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Abstract

Graph Neural Networks (GNNs) are powerful tools for learning from graph-
structured data, but their application to large graphs is hindered by computational
costs. The need to process every neighbor for each node creates memory and
computational bottlenecks. To address this, we introduce BLISS, a Bandit Layer
Importance Sampling Strategy. It uses multi-armed bandits to dynamically select
the most informative nodes at each layer, balancing exploration and exploitation to
ensure comprehensive graph coverage. Unlike existing static sampling methods,
BLISS adapts to evolving node importance, leading to more informed node selec-
tion and improved performance. It demonstrates versatility by integrating with both
Graph Convolutional Networks (GCNs) and Graph Attention Networks (GATS),
adapting its selection policy to their specific aggregation mechanisms. Experiments
show that BLISS maintains or exceeds the accuracy of full-batch training.

1 Introduction

Graph Neural Networks (GNNs) are powerful tools for learning from graph-structured data, enabling
applications such as personalized recommendations [Ying et al.| [2018]], 'Wang et al.| [2019]], drug
discovery [Lim et al.[[2019], Merchant et al.|[2023]], image understanding |[Han et al.|[2022} [2023]],
and enhancing Large Language Models (LLMs) Yoon et al.|[2023]],[Tang et al.|[2023]],/Chen et al.
[2023]]. Architectures like GCNs and GATs have addressed early limitations in capturing long-range
dependencies.

However, training GNNs on large graphs remains challenging due to prohibitive memory and
computational demands, primarily because considering all neighbor nodes for each node leads to
excessive memory and computational costs. While mini-batching, common in deep neural networks,
can mitigate memory issues, uninformative mini-batches can lead to: 1) Sparse representations:
Nodes may be isolated, neglecting crucial connections and resulting in poor representations. 2)
Neighborhood explosion: A node’s receptive field grows exponentially with layers, making recursive
neighbor aggregation computationally prohibitive even for single-node mini-batches.

Efficient neighbor sampling is essential to address these challenge. Techniques include random
selection, feature- or importance-based sampling, and adaptive strategies learned during training.
They fall into three categories: (1) Node-wise sampling, which selects neighbors per node to reduce
cost but risks redundancy (e.g., GraphSAGE Hamilton et al.| [2017], VR-GCN |Chen et al.| [2017],
BS-GNN |Liu et al.| [2020]); (2) Layer-wise sampling, which samples neighbors jointly at each
layer for efficiency and broader coverage but may introduce bias (e.g., FastGCN (Chen et al.|[2018]],
LADIES [Zou et al.|[2019], LABOR |Balin and Catalyiirek! [2023])); and (3) Sub-graph sampling,
which uses induced subgraphs for message passing, improving efficiency but potentially losing global
context if reused across layers (e.g., Cluster-GCN |Chiang et al.|[2019], GraphSAINT Zeng et al.
[2019]).
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Our key contributions are: (1) Modeling neighbor selection as a layer-wise bandit problem: Each
edge represents an "arm" and the reward is based on the neighbor’s contribution to reducing the
variance of the representation estimator. (2) Applicability to Different GNN Architectures: BLISS
is designed to be compatible with various GNN architectures, including GCNs and GATs.

The remainder is organized as follows: section |Z| describes BLISS; section [3|reports results; section E|
concludes. A detailed background and related work appear in appendices [Bland [C]

2 Proposed Method

2.1 Bandit-Based Layer Importance Sampling Strategy (BLISS)

BLISS selects informative neighbors per node and layer via a policy-based approach, guided by a
dynamically updated sampling distribution driven by rewards reflecting each neighbor’s contribution
to node representation. Using bandit algorithms, BLISS balances exploration and exploitation,
adapts to evolving embeddings, and maintains scalability on large graphs. Traditional node sampling
often fails to manage this trade-off or adapt to changing node importance, reducing accuracy and
scalability. While [Liu et al.[[2020] framed node-wise sampling as a bandit problem, BLISS extends it
to layer-wise sampling, leveraging inter-layer information flow and reducing redundancy (see fig. ).

Initially, edge weights w;; = 1 for all j € N;, with sampling probabilities g;; set proportionally.
BLISS proceeds top-down from the final layer L, computing layer-wise sampling probabilities
p; for nodes in layer [. These are passed to algorithm which selects k£ nodes. The GNN then
performs a forward pass, where each node 7 aggregates from sampled neighbors j, to approximate its
representation fi;:
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Here, js ~ ¢; denotes the s-th sampled neighbor of node ¢, drawn from the per-node sampling
distribution g;. This process updates node representations h;. The informativeness of neighbors is
quantified as a reward 7;;, and the estimated rewards 7;; are calculated as:
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where S! is the set of sampled neighbors at step ¢, «;; is the aggregation coefficient, and h; is the
node embedding. The edge weights w;; and sampling probabilities g;; are updated using the EXP3
algorithm (see algorithm[3). The edge weights are updated as follows:
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where J is a scaling factor and 7 is the bandit learning rate.

BLISS operates through an iterative process of four steps: (1) dynamically selecting nodes at each
layer via a bandit algorithm (e.g., EXP3) that assigns sampling probabilities, (2) estimating node
representations by aggregating from sampled neighbors using Monte Carlo estimation, (3) performing
standard GNN message passing with these samples, and (4) calculating rewards based on neighbor
contributions to update the bandit policy and refine future sampling distributions. For the detailed
algorithm check algorithm 2]

2.2 Adapting to Graph Attention

BLISS: We extend BLISS to attentive GNNs, following |[Liu et al.| [2020]. With only a sampled
neighbor set S;, true normalized attention «;; is unavailable. We compute unnormalized scores

J
determined sampling probability of edge e;;. We use > jes, dij as a surrogate for the normalization
over the full neighborhood V;, thus approximating «;; while properly weighting sampled neighbors
within the attention mechanism.

d;; and define adjusted feedback attention: oj; = > . g Gij % where ¢;; is the bandit-

PLADIES:Applying LADIES to attentive GNNs (e.g., GATs) requires preserving at least one
neighbor per node after sampling to respect attention’s dependence on neighbor information. The
PLADIES edge-sampling procedure, adapted from Balin and Catalyiirek]| [2023]] and detailed in
algorithm 4] first computes initial probabilities (p;), then iteratively adjusts a scaling factor (c) so the
sum of clipped probabilities approaches the target sample size (k). Probabilities for seed nodes Vi
are set to oo, guaranteeing selection and creating “skip connections,” ensuring each node retains a
neighbor for attention while enabling LADIES to leverage attention efficiently.

3 Experiments

3.1 Datasets

We evaluate the performance of each method in the node prediction task on the following datasets:
Cora, Citeseer|Sen et al.| [2008]], Pubmed Namata et al.|[2012], Flickr, Yelp Zeng et al.[[2019], and
Reddit|Hamilton et al.|[2017]]. More details of the benchmark datasets are given in table

3.2 Experiment Settings

We compare BLISS with PLADIES, a strong baseline among existing layer-wise sampling algorithms.
The code for both BLISS and PLADIES is publicly availablep_-]

Model and Training. We use 3-layer GNNs (GraphSAGE and GATv2) with a hidden dimension
of 256. Models are trained with the ADAM optimizer with a learning rate of 0.002. For bandit
experiments, we set ) = 0.4 and § = 17/10° to prevent large updates.

Sampling Parameters. Batch sizes and fanouts for each dataset are listed in table {4, For smaller
datasets (Citeseer, Cora, Pubmed), a small batch size is chosen to ensure the sampler does not process
all training nodes in a single step (training nodes: 120, 140, and 60 respectively). For larger datasets
(Flickr, Yelp, Reddit), relatively small batch sizes are used to accommodate limited computational
resources (tested on a P100 GPU with 16GB VRAM). An incremental fanout configuration ensures
sufficient local neighborhood aggregation: the first layer’s fanout is set to four times the batch size,
and subsequent layers’ fanouts are twice the preceding layer’s.

Evaluation. For all methods and datasets, training is conducted 5 times with different seeds, and
the mean and standard deviation of the F1-score on the test set are reported. The number of training
steps for each dataset is specified in table[d] We run the experiments on GraphSAGE [Hamilton et al.
[2017] and GATVv2 Brody et al.| [2021].

'The code implementation is available at: https://github.com/linhthi/BLISS-GNN
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Table 1: Comparison of F1-scores (mean #+ standard deviation) for BLISS and PLADIES samplers on
six datasets using Graph Attention Networks (GAT) and GraphSAGE (SAGE) architectures.

Test
GAT SAGE

0.706 £ 0.002  0.580 + 0.032
0.683 £ 0.005  0.601 +£0.017

Validation
GAT SAGE

0.712 £ 0.004  0.598 +0.028
0.699 +0.008 0.616 +0.020

Train
GAT SAGE

0.927 £0.005 0.947 +0.013
0.912 £0.007 0.963 +£0.016

cora BLISS 0.989£0.002 0.983 £0.005 | 0.802+0.005 0.785+0.005 | 0.813 +0.004 0.795 + 0.009
PLADIES | 0.989 +0.003 0.981 +0.005 | 0.800 +0.004 0.767 +0.011 | 0.809 £ 0.003 0.772 +0.014

Dataset Sampler ‘ ‘ ‘
flickr BLISS ‘ 0.515+0.003 0.516 +0.002 ‘ 0.511 £0.003 0.503 +0.001 ‘ 0.511 £ 0.002 0.503 +0.002

citeseer BLISS
PLADIES

PLADIES | 0.511 +£0.006 0.515+0.001 | 0.507 £0.005 0.504 +0.001 | 0.507 £0.005 0.505 + 0.001

pubmed BLISS 0.907 £0.008 0.807 £0.063 | 0.748 £0.006 0.594 +0.047 | 0.731 +0.007 0.597 + 0.057
PLADIES | 0.910+0.008 0.760 +0.042 | 0.750+0.014 0.571 £0.038 | 0.718 £ 0.013  0.557 £ 0.042

reddit BLISS 0.953£0.001 0.979 £0.001 | 0.949 +0.001 0.962 +0.000 | 0.949 +0.001  0.962 = 0.000
PLADIES | 0.954 +0.002 0.979+0.001 | 0.951 £0.001 0.962 +0.000 | 0.950 +0.001 0.962 * 0.000

yelp BLISS 0.540 £0.002  0.530£0.005 | 0.538 +£0.002 0.527 £0.005 | 0.540 +£0.002 0.529 + 0.005
PLADIES | 0.540 +0.002 0.503 £0.009 | 0.537 £0.002 0.501 £ 0.009 | 0.539 £0.002 0.502 + 0.009

Baseline Justification. We compare BLISS against PLADIES from [Balin and Catalyiirek| [2023]]
because it represents the state-of-the-art in layer-wise sampling, which is the specific category BLISS
belongs to. While other sampling methods like GraphSAINT Zeng et al.|[2019] (subgraph sampling)
or GCN-BS [Liu et al.|[2020] (node-wise bandit sampling) exist, direct comparison would require
different experimental setups or fall outside the scope of layer-wise sampling. Our goal is to achieve
accuracy comparable to full-batch training while maintaining scalability, which PLADIES also aims
for within the layer-wise paradigm.

3.3 Results

Our experiments confirm that BLISS, a dynamic layer-wise sampling strategy, consistently out-
performs the PLADIES sampler across multiple benchmark datasets and GNN architectures (GAT
and GraphSAGE), as shown in table[I] It is worth noting that the original LADIES and PLADIES
were designed specifically for GraphSAGE. A comparison of BLISS on GAT against the original
PLADIES (or LADIES) on GraphSAGE reveals a noticeable advantage for BLISS (e.g., Citeseer:
70.6% vs. 60.1%; Pubmed: 73.1% vs. 55.7%).

The results demonstrate superior F1-scores for BLISS, particularly with GAT models on Citeseer
(70.6% vs. 68.3%) and Pubmed (73.1% vs. 71.8%). This advantage stems from its bandit-driven
mechanism, which better adapts to evolving node importance, thereby reducing variance and improv-
ing generalization. The performance gains are most pronounced on smaller datasets (Cora, Citeseer,
Pubmed) and on complex, heterogeneous graphs like Yelp, where BLISS effectively captures nuanced
class relationships (52.9% vs. 50.2% with SAGE). On denser, more uniform graphs like Flickr and
Reddit, the performance difference is minimal. fig. |2} fig. |3| summarizes the F1-scores (mean +
standard deviation) and loss for both samplers on GAT and GraphSAGE architectures.

These results validate our theoretical analysis: BLISS minimizes estimator variance by dynamically
prioritizing informative neighbors, unlike PLADIES’ static sampling which risks under-sampling
critical nodes. The only noted exception was overfitting on the Yelp dataset with GAT for both
samplers, which was unevaluated to maintain uniform experimental conditions.

4 Conclusion

In this work, we proposed Bandit-Based Layer Importance Sampling Strategy (BLISS), a layer-wise
sampling method for scalable and accurate training of deep GNNs on large graphs. BLISS employs
multi-armed bandits to dynamically select informative nodes per layer, balancing exploration of
under-sampled regions with exploitation of valuable neighbors. This enables efficient message
passing and improved scalability. We demonstrated its applicability to diverse GNNs, including
GCNs and GATs, and presented an adaptation of PLADIES for GATs. Experiments show BLISS
matches or exceeds state-of-the-art performance while remaining computationally efficient. Future
directions include exploring advanced bandit algorithms (e.g., CMAB) and extending BLISS to
domains such as GNN-augmented LLMs and vision tasks.
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A Tables

A.1 Notation Summary

Table 2: Summary of key notations used throughout the paper, including their descriptions and
contexts. This table serves as a reference for understanding the mathematical formulations and
algorithms presented in the paper.

Symbol Description Context

Qv Edge weight between node ¢ and j GNN

lAzj Feature vector of sampled node j GNN

N (i) Set of neighbors of node i GNN

k Sample size (number of neighbors) Sampling

G Probability distribution of sampling node from neighbors of ¢ Sampling

s Estimated representation for node % Sampling

Qij Sampling probability of neighbor node j from node i, Sampling

Dj Sampling probability of a node j from all nodes of the current layer Sampling

S Index of the sample neighbor Sampling

Js s-th sampled neighbor of node i Sampling

Wy Edge weight between nodes ¢ and j learned through the Bandit Algorithm BLISS/Bandit
T4 Reward of edge ¢;; BLISS/Bandit
n Learning rate for EXP3 algorithm BLISS/Bandit
) Scaling factor for EXP3 algorithm BLISS/Bandit
St Set of sampled neighbors of node i at iteration t BLISS/Bandit
c Scaling factor in Poisson Sampling PLADIES

€ Tolerance used in Poisson Sampling PLADIES
Nref Refinement factor used in Poisson Sampling PLADIES

A.2 Dataset

Table 3: Summary of the datasets used in the experiments, including the number of nodes, edges,
features, classes, and the split ratio for training, validation, and testing. This table provides an
overview of the graph properties and complexity of each dataset, highlighting the diversity in scale
and structure.

Dataset \ # Classes # Nodes # Edges # Features \ # Train # Validation # Test

Cora 7 2,708 10,556 1,433 140 500 1,000
Citeseer 6 3,327 9,228 3,703 120 500 1,000
Pubmed 3 19,717 88,651 500 60 500 1,000
Flickr 7 89,250 899,756 500 44,625 22,312 22,313
Reddit 41 232,965 11,606,919 602 153,431 23,831 55,703
Yelp 100 716,847 13,954,819 300 537,635 107,527 71,685

Table 4: Experiment settings for each dataset, including batch size, fanout configuration, and the
number of training steps.

Dataset Batch Size Fanouts Steps
Citeseer 32 [512, 256, 128] 1000
Cora 32 [512, 256, 128] 1000
Flickr 256 [4096, 2048, 1024] 1000
Pubmed 32 [512, 256, 128] 1000
Reddit 256 [4096, 2048, 1024] 3000
Yelp 256 [4096, 2048, 1024] 10000




B Background

We denote a directed graph G = (V, £) consisting of a set of nodes V = {v; };—1.n and a set of edges
£ = {eij| j € N;}iz1.nv €V x V, where N is the number of nodes, N; denotes the set of neighbors
of node v;, and L is the number of layers.

Graph Neural Networks. GNNs operate on the principle of neural message passing|Gilmer et al.
[2017]], where nodes iteratively aggregate information from their local neighborhoods. In a typical
GNN, the embedding of node v; at layer [ + 1 is computed from layer [ as follows:

=0 Z a (l)h(l @)
JEN(4)

B+

where W () is a learnable weight matrix, h is the node feature vector at layer /, and o is a non-linear
activation function. The term o;; represents the aggregation coefficient, which varies depending on
the GNN architecture (e.g., static in GCNs Kipf and Welling|[2016] or dynamic in GATs Velickovic
et al.| [2017]).

Layer-wise Sampling.
Following Huang et al.|[2018], eq. (/) can be written in expectation form:

Y = o (N () By, (1)) ®)
where p;; = p(v;|v;) is the probability of sampling v; given v;, and N'(i) = 3~ a;;. To make

the computation of eq. (8) tractable, the expectation 11, (i) = E,, [hgl)] can be approximated via
Monte-Carlo sampling:
ZW)«wj ©)

eq. (O) defines node-wise sampling, where nelghbors are recursively sampled for each node. While
this reduces immediate computational load, the receptive field still grows exponentially with network
depth d, leading to O(n?) dependencies in the input layer for deep networks. An alternative approach
is to apply importance sampling to eq. (8), which forms the basis for layer-wise sampling methods:

hHY = o (N (i) E,, [pijhy)} ) (10)
4qj
where ¢; = ¢(vj|v1, ..., vy) is the probability of sampling node v; from the entire layer. We estimate

the expectation y,(7) via Monte-Carlo sampling:
Zp” WV o, (11)

The embedding then becomes hElH) = ow,, (N (i)f1q(i)). Without loss of generality, following
the setting from |Liu et al. [2020], we assume p;; = «;; and normalize the probabilities such that
N (i) = 1. We denote 1, () as p; for simplicity and ignore non-linearities. The goal of a layer-wise
sampler is to approximate:

. 1 Q;
h§l+1) =fi; = Z q] h(l) i~ (12)
o Y

An effective estimator should minimize variance. The variance of the estimator in eq. (12) is:
~ ~ ~ 2 ~
V() =B [(3 — E[3d])] = E [ - pull?]

2 (13)
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We seek g7 > 0 that minimizes V{(fi;). The optimal sampling distribution is:

aij

g = Z( 4, )2 (14)
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C Related Work

To address these challenges, efficient neighbor sampling techniques are crucial. These methods
typically involve randomly selecting a fixed number of neighbors, sampling based on node features or
importance scores, or employing adaptive strategies that learn optimal sampling during training. They
can be broadly categorized into three groups: 1) Node-wise sampling samples a subset of neighbors
for each node. While this reduces immediate computations and memory usage, the recursive nature
can introduce redundancy. Examples include GraphSAGE Hamilton et al.|[2017], VR-GCN |Chen
et al.| [2017]], and BS-GNN [Liu et al.|[2020]). 2) Layer-wise sampling jointly selects neighbors for all
nodes at each layer, potentially offering better efficiency and capturing broader relationships than
purely node-wise methods. However, it can introduce biases if certain graph parts are consistently
under-sampled. Examples include FastGCN (Chen et al.| [2018]], LADIES [Zou et al.| [2019], and
LABOR [Balin and Catalytirek [2023]]. See fig. [l| for a visual example. 3) Sub-graph sampling
focuses on smaller, self-contained induced subgraphs for message passing. While efficient, using the
same subgraph across all layers risks losing global context. Examples include Cluster-GCN (Chiang
et al.|[2019]] and GraphSAINT |Zeng et al.|[2019].

C.1 GNN Architectures

Graph Convolutional Networks (GCNs) leverage a simplified convolution operation on the graph,
aggregating information from a node’s neighbors, and produces the normalized sum of them as in
eq. where ¢ is an activation function (ReLU for GCNs), A/(7) is the set of its one-hop neighbors,

ozz(-;-) = %, cii = VING@|VING)|, WO is the weight matrix for the I-th layer, h;l) denotes
the node feature matrix at layer [. For GraphSAGE is ¢;; = |[N(¢)|. This equally weights the
contributions from all neighbors.

Graph Attention Networks (GATSs) address the equal contribution by introducing an attention
mechanism that assigns learnable weights («) to each neighbor based on their features, allowing the

model to focus on the most relevant information:
el!) = LeakyReLU(@" " (WOR{" ||w O R{)) (15)

this computes a pair-wise un-normalized attention score between two neighbors. It first concatenates
the linear transformation of I-th layer embeddings of the two nodes, where || denotes concatenation,

then takes a dot product of it and a learnable weight vector @"), and applies a LeakyReLU in the end.

O]
exple,
a,gé-) _ p( ij ) (16)

]
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This difference allows GATSs to capture more nuanced relationships within the graph than GCNs.
However, |Brody et al.|[2021]] argues that the original GAT uses a static attention mechanism due to
the specific order of operations in eq. (T5). While the weights depend on both nodes, this structure
can limit the expressiveness of the attention calculation. GATV2 introduces a dynamic attention
mechanism by modifying this order. This change allows the attention weights to depend on the
features of both the sending node (neighbor) and the receiving node in a potentially more expressive
way. The key difference lies in the order of operations. eq. will be changed to:

el!) = @D" LeakyReLU(W " ||n{"]) (17)

C.2 Sampling Technique

This section reviews existing sampling techniques and discusses their limitations.

Layer-Dependent Importance Sampling (LADIES) [Zou et al.[[2019]: LADIES leverages layer-
wise importance scores based on node features and graph structure to guide node selection. LADIES
begins by selecting a subset of nodes in the upper layer. For each selected node, it constructs a
bipartite subgraph of its immediate neighbors. It then calculates importance scores for these neighbors
and samples a fixed number based on these scores. This process is repeated recursively for each
layer. However, LADIES relies on pre-computed importance scores, which can be computationally
expensive and may not adapt well to dynamic edge-weight changes. Additionally, LADIES employs
sampling with replacement, which can be suboptimal as it may select the same node multiple times.



Algorithm 1 Sampling Procedure of LADIES

Require: Normalized edge weights a;;; Batch Size b, Sample Number &;
: Randomly sample a batch of b output nodes.
s forl < Ltoldo
Calculate sampling probability for each node using pé- in eq. lb

1
2
3
4: Sample k nodes in I-th layer using pé.
5
6
7

Normalize the edge weights of the sampled nodes in the layer by eq. (19).
: end for
: return Modified edge weights ¢;; and Sampled Nodes;

While LADIES suggests using ;; values similar to GraphSAGE (c;; = |V (4)|), their implementation
utilizes eq. (19) for normalization. Instead of directly feeding c;; to the model, it is first used to
calculate an importance score:

O]
T
P = L wherenl) = 3~ ) (18)
> 3Ty jen®
The most important nodes are then sampled using p(-l). Before passing these nodes to the model, the

J
§-l) and normalized by dividing it over c;; of the selected (union of

sampled nodes and seed nodes) nodes. These new &gl‘) values are passed to the model at each layer

. J
for the selected points.

original «;; is re-weighted by p

® O]
Qi /D Q45/D;
dgz{) _ zy/pJ ’ & — J/pj (19)

> (ozij/py)) Y Cij

SKETCH |Chen et al.|[2022] proposed a fix for the sampling equation and the normalization of the
edge weights. Instead of eq. (18), they suggested:

(20)

SKETCH uses «;; based on the GCN model (¢;; = /[N (7)|\/|N(4)]). They also suggested an
alternative normalization for the edge weight instead of eq. (T9):

)
Q4 .
o) = 20/b @1

where nsﬁ.l) is the number of sampled nodes for node i at layer .

Layer-Neighbor Sampling (LABOR) Balin and Catalyiirek|[2023]]: The LABOR sampler com-
bines layer-based and node-based sampling. It introduces a per-node hyperparameter to estimate
the expected number of sampled neighbors, enabling correlated sampling decisions among vertices.
This hyperparameter and the sampling probabilities are optimized to sample the fewest vertices in an
unbiased manner.

The paper also introduced PLADIES (Poisson LADIES), which employs Poisson sampling to achieve
unbiased estimation with reduced variance. PLADIES assigns each node j in the neighborhood of
source nodes S (denoted NV (5)) a sampling probability p; € [0, 1] such that 3 v (g p; = k, where
k is the desired sample size. A node j is then sampled if a random number ¢; ~ U(0, 1) satisfies
¢; < pj. PLADIES achieves this unbiased estimation in linear time, in contrast to the quadratic
complexity of some debiasing methods |Chen et al.|[2022]]. Notably, its variance converges to 0 if all
p; = 1, highlighting its effectiveness.

Bandit Samplers Liu et al.|[2020]: Bandit Samplers frame the optimization of sampling variance
as an adversarial bandit problem, where rewards depend on evolving node embeddings and model
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weights. While node-wise bandit sampling is effective, selecting neighbors individually can lead to
redundancy and may not capture long-range dependencies efficiently. This highlights the importance
of extending to layer-wise sampling.

Their method employs a multi-armed bandit framework to learn a sampling distribution ¢! for each
node v; at each training step t. The algorithm initializes a uniform sampling distribution. During
training, it samples k neighbors for each node based on ¢!, computes rewards based on GNN
performance, and updates the distribution using an algorithm like EXP3. This process prioritizes
informative neighbors to improve training efficiency. Our work builds upon this foundation by
applying bandit principles to the layer-wise sampling paradigm.

D Complexity, Variance and Runtime
D.1 BLISS complexity and variance analysis

Table 5: Summary of memory complexity, time complexity, and variance for Full-Batch, GraphSAGE,
LADIES, and BLISS methods. This table provides a theoretical comparison of the computational
and statistical properties of each method, emphasizing BLISS’s ability to minimize variance while
maintaining scalability.

Methods Memory Complexity Time Complexity Variance

Full-Batch O (L|V|K+LK2) O (L\|A||K+L|V|K2) 0

GraphSage O (bKs,7o, + LK) O (DK s)oq, + I s1100,) O (Dg|IP%/(IV |snode))
LADIES O (LK Siayer + LK?) O (LK s,y + LK 51050 ) O (Al PIFV(1)/(IV|s1ayer))
BLISS (0] (L|E\ + LK Siayer + LKQ) O(L|E| + LKs?ayer + LK ?Sjger) O (ngPH%V(b)/\V\slﬂyC,(l — n))

D.1.1 Memory Complexity

* O(L|E]): Stores bandit weights w;; for all edges across L layers.
* O(LK Sjayer): Stores embeddings for sjayer sampled nodes per layer (/-dimensional).

» O(LK?): Stores L weight matrices W) € RE*K,

D.1.2 Time Complexity

* O(L|FE]): Bandit weight updates (EXP3) over all edges in L layers.
* O(LK sfayer): Importance score computation for sjaye nodes per layer.

* O(LK 281ayer)1 Message passing and aggregation for Sjay; nodes.

D.1.3 Variance

* Key Difference from LADIES: The (1 — 7)~! term accounts for exploration in bandit
sampling.

* Derivation: Minimizing eq. (I3) with bandit-optimized ¢; (eq. (6)) introduces the 7-
dependent denominator.

D.2 PLADIES complexity and variance analysis

PLADIES (Poisson LADIES) shares identical complexity terms with LADIES. The differences
between them is that PLADIES uses Poisson sampling (variable-size, unbiased) instead of fixed-size
sampling, and PLADIES reduces empirical variance but retains the same asymptotic bound.

In the table 5] PLADIES is grouped under LADIES since their theoretical complexities are identical.
BLISS explicitly diverges due to bandit overhead and adaptive exploration.

D.3 Training time

The reported time in table [6] measures per-iteration training time - the wall-clock time taken to
execute one training step. The code for BLISS is not optimized (using naive for loops in the current
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implementation) and the comparison might not be reasonable, but for the sake of the having a clearer
image about the performance. The time is also averaged over 5 runs per experiment.

Table 6: Average training time per iteration (in seconds) for BLISS and PLADIES samplers across six
datasets. The table highlights the computational efficiency of both samplers, with BLISS incurring
slightly higher overhead due to its dynamic bandit-based sampling mechanism, and the naive loop
implementation.

Dataset Sampler | Time || Dataset ~Sampler | Time
| GAT SAGE || | GAT SAGE
Citeseer BLISS 0.065 £ 0.001  0.059 +0.002 Pubmed BLISS 0.722 £ 0.008  0.690 + 0.007
PLADIES | 0.055+0.001 0.051 +0.002 PLADIES | 0.667 £0.008 0.627 +0.007
Cora BLISS 0.066 + 0.001  0.058 + 0.001 Reddit BLISS 0.207 £0.003  0.165 + 0.007
PLADIES | 0.054 +£0.001 0.049 +0.001 PLADIES | 0.156 £0.002 0.110 + 0.003
Flickr BLISS 0.086 £ 0.002 0.080 + 0.002 Yel BLISS 0.129 £ 0.003  0.122 + 0.004
PLADIES | 0.073 £0.002 0.063 + 0.002 p PLADIES | 0.110£0.002 0.102 £ 0.002

E Algorithms

E.1 BLISS

Algorithm 2 BLISS Algorithm

Require: Graph GG, Sample size k, Bandit learning rate 7, Steps 7', Number of layers L
1: Initialize w;; = 1if j € NV; else 0
2: fort =1toT do
3: for! = Lto1ldo > Top-down layers
Calculate sampling distribution g;;, using eq.
Calculate node sampling probability p;, using eq.
Pass the p; to algorithm 4]
Sample k nodes for the current layer based on p;.
end for
9: Run forward pass of GNN
10: Get the updated node embeddings h; from eq. (2) and rewards 7;; using eq.
11: Update wights w;; using EXP3 in algorithmE]
12: end for

AR A

E.2 TIterative Thinning Poisson Sampler

Algorithm 3 Iterative Thinning Poisson Sampler

Require: Node probabilities p;, sample size k, tolerance €, refinement factor n,. s
. Initialize scaling factor ¢ = 1.0
: fori=1ton..rdo

Adjust probabilities: S = Y min(p; - ¢, 1)

if min(S, k)/ max(S, k) > e then

break

end if

Update scaling factor: ¢ = ¢- k/S
end for
return c

R A A i
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E.3 PLADIES

Algorithm 4 Poisson Sampling with Skip Connections

Require: Input subgraph Gy, seed nodes V;, edge probabilities «;;, sample size k, tolerance e,
refinement factor n,. s

1: Compute node probabilities p; based on edge weights w;; from eq. @I)

2: if |Vyw| < k then

3: return p; < 1Vj € Vi > Include all nodes
4: end if

5: ¢ < ITERATIVETHINNINGPOISSONSAMPLER(p;, k, €, Tret) > From algorithm
6: Vikip < {4 | 7 € Vs N Vaun } > Identify seed nodes in subgraph
7. for j € Vi, do

8: if j € Vskip then

9: Dj < 00 > Ensure seed nodes are always selected
10: else
11: p;j < min(p; - ¢, 1) > Clip and scale probabilities
12: end if
13: end for
14: return p; Vj € Vi

E4 EXP3
Algorithm 5 EXP3
Require: Neighbor size n, Sample size k, Bandit learning rate 1, Number of layers L
1: for! = Lto1do .
Qg
2 Calculate i = 3 g, ij - Z]TJ&J
3: Calculate estimated rewards 7;; = 'pi
4 Update weights w;; = w;; exp( ii;j )
5: end for
F Plots

The advantages of BLISS are particularly pronounced in smaller datasets (Citeseer, Cora, Pubmed)
and highly heterogeneous graphs like Yelp (100 classes) with SAGE. For Yelp, BLISS achieves a
test F1-score 52.9% (SAGE), while PLADIES lags at 50.2%. The bandit mechanism likely captures
nuanced class relationships more effectively in such complex settings. In contrast, Flickr and Reddit
exhibit minimal differences between the samplers, possibly due to their dense connectivity and
uniform class distributions, which reduce the impact of adaptive sampling.

GAT models generally benefit more from BLISS than SAGE. For example, on Cora, BLISS achieves
a test Fl-score of 81.3% (GAT) compared to 80.9% for PLADIES, while SAGE shows narrower
margins 79.5% vs. 77.2%. This aligns with our hypothesis that attention mechanisms, which
dynamically weigh neighbor contributions, synergize well with BLISS’s reward-driven sampling.
SAGE’s uniform aggregation is less sensitive to neighbor selection, though BLISS still improves its
performance.

Despite larger fanouts and batch sizes for Flickr, Reddit, and Yelp (table f), BLISS maintains
computational efficiency. Reddit’s test Fl-scores 94.9% for BLISS vs. 95.0% for PLADIES,
highlight that both samplers scale effectively to massive graphs, though BLISS’s adaptive policy
incurs negligible overhead. The higher step counts for Reddit (3,000) and Yelp (10,000) reflect their
size but do not compromise BLISS’s stability, as evidenced by low standard deviations.

The Yelp dataset with GAT presented a challenge for both samplers, showing overfitting (fig. [3).
While early stopping or hyperparameter adjustments could potentially alleviate this, they were not
added here to preserve uniform experimental conditions across all datasets.
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Figure 2: Validation Accuracy across six datasets (Citeseer, Cora, Pubmed, Flickr, Yelp, and Reddit)
for BLISS and PLADIES samplers using Graph Attention Networks (GAT) and GraphSAGE (SAGE)
architectures. The figure highlights the performance trends during training averaged over 5 runs. The
shaded regions represent the standard deviation across runs.
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Figure 3: Validation Loss for the same datasets and models as in fig.[2] The figure illustrates the loss
trends during training, averaged over 5 runs. The shaded regions represent the standard deviation

across runs.
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