
Balancing Context Length and Mixing Times for
Reinforcement Learning at Scale

Matthew Riemer∗
IBM Research, Mila, Université de Montréal

Khimya Khetarpal
Mila

Janarthanan Rajendran†
Dalhousie University

Sarath Chandar
Mila, École Polytechnique de Montréal

Abstract

Due to the recent remarkable advances in artificial intelligence, researchers have
begun to consider challenging learning problems such as learning to generalize
behavior from large offline datasets or learning online in non-Markovian environ-
ments. Meanwhile, recent advances in both of these areas have increasingly relied
on conditioning policies on large context lengths. A natural question is if there is a
limit to the performance benefits of increasing the context length if the computation
needed is available. In this work, we establish a novel theoretical result that links
the context length of a policy to the time needed to reliably evaluate its performance
(i.e., its mixing time) in large scale partially observable reinforcement learning
environments that exhibit latent sub-task structure. This analysis underscores a key
tradeoff: when we extend the context length, our policy can more effectively model
non-Markovian dependencies, but this comes at the cost of potentially slower policy
evaluation and as a result slower downstream learning. Moreover, our empirical
results highlight the relevance of this analysis when leveraging Transformer based
neural networks. This perspective will become increasingly pertinent as the field
scales towards larger and more realistic environments, opening up a number of
potential future directions for improving the way we design learning agents.

1 Introduction

Scaling the Context Length: As the field of AI moves towards harder problems where agents must
model higher order non-Markovian dependencies, it is only natural to consider conditioning models
on larger context lengths of the interaction history. When considering only small context lengths or
single observations, models become restricted to some lesser notion of the best possible performance
in comparison to what is achievable with an infinite context length [1]. Meanwhile, there are two
obvious downsides to increasing the context length an agent considers. The first downside is the
increase in necessary computation. However, there is also ongoing research related to minimizing
the needed quantity of computation [2; 3], increasing the parallelism of computation [4; 5; 6], and
increasing the throughput of computation on modern hardware [7]. The second downside is the
high dimensionality of the input representation we must process and the difficulty of learning and
generalizing from this kind of input. But it is unclear how worried researchers and practitioners
should be about this downside given the recent improvements in processing long sequences that came
with attention models [8; 9] and particularly the Transformer architecture [10]. Additionally, there
has been a trend towards training on internet-scale datasets [11; 12; 13] that far exceed the quantity

∗Please direct correspondences to mdriemer@us.ibm.com.
†Work done during Postdoc at Mila, Université de Montréal.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

of any single human’s experience in domains of interest, which significantly alleviates requirements
for generalization. Our paper aims to add to this discourse by being the first to establish another
downside: policies that are conditioned on longer context lengths take longer to reliably evaluate
because they impose looser bounds on the mixing time. This may make it less safe to deploy these
policies in the real-world because we are able to extrapolate less about their true behavior from our
limited evaluations. Downstream learning may also be slower for the same reason as Monte Carlo
algorithms can only perform reliable updates after being rolled out for the mixing time number of
steps and the convergence time of TD algorithms also depends on the mixing time.3

Addressing High Mixing Times: Recent work has highlighted the challenges presented by high
mixing times as the field moves towards large scale and continual reinforcement learning problems
[14]. Unfortunately, as highlighted by Riemer et al. [14] there are not many known solutions that
address this problem. As a result, it is important for researchers to consider how changes to the policy
architecture and learning algorithms may have an impact on mixing behavior. The effect that the
input variables sent to a policy could have on bounds on the mixing time was previously considered
by the pioneering work of Kearns and Koller [15]. In Theorem 1 we present a tighter version of the
bound presented in their paper. Moreover, our paper is the first to highlight the connection between
this result and the context length in partially observable settings in Theorem 2. Our paper focuses
solely on how design decisions related to the policy’s architecture can impact the mixing time and is
complementary to recent insights about how changes to the learning algorithm, such as incorporation
of replay [16] or multi-level critics [17], can lead to faster learning when mixing times are high.

Balancing Context Length and Mixing Times: The core insight of this paper is that there is a
tradeoff to consider between increasing the context length and increasing the mixing time. When
we increase the context length sent to an agent, we increase its ability to model non-Markovian
dependencies. However, this increase in context length may also cause an increase in the mixing
time, which makes it take longer to reliably evaluate an agent’s policy. Dong et al. [18] propose the
solution of restricting the class of policies they optimize over such that the mixing times are bounded,
which is also the perspective we embrace in this work. However, Dong et al. [18] restrict this class of
policies by limiting the planning horizon and thus making optimization more myopic. In our work,
we highlight a different mechanism for restricting the mixing times of the policies we optimize over
by simply limiting the context length. To this end, our key contributions are as follows:

1. We present theoretical analysis with supporting toy examples shedding light on how the
input sent to a policy can influence its mixing time in Section 2.

2. In Section 3 we formally establish the connection between the context length considered by a
policy in partially observable environments and the mixing time. We also empirically verify
the relevance of this theory to Transformer based agents in partially observable settings.

3. Finally, in Section 4 we highlight the relevance of this theory when building foundation
models that imitate a diverse set of behavior policies for RL. Specifically, we show that
Decision Transformers [19] must use much larger context lengths than the policies that
generated their dataset, and as a result require more interaction for reliable evaluation.

To reproduce our experiments see https://github.com/mattriemer/ContextLengthMixing.

2 Understanding How the Policy’s Input Impacts the Mixing Time

Before discussing the connection between mixing times and context length in the next section, we
first provide the technical grounding for readers to understand how the problem structure and the
policy combine to jointly affect bounds on the mixing time. We will begin by detailing the problem
formulation and present a novel upper bound for the mixing time in this context in Theorem 1. We
then highlight key implications with illustrative example problems.

2.1 Preliminaries: the Average Reward RL Setting and Definitions of the Mixing Time

Problem Formulation: We adopt the average reward setting to enable long-term analysis of agents.
Please note that we only use this perspective to evaluate an agent’s behavior and place no restriction

3See Riemer et al. [14] for a discussion of the difficulties presented for learning when mixing times are high.

2

https://github.com/mattriemer/ContextLengthMixing

on using discounting within the learning process (as we do in our experiments).4 We consider a finite,
discrete-time, infinite horizon Markov Decision Process (MDP) [20; 21]:M = 〈S,A, T,R〉, where
S is the set of states, A is the set of actions, R : S × A → [0, Rmax] is the reward function, and
T : S×S×A → [0, 1] is the environment transition probability function. At each time step, an agent
perceives a state s ∈ S and takes an action a ∈ A drawn from a policy π : S ×A → [0, 1]. The agent
then receives a scalar reward drawn from the function R(s, a) and with probability T (s′|s, a) enters
next state s′. Markov chains may be periodic and have multiple recurrent classes, but optimality is
difficult to define in such cases [22], making the following assumption necessary:

Assumption 1 All stationary policies are aperiodic and unichain, resulting in a Markov chain with
a single recurrent class that is recurrent in the Markov chain of every policy.5

Any RL problem may be modified such that Assumption 1 holds by adding an arbitrarily small
positive constant ε to all transition probabilities in T (s′|s, a) [23]. An important corollary is that the
steady-state distribution µπ induced by the policy π is independent of the initial state:

Corollary 1 All policies π induce a unique steady-state distribution µπ(s) =
limt→∞ Pπ(st = s|s0) that is independent of the initial state such that∑
s∈S µ

π(s)
∑
a∈A π(a|s)T (s′|s, a) = µπ(s′) ∀s′ ∈ S.

Corollary 1 implies that long-term rewards and thus the average reward per step objective ρ(π) can
be defined independently of the current state [21]:

ρ(π) := lim
m→∞

1

m

m∑
t=1

Eπ
[
R(st, at)

]
= lim
t→∞

Eπ
[
R(st, at)

]
=
∑
s∈S

µπ(s)
∑
a∈A

π(a|s)R(s, a) .

Computing the average reward (i.e., the reward rate) with the last expression is limited by the amount
of time the Markov chain induced by the policy Tπ(s′|s) =

∑
a∈A π(a|s)T (s′|s, a) needs to be

run for before reaching the distribution µπ(s). This amount of time is called the mixing time of the
induced Markov chain. We denote tπmix(ε) as the ε-mixing time of the chain induced by π:

tπmix(ε) := min
{
m
∣∣∣max
s0∈S

dTV
(
Pπ(sm = ·|s0), µπ(·)

)
≤ ε
}

where dTV is the total variation distance between the two distributions. The conventional mixing time
is defined as tπmix ≡ tπmix(1/4). This only gives insight about distributional mismatch with respect to
the steady-state distribution, which led Kearns and Singh [24] to introduce the notion of a mismatch
with respect to the reward rate. The ε-return mixing time is a measure of the time it takes to formulate
an accurate estimate of the true reward rate. Formally, if we denote the m-step average return starting
from state s0 as ρ(π, s0,m) := Eπ[1

m

∑m
t=1 rt|s0], then we can define the ε-return mixing time as:

tπret(ε) := min
{
m
∣∣∣|ρ(π, s0,m

′)− ρ(π)| ≤ ε,

∀s0 ∈ S and ∀m′ ≥ m
}
.

An Interpretable Metric: We will use this definition of the mixing time in our experiments as it
directly measures the amount of time needed to evaluate a policy at a given threshold of precision ε.

2.2 Mixing in MDPs with Multidimensional States

Multidimensional State Space: We will also assume that problems have a state spaces comprised
of multiple dimensions. Formally, each state is separated into n ≥ 1 variables i.e., s = [s1, ..., sn]
with si ∈ Si for all variables i ∈ {1, ..., n} such that S ⊆ S1 × ...× Sn. It is also important to note
that each state variable can be modeled independently based on the previous state across all variables
such that T (s′|s, a) = Πi∈{1,..,n}T (s′i|s, a). In Appendix A.1 we discuss why this setting is strictly
more general than the typical discrete MDP setting and does not limit the scope of our results.

4See Appendix C for additional explanation about why this is the most general possible problem formulation.
5This corresponds to what is called an ergodicity assumption for stationary policies in Sutton and Barto [21].

See Appendix A for a more detailed discussion of this assumption and its implications.

3

Dynamic Bayesian Network (DBN) Structure: A Bayesian Network (BN) is a probabilistic graph-
ical model that represents a set of variables and their conditional dependencies via a directed acyclic
graph (DAG) and a dynamic Bayesian network (DBN) is a BN that relates variables to each other
over adjacent time steps. In general, any Markov chain induced by a policy can be seen as a DBN
over the state variables s1, ..., sn that is also influenced by an action variable a dictated by the policy
[15]. The dependency graph Dπ for the DBN is a directed cyclic graph whose nodes are s1, ..., sn

and where there is then a directed path from si to sj in Dπ iff sit influences sjt′ for some t′ > t under
policy π. While we can ignore actions as nodes in the graph, it is still important to consider their
effect in forming causal connections among the state variables. Note that every node in Dπ should
influence itself and thus have a self-loop. If there is a direct path from si to sj and from sj to si, the
variables i and j are said to be in the same strongly connected component. In contrast, if there is
either a directed path from si to sj or sj to si, but not both, the variables i and j are weakly connected
such that the one that has a causal influence on the other can be considered as ordered before the
one it causes. Let Γπ1 , ...,Γ

π
` be the maximal strongly connected components in Dπ when an agent

behaves with an arbitrary policy π that is sorted such that if i < j there are no directed edges from
Γπj to Γπi . We can then define gπ = maxi |Γπi | as the maximum number of variables in any strongly
connected component of Dπ and g = maxπ g

π as the maximum possible within a given policy class
or parameterization π. In Appendix A.1 we provide examples to help readers better understand how
this works and demonstrate that this formulation does not limit the scope of our results.

Mixing Times and Coupling Times: We can now leverage the well-studied connection between the
mixing time and the so called coupling time to provide an upper bound on the mixing time of the
Markov chain induced by π [25]. Let τ be the random variable that represents the coupling time
defined as the smallest m for which two Markov chains starting from different initial states are in the
same state. Following the analysis provided in Lemma 5.2 of [15], for any ε, let m be the number of
steps such that for any two starting states in S if we can say that P (τ > m) ≤ ε then the Markov
chain is ε-mixed at time m. For this analysis we also must introduce the parameter βi,π, which
defines the minimum amount of common probability mass between any two state configurations for
any state variable i so that β = minπ mini βi,π ∈ [0, 1] further corresponds to the minimum over all
state variables i and possible parameterizations of the policy π:

βi,π = min
s1,s2∈S

(∑
si∈Si

min

{
Tπ(si|s1), Tπ(si|s2)

})
.

We can now introduce a mixing time bound as a function of the strongly connected component
structure. While our result has similar motivation to Theorem 5.4 of Kearns and Koller [15], we note
that the proof of Theorem 1 outlined in Appendix A is entirely our novel contribution building off
Lemma 5.2 and Definition 5.3 of Kearns and Koller [15]. Additionally, there is no version of Kearns
and Koller [15] online that includes the proof of Theorem 5.4.

Theorem 1 (Strongly Connected State Variables Bound): If the Markov chain Tπ(s′|s) induced
by policy π has ` maximal strongly connected components in Dπ with a maximum size of g state
variables and a minimum of β common probability mass between any two state configurations
for any state variable, the mixing times tπret(ε) and tπmix(ε) can be upper bounded:

tπret(ε) ∈ tπmix(ε) ∈ O
(

1

βg
log(1/ε)

)
.

Proof Sketch: Due to the sorting of the strongly connected components, our analysis is based on
coupling each of the Γπi ’s in succession. Because it is possible that multiple Γπi ’s couple at the
same step, every step where the Markov chain does not fully couple must be a step where some Γπi
does not couple. Our proof proceeds in the following high-level steps: 1) The probability of Γπi
coupling at a given step once Γπ1 , ...,Γ

π
i−1 have all already coupled is ≥ βg. 2) Thus the probability

of Γπi not coupling at a step when Γπ1 , ...,Γ
π
i−1 have all already coupled is ≤ (1 − βg). 3) So the

joint probability of Γπi not coupling for mi ≥ 0 steps when Γπ1 , ...,Γ
π
i−1 have all already coupled is

≤ (1 − βg)mi . 4) If τ > m then
∑`
i=1mi = m and the joint probability that m-steps have been

spent not coupling in some Γπi has a probability bound independent of the particular allocation of m
into individual mi. Thus we can conclude that P (τ > m) ≤ (1− βg)m. 5) Leveraging the identity
that 1− x ≤ e−x for x ≥ 0, we find that P (τ > m) ≤ (e−β

g

)m. 6) The Markov chain is ε-mixed

4

if P (τ > m) ≤ ε, so it must be ε-mixed if (e−β
g

)m ≤ ε, which implies that m ≥ 1
βg log(1/ε). 7)

Finally, we note the relationship between tπret(ε) and tπmix(ε) following Lemma 1 of [24].

Bound Tightness: Theorem 1 is a tighter version of Theorem 5.4 presented by Kearns and Koller [15]

by a factor of 8` from their result of O
(

8`
βg log(1/ε)

)
. This tighter bound underscores definitively

that having more strongly connected components of a smaller size leads to tighter bounds on the
mixing time than having fewer strongly connected components of a bigger size. In fact, without
this contribution beyond the result by Kearns and Koller [15] it would not be possible to show our
main result in Theorem 2 as it would thus be unclear if the mixing time bound gets tighter with the
shrinking context length. An intuition we could provide for how this bound is achieved is that if
the Markov chain has not coupled for m steps, each time step must be spent not coupling in at least
one of the strongly connected components, which has a bounded conditional probability for any
component. Our detailed proof is in Appendix A. Moreover, while it may seem that only a restricted
class of Markov chains have β > 0, in Corollary 2 of Appendix A, we demonstrate the extension of
the definition for β to the probability mass in common over c > 1 steps, which must be > 0 for some
value of c due to Assumption 1. Our approach could also yield an even tighter yet more cumbersome
bound in terms of the maximum probability that any strongly connected component does not couple
rather than using β and g, which is important when we see significant variation in βi across variables.

Conditioning on Variable Subsets: One of the primary implications of Theorem 1 is that the mixing
time of a policy is closely connected to the number of state variables that influence it’s actions. For
example, a policy in the class π(·|s), which takes full states s = s1, ..., sn ∈ S as input can be
associated with βn and gn. Meanwhile, a policy in an alternative class that only considers some
potentially time dependent arbitrary subset of n′(t) ≤ n state variables as input at any moment in
time t such that s1, ..., sn

′(t) ⊆ s1, ..., sn can be associated with βn′ and gn′ . Lemma 1 in Appendix
A then shows that the mixing time bound gets strictly tighter because 1/β

gn′
n′ ≤ 1/βgnn . We illustrate

this phenomenon more concretely through two toy MDP examples detailed in Figure 1.

2.3 Building an Intuition with Examples

We will consider the mixing times for the two examples highlighted in Figure 1 over the space
of deterministic policies. As in Riemer et al. [14], we relax the definition of the ε-return mixing
time using an average over start states (rather than a maximum) in order to emphasize mixing times
encountered in practice. See Appendix B for details on our methodology for estimating mixing times.

MDPs with Irrelevant Variables (Figure 1): In the first example we consider, there are two
independent state variables x and y that are both influenced by the agent’s actions. As a result, x and
y are in the same strongly connected component if both variables also influence the agent’s actions.
Because the reward only depends on x, the agent can achieve the optimal policy without considering
the y variable in its decision about actions. If the policy is only conditioned on the variable x, x
influences y through its actions, but y no longer has an influence on x. As a result, the Markov chain
induced by the policy that only conditions on the relevant variable x has two strongly connected
components of size one such that g = 1 whereas the policy that conditions on both relevant and
irrelevant variables potentially has a single strongly connected component of size two such that g = 2
with β held constant. Based on Theorem 1, we expect the policy conditioned on both variables to
experience higher mixing times even despite the small scale of this toy problem. Indeed, this is the
case when we compute the ε-return mixing time at a reward rate precision of ε = 0.05, which must
reflect a minimum of 10% relative estimation error because no policy has a reward rate of 0.5. The
optimal policy has a mixing time of 17.6 and only depends on the variable x. In fact, no policy
only depending on x has a mixing time above 44.9. Meanwhile, there is a policy dependent on both
variables that is within the reward rate precision threshold ε of the optimal policy with a mixing time
of 45.2, and a policy conditioned on both variables with a mixing time as high as 340.3.

Impact of Reward Density: To test if a tighter result is possible with respect to the ratio between
the maximum mixing times predicted by Theorem 1, we have tried a setting where the reward is
still 1.0 when x = x0, but edited to −0.25 when x = x1 and −1.5 when x = x2 rather than 0. This
setting was chosen to have no impact on the optimal policy while densifying rewards without making
a substantial change to the magnitude of best reward rates achieved. The ratio between the maximum
mixing times is now improved to 8.8 times smaller (233.0 vs. 2049.7) when only focusing on the

5

x0

x1

x2

a1 a0

a1 a0

a1 a0

z1z0

0.1

0.1

0.9

y0

y1

y2

a0 a1

a0 a1

a0 a1

0.9

Figure 1: Illustrative Toy Examples. The above figure details the three relevant variables x, y, and
z that we will consider for our toy examples. Note the action a0 is interpreted as a1 or vice versa
with a 10% failure probability, which is the same as the rate at which z switches regardless of the
agent’s actions. Irrelevant Variables Example: In this case, we consider only the variables x and y
(z is not needed in this example) where the reward is +1 if x = x0 and 0 otherwise. The result is that
variable x is relevant to the task whereas variable y is irrelevant. Independent Subtasks Example:
In this case, we consider that the variable x evolves (according to the diagram) with y remaining
constant when z = z0 and the variables y evolves with x remaining constant when z = z1. The
reward is +1 if z = z0 and x = x0 or if z = z1 and y = y0, or 0 otherwise.

relevant variables rather 7.6 times smaller (44.9 vs. 340.3) with the previous sparse rewards. Note
that the reward still has no dependence on y and is thus invariant to a large part of the change in the
state. So, mixing is still substantially faster with respect to the reward (tπret(ε)) than the state (tπmix(ε)).

MDPs with Independent Subtasks (Figure 1): We can now consider an example with three vari-
ables x, y, and z where the agent’s actions influence both x and y. A policy conditioned on all three
variables has a strongly connected component of size one including z (because z is not influenced
by the agents actions or x or y) and a strongly connected component of size two including x and y
such that g = 2. On the other hand, if the policy were able to condition only on x when z = z0 and
only condition on y when z = z1, then the actions that still influence both x and y no longer serve
to make their values dependent on each other. This results in three strongly connected components
of size one such that g = 1 with β held constant. One for each variable x, y, and z. Based on the
analysis of Theorem 1, we would again expect the policy conditioned on all variables always to
experience higher mixing times than the policy conditioned on only the relevant variables for the
specific subtask even despite the small scale of this toy problem. As for the previous example, we
compute the ε-return mixing time at a reward rate precision of ε = 0.05, reflecting a minimum of
10% relative estimation error. The optimal policy has a mixing time of 16.0 and only depends on
the variable x when z = z0 and variable y when z = z1. In fact, no policy structured like this has
a mixing time above 267.1. Meanwhile, there is a policy dependent on all variables that is within
the reward rate precision threshold ε of the optimal policy with a mixing time of 341.2. Moreover,
there is a policy conditioned on all variables with a mixing time as high as 968.1. This example
helps illustrate the important fact that a policy can limit its mixing time while still conditioning on all
variables if the subset it conditions on has some time dependence.

3 Understanding How the Context Length Impacts the Mixing Time

In the previous section we were concerned only with fully observable MDPs, but real-world and
large scale problems tend to be partially observable. We will begin by highlighting new notation that
allows us to talk about notions of optimality as a function of the interaction history context length
and present mixing time bounds that are dependent on the context length considered by a policy. We
go on to conduct experiments that verify the relevance of this analysis during online RL in partially
observable domains and demonstrate that Transformer neural network models actually experience
higher mixing times than alternative function approximators and tabular models.

6

3.1 Partially Observable Environments with Local Observation Structure

Partially Observable Environments: We can extend the notion of an MDP from the previous
section to consider an unknowable but ultimately stationary Partially Observable Markov Decision
Process (POMDP) [26], which is comprised of an augmented tuple P .

= 〈S,A,O, R, T,O〉. This
adds to the definition of an MDPM an observation space O and an observation function O(o|s) that
maps states s ∈ S to observations o ∈ O.6 The state s ∈ S of such a POMDP ultimately serves as a
theoretical quantity that is never actually observed from the agent’s perspective and the observations
o ∈ O that it does receive may have an arbitrarily non-Markovian relationship.

Interaction Histories: At time t the union of all things the agent has observed about an envi-
ronment can be called its interaction history ht := {o0, a0, r0, o1, a1, r1, ..., ot}.7 We can also
consider the case where the agent only maintains a finite window of history with size k i.e.,
h

(k)
t := {ot−k+1, at−k+1, rt−k+1, xt−k+2, at−k+2, rt−k+2, ..., ot} where our notation is chosen

so that a memoryless policy that only processes the current observation corresponds to k = 1. We
will henceforth call k the context length of the interaction history. A given POMDP P is non-
Markovian to order kP which implies that for every combination of state s, action a, and history
window h(k), T (·|s, a) = T (·|h(k), a) and R(·|s, a) = R(·|h(k), a) ∀k ≥ kP .

Optimality in POMDPs: An advantage of using a policy that processes the full interaction history
is that it is possible to handle arbitrarily non-Markovian environments, but this is not computationally
scalable in the long-run. As t→∞, πθ(·|ht) processes an infinite length sequence ht. In practice, we
must limit the context length sent to the policy. The best policy πθ(·|h(k)

t) over a finite context length
has the same optimal reward rate as the best policy πθ′(·|st) over true state inputs when k ≥ kP
such that limt→∞maxθ∈Θ E

πθ(·|h(k)
t)

[rt] = limt→∞maxθ′∈Θ′ Eπθ′ (·|st)[rt].
8 However, this implies

the context length must scale with kP , which could become quite large in highly non-Markovian
real-world environments where achieving optimality is difficult.

The Effect of Context Length: As described in the previous section, we are interested in multi-
dimensional state spaces consisting of n variables and in particular problems where n is large. A
given observation o generated from O(o|s) may be then caused by only a subset of the state variables
Par(o) ⊆ {1, .., n} where Par(o) denotes the causal parent state variables of o. As such, a finite
history window h(k) may also be caused by a subset of the state variables because the same can be said
for rewards and actions that are potentially included in this input. In general, a finite context length is
reflective of a maximum nk(t) sized subset of the state variables at a time twhere n ≥ nk′(t) ≥ nk(t)

if context length k′ ≥ k for all t. This is because Par(h(k)) ⊆ Par(h(k′)) ⊆ {1, .., n}. Theorem 2
then follows from the combined results of Lemma 1 in Appendix A and Theorem 1.

Theorem 2 (Limiting Mixing Times with Context Length): If the Markov chain induced by a
policy conditioned on a finite interaction history window π(·|h(k)) with a context length of k
has `k maximal strongly connected components in Dπ with a maximum size of gk variables and
a minimum of βk common probability mass between any two state configurations, the mixing
times tπret(ε) and tπmix(ε) can be bounded for any k′ ≥ k:

tπret(ε) ∈ tπmix(ε) ∈ O
(

1

βgkk
log(1/ε)

)
∈ O

(
1

β
gk′
k′

log(1/ε)

)
where the dependence on the context length implies that 0 ≤ βk′ ≤ βk ≤ 1 and gk′ ≥ gk ≥ 1.

Proof Sketch: Lemma 1 in the appendix considers the mixing time relationship of policy classes
conditioned on subsets of the state variables that other policy classes are conditioned on. Our

6Note that any non-stationary MDP can alternatively be viewed as a POMDP (see Proposition 2 of Khetarpal
et al. [27]) and by the same logic any non-stationary POMDP can alternatively be viewed as a stationary POMDP,
so there is no loss of generality in making the assumption that the POMDP is stationary.

7Many exclude reward from the history representation in POMDPs, but we include it to be as general as
possible. That said, our theoretical results do not require this particular choice of the history representation.

8Note the distinction between Θ′, the possible policies over st, and Θ, the possible policies over h(k)
t .

7

proof includes the following high-level steps by applying our notation in which k′ ≥ k for all t to
the results of Theorem 1 and Lemma 1: 1) We consider the causal parent state variables of each
observation, action, and reward to conclude that Par(h(k)) ⊆ Par(h(k′)) ⊆ {1, .., n}, which implies
that n ≥ nk′(t) ≥ nk(t). 2) Through Lemma 1 we show that by rule of Cartesian products over
subsets that 0 ≤ βk′ ≤ βk ≤ 1. 3) Through Lemma 1 we also demonstrate that gk′ ≥ gk ≥ 1 because
causal connections in Dπ are only added and not removed when the context length is increased. 4)
This then implies that 1/β

gk′
k′ ≥ 1/βgkk , which is sufficient to prove Theorem 2 using Theorem 1

because ε is independent of k.

!!

"!

!!"#

"!"#

…
!$

"$

!$"#

"$"#

…

Figure 2: POMDPs with Local Obser-
vation Structure. An example of an en-
vironment with a multidimensional state
space where near term observations are
only causally dependent on a subset of the
variables. At time T >> t we see different
dimensions of the state space influencing
observations and thus these separate sub-
sets do not need to be in the same strongly
connected component.

Formalizing the Tradeoff: Theorem 2 formally estab-
lishes a novel connection between the context length k
of a policy and bounds on its mixing time. Growing k
increases the performance of the best achievable policy
when kP is high. However, any increase in k leads to a
looser mixing time bound.

When it Really Matters: While this bound is always
true, there may not be a meaningful dependence on k
for some problems. This includes very simple environ-
ments where kP → 1 or environments with no local
structure where all state variables influence all observa-
tions. However, if changing the context length k does
actually lead to a change in the strongly connected com-
ponent structure, the impact on the mixing time will be exponential. In Figure 2 we present an
illustration of the kinds of problems where the chosen value of k may make a large difference in the
value of nk(t). We can see that at each time only a subset of the total state variables contributes to
the local observations of the agent and that which variables they are has a degree of local consistency
across time-steps of the Markov chain induced by the policy in the environment. When observations
are only caused by a subset of the state variables at each step, there is more potential to break the
problem up into independent subtasks as in our example in the previous section.

3.2 Empirical Verification During Online RL

Figure 3: Mixing Times Encountered vs.
Context Length. We plot the average mix-
ing time and 95% confidence intervals en-
countered during 1 billion steps of learning
over 100 seeds at each context length k.
We bin the average mixing time compu-
tation by the nearest 0.1 increment of the
reward rate of the policy. k = 1 is not
visible because the reward rate is always 0.

Context Length and Encountered Mixing Times:
While Theorem 2 draws a clear connection between
context length and mixing times, there still remains a
question about if this analysis is too conservative and it
is unclear if these policies will actually be encountered
during learning. To test this question empirically, we
consider the simple RGB world environment in Figure
6a, which is modeled after the classic T-maze [28] en-
vironment. We conducted comprehensive experiments
leveraging tabular Q-learning for 1 billion steps over
100 seeds (see Appendix B). In Figure 3 we highlight
that longer context lengths experience larger average
mixing times at the same approximate reward rate as
policies conditioned on lower context lengths during
learning. When interpreting this kind of plot, it is im-
portant to consider that there is a difference between the
input required to express a policy and the input available
to that policy. Any policy that receives a sufficient statistic of the environment state as input i.e. k ≥ 2
will arrive at the same optimal policy by the end of training, so what is more interesting is the points
encountered along the way.

Effect of Neural Network Architecture: We extend these experiments to prominent neural network
architectures on the same problem leveraging Q-learning (see Appendix B). We plot the result when
each architecture has about 1M parameters in Figure 4. All models have the same mixing time when
they arrive at the same policy i.e. the optimal policy. However, at intermediate reward rates we see
a higher average mixing time for Transformer models. It is important to note that sometimes an
architecture will learn to achieve a reward rate that others never learn to achieve. In this case, there

8

is not a clear basis for comparison. We also ran experiments evaluating the role of the number of
parameters. The extra capacity did not have a statistically significant effect on the mixing times for
MLP and LSTM models. Meanwhile, extra capacity resulted in higher encountered mixing times
throughout learning and a larger effect when increasing k for Transformer models (see Figure 8). It
appears that attention mechanisms make it easier to focus on the full context rather than i.e. only the
recent parts and that this capability is predictably enhanced when the model capacity is increased.
In Appendix B we take a closer look at the Transformer attention maps in the decoder and present
some evidence that the larger models are paying attention more uniformly to the entire context.

Figure 4: Policy Architecture vs. Encoun-
tered Mixing Times. We plot the average mix-
ing time and 95% confidence intervals for each
choice of policy architecture between tabular,
MLP, LSTM, and Transformer models with av-
erages binned by the reward rate. We provide a
representative example with k = 5 and include
comprehensive plots in Appendix B. Mixing
times goes down as the absolute value of the
reward rate gets close to 0 as a consequence of
the sparse and local reward structure.

4 Understanding Growing Context
Lengths in Foundation Models for RL

Foundation Models for RL: Large scale founda-
tion models trained to recreate behaviors from a
large and diverse distribution have recently had a
disrupting effect across the field of AI. Concretely,
a foundation model leverages an offline dataset D,
containing data from N different now unknown
behavior policies πi for i ∈ {1, ..., N}. Deci-
sion Transformers [19] is a popular approach that
achieved state of the art performance in offline RL
by treating learning as a sequence modeling prob-
lem akin to language modeling. The objective is to
imitate the behavior of all policies πi in the dataset
using a window of their interaction history h(k).
See Appendix B for additional details.

Fitting Training Data: Foundation models may
struggle to model the training data when the context
window length k used for training is less than the
maximum context window of any policy kD :=
maxi∈{1,...,N} ki. The reason is because our model
must not only produce the behavior of each agent πi, but also, must store additional context to
disambiguate πi, from all πj ∀j ∈ {1, ..., N} \ i. Thus it will be necessary to consider large contexts,
well beyond that of any context length used by the behavior policies, especially as the number and
diversity of behavior policies considered grows.

Figure 5: Context Length vs. Training Accu-
racy. We plot the achieved training accuracy
and 95% confidence intervals across 5 random
seeds as a function of the Decision Transformer
context length in the crossing environment with
1,000 episodes of data generated by either ran-
dom behavior policies with a context length
k = 1 or a REINFORCE based learning agent
using a context length k = 1.

Comparison to Behavior Policy Context
Lengths: To understand the connection between
the behavior policy context length and the context
length needed to train Decision Transformers,
we consider a similar setup to the Key-Door
experiments in the original paper [19], but with the
publicly available Minigrid Crossing environment
[29] (Figure 6b). We randomly initialized 1,000
deterministic behavior policies, each rolled out for
one episode in the environment to collect dataset
D leveraging a CNN architecture following past
work on the Minigrid domain [30; 31]. The context
length of each behavior policy is set to 1, implying
kD = 1. In Figure 5 we plot the training accuracy
achieved by a Decision Transformer model as a
function of its context length k. We report that the
training accuracy is only optimal in general for
k ≥ 50, which is significantly higher than kD = 1
with k = 25 reaching optimal performance for
some random seeds. We also considered 1,000
episodes generated by different stochastic behavior

9

policies of REINFORCE based learning agents [32] that learn following every episode. Figure 5
demonstrates that it is even harder to model these policies. This makes sense both because the policy
distinctions are more subtle and less diverse between episodes and because the policies are stochastic,
leaving an irreducible source of uncertainty.

Evaluating Learned Models: It could be argued that, although a larger context length may be
required to capture the complete range of behavior policies compared to each policy individually,
this merely promotes overfitting of the training data and does not effectively enhance downstream
performance. So, to see if Decision Transformers need near optimal training accuracy for good
downstream performance, we evaluated each Decision Transformer model for a particular random
policy seed where k = 25 is able to achieve optimal training performance across a variety of return
to go prompts stepping by 0.01 from 0 to 1.0 and report the average performance across 1,000
episodes. We plot our results in Figure 9 which validate the importance of fitting the training data.
Decision Transformer with k = 25 can achieve performance as good as any behavior policy used to
generate the data. Meanwhile, models with smaller k fail to achieve the same performance. Moreover,
increasing context length k, while important for optimization, raises the mixing time. The average
mixing time with precision ε = 0.01 across policies and start states for the Decision Transformer with
k = 25 is 298.1 episodes or 86,834.3 steps while the average mixing time is merely 11.2 episodes or
3,271.2 steps for the behavior policy across policies and start states. Figure 9 also demonstrates the
not very surprising conclusion that unnecessarily large context lengths are more prone to overfitting
than the minimal context length that achieves 100% training accuracy.

5 Discussion and Future Work

In this work, we have highlighted the potential limitations of training models conditioned on ever
increasing context lengths and particularly the effect that these growing context lengths have on
mixing times. This motivates a number of interesting research questions to explore moving forward.

New Architectures and Algorithms: Most work on RL that even acknowledges the challenges
associated with high mixing times does so with a defeatist mentality, assuming that problems with
high mixing times are unavoidably harder and that there is basically nothing that could be done about
it. Our work highlights that this isn’t actually true and that the policy class we choose to optimize over
itself can have a big impact on mixing properties. What our paper shows in Theorem 2 is that what
leads to potentially high mixing times is when our model leverages a monolithic representation that is
highly sensitive to a large part of the interaction history at all times. This is particularly descriptive of
how vanilla transformers work, but there are multiple already existing research directions that seem
well suited to scaling to high context lengths while providing less history sensitivity at each step. We
refer interested readers to Appendix D for an in depth discussion of related directions.

Scaling to Complex Environments: We believe the settings of greatest relevance to our work are
those related to continual or multi-task environments where agents are evaluated as generalists over
a number of skills rather than just solving a single narrow task. As such, we believe that focus
on the difficulties presented by high mixing times is timely in the age of foundation models. As
mentioned at the end of Section 3.1, our analysis will not have relevance in problems where there are
few state variables that each impact every observation. However, composite tasks that test a number
of sub-skills naturally tend to have many total state variables with relatively few impacting each
observation. So, for example, simple Atari domains will not suffer from high mixing times, but i.e.
continual learning over multiple Atari games will [14] as a result of the sparsity of causal impact of
variables across games. Broadly speaking, AI assistant tasks that include providing help on a number
of topics rather than just one should also suffer from issues with high mixing times.

Evaluation of Foundation Models: Our work additionally highlights how the way we pretrain
foundation models may make high confidence evaluation of these models more difficult. Trusted
evaluation of foundation models remains an important challenge for the research community to
grapple with. Towards this end, our work is the first to establish that more interaction is needed to
reliably evaluate models that have larger context lengths. This novel perspective is very important for
researchers to consider as these models are increasingly being deployed in the real-world.

10

Acknowledgments and Disclosure of Funding

We would like to thank Murray Campbell, Miao Liu, and Payel Das for valuable conversations over
the course of this project. This project was supported by the IBM-Mila collaboration grant. We would
also like to acknowledge our support from the Canada CIFAR AI Chair Program and from the Canada
Excellence Research Chairs (CERC) Program. We thank the IBM Cognitive Compute Cluster and
the Mila cluster for providing computational resources. Finally, we really appreciate the feedback we
received from the NeurIPS reviewers, which helped to improve the presentation of our key findings.

References
[1] Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. Learning without state-estimation in

partially observable markovian decision processes. In Machine Learning Proceedings 1994,
pages 284–292. Elsevier, 1994.

[2] Sarath Chandar, Sungjin Ahn, Hugo Larochelle, Pascal Vincent, Gerald Tesauro, and Yoshua
Bengio. Hierarchical memory networks. arXiv preprint arXiv:1605.07427, 2016.

[3] Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis
Martin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, et al. Effective long-context
scaling of foundation models. arXiv preprint arXiv:2309.16039, 2023.

[4] Julian Richard Medina and Jugal Kalita. Parallel attention mechanisms in neural machine
translation. In 2018 17th IEEE international conference on machine learning and applications
(ICMLA), pages 547–552. IEEE, 2018.

[5] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism for deep neural
networks. Proceedings of Machine Learning and Systems, 1:1–13, 2019.

[6] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary,
Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro,
et al. Efficient large-scale language model training on gpu clusters using megatron-lm. In
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–15, 2021.

[7] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance
analysis of a tensor processing unit. In Proceedings of the 44th annual international symposium
on computer architecture, pages 1–12, 2017.

[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[9] Kyunghyun Cho, Aaron Courville, and Yoshua Bengio. Describing multimedia content using
attention-based encoder-decoder networks. IEEE Transactions on Multimedia, 17(11):1875–
1886, 2015.

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[11] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. nature, 550(7676):354–359, 2017.

[12] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[13] John Schulman, Barret Zoph, Christina Kim, Jacob Hilton, Jacob Menick, Jiayi Weng, Juan
Felipe Ceron Uribe, Liam Fedus, Luke Metz, Michael Pokorny, et al. Chatgpt: Optimizing
language models for dialogue. OpenAI blog, 2022.

11

[14] Matthew Riemer, Sharath Chandra Raparthy, Ignacio Cases, Gopeshh Raaj Subbaraj, Maximil-
ian Puelma Touzel, and Irina Rish. Continual learning in environments with polynomial mixing
times. In Advances in Neural Information Processing Systems, 2022.

[15] Michael Kearns and Daphne Koller. Efficient reinforcement learning in factored mdps. In
IJCAI, volume 16, pages 740–747, 1999.

[16] Dheeraj Nagaraj, Xian Wu, Guy Bresler, Prateek Jain, and Praneeth Netrapalli. Least squares
regression with markovian data: Fundamental limits and algorithms. Advances in neural
information processing systems, 33:16666–16676, 2020.

[17] Wesley A Suttle, Amrit Bedi, Bhrij Patel, Brian M Sadler, Alec Koppel, and Dinesh Manocha.
Beyond exponentially fast mixing in average-reward reinforcement learning via multi-level
monte carlo actor-critic. In International Conference on Machine Learning, pages 33240–33267.
PMLR, 2023.

[18] Shi Dong, Benjamin Van Roy, and Zhengyuan Zhou. Simple agent, complex environment:
Efficient reinforcement learning with agent states. Journal of Machine Learning Research, 23
(255):1–54, 2022.

[19] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084–15097,
2021.

[20] ML Puterman. Markov decision processes. 1994. Jhon Wiley & Sons, New Jersey, 1994.

[21] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.

[22] Yi Wan, Abhishek Naik, and Richard S Sutton. Learning and planning in average-reward
markov decision processes. arXiv preprint arXiv:2006.16318, 2020.

[23] Dimitri P Bertsekas. A new value iteration method for the average cost dynamic programming
problem. SIAM journal on control and optimization, 36(2):742–759, 1998.

[24] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 49(2):209–232, 2002.

[25] Torgny Lindvall. Lectures on the coupling method. Courier Corporation, 2002.

[26] Edward J Sondik. The optimal control of partially observable markov processes over the infinite
horizon: Discounted costs. Operations research, 26(2):282–304, 1978.

[27] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual rein-
forcement learning: A review and perspectives. arXiv preprint arXiv:2012.13490, 2020.

[28] Bram Bakker. Reinforcement learning with long short-term memory. Advances in neural
information processing systems, 14, 2001.

[29] Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

[30] Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio,
and Bernhard Schölkopf. Recurrent independent mechanisms. arXiv preprint arXiv:1909.10893,
2019.

[31] Marwa Abdulhai, Dong-Ki Kim, Matthew Riemer, Miao Liu, Gerald Tesauro, and Jonathan P
How. Context-specific representation abstraction for deep option learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36, pages 5959–5967, 2022.

[32] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229–256, 1992.

12

[33] Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and causation.
Computational intelligence, 5(2):142–150, 1989.

[34] Felipe M Santos, Leliane N Barros, and Felipe W Trevizan. Reachability-based model reduction
for markov decision process. Journal of the Brazilian Computer Society, 21:1–16, 2015.

[35] Peng Dai and Judy Goldsmith. Topological value iteration algorithm for markov decision
processes. In IJCAI, pages 1860–1865, 2007.

[36] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Vir-
tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, September 2020. doi:
10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

[38] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[39] Abhishek Naik, Roshan Shariff, Niko Yasui, Hengshuai Yao, and Richard S Sutton. Discounted
reinforcement learning is not an optimization problem. arXiv preprint arXiv:1910.02140, 2019.

[40] Chris Nota and Philip S. Thomas. Is the policy gradient a gradient? CoRR, abs/1906.07073,
2019. URL http://arxiv.org/abs/1906.07073.

[41] Saurabh Kumar, Henrik Marklund, Ashish Rao, Yifan Zhu, Hong Jun Jeon, Yueyang Liu, and
Benjamin Van Roy. Continual learning as computationally constrained reinforcement learning.
arXiv preprint arXiv:2307.04345, 2023.

[42] Anton Schwartz. A reinforcement learning method for maximizing undiscounted rewards. In
Proceedings of the tenth international conference on machine learning, volume 298, pages
298–305, 1993.

[43] Huang Bojun. Steady state analysis of episodic reinforcement learning. Advances in Neural
Information Processing Systems, 33:9335–9345, 2020.

[44] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999.

[45] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

[46] Matthew Riemer, Miao Liu, and Gerald Tesauro. Learning abstract options. NIPS, 2018.

[47] Matthew Riemer, Ignacio Cases, Clemens Rosenbaum, Miao Liu, and Gerald Tesauro. On the
role of weight sharing during deep option learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 5519–5526, 2020.

[48] Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection
of non-linear functions for multi-task learning. In International Conference on Learning
Representations, 2018.

13

https://doi.org/10.1038/s41586-020-2649-2
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1906.07073

[49] Clemens Rosenbaum, Ignacio Cases, Matthew Riemer, and Tim Klinger. Routing networks and
the challenges of modular and compositional computation. arXiv preprint arXiv:1904.12774,
2019.

[50] Modjtaba Shokrian Zini, Mohammad Pedramfar, Matthew Riemer, Ahmadreza Moradipari, and
Miao Liu. Coagent networks revisited. arXiv preprint arXiv:2001.10474, 2020.

[51] David Abel, Nate Umbanhowar, Khimya Khetarpal, Dilip Arumugam, Doina Precup, and
Michael Littman. Value preserving state-action abstractions. In International Conference on
Artificial Intelligence and Statistics, pages 1639–1650. PMLR, 2020.

[52] Khimya Khetarpal, Martin Klissarov, Maxime Chevalier-Boisvert, Pierre-Luc Bacon, and Doina
Precup. Options of interest: Temporal abstraction with interest functions. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages 4444–4451, 2020.

[53] Khimya Khetarpal, Zafarali Ahmed, Gheorghe Comanici, and Doina Precup. Temporally
abstract partial models. Advances in Neural Information Processing Systems, 34:1979–1991,
2021.

[54] Andrei Cristian Nica, Khimya Khetarpal, and Doina Precup. The paradox of choice: On the
role of attention in hierarchical reinforcement learning. In NeurIPS’22 Workshop on All Things
Attention: Bridging Different Perspectives on Attention.

[55] Kha Pham, Hung Le, Man Ngo, Truyen Tran, Bao Ho, and Svetha Venkatesh. Generative
pseudo-inverse memory. In International Conference on Learning Representations, 2022.

[56] Payel Das, Subhajit Chaudhury, Elliot Nelson, Igor Melnyk, Sarath Swaminathan, Sihui Dai,
Aurélie Lozano, Georgios Kollias, Vijil Chenthamarakshan, Soham Dan, et al. Larimar: Large
language models with episodic memory control. arXiv preprint arXiv:2403.11901, 2024.

[57] Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind:
Efficient infinite context transformers with infini-attention. arXiv preprint arXiv:2404.07143,
2024.

[58] Bingbin Liu, Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Exposing
attention glitches with flip-flop language modeling. Advances in Neural Information Processing
Systems, 36, 2024.

[59] Kiran Voderhobli Holla, Chaithanya Kumar, and Aryan Singh. Large language models aren’t
all that you need. arXiv preprint arXiv:2401.00698, 2024.

[60] Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation
of large language models. arXiv preprint arXiv:2401.11817, 2024.

[61] Yuan Tian and Tianyi Zhang. Selective prompt anchoring for code generation. arXiv preprint
arXiv:2408.09121, 2024.

[62] Zizhong Li, Haopeng Zhang, and Jiawei Zhang. Unveiling the magic: Investigating attention
distillation in retrieval-augmented generation. arXiv preprint arXiv:2402.11794, 2024.

[63] Thomas Schmied, Fabian Paischer, Vihang Patil, Markus Hofmarcher, Razvan Pascanu, and
Sepp Hochreiter. Retrieval-augmented decision transformer: External memory for in-context rl.
arXiv preprint arXiv:2410.07071, 2024.

[64] Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu, Gao Huang, and Furu Wei. Differential
transformer. arXiv preprint arXiv:2410.05258, 2024.

[65] Jason Weston and Sainbayar Sukhbaatar. System 2 attention (is something you might need too).
arXiv preprint arXiv:2311.11829, 2023.

[66] Richard S Sutton, Anna Koop, and David Silver. On the role of tracking in stationary envi-
ronments. In Proceedings of the 24th international conference on Machine learning, pages
871–878, 2007.

14

[67] Suhas Kowshik, Dheeraj Nagaraj, Prateek Jain, and Praneeth Netrapalli. Streaming linear
system identification with reverse experience replay. Advances in Neural Information Processing
Systems, 34:30140–30152, 2021.

[68] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Ger-
ald Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing
interference. arXiv preprint arXiv:1810.11910, 2018.

[69] Matthew Riemer, Tim Klinger, Djallel Bouneffouf, and Michele Franceschini. Scalable recol-
lections for continual lifelong learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 1352–1359, 2019.

15

Appendix Overview: In this Appendix we provide important details that there was not enough space
to include in the main text. First in Appendix A, we provide detailed proofs for the key theoretical
results of our paper. Next in Appendix B, we provide additional details about our experiments
discussed in the main text. In Appendix C we further justify why we chose the particular setting
of average reward RL for exploration in this paper. Finally, in Appendix D we discuss follow up
research directions that could be considered in order to impact bounds on the mixing time.

A Deriving Upper Bounds for the Mixing Time

Section Overview: In this section, we provide proofs for Theorem 1 and Theorem 2 in the main
text. We also highlight Corollary 2, which is a key extension of Theorem 1 that relaxes the definition
of β to be over c-steps rather than a single step. Moreover, we highlight Lemma 1, which is a key
intermediate result to bridge the gap between the results in Theorem 1 and Theorem 2. For each
theoretical result, we first state the result and then provide a detailed proof. Our proofs build off the
definitions and notation established in the main text.

For clarity, we will briefly recap the key assumptions discussed in the main text and why each is
needed:

1. Unichain Policies: All stationary policies are aperiodic and unichain, meaning they give
rise to a Markov chain with a single recurrent class that is recurrent in the Markov chain of
every policy.

• Needed for Theorem 1, Corollary 2, Lemma 1, and Theorem 2.
• This assumption is necessary given our definitions of the mixing time, the average

reward, and coupling time in the main text. For example, it is otherwise possible that
two copies of the Markov chain originating from different start states may never couple
(even in the infinite limit).

2. Multidimensional State Space: Each state is separated into n variables i.e., s = [s1, ..., sn]
with si ∈ Si for all variables i ∈ {1, ..., n} such that S ⊆ S1 × ...× Sn and T (s′|s, a) =
Πi∈{1,..,n}T (s′i|s, a).

• Needed for Theorem 1, Corollary 2, Lemma 1, and Theorem 2.
• This assumption is necessary to make it meaningful to talk about the Markov chain

induced by a policy as a DBN over state variables and the strongly connected component
structure of such a DBN.

3. History Windows Depend on Subsets of State Variables: Observation o, action a, and
reward r are caused by of a subset of the state variables such that Par(o) ⊆ {1, .., n},
Par(a) ⊆ {1, .., n}, and Par(r) ⊆ {1, .., n}. As a result, any interaction history window h(k)

of size k is also caused by a subset of the state variables such that Par(h(k)) ⊆ {1, .., n}.
• Needed for Theorem 2 only because it is the only result in this section concerned with

policies over h(k).
• This assumption is not strictly necessary to state in the sense that it also covers the

corner case where h(k) depends on all n variables and thus must always hold in practice.
However, it is worth emphasizing because if we do not actually see a change in the
causal subset of variables as k decreases, then our bounds on the mixing time do not
actually get tighter but just stay the same. As a result, this helps us build an intuition
for the kinds of problems where the bound tightening showcased in Theorem 2 is
meaningful (even though the result of Theorem 2 is still valid as stated even when it is
not).

A.1 Understanding the Generality of our Assumptions

Multidimensional State Space: The assumption that there are n state variables s = [s1, ..., sn]
subsumes the corner case where n = 1 leaving only one variable. Moreover, the assumption that
T (s′|s, a) = Πi∈{1,..,n}T (s′i|s, a) also is not restrictive because it is only required that this structure
hold for some representation of the state variables. For example, if two variables sa ∈ Sa and
sb ∈ Sb do not involve independently of each other, a new variable can be made to represent the

16

combination of these variables sc ∈ Sc := Sa × Sb. In the worst case, the system reduces to n = 1
where there is a single discrete variable evolving on its own. If this is the case, it does not invalidate
the theoretical results of Theorem 1 and Theorem 2. However, as explained in the paragraph on When
it Really Matters in Section 3, when n = 1 the bound on the mixing time does not change with k as
there is only one strongly connected component and the inequality from both theorems is simply an
equality. As such, our results are most meaningful in environments with local observation structure,
where are actually quite common for real-world and large-scale applications.

DBN Structure: Multidimensional transition functions can be represented by set of DBNs including
a separate DBN for each action [33]. The DBN for any action a ∈ A is an acyclic directed graph
with two layers. The first layer is the set of state variables in the current state and the second layer is
the set of state variables in the next state [34]. The Markov chain induced by a given policy can be
seen as DBN formed as a mixture of the DBNs for each action according to the policy and with the
actions produced by the policy also critically being causally dependent on certain state variables. The
assumption that there are ` strongly connected components Γπ1 , ...,Γ

π
` is also not restrictive because

` = 1 is a corner case of this formulation. Indeed, the generality of this phenomena underlies the
generality of planning algorithms such as Topological Value Iteration (TVI) [35], which efficiently
applies Value Iteration (VI) on each strongly connected component in reversed topological order.
TVI is indeed known to cover the case when ` = 1 [34]. Again, the case where ` = 1, which also
happens by definition whenever n = 1, is not very interesting for our theory, but does not invalidate
our results.

Motivating Examples: To motivate the generality of these assumptions in real-world settings, we
will walk through how both of the domains used in our experiments naturally possess the desired
structure to make our bounds in Theorem 1 and Theorem 2 meaningful despite their simplicity. See
Figure 6 for visual depictions of the two domains.

• RGB World (Figure 6a): This domain can be represented as a multidimensional state space
with the RGB color of each cell in the line representing its own state variable. The colors of
each state variable is only possibly influenced by the variable on either side of it (depending
on the chosen action of the agent). As a result, it is clear that the variables in the transition
graph can be considered to evolve independently of each other given the previous state and
action while displaying sparse interaction structure among variables. As such, the number
of strongly connected components is highly dependent on the policy parameterization.
Moreover, the observations are local to the agent, and are only the causal result of the agent’s
surrounding state variables in a single observation with multiple observations needing to be
combined to reflect the full state space.

• Minigrid Crossing (Figure 6b): This domain can be represented as a multidimensional
state space with each grid cell representing its own state variable. Each variable can either
be the location of the agent, a wall, an empty space or the location of the goal. Each variable
can then only be influenced by the variables adjacent to it across a single time step. Thus
the the variables in the transition graph can be considered to evolve independently of each
other given the previous state and action while displaying sparse interaction structure among
variables. As a result, the number of strongly connected components is yet again highly
dependent on the policy parameterization. The observations are also yet again local to
the agent, and only are causally dependent on the state variables within a limited radius
of the agent’s location. To reflect all state variables, it is indeed necessary that multiple
observations are combined.

A.2 Proof of Theorem 1

Theorem 1 (Strongly Connected State Variables Bound): If the Markov chain Tπ(s′|s) induced
by policy π has ` maximal strongly connected components in Dπ with a maximum size of g state
variables and a minimum of β common probability mass between any two state configurations for
any state variable, the mixing times tπret(ε) and tπmix(ε) can be upper bounded:

tπret(ε) ∈ tπmix(ε) ∈ O
(

1

βg
log(1/ε)

)
.

17

Proof Sketch: Due to the sorting of the ` strongly connected components, our analysis is based on
coupling each of the Γπi ’s in succession. Because it is possible that multiple Γπi couple at the same
step, every step where the Markov chain does not fully couple must be a step where some Γπi does
not couple. Our proof proceeds in the following high-level steps:

1. The probability of Γπi coupling at a given step once Γπ1 , ...,Γ
π
i−1 have all already coupled is

≥ βg .

2. Thus the probability of Γπi not coupling at a step when Γπ1 , ...,Γ
π
i−1 have all already coupled

is ≤ (1− βg).

3. So the joint probability of Γπi not coupling for mi ≥ 0 steps when Γπ1 , ...,Γ
π
i−1 have all

already coupled is ≤ (1− βg)mi .

4. If τ > m then
∑`
i=1mi = m and the probability that m-steps have been spent not coupling

in some Γπi has a probability bound independent of the particular allocation of m into mi.
Thus we can conclude that P (τ > m) ≤ (1− βg)m.

5. Leveraging the identity that 1− x ≤ e−x for x ≥ 0, we find that P (τ > m) ≤ (e−β
g

)m.

6. The Markov chain is ε-mixed if P (τ > m) ≤ ε, so it must be ε-mixed if (e−β
g

)m ≤ ε,
which implies that m ≥ 1

βg log(1/ε).

7. Finally, we note that tπret(ε) ∈ tπmix(ε) following Lemma 1 of Kearns and Singh [24].

Additional Details: Due to the sorting of the ` strongly connected components, our analysis will be
based on stabilizing the Γπi ’s in succession as in Kearns and Koller [15]. For example, if we assume
that Γπ1 , ...,Γ

π
i−1 have all stabilized by time t, all the variables in Γπi must then couple at the same

time for i to stabilize. This event then happens at time t with probability≥ βg . As soon as i stabilizes,
we can move on to stabilizing i+ 1. When all ` strongly connected components have stabilized, we
are done and have surpassed the coupling time. An important subtlety to note is that this process
need not take at least ` steps and will in fact complete in just a single step with probability ≥ (βg)`.
It is not that a strongly connected component i can’t couple until i− 1 has coupled at the previous
step, but rather that if i has coupled and i− 1 has not yet stabilized, this coupling over a subset of
variables is not necessarily meaningful for i stabilizing.

To formalize this idea, let us consider that each strongly connected component i was the focus of
the successive stabilization for mi ≥ 0 steps without stabilizing yet. If the entire Markov chain
across all ` components has been running for m steps and has not yet fully stabilized, we note
that

∑`
i=1mi = m. This is because every step where a component i did stabilize, either the next

component i+ 1 did not stabilize at the same step, or we consider a series of components j > i where
each stabilizes immediately i.e. mj = 0 until the next component j + 1 does not stabilize. Note that
if only i− 1 components have stabilized after m steps that implies that mj = 0 for all j > i, so this
still describes the setting where not all components actually have the opportunity to stabilize despite
mi being defined for all i ∈ {1, ..., `}. The probability that the system has not stabilized by m steps
P (τ > m) is then equal to the probability across all allocations of mi that each component i did
not couple for mi ≥ 0 steps when all components j < i had already stabilized. The probability of i
stabilizing at a given step if i− 1 also stabilized at or before that step is ≥ βg, so the probability of
not stabilizing at a given step is≤ (1−βg), and the probability of not stabilizing for each of mi steps
is ≤ (1− βg)mi . Then we can consider the joint probability of this across all ` components to upper
bound P (τ > m) noting that the total probability of all possible allocations of mi must be ≤ 1:

P (τ > m) ≤
∏̀
i=1

(1− βg)mi = (1− βg)
∑`
i=1mi = (1− βg)m ≤ (e−β

g

)m. (1)

The dependence between the strongly connected components in the joint probability is incorporated
through interdependence between the mi allocations in the product. However, we see that this
interdependence and dependence on the number of strongly connected components goes away when
noting that

∑`
i=1mi = m. In the final inequality of the above equation, we note that 1− x ≤ e−x

18

for x ≥ 0. The system is ε-mixed after m steps if P (τ > m) ≤ ε therefore by the transitive property
it is then also ε-mixed if:

(e−β
g

)m ≤ ε. (2)

We then proceed by taking the logarithm of both sides of this equation:

m(−βg) ≤ log(ε). (3)

We can then multiply each side by negative one, which also reverses the inequality:

m(βg) ≥ log(1/ε). (4)

Finally, we divide both sides by βg and yield the result that it must be ε-mixed if:

m ≥ 1

βg
log(1/ε). (5)

This then implies that:

tπmix(ε) ∈ O
(

1

βg
log(1/ε)

)
(6)

The final step of the proof is simply to note that the result from Lemma 1 of Kearns and Singh [24]
that tπmix(ε) ∈ Ω(tπret(ε)) for any policy π.

A.3 Proof of Corollary 2

Corollary 2 (Strongly Connected State Variables Bound with c-Step Transitions): If the Markov
chain Tπ(s′|s) induced by policy π has ` maximal strongly connected components in Dπ with a
maximum size of g state variables and a minimum of βc common probability mass between any two
state configurations for any state variable after c ≥ 1 steps, the mixing times tπret(ε) and tπmix(ε) can
be upper bounded:

tπret(ε) ∈ tπmix(ε) ∈ O
(
c

βgc
log(1/ε)

)
A potential criticism of β from [15] is the potential for β = 0 when there are deterministic elements of
the transition dynamics. However, this concept could be relaxed by considering the c-step transition
dynamics instead of just 1 step. For policies following Assumption 1, there must be a common
recurrent set of states that all policies experience regardless of the starting state, so values must
become greater than 0 for appropriately large values of c. As such, we define βc a parameter that
defines the minimum amount of common probability mass for any two state configurations for any
state variable after c-steps so that βc = βi,c ∈ [0, 1]:

βi,c = min
u,u′∈S

(∑
si∈Si

min(Tπ(si|u, c), Tπ(si|u′, c))
)

(7)

It is easy to show this because the probability of a strongly connect component coupling at each step
is the same as in the proof of Theorem 1, but we must simply account for the difference in definitions
of m′ = mc and βc = β because the probabilities are a function of c steps now rather than 1 step
before. So we can simply plug these substitutions into our equations from Theorem 1 to show that
m
c ≥

1
βgc
log(1/ε). The result is then a simple multiplication of the bound from Theorem 1 by c given

the new definition of βc.

19

A.4 Proof of Lemma 1

Lemma 1 (Conditioning on Subsets of State Variables): Consider the Markov chains induced by
two policies drawn from different policy classes. The first policy is π(·|x), which takes n(t) states
variables x = s1, ..., sn(t) as input at time t, has ` maximal strongly connected components with a
maximum size of g state variables and a minimum of β common probability mass between any two
state configurations for any state variable. The second policy π′(·|x′), only takes some arbitrary
subset of n′(t) ≤ n(t) state variables as input at any moment in time t such that x′ = s1, ..., sn

′(t) ⊆
s1, ..., sn(t) has `′ maximal strongly connected components with a maximum size of g′ state variables
and a minimum of β′ common probability mass between any two state configurations for any state
variable. The mixing times in the policy classes of π and π′ can then be upper bounded such that the
bound on π′ is tighter:

tπ
′

ret(ε) ∈ tπ
′

mix(ε) ∈ O
(

1

β′g′
log(1/ε)

)
∈ O

(
1

βg
log(1/ε)

)

The policy class over π′ removes edges in the DBN that were previously present in the class over π
and cannot add any. If these edges were within a pre-existing maximal strongly connected component,
that component may be split into multiple smaller strongly connected components, otherwise the
number of strongly connected components stays the same. This implies that `′ ≥ `. If removing
edges resulted in splitting the largest strongly connected component, we can say that g′ < g and
g = g′ otherwise. This implies that g ≥ g′.
To understand the relation between β and β′ we must make our notation a bit more detailed than what
was presented in the main text. βi can then be stated as follows while making the parameterization of
π explicit:

βi = min
X (t)×∆(A)

[
min

s1,s2∈S

(
min

{ ∑
a1∈A

π(a1|x1)T (si|s1, a1),
∑
a2∈A

π(a2|x2)T (si|s2, a2)

})]
(8)

Likewise, β′i can be defined in a similar fashion:

β′i = min
X ′(t)×∆(A)

[
min

s1,s2∈S

(
min

{ ∑
a1∈A

π′(a1|x′1)T (si|s1, a1),
∑
a2∈A

π′(a2|x′2)T (si|s2, a2)

})]
(9)

where X (t) = S1 × ... × Sn(t) and X ′(t) = S1 × ... × Sn′(t) such that X ′(t) ⊆ X (t) for
all t while xj and x′j are analogously obtained from the full state sj for j ∈ {1, 2}. The main
difference between these formulations is then minimizing over X (t)×∆(A) in the case of βi and
X ′(t) × ∆(A) in the case of β′i. By rule of Cartesian products over subsets, we then know that
X ′(t)×∆(A) ⊆ X (t)×∆(A) and because the minimization over a subset must yield a result larger
or the same size as a minimization of the full set, βi ≤ β′i for all state variables i. This also implies
that β ≤ β′ as it also must hold for the smallest value over state variables.

Bringing it all together, 0 ≤ β ≤ β′ ≤ 1, and g ≥ g′ ≥ 1, so 1/β′g
′ ≤ 1/βg. So, when combined

with the results from Theorem 1, this result has been proven.

A.5 Proof of Theorem 2

Theorem 2 (Limiting Mixing Times with Context Length): If the Markov chain induced by a policy
conditioned on a finite interaction history window π(·|h(k)) with a context length of k has `k maximal
strongly connected components in Dπ with a maximum size of gk variables and a minimum of βk

20

common probability mass between any two state configurations, the mixing times tπret(ε) and tπmix(ε)
can be bounded for any k′ ≥ k:

tπret(ε) ∈ tπmix(ε) ∈ O
(

1

βgkk
log(1/ε)

)
∈ O

(
1

β
gk′
k′

log(1/ε)

)
where the dependence on the context length implies that 0 ≤ βk′ ≤ βk ≤ 1 and gk′ ≥ gk ≥ 1.

Proof Sketch: Lemma 1 considers the mixing time relationship of policy classes conditioned on
subsets of the state variables that other policy classes are conditioned on. Our proof includes the
following high-level steps by applying our notation from Section 3 in which k′ ≥ k for all t to the
results of Theorem 1 and Lemma 1:

1. We consider the causal parent state variables of each observation, action, and reward to
conclude that Par(h(k)) ⊆ Par(h(k′)) ⊆ {1, .., n}, which implies that n ≥ nk′(t) ≥
nk(t).

2. Through Lemma 1 we show that by rule of Cartesian products over subsets that 0 ≤ βk′ ≤
βk ≤ 1.

3. Through Lemma 1 we also demonstrate that gk′ ≥ gk ≥ 1 because causal connections in
Dπ are only added and not removed when the context length is increased.

4. This then implies that 1/β
gk′
k′ ≥ 1/βgkk , which is sufficient to prove Theorem 2 using

Theorem 1 because ε is independent of k.

Additional Details: As mentioned in the section overview, we assume that observation o, action
a, and reward r are caused by of a subset of the state variables such that Par(o) ⊆ {1, .., n},
Par(a) ⊆ {1, .., n}, and Par(r) ⊆ {1, .., n}. As a result, any interaction history window h(k) of size
k is also caused by a subset of the state variables such that Par(h(k)) ⊆ {1, .., n}. This is always true
in practice as this includes as a corner case the situation where the interaction history is dependent on
all variables. However, our bound is not meaningful in domains where Par(h(k)) = {1, .., n} for all
values of k because then it never gets tighter as k gets smaller. In general, a finite context length is
reflective of a maximum nk(t) sized subset of the state variables at a time twhere n ≥ nk′(t) ≥ nk(t)

if context length k′ ≥ k for all t. This is because Par(h(k)) ⊆ Par(h(k′)) ⊆ {1, .., n}. Theorem 2
then follows directly from the combined results of Lemma 1 and Theorem 1.

Specifically, 0 ≤ β ≤ βk′ ≤ βk ≤ 1 because they are the result of minimizing the same function
over progressively smaller subsets as in Lemma 1. Moreover, g ≥ gk′ ≥ gk ≥ 1 because causal
connections in the DBN are only removed as in Lemma 1. This then implies that 1/βg ≥ 1/β

gk′
k′ ≥

1/βgkk , which demonstrates the relative tightness of the bounds. Finally, Theorem 1 does not depend
on the parameterization of the policy, so it can equally be applied to policies of history length k to
bound the mixing time.

B Additional Details for Experiments

Section Overview: Here we elaborate on experimental details that we did not have room to include
in the main text. In each subsection, we fill in missing details from Sections 2, 3, and 4 respectively.

Compute Infrastructure: Our experiments were deployed on a cluster of Intel x86 machines. Each
of our toy experiments and tabular experiments were run on a single CPU. Meanwhile, the online
function approximation and Decision Transformers experiments were each run with one V100 GPU.

Software Libraries: Simple tabular models were coded from scratch primarily using Numpy [36],
which is publicly available following a BSD license. Neural network models were developed using
Pytorch [37], which is publicly available following a modified BSD license.

Hyperparameter Tuning Protocol: Our models train to convergence in all experiments. For our
simple RGB world experiments, we did a search over Adam learning rates with gradient clipping

21

until finding one that consistently converged at every context length. For our Decision Transformers
experiments, we followed the code from the original paper by Chen et al. [19], which included
gradient clipping, Adam optimization, and a learning rate schedule that consists of linear warm-up
following by cosine learning rate decay. These details were copied from the original paper [19] and
we also did a grid search over the initial learning rate.

B.1 Toy Examples (Section 2)

Mixing Time Calculation: Following Riemer et al. [14], we compute a relaxed version of the ε-
return mixing time that is averaged over start states to be more reflective of mixing times encountered
rather than the worst case. This is computed by first rolling out the policy for 100,000 steps in the
environment to approximate the reward rate from the first state in our list. This state is arbitrarily
chosen such that all variables are set to index 0. Then for each environment state we rollout the policy
for 10,000 steps, recording the final step at which the environment is not within ε of this reward rate.
The reported mixing times in the main text are an average across all possible starting states. For the
smaller irrelevant variables example, we also compute the mixing time for each starting state 5 times
and take the average over trials in order to lower the variance of our estimates.

Irrelevant Variables Example Details: For the irrelevant variables example, there are 9 total states
across variables x and y and only 3 total states when ignoring y. As a result, there are 29 = 512
deterministic policies across both variables and 23 = 8 deterministic policies over the relevant
variable. 0.474 is the highest reward rate estimate for any policy, so if the reward rate has not mixed
to a precision of ε = 0.05, there must be significant bias and greater than 10% relative error in the
reward rate estimation regardless of the policy.

Independent Subtasks Example Details: For the independent subtasks example, there are 18 total
states across all variables x, y, and z and only 6 total states when ignoring the irrelevant variable
for the subtask. As a result, there are 218 = 262,144 deterministic policies across all variables and
26 = 64 deterministic policies over the contextually relevant variables. 0.474 is again the highest
reward rate estimate for any policy, so if the reward rate has not mixed to a precision of ε = 0.05, there
must be significant bias and greater than 10% relative error in the reward rate estimation regardless
of the policy. As the search space over deterministic policies considering all variables is very large
for this domain, we randomly sort the policies and only evaluate policies for 24 hours on a single cpu.
1,597 total policies were considered. Notice that this means the numbers reported in the main text
are conservative as less than an arbitrary 1% of the search space was actually explored to find these
values.

B.2 Online Learning in a POMDP (Section 3)

Statistical Significance: The lightly shaded regions around each data point in Figures 4, 5, and 7
represent the 95% confidence interval of the average mixing time of that point given the number of
data points found at that particular binning with respect to the reward rate across runs and seeds. This
is computed as ±1.96σ/

√
n where σ is the standard deviation and n is the number of data points at a

particular binning of the reward rate.

Experimental Protocol: For each setting considered, we conducted a version of the experiment
with 100 different seeds ranging from 0 to 99. Our tabular experiments were run for 1 billion steps
(corresponding to about 7 days for the highest context length k = 10). Meanwhile, our function

(a) Online Learning: RGB World (b) Offline Learning: Minigrid Crossing
Figure 6: Domains. Figure 6a depicts the environment used for online learning with left and right
actions. The reward is +1 if the agent is on the blue square and −1 on the red square. If either square
is reached, the agent returns to the center while the red and blue squares are randomly assigned to
the edges. Figure 6b depicts a random episodic configuration of the environment used for offline
learning. Observations are denoted by yellow dotted lines or light shading.

22

approximation experiments were run for 6 hours each, corresponding to about 1 million steps for
the Transformer models, 6 million steps for the MLP models, and 600 thousand steps for the LSTM
models. We set the number of green squares to 3, which implies that the k = 1 policies cannot achieve
the optimal policy, but all k ≥ 2 can. Based on the results of preliminary testing, the SGD learning
rate was set to 0.01 in our tabular experiments and the Adam learning rate was set to 0.000001 in
our function approximation experiments. Online Q-learning with an exploration rate of 0.05 and
a discount factor of γ = 0.99 was used in all experiments. During our function approximation
experiments, the target network was updated every 10,000 steps following best practices [38].

Neural Network Architecture Details: For our MLP models, the history representation is flattened
at each step and sent to a two layer MLP model with 724 hidden units in each layer and a linear
layer deriving an output for each action’s value. ReLU activations are used at each hidden layer. Our
LSTM model is sent a sequence of 5 dimensional inputs for each step where 3 dimensions represent
the observation, one dimension represents the action, and one dimension represents the reward. The
current observation is then sent to the LSTM with an action of−1 and reward of 0 in order to preserve
the dimensionality. The LSTM, implemented with the Pytorch [37] LSTM library, is unidirectional
and has two hidden layers of size 256 followed by a linear layer to produce a value for each action.
The input sent to the Transformer model has 6 dimensions at each step, adding to the LSTM input
an encoding of the ordering of the input ranging from 1 to k. Our model is implemented using the
Pytorch [37] Transformer library leveraging a hidden dimension of 256, one encoder layer and one
decoder layer. The output of the Transformer is once again sent to a linear layer producing a value
for each action. The number of heads was set to 8 based on preliminary experiments.

Mixing Time Calculation: We adapt our mixing time estimation approach from the last section as
we cannot easily generate the full set of possible histories corresponding to each state. Instead we
rollout a single chain from the current state for 10,000 steps using the greedy exploitation policy. At
each step along the way, we calculate the estimated reward rate and report the mixing time as the last
time where the estimated reward rate is not within ε = 0.01 of the full estimate over all of the steps.
This is similar to the approximation used by Riemer et al. [14] for larger scale domains.

Mixing Times Across Context Lengths: Our results in the main text only plot the mixing time for
the context length k = 5. We provide more comprehensive results across values of k in Figure 7.
These additional settings follow a similar overall trend. Reward rates are binned by increments of
0.0333.

Parameter Scaling Experiments: We varied the number of hidden units in each architecture in
order to test the effect of model size on encountered mixing times over 100 random seeds and the
same learning configuration.

• MLP Scaling. For the MLP model we considered: 256 hidden units resulting in 134,402
total parameters (at k = 2), 404 hidden units resulting in 331,686 total parameters (at
k = 2), 724 hidden units resulting in 1,057,766 total parameters (at k = 2), 1280 hidden
units resulting in 3,293,442 total parameters (at k = 2), and 2250 hidden units resulting
in 10,154,252 total parameters (at k = 2). While the MLP model does grow with the
context length, most parameters are not in the first layer and this only results in 8.7% relative
parameter growth from a context length of 1 to 10. We considered both k = 2 and k = 10
for each number of hidden units and found no statistically significant effect varying the
number of parameters while keeping k fixed.

• LSTM Scaling. For the LSTM model we considered: 92 hidden units resulting in 137,634
total parameters, 143 hidden units resulting in 330,618 total parameters, 256 hidden units
resulting in 1,054,722 total parameters, 454 hidden units resulting in 3,308,754 total param-
eters, and 792 hidden units resulting in 10,055,234 total parameters. We again considered
both k = 2 and k = 10 for each number of hidden units and found no statistically significant
effect varying the number of parameters while keeping k fixed.

• Transformer Scaling. For the Transformer model we considered: 88 hidden units resulting
in 127,338 total parameters, 136 hidden units resulting in 301,242 total parameters, 256
hidden units resulting in 1,058,562 total parameters, 448 hidden units resulting in 3,228,738
total parameters, and 792 hidden units resulting in 10,067,114 total parameters. We plot
the effect on the average mixing time encountered during learning in Figure 8. We use this
aggregate metric in this case only to simplify our analysis given that we are also varying
the number of parameters, but it is definitely preferable to plot mixing times as a function

23

(a) Context Length of 2 (b) Context Length of 3

(c) Context Length of 4 (d) Context Length of 5

(e) Context Length of 7 (f) Context Length of 10

Figure 7: Policy Architecture vs. Encountered Mixing Times. We plot the average mixing time
for each choice of policy architecture between tabular, MLP, LSTM, and Transformer models with
averages binned by the reward rate of the policy.

24

Figure 8: Transformers: Average Encountered Mixing Time vs. Number of Parameters. We
plot the average encountered mixing time during learning for Transformer models trained at a number
of different model sizes regulated by the number of hidden units. Averages are taken over 100 random
seeds and we also provide 95% confidence intervals.

of the reward rate as we have primarily done throughout this paper. Because mixing times
based on the ε-return mixing time depend strongly on the reward rate, aggregate metrics like
this largely wash out the effect of other factors. In light of this, the nearly 2x increase in
the average encountered mixing time over the course of the entire learning period between
k = 2 and k = 10 for Transformers with over 10M parameters is quite staggering and
showcases the significant impact of the analysis in Theorem 2 even in this simple domain.

Transformer Attention Map Analysis: To test the hypothesis of the model size increase being
correlated with paying more attention to the full context, we reran our experiments for 136 hidden
units and 448 hidden units (10x more parameters) at k = 10 while keeping track of the attention maps
computed in the decoder with respect to the interaction history at past time-steps. During the mixing
time evaluation phase, we averaged the attention maps computed at each step and then averaged over
evaluations weighted by the number of steps between evaluations. The average attention weights
for the 136 hidden unit model were: t − 9 : 0.048, t − 8 : 0.052, t − 7 : 0.061, t − 6 : 0.078,
t− 5 : 0.099, t− 4 : 0.123, t− 3 : 0.148, t− 2 : 0.179, and t− 1 : 0.212. In contrast, the average
attention weights for the 448 hidden unit model were: t − 9 : 0.089, t − 8 : 0.080, t − 7 : 0.078,
t− 6 : 0.086, t− 5 : 0.102, t− 4 : 0.119, t− 3 : 0.133, t− 2 : 0.149, and t− 1 : 0.163. The average
attention weight goes up for all time-steps in the interaction history window greater than 4 steps in
the past. Indeed, the entropy associated with the average distribution grows over 4% from 2.99 bits
for the 136 hidden unit model to 3.12 bits for the 448 hidden unit model.

B.3 Offline Learning with Decision Transformers (Section 4)

Environment Details: Documentation for the SimpleCrossingS9N1-v0 environment that we used for
our experiments can be found at https://minigrid.farama.org/environments/minigrid/
CrossingEnv/, which is publicly available following the Apache 2.0 license.

Decision Transformer Details: We model our code and architecture following the code provided
for the Atari experiments of the original Decision Transformers paper [19], which was released under
an MIT license. Our architecture and optimization follows all of the details from their paper with the
only exception being the use of a convolutional architecture that his been found more suited to the
Minigrid domain where observations are 3×7×7 dimensional [30; 31]. There are three convolutional
layers with filter sizes of 16, 32, and 64 respectively. 2× 2 max pooling layers and ReLU activations
follow each convolutional layer. The result is a 64 dimensional embedding (as opposed to 128 for
Atari) due to the smaller input size. Following Chen et al. [19], we used a batch size of 128, 6
layers, 8 attention heads, 5 epochs of training, GeLU nonlinearities within the Transformer, 512 ∗ 20
warm-up tokens, 2 ∗ 500000 ∗ k final tokens, and a dropout rate of 0.1. We also used the same Adam
optimization with a learning rate of 0.001, β = (0.9, 0.95), a gradnorm clip range of 1.0, and 0.1
weight decay. It is important to note that a transformation is applied to the rewards before it is sent to

25

https://minigrid.farama.org/environments/minigrid/CrossingEnv/
https://minigrid.farama.org/environments/minigrid/CrossingEnv/

the Transformer model referred to as the return to go for policy or trial i namely gi,t :=
∑Ti
τ=t ri,τ

which is sent along with the current time step t instead. The advantage of this representation is the
ability to prompt the model for high returns to elicit high performing behaviors. We can consider this
as a special case of the paradigm in which models take as input some transformation of the interaction
history up to a bounded context length.

Random Behavior Policies: Our random behavior policies take in the current observation as input
and process it with the same convolutional encoder as the Decision Transformer model. This
representation is simply processed by a linear layer, mapping it to a value for each action. The policy
then selects the argmax action. The maximum length of any episode is 325, the minimum length is
14, and the average length is 324.4 (as most random policy episodes do not arrive at the goal state).

Learning Behavior Policies: Our learning behavior policies are implemented with the REINFORCE
algorithm [32]. It is quite common in the offline RL literature to use data drawn from a replay buffer
during learning. However, the correspondence of these to actual policies used can get complicated
with an off-policy algorithms such as DQN or Rainbow. Meanwhile, REINFORCE only performs
updates after each episode and can ensure that the actions in each episode are drawn entirely from
on-policy sampling. We opted for this approach due to its simplicity and to control for other potential
complicating factors in the learning process such as policies that change or randomly explore in
the middle of an episode. The learning rate of REINFORCE is set to 0.1 with SGD optimization,
the entropy regularization coefficient is set to 0.001, and a discount factor is set to γ = 0.99. The
maximum length of any episode is 325, the minimum length is 14, and the average length is 240.5.
We observe that by 10,000 episodes of training the policy is consistently solving the task, but we
consider just the first 1,000 episodes to make the comparison more precise with the random behavior
policy setting and to increase the variety in the behavior distribution (by putting some emphasis on
early learning too).

Mixing Time Calculation: We aim at a similar evaluation of the mixing time as the previous section.
However, we also take advantage of the episodic structure of this problem to promote computational
efficiency. The policy is rolled out for 1000 episodes to compute the estimated reward rate per step
and reward rate per episode. Then we consider 1000 random orderings of these episodes keeping
track of both the final step not within ε = 0.01 precision of the estimated reward rate per step and the
final episode not within ε = 0.01 precision of the estimated reward rate per episode. We report the
average mixing time over these 1000 random orderings to again highlight mixing times experienced
in practice rather than worst case mixing times.

Evaluation of Decision Transformer Models: In Figure 9 we take a deeper look at the general-
ization ability of models trained with decision transformers as a function of the context length k.
We now elaborate a bit on our discourse from the main text. One may wonder if it is necessary for
Decision Transformers to achieve near optimal training accuracy in order to achieve good downstream
performance. To answer this question, we consider a Decision Transformer that we trained on random
behavior policies (seed 0) that achieved optimal training accuracy at k = 25. This particular setting is
interesting because this is the smallest k found to be sufficient and because the deterministic behavior
policies allow us to identify the best possible training accuracy given the data (100%). We then
evaluate this model across a variety of return to go prompts stepping by 0.01 from 0 to 1.0 and report
the average performance of these models across 1,000 episodes. In Figure 9 we plot the reward rate of
these models ranked according to performance (along the x axis) as well as each behavior policy used
to generate the data evaluated in the same way. We plot our results in Figure 9 which validate our
hypothesis about the importance of fitting the training data. Decision Transformer with k = 25 can
achieve performance as good as any behavior policy used to generate the data. Meanwhile, models
with smaller k fail to achieve the same performance and models with larger k seem to overfit on a
dataset of this size.

C Why Average Reward RL?

Issues with Discounting: As typically implemented, the popular discounted reward setting of RL
does not correspond to the maximization of any objective function over a set of policies [39] and
the policy gradient is not the gradient of any function [40]. Moreover, these fundamental issues do
not resolve as the discount factor approaches 1 [39] and discounting does not influence the ordering
of policies, suggesting it likely has no role to play in the definition of the control problem [21]. In

26

Figure 9: Decision Transformers Context Length vs. Reward During Evaluation. We highlight
learning results for Decision Transformers in the crossing environment with data generated from
random behavior policies with a context length k of 1. This figure details the evaluation performance
when prompting each policy with 100 return to go values stepping from 0 to 1.0. This is also
compared to the actual distribution of performance for the behavior policies that generated the data.
Each line color represents a different context length k for the Decision Transformer model with the
training accuracy rounded to the nearest percent included in parenthesis.

contrast, the average reward per step objective, is well-suited for analysis of partially observable [1],
larger scale [14], and continual RL problems [21; 27; 41]. We thus adopt this formulation in our
paper to enable more rigorous analysis of agents.

Evaluation vs. Optimization: It is important to note that we only use the average reward perspective
to evaluate an agent’s behavior and place no restriction on discounting being used within the agent’s
learning process as it is in our experiments. So, to argue that the discounted setting would be more
relevant for our goals, is essentially to propose that what practitioners actually care about is the
discounted return rather than the undiscounted return or average reward of policies. As highlighted
by Schwartz [42] it is quite rare for actual evaluation results reported in papers to consider discount
factors. Meanwhile, optimizing for the average reward actually also inherently optimizes for the
undiscounted return [42]. That said, even if we did really care about the discounted return, this is a
corner case subsumed within the formulation of Theorem 2. This is because the discount factor or
time-step number can be considered to be a potentially unobserved element of the state space that is
used to modulate the function that produces immediate rewards. As such, our choice of the average
reward per step formulation does not at all limit the generality of our conclusions in Theorem 2. In
fact, it helps ensure that the result is as general as possible.

Infinite vs. Finite Horizons: Bojun [43] proves that every finite horizon task has a unique steady-
state distribution under any policy. This means that Assumption 1 and Corollary 1 are guaranteed
for the case of episodic tasks, which is subsumed within our framework. For episodic tasks, the
mixing time is related to the number of episodes a policy must be rolled out for before we get a
reliable measure of performance. Indeed, we consider episodic tasks within our experiments using
the Minigrid Crossing environment in Section 4.

D New Architectures and Algorithms

Theorem 2 shows that what leads to potentially high mixing times is when models leverage a
monolithic representation that is highly sensitive to a large part of the interaction history at all times.
This is particularly descriptive of how vanilla transformers work, but there are multiple already
existing research directions that seem well suited to scaling to high context lengths while providing
less history sensitivity at each step, which we will now outline.

Hierarchical RL: In hierarchical RL frameworks such as options [44] when applied to neural
networks [45] with potentially many levels of abstraction [46] and/or complex weight sharing

27

[47; 48; 49; 50], it should be possible in domains with temporal coherence to approximate a policy
with a longer context length by multiple sub-policies with a smaller context length. This is particularly
relevant for approaches to option learning that learn an independent lower dimensional representation
space for each option as in [31], or associate options with subsets of the state space [51; 52; 53; 54].

Hybrid Transformer Working Memory Architectures: Recent work has aimed to improve the
effective context length of transformers by augmenting them with some kind of bounded working
memory component [55; 56; 57]. While these papers are typically solely motivated by computational
efficiency, they effectively serve the role of extending Transformers to longer contexts while making
them less sensitive to experiences in this context that are not reflected in the memory. This effec-
tively brings Transformers closer to some of the incremental design patterns of RNNs, which our
experiments indicate experience lower mixing times. Approaches that have less sensitivity to the
input space are also motivated by the problem of attention dilution [58; 59; 60; 61], which is typically
addressed with retrieval augmented approaches that only focus on a subset of the interaction history
at a time [62; 63; 64] or a generated small description [65].

Tracking Policies: If we aim to learn a non-stationary tracking policy solution concept as argued
by [66] we could potentially represent a stationary policy over a longer context length with a non-
stationary set of small context length policies. In effect, this becomes similar to what is achieved by
the hierarchical RL policies described above. One additional subtlety to highlight in this case is that
this solution is also limited by the mixing properties of the tracking policy parameters, so it would
also be necessary to tune this approach to move through parameter space as fast as possible.

The Role of Replay: While not related to sensitivity of the policy to its input, it is worth noting that
replay based learning algorithms have been theoretically shown to lead to better sample efficiency of
learning with respect to the mixing time [67; 16]. It will be an interesting direction for future work to
explore the extent to which these learning benefits can be combined with the benefits of a particular
choice of policy class aimed at lowering mixing times with a smaller context length. Moreover,
considering the importance of our analysis to continual learning settings, it will be interesting to
see if similar mixing time benefits could be established for approaches that combine replay with
meta-learning [68], or approximate replay through the use of strong generative models [69].

28

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: At the end of the introduction we concretely list three primary contributions of
our paper, with each being the topic of its own section (Sections 2, 3, and 4 respectively).
The only other content in the paper is the concluding section, which discusses promising
opportunities for future work to build off our ideas.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We comprehensively discuss the theoretical limitations of the assumptions we
make in this paper in Appendix A.1. We also discuss limitations in the scope of our main
theorem in the paragraph titled "When it really matters" at the end of Section 3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

29

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide discussion of all assumptions in the main text, which we recap
for clarity at the beginning of Appendix A along with a discussion of the generality of
each assumption. Then detailed proofs are provided in Appendix A with each theoretical
statement being devoted its own subsection building off these assumptions.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: To augment the presentation in the main text, all remaining details needed to
reproduce our experiments are provided in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

30

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided the code needed to reproduce our experiments and a
README file in the repository with instructions for running them at https://github.
com/mattriemer/ContextLengthMixing.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: To augment the presentation in the main text, all remaining details needed to
understand and even reproduce our experiments are provided in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Every figure showing results throughout our paper provides error bar shading
so that readers can assess statistical significance. Only Figure 9 does not include error bars
and that is because that plot is taking a deeper look as a single interesting random seed.

31

https://github.com/mattriemer/ContextLengthMixing
https://github.com/mattriemer/ContextLengthMixing
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide this information in the "compute infrastructure" paragraph at the
beginning of Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read the code of ethics and made every effort to comply.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

32

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]
Justification: Our paper contributes fundamental research on existing models, so the only
impact of our work is promoting a better understanding of the limitations and evaluation of
these existing models. We are not enabling any new technologies that do not already exist
that could potentially have societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We discuss these details in the "software libraries" paragraph at the start of
Appendix B.
Guidelines:

33

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

34

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

35

	Introduction
	Understanding How the Policy's Input Impacts the Mixing Time
	Preliminaries: the Average Reward RL Setting and Definitions of the Mixing Time
	Mixing in MDPs with Multidimensional States
	Building an Intuition with Examples

	Understanding How the Context Length Impacts the Mixing Time
	Partially Observable Environments with Local Observation Structure
	Empirical Verification During Online RL

	Understanding Growing Context Lengths in Foundation Models for RL
	Discussion and Future Work
	Deriving Upper Bounds for the Mixing Time
	Understanding the Generality of our Assumptions
	Proof of Theorem 1
	Proof of Corollary 2
	Proof of Lemma 1
	Proof of Theorem 2

	Additional Details for Experiments
	Toy Examples (Section 2)
	Online Learning in a POMDP (Section 3)
	Offline Learning with Decision Transformers (Section 4)

	Why Average Reward RL?
	New Architectures and Algorithms

