Under review as a conference paper at ICLR 2026

DO WE NEED ALL THE SYNTHETIC DATA? TARGETED
IMAGE AUGMENTATION VIA DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Synthetically augmenting training datasets with diffusion models has been an
effective strategy for improving generalization of image classifiers. However,
existing techniques struggle to ensure the diversity of generation and increase the
size of the data by up to 10-30x to improve the in-distribution performance. In this
work, we show that synthetically augmenting part of the data that is not learned
early in training with faithful images—containing same features but different
noise—outperforms augmenting the entire dataset. By analyzing a two-layer CNN,
we prove that this strategy improves generalization by promoting homogeneity in
feature learning speed without amplifying noise. Our extensive experiments show
that by augmenting only 30%-40% of the data, our method boosts generalization
by up to 2.8% in a variety of scenarios, including training ResNet, ViT, ConvNeXt,
and Swin Transformer on CIFAR-10/100, and TinylmageNet, with various
optimizers including SGD and SAM. Notably, our method applied with SGD
outperforms the SOTA optimizer, SAM, on CIFAR-100 and TinyImageNet.

1 INTRODUCTION

Data augmentation has been essential to obtaining state-of-the-art in image classification tasks. In
particular, adding synthetic images generated by diffusion models (Rombach et al., [2022; Nichol
et al.| 20215 Saharia et al.| 2022) improves the accuracy (Azizi et al.;,|2023)) and effective robustness
(Bansal & Grover,[2023) of image classification, beyond what is achieved by weak (random crop, flip,
color jitter, etc) and strong data augmentation strategies (PixMix, DeepAugment, etc) (Hendrycks
et al} 2021; 2022) or data augmentation using traditional generative models (Goodfellow et al.|
2020; Brock et al., [2018)). Existing works, however, generate synthetic images by conditioning
the diffusion model on class labels (Bansal & Grover, 2023} |Azizi et al., 2023)), or noisy versions
of entire training data (Zhou et al., 2023)). Unlike weak and strong augmentation techniques, data
augmentation techniques based on diffusion models often struggle to ensure diversity and increase
the size of the training data by up to 10x (Azizi et al., |2023) to 30x (Fu et al.l 2024) to yield
satisfactory performance improvement. This raises a key question:

Does synthetically augmenting the full data yields optimal performance? Can we identify a part of
the data that outperforms full data, when synthetically augmented?

At first, this seems implausible as adding synthetic images corresponding to only a part of the training
data introduces a shift between training and test data distributions and harms the in-distribution
performance. However, recent results in the optimization literature have revealed that learning
features at a more uniform speed during training improves the generalization performance (Nguyen
et al.| [2024)). This is shown by comparing learning dynamics of Sharpness-Aware-Minimization
(SAM) with Gradient Descent (GD) optimizers. SAM is a state-of-the-art optimizer that finds flatter
local minima by simultaneously minimizing the value and sharpness of the loss (Foret et al., [2020).
In doing so, SAM learns slow-learnable features faster than GD and achieves superior performance.
This suggests that augmenting the slow-learnable part of the data to accelerate their learning can
improve the generalization performance, despite slight distribution shift. Yet, how to generate such
synthetic data remains an open question.

In our work, we provide a rigorous answer to the above question. First, by analyzing a two-layer
convolutional neural network (CNN), we show that SAM suppresses learning noise from the data,
while speeding up learning slow-learnable features. Then, we prove that generating faithful synthetic

Under review as a conference paper at ICLR 2026

Real Fast i Real Slow

& bl |
bird cat bird

Figure 1: Examples of slow- and fast-learnable images and our faithful synthetic images corresponding
to slow-learnable examples generated for CIFAR-10. Our synthetic data preserves features in slow-
learnable images but replace noise. This amplifies slow-learnable features without magnifying noise.
This is difficult to achieve with standard augmentations like random cropping or flipping, highlighting
the value of generative augmentation. Additional images are given in Figure@

images containing slow-learnable features with different noise effectively speeds up learning such
features without causing noise overfitting. To find examples with slow-learnable features, we partition
the data to two parts by clustering model outputs early in training and identify the cluster with higher
average loss. Then, we generate faithful images corresponding to the slow-learnable examples, by
using real data to guide the diffusion process. That is, we add noise to examples that are not learned
early in training and denoise them to generate faithful synthetic data (see examples in Figure[T). This
enables synthetically augmenting only the slow-learnable part of the data by up to 5x to get further
performance improvement. In contrast, upsampling slow-learnable examples—which appears to be a
simpler and more intuitive approach—more than once could amplify the noise and significantly harm
the performance, suggesting the necessity of using synthetic data. Finally, we prove the convergence
properties of training on our synthetically augmented data with stochastic gradient methods.

We conduct extensive experiments for training ResNet, ViT, DenseNet, and Swin Transformer on
CIFAR10, CIFAR100 (Krizhevsky et all,[2009) and TinyImageNet (Le & Yang, 2015). We show
that our synthetic data augmentation outperforms upsampling or synthetically augmenting the full
dataset, and improves SGD and SAM by up to 2.8% by augmenting only 30%-40% of the data.
Notably, our method applied with SGD outperforms SAM on CIFAR-100 and TinyImageNet and
yields state-of-the-art performance. It remains effective across different diffusion models and easily
stacks with existing weak and strong augmentation strategies to further boost the performance.

2 RELATED WORKS

Generative Models for Augmentation. There has been a recent surge of studies on synthetic data
augmentation using diffusion models. For example, [Azizi et al| (2023)) applied diffusion models
to ImageNet classification, while further studies (Trabucco et al., [2023} [He et al, [2023)) explored
their application in zero- or few-shot settings. Despite promising results, this line of research
faces fundamental challenges in achieving diversity, faithfulness, and efficiency. Recent work
attempts to overcome this through intricate prompt-conditioning mechanisms, customized embedding
optimizations, or multi-stage diffusion processes. For example, DiffuseMix (Islam et al.| 2024d) and
GenMix (Islam et al.| [2024b)) use prompt-guided editing with complex mixing strategies to avoid
unrealistic artifacts, while Diff-Mix (Wang et al.,[2024) balances foreground fidelity and background
diversity through inter-class mixup. Diff-II (Wang & Chenl[2025) introduces a novel inversion-circle
interpolation and a two-stage denoising process to jointly promote diversity and faithfulness. For
fine-grained image classification, SaSPA (Michaeli & Fried| [2024) preserves structural integrity by
conditioning on edges and subject representations, and DiffCoRe-Mix (Islam & AKHTAR| [2025)
uses constrained diffusion with negative prompting and hard-cosine filtering to maintain semantic
consistency.

Although these approaches improve synthetic image quality and diversity, they typically require
generating extremely large synthetic datasets—often 10x to 30x the size of the original data—to
achieve meaningful performance gains, making them computationally expensive. A few recent works,
such as Boomerang and DiffCoRe-Mix, address this cost by performing local
manifold sampling, enabling strong performance with a 1x augmentation ratio. However, these
methods still involve substantial system-level complexity and high generation costs.

Under review as a conference paper at ICLR 2026

Our approach departs from this trend by focusing on which examples to augment rather than de-
signing increasingly complex generation pipelines. We theoretically and empirically show that
augmenting only the 30%—40% of examples that are not learned early in training is sufficient—and
often superior—to full-data augmentation. Our method is simple, computationally lightweight, and
generator-agnostic. It can be seamlessly combined with state-of-the-art diffusion-based augmentation
methods, as demonstrated with both DiffuseMix and Boomerang in our experiments.

Sharpness-aware-minimization (SAM). SAM is an optimization technique that obtains state-of-the-
art performance on a variety of tasks, by simultaneously minimizing the loss and its sharpness (Foret
et al.|2020; |Zheng et al.| 2021). In doing so, it improves the generalization in expense of doubling
the training time. SAM has also been shown to be beneficial in settings such as label noise (Foret
et al., 2020; Zheng et al., 2021}, out-of-distribution (Springer et al.,[2024), and domain generalization
(Cha et al., 2021; Wang et al.||2023). The superior generalization performance of SAM has been
contributed to smaller Hessian spectra (Foret et al., 2020; Kaur et al.,[2023; Wen et al. 2022; Bartlett
et al., [2023), sparser solution (Andriushchenko & Flammarion, 2022)), and benign overfitting in
presence of weaker signal (Chen et al., 2022). Most recently, SAM is shown to learn features at
a more uniform speed (Nguyen et al., 2024). In our work, we show that targeted synthetic data
augmentation can improve generalization by making training dynamics more similar to SAM.

3 PRELIMINARY

In this section, we introduce our theoretical framework for analyzing synthetic data augmentation
with diffusion models. We also discuss SAM’s ability in learning features at a more uniform speed.

Data Distribution. We adopt a similar data distribution used in recent works on feature learn-
ing (Allen-Zhu & Li, [2020; [Chen et al., [2022} Jelassi & Lil [2022; |Cao et al., [2022; |[Kou et al.| 2023}
Deng et al.| 2023} |Chen et al.,|2023) to model data containing two features v4, v. and noise patches.

Definition 3.1 (Data distribution). A data point has the form (z, y) ~ D(Be, B4,) € (RH)F x {£1},
where y ~ Radamacher(0.5),0 < 34 < f. € R,and z = (D, 2®) ... 2(P)) contains P patches.

* Exactly one patch is given by the fast-learnable feature 3. - y - v, for some unit vector v, with
probability o > 0. Otherwise, the patch is given by the slow-learnable feature 5, - y - v4 for
some unit vector v, - vg = 0.

¢ The other P — 1 patches are i.i.d. Gaussian noise £ from N (0, (U% /d)I,) for some constant o,

Probability « controls the frequency of feature v, in the data distribution. The distribution parameters
Be, Bq characterize the feature strength in the data. 5. > (5, ensures that the fast-learnable feature is
represented better in the population and thus learned faster. The faster speed of learning captures
various notions of simplicity, such as simpler shape, larger magnitude, and less variation. Note
that image data in practice are high-dimensional and the noises become dispersed. For simplicity,
we assume P = 2, that the noise patch is orthogonal from the two features, and that summations
involving noise cross-terms (§;, &;) become negligible.

Two-layer CNN Model. We use a dataset D = {(x;,)}, from distribution to train a
two-layer nonlinear CNN with activation functions o(z) = 23

Definition 3.2 (Two-layer CNN). For one data point (x,y), the two-layer Convolutional Neural
Network (CNN) with weights W = [w1, w2, ,w;] € R¥/, where w; is weight of the j-th
neuron (filter), has the form:

LS (p)\3 3 3 Bi(w;, vg)? ifvg
f($5w>:;;<wjvw >:;(<wj7§> +y{63<wj’ve>3 ifve> for our P = 2.

Empirical Risk Minimization. We consider minimizing the following empirical logistic loss:

1 & 1 &
LW) =+ S lyif(xi W) = v > log(1 + exp(—yi f(zi; W)). (1)
i=1

=1

Under review as a conference paper at ICLR 2026

via (1) sharpness-aware minimization (SAM) (Foret et al.| [2020) and (2) gradient descent (GD),
whose filter-wise update rules, with some learning rate n > 0, are respectively given by:

SAM : w{"V=w—yv_ (o LW O 4+ pOvLW D)), where p*) = p/|[VLWD)|[p, p >0,

N
o) (1) 1)y _ (1) (t
GD : w; =W~ Ny ;Vi7w§t>ﬁ(W)y = w;’ — nvw;t>£(W).

Here ngf,)E(W(t)) denotes the full gradient w.r.t. filter w; at iteration ¢, V, w(_t)L(W(t)) denotes
the per-example gradient for i € [N], and VL(W () denotes the full gradient matrix.

High-level idea of SAM. By perturbing the weights with gradient ascent (e®) = p()VL(W 1)),
SAM looks ahead in the worst weight direction and forces the training algorithm to escape an unstable
(sharp) local minimum. In practice, this leads to more generalizable solutions.

SAM Learns Features More Homogeneously. With the above setting, the alignment of v, v. with
weights, i.e., (w(t), vy) and (w®), v4), indicate how much they are learned by the CNN at iteration t.
SAM’s (normalized) gradient for the slow-learnable feature is larger than GD by a factor of (Nguyen

et al.l [2024):
2/3

o (1 — p® B3 (w, vd>>)

1—p) B3 (w, ve)
That is, SAM amplifies the slow-learnable feature and learns it faster than GD. In doing so, it learns fea-
tures at a more homogeneous speed. While Eq. [2[suggests that the empirical choice of k should depend
on the relative strength and difficulty of the features, simply upsampling examples with slow-learnable
features more than once results in performance degradation, as we confirm in our experiments.

4 LEARNING FEATURES HOMOGENEOUSLY WITHOUT OVERFITTING NOISE

In this section, we first prove that SAM suppresses learning noise from the data, while promoting ho-
mogeneous feature learning. Then, we discuss generating synthetic data to amplify features in images
without magnifying their noise. This allows amplifying slow-learnable features by k£ > 2 to further
boost performance. Finally, we show convergence of training on our synthetically augmented data.

4.1 SAM SUPPRESSES LEARNING NOISE FROM THE DATA

First, we theoretically analyze how SAM suppresses learning noise in the above setting. Intuitively,
as SAM pushes the learning dynamics away from sharp landscapes, it simultaneously helps the model
avoid areas where certain noises concentrate. This becomes a natural defense against noise overfitting
in high-curvature areas. On the other hand, gradient descent is unaware of local smoothness, so it
finds solutions that may sit in a flat, noise-resilient basin.

Fomally, we prove that starting with the same weights W ®), a SAM step suppresses the model’s
alignment with noise directions more effectively than an equivalent gradient descent step. Let ®
denote the sets of noises for dataset D. Let w; . denote the perturbed weights of filter j for SAM.

We then define 7" | = {¢p; € ®:1i € [N], sgn((w(t) ;}) = sgn(y;)} and ¥ _ = {p; € ®:

j,€,+ j,er Tt j.€,—

i € [N], sgn((wﬁ, ¢;)) # sgn(y;)} be the sets of noises where the sign of alignment matches
or mismatches the sign of the label. We define Ijﬂ, I](tz accordingly for each GD weight wﬁ-t).

)y =
J
|71‘ Yt (Vo L(W®),)|, which intuitively measures how much noise is learned by the model.

We measure filter-wise noise learning for a set of noises using the metric NoiseAlign(Z, w

The following theorem quantifies how SAM learns noise to a smaller extent compared to GD. For sim-
plicity, we analyze the early training phase. However, our results should hold throughout the training.

Theorem 4.1. With controlled logit terms lgt) = sigmoid(—y; f (x;; W), large data size N, small
learning rate n, and small SAM perturbation parameter p (see Appendix[A), SAM and GD updates
from the same parameters have the following property, early in training:

4

Under review as a conference paper at ICLR 2026

1. Inert Noises: Alignment with noises that belong to IJ() and I() _ will get closer to 0 after
each update, so they will not be learned eventually by GD or SAM

2. Noise Learning: The other noises will continue being learned in the sense that |(w;, &;)| is
monotonically increasing. For these noises, SAM slows down noise learning by looking ahead
to noise-sensitive (sharp) directions, while GD updates “blindly”. The following SAM and GD

learning dynamics hold for &; € ez

et and & € Ij(i)r in terms of noise gradient:

2
3 3p<
SAM: |<vw_7,ec<w<t>+e<t>>,sl->|Nl?)<w§t’,sz->2(i w ei>|||si||2>||ei|2,

3 t
GD: |(Vu, LW"), 6] = 1 (w], €2 6.
Furthermore, on average, the perturbed SAM gradient aligns strictly less with these noises,

NoiseAlign(Ij(e) W w!’)) < NozseAhgn(I() w;t)).
A special case of this theorem is that with the same initializations W () ~ N (0, 03), nearly half of
the noises will not be learned, and SAM in early training prevents overfitting, while GD does not.

All the proof can be found in Appendix [A] Our results are aligned with (Chen et al., 2023) which
showed, in a different setting, that SAM can achieve benign overfitting when SGD cannot.

Remark. Theorem implies that to resemble feature learning with SAM and ensure superior
convergence, it is also crucial to avoid magnifying noise when amplifying the slow-learnable feature.

4.2 SYNTHETIC DATA AUGMENTATION TO AMPLIFY FEATURES BUT NOT NOISE

Next, we discuss finding examples containing slow-learnable features and generating synthetic data
to amplify slow-learnable features without magnifying the noise in the data.

Identifying slow-learnable examples. To find slow-learnable features in the data, we find examples
that are not learned robustly at the early phase of training. If an example contains at least one
fast-learnable feature that is learned by the model early in training, the model relies on such features
to lower the loss and potentially correctly classify the example early in training. Thus, examples
that only include slow-learnable features can be identified based on loss or misclassification, or by
partitioning model outputs to two clusters after a few training epochs and selecting the cluster with the
higher average loss. In our experiments, we use clustering to identify examples with slow-learnable
features as it yields better performance, as we confirm in our ablation studies. We note that finding
examples with slow-learnable features is not the main focus of our work. Our main contribution is
characterizing how to amplify slow-learnable features without amplifying noise in the data.

Amplifying slow-learnable features. Next, we show that generating synthetic data containing
slow-learnable features with different noise considerably boosts the generalization performance,
while upsampling slow-learnable examples amplifies the noise in the data and harms generalization.

Recall that D is the original dataset with | D| = N. We assume exactly (1 — @) N € Z samples have
only vy, and let Dy, D¢ be the modified datasets via upsampling and generation with factor £ and
new size Nyey = alN 4+ k(1 — a)N. For Dy, the replicated noises {&; : i = aN +1,...,N}
introduce a dependence. Additionally, for D¢, the generative model will have its own noises =;
(potentially higher) for synthetic data, and we assume the noises are i.i.d., orthogonal to features, and
independent from feature noise from some distribution D..

With similar notations let @4, ®;; denote the multi-sets [ﬂ of all the noises for D¢, Dy respectively.
t G, U, U,

We define IJ ={¢; € g : i € [Npew)s sgn(wé”,d)i) sgn(yi)}, Z;] (®) I th),Ij ®ina

similar fashlon for D and Dy as before.

Next, we show that early in training, upsampling and generation contribute similarly to feature

learning, but upsampling accelerates learning noises in Z; Jf), while synthetic generation does not.

"Due to identical noises in Dy;. The following 7 [-Jf) and T are also defined via multi-sets to keep their
sizes consistent with the generation counterparts, meaning that we count all the replicated noises.

Under review as a conference paper at ICLR 2026

Theorem 4.2 (Comparison of feature & noise learning). Let VU(t) (L(W®)) and VG(O (L(W®))

denote the full gradients w.r.t the j-th neuron for upsampling and genemtlon at iteration t respectively.
When dropping the index i, the term is treated as a random variable. Then for one gradient update,

1. Feature Learning & Inert Noises: Both gradients attempt to contribute equally to feature

learning and will not eventually learn certain noises (that are those in IU © I-G’(t)).

2. Noise Learning: Upsampling, compared with generation, amplifies learning of noise on the

799 where &; could be

repeated subset by a factor of k. In particular, for generation, ¢; € 1",

&, or the generation noise ~y;,

3
(VG LW D), 0] = 17w 6. "

new

However, for upsampling, &; € IJU_S),

3 (t) 2 2 X
v - T l(t)< w) ’€v'> II&II i=1,...,aN

new

A special case of this theorem is that with the same initializations W) ~ N (0, 03), for all the early
iterations 0 < t < T, if the synthetic noises are sufficiently small in the sense that

E [ty 06w, 2 vI2] < (& + DE [1e@)w”,)21€)]
where 1(t), l¢(t) denote the logits as random variables under the corresponding noise at iteration t,

then noises are overfitted less: [NmseAltgn((t), wj(-t))} <E {NoiseAlign(Ijl{f), w§.t)) .

Theorem [.2] suggests that synthetically generating faithful images that preserve features in real
data with independent noise prevents noise overfitting in expectation. In particular, this metric of
generation noise does not need to be strictly less than that of data noise during early training; instead,
there exists a tolerance factor up to k + 1.

Remark. For a diffusion model, as long as the noises in the synthetic data ||7;||? are not too large,
noise learning under generation is more diffused due to its independence and operates more similarly
to SAM, whereas upsampling amplifies learning on the duplicated noise, potentially elevating it to a

new feature and increasing the NoiseAlign metric.

4.3 SUPERIOR CONVERGENCE OF SYNTHETIC DATA AUGMENTATION OVER UPSAMPLING

Next, we show the superior convergence of mini-batch Stochastic Gradient Descent (SGD)—which
is used in practice—on synthetically augmented compared to upsampled data. Consider training

the above CNN using SGD with batch size B: w' " = w(" —nL 7% v, w® L(W®). The

convergence rate of mini-batch SGD is inversely proportlonal to the batch size (Ghadimi & Lanl
2013)). The following theorem shows that upsampling inflates the variance of mini-batch gradients and
thus slows down convergence. Note that it does not directly compare the relative magnitudes of the
variances, since o (k), oy (k) depend on datasets. Instead, it quantifies the sources of extra variance:

Theorem 4.3 (Variance of mini-batch gradients). Suppose we train the model using mini-batch SGD
with proper batch size B. Let Bicp.[||lg; — Gc||?] < 02(k), Eiepy[llgi — gull?] < oF (k) be the
variances of the per-example gradients for generation and upsampling (where g; is the gradient of
the i-th data and g is the full gradient). Let gy and g be the mini-batch gradients. We have:

o (k)
B)

o2 (k) k(k—1)(1—a) B
y (H (a+k(1a))2N>'

Ep.lllgc — gall?] <

Ep, [llgv — §U||2] <I, wherel >

Under review as a conference paper at ICLR 2026

From Theorem[.3] we see that all the variance for generation solely comes from the per-example
variance, potentially getting larger when synthetic images diversify the dataset. However, upsampling
induces one extra term that results from repeated noises and unnecessarily inflates the variance due to
dependence within the dataset. This is empirically justified in our ablation studies in Section[5.2}

Corollary 4.4. As long as the generation noise is small enough, i.e., o%(k) < o (k), convergence
of mini-batch SGD on synthetically augmented data is faster than upsampled data.

4.4 GENERATING FAITHFUL SYNTHETIC IMAGES VIA DIFFUSION MODELS

Finally, we discuss generating faithful images for the slow-learnable part of the data. From Theorem
[.2)we know that while the noise in the synthetic data can be larger than that of the original data, it
should be small enough to yield a similar feature learning behavior to SAM.

Synthetic image generation with diffusion models (Sohl-Dickstein et al., [2015; |Ho et al., [2020;
Nichol & Dhariwal, 2021} |Yang et al., 2023) involves a forward process to iteratively add noise to the
images, followed by a reverse process to learn to denoise the images. Specifically, the forward process
progressively adds noise to the data xg over T steps, with each step modeled as a Gaussian transition:
q(x¢|xi—1) = N(x4;v/1 — Byxy—1, B¢I), where 3, controls the noise added at each step. The reverse
process inverts the forward process, learns to denoise the data, with the goal of recovering the original
data zo from a noisy sample z7: pg(x¢—1|x¢) = N (x¢—1; po(x¢,t), Xo(xt,t)), where mean py is
conditioned on the sample at the previous time step and variance >y follows a fixed schedule.

To ensure generating images that are faithful to real data, we use the real images as guidance to
generate synthetic images. Specifically, while using the class name (e.g., “a photo of a dog”) as the
text prompt, we also incorporated the original real samples as guidance. More formally, instead of

sampling a a pure noisy image x7 ~ N'(0, I) as the initialization of the reverse path, we add noise to
a reference (real) image mgef such that the noise level corresponds to a certain time-step t,. Then we
begin denoising from time-step ¢, using an open-source text-to-image model, e.g. GLIDE (Nichol
et al., 2021), to iteratively predict a less noisy image x;—1(t = T, T — 1,--- , 1) using the given text
prompt [and the noisy latent image x as inputs. This technique enables produce synthetic images that
are similar, yet distinct, from the original examples, and has been successfully used for synthetic image
generation for few-shot learning (He et al.,[2023). Our pseudocode is illustrated in Appendix [E| Alg. [T}

5 EXPERIMENT

In this section, we evaluate the effectiveness of our synthetic augmentation strategy on various
datasets and model architectures. We also conduct an ablation study on different parts of our method.

Base training datasets. We use common benchmark datasets for image classification including CI-
FAR10, CIFAR100 (Krizhevsky et al.l 2009), Tiny-ImageNet (Le & Yang| 2015)), Flowers-102 (Nils-
back & Zisserman), |2008)), Aircraft (Maji et al., 2013)), and Stanford Cars (Krause et al.| 2013)).

Augmented training datasets. We train different models on: (1) Original: The original training
datasets without any modifications. (2) UPSAMPLE: Augmented dataset with upsampled real
images that are not learned in early training. (3) Our Method: Replace the upsampled samples
in UPSAMPLEwith their corresponding synthetic images. For k£ > 2, we use generated images at
different diffusion denoising steps, instead of generating from scratch.

Training details. We train ResNet18 on all datasets following the setting of (Andriushchenko &
Flammarion, |2022)). The models are trained for 200 epochs with a batch size of 128. We use SGD
with the momentum parameter 0.9 and set weight decay to 0.0005. We also fix p = 0.1 for SAM. We
use a linear learning rate schedule starting at 0.1 and decay by a factor of 10 once at epoch 100 and
again at epoch 150. For each setup, we train with both SGD and SAM.

Hyperparameters. For UPSAMPLE, we set the upsampling factor k to 2 as it yields the best perfor-
mance. For our method, we use £ = 5 for CIFAR10 and CIFAR100 and k£ = 4 for TinyImageNet.
For generating synthetic images using GLIDE, we use guidance scale of 3 and run denoising for 100
steps, saving generated images every 10 steps. More details are in Appendix [FI}

Under review as a conference paper at ICLR 2026

CIFAR10 CIFAR100 Tiny-ImageNet

msm Orig
awa UPSAMPLE
mem Ours

5.0

4.84
< 4.6
4.44
4.2+

st Error (%

2 4.0
3.8
3.6 1

SGD SAM

Figure 2: Test classification error of ResNet18 on CIFAR10, CIFAR100 and TinyImageNet. For
UPSAMPLE, we use a factor of k = 2, as higher k£ harms the performance. In contrast for our method
(Ours), k = 5, 5,4 for CIFAR10, CIFAR100, and Tiny-ImageNet, respectively. Our method improves
both SGD and SAM. Notably, it enables SGD to outperform SAM on CIFAR100 and TinyImageNet.

VGG19 DensetNet121 ViT-S
7.0 10.5 20.5
mmm Orig
war. UPSAMPLE | 14]
W Ours

20.0
19.5
19.0

9.01 18519

Test Error (%)

18.0

8.5 1
17.54

8.0 - 17.0-

Figure 3: Test classification error of VGG19, DenseNet121, and ViT-S on CIFAR10. For UPSAMPLE,
we use a factor of k& = 2—as higher k hurst the performance—while for Ours, we use k£ = 5.

Table 1: Test error of ConvNeXt-T and Table 2: Test error of pre-trained ResNet18 on Flowers-
Swin-T on CIFAR-10 using SGD and k=2. 102, Aircraft, and Stanford Cars datasets.

Method ‘ ConvNeX(T ‘ SwinT Method | Flowers-102 | Aircraft | Stanford Cars
Original | 37.33 +£3.12 | 16.10+0.19 Original 8.5540.19 | 26.02+0.27 | 15.45+0.02
UPSAMPLE | 34.16 +-2.47 | 14.93 £0.07 DiffuseMix | 8.92+0.15 | 25.65+0.20 | 15.19 £ 0.06
Ours 27.40 + 1.99 | 14.57 £ 0.10 Ours+DifMx | 8.08 £0.16 | 25.12 & 0.35 | 14.96 + 0.07

5.1 OUR METHOD IS EFFECTIVE ACROSS DATASETS AND ARCHITECTURES

Different datasets. Figure[2]clearly shows that our method significantly reduces the test classification
error compared to both the Original and UPSAMPLE methods across all datasets, namely CIFAR10,
CIFAR100, and Tiny-ImageNet. For Tiny ImageNet, our method yields an improvement of 2.8%
when training with SAM. The superior performance of our method compared to UPSAMPLE is well
aligned with our theoretical results in Section[#.3] Notably, SGD with our method outperforms SAM
on CIFAR100 and TinyImageNet. This clearly confirms the effectiveness of our approach.

Different model architectures. To further evaluate the generalization of our approach, we conduct
experiments on multiple model architectures using CIFAR10 as the base dataset. Specifically, we
apply our method to CNNs (VGG19, DenseNet121) and Transformers (ViT-S). Figure [3] presents
the test classification error for different architectures. The results demonstrate that our method
achieves consistently lower classification error than both the Original and UPSAMPLE methods
across all architectures, under both SGD and SAM optimization settings. Moreover, when applied
to state-of-the-art architectures such as ConvNeXt [2022) and Swin Transformer (Liu et al.
[2021), our method still outperforms the baselines by a substantial margin, as reported in Table]
These findings confirm the effectiveness of our approach across different model structures.

Transfer learning and stacking with other synthetic image generations. We evaluate our method
in a transfer learning setting, where we fine-tune a ResNet18 pre-trained on ImageNet-1K on 3
popular fine-grained image classification datasets including Flowers-102, Aircraft, and Stanford
Cars datasets. Table[2] compares our method with DiffuseMix (Islam et al| 2024a) which is a SOTA
data augmentation method. It enhances diversity of synthetic images by blending partial natural
images with images generated via InstructPix2Pix (Brooks et al.|[2023)) diffusion model. Applying our
method to augment slow-learnable images with DiffuseMix significantly outperform no-augmentation
and augmenting entire dataset with DiffuseMix.

Under review as a conference paper at ICLR 2026

CIFAR10 s CIFAR100 CIFAR10

4.8 1 W@ Syn-rand
ww Syn-all

wms Ours

wem Ours
&5% Ours +TA

464 21.0{

Py
o
s

4.4+ 20.5

4.2+

Test Error (%)
Test Error (%)
w
o

»
o

20.0 4

w
=3
s

19.5
3.81

3.6- 19.0- 25—

SGD SAM

Figure 4: (left & middle) Comparison between different synthetic image augmentation strategies
when training ResNet18 on CIFAR10 and CIFAR100. For Syn-rand and Ours, we use & = 2 resulting
in only 30% and 40% additional examples compared to 100% of Syn-all. (right) Our method with
k = 5 can be stacked with TrivialAugment (TA) to further boosts the performance when training
ResNet18 on CIFAR10, achieving (to our knowledge) SOTA test classification error.

5.1 ® 5.50

W, - s mam Original 5.0
501\ /" “~<e” 5.2517 @4 Random noise 481
5491 N e 5.00 4 wms Real image =
< N ®- UPSAMPLE g £461
5 4.8 1 o olrs <475 5441 —8— SGD --- Original (SGD)
£ al 5 £ 4 o
e - -—-
FERE — original 5 4.50 V o Sam Original (AM)
" a6 2 425 / i
45 4.00 /
4.4 1= - T T T T 3.75
1 2 3 4 5 6 0 10 20 30 40 50 60 70 80 90 100

Upsampling factor SGD SAM Denoising step

Figure 5: Training ResNet18 on CIFAR10. (left) The effect of amplification factor k on test error for
upsampling vs generation. Red points indicate the optimal choice of k. £ > 2 hurts upsampling but
boosts generation. (middle) Generating synthetic CIFAR10 images from real images outperform start-
ing from random noise. (right) Effect of the number of denoising steps on the performance with k = 2.

Do We Need All the Synthetic Data? To answer this question, we compare synthetically augmenting
all examples (Syn-all)-which doubles the training set size—with our method with & = 2—which results
in increase of approximately 30% and 40% of the total training data—in CIFAR10 and CIFAR100.
Notably, the generation time for our method is reduced to 0.3x and 0.4x that of Syn-all, making it
more efficient. In addition, we consider a baseline (Syn-rand) where random images are augmented
with their corresponding synthetic ones. Figure 4] shows that our method has a much lower test
classification error compared to Syn-rand (same cost) and Syn-all (higher cost). This highlights the
effectiveness of our rargeted data augmentation.

5.2 ABLATION STUDIES

Our method stacked with strong augmentation. Figure] right shows that our method stacked with
TrivialAugment (Miiller & Hutter} [2021]) achieves state-of-the-art results when training ResNet18 on
CIFAR10. Appendix [F.2] shows similar results for CIFAR100 and Tiny-ImageNet.

Identifying slow-learnable features. Table[7)in Appendix [F2]shows that identifying slow-learnable
features by clustering model outputs outperforms selection based on high-loss or misclassification.

For larger &, upsampling hurts but generation helps. Figure 52| illustrates the performance of our
method and UPSAMPLE on CIFAR10 when varying the upsampling factors. Upsampling achieves
the best performance at k£ = 2 due to overfitting noise at larger k. But using synthetic images, our
method benefits from larger values of k, yielding the best performance at k = 5 for CIFAR10 and
CIFAR100, and k = 4 for Tiny-ImageNet. Detailed results for CIFAR100 and Tiny-ImageNet can
be found in Table 5]in Appendix [F2} This corroborates our theoretical findings in Section .2]

Choices of initialization for denoising. We compare generating synthetic images by adding noise
and denoising real images with denoising from random noises. Figure [5b]illustrates that real data
guidance is necessary for targeted synthetic image augmentation. When using random noises to
generate synthetic images, performance of ResNet18 on the augmented training datasets is even worse
than that on the original set, as generated images do not effectively amplify slow-learnable features.

Number of denoising steps. Figure[5c|demonstrates the effect of the number of denoising steps on the
performance of our method. Using fewer steps generates images that are too close to real images, am-

Under review as a conference paper at ICLR 2026

plifying the noise in the real images. In contrast, using too many steps results in too much noise, which
also harms the performance. Overall, using 50 steps yields the best results for both SGD and SAM.

Convergence. Figure[7]in Appendix shows the mini-batch gradient variance when training
ResNet18 on the augmented CIFAR10 dataset using upsampling and generation. Generation results
in lower gradient variance compared to upsampling for different &, confirming our results in Sec.

6 CONCLUSION

In this work, we show that synthetically augmenting part of the data that is not learned early in
training outperforms augmenting the entire dataset. By analyzing a two-layer CNN, we prove that
this method allows features to be learned at a more uniform speed without amplifying noise. We
conducted extensive experiments showing that our augmentation strategy boosts the performance
when training ResNet, ViT, DenseNet, ConNexXt and Swin Transformer on CIFAR-10, CIFAR-100,
and TinyImageNet, with a range of optimizers including SGD and SAM, by up to 2.8%. Notably, our
method applied with SGD outperforms SAM on CIFAR-100 and TinyImageNet and easily stacks
with existing weak and strong data augmentation strategies to obtain state-of-the-art performance.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. arXiv preprint arXiv:2012.09816, 2020.

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
mization. In International Conference on Machine Learning, pp. 639—668. PMLR, 2022.

Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and David J. Fleet.
Synthetic Data from Diffusion Models Improves ImageNet Classification, April 2023. URL
http://arxiv.org/abs/2304.08466. arXiv:2304.08466 [cs].

Hritik Bansal and Aditya Grover. Leaving reality to imagination: Robust classification via generated
datasets. arXiv preprint arXiv:2302.02503, 2023.

Peter L Bartlett, Philip M Long, and Olivier Bousquet. The dynamics of sharpness-aware minimiza-
tion: Bouncing across ravines and drifting towards wide minima. Journal of Machine Learning
Research, 24(316):1-36, 2023.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 18392—-18402, 2023.

Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. Benign overfitting in two-layer convo-
lutional neural networks. Advances in neural information processing systems, 35:25237-25250,
2022.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee,
and Sungrae Park. Swad: Domain generalization by seeking flat minima. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 22405-22418. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/bcbd1ccdcd363c6848a1d760f26c28al0-Paper.pdfl

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding the
mixture-of-experts layer in deep learning. Advances in neural information processing systems, 35:
23049-23062, 2022.

Zixiang Chen, Junkai Zhang, Yiwen Kou, Xiangning Chen, Cho-Jui Hsieh, and Quanquan Gu. Why
does sharpness-aware minimization generalize better than sgd? arXiv preprint arXiv:2310.07269,
2023.

10

http://arxiv.org/abs/2304.08466
https://proceedings.neurips.cc/paper_files/paper/2021/file/bcb41ccdc4363c6848a1d760f26c28a0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/bcb41ccdc4363c6848a1d760f26c28a0-Paper.pdf

Under review as a conference paper at ICLR 2026

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Yihe Deng, Yu Yang, Baharan Mirzasoleiman, and Quanquan Gu. Robust learning with progressive
data expansion against spurious correlation. arXiv preprint arXiv:2306.04949, 2023.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Yunxiang Fu, Chaoqi Chen, Yu Qiao, and Yizhou Yu. DreamDA: Generative Data Augmenta-
tion with Diffusion Models, March 2024. URL http://arxiv.org/abs/2403.12803.
arXiv:2403.12803 [cs].

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM journal on optimization, 23(4):2341-2368, 2013.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139-144, 2020.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset selec-
tion in deep learning. In International Conference on Database and Expert Systems Applications,
pp. 181-195. Springer, 2022.

Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing Zhang, Philip Torr, Song Bai, and Xiaojuan
Qi. Is synthetic data from generative models ready for image recognition?, February 2023. URL
http://arxiv.org/abs/2210.07574. arXiv:2210.07574 [cs].

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8340-8349, 2021.

Dan Hendrycks, Andy Zou, Mantas Mazeika, Leonard Tang, Bo Li, Dawn Song, and Jacob Steinhardt.
Pixmix: Dreamlike pictures comprehensively improve safety measures. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16783-16792, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 6840-6851. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/4cSbcfec8584af0d967f1abl0179cad4b—Paper.pdfl

Khawar Islam and NAVEED AKHTAR. Context-guided responsible data augmentation with diffusion
models. In ICLR 2025 Workshop on Navigating and Addressing Data Problems for Foundation
Models, 2025.

Khawar Islam, Muhammad Zaigham Zaheer, Arif Mahmood, and Karthik Nandakumar. Diffusemix:
Label-preserving data augmentation with diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 27621-27630, 2024a.

Khawar Islam, Muhammad Zaigham Zaheer, Arif Mahmood, Karthik Nandakumar, and Naveed
Akhtar. Genmix: effective data augmentation with generative diffusion model image editing. arXiv
preprint arXiv:2412.02366, 2024b.

Samy Jelassi and Yuanzhi Li. Towards understanding how momentum improves generalization in
deep learning. In International Conference on Machine Learning, pp. 9965-10040. PMLR, 2022.

Simran Kaur, Jeremy Cohen, and Zachary Chase Lipton. On the maximum hessian eigenvalue and
generalization. In Proceedings on, pp. 51-65. PMLR, 2023.

11

http://arxiv.org/abs/2403.12803
http://arxiv.org/abs/2210.07574
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

Under review as a conference paper at ICLR 2026

Yiwen Kou, Zixiang Chen, Yuanzhou Chen, and Quanquan Gu. Benign overfitting in two-layer relu
convolutional neural networks. In International Conference on Machine Learning, pp. 17615—
17659. PMLR, 2023.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision workshops,

pp. 554-561, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical Report, University of Toronto, 2009.

Orest Kupyn and Christian Rupprecht. Dataset enhancement with instance-level augmentations. In
European Conference on Computer Vision, pp. 384—402. Springer, 2024.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander
Madry. ffcv. https://github.com/libffcv/ffcv/, 2022. commit 4dd291a.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollér, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740-755. Springer, 2014.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012-10022, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976-11986, 2022.

Lorenzo Luzi, Paul M Mayer, Josue Casco-Rodriguez, Ali Siahkoohi, and Richard G Baraniuk.
Boomerang: Local sampling on image manifolds using diffusion models. arXiv preprint
arXiv:2210.12100, 2022.

S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-grained visual classification of
aircraft. Technical report, 2013.

Eyal Michaeli and Ohad Fried. Advancing fine-grained classification by structure and subject
preserving augmentation. Advances in Neural Information Processing Systems, 37:22316-22349,
2024.

Samuel G. Miiller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmenta-
tion. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp.
774782, October 2021.

Dang Nguyen, Paymon Haddad, Eric Gan, and Baharan Mirzasoleiman. Changing the training data
distribution to reduce simplicity bias improves in-distribution generalization. Advances in Neural
Information Processing Systems, 37:68854—-68896, 2024.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In
Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 8162-8171. PMLR,
18-24 Jul 2021. URL https://proceedings.mlr.press/v139/nichol2la.htmll

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number

of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722-729. IEEE, 2008.

12

https://github.com/libffcv/ffcv/
https://proceedings.mlr.press/v139/nichol21a.html

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d* Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in Neural Information
Processing Systems, 35:36479-36494, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pp. 2256-2265, Lille, France, 07-09 Jul 2015. PMLR. URL https://
proceedings.mlr.press/v37/sohl-dicksteinl5.html.

Jacob Mitchell Springer, Vaishnavh Nagarajan, and Aditi Raghunathan. Sharpness-aware minimiza-
tion enhances feature quality via balanced learning. In The Twelfth International Conference on
Learning Representations, 2024.

Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan Salakhutdinov. Effective Data Augmen-
tation With Diffusion Models, May 2023. URL http://arxiv.org/abs/2302.07944.
arXiv:2302.07944 [cs].

Pengfei Wang, Zhaoxiang Zhang, Zhen Lei, and Lei Zhang. Sharpness-aware gradient matching
for domain generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3769-3778, June 2023.

Yanghao Wang and Long Chen. Inversion circle interpolation: Diffusion-based image augmentation
for data-scarce classification. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 2556025569, 2025.

Zhicai Wang, Longhui Wei, Tan Wang, Heyu Chen, Yanbin Hao, Xiang Wang, Xiangnan He, and
Qi Tian. Enhance image classification via inter-class image mixup with diffusion model. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 17223—
17233, 2024.

Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How does sharpness-aware minimization minimize
sharpness? arXiv preprint arXiv:2211.05729, 2022.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Comput. Surv., 56(4), November 2023. ISSN 0360-0300. doi: 10.1145/3626235.
URLhttps://doi.org/10.1145/3626235

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis E.H. Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
pp- 558-567, October 2021.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.

Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 6023-6032, 2019.

13

https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
http://arxiv.org/abs/2302.07944
https://doi.org/10.1145/3626235

Under review as a conference paper at ICLR 2026

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF international conference on computer vision,
pp- 3836-3847, 2023.

Yaowei Zheng, Richong Zhang, and Yongyi Mao. Regularizing neural networks via adversarial
model perturbation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 8156-8165, June 2021.

Yongchao Zhou, Hshmat Sahak, and Jimmy Ba. Training on thin air: Improve image classification
with generated data. arXiv preprint arXiv:2305.15316, 2023.

14

Under review as a conference paper at ICLR 2026

A FORMAL PROOFS

A.1 FULL GRADIENT FORMULAS & USEFUL LEMMAS

From the setting, at iteration ¢, we can take the derivative with respect to the j-th filter w(t) in the
following three training schemes:

1. GD training on the augmented dataset via upsampling: Lemmas

2. GD training on the augmented dataset via synthetic generation: Lemmas[A.3] [A.4]

3. SAM and GD training on the original dataset: Lemmas[A.5] [A.6]
Recall that & is the augmenting factor, and the augmented datasets D¢, Dy now have size Nyey =
aN + k(1 —a)N.

Lemma A.1. (Upsampling: full gradient) In the augmented dataset Dy; after upsampling the “slow-
learnable” subset with a factor k, fort > 0 and j € [J), the gradient of the loss EU(W(t)) with

respect to w§-t) is

3 aN
VO LW) = = =371 (8wl o) v, + i))%

new
=1

3k

new

RO (B3l va)?oa + yilw!, €)%

i=aN+1
where lgt) = sigmoid(—y; f (x;; W 1)) for the two-layer CNN model f.
Proof. We compute the gradient directly from the loss function:

1R en(uf s W)
N Nnew i1 1+ CXP(_yif(wzﬁ W(f)))

VZ;wﬁ(W(t) yivf,wj(_t) (x; W)

Nnew
= Zl) Z .t 2Py
Nnew =1 1

3 alN

- _N Z ll(t) (S<w§t)’ ve)Qve + y’i< (t) £z> Ez)
new =1
3 anw

-5 Z i (g<wj(-t),vd>2vd +yi<w§-t),£i>2€i)

NeW i=aN+1
3 alN

- _N Z ll(t) (2<w](t)’ ve>2v6 + y’i< (t) £z> 51,)
new i=1

N
3k
— a2 U0 (B va) s+ e €)%

MW i—aN+1

where the last step follows from the fact that there are & copies of the same subset in the upsampled
portion of the data. O

Lemma A.2. (Upsampling: feature & noise gradients) In the same setting, V (,>£(W(t)) learns
the features and noises as follows: v

1. Fast-learnable feature gradient:

3
(VO WD), v.) = ﬂ

W .

(f) w'?
Z l; w; e
=1

15

Under review as a conference paper at ICLR 2026

2. Slow-learnable feature gradient:

. N
U LW v — — SR8 1D o ® g2
(V00 LW) 00) =~ 200 S 10 a0,)
J new l:aN+1

3. Noise gradient:

(a). For&;,i=1,--- ,aN
(VYo LW), &) =
(b). For&;,i=aN +1,--- /N

<VZ(t)£(W(t))a €z> - -

— 21Oy, 262

new

LI TOMN0 2
~ i
Wl €06
Proof. The proof follows directly from taking the inner product with the gradient formula in Lemma
Then we proceed using that v., v4, &; form a orthogonal set and that summations involving
noise cross-terms become negligible. O

Lemma A.3. (Generation: full gradient) In the augmented dataset D¢ after synthetically generating
the “slow-learnable” subset with a factor k, fort > 0 and j € |J), the gradient of the loss LE (W (1))

with respect to 'w() is

aN
3
VLW) == == 31 (8w ve) o+ yi(wl €)%,

new i=1
3 N
- 2 W (Bl vatea+ wl”, €)%
new i=aN-+1
NVILW

> 10 (8w va) va + stwl” 7))

i=N+1

= sigmoid(—y; f (x;; W®)) for the two-layer CNN model f.

new

where ll@

Proof. The proof is similar to that of Lemma [A.T] except that for data that contain vy, the first
(1 — a)N data points come from the original dataset, and the rest comes from synthetic generation
with noise v;, 2 = N + 1,..., Npew-. O

Lemma A.4. (Generation: feature & noise gradients) In the same setting, V' wl® E(W(t)) learns the

features and noises as follows:

1. Fast-learnable feature gradient:

o
(VS LW), v) = Zl“) wi) v.)

2. Slow-learnable feature gradient:
N)XKW

3 3
(VS0 LW) 00) = — L3 10)

new i—aN+1

3. Noise gradient: Let {¢;} s = {&3N, U {7}V 41 denote the set of noises in Dg
(which can be the original or genemtlon noise). Then for any ¢;, i € [Nyen),

3
(VG LW O), i) = — 1 yi(w”, ¢)* | il

16

Under review as a conference paper at ICLR 2026

Proof. Similar to Lemma[A.2] We directly take the inner product and assume that all the noises are
dispersed such that summations involving their cross-terms become insignificant in high dimension.
Recall we also assume that the generation noise is orthogonal to features and independent of £;’s. [

Following the same process, we have the following gradients for SAM and GD on the original dataset.

Lemma A.5. (Original dataset: SAM & GD gradients) In the original dataset D, fort > 0 and

i € [J] of GD, the gradient of the loss L(W (V)) with respect to w' is
jelJ]of g p ;

\Y (t)ﬂ(W(t) Zl(t (53 ,ve) e +yi<w§'t)>£i>2£i)
g X
N > i (53 <’w§t)7'0d>2'vd + yi<'w§»t)a€i>2£i>)
i=aN+1

where lgt) = sigmoid(—y; f (x;; W 1)) for the two-layer CNN model f.

Suppose we train with SAM. Then the perturbed gradient has the same expression

® ®

;e and replace ll@ with

except that we replace w;
18 = sigmoid(—y; f (x; W(t) +e®)):

i€

with the perturbed weights w;

v<c<w<t>>>)

alN
_ 3 ®) (a3, () . \2
- _N — li,e (e<wj,e7v€> Ue +yl< j 57£Z> 57/)
3 N
- = 1) (Bitwlt), vayva + yi(w(l),€)%:)
1=aN+1

Lemma A.6. (Original dataset: SAM & GD feature & noise gradients) In the same setting,
V,® E(W(t)) learns the features and noises as follows:
J

1. Fast-learnable feature gradient:
3 53 aN
(t) _ 9P (t) g0, ()
(Vw;t)E(W), Ve) = N i_zlli (w;
2. Slow-learnable feature gradient:

333
(Vo LW) 00) = =8 37 10wy 0a)?

3. Noise gradient:

3
(V0 LW O), &) = 1 i) €)1
The SAM feature & noise gradients are similar except that we replace 'w() l;) ypith wj(2, l (te)

Remark. Suppose the data point x; has feature v, and noise ¢;. We have that

J
lz(t):sigmoid Z—ﬁ§< (t)v > < 2 ¢z>) 3

=1

17

Under review as a conference paper at ICLR 2026

and lft = sigmoid Z —B3{(w je, va)® — yi(w j(tg,qS)3
Jj=1
The same formula holds if the feature is v,.

Similar to Nguyen et al.|(2024), we assume that the logit terms are controlled in some sense to reduce

the nonlinearity. More formally, for Theorem , we will use the approximation lgt) = lz(te) =0(1)
for any early iteration ¢. At a high level, this follows from the small perturbation and the fact that the
weights have not “significantly” learned any noises (despite some overfitting) in the early phase.

J
SIngId Z _63 <wj('t)7 ’Ud>3 —Yi <wj('t)7 ¢2>3 = SlngId Z 53 g(t27 > < J €’ ¢1>

j=1 Jj=1

Hence, this is implicitly assuming a small p such that w](t) and wj(fi are not too different, and a large

number of neurons J such that the noise term in the sigmoid Zj: 1Y <w§‘2, ¢;)3 is ‘more ‘diluted”
(close to 0).

Insights from gradient formulas. By directly computing these relevant gradients, we can see that
some observed phenomena already become self-explanatory in the formulas. For instance, Lemma
implies that for upsampling, the gradient alignment is & times larger for the noises we replicated.
At a high level, this would cause overfitting to these particular noises when performing gradient
update. In the next section, we formalize the intuition by examining the underlying mechanism of
noise learning in greater detail.

B GD vs. SAM NOISE LEARNING: PROOF OF THEOREM [4.1]

Remark. Heuristically, we say that the noise is being learned well if the magnitude of the alignment
|<wj(-t), &) is large, meaning that the weights align or misalign with the noise to a great extent. We

say that the model is learning the noise if |<w§t)7 &,)| increases over time. In practice, overly fitting
or overly avoiding certain noises are both harmful to a model’s generalization.

Lemma B.1. (Gradient norm bound) In our setting, we can bound the norm of the gradient matrix

VLW®) as

3 :
IVEWO)lr = 1wl &)?I6 Vi

Proof. This norm can be lower bounded by the the norm of one column:

HV/:(W(t))HF = zJ: va§t>L(W(t))H2
— :

> va(“E(W(t))H for some neuron j
936 aN 2 930 N 2 5 N
e t
- St (S0) S 3 l?’) 3 S . eyt
i=1 i=aN+1 i=1
by taking the norm of the gradient in Lemma[A.5]and using orthogonality
3 - 3 3
25 Z lE”yij‘-”, &) > H ngt)yi<wj(-t)> &)%€i| = ~ l(t)< &)2N&l Vi
i=1

since cross terms become negligible
O
Lemma B.2. (Noise set equivalences) With a sufficiently small SAM perturbation parameter p, at
some early iteration t, the following set relations hold:

) _ () 7O _ 7
IJ} IJ €+’ J - J €,—

18

Under review as a conference paper at ICLR 2026

Proof. We first note that for some early training weights W (), we have the following connection
between the original weights and the SAM perturbed weights:

(wie, &) = () + 9V 0 LW D), &)
= (" &) + (V0 LW). &)

3p)
= (&) = L1yiw®, €)2]&)° by Lemma[Ag)
We consider sufficiently small p such that:
()
w;’, &
0<p<min{|<J£H&>|:£i€D}.)
i

We recall that p*) = p/||VL(W®)||. Then suppose &; € Ij(t)_ that is y; and <w§t),5i) have
opposite signs. Eq.] implies

(t)

(w6 = &) (1- Zo) ele?)
30

— w6 (14 Bl Plwl 1),

>0
which implies that sgn((wj(fi, &)= sgn((wﬁt), &))and & € I](te) _

Now suppose &; € Ij(ti Eq. Ebecomes:
3pt)
(wid) =) (1- Bl &) 161P
3p(
~ w6 (1- Bl Pl)

€ (0, 1) as shown below

Note that Lemma [B.1] gives us:

30 ()1 e 112114 (8 3 (*) 0 ¢
1>1 = ——1"[[&]"[(w); ,€i>|=1—*—l €1 (w;”, &)
N ! N [VLWO)]|F
3 P e 0 ¢
>1-— €11 (w;”, &)
N 0w € el
1 pll&ill
=l=0
[(w;”, &)l
(t)
w; S i .
>17‘< J 2 H(EH by the choice of p
€1 [(wi", &)]
=0. (6)
Hence, we have that sgn((wﬁi7 i) = sgn((w; ,&)) and §; € I](€)+ Since Ij(t_)|r and Ij(tz cover
all the noises, the lemma statement follows. O

B.1 PROOF OF THEOREM[4.T]

We then start with item (1) of the theorem. First, for GD, each noise update is computed via:
(w6 = (W, &) = (V0 LW D), &)

= (w0 &) + Oy €07 &> by Lemma[&S
=<wjtv£z-><1+n Dyille) (w'?, >> (7

19

Under review as a conference paper at ICLR 2026

Then by definition, for all the noises &; € I](-_t)_, y; and (w§-t), &) have opposite signs, so the above
equation becomes: '

(i &) = (w]”. &) (1 - nf;é”||s,»2|<w§t>,si>|) :

Without loss of generality, we consider the case when <w§t), &;) > 0. We then define the correspond-

ing sequence a; = <w§t), &;) generated by the update:

3
apy1 = ag(1 — nCil,Et)at), where C; = NH&HQ

Next, we want to show that given a proper 7, this sequence is monotonic towards 0, meaning that
these noises are gradually “unlearned” by the weights. We provide an inductive step below, which
can be easily generalized.

If the learning rate satisfies

1
0< n< =)
Ciat C’L <w](’t)7 €7>

then by the update, the following inequality holds:

0<at(1—c

iat

C; l(t)at> = Q¢ (]. - l()) < A¢41 < ag

Consequently, a;+1 < a; implies that
< < L

Cia; — Ciagq

A similar argument holds for (w§t)7 &;) < 0. Hence, if we take sufficiently small

1

the weights’ alignment with these noises will be monotonic throughout the updates and get closer and
closer to 0. The proof for SAM is similar (we replace (w§t)7 &) by (w;c, S yfor& e] E _, etc.).

= a442 < a¢41 by the same argument.

Now we proceed with item (2).

Then we consider §; € 7 (tJ)r 7; (*) ¢+ in the setting of Lemma Eq. now becomes:

W€ = (w!?. &) (1+nNz<”yz||ez||< ¢ >)

= (w", &) (1 +1 Nﬂ“sin?uwg“,eﬂ) = (Wi &) > [(wl” &) @)

And a similar expression holds for SAM. Consequently, the alignments will be monotonically away
from 0, continually being learned through iterations. Hence, we want to compare how the gradients
align with noises: [(Va,, LW O+ €D), &)] vs. [(Vap, LW D), €;)]. By Lemma we have
that

3
For GD: |(Vu, L(W®), &) = NZE” (w, €2 €]

For SAM: [(V,, . L(W® 1 e ¢,y =

3t
1 (<w§“,£z—> 10w,)2 ||eﬂ) €I
2

3pt)
etw &)? (1—Nl§”yz-< 0 elel?) N

2
3p!
Ot 692 (1- Lol e1) e,
)

20

Under review as a conference paper at ICLR 2026

where (i) follows from Eq. Eand (ii) uses the approximation for the logits in early training (zf) = ll(te))
Now with a sufficiently small p that satisfies Equation [3] the bound in 6] yields

3 3pt) 2
(Va, LV 1 €9).8)] = 117 ()" £)° (1 v SR ICRN ST 131

€ (0,1)

< 210w)& = |(Vu, LV D), €]

Since this inequality holds for all ¢; € 7" = 7{")

i+ =Z; ¢+, we compute the average over these noises and
have that:

NoiseAlign(I,(»t) w(-t)) = NoiseAlign(I](i)r7 w<t)) < NoiseAlign(IJ(.fJ)r, wj(.t)).

J,€,+7 7 J,€ J,€
The special case of the theorem can be proved by directly setting the early training weights to be the
initialization W% Since W) ~ N(0,02) and &; ~ N(0,02/d), with a large N, Ij(.’ol and Ij(.?,
will each contain roughly half of the noises, as sgn((wéo), &:)) = sgn(y;) has probability 0.5 in this
case.

Remark. The theory matches our insights that the noises tend to be fitted in general for the upsampled
dataset. We do note that the bound in Lemma@]can be loose, as it covers very extreme cases, and
the actual choice of p could be much larger in general without breaking the logic of our argument.

C GENERATION VS. UPSAMPLING: BIAS PERSPECTIVE AND PROOF OF
THEOREM [4.2]

Item (1) of this theorem can be proved in a similar fashion as for Theorem &.1]in Appendix [B]

For item (2), the update rules follow directly from Lemmas Again these formulas themselves
can partially explain what happens: the “generation” gradient learns every noise in the same manner,
but the “upsampling” gradient learns the replicated noises k times more in one iteration.

Lemma C.1. (Static noise sets) In our setting, with a sufficiently small learning rate 0, for all j € [J]

and all the early iterationst = 0, ..., T, we have that:
G,(0) _ +G,(1) _ _ 7G.@®) _ _ 7G.(T)
Ly =Ly ==L ==L
U,0) _ +U,(1) _ _ U@ _ _ 7U.(T)
Ly =Ly ==Ly ==L

The same holds for the corresponding sets If ’_(t) and IJI{ ft).

Proof. This directly follows from the previous proofs, where starting from the intializations, small
learning rate ensures that certain noise alignments move towards 0 and others move away from 0
early in training. Hence, in this process, the signs do not change, and these sets always contain the
same noises as t progresses O

We now focus on the special case of the theorem and show that in expectation, our requirement on

the generation noise prevents NoiseAlign(IjG’jr(lt)7 w](-t)) from getting too large.

Lemma [C.T|implies the sets of noises to which we overfit or do not overfit remain unchanged during
early training. Hence, we eliminate the possibility that noises move from one set to another, which
simplifies the big picture. The technique is similar to what we did in Theorem [4.1] and we show that
this also holds true for data augmented via generation.

For Theorem[4.2] the expectation is taken with respect to the underlying data (and noise) distributions.
We first start with computing E {NoiseAlign(Ifjr(t), wﬁ.t)) . Expanding using the definition of
NoiseAlign, we have that this quantity equals:

21

Under review as a conference paper at ICLR 2026

N N,
1 new
gl S [0t Oe)[+ > (V0 LW),
7+ i=1, ’ i=N+1, :
gez Ve

—E H<vw;t)c(w<t>),¢i>

D@ € If_’,,_(t)}
= pE [|(V,,0 LW "), &)

pE{

16 € If;f”} +(1-pE H <Vw§_t>ﬁ(W(t)), i)

. G, (t)
pyi € 1% }

(Vo LW O)0)|| + (1 =P E [|(7,,0 LW D),)

]. (10)

_ N _ 1
where p = Nocw = aTh(i=a)

instead of the synthetic data. The last equality is due to the fact that ¢; € chf jr(t) are generated i.i.d
and follow the same noise distribution D or D.,.

measures the probability that the noise belongs to the original data

Recall the following assumption:
E [Ly(6)(w”, 72 l712] < (k+ DE [1e(t) (], &) €]
B |y 7211 <+ DE | i 67l
E [|(V0 LW ®),9)]|] < (k+ DE[|(V,,0 LW D). 8)|], v~Ds €~D

where the last inequality follows the expression of noise gradient. Again, note that I]Gjr(t) contains
synthetic noises that follow the distribution D., since the synthetic data points are generated indepen-

dently. However, the noises in IJU f) are not independent due to upsampling and therefore do not

follow the noise distribution in D.

To tackle this issue, we use the gradient alignment bound above and continue with Equation

<PE [[(V,,0 LW),8)|] + (1= p)k = DE[[(V,,0 LW),)|

_ 1 (k2 = 1)(1 -)
= mE [<Vw‘§¢)E(W(t)),£> } + mﬂﬂ {‘(Vw§t)£(W(t))’£>H
at+(1—-a) (k* —1)(1 — a)
= ot o) B TVu £V .8 + T P E [V, 0 W), 6]
_ @ t k(1 —a) t
= o a0+ T B (| (Tup W), 8]
1 aN N
o | 2 ‘<Vw<_t>£(W“>),€i> +k >k ’<vw<t>c(w<t>),gi>
‘Ij,-i- | i=1, ! i=aN+1, ’
giez) " geTV(®

=K

—

NoiseAlign(IjI{ f), w§t))} .

The last equality follows from the distribution of noises in the upsampled dataset: the slow-learnable
(1—«)N data points are copied k times, and from the gradient computation (first part of this theorem),
each is learned k times more, giving rise to the two k’s. The noises in each summation term follow
D, as they are independent within the subset of summands.

Hence, we have shown the desired result:
E [NoiseAlign(Ifjr(t), w;t))} <E [NoiseAlign(IJ[{ ;ft), w](-t))} .

22

Under review as a conference paper at ICLR 2026

At a high level, this suggests that starting at the weight wj(-t), as long as the notion of small synthetic

noise is satisfied, the expected gradient alignment with noises in the set where overfitting occurs is
strictly lower when the dataset is augmented through generation. This reduced expected NoiseAlign
leads to gradient updates that place less emphasis on fitting noise, thereby enabling the model to
focus more effectively on learning the true features.

Consequently, although both upsampling and generation promote more uniform learning, their distinct
interactions with noise critically influence generalization performance. This highlights the necessity
of incorporating synthetic data and motivates our method.

D GENERATION VS. UPSAMPLING: VARIANCE PERSPECTIVE AND PROOF OF
THEOREM [4.3]

For generation, we have a fully independent dataset, so given the per-gradient variance bound o, the
variance of the mini-batch gradient g can be computed as:

”7292 gH2

1& 1
- L —112
|\Bzgz - By
uz ﬂ
1 =112
:?ZE[”%*Q”]

ﬁBU
o2

where we can directly take the summation out of expectation due to independence among the data.

E [lgc — al*]

IN

For the upsampled dataset, we instead have two parts:

1. Fully independent part: The first «/V data points that contain the fast-learnable feature are
independent from each other and the rest.

2. Replicated part: The rest of the k(1 — o) N data points that contain duplicates. This part
introduces the risk that the same data points might be selected into the same batch.

With this motivation, we let B = By + B>, where By denotes the number of data points selected
from the fully independent part, and Bs denotes the number selected from the replicated part.

For theoretical simplicity, we consider a stratified mini-batch gradient, where B; and B, are fixed
numbers in proportion to the sizes of the two parts. We assume that B, By are both integers such
that they follow the proportion:

aN o)
Bl:BaN+/€(1—a)N:Ba—i—k(l—a)' 12)
By— B E(1-a)N B k(1 —a) (13)

aN +k(l—a)N " a+k(l—a)

Note that this removes one source of variance since B and B, should themselves be random variables
in the actual gradient. Hence, the actual variance should be larger than that of the stratified version.

The variance of the stratefied mini-batch gradient gy after upsampling can be split as:

II* > 9i- *Bgllz ElY (99 IP|+E|II D (o

zEB 1€By 1€ Ba

E[lgv — g|I°]

(14)

23

||2]

Under review as a conference paper at ICLR 2026

due to independence and unbiasedness. Here with a slight abuse of notation, ¢ € B, By, By represents
the indices of data in each portion. Similar to Equation[TT] we have for the independent part,

0'2 [}

<—B S — 1
B2'T Ba+k(l-a) (15)

EllY (@-9I°

1€B1

For the replicated part, since we may select copied data points, we first rewrite the summation as:

(1—a)N

Z g’L - Z ng

1€ B2
where we index over all the unique data points 7 € By and introduce the random variable Y; > 0
representing the number of copies of each unique point, subject to Z(l N Y, = Bs.

Clearly, as we are selecting Bo data points from a total of k(1 — a)) NV points ((1 — &) N unique ones
each with k copies), Y; follows a hypergeometric distriution. From classical probability theory, we
have:

1. Mean:
k k(1 —a) k k
E[Y;] =B =B =B .
¥l kA—a)N “a+k(l—a)k(l—a)N ~aN+k(1—a)N
2. Variance:

k(1—a)N —kk(l—a)N — By
kAl —a)N k(1—a)N—1
(1—a)N — 1k(1—a)N — B4
(1-a)N kE(1—a)N -1
1—a)N—-1k(1 —a)(aN + k(1 —a)N — B)
(1—a)N (k1 -a)N - 1D(a+ k(1 -a))
l1-a)N-1 k(aN+k(l—a)N—DB)

N (k(1—a)N = 1)(a+ k(1 —)
kE(l—a)N —kaN +k(l—a)N—-B
E(l—a)N—-1 aN+k(l1—a)N
aN+k(l—a)N - B

aN+k(1—a)N

=B i 1— B
~ TaN +k(1-a)N aN +k(l—a)N)’

3. Second Moment:

E[V"] = Var(¥;) + E[Vi]?
k B k ?
SBozN—i—k(l—Oz)N (1 aN + k(1 -)N>+<BQN+/€(1—@)N>
- k . B Bk
B aN+k(1a)N(aN + k(1 -)N+aN+k(1a)N>
B k (k—1)B
~ TaN+k(1-a)N <1+ aN—i—k(l—a)N) ' (16)

Under review as a conference paper at ICLR 2026

With these quantities, we can now compute:

(1-a)N (1—a)N
1 _ 1 _ .
=E ||Z<gz-g>|2] = B[Y Yilgi-g)?| since Y Yi=B
1€ By i=1 i=1
1 (1—a)N)
=5 > E[V2lei-al]
2 7
B 1=1
o2 (1—a)N
<3 E 7]
i=1

o k(l-a)N (k—1)B .
= N <1+aN+k‘(1—a)N> by Equation [I6]
a7

We plug in Equations [I5] [T7)into Equation[T4]to obtain:

072 a cﬁ k(1 —a) 1+ (k—1)B
Ba+k(l—a) Ba+k(l-a) aN + k(1 —a)N
2 J— J—

o (1 N k(k—1)(1 - a) B> _

B (a+k(1—a)2N

E [||§U — §||2] <

In the theorem statement, we use o7 (k) and 0% (k) to differentiate the two and emphasize the
dependence on the augmenting factor k.

E PSEUDOCODE

Algorithm [I] illustrates our method. We include Table [3] to compare it with other augmentation
methods, including classical ones, naive diffusion-based generation, and mix-based methods such as
mixup (Zhang et al.|(2017))) and CutMix (Yun et al.| (2019)).

F ADDITIONAL EXPERIMENTS

F.1 ADDITIONAL EXPERIMENTAL SETTINGS

Datasets. The CIFAR10 dataset consists of 60,000 32 x 32 color images in 10 classes, with 6000
images per class. The CIFAR100 dataset is just like the CIFAR10, except it has 100 classes containing
600 images each. For both of these datasets, the training set has 50,000 images (5,000 per class for
CIFAR10 and 500 per class for CIFAR100) with the test set having 10,000 images. Tiny-ImageNet
comprises 100,000 images distributed across 200 classes of ImageNet Deng et al.| (2009), with
each class containing 500 images. These images have been resized to 64x64 dimensions and are
in color. The dataset consists of 500 training images, 50 validation images, and 50 test images
per class. For transfer learning experiments, we also used three fine-grained classification datasets.
Flowers-102 (Nilsback & Zissermanl [2008) contains 8,189 images of flowers from 102 categories,
with between 40 and 258 images per class. Aircraft (Maji et al., [2013)) consists of 10,000 images
across 100 aircraft model variants, with roughly 100 images per class. Stanford Cars (Krause et al.
2013) contains 16,185 images of 196 classes of cars, with classes defined at the level of make, model,
and year.

Training on different datasets. From the setting in [Andriushchenko & Flammarion|(2022), we
trained Pre-Activation ResNet18 on all datasets for 200 epochs with a batch size of 128. We used
SGD with the momentum parameter 0.9 and set weight decay to 0.0005. We also fixed p = 0.1 for
SAM in all experiments unless explicitly stated. We used a linear learning rate schedule starting at
0.1. The learning rate is decayed by a factor of 10 after 50% and 75% epochs, i.e., we set the learning
rate to 0.01 after 100 epochs and to 0.001 after 150 epochs. For transfer learning experiments, we
fine-tuned a pre-trained ResNet18 on ImageNet-1K. On Flowers-102, we trained for 200 epochs with

25

Under review as a conference paper at ICLR 2026

Table 3: Comparison with other augmentation methods.

Feature Classical Aug (Flip, Crop, etc.) Mix-based (mixup/CutMix)

Core Objective Learn basic invariances Model regularization

Selection Strategy Applied randomly to all images =~ Random pairing of images; aug-

ments all samples

Mechanism Geometric/color transformations ~ Mix patches between real images

Computation Negligible: native GPU opera- Low: simple arithmetic opera-
tions tions

Guarantee (Theory) No Yes

Primary Application Image classification; transfer Image classification; transfer
learning learning

Key Advantage Fast, effective baseline Cheap and effective regularizer

Feature Diffusion-based Our Method

Core Objective Increase data quantity and diver- Reduce simplicity bias; promote

Selection Strategy

sity

balanced feature learning
Selects samples not learned early
in training

Mechanism Generates synthetic images and Generates synthetic images close
mixes them with real images to real images

Computation High: generates multiple times Moderate: only generates a sub-
for different conditional prompts set (30-40% of dataset)

Guarantee (Theory) No Yes

Primary Application Image classification; transfer Image -classification; transfer
learning learning

Key Advantage Can boost performance at a large Efficient: high gain from few

compute cost

samples; can be combined with

prior methods

an initial learning rate of 0.001. On Aircraft and Stanford Cars, we trained for 100 epochs with an
initial learning rate of 0.01.

Training with different architectures. We used the same training procedures for Pre-Activation
ResNet18, VGG19, and DenseNet121. We directly used the official Pytorch |[Paszke et al.| (2019)
implementation for VGG19 and DenseNet121. For ViT [Yuan et al.|(2021)), we adopted a Pytorch
implementation at https://github.com/lucidrains/vit-pytorch! In particular, the
hidden size, the depth, the number of attention heads, and the MLP size are set to 768, 8, 8, and 2304,
respectively. We adjusted the patch size to 4 to fit the resolution of CIFAR10 and set both the initial
learning rate and p to 0.01. For both ConvNeXt-T and Swin-T, we used their official implementations
but trained with SGD instead of Adam. The (learning rate, p) is set to (0.1, 0.05) for ConvNeXt-T
and (0.01, 0.001) for Swin-T.

Hyperparameters. For UPSAMPLE Nguyen et al.[(2024)), we adopt their default hyper-parameters
for separating epochs and set the upsampling factor £ to 2 as it yields the best performance. For our
method, the upsampling factor & is set to 5 for CIFAR10 and CIFAR100 while that of TinyImageNet
is set to 4. Table ff summarizes the upsampling factor along with the denoising steps at which the
synthetic images are used to augment the base training set. For transfer learning experiments, we set
k to 2.

Generating synthetic data with diffusion model. We use an open-source text-to-image diffusion
model, GLIDE [Nichol et al.| (2021)) as our baseline for image generation. We directly used the of-
ficial Pytorch implementation at https://github.com/openai/glide—text2im. While
generating, we set the time steps as 100 and the guidance scale as 3.0. For a k-way classification, we
input the class names C' = {¢y, . .., ¢x } with prompt I =" a photo of{¢;}’. For DiffuseMix, we used
their official implementation with a single conditional prompt (“Autumn”).

26

https://github.com/lucidrains/vit-pytorch
https://github.com/openai/glide-text2im

Under review as a conference paper at ICLR 2026

Algorithm 1 Data Extraction and Image Generation for Training

1: Input: Original dataset D, Model f(-, W(O)), Separation epoch ¢, Total epochs 7', Time steps ¢,
GLIDE model G(p0, X¢)

2: Step 1: Initial Trainin%

3: Train the model f(-, W(©)) on dataset D for ¢ epochs

4: Step 2: Clustering and Data Selection Based on Loss

5: for each class ¢ € D do

6: {C1,0} < k-means(f(x;; W®)) {Cluster data into C; and Cs}

7 Step 3: Image Generation from Selected Data

8: Obtain text prompt ! {e.g. For class dog, [is a photo of dog}

9: for each data point 2™ € C, do

10: Initialize random noise € ~ N(0, I)

11: Generate initial noisy image z;, < /o, 2™ + /T — oy, €
12: for s from ¢, to 1 do

13: M»E<_M0(-r5757l)729($sa35l)

14: xs_1 < sample from N (u, X)

15: end for

16: ZTgenerated = L0

17: D = D U Zgeneraea {Add the generated image to the dataset}
18: end for

19: end for

20: Step 4: Retraining the Model
21: Train the model f(-, W) on updated dataset D for T" epochs
22: Output: Final model f(-, W (T))

Table 4: Details of the upsampling factor & for different methods and datasets.

Method | Dataset | k | Denoising steps
UPSAMPLE CIFAR10 2
CIFAR100 2
Tiny-ImageNet | 2
Ours CIFAR10 5| 40,50,70, 80
CIFAR100 5| 40,50,70, 80
Tiny-ImageNet | 4 50, 70, 80

Computational resources. We used 1 NVIDIA RTX 3090 GPU for model training and 4 NVIDIA
RTX A5000 GPUs for generating.

F.2 ADDITIONAL EXPERIMENTAL RESULTS

State-of-the-art architectures. To further demonstrate the effectiveness of our method, we evaluated
it on two widely used modern vision backbones: ConvNeXt-T (Liu et al.| [2022), a convolutional
network that revisits ConvNet design with architectural refinements inspired by transformers, and
Swin-T (Liu et al.l [2021)), a hierarchical vision transformer that introduces shifted windows for
efficient and scalable self-attention. Both models were trained on CIFAR-10 using SGD with k£ = 2.
As shown in Table (1] our method consistently outperforms both the Original (no augmentation) and
UPSAMPLE. In particular, for ConvNeXt-T, our approach achieves a nearly 7% reduction in test error
compared to the second-best method, highlighting its strong compatibility with modern architectures.

Qualitative results. Figure[6] presents examples of slow-learnable (top) and fast-learnable (bottom)
samples in CIFAR-10 where the slow-learnable samples are specifically targeted in our synthetic data
augmentation. Slow-learnable samples are often visually ambiguous: the object may be partially
visible, relatively small compared to the background, or blended with clutter, making them harder
to recognize. In contrast, fast-learnable samples are clear and representative of their class, with the
object occupying most of the image and little background interference. These characteristics explain

27

Under review as a conference paper at ICLR 2026

vavir lane l.auw'mOb”e i :) deer ﬁ ship ﬁ

E‘Eﬂﬂ=gﬁ=l

Y P S
v

e Rl ekl

Figure 6: Examples of slow-learnable (row 1) and fast-learnable (row 3) samples in CIFAR-10. Rows
2 and 4 show the corresponding synthetic images generated with GLIDE (Section 4.4) using 50
denoising steps (FID = 10.67).

Table 5: Training ResNet18 on CIFAR10 with different upsampling factor (k).

Real

Synthetic

Real

@
o
©
£
©
k)
2
2
)
k)
]
©
c
£
©
9
H
k)
)
k)
)
©
£
©
<@
o
)
fid
k)
)
©
€
©
@
o
)
i

Synthetic

K CIFARIO (UPSAMPLE) CIFARIO (OURS) CIFARI00 (OURS) TINY-IMAGENET (OURS)
2 4.79 4.57 21.13 32.90
3 5.01 4.52 21.27 30.88
4 5.04 4.45 20.26 30.64
5 4.98 4.42 20.00 31.28

Table 6: FID and test classification error of ResNet18 on CIFAR10 when augmenting with synthetic
images from different denoising steps. The upsampling factor % is set to 2 here.

STEPS FID ERM SAM
O(ORIGINAL IMAGES) 5.07 4.01
10 5.36 494 4.03
20 6.86 4.85 3.92
30 7.48 4.83 3.79
40 8.52 4.73 3.92
50 10.67 4.56 3.69
60 13.25 4.68 3.72
70 17.46 491 3.84
80 24.27 4.83 3.98
90 34.69 4.87 3.86
100 47.35 499 4.28

why slow-learnable samples are acquired later in training, whereas fast-learnable ones are learned
quickly. Figure[§] shows that our synthetic examples preserve key visual content (features)—such as
object shape, structure, and spatial arrangement while introducing subtle variations in texture or color
(noise). For instance, an image of a bird in the second row is reproduced with the same layout and
pose, but with different color for the neck part. Such nuanced transformations are difficult to achieve
with standard augmentations like random cropping or flipping, highlighting the value of generative
augmentation in our approach.

Effect of the upsampling factors. Table [§illustrates the performance of our method and UPSAM-
PLE when varying the upsampling factors. As discussed in Section[d] UPSAMPLE achieves the best
performance at k = 2 due to overfitting noise at larger k. On the other hand, using synthetic images,
our method benefits from larger values of k, yielding the best performance at k = 5 for the CIFAR
datasets and k£ = 4 for the Tiny-ImageNet dataset. This empirical result reinforces our theoretical
findings in Section[4.2]

28

Under review as a conference paper at ICLR 2026

Table 7: Training ResNet18 on CIFAR10 with different data selection strategy. We used SGD and set
the upsampling factor £ to 5 here.

METHOD MISCLASSIFICATION HIGH LOSS SLOW-LEARNABLE (UPSAMPLE AND OURS)
TEST ERROR 4.87+£0.10 4.77 +0.06 4.42 + 0.04
5.5
A TR S N S SN B (RS UPSAMPLE (k = 2)
504 1 e UPSAMPLE (k = 4)
\ —— Ours (k =2)

4.5 \ Ours (k = 4)
Q
240
.
© 3.5
>
T 3.0
—
(O]

2.5

2.0

1.54

Q O O 0 O 0O O 0O OO O O O 0,0 O 0O 0O 0 0 N
Ny W S 0 A Y QNQ\\"\?’&’\?‘\‘:"\,Q"\;\\%@

Epoch

Figure 7: Variance of mini-batch gradients of ResNetl18 with SGD on the augmented CIFAR10
dataset found by UPSAMPLE and Ours when varying the upsampling factor k. Our method yields
lower gradient variance throughout the entire training process.

Effect of the number of denoising steps. Table 6] illustrates the impact of the number of denoising
steps on both the FID score and the downstream performance of our method. When initializing
the denoising process with real images, increasing the number of steps leads to a higher FID score.
Unlike prior works in synthetic data augmentation, we observe that minimizing the FID score between
real and synthetic images does not necessarily correlate with improved performance. Specifically,
using fewer steps generates images that are overly similar to real images, potentially amplifying the
inherent noise present in the original data. Conversely, too many denoising steps introduce excessive
noise, which also degrades performance. Empirically, we find that using 50 denoising steps strikes
the best balance, yielding optimal results for both SGD and SAM optimizers.

Alternative selection strategies. Our approach differs from core-set selection methods|Guo et al.
(2022), which aim to reduce dataset size while matching the performance of training on the full
data. Such methods either require training the model (or a smaller proxy) and use its statistics to
find the coreset or update the coreset during the training. In contrast to coreset selection, the goal
of our approach is to improve the generalization performance over that of full data, by reducing the
simplicity bias of training. We showed that this can be done by augmenting the data with faithful
synthetic examples corresponding to the slow-learnable part of the data. Motivated by theory, we
found such examples by clustering the model output early in training (without training a proxy model
or updating the subset during training). However, other more heuristic approaches can be also used to
find slow-learnable examples. In this section, we conducted new experiments to find slow-learnable
examples based on (1) high loss and (2) misclassification, at the same checkpoint as used in our
experiments in the paper. As shown Table[7 our method outperforms both heuristic-based selection
strategies. Corset selection methods can be applied on top of our synthetically augmented data to
further improve data-efficiency. This is an exciting direction we leave for future work.

Generation time. Using 4 GPUs, the generation time for the entire CIFAR-10, CIFAR-100, and
Tiny ImageNet datasets is approximately 12, 12, and 26 hours, respectively. In contrast, our method
requires generating only about 30%, 40%, and 60% of the total dataset size, reducing the generation

29

Under review as a conference paper at ICLR 2026

141
UPSAMPLE _L
124 —— Qurs e
L—°“0.04‘ e Y
10 e -y
5 0.021
()]
= 160 170 180 190 200
£ epochs
g 6
)
41
24
o N

25 50 75 100 125 150 175 200
epochs

Figure 8: Training loss of ResNet18 on the CIFAR10 dataset when upsampling the slow-learnable
examples vs. augmenting them with synthetic data

B Baseline (no augmentation) WM 2 clusters 3 clusters W 4 clusters
5.2 . (Labels show: #clusters / #augmented_clusters
baseline
5.1
I
X 5.0
-
549
1
W oag
4.
) 4c/2a
g 4.7
2 4
4.6
4.5
4.4

11% 24% 30% 33%
Augmented Examples (%)

Figure 9: Test error of ResNet18 trained on CIFAR-10 with different cluster-based augmentation
configurations. Each bar represents one experimental setting, color-coded by the number of clusters:
blue for 2 clusters, orange for 3 clusters, and green for 4 clusters. Augmented clusters are selected
as those with the highest average losses. The x-axis shows the percentage of augmented examples
relative to the full dataset size. Error bars represent standard deviations across runs.

time to just 3.6, 4.8, and 15.6 hours, respectively. This represents a substantial improvement
in efficiency compared to prior approaches to synthetic data generation, which typically require
producing 10-30 times more samples than the original dataset size.

Variance of mini-batch gradients. Figure [7] presents the mini-batch gradient variance during
training of ResNet18 using SGD on the augmented CIFAR-10 datasets selected by UPSAMPLE and
our proposed method. Across all upsampling factors k, our method consistently yields lower gradient
variance throughout the entire training process. This indicates that our synthetic data provides a
more stable and consistent learning signal, which can contribute to more effective optimization.
Notably, the variance gap between our method and UPSAMPLE widens significantly after epochs 100
and 150—key points at which the learning rate is decayed. This suggests that our method enables
the model to adapt more smoothly to changes in the learning rate, likely due to the benign noise
introduced in the faithful synthetic images. Lower gradient variance is often associated with more
stable convergence and improved generalization, highlighting the advantage of our approach.

30

Under review as a conference paper at ICLR 2026

Table 8: Test accuracy of training ResNet18 and ResNet50 on ImageNet.

Method Augmentation (%) ResNet18 ResNet50
Top-1 Acc | Top-5 Acc Top-1 Acc | Top-5 Acc
Original 0 67.23 £0.02 | 87.76 £0.10 | 73.24 +0.02 | 91.63 + 0.08
UPSAMPLE 65 68.86 £ 0.20 | 88.68 £0.12 | 74.04 +0.15 | 92.06 + 0.08
Boomerang 100 68.95 £ 0.04 | 89.02 +£0.09 | 73.72 +0.06 | 92.09 £ 0.11
Ours + Boomerang 65 69.28 + 0.06 | 89.21 + 0.09 | 74.77 + 0.05 | 92.62 + 0.07

Table 9: Performance comparison of training YOLOv5m on MS-COCO.

Method | Augmentation (%) | AP5o | mAPso_o5
Original 0 63.26 44.26
UPSAMPLE 75 63.87 44.92
InstanceAugmentation 100 64.17 45.75
Ours + Instance Augmentation 75 64.94 46.28

Training loss. Figure[§]illustrates that training with synthetic augmentation (Ours) has lower training
loss than training with real augmentation (UPSAMPLE).

Different number of clusters. Figure J]illustrates the performance of our method with varying
numbers of clusters (2, 3, and 4). For each number of clusters, we varied the number of augmented
clusters, which are selected as those with the highest average losses. The baseline (0%) corresponds to
no augmentation, while 100% indicates augmenting all clusters. As shown in the figure, augmenting
too few or too many examples is suboptimal. For ResNet18 on CIFAR-10, augmenting approximately
30% of the dataset yields the best performance.

F.3 EXPERIMENTS ON IMAGENET

To demonstrate the scalability of our method, we apply it to training on ImageNet
[2009), a large-scale dataset containing over 1.2M images across 1,000 classes and commonly
used as a benchmark for evaluating visual recognition models. Due to computational con-
straints, we adopt the FFCV library (Leclerc et all, 2022) for efficient data loading and train-
ing, adapting the implementation from the publicly available repository at https://github,
com/libffcv/ffcv-imagenet, We train ResNetl8 and ResNet50 using the smallest con-
figuration provided in that codebase (i.e., 16 epochs). For synthetic image generation, we em-
ploy Boomerang (Luzi et al} [2022)) with Stable Diffusion v1.5 (https://huggingface.co/
stable-diffusion-vl-5/stable-diffusion-v1-5), following the settings described
in Boomerang’s paper. For selecting augmented images, we use the checkpoint at epoch 2 and the
number of augmented images is about 65% of the full dataset.

Table [§] reports the ImageNet test accuracy when training ResNet18 and ResNet50 with different
augmentation strategies. Our method achieves the highest Top-1 and Top-5 accuracies across both
architectures, outperforming Boomerang despite using only 65% augmentation, whereas Boomerang
requires 100% synthetic augmentation. This demonstrates that our targeted augmentation strategy
not only yields stronger accuracy gains but also does so with substantially lower computational cost.

F.4 OBIJECT DETECTION EXPERIMENTS

To further demonstrate the applicability of our method beyond image classification, we conducted
experiments on object detection. We follow the setup of InstanceAugmentation (Kupyn & Rupprecht,
[2024), which uses a pretrained ControlNet (Zhang et al., 2023)-based inpainter with prompt engi-
neering to repaint individual objects. Following their data augmentation settings (Table 1 in
& Rupprecht, [2024))), we trained a YOLOv5m model https://github.com/ultralytics/
yvolov5|/on the MS-COCO dataset [2014) from scratch using default hyperparameters
(batch size 40, 300 epochs). We used the synthetic images released by the authors of Instance Aug-

31

https://github.com/libffcv/ffcv-imagenet
https://github.com/libffcv/ffcv-imagenet
https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5

Under review as a conference paper at ICLR 2026

mentation. To identify slow-learnable images, we used the model checkpoint at epoch 5 and labeled
any image containing at least one misclassified object as slow-learnable, resulting in 75% of the
dataset.

We evaluate object detection performance using two standard metrics: AP59 and mAP5¢_g5. Both
metrics rely on the Intersection over Union (IoU), which measures how much a predicted bounding
box overlaps with the ground truth. APy computes Average Precision at an IoU threshold of
0.50, providing a lenient measure of detection accuracy—models with high AP5 effectively locate
objects even if their boxes are not perfectly aligned. In contrast, mAP5y_g5 averages AP across loU
thresholds from 0.50 to 0.95 in steps of 0.05, rewarding models that produce both correct detections
and tightly aligned bounding boxes. This makes mAP5y_g5 a more stringent and comprehensive
metric for evaluating detection quality.

Table D] shows that our method also applies effectively to object detection, outperforming all baselines,
including InstanceAugmentation while achieving a 25% reduction in data usage.

32

	Introduction
	Related Works
	Preliminary
	Learning Features Homogeneously without Overfitting Noise
	SAM Suppresses Learning Noise from the Data
	Synthetic Data Augmentation To Amplify Features But not Noise
	Superior Convergence of Synthetic Data Augmentation over Upsampling
	Generating Faithful Synthetic Images via Diffusion Models

	Experiment
	Our Method is Effective across Datasets and Architectures
	Ablation studies

	Conclusion
	Formal Proofs
	Full Gradient Formulas & Useful Lemmas

	GD vs. SAM Noise Learning: Proof of Theorem 4.1
	Proof of Theorem 4.1.

	Generation vs. Upsampling: Bias Perspective and Proof of Theorem 4.2
	Generation vs. Upsampling: Variance Perspective and Proof of Theorem 4.3
	Pseudocode
	Additional Experiments
	Additional experimental settings
	Additional experimental results
	Experiments on ImageNet
	Object detection experiments

