,-}^{U,(t)}, \mathcal{I}_{j,-}^{G,(t)}$).* 276

277 **2. Noise Learning:** *Upsampling, compared with generation, amplifies learning of noise on the 278 repeated subset by a factor of k . In particular, for generation, $\phi_i \in \mathcal{I}_{j,\epsilon,+}^{G,(t)}$, where ϕ_i could be 279 ξ_i or the generation noise γ_i ,*

$$281 \quad |\langle \nabla_{\mathbf{w}_j}^G \mathcal{L}(\mathbf{W}^{(t)}), \phi_i \rangle| = \frac{3}{N_{new}} l_i^{(t)} \langle \mathbf{w}_j^{(t)}, \phi_i \rangle^2 \|\phi_i\|^2. \\ 282$$

283 *However, for upsampling, $\xi_i \in \mathcal{I}_{j,+}^{U,(t)}$,*

$$285 \quad |\langle \nabla_{\mathbf{w}_j}^U \mathcal{L}(\mathbf{W}^{(t)}), \xi_i \rangle| = \begin{cases} \frac{3}{N_{new}} l_i(t) \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \|\xi_i\|^2, & i = 1, \dots, \alpha N \\ \frac{3k}{N_{new}} l_i(t) \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \|\xi_i\|^2, & i = \alpha N + 1, \dots, N \end{cases} \\ 286 \\ 287$$

288 *A special case of this theorem is that with the same initializations $\mathbf{W}^{(0)} \sim \mathcal{N}(0, \sigma_0^2)$, for all the early 289 iterations $0 \leq t \leq T$, if the synthetic noises are sufficiently small in the sense that*

$$291 \quad \mathbb{E} [l_\gamma(t) \langle \mathbf{w}_j^{(t)}, \gamma \rangle^2 \|\gamma\|^2] < (k+1) \mathbb{E} [l_\xi(t) \langle \mathbf{w}_j^{(t)}, \xi \rangle^2 \|\xi\|^2], \\ 292$$

293 *where $l_\gamma(t)$, $l_\xi(t)$ denote the logits as random variables under the corresponding noise at iteration t ,*

$$295 \quad \text{then noises are overfitted less: } \mathbb{E} [\text{NoiseAlign}(\mathcal{I}_{j,+}^{G,(t)}, \mathbf{w}_j^{(t)})] < \mathbb{E} [\text{NoiseAlign}(\mathcal{I}_{j,+}^{U,(t)}, \mathbf{w}_j^{(t)})]. \\ 296$$

297 Theorem 4.2 suggests that synthetically generating faithful images that preserve features in real 298 data with independent noise prevents noise overfitting in expectation. In particular, this metric of 299 generation noise does not need to be strictly less than that of data noise during early training; instead, 300 there exists a tolerance factor up to $k+1$.

301 **Remark.** For a diffusion model, as long as the noises in the synthetic data $\|\gamma_i\|^2$ are not too large, 302 noise learning under generation is more diffused due to its independence and operates more similarly 303 to SAM, whereas upsampling amplifies learning on the duplicated noise, potentially elevating it to a 304 new feature and increasing the **NoiseAlign** metric.

306 4.3 SUPERIOR CONVERGENCE OF SYNTHETIC DATA AUGMENTATION OVER UPSAMPLING

307 Next, we show the superior convergence of mini-batch Stochastic Gradient Descent (SGD)—which 308 is used in practice—on synthetically augmented compared to upsampled data. Consider training 309 the above CNN using SGD with batch size B : $\mathbf{w}_j^{(t+1)} = \mathbf{w}_j^{(t)} - \eta \frac{1}{B} \sum_{i=1}^B \nabla_{i,\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)})$. The 310 convergence rate of mini-batch SGD is inversely proportional to the batch size (Ghadimi & Lan, 311 2013). The following theorem shows that upsampling inflates the variance of mini-batch gradients and 312 thus slows down convergence. Note that it does not directly compare the relative magnitudes of the 313 variances, since $\sigma_G(k)$, $\sigma_U(k)$ depend on datasets. Instead, it quantifies the sources of extra variance:

314 **Theorem 4.3** (Variance of mini-batch gradients). *Suppose we train the model using mini-batch SGD 315 with proper batch size B . Let $\mathbb{E}_{i \in D_G} [\|\mathbf{g}_i - \bar{\mathbf{g}}_G\|^2] \leq \sigma_G^2(k)$, $\mathbb{E}_{i \in D_U} [\|\mathbf{g}_i - \bar{\mathbf{g}}_U\|^2] \leq \sigma_U^2(k)$ be the 316 variances of the per-example gradients for generation and upsampling (where \mathbf{g}_i is the gradient of 317 the i -th data and $\bar{\mathbf{g}}$ is the full gradient). Let $\hat{\mathbf{g}}_G$ and $\hat{\mathbf{g}}_U$ be the mini-batch gradients. We have:*

$$318 \quad \mathbb{E}_{D_G} [\|\hat{\mathbf{g}}_G - \bar{\mathbf{g}}_G\|^2] \leq \frac{\sigma_G^2(k)}{B}, \\ 319$$

$$320 \quad \mathbb{E}_{D_U} [\|\hat{\mathbf{g}}_U - \bar{\mathbf{g}}_U\|^2] \leq I, \quad \text{where } I \geq \frac{\sigma_U^2(k)}{B} \left(1 + \frac{k(k-1)(1-\alpha)}{(\alpha+k(1-\alpha))^2} \frac{B}{N} \right). \\ 321 \\ 322$$

324 From Theorem 4.3, we see that all the variance for generation solely comes from the per-example
 325 variance, potentially getting larger when synthetic images diversify the dataset. However, upsampling
 326 induces one extra term that results from repeated noises and unnecessarily inflates the variance due to
 327 dependence within the dataset. This is empirically justified in our ablation studies in Section 5.2.

328
 329 **Corollary 4.4.** *As long as the generation noise is small enough, i.e., $\sigma_G^2(k) \leq \sigma_U^2(k)$, convergence*
 330 *of mini-batch SGD on synthetically augmented data is faster than upsampled data.*

331
 332 **4.4 GENERATING FAITHFUL SYNTHETIC IMAGES VIA DIFFUSION MODELS**
 333

334 Finally, we discuss generating *faithful* images for the slow-learnable part of the data. From Theorem
 335 4.2 we know that while the noise in the synthetic data can be larger than that of the original data, it
 336 should be small enough to yield a similar feature learning behavior to SAM.
 337

338 Synthetic image generation with diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020;
 339 Nichol & Dhariwal, 2021; Yang et al., 2023) involves a forward process to iteratively add noise to the
 340 images, followed by a reverse process to learn to denoise the images. Specifically, the forward process
 341 progressively adds noise to the data x_0 over T steps, with each step modeled as a Gaussian transition:
 342 $q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$, where β_t controls the noise added at each step. The reverse
 343 process inverts the forward process, learns to denoise the data, with the goal of recovering the original
 344 data x_0 from a noisy sample x_T : $p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_\theta(\mathbf{x}_t, t), \Sigma_\theta(\mathbf{x}_t, t))$, where mean μ_θ is
 345 conditioned on the sample at the previous time step and variance Σ_θ follows a fixed schedule.

346 To ensure generating images that are faithful to real data, we use the real images as guidance to
 347 generate synthetic images. Specifically, while using the class name (e.g., “a photo of a dog”) as the
 348 text prompt, we also incorporated the original real samples as guidance. More formally, instead of
 349 sampling a pure noisy image $x_T \sim \mathcal{N}(0, I)$ as the initialization of the reverse path, we add noise to
 350 a reference (real) image x_0^{ref} such that the noise level corresponds to a certain time-step t_* . Then we
 351 begin denoising from time-step t_* , using an open-source text-to-image model, e.g. GLIDE (Nichol
 352 et al., 2021), to iteratively predict a less noisy image $x_{t-1}(t = T, T-1, \dots, 1)$ using the given text
 353 prompt l and the noisy latent image x_t as inputs. This technique enables produce synthetic images that
 354 are similar, yet distinct, from the original examples, and has been successfully used for synthetic image
 355 generation for few-shot learning (He et al., 2023). Our pseudocode is illustrated in Appendix E Alg. 1.

356
 357 **5 EXPERIMENT**
 358

359 In this section, we evaluate the effectiveness of our synthetic augmentation strategy on various
 360 datasets and model architectures. We also conduct an ablation study on different parts of our method.
 361

362 **Base training datasets.** We use common benchmark datasets for image classification including CI-
 363 FAR10, CIFAR100 (Krizhevsky et al., 2009), Tiny-ImageNet (Le & Yang, 2015), Flowers-102 (Nils-
 364 back & Zisserman, 2008), Aircraft (Maji et al., 2013), and Stanford Cars (Krause et al., 2013).

365 **Augmented training datasets.** We train different models on: (1) **Original**: The original training
 366 datasets without any modifications. (2) **UPSAMPLE**: Augmented dataset with upsampled real
 367 images that are not learned in early training. (3) **Our Method**: Replace the upsampled samples
 368 in UPSAMPLE with their corresponding synthetic images. For $k > 2$, we use generated images at
 369 different diffusion denoising steps, instead of generating from scratch.

370 **Training details.** We train ResNet18 on all datasets following the setting of (Andriushchenko &
 371 Flammarion, 2022). The models are trained for 200 epochs with a batch size of 128. We use SGD
 372 with the momentum parameter 0.9 and set weight decay to 0.0005. We also fix $\rho = 0.1$ for SAM. We
 373 use a linear learning rate schedule starting at 0.1 and decay by a factor of 10 once at epoch 100 and
 374 again at epoch 150. For each setup, we train with both SGD and SAM.

375 **Hyperparameters.** For UPSAMPLE, we set the upsampling factor k to 2 as it yields the best perfor-
 376 mance. For our method, we use $k = 5$ for CIFAR10 and CIFAR100 and $k = 4$ for TinyImageNet.
 377 For generating synthetic images using GLIDE, we use guidance scale of 3 and run denoising for 100
 378 steps, saving generated images every 10 steps. More details are in Appendix F.1.

Figure 2: Test classification error of ResNet18 on CIFAR10, CIFAR100 and TinyImageNet. For UPSAMPLE, we use a factor of $k = 2$, as higher k harms the performance. In contrast for our method (Ours), $k = 5, 5, 4$ for CIFAR10, CIFAR100, and Tiny-ImageNet, respectively. Our method improves both SGD and SAM. Notably, it enables SGD to outperform SAM on CIFAR100 and TinyImageNet.

Figure 3: Test classification error of VGG19, DenseNet121, and ViT-S on CIFAR10. For UPSAMPLE, we use a factor of $k = 2$ —as higher k hurt the performance—while for Ours, we use $k = 5$.

Table 1: Test error of ConvNeXt-T and Swin-T on CIFAR-10 using SGD and $k = 2$.

Method	ConvNeXtT	SwinT
Original	37.33 ± 3.12	16.10 ± 0.19
UPSAMPLE	34.16 ± 2.47	14.93 ± 0.07
Ours	27.40 ± 1.99	14.57 ± 0.10

Table 2: Test error of pre-trained ResNet18 on Flowers-102, Aircraft, and Stanford Cars datasets.

Method	Flowers-102	Aircraft	Stanford Cars
Original	8.55 ± 0.19	26.02 ± 0.27	15.45 ± 0.02
DiffuseMix	8.92 ± 0.15	25.65 ± 0.20	15.19 ± 0.06
Ours+DifMx	8.08 ± 0.16	25.12 ± 0.35	14.96 ± 0.07

5.1 OUR METHOD IS EFFECTIVE ACROSS DATASETS AND ARCHITECTURES

Different datasets. Figure 2 clearly shows that our method significantly reduces the test classification error compared to both the **Original** and **UPSAMPLE** methods across all datasets, namely CIFAR10, CIFAR100, and Tiny-ImageNet. For Tiny ImageNet, our method yields an improvement of 2.8% when training with SAM. The superior performance of our method compared to UPSAMPLE is well aligned with our theoretical results in Section 4.3. Notably, SGD with our method outperforms SAM on CIFAR100 and TinyImageNet. This clearly confirms the effectiveness of our approach.

Different model architectures. To further evaluate the generalization of our approach, we conduct experiments on multiple model architectures using **CIFAR10** as the base dataset. Specifically, we apply our method to CNNs (VGG19, DenseNet121) and Transformers (ViT-S). Figure 3 presents the test classification error for different architectures. The results demonstrate that our method achieves consistently lower classification error than both the **Original** and **UPSAMPLE** methods across all architectures, under both SGD and SAM optimization settings. Moreover, when applied to state-of-the-art architectures such as ConvNeXt (Liu et al., 2022) and Swin Transformer (Liu et al., 2021), our method still outperforms the baselines by a substantial margin, as reported in Table 1. These findings confirm the effectiveness of our approach across different model structures.

Transfer learning and stacking with other synthetic image generations. We evaluate our method in a transfer learning setting, where we fine-tune a ResNet18 pre-trained on ImageNet-1K on 3 popular fine-grained image classification datasets including Flowers-102, Aircraft, and Stanford Cars datasets. Table 2 compares our method with DiffuseMix (Islam et al., 2024a) which is a SOTA data augmentation method. It enhances diversity of synthetic images by blending partial natural images with images generated via InstructPix2Pix (Brooks et al., 2023) diffusion model. Applying our method to augment slow-learnable images with DiffuseMix significantly outperform no-augmentation and augmenting entire dataset with DiffuseMix.

Figure 4: (left & middle) Comparison between different synthetic image augmentation strategies when training ResNet18 on CIFAR10 and CIFAR100. For Syn-rand and Ours, we use $k = 2$ resulting in only 30% and 40% additional examples compared to 100% of Syn-all. (right) Our method with $k = 5$ can be stacked with TrivialAugment (TA) to further boosts the performance when training ResNet18 on CIFAR10, achieving (to our knowledge) SOTA test classification error.

Figure 5: Training ResNet18 on CIFAR10. (left) The effect of amplification factor k on test error for upsampling vs generation. Red points indicate the optimal choice of k . $k > 2$ hurts upsampling but boosts generation. (middle) Generating synthetic CIFAR10 images from real images outperform starting from random noise. (right) Effect of the number of denoising steps on the performance with $k = 2$.

Do We Need All the Synthetic Data? To answer this question, we compare synthetically augmenting all examples (**Syn-all**)—which doubles the training set size—with our method with $k = 2$ —which results in increase of approximately 30% and 40% of the total training data—in CIFAR10 and CIFAR100. Notably, the generation time for our method is reduced to 0.3x and 0.4x that of **Syn-all**, making it more efficient. In addition, we consider a baseline (**Syn-rand**) where random images are augmented with their corresponding synthetic ones. Figure 4 shows that our method has a much lower test classification error compared to **Syn-rand** (same cost) and **Syn-all** (higher cost). This highlights the effectiveness of our *targeted* data augmentation.

5.2 ABLATION STUDIES

Our method stacked with strong augmentation. Figure 4 right shows that our method stacked with TrivialAugment (Müller & Hutter, 2021) achieves state-of-the-art results when training ResNet18 on CIFAR10. Appendix F.2 shows similar results for CIFAR100 and Tiny-ImageNet.

Identifying slow-learnable features. Table 7 in Appendix F.2 shows that identifying slow-learnable features by clustering model outputs outperforms selection based on high-loss or misclassification.

For larger k , upsampling hurts but generation helps. Figure 5a illustrates the performance of our method and UPSAMPLE on CIFAR10 when varying the upsampling factors. Upsampling achieves the best performance at $k = 2$ due to overfitting noise at larger k . But using synthetic images, our method benefits from larger values of k , yielding the best performance at $k = 5$ for CIFAR10 and CIFAR100, and $k = 4$ for Tiny-ImageNet. Detailed results for CIFAR100 and Tiny-ImageNet can be found in Table 5 in Appendix F.2. This corroborates our theoretical findings in Section 4.2.

Choices of initialization for denoising. We compare generating synthetic images by adding noise and denoising real images with denoising from random noises. Figure 5b illustrates that real data guidance is necessary for targeted synthetic image augmentation. When using random noises to generate synthetic images, performance of ResNet18 on the augmented training datasets is even worse than that on the original set, as generated images do not effectively amplify slow-learnable features.

Number of denoising steps. Figure 5c demonstrates the effect of the number of denoising steps on the performance of our method. Using fewer steps generates images that are too close to real images, am-

486 plifying the noise in the real images. In contrast, using too many steps results in too much noise, which
 487 also harms the performance. Overall, using 50 steps yields the best results for both SGD and SAM.
 488

489 **Convergence.** Figure 7 in Appendix F.2 shows the mini-batch gradient variance when training
 490 ResNet18 on the augmented CIFAR10 dataset using upsampling and generation. Generation results
 491 in lower gradient variance compared to upsampling for different k , confirming our results in Sec. 4.3.

492 6 CONCLUSION

494 In this work, we show that synthetically augmenting part of the data that is not learned early in
 495 training outperforms augmenting the entire dataset. By analyzing a two-layer CNN, we prove that
 496 this method allows features to be learned at a more uniform speed without amplifying noise. We
 497 conducted extensive experiments showing that our augmentation strategy boosts the performance
 498 when training ResNet, ViT, DenseNet, ConNexXt and Swin Transformer on CIFAR-10, CIFAR-100,
 499 and TinyImageNet, with a range of optimizers including SGD and SAM, by up to 2.8%. Notably, our
 500 method applied with SGD outperforms SAM on CIFAR-100 and TinyImageNet and easily stacks
 501 with existing weak and strong data augmentation strategies to obtain state-of-the-art performance.

503 REFERENCES

505 Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
 506 self-distillation in deep learning. *arXiv preprint arXiv:2012.09816*, 2020.

507 Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
 508 mization. In *International Conference on Machine Learning*, pp. 639–668. PMLR, 2022.

510 Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and David J. Fleet.
 511 Synthetic Data from Diffusion Models Improves ImageNet Classification, April 2023. URL
 512 <http://arxiv.org/abs/2304.08466>. arXiv:2304.08466 [cs].

513 Hritik Bansal and Aditya Grover. Leaving reality to imagination: Robust classification via generated
 514 datasets. *arXiv preprint arXiv:2302.02503*, 2023.

515 Peter L Bartlett, Philip M Long, and Olivier Bousquet. The dynamics of sharpness-aware minimiza-
 516 tion: Bouncing across ravines and drifting towards wide minima. *Journal of Machine Learning
 517 Research*, 24(316):1–36, 2023.

519 Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
 520 image synthesis. *arXiv preprint arXiv:1809.11096*, 2018.

522 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
 523 editing instructions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 524 recognition*, pp. 18392–18402, 2023.

525 Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. Benign overfitting in two-layer convo-
 526 lutional neural networks. *Advances in neural information processing systems*, 35:25237–25250,
 527 2022.

528 Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee,
 529 and Sungrae Park. Swad: Domain generalization by seeking flat minima. In M. Ran-
 530 zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances
 531 in Neural Information Processing Systems*, volume 34, pp. 22405–22418. Curran Asso-
 532 ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/bcb41ccdc4363c6848a1d760f26c28a0-Paper.pdf.

534 Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding the
 535 mixture-of-experts layer in deep learning. *Advances in neural information processing systems*, 35:
 536 23049–23062, 2022.

538 Zixiang Chen, Junkai Zhang, Yiwen Kou, Xiangning Chen, Cho-Jui Hsieh, and Quanquan Gu. Why
 539 does sharpness-aware minimization generalize better than sgd? *arXiv preprint arXiv:2310.07269*,
 2023.

540 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 541 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 542 pp. 248–255. Ieee, 2009.

543

544 Yihe Deng, Yu Yang, Baharan Mirzasoleiman, and Quanquan Gu. Robust learning with progressive
 545 data expansion against spurious correlation. *arXiv preprint arXiv:2306.04949*, 2023.

546

547 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
 548 for efficiently improving generalization. *arXiv preprint arXiv:2010.01412*, 2020.

549

550 Yunxiang Fu, Chaoqi Chen, Yu Qiao, and Yizhou Yu. DreamDA: Generative Data Augmenta-
 551 tion with Diffusion Models, March 2024. URL <http://arxiv.org/abs/2403.12803>.
 551 arXiv:2403.12803 [cs].

552

553 Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
 554 programming. *SIAM journal on optimization*, 23(4):2341–2368, 2013.

555

556 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 557 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the
 558 ACM*, 63(11):139–144, 2020.

559

560 Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset selec-
 561 tion in deep learning. In *International Conference on Database and Expert Systems Applications*,
 561 pp. 181–195. Springer, 2022.

562

563 Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing Zhang, Philip Torr, Song Bai, and Xiaojuan
 564 Qi. Is synthetic data from generative models ready for image recognition?, February 2023. URL
 564 <http://arxiv.org/abs/2210.07574>. arXiv:2210.07574 [cs].

565

566 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 567 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
 568 analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF International
 569 Conference on Computer Vision*, pp. 8340–8349, 2021.

570

571 Dan Hendrycks, Andy Zou, Mantas Mazeika, Leonard Tang, Bo Li, Dawn Song, and Jacob Steinhardt.
 572 Pixmix: Dreamlike pictures comprehensively improve safety measures. In *Proceedings of the
 573 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16783–16792, 2022.

574

575 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In
 576 H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), *Advances in Neu-
 577 ral Information Processing Systems*, volume 33, pp. 6840–6851. Curran Associates, Inc.,
 578 2020. URL [https://proceedings.neurips.cc/paper_files/paper/2020/
 578 file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf).

579

580 Khawar Islam and NAVEED AKHTAR. Context-guided responsible data augmentation with diffusion
 581 models. In *ICLR 2025 Workshop on Navigating and Addressing Data Problems for Foundation
 582 Models*, 2025.

583

584 Khawar Islam, Muhammad Zaigham Zaheer, Arif Mahmood, and Karthik Nandakumar. Diffusemix:
 585 Label-preserving data augmentation with diffusion models. In *Proceedings of the IEEE/CVF
 585 Conference on Computer Vision and Pattern Recognition*, pp. 27621–27630, 2024a.

586

587 Khawar Islam, Muhammad Zaigham Zaheer, Arif Mahmood, Karthik Nandakumar, and Naveed
 588 Akhtar. Genmix: effective data augmentation with generative diffusion model image editing. *arXiv
 589 preprint arXiv:2412.02366*, 2024b.

590

591 Samy Jelassi and Yuanzhi Li. Towards understanding how momentum improves generalization in
 592 deep learning. In *International Conference on Machine Learning*, pp. 9965–10040. PMLR, 2022.

593

Simran Kaur, Jeremy Cohen, and Zachary Chase Lipton. On the maximum hessian eigenvalue and
 593 generalization. In *Proceedings on*, pp. 51–65. PMLR, 2023.

594 Yiwen Kou, Zixiang Chen, Yuanzhou Chen, and Quanquan Gu. Benign overfitting in two-layer relu
 595 convolutional neural networks. In *International Conference on Machine Learning*, pp. 17615–
 596 17659. PMLR, 2023.

597

598 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 599 categorization. In *Proceedings of the IEEE international conference on computer vision workshops*,
 600 pp. 554–561, 2013.

601 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 602 *Technical Report, University of Toronto*, 2009.

603

604 Orest Kupyn and Christian Rupprecht. Dataset enhancement with instance-level augmentations. In
 605 *European Conference on Computer Vision*, pp. 384–402. Springer, 2024.

606

607 Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

608

609 Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander
 610 Madry. ffcv. <https://github.com/libffcv/ffcv/>, 2022. commit 4dd291a.

611

612 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 613 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European
 conference on computer vision*, pp. 740–755. Springer, 2014.

614

615 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 616 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the
 IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

617

618 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 619 A convnet for the 2020s. In *Proceedings of the IEEE/CVF conference on computer vision and
 620 pattern recognition*, pp. 11976–11986, 2022.

621

622 Lorenzo Luzi, Paul M Mayer, Josue Casco-Rodriguez, Ali Siahkoohi, and Richard G Baraniuk.
 623 Boomerang: Local sampling on image manifolds using diffusion models. *arXiv preprint
 arXiv:2210.12100*, 2022.

624

625 S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-grained visual classification of
 626 aircraft. Technical report, 2013.

627

628 Eyal Michaeli and Ohad Fried. Advancing fine-grained classification by structure and subject
 629 preserving augmentation. *Advances in Neural Information Processing Systems*, 37:22316–22349,
 630 2024.

631

632 Samuel G. Müller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmentation.
 633 In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp.
 774–782, October 2021.

634

635 Dang Nguyen, Paymon Haddad, Eric Gan, and Baharan Mirzasoleiman. Changing the training data
 636 distribution to reduce simplicity bias improves in-distribution generalization. *Advances in Neural
 637 Information Processing Systems*, 37:68854–68896, 2024.

638

639 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 640 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 641 text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.

642

643 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In
 644 Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine
 Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 8162–8171. PMLR,
 645 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/nichol21a.html>.

646

647 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 648 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp.
 722–729. IEEE, 2008.

648 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 649 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 650 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 651 Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
 652 Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d' Alché-Buc, E. Fox, and
 653 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran Asso-
 654 ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

655 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 656 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 657 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

658 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 659 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 660 text-to-image diffusion models with deep language understanding. *Advances in Neural Information
 661 Processing Systems*, 35:36479–36494, 2022.

662 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 663 learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), *Proceedings
 664 of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine
 665 Learning Research*, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL <https://proceedings.mlr.press/v37/sohl-dickstein15.html>.

666 Jacob Mitchell Springer, Vaishnav Nagarajan, and Aditi Raghunathan. Sharpness-aware minimiza-
 667 tion enhances feature quality via balanced learning. In *The Twelfth International Conference on
 668 Learning Representations*, 2024.

669 Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan Salakhutdinov. Effective Data Augmen-
 670 tation With Diffusion Models, May 2023. URL <http://arxiv.org/abs/2302.07944>.
 671 arXiv:2302.07944 [cs].

672 Pengfei Wang, Zhaoxiang Zhang, Zhen Lei, and Lei Zhang. Sharpness-aware gradient matching
 673 for domain generalization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 674 Pattern Recognition (CVPR)*, pp. 3769–3778, June 2023.

675 Yanghao Wang and Long Chen. Inversion circle interpolation: Diffusion-based image augmentation
 676 for data-scarce classification. In *Proceedings of the Computer Vision and Pattern Recognition
 677 Conference*, pp. 25560–25569, 2025.

678 Zhicai Wang, Longhui Wei, Tan Wang, Heyu Chen, Yanbin Hao, Xiang Wang, Xiangnan He, and
 679 Qi Tian. Enhance image classification via inter-class image mixup with diffusion model. In
 680 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 17223–
 681 17233, 2024.

682 Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How does sharpness-aware minimization minimize
 683 sharpness? *arXiv preprint arXiv:2211.05729*, 2022.

684 Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
 685 Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
 686 applications. *ACM Comput. Surv.*, 56(4), November 2023. ISSN 0360-0300. doi: 10.1145/3626235.
 687 URL <https://doi.org/10.1145/3626235>.

688 Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis E.H. Tay, Jiashi
 689 Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
 690 imagenet. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*,
 691 pp. 558–567, October 2021.

692 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
 693 Cutmix: Regularization strategy to train strong classifiers with localizable features. In *Proceedings
 694 of the IEEE/CVF international conference on computer vision*, pp. 6023–6032, 2019.

702 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
703 risk minimization. *arXiv preprint arXiv:1710.09412*, 2017.
704

705 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
706 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
707 pp. 3836–3847, 2023.

708 Yaowei Zheng, Richong Zhang, and Yongyi Mao. Regularizing neural networks via adversarial
709 model perturbation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
710 *Recognition (CVPR)*, pp. 8156–8165, June 2021.

711

712 Yongchao Zhou, Hshmat Sahak, and Jimmy Ba. Training on thin air: Improve image classification
713 with generated data. *arXiv preprint arXiv:2305.15316*, 2023.

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A FORMAL PROOFS**
 757

758 **A.1 FULL GRADIENT FORMULAS & USEFUL LEMMAS**
 759

760 From the setting, at iteration t , we can take the derivative with respect to the j -th filter $\mathbf{w}_j^{(t)}$ in the
 761 following three training schemes:

762

 763 1. GD training on the augmented dataset via upsampling: Lemmas A.1, A.2.
 764 2. GD training on the augmented dataset via synthetic generation: Lemmas A.3, A.4.
 765 3. SAM and GD training on the original dataset: Lemmas A.5, A.6.
 766

767 Recall that k is the augmenting factor, and the augmented datasets D_G, D_U now have size $N_{\text{new}} =$
 768 $\alpha N + k(1 - \alpha)N$.

769 **Lemma A.1.** (*Upsampling: full gradient*) *In the augmented dataset D_U after upsampling the “slow-
 770 learnable” subset with a factor k , for $t \geq 0$ and $j \in [J]$, the gradient of the loss $\mathcal{L}^U(\mathbf{W}^{(t)})$ with
 771 respect to $\mathbf{w}_j^{(t)}$ is*

772
$$\nabla_{\mathbf{w}_j^{(t)}}^U \mathcal{L}(\mathbf{W}^{(t)}) = -\frac{3}{N_{\text{new}}} \sum_{i=1}^{\alpha N} l_i^{(t)} \left(\beta_e^3 \langle \mathbf{w}_j^{(t)}, \mathbf{v}_e \rangle^2 \mathbf{v}_e + y_i \langle \mathbf{w}_j^{(t)}, \boldsymbol{\xi}_i \rangle^2 \boldsymbol{\xi}_i \right)$$

773
$$- \frac{3k}{N_{\text{new}}} \sum_{i=\alpha N+1}^N k l_i^{(t)} \left(\beta_d^3 \langle \mathbf{w}_j^{(t)}, \mathbf{v}_d \rangle^2 \mathbf{v}_d + y_i \langle \mathbf{w}_j^{(t)}, \boldsymbol{\xi}_i \rangle^2 \boldsymbol{\xi}_i \right),$$

774

775 where $l_i^{(t)} = \text{sigmoid}(-y_i f(\mathbf{x}_i; \mathbf{W}^{(t)}))$ for the two-layer CNN model f .

776 *Proof.* We compute the gradient directly from the loss function:

777
$$\nabla_{\mathbf{w}_j^{(t)}}^U \mathcal{L}(\mathbf{W}^{(t)}) = -\frac{1}{N_{\text{new}}} \sum_{i=1}^{N_{\text{new}}} \frac{\exp(-y_i f(\mathbf{x}_i; \mathbf{W}^{(t)}))}{1 + \exp(-y_i f(\mathbf{x}_i; \mathbf{W}^{(t)}))} y_i \nabla f_{\mathbf{w}_j^{(t)}}(\mathbf{x}_i; \mathbf{W}^{(t)})$$

778
$$= -\frac{3}{N_{\text{new}}} \sum_{i=1}^{N_{\text{new}}} l_i^{(t)} y_i \sum_{p=1}^P \langle \mathbf{w}_j^{(t)}, \mathbf{x}^{(p)} \rangle^3$$

779
$$= -\frac{3}{N_{\text{new}}} \sum_{i=1}^{\alpha N} l_i^{(t)} \left(\beta_e^3 \langle \mathbf{w}_j^{(t)}, \mathbf{v}_e \rangle^2 \mathbf{v}_e + y_i \langle \mathbf{w}_j^{(t)}, \boldsymbol{\xi}_i \rangle^2 \boldsymbol{\xi}_i \right)$$

780
$$- \frac{3}{N_{\text{new}}} \sum_{i=\alpha N+1}^{N_{\text{new}}} l_i^{(t)} \left(\beta_d^3 \langle \mathbf{w}_j^{(t)}, \mathbf{v}_d \rangle^2 \mathbf{v}_d + y_i \langle \mathbf{w}_j^{(t)}, \boldsymbol{\xi}_i \rangle^2 \boldsymbol{\xi}_i \right)$$

781
$$= -\frac{3}{N_{\text{new}}} \sum_{i=1}^{\alpha N} l_i^{(t)} \left(\beta_e^3 \langle \mathbf{w}_j^{(t)}, \mathbf{v}_e \rangle^2 \mathbf{v}_e + y_i \langle \mathbf{w}_j^{(t)}, \boldsymbol{\xi}_i \rangle^2 \boldsymbol{\xi}_i \right)$$

782
$$- \frac{3k}{N_{\text{new}}} \sum_{i=\alpha N+1}^N l_i^{(t)} \left(\beta_d^3 \langle \mathbf{w}_j^{(t)}, \mathbf{v}_d \rangle^2 \mathbf{v}_d + y_i \langle \mathbf{w}_j^{(t)}, \boldsymbol{\xi}_i \rangle^2 \boldsymbol{\xi}_i \right),$$

783

801 where the last step follows from the fact that there are k copies of the same subset in the upsampled
 802 portion of the data. \square

803 **Lemma A.2.** (*Upsampling: feature & noise gradients*) *In the same setting, $\nabla_{\mathbf{w}_j^{(t)}}^U \mathcal{L}(\mathbf{W}^{(t)})$ learns
 804 the features and noises as follows:*

805

 806 1. **Fast-learnable feature gradient:**

807
$$\langle \nabla_{\mathbf{w}_j^{(t)}}^U \mathcal{L}(\mathbf{W}^{(t)}), \mathbf{v}_e \rangle = -\frac{3\beta_e^3}{N_{\text{new}}} \sum_{i=1}^{\alpha N} l_i^{(t)} \langle \mathbf{w}_j^{(t)}, \mathbf{v}_e \rangle^2$$

808

810 2. **Slow-learnable feature gradient:**

811
812
813
814

$$\langle \nabla_{\mathbf{w}_j^{(t)}}^U \mathcal{L}(\mathbf{W}^{(t)}), \mathbf{v}_d \rangle = -\frac{3k\beta_d^3}{N_{new}} \sum_{i=\alpha N+1}^N l_i^{(t)} \langle \mathbf{w}_j^{(t)}, \mathbf{v}_d \rangle^2$$

815 3. **Noise gradient:**816
817818 (a). For $\xi_i, i = 1, \dots, \alpha N$ 819
820

$$\langle \nabla_{\mathbf{w}_j^{(t)}}^U \mathcal{L}(\mathbf{W}^{(t)}), \xi_i \rangle = -\frac{3}{N_{new}} l_i^{(t)} y_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \|\xi_i\|^2.$$

821 (b). For $\xi_i, i = \alpha N + 1, \dots, N$ 822
823
824

$$\langle \nabla_{\mathbf{w}_j^{(t)}}^U \mathcal{L}(\mathbf{W}^{(t)}), \xi_i \rangle = -\frac{3k}{N_{new}} l_i^{(t)} y_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \|\xi_i\|^2$$

825 *Proof.* The proof follows directly from taking the inner product with the gradient formula in Lemma
826 A.1. Then we proceed using that $\mathbf{v}_e, \mathbf{v}_d, \xi_i$ form a orthogonal set and that summations involving
827 noise cross-terms become negligible. \square

828 **Lemma A.3.** (Generation: full gradient) *In the augmented dataset D_G after synthetically generating
829 the “slow-learnable” subset with a factor k , for $t \geq 0$ and $j \in [J]$, the gradient of the loss $\mathcal{L}^G(\mathbf{W}^{(t)})$
830 with respect to $\mathbf{w}_j^{(t)}$ is*

831
832
833
834
835
836
837
838
839
840

$$\begin{aligned} \nabla_{\mathbf{w}_j^{(t)}}^U \mathcal{L}(\mathbf{W}^{(t)}) &= -\frac{3}{N_{new}} \sum_{i=1}^{\alpha N} l_i^{(t)} \left(\beta_e^3 \langle \mathbf{w}_j^{(t)}, \mathbf{v}_e \rangle^2 \mathbf{v}_e + y_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \xi_i \right) \\ &\quad - \frac{3}{N_{new}} \sum_{i=\alpha N+1}^N l_i^{(t)} \left(\beta_d^3 \langle \mathbf{w}_j^{(t)}, \mathbf{v}_d \rangle^2 \mathbf{v}_d + y_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \xi_i \right) \\ &\quad - \frac{3}{N_{new}} \sum_{i=N+1}^{N_{new}} l_i^{(t)} \left(\beta_d^3 \langle \mathbf{w}_j^{(t)}, \mathbf{v}_d \rangle^2 \mathbf{v}_d + y_i \langle \mathbf{w}_j^{(t)}, \gamma_i \rangle^2 \gamma_i \right), \end{aligned}$$

841 where $l_i^{(t)} = \text{sigmoid}(-y_i f(\mathbf{x}_i; \mathbf{W}^{(t)}))$ for the two-layer CNN model f .
842

843 *Proof.* The proof is similar to that of Lemma A.1, except that for data that contain \mathbf{v}_d , the first
844 $(1 - \alpha)N$ data points come from the original dataset, and the rest comes from synthetic generation
845 with noise $\gamma_i, i = N + 1, \dots, N_{new}$. \square

846 **Lemma A.4.** (Generation: feature & noise gradients) *In the same setting, $\nabla_{\mathbf{w}_j^{(t)}}^G \mathcal{L}(\mathbf{W}^{(t)})$ learns the
847 features and noises as follows:*

848 1. **Fast-learnable feature gradient:**849
850
851
852
853
854

$$\langle \nabla_{\mathbf{w}_j^{(t)}}^G \mathcal{L}(\mathbf{W}^{(t)}), \mathbf{v}_e \rangle = -\frac{3\beta_e^3}{N_{new}} \sum_{i=1}^{\alpha N} l_i^{(t)} \langle \mathbf{w}_j^{(t)}, \mathbf{v}_e \rangle^2$$

855 2. **Slow-learnable feature gradient:**856
857
858
859

$$\langle \nabla_{\mathbf{w}_j^{(t)}}^G \mathcal{L}(\mathbf{W}^{(t)}), \mathbf{v}_d \rangle = -\frac{3\beta_d^3}{N_{new}} \sum_{i=\alpha N+1}^{N_{new}} l_i^{(t)} \langle \mathbf{w}_j^{(t)}, \mathbf{v}_d \rangle^2$$

860 3. **Noise gradient:** Let $\{\phi_i\}_{i=1}^{N_{new}} = \{\xi_i\}_{i=1}^N \cup \{\gamma_i\}_{i=N+1}^{N_{new}}$ denote the set of noises in D_G
861 (which can be the original or generation noise). Then for any $\phi_i, i \in [N_{new}]$,

862
863

$$\langle \nabla_{\mathbf{w}_j^{(t)}}^G \mathcal{L}(\mathbf{W}^{(t)}), \phi_i \rangle = -\frac{3}{N_{new}} l_i^{(t)} y_i \langle \mathbf{w}_j^{(t)}, \phi_i \rangle^2 \|\phi_i\|^2.$$

864 *Proof.* Similar to Lemma A.2. We directly take the inner product and assume that all the noises are
 865 dispersed such that summations involving their cross-terms become insignificant in high dimension.
 866 Recall we also assume that the generation noise is orthogonal to features and independent of ξ_i 's. \square
 867

868 Following the same process, we have the following gradients for SAM and GD on the original dataset.
 869

870 **Lemma A.5.** *(Original dataset: SAM & GD gradients) In the original dataset D , for $t \geq 0$ and
 871 $j \in [J]$ of GD, the gradient of the loss $\mathcal{L}(\mathbf{W}^{(t)})$ with respect to $\mathbf{w}_j^{(t)}$ is*

$$\begin{aligned} \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}) &= -\frac{3}{N} \sum_{i=1}^{\alpha N} l_i^{(t)} \left(\beta_e^3 \langle \mathbf{w}_j^{(t)}, \mathbf{v}_e \rangle^2 \mathbf{v}_e + y_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \xi_i \right) \\ &\quad - \frac{3}{N} \sum_{i=\alpha N+1}^N l_i^{(t)} \left(\beta_d^3 \langle \mathbf{w}_j^{(t)}, \mathbf{v}_d \rangle^2 \mathbf{v}_d + y_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \xi_i \right), \end{aligned}$$

872 where $l_i^{(t)} = \text{sigmoid}(-y_i f(\mathbf{x}_i; \mathbf{W}^{(t)}))$ for the two-layer CNN model f .
 873

874 Suppose we train with SAM. Then the perturbed gradient has the same expression
 875 except that we replace $\mathbf{w}_j^{(t)}$ with the perturbed weights $\mathbf{w}_{j,\epsilon}^{(t)}$ and replace $l_i^{(t)}$ with
 876 $l_{i,\epsilon}^{(t)} = \text{sigmoid}(-y_i f(\mathbf{x}_i; \mathbf{W}^{(t)} + \epsilon^{(t)}))$:
 877

$$\begin{aligned} \nabla_{\mathbf{w}_{j,\epsilon}^{(t)}} \mathcal{L}(\mathbf{W}^{(t)} + \epsilon^{(t)}) &= \nabla_{\mathbf{w}_{j,\epsilon}^{(t)}} \mathcal{L} \left(\mathbf{W}^{(t)} + \frac{\rho}{\|\nabla(\mathcal{L}(\mathbf{W}^{(t)}))\|_F} \nabla(\mathcal{L}(\mathbf{W}^{(t)})) \right) \\ &= -\frac{3}{N} \sum_{i=1}^{\alpha N} l_{i,\epsilon}^{(t)} \left(\beta_e^3 \langle \mathbf{w}_{j,\epsilon}^{(t)}, \mathbf{v}_e \rangle^2 \mathbf{v}_e + y_i \langle \mathbf{w}_{j,\epsilon}^{(t)}, \xi_i \rangle^2 \xi_i \right) \\ &\quad - \frac{3}{N} \sum_{i=\alpha N+1}^N l_{i,\epsilon}^{(t)} \left(\beta_d^3 \langle \mathbf{w}_{j,\epsilon}^{(t)}, \mathbf{v}_d \rangle^2 \mathbf{v}_d + y_i \langle \mathbf{w}_{j,\epsilon}^{(t)}, \xi_i \rangle^2 \xi_i \right). \end{aligned}$$

878 **Lemma A.6.** *(Original dataset: SAM & GD feature & noise gradients) In the same setting,
 879 $\nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)})$ learns the features and noises as follows:*

880 1. **Fast-learnable feature gradient:**

$$\langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \mathbf{v}_e \rangle = -\frac{3\beta_e^3}{N} \sum_{i=1}^{\alpha N} l_i^{(t)} \langle \mathbf{w}_j^{(t)}, \mathbf{v}_e \rangle^2$$

881 2. **Slow-learnable feature gradient:**

$$\langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \mathbf{v}_d \rangle = -\frac{3\beta_d^3}{N} \sum_{i=\alpha N+1}^N l_i^{(t)} \langle \mathbf{w}_j^{(t)}, \mathbf{v}_d \rangle^2$$

882 3. **Noise gradient:**

$$\langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi_i \rangle = -\frac{3}{N} l_i^{(t)} y_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \|\xi_i\|^2.$$

883 The SAM feature & noise gradients are similar except that we replace $\mathbf{w}_j^{(t)}, l_i^{(t)}$ with $\mathbf{w}_{j,\epsilon}^{(t)}, l_{i,\epsilon}^{(t)}$.
 884

885 **Remark.** Suppose the data point \mathbf{x}_i has feature \mathbf{v}_d and noise ϕ_i . We have that
 886

$$l_i^{(t)} = \text{sigmoid} \left(\sum_{j=1}^J -\beta_d^3 \langle \mathbf{w}_j^{(t)}, \mathbf{v}_d \rangle^3 - y_i \langle \mathbf{w}_j^{(t)}, \phi_i \rangle^3 \right), \quad (3)$$

$$918 \quad \text{and } l_{i,\epsilon}^{(t)} = \text{sigmoid} \left(\sum_{j=1}^J -\beta_d^3 \langle \mathbf{w}_{j,\epsilon}^{(t)}, \mathbf{v}_d \rangle^3 - y_i \langle \mathbf{w}_{j,\epsilon}^{(t)}, \phi_i \rangle^3 \right).$$

921 The same formula holds if the feature is \mathbf{v}_e .

922 Similar to Nguyen et al. (2024), we assume that the logit terms are controlled in some sense to reduce
923 the nonlinearity. More formally, for Theorem 4.1, we will use the approximation $l_i^{(t)} = l_{i,\epsilon}^{(t)} = \Theta(1)$
924 for any early iteration t . At a high level, this follows from the small perturbation and the fact that the
925 weights have not ‘significantly’ learned any noises (despite some overfitting) in the early phase.

$$927 \quad \text{sigmoid} \left(\sum_{j=1}^J -\beta_d^3 \langle \mathbf{w}_j^{(t)}, \mathbf{v}_d \rangle^3 - y_i \langle \mathbf{w}_j^{(t)}, \phi_i \rangle^3 \right) = \text{sigmoid} \left(\sum_{j=1}^J -\beta_d^3 \langle \mathbf{w}_{j,\epsilon}^{(t)}, \mathbf{v}_d \rangle^3 - y_i \langle \mathbf{w}_{j,\epsilon}^{(t)}, \phi_i \rangle^3 \right).$$

930 Hence, this is implicitly assuming a small ρ such that $\mathbf{w}_j^{(t)}$ and $\mathbf{w}_{j,\epsilon}^{(t)}$ are not too different, and a large
931 number of neurons J such that the noise term in the sigmoid $\sum_{j=1}^J y_i \langle \mathbf{w}_{j,\epsilon}^{(t)}, \phi_i \rangle^3$ is ‘more ‘diluted’
932 (close to 0).

933 **Insights from gradient formulas.** By directly computing these relevant gradients, we can see that
934 some observed phenomena already become self-explanatory in the formulas. For instance, Lemma
935 A.2 implies that for upsampling, the gradient alignment is k times larger for the noises we replicated.
936 At a high level, this would cause overfitting to these particular noises when performing gradient
937 update. In the next section, we formalize the intuition by examining the underlying mechanism of
938 noise learning in greater detail.

941 B GD vs. SAM NOISE LEARNING: PROOF OF THEOREM 4.1

942 **Remark.** Heuristically, we say that the noise is being learned well if the magnitude of the alignment
943 $|\langle \mathbf{w}_j^{(t)}, \xi_i \rangle|$ is large, meaning that the weights align or misalign with the noise to a great extent. We
944 say that the model is learning the noise if $|\langle \mathbf{w}_j^{(t)}, \xi_i \rangle|$ increases over time. In practice, overly fitting
945 or overly avoiding certain noises are both harmful to a model’s generalization.

946 **Lemma B.1.** (*Gradient norm bound*) In our setting, we can bound the norm of the gradient matrix
947 $\nabla \mathcal{L}(\mathbf{W}^{(t)})$ as:

$$948 \quad \|\nabla \mathcal{L}(\mathbf{W}^{(t)})\|_F \geq \frac{3}{N} l_i^{(t)} \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \|\xi_i\| \quad \forall i.$$

949 *Proof.* This norm can be lower bounded by the norm of one column:

$$950 \quad \|\nabla \mathcal{L}(\mathbf{W}^{(t)})\|_F = \sqrt{\sum_{j=1}^J \left\| \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}) \right\|^2}$$

$$951 \quad \geq \left\| \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}) \right\| \quad \text{for some neuron } j$$

$$952 \quad = \sqrt{\frac{9\beta_e^6}{N^2} \langle \mathbf{w}_j^{(t)}, \mathbf{v}_e \rangle^4 \left(\sum_{i=1}^{\alpha N} l_i^{(t)} \right)^2 + \frac{9\beta_d^6}{N^2} \langle \mathbf{w}_j^{(t)}, \mathbf{v}_d \rangle^4 \left(\sum_{i=\alpha N+1}^N l_i^{(t)} \right)^2 + \left\| \frac{3}{N} \sum_{i=1}^N l_i^{(t)} y_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \xi_i \right\|^2}$$

$$953 \quad \text{by taking the norm of the gradient in Lemma A.5 and using orthogonality}$$

$$954 \quad \geq \left\| \frac{3}{N} \sum_{i=1}^N l_i^{(t)} y_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \xi_i \right\| \geq \left\| \frac{3}{N} l_i^{(t)} y_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \xi_i \right\| = \frac{3}{N} l_i^{(t)} \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \|\xi_i\| \quad \forall i$$

$$955 \quad \text{since cross terms become negligible}$$

956 \square

957 **Lemma B.2.** (*Noise set equivalences*) With a sufficiently small SAM perturbation parameter ρ , at
958 some early iteration t , the following set relations hold:

$$959 \quad \mathcal{I}_{j,+}^{(t)} = \mathcal{I}_{j,\epsilon,+}^{(t)}, \quad \mathcal{I}_{j,-}^{(t)} = \mathcal{I}_{j,\epsilon,-}^{(t)}.$$

972 *Proof.* We first note that for some early training weights $\mathbf{W}^{(t)}$, we have the following connection
973 between the original weights and the SAM perturbed weights:

$$\begin{aligned}
974 \quad \langle \mathbf{w}_{j,\epsilon}^{(t)}, \xi_i \rangle &= \langle \mathbf{w}_j^{(t)} + \rho^{(t)} \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi_i \rangle \\
975 \quad &= \langle \mathbf{w}_j^{(t)}, \xi_i \rangle + \rho^{(t)} \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi_i \rangle \\
976 \quad &= \langle \mathbf{w}_j^{(t)}, \xi_i \rangle - \frac{3\rho^{(t)}}{N} l_i^{(t)} y_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \|\xi_i\|^2 \quad \text{by Lemma A.6}
\end{aligned} \tag{4}$$

980 We consider sufficiently small ρ such that:

$$981 \quad 0 < \rho < \min \left\{ \frac{|\langle \mathbf{w}_j^{(t)}, \xi_i \rangle|}{\|\xi_i\|} : \xi_i \in D \right\}. \tag{5}$$

984 We recall that $\rho^{(t)} = \rho / \|\nabla \mathcal{L}(\mathbf{W}^{(t)})\|_F$. Then suppose $\xi_i \in \mathcal{I}_{j,-}^{(t)}$, that is y_i and $\langle \mathbf{w}_j^{(t)}, \xi_i \rangle$ have
985 opposite signs. Eq. 4 implies

$$\begin{aligned}
986 \quad \langle \mathbf{w}_{j,\epsilon}^{(t)}, \xi_i \rangle &= \langle \mathbf{w}_j^{(t)}, \xi_i \rangle \left(1 - \frac{3\rho^{(t)}}{N} l_i^{(t)} y_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle \|\xi_i\|^2 \right) \\
987 \quad &= \langle \mathbf{w}_j^{(t)}, \xi_i \rangle \underbrace{\left(1 + \frac{3\rho^{(t)}}{N} l_i^{(t)} \|\xi_i\|^2 |\langle \mathbf{w}_j^{(t)}, \xi_i \rangle| \right)}_{>0},
\end{aligned}$$

992 which implies that $\text{sgn}(\langle \mathbf{w}_{j,\epsilon}^{(t)}, \xi_i \rangle) = \text{sgn}(\langle \mathbf{w}_j^{(t)}, \xi_i \rangle)$ and $\xi_i \in \mathcal{I}_{j,\epsilon,-}^{(t)}$.

994 Now suppose $\xi_i \in \mathcal{I}_{j,+}^{(t)}$. Eq. 4 becomes:

$$\begin{aligned}
996 \quad \langle \mathbf{w}_{j,\epsilon}^{(t)}, \xi_i \rangle &= \langle \mathbf{w}_j^{(t)}, \xi_i \rangle \left(1 - \frac{3\rho^{(t)}}{N} l_i^{(t)} y_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle \|\xi_i\|^2 \right) \\
997 \quad &= \langle \mathbf{w}_j^{(t)}, \xi_i \rangle \underbrace{\left(1 - \frac{3\rho^{(t)}}{N} l_i^{(t)} \|\xi_i\|^2 |\langle \mathbf{w}_j^{(t)}, \xi_i \rangle| \right)}_{\in (0, 1) \text{ as shown below}}
\end{aligned}$$

1001 Note that Lemma B.1 gives us:

$$\begin{aligned}
1003 \quad 1 &> 1 - \frac{3\rho^{(t)}}{N} l_i^{(t)} \|\xi_i\|^2 |\langle \mathbf{w}_j^{(t)}, \xi_i \rangle| = 1 - \frac{3}{N} \frac{\rho}{\|\nabla \mathcal{L}(\mathbf{W}^{(t)})\|_F} l_i^{(t)} \|\xi_i\|^2 |\langle \mathbf{w}_j^{(t)}, \xi_i \rangle| \\
1004 \quad &\geq 1 - \frac{3}{N} \frac{\rho}{\frac{3}{N} l_i^{(t)} \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \|\xi_i\|} l_i^{(t)} \|\xi_i\|^2 |\langle \mathbf{w}_j^{(t)}, \xi_i \rangle| \\
1005 \quad &= 1 - \frac{\rho \|\xi_i\|}{|\langle \mathbf{w}_j^{(t)}, \xi_i \rangle|} \\
1006 \quad &> 1 - \frac{|\langle \mathbf{w}_j^{(t)}, \xi_i \rangle|}{\|\xi_i\|} \frac{\|\xi_i\|}{|\langle \mathbf{w}_j^{(t)}, \xi_i \rangle|} \quad \text{by the choice of } \rho \\
1007 \quad &= 0.
\end{aligned} \tag{6}$$

1015 Hence, we have that $\text{sgn}(\langle \mathbf{w}_{j,\epsilon}^{(t)}, \xi_i \rangle) = \text{sgn}(\langle \mathbf{w}_j^{(t)}, \xi_i \rangle)$ and $\xi_i \in \mathcal{I}_{j,\epsilon,+}^{(t)}$. Since $\mathcal{I}_{j,+}^{(t)}$ and $\mathcal{I}_{j,-}^{(t)}$ cover
1016 all the noises, the lemma statement follows. \square

1017 B.1 PROOF OF THEOREM 4.1.

1019 We then start with item (1) of the theorem. First, for GD, each noise update is computed via:

$$\begin{aligned}
1021 \quad \langle \mathbf{w}_j^{(t+1)}, \xi_i \rangle &= \langle \mathbf{w}_j^{(t)}, \xi_i \rangle - \eta \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi_i \rangle \\
1022 \quad &= \langle \mathbf{w}_j^{(t)}, \xi_i \rangle + \frac{3\eta}{N} l_i^{(t)} y_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \|\xi_i\|^2 \quad \text{by Lemma A.6} \\
1023 \quad &= \langle \mathbf{w}_j^{(t)}, \xi_i \rangle \left(1 + \eta \frac{3}{N} l_i^{(t)} y_i \|\xi_i\|^2 \langle \mathbf{w}_j^{(t)}, \xi_i \rangle \right)
\end{aligned} \tag{7}$$

1026 Then by definition, for all the noises $\xi_i \in \mathcal{I}_{j,-}^{(t)}$, y_i and $\langle \mathbf{w}_j^{(t)}, \xi_i \rangle$ have opposite signs, so the above
 1027 equation becomes:

$$1029 \langle \mathbf{w}_j^{(t+1)}, \xi_i \rangle = \langle \mathbf{w}_j^{(t)}, \xi_i \rangle \left(1 - \eta \frac{3}{N} l_i^{(t)} \|\xi_i\|^2 |\langle \mathbf{w}_j^{(t)}, \xi_i \rangle| \right).$$

1031 Without loss of generality, we consider the case when $\langle \mathbf{w}_j^{(t)}, \xi_i \rangle > 0$. We then define the corresponding
 1032 sequence $a_t = \langle \mathbf{w}_j^{(t)}, \xi_i \rangle$ generated by the update:
 1033

$$1034 a_{t+1} = a_t (1 - \eta C_i l_i^{(t)} a_t), \quad \text{where } C_i = \frac{3}{N} \|\xi_i\|^2.$$

1036 Next, we want to show that given a proper η , this sequence is monotonic towards 0, meaning that
 1037 these noises are gradually “unlearned” by the weights. We provide an inductive step below, which
 1038 can be easily generalized.

1039 If the learning rate satisfies

$$1040 0 < \eta < \frac{1}{C_i a_t} = \frac{1}{C_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle},$$

1042 then by the update, the following inequality holds:

$$1044 0 < a_t \left(1 - \frac{1}{C_i a_t} C_i l_i^{(t)} a_t \right) = a_t (1 - l_i^{(t)}) < a_{t+1} < a_t$$

1046 Consequently, $a_{t+1} < a_t$ implies that

$$1047 \eta < \frac{1}{C_i a_t} < \frac{1}{C_i a_{t+1}} \implies a_{t+2} < a_{t+1} \quad \text{by the same argument.}$$

1049 A similar argument holds for $\langle \mathbf{w}_j^{(t)}, \xi_i \rangle < 0$. Hence, if we take sufficiently small

$$1051 \eta < \min \left\{ \frac{1}{C_i |\langle \mathbf{w}_j^{(t)}, \xi_i \rangle|} : \xi_i \in \mathcal{I}_{j,-}^{(t)} \right\},$$

1054 the weights’ alignment with these noises will be monotonic throughout the updates and get closer and
 1055 closer to 0. The proof for SAM is similar (we replace $\langle \mathbf{w}_j^{(t)}, \xi_i \rangle$ by $\langle \mathbf{w}_{j,\epsilon}^{(t)}, \xi_i \rangle$ for $\xi_i \in \mathcal{I}_{j,\epsilon,-}^{(t)}$, etc.).

1056 Now we proceed with item (2).

1058 Then we consider $\xi_i \in \mathcal{I}_{j,+}^{(t)} = \mathcal{I}_{j,\epsilon,+}^{(t)}$ in the setting of Lemma B.2. Eq. 7 now becomes:

$$1060 \langle \mathbf{w}_j^{(t+1)}, \xi_i \rangle = \langle \mathbf{w}_j^{(t)}, \xi_i \rangle \left(1 + \eta \frac{3}{N} l_i^{(t)} y_i \|\xi_i\|^2 \langle \mathbf{w}_j^{(t)}, \xi_i \rangle \right)$$

$$1062 = \langle \mathbf{w}_j^{(t)}, \xi_i \rangle \left(1 + \eta \frac{3}{N} l_i^{(t)} \|\xi_i\|^2 |\langle \mathbf{w}_j^{(t)}, \xi_i \rangle| \right) \implies |\langle \mathbf{w}_j^{(t+1)}, \xi_i \rangle| > |\langle \mathbf{w}_j^{(t)}, \xi_i \rangle|. \quad (8)$$

1064 And a similar expression holds for SAM. Consequently, the alignments will be monotonically away
 1065 from 0, continually being learned through iterations. Hence, we want to compare how the gradients
 1066 align with noises: $|\langle \nabla_{\mathbf{w}_{j,\epsilon}} \mathcal{L}(\mathbf{W}^{(t)} + \epsilon^{(t)}), \xi_i \rangle|$ vs. $|\langle \nabla_{\mathbf{w}_j} \mathcal{L}(\mathbf{W}^{(t)}), \xi_i \rangle|$. By Lemma A.6, we have
 1067 that

$$1068 \text{For GD: } |\langle \nabla_{\mathbf{w}_j} \mathcal{L}(\mathbf{W}^{(t)}), \xi_i \rangle| = \frac{3}{N} l_i^{(t)} \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \|\xi_i\|^2.$$

$$1070 \text{For SAM: } |\langle \nabla_{\mathbf{w}_{j,\epsilon}} \mathcal{L}(\mathbf{W}^{(t)} + \epsilon^{(t)}), \xi_i \rangle| = \frac{3}{N} l_{i,\epsilon}^{(t)} \langle \mathbf{w}_{j,\epsilon}^{(t)}, \xi_i \rangle^2 \|\xi_i\|^2$$

$$1073 \stackrel{(i)}{=} \frac{3}{N} l_{i,\epsilon}^{(t)} \left(\langle \mathbf{w}_j^{(t)}, \xi_i \rangle - \frac{3\rho^{(t)}}{N} l_i^{(t)} y_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \|\xi_i\|^2 \right)^2 \|\xi_i\|^2$$

$$1075 = \frac{3}{N} l_{i,\epsilon}^{(t)} \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \left(1 - \frac{3\rho^{(t)}}{N} l_i^{(t)} y_i \langle \mathbf{w}_j^{(t)}, \xi_i \rangle \|\xi_i\|^2 \right)^2 \|\xi_i\|^2$$

$$1078 \stackrel{(ii)}{=} \frac{3}{N} l_i^{(t)} \langle \mathbf{w}_j^{(t)}, \xi_i \rangle^2 \left(1 - \frac{3\rho^{(t)}}{N} l_i^{(t)} \|\xi_i\|^2 |\langle \mathbf{w}_j^{(t)}, \xi_i \rangle| \right)^2 \|\xi_i\|^2, \quad (9)$$

1080 where (i) follows from Eq. 4 and (ii) uses the approximation for the logits in early training ($l_i^{(t)} = l_{i,\epsilon}^{(t)}$).
 1081 Now with a sufficiently small ρ that satisfies Equation 3, the bound in 6 yields
 1082

$$1083 |\langle \nabla_{\mathbf{w}_{j,\epsilon}} \mathcal{L}(\mathbf{W}^{(t)} + \boldsymbol{\epsilon}^{(t)}), \boldsymbol{\xi}_i \rangle| = \frac{3}{N} l_i^{(t)} \langle \mathbf{w}_j^{(t)}, \boldsymbol{\xi}_i \rangle^2 \underbrace{\left(1 - \frac{3\rho^{(t)}}{N} l_i^{(t)} \|\boldsymbol{\xi}_i\|^2 |\langle \mathbf{w}_j^{(t)}, \boldsymbol{\xi}_i \rangle|\right)^2}_{\in (0, 1)} \|\boldsymbol{\xi}_i\|^2 \\ 1084 < \frac{3}{N} l_i^{(t)} \langle \mathbf{w}_j^{(t)}, \boldsymbol{\xi}_i \rangle^2 \|\boldsymbol{\xi}_i\|^2 = |\langle \nabla_{\mathbf{w}_j} \mathcal{L}(\mathbf{W}^{(t)}), \boldsymbol{\xi}_i \rangle|. \\ 1085 \\ 1086 \\ 1087 \\ 1088$$

1089 Since this inequality holds for all $\boldsymbol{\xi}_i \in \mathcal{I}_{j,+}^{(t)} = \mathcal{I}_{j,\epsilon,+}^{(t)}$, we compute the average over these noises and
 1090 have that:
 1091

$$1092 \mathbf{NoiseAlign}(\mathcal{I}_{j,\epsilon,+}^{(t)}, \mathbf{w}_{j,\epsilon}^{(t)}) = \mathbf{NoiseAlign}(\mathcal{I}_{j,+}^{(t)}, \mathbf{w}_{j,\epsilon}^{(t)}) < \mathbf{NoiseAlign}(\mathcal{I}_{j,+}^{(t)}, \mathbf{w}_j^{(t)}). \\ 1093 \\ 1094$$

1095 The special case of the theorem can be proved by directly setting the early training weights to be the
 1096 initialization $\mathbf{W}^{(0)}$. Since $\mathbf{W}^{(0)} \sim \mathcal{N}(0, \sigma_0^2)$ and $\boldsymbol{\xi}_i \sim \mathcal{N}(0, \sigma_p^2/d)$, with a large N , $\mathcal{I}_{j,+}^{(0)}$ and $\mathcal{I}_{j,-}^{(0)}$
 1097 will each contain roughly half of the noises, as $\text{sgn}(\langle \mathbf{w}_j^{(0)}, \boldsymbol{\xi}_i \rangle) = \text{sgn}(y_i)$ has probability 0.5 in this
 1098 case.

1099 **Remark.** The theory matches our insights that the noises tend to be fitted in general for the upsampled
 1100 dataset. We do note that the bound in Lemma B.1 can be loose, as it covers very extreme cases, and
 1101 the actual choice of ρ could be much larger in general without breaking the logic of our argument.
 1102

C GENERATION VS. UPSAMPLING: BIAS PERSPECTIVE AND PROOF OF THEOREM 4.2

1106 Item (1) of this theorem can be proved in a similar fashion as for Theorem 4.1 in Appendix B.

1107 For item (2), the update rules follow directly from Lemmas A.2, A.4. Again these formulas themselves
 1108 can partially explain what happens: the “generation” gradient learns every noise in the same manner,
 1109 but the “upsampling” gradient learns the replicated noises k times more in one iteration.

1110 **Lemma C.1.** *(Static noise sets) In our setting, with a sufficiently small learning rate η , for all $j \in [J]$
 1111 and all the early iterations $t = 0, \dots, T$, we have that:*

$$1113 \mathcal{I}_{j,+}^{G,(0)} = \mathcal{I}_{j,+}^{G,(1)} = \dots = \mathcal{I}_{j,+}^{G,(t)} = \dots = \mathcal{I}_{j,+}^{G,(T)}, \\ 1114$$

$$1115 \mathcal{I}_{j,+}^{U,(0)} = \mathcal{I}_{j,+}^{U,(1)} = \dots = \mathcal{I}_{j,+}^{U,(t)} = \dots = \mathcal{I}_{j,+}^{U,(T)}. \\ 1116$$

1117 The same holds for the corresponding sets $\mathcal{I}_{j,-}^{G,(t)}$ and $\mathcal{I}_{j,-}^{U,(t)}$.
 1118

1119 *Proof.* This directly follows from the previous proofs, where starting from the intializations, small
 1120 learning rate ensures that certain noise alignments move towards 0 and others move away from 0
 1121 early in training. Hence, in this process, the signs do not change, and these sets always contain the
 1122 same noises as t progresses. \square
 1123

1124 We now focus on the special case of the theorem and show that in expectation, our requirement on
 1125 the generation noise prevents $\mathbf{NoiseAlign}(\mathcal{I}_{j,+}^{G,(t)}, \mathbf{w}_j^{(t)})$ from getting too large.
 1126

1127 Lemma C.1 implies the sets of noises to which we overfit or do not overfit remain unchanged during
 1128 early training. Hence, we eliminate the possibility that noises move from one set to another, which
 1129 simplifies the big picture. The technique is similar to what we did in Theorem 4.1, and we show that
 1130 this also holds true for data augmented via generation.

1131 For Theorem 4.2, the expectation is taken with respect to the underlying data (and noise) distributions.
 1132 We first start with computing $\mathbb{E} [\mathbf{NoiseAlign}(\mathcal{I}_{j,+}^{G,(t)}, \mathbf{w}_j^{(t)})]$. Expanding using the definition of
 1133 **NoiseAlign**, we have that this quantity equals:

$$\begin{aligned}
& \mathbb{E} \left[\frac{1}{|\mathcal{I}_{j,+}^{G,(t)}|} \left(\sum_{\substack{i=1, \\ \xi_i \in \mathcal{I}_{j,+}^{G,(t)}}}^N \left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi_i \rangle \right| + \sum_{\substack{i=N+1, \\ \gamma_i \in \mathcal{I}_{j,+}^{G,(t)}}}^{N_{\text{new}}} \left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \gamma_i \rangle \right| \right) \right] \\
&= \mathbb{E} \left[\left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \phi_i \rangle \right| : \phi_i \in \mathcal{I}_{j,+}^{G,(t)} \right] \\
&= p \mathbb{E} \left[\left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi_i \rangle \right| : \xi_i \in \mathcal{I}_{j,+}^{G,(t)} \right] + (1-p) \mathbb{E} \left[\left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \gamma_i \rangle \right| : \gamma_i \in \mathcal{I}_{j,+}^{G,(t)} \right] \\
&= p \mathbb{E} \left[\left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi \rangle \right| \right] + (1-p) \mathbb{E} \left[\left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \gamma \rangle \right| \right], \tag{10}
\end{aligned}$$

where $p = \frac{N}{N_{\text{new}}} = \frac{1}{\alpha+k(1-\alpha)}$ measures the probability that the noise belongs to the original data instead of the synthetic data. The last equality is due to the fact that $\phi_i \in \mathcal{I}_{j,+}^{G,(t)}$ are generated i.i.d and follow the same noise distribution \mathcal{D} or \mathcal{D}_γ .

Recall the following assumption:

$$\begin{aligned}
& \mathbb{E} \left[l_\gamma(t) \langle \mathbf{w}_j^{(t)}, \gamma \rangle^2 \|\gamma\|^2 \right] < (k+1) \mathbb{E} \left[l_\xi(t) \langle \mathbf{w}_j^{(t)}, \xi \rangle^2 \|\xi\|^2 \right] \\
& \mathbb{E} \left[\frac{3}{N} l_\gamma(t) \langle \mathbf{w}_j^{(t)}, \gamma \rangle^2 \|\gamma\|^2 \right] < (k+1) \mathbb{E} \left[\frac{3}{N} l_\xi(t) \langle \mathbf{w}_j^{(t)}, \xi \rangle^2 \|\xi\|^2 \right] \\
& \mathbb{E} \left[\left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \gamma \rangle \right| \right] < (k+1) \mathbb{E} \left[\left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi \rangle \right| \right], \quad \gamma \sim \mathcal{D}_\gamma, \quad \xi \sim \mathcal{D}
\end{aligned}$$

where the last inequality follows the expression of noise gradient. Again, note that $\mathcal{I}_{j,+}^{G,(t)}$ contains synthetic noises that follow the distribution \mathcal{D}_γ since the synthetic data points are generated independently. However, the noises in $\mathcal{I}_{j,+}^{U,(t)}$ are not independent due to upsampling and therefore do not follow the noise distribution in \mathcal{D} .

To tackle this issue, we use the gradient alignment bound above and continue with Equation 10

$$\begin{aligned}
& < p \mathbb{E} \left[\left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi \rangle \right| \right] + (1-p)(k-1) \mathbb{E} \left[\left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi \rangle \right| \right] \\
&= \frac{1}{\alpha+k(1-\alpha)} \mathbb{E} \left[\left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi \rangle \right| \right] + \frac{(k^2-1)(1-\alpha)}{\alpha+k(1-\alpha)} \mathbb{E} \left[\left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi \rangle \right| \right] \\
&= \frac{\alpha+(1-\alpha)}{\alpha+k(1-\alpha)} \mathbb{E} \left[\left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi \rangle \right| \right] + \frac{(k^2-1)(1-\alpha)}{\alpha+k(1-\alpha)} \mathbb{E} \left[\left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi \rangle \right| \right] \\
&= \frac{\alpha}{\alpha+k(1-\alpha)} \mathbb{E} \left[\left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi \rangle \right| \right] + \frac{k^2(1-\alpha)}{\alpha+k(1-\alpha)} \mathbb{E} \left[\left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi \rangle \right| \right] \\
&= \mathbb{E} \left[\frac{1}{|\mathcal{I}_{j,+}^{U,(t)}|} \left(\sum_{\substack{i=1, \\ \xi_i \in \mathcal{I}_{j,+}^{U,(t)}}}^{\alpha N} \left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi_i \rangle \right| + k \sum_{\substack{i=\alpha N+1, \\ \xi_i \in \mathcal{I}_{j,+}^{U,(t)}}}^N \left| \langle \nabla_{\mathbf{w}_j^{(t)}} \mathcal{L}(\mathbf{W}^{(t)}), \xi_i \rangle \right| \right) \right] \\
&= \mathbb{E} \left[\mathbf{NoiseAlign}(\mathcal{I}_{j,+}^{U,(t)}, \mathbf{w}_j^{(t)}) \right].
\end{aligned}$$

The last equality follows from the distribution of noises in the upsampled dataset: the slow-learnable $(1-\alpha)N$ data points are copied k times, and from the gradient computation (first part of this theorem), each is learned k times more, giving rise to the two k 's. The noises in each summation term follow \mathcal{D} , as they are independent within the subset of summands.

Hence, we have shown the desired result:

$$\mathbb{E} \left[\mathbf{NoiseAlign}(\mathcal{I}_{j,+}^{G,(t)}, \mathbf{w}_j^{(t)}) \right] < \mathbb{E} \left[\mathbf{NoiseAlign}(\mathcal{I}_{j,+}^{U,(t)}, \mathbf{w}_j^{(t)}) \right].$$

At a high level, this suggests that starting at the weight $\mathbf{w}_j^{(t)}$, as long as the notion of small synthetic noise is satisfied, the expected gradient alignment with noises in the set where overfitting occurs is strictly lower when the dataset is augmented through generation. This reduced expected **NoiseAlign** leads to gradient updates that place less emphasis on fitting noise, thereby enabling the model to focus more effectively on learning the true features.

Consequently, although both upsampling and generation promote more uniform learning, their distinct interactions with noise critically influence generalization performance. This highlights the necessity of incorporating synthetic data and motivates our method.

D GENERATION VS. UPSAMPLING: VARIANCE PERSPECTIVE AND PROOF OF THEOREM 4.3

For generation, we have a fully independent dataset, so given the per-gradient variance bound σ_G^2 , the variance of the mini-batch gradient $\hat{\mathbf{g}}_G$ can be computed as:

$$\begin{aligned} \mathbb{E} [\|\hat{\mathbf{g}}_G - \bar{\mathbf{g}}\|^2] &= \mathbb{E} \left[\left\| \frac{1}{B} \sum_{i=1}^B \mathbf{g}_i - \bar{\mathbf{g}} \right\|^2 \right] = \mathbb{E} \left[\left\| \frac{1}{B} \sum_{i=1}^B \mathbf{g}_i - \frac{1}{B} B \bar{\mathbf{g}} \right\|^2 \right] \\ &= \frac{1}{B^2} \mathbb{E} \left[\left\| \sum_{i=1}^B (\mathbf{g}_i - \bar{\mathbf{g}}) \right\|^2 \right] \\ &= \frac{1}{B^2} \sum_{i=1}^B \mathbb{E} [\|\mathbf{g}_i - \bar{\mathbf{g}}\|^2] \\ &\leq \frac{1}{B^2} B \sigma^2 \\ &= \frac{\sigma^2}{B}, \end{aligned} \tag{11}$$

where we can directly take the summation out of expectation due to independence among the data.

For the upsampled dataset, we instead have two parts:

1. **Fully independent part:** The first αN data points that contain the fast-learnable feature are independent from each other and the rest.
2. **Replicated part:** The rest of the $k(1 - \alpha)N$ data points that contain duplicates. This part introduces the risk that the same data points might be selected into the same batch.

With this motivation, we let $B = B_1 + B_2$, where B_1 denotes the number of data points selected from the fully independent part, and B_2 denotes the number selected from the replicated part.

For theoretical simplicity, we consider a stratified mini-batch gradient, where B_1 and B_2 are fixed numbers in proportion to the sizes of the two parts. We assume that B_1, B_2 are both integers such that they follow the proportion:

$$B_1 = B \frac{\alpha N}{\alpha N + k(1 - \alpha)N} = B \frac{\alpha}{\alpha + k(1 - \alpha)}. \tag{12}$$

$$B_2 = B \frac{k(1 - \alpha)N}{\alpha N + k(1 - \alpha)N} = B \frac{k(1 - \alpha)}{\alpha + k(1 - \alpha)}. \tag{13}$$

Note that this removes one source of variance since B_1 and B_2 should themselves be random variables in the actual gradient. Hence, the actual variance should be larger than that of the stratified version.

The variance of the stratified mini-batch gradient $\hat{\mathbf{g}}_U$ after upsampling can be split as:

$$\mathbb{E} [\|\hat{\mathbf{g}}_U - \bar{\mathbf{g}}\|^2] = \mathbb{E} \left[\left\| \frac{1}{B} \sum_{i \in B} \mathbf{g}_i - \frac{1}{B} B \bar{\mathbf{g}} \right\|^2 \right] = \frac{1}{B^2} \mathbb{E} \left[\left\| \sum_{i \in B_1} (\mathbf{g}_i - \bar{\mathbf{g}}) \right\|^2 \right] + \frac{1}{B^2} \mathbb{E} \left[\left\| \sum_{i \in B_2} (\mathbf{g}_i - \bar{\mathbf{g}}) \right\|^2 \right] \tag{14}$$

due to independence and unbiasedness. Here with a slight abuse of notation, $i \in B, B_1, B_2$ represents the indices of data in each portion. Similar to Equation 11, we have for the independent part,

$$\frac{1}{B^2} \mathbb{E} \left[\left\| \sum_{i \in B_1} (\mathbf{g}_i - \bar{\mathbf{g}}) \right\|^2 \right] \leq \frac{\sigma^2}{B^2} B_1 = \frac{\sigma^2}{B} \frac{\alpha}{\alpha + k(1 - \alpha)}. \quad (15)$$

For the replicated part, since we may select copied data points, we first rewrite the summation as:

$$\sum_{i \in B_2} \mathbf{g}_i = \sum_{i=1}^{(1-\alpha)N} Y_i \mathbf{g}_i,$$

where we index over all the unique data points $i \in B_2$ and introduce the random variable $Y_i \geq 0$ representing the number of copies of each unique point, subject to $\sum_{i=1}^{(1-\alpha)N} Y_i = B_2$.

Clearly, as we are selecting B_2 data points from a total of $k(1 - \alpha)N$ points ($(1 - \alpha)N$ unique ones each with k copies), Y_i follows a hypergeometric distribution. From classical probability theory, we have:

1. Mean:

$$\mathbb{E}[Y_i] = B_2 \frac{k}{k(1 - \alpha)N} = B \frac{k(1 - \alpha)}{\alpha + k(1 - \alpha)} \frac{k}{k(1 - \alpha)N} = B \frac{k}{\alpha N + k(1 - \alpha)N}.$$

2. Variance:

$$\begin{aligned} \text{Var}(Y_i) &= \mathbb{E}[Y_i] \frac{k(1 - \alpha)N - k}{k(1 - \alpha)N} \frac{k(1 - \alpha)N - B_2}{k(1 - \alpha)N - 1} \\ &= \mathbb{E}[Y_i] \frac{(1 - \alpha)N - 1}{(1 - \alpha)N} \frac{k(1 - \alpha)N - B \frac{k(1 - \alpha)}{\alpha + k(1 - \alpha)}}{k(1 - \alpha)N - 1} \\ &= \mathbb{E}[Y_i] \frac{(1 - \alpha)N - 1}{(1 - \alpha)N} \frac{k(1 - \alpha)(\alpha N + k(1 - \alpha)N - B)}{(k(1 - \alpha)N - 1)(\alpha + k(1 - \alpha))} \\ &= \mathbb{E}[Y_i] \frac{(1 - \alpha)N - 1}{N} \frac{k(\alpha N + k(1 - \alpha)N - B)}{(k(1 - \alpha)N - 1)(\alpha + k(1 - \alpha))} \\ &= \mathbb{E}[Y_i] \frac{k(1 - \alpha)N - k}{k(1 - \alpha)N - 1} \frac{\alpha N + k(1 - \alpha)N - B}{\alpha N + k(1 - \alpha)N} \\ &\leq \mathbb{E}[Y_i] \frac{\alpha N + k(1 - \alpha)N - B}{\alpha N + k(1 - \alpha)N} \\ &= B \frac{k}{\alpha N + k(1 - \alpha)N} \left(1 - \frac{B}{\alpha N + k(1 - \alpha)N} \right). \end{aligned}$$

3. Second Moment:

$$\begin{aligned} \mathbb{E}[Y_i^2] &= \text{Var}(Y_i) + \mathbb{E}[Y_i]^2 \\ &\leq B \frac{k}{\alpha N + k(1 - \alpha)N} \left(1 - \frac{B}{\alpha N + k(1 - \alpha)N} \right) + \left(B \frac{k}{\alpha N + k(1 - \alpha)N} \right)^2 \\ &= B \frac{k}{\alpha N + k(1 - \alpha)N} \left(1 - \frac{B}{\alpha N + k(1 - \alpha)N} + \frac{Bk}{\alpha N + k(1 - \alpha)N} \right) \\ &= B \frac{k}{\alpha N + k(1 - \alpha)N} \left(1 + \frac{(k - 1)B}{\alpha N + k(1 - \alpha)N} \right). \end{aligned} \quad (16)$$

With these quantities, we can now compute:

$$\begin{aligned}
& \frac{1}{B^2} \mathbb{E} \left[\left\| \sum_{i \in B_2} (\mathbf{g}_i - \bar{\mathbf{g}}) \right\|^2 \right] = \frac{1}{B^2} \mathbb{E} \left[\left\| \sum_{i=1}^{(1-\alpha)N} Y_i (\mathbf{g}_i - \bar{\mathbf{g}}) \right\|^2 \right] \quad \text{since } \sum_{i=1}^{(1-\alpha)N} Y_i = B_2 \\
& \quad = \frac{1}{B^2} \sum_{i=1}^{(1-\alpha)N} \mathbb{E} \left[Y_i^2 \left\| \mathbf{g}_i - \bar{\mathbf{g}} \right\|^2 \right] \\
& \quad \leq \frac{\sigma^2}{B^2} \sum_{i=1}^{(1-\alpha)N} \mathbb{E} [Y_i^2] \\
& \quad = \frac{\sigma^2}{B} \frac{k(1-\alpha)N}{\alpha N + k(1-\alpha)N} \left(1 + \frac{(k-1)B}{\alpha N + k(1-\alpha)N} \right) \quad \text{by Equation 16.}
\end{aligned} \tag{17}$$

We plug in Equations 15, 17 into Equation 14 to obtain:

$$\begin{aligned} \mathbb{E} [\|\hat{\mathbf{g}}_U - \bar{\mathbf{g}}\|^2] &\leq \frac{\sigma^2}{B} \frac{\alpha}{\alpha + k(1 - \alpha)} + \frac{\sigma^2}{B} \frac{k(1 - \alpha)}{\alpha + k(1 - \alpha)} \left(1 + \frac{(k - 1)B}{\alpha N + k(1 - \alpha)N}\right) \\ &= \frac{\sigma^2}{B} \left(1 + \frac{k(k - 1)(1 - \alpha)}{(\alpha + k(1 - \alpha))^2} \frac{B}{N}\right) = I. \end{aligned}$$

In the theorem statement, we use $\sigma_U^2(k)$ and $\sigma_G^2(k)$ to differentiate the two and emphasize the dependence on the augmenting factor k .

E PSEUDOCODE

Algorithm 1 illustrates our method. We include Table 3 to compare it with other augmentation methods, including classical ones, naive diffusion-based generation, and mix-based methods such as mixup (Zhang et al. (2017)) and CutMix (Yun et al. (2019)).

F ADDITIONAL EXPERIMENTS

F.1 ADDITIONAL EXPERIMENTAL SETTINGS

Datasets. The CIFAR10 dataset consists of 60,000 32×32 color images in 10 classes, with 6000 images per class. The CIFAR100 dataset is just like the CIFAR10, except it has 100 classes containing 600 images each. For both of these datasets, the training set has 50,000 images (5,000 per class for CIFAR10 and 500 per class for CIFAR100) with the test set having 10,000 images. Tiny-ImageNet comprises 100,000 images distributed across 200 classes of ImageNet Deng et al. (2009), with each class containing 500 images. These images have been resized to 64×64 dimensions and are in color. The dataset consists of 500 training images, 50 validation images, and 50 test images per class. For transfer learning experiments, we also used three fine-grained classification datasets. Flowers-102 (Nilsback & Zisserman, 2008) contains 8,189 images of flowers from 102 categories, with between 40 and 258 images per class. Aircraft (Maji et al., 2013) consists of 10,000 images across 100 aircraft model variants, with roughly 100 images per class. Stanford Cars (Krause et al., 2013) contains 16,185 images of 196 classes of cars, with classes defined at the level of make, model, and year.

Training on different datasets. From the setting in Andriushchenko & Flammarion (2022), we trained Pre-Activation ResNet18 on all datasets for 200 epochs with a batch size of 128. We used SGD with the momentum parameter 0.9 and set weight decay to 0.0005. We also fixed $\rho = 0.1$ for SAM in all experiments unless explicitly stated. We used a linear learning rate schedule starting at 0.1. The learning rate is decayed by a factor of 10 after 50% and 75% epochs, i.e., we set the learning rate to 0.01 after 100 epochs and to 0.001 after 150 epochs. For transfer learning experiments, we fine-tuned a pre-trained ResNet18 on ImageNet-1K. On Flowers-102, we trained for 200 epochs with

Table 3: Comparison with other augmentation methods.

Feature	Classical Aug (Flip, Crop, etc.)	Mix-based (mixup/CutMix)
Core Objective	Learn basic invariances	Model regularization
Selection Strategy	Applied randomly to all images	Random pairing of images; augments all samples
Mechanism	Geometric/color transformations	Mix patches between real images
Computation	Negligible: native GPU operations	Low: simple arithmetic operations
Guarantee (Theory)	No	Yes
Primary Application	Image classification; transfer learning	Image classification; transfer learning
Key Advantage	Fast, effective baseline	Cheap and effective regularizer
Feature	Diffusion-based	Our Method
Core Objective	Increase data quantity and diversity	Reduce simplicity bias; promote balanced feature learning
Selection Strategy	—	Selects samples not learned early in training
Mechanism	Generates synthetic images and mixes them with real images	Generates synthetic images close to real images
Computation	High: generates multiple times for different conditional prompts	Moderate: only generates a subset (30–40% of dataset)
Guarantee (Theory)	No	Yes
Primary Application	Image classification; transfer learning	Image classification; transfer learning
Key Advantage	Can boost performance at a large compute cost	Efficient: high gain from few samples; can be combined with prior methods

an initial learning rate of 0.001. On Aircraft and Stanford Cars, we trained for 100 epochs with an initial learning rate of 0.01.

Training with different architectures. We used the same training procedures for Pre-Activation ResNet18, VGG19, and DenseNet121. We directly used the official Pytorch Paszke et al. (2019) implementation for VGG19 and DenseNet121. For ViT Yuan et al. (2021), we adopted a Pytorch implementation at <https://github.com/lucidrains/vit-pytorch>. In particular, the hidden size, the depth, the number of attention heads, and the MLP size are set to 768, 8, 8, and 2304, respectively. We adjusted the patch size to 4 to fit the resolution of CIFAR10 and set both the initial learning rate and ρ to 0.01. For both ConvNeXt-T and Swin-T, we used their official implementations but trained with SGD instead of Adam. The (learning rate, ρ) is set to (0.1, 0.05) for ConvNeXt-T and (0.01, 0.001) for Swin-T.

Hyperparameters. For UPSAMPLE Nguyen et al. (2024), we adopt their default hyper-parameters for separating epochs and set the upsampling factor k to 2 as it yields the best performance. For our method, the upsampling factor k is set to 5 for CIFAR10 and CIFAR100 while that of TinyImageNet is set to 4. Table 4 summarizes the upsampling factor along with the denoising steps at which the synthetic images are used to augment the base training set. For transfer learning experiments, we set k to 2.

Generating synthetic data with diffusion model. We use an open-source text-to-image diffusion model, GLIDE Nichol et al. (2021) as our baseline for image generation. We directly used the official Pytorch implementation at <https://github.com/openai/glide-text2im>. While generating, we set the time steps as 100 and the guidance scale as 3.0. For a k -way classification, we input the class names $C = \{c_1, \dots, c_k\}$ with prompt $l = 'a photo of \{c_i\}'$. For DiffuseMix, we used their official implementation with a single conditional prompt (“Autumn”).

1404 **Algorithm 1** Data Extraction and Image Generation for Training

1405

1406 1: **Input:** Original dataset D , Model $f(\cdot, W^{(0)})$, Separation epoch t , Total epochs T , Time steps t_* ,
1407 GLIDE model $G(\mu_\theta, \Sigma_\theta)$

1408 2: **Step 1: Initial Training**

1409 3: Train the model $f(\cdot, W^{(0)})$ on dataset D for t epochs

1410 4: **Step 2: Clustering and Data Selection Based on Loss**

1411 5: **for** each class $c \in D$ **do**

1412 6: $\{C_1, C_2\} \leftarrow \text{k-means}(f(x_j; W^{(t)}))$ {Cluster data into C_1 and C_2 }

1413 7: **Step 3: Image Generation from Selected Data**

1414 8: Obtain text prompt l {e.g. For class *dog*, l is *a photo of dog*}

1415 9: **for** each data point $x^{\text{ref}} \in C_2$ **do**

1416 10: Initialize random noise $\epsilon \sim \mathcal{N}(0, I)$

1417 11: Generate initial noisy image $x_{t_*} \leftarrow \sqrt{\alpha_{t_*}} x^{\text{ref}} + \sqrt{1 - \alpha_{t_*}} \epsilon$

1418 12: **for** s from t_* to 1 **do**

1419 13: $\mu, \Sigma \leftarrow \mu_\theta(x_s, s, l), \Sigma_\theta(x_s, s, l)$

1420 14: $x_{s-1} \leftarrow \text{sample from } \mathcal{N}(\mu, \Sigma)$

1421 15: **end for**

1422 16: $x_{\text{generated}} = x_0$

1423 17: $D = D \cup x_{\text{generated}}$ {Add the generated image to the dataset}

1424 18: **end for**

1425 19: **end for**

20: **Step 4: Retraining the Model**

21: Train the model $f(\cdot, W)$ on updated dataset D for T epochs

22: **Output:** Final model $f(\cdot, W(T))$

1428 Table 4: Details of the upsampling factor k for different methods and datasets.

1429

1430

Method	Dataset	k	Denoising steps
UPSAMPLE	CIFAR10	2	
	CIFAR100	2	
	Tiny-ImageNet	2	
Ours	CIFAR10	5	40, 50, 70, 80
	CIFAR100	5	40, 50, 70, 80
	Tiny-ImageNet	4	50, 70, 80

1439

1440 **Computational resources.** We used 1 NVIDIA RTX 3090 GPU for model training and 4 NVIDIA
1441 RTX A5000 GPUs for generating.

1442

1443 F.2 ADDITIONAL EXPERIMENTAL RESULTS

1444

1445 **State-of-the-art architectures.** To further demonstrate the effectiveness of our method, we evaluated
1446 it on two widely used modern vision backbones: ConvNeXt-T (Liu et al., 2022), a convolutional
1447 network that revisits ConvNet design with architectural refinements inspired by transformers, and
1448 Swin-T (Liu et al., 2021), a hierarchical vision transformer that introduces shifted windows for
1449 efficient and scalable self-attention. Both models were trained on CIFAR-10 using SGD with $k = 2$.
1450 As shown in Table 1, our method consistently outperforms both the Original (no augmentation) and
1451 UPSAMPLE. In particular, for ConvNeXt-T, our approach achieves a nearly 7% reduction in test error
1452 compared to the second-best method, highlighting its strong compatibility with modern architectures.

1453 **Qualitative results.** Figure 6 presents examples of slow-learnable (top) and fast-learnable (bottom)
1454 samples in CIFAR-10 where the slow-learnable samples are specifically targeted in our synthetic data
1455 augmentation. Slow-learnable samples are often visually ambiguous: the object may be partially
1456 visible, relatively small compared to the background, or blended with clutter, making them harder
1457 to recognize. In contrast, fast-learnable samples are clear and representative of their class, with the
object occupying most of the image and little background interference. These characteristics explain

Figure 6: Examples of slow-learnable (row 1) and fast-learnable (row 3) samples in CIFAR-10. Rows 2 and 4 show the corresponding synthetic images generated with GLIDE (Section 4.4) using 50 denoising steps (FID = 10.67).

Table 5: Training ResNet18 on CIFAR10 with different upsampling factor (k).

K	CIFAR10 (UPSAMPLE)	CIFAR10 (OURS)	CIFAR100 (OURS)	TINY-IMAGENET (OURS)
2	4.79	4.57	21.13	32.90
3	5.01	4.52	21.27	30.88
4	5.04	4.45	20.26	30.64
5	4.98	4.42	20.00	31.28

Table 6: FID and test classification error of ResNet18 on CIFAR10 when augmenting with synthetic images from different denoising steps. The upsampling factor k is set to 2 here.

	STEPS	FID	ERM	SAM
	0(ORIGINAL IMAGES)	5.07	4.01	
	10	5.36	4.94	4.03
	20	6.86	4.85	3.92
	30	7.48	4.83	3.79
	40	8.52	4.73	3.92
	50	10.67	4.56	3.69
	60	13.25	4.68	3.72
	70	17.46	4.91	3.84
	80	24.27	4.83	3.98
	90	34.69	4.87	3.86
	100	47.35	4.99	4.28

why slow-learnable samples are acquired later in training, whereas fast-learnable ones are learned quickly. Figure 6 shows that our synthetic examples preserve key visual content (features)—such as object shape, structure, and spatial arrangement while introducing subtle variations in texture or color (noise). For instance, an image of a bird in the second row is reproduced with the same layout and pose, but with different color for the neck part. Such nuanced transformations are difficult to achieve with standard augmentations like random cropping or flipping, highlighting the value of generative augmentation in our approach.

Effect of the upsampling factors. Table 5 illustrates the performance of our method and UPSAMPLE when varying the upsampling factors. As discussed in Section 4, UPSAMPLE achieves the best performance at $k = 2$ due to overfitting noise at larger k . On the other hand, using synthetic images, our method benefits from larger values of k , yielding the best performance at $k = 5$ for the CIFAR datasets and $k = 4$ for the Tiny-ImageNet dataset. This empirical result reinforces our theoretical findings in Section 4.2.

1512 Table 7: Training ResNet18 on CIFAR10 with different data selection strategy. We used SGD and set
 1513 the upsampling factor k to 5 here.
 1514
 1515

METHOD	MISCLASSIFICATION	HIGH LOSS	SLOW-LEARNABLE (UPSAMPLE AND OURS)
TEST ERROR	4.87 ± 0.10	4.77 ± 0.06	4.42 ± 0.04

1536 Figure 7: Variance of mini-batch gradients of ResNet18 with SGD on the augmented CIFAR10
 1537 dataset found by UPSAMPLE and Ours when varying the upsampling factor k . Our method yields
 1538 lower gradient variance throughout the entire training process.
 1539
 1540

1541
 1542 **Effect of the number of denoising steps.** Table 6 illustrates the impact of the number of denoising
 1543 steps on both the FID score and the downstream performance of our method. When initializing
 1544 the denoising process with real images, increasing the number of steps leads to a higher FID score.
 1545 Unlike prior works in synthetic data augmentation, we observe that minimizing the FID score between
 1546 real and synthetic images does not necessarily correlate with improved performance. Specifically,
 1547 using fewer steps generates images that are overly similar to real images, potentially amplifying the
 1548 inherent noise present in the original data. Conversely, too many denoising steps introduce excessive
 1549 noise, which also degrades performance. Empirically, we find that using 50 denoising steps strikes
 1550 the best balance, yielding optimal results for both SGD and SAM optimizers.

1551
 1552 **Alternative selection strategies.** Our approach differs from core-set selection methods Guo et al.
 1553 (2022), which aim to reduce dataset size while matching the performance of training on the full
 1554 data. Such methods either require training the model (or a smaller proxy) and use its statistics to
 1555 find the coresnet or update the coresnet during the training. In contrast to coresnet selection, the goal
 1556 of our approach is to improve the generalization performance over that of full data, by reducing the
 1557 simplicity bias of training. We showed that this can be done by augmenting the data with faithful
 1558 synthetic examples corresponding to the slow-learnable part of the data. Motivated by theory, we
 1559 found such examples by clustering the model output early in training (without training a proxy model
 1560 or updating the subset during training). However, other more heuristic approaches can be also used to
 1561 find slow-learnable examples. In this section, we conducted new experiments to find slow-learnable
 1562 examples based on (1) high loss and (2) misclassification, at the same checkpoint as used in our
 1563 experiments in the paper. As shown Table 7, our method outperforms both heuristic-based selection
 1564 strategies. Corset selection methods can be applied on top of our synthetically augmented data to
 1565 further improve data-efficiency. This is an exciting direction we leave for future work.

1564
 1565 **Generation time.** Using 4 GPUs, the generation time for the entire CIFAR-10, CIFAR-100, and
 Tiny ImageNet datasets is approximately 12, 12, and 26 hours, respectively. In contrast, our method
 requires generating only about 30%, 40%, and 60% of the total dataset size, reducing the generation

Figure 8: Training loss of ResNet18 on the CIFAR10 dataset when upsampling the slow-learnable examples vs. augmenting them with synthetic data

Figure 9: Test error of ResNet18 trained on CIFAR-10 with different cluster-based augmentation configurations. Each bar represents one experimental setting, color-coded by the number of clusters: blue for 2 clusters, orange for 3 clusters, and green for 4 clusters. Augmented clusters are selected as those with the highest average losses. The x-axis shows the percentage of augmented examples relative to the full dataset size. Error bars represent standard deviations across runs.

time to just 3.6, 4.8, and 15.6 hours, respectively. This represents a substantial improvement in efficiency compared to prior approaches to synthetic data generation, which typically require producing 10–30 times more samples than the original dataset size.

Variance of mini-batch gradients. Figure 7 presents the mini-batch gradient variance during training of ResNet18 using SGD on the augmented CIFAR-10 datasets selected by UPSAMPLE and our proposed method. Across all upsampling factors k , our method consistently yields lower gradient variance throughout the entire training process. This indicates that our synthetic data provides a more stable and consistent learning signal, which can contribute to more effective optimization. Notably, the variance gap between our method and UPSAMPLE widens significantly after epochs 100 and 150—key points at which the learning rate is decayed. This suggests that our method enables the model to adapt more smoothly to changes in the learning rate, likely due to the benign noise introduced in the faithful synthetic images. Lower gradient variance is often associated with more stable convergence and improved generalization, highlighting the advantage of our approach.

Table 8: Test accuracy of training ResNet18 and ResNet50 on ImageNet.

Method	Augmentation (%)	ResNet18		ResNet50	
		Top-1 Acc	Top-5 Acc	Top-1 Acc	Top-5 Acc
Original	0	67.23 \pm 0.02	87.76 \pm 0.10	73.24 \pm 0.02	91.63 \pm 0.08
UPSAMPLE	65	68.86 \pm 0.20	88.68 \pm 0.12	74.04 \pm 0.15	92.06 \pm 0.08
Boomerang	100	68.95 \pm 0.04	89.02 \pm 0.09	73.72 \pm 0.06	92.09 \pm 0.11
Ours + Boomerang	65	69.28 \pm 0.06	89.21 \pm 0.09	74.77 \pm 0.05	92.62 \pm 0.07

Table 9: Performance comparison of training YOLOv5m on MS-COCO.

Method	Augmentation (%)	AP ₅₀	mAP ₅₀₋₉₅
Original	0	63.26	44.26
UPSAMPLE	75	63.87	44.92
InstanceAugmentation	100	64.17	45.75
Ours + InstanceAugmentation	75	64.94	46.28

Training loss. Figure 8 illustrates that training with synthetic augmentation (Ours) has lower training loss than training with real augmentation (UPSAMPLE).

Different number of clusters. Figure 9 illustrates the performance of our method with varying numbers of clusters (2, 3, and 4). For each number of clusters, we varied the number of augmented clusters, which are selected as those with the highest average losses. The baseline (0%) corresponds to no augmentation, while 100% indicates augmenting all clusters. As shown in the figure, augmenting too few or too many examples is suboptimal. For ResNet18 on CIFAR-10, augmenting approximately 30% of the dataset yields the best performance.

F.3 EXPERIMENTS ON IMAGENET

To demonstrate the scalability of our method, we apply it to training on ImageNet (Deng et al., 2009), a large-scale dataset containing over 1.2M images across 1,000 classes and commonly used as a benchmark for evaluating visual recognition models. Due to computational constraints, we adopt the FFCV library (Leclerc et al., 2022) for efficient data loading and training, adapting the implementation from the publicly available repository at <https://github.com/libffcv/ffcv-imagenet>. We train ResNet18 and ResNet50 using the smallest configuration provided in that codebase (i.e., 16 epochs). For synthetic image generation, we employ Boomerang (Luzi et al., 2022) with Stable Diffusion v1.5 (<https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5>), following the settings described in Boomerang’s paper. For selecting augmented images, we use the checkpoint at epoch 2 and the number of augmented images is about 65% of the full dataset.

Table 8 reports the ImageNet test accuracy when training ResNet18 and ResNet50 with different augmentation strategies. Our method achieves the highest Top-1 and Top-5 accuracies across both architectures, outperforming Boomerang despite using only 65% augmentation, whereas Boomerang requires 100% synthetic augmentation. This demonstrates that our targeted augmentation strategy not only yields stronger accuracy gains but also does so with substantially lower computational cost.

F.4 OBJECT DETECTION EXPERIMENTS

To further demonstrate the applicability of our method beyond image classification, we conducted experiments on object detection. We follow the setup of InstanceAugmentation (Kupyn & Rupprecht, 2024), which uses a pretrained ControlNet (Zhang et al., 2023)-based inpainter with prompt engineering to repaint individual objects. Following their data augmentation settings (Table 1 in (Kupyn & Rupprecht, 2024)), we trained a YOLOv5m model <https://github.com/ultralytics/yolov5> on the MS-COCO dataset (Lin et al., 2014) from scratch using default hyperparameters (batch size 40, 300 epochs). We used the synthetic images released by the authors of InstanceAug-

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
mentation. To identify slow-learnable images, we used the model checkpoint at epoch 5 and labeled any image containing at least one misclassified object as slow-learnable, resulting in 75% of the dataset.

We evaluate object detection performance using two standard metrics: AP_{50} and mAP_{50-95} . Both metrics rely on the Intersection over Union (IoU), which measures how much a predicted bounding box overlaps with the ground truth. AP_{50} computes Average Precision at an IoU threshold of 0.50, providing a lenient measure of detection accuracy—models with high AP_{50} effectively locate objects even if their boxes are not perfectly aligned. In contrast, mAP_{50-95} averages AP across IoU thresholds from 0.50 to 0.95 in steps of 0.05, rewarding models that produce both correct detections and tightly aligned bounding boxes. This makes mAP_{50-95} a more stringent and comprehensive metric for evaluating detection quality.

Table 9 shows that our method also applies effectively to object detection, outperforming all baselines, including InstanceAugmentation while achieving a 25% reduction in data usage.