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Figure 1: Rectified Flow Policy is a visual imitation learning algorithm that utilizes rectified flow
with selective refinements, achieving superior effectiveness in diverse simulation and real-world
tasks, with a significant inference acceleration. (a) Accuracy on various domains. (b) Sampling flow
from noise to action of RecFlow Policy and Diffusion Policy.

ABSTRACT

We introduce RecFlow Policy, a fast, accurate, and scalable policy for robot learn-
ing, bridging the gap between generative modeling techniques and real-world
robotic applications. Diffusion models have seen rapid adoption in robotic imita-
tion learning, enabling autonomous execution of complex dexterous tasks. How-
ever, the dependence of multi-step iterative denoising makes action synthesis com-
putationally expensive and slow, limiting their effectiveness in fast-reacting poli-
cies. RecFlow Policy replaces the diffusion process with a novel rectified flow
parameterization, significantly enhancing both computational speed and policy
accuracy. RecFlow Policy learns a deterministic coupling to achieve rapid policy
inference. This deterministic nature allows for precise visuomotor control with
minimal inference time, making it highly suitable for real-time robotic applica-
tions. Unlike conventional iterative training methods, our approach selectively re-
fines the rectification process using expert demonstrations to reduce accumulated
errors. Leveraging nearly straight flows, RecFlow Policy achieves high accuracy
with just a single denoising step. To evaluate the effectiveness of RecFlow Policy,
we conducted extensive experiments across both simulated and real-world tasks.
Results show that our method matches or surpasses the performance of state-of-
the-art diffusion-based methods while while offering greater simplicity and com-
putational efficiency. Compared to Diffusion Policy, which involves numerous
iterative steps and incurs significant computational overhead, our approach offers
a streamlined and scalable solution for real-time visuomotor policy learning. Code
is available on RecFlow Policy code.
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1 INTRODUCTION

The development of efficient and scalable visuomotor policies has been a central focus in robotics,
particularly for tasks involving imitation learning where robots must replicate complex human skills.
Generative models, such as diffusion models Chi et al. (2023a), have demonstrated state-of-the-art
performance in modeling these tasks. However, their reliance on iterative denoising processes for
action synthesis results in slow inference, restricting their practical applicability in real-time robotic
environments. This limitation is especially problematic for dynamic tasks requiring rapid, reactive
control.

To overcome the limitations, recent work has explored various techniques to accelerate the inference
process of diffusion-based policies, including reducing the number of denoising steps Song et al.
(2021a), parallelizing the denoising process Shih et al., and distilling the diffusion model into a faster
student model Prasad et al. (2024). However, these methods often come with trade-offs, such as
reduced sample quality, increased memory requirements, or the need for extensive hyperparameter
tuning. Despite these efforts, achieving real-time performance while maintaining high accuracy
remains a significant challenge, particularly in resource-constrained robotic systems.

In this paper, we introduce RecFlow Policy, a novel approach that addresses these limitations by
replacing the iterative denoising process with a deterministic rectified flow Liu et al. (2023b). Our
method directly learns a coupling between Gaussian noise and clean action distributions, which al-
lows for efficient, one-step action synthesis while maintaining high accuracy. By eliminating the
need for multiple denoising steps, RecFlow Policy dramatically accelerates inference, achieving a
98.7% reduction in latency compared to traditional diffusion models without compromising perfor-
mance.

RecFlow Policy leverages the principles of rectified flow, where actions are mapped from noise
to precise target through a straightforward deterministic process. RecFlow Policy also inherits the
merits of flow matching, i.e., the ability to encode high-dimensional multimodal distributions. This
approach not only boosts computational efficiency but also ensures that high-precision actions are
generated rapidly, making it highly suitable for real-time robotic control in dynamic environments.
Furthermore, by selectively refining the flow during training, RecFlow Policy mitigates the poten-
tial errors introduced by early-stage approximations, ensuring robustness even with fewer training
samples.

We validate the effectiveness of RecFlow Policy through extensive experiments across a variety
of simulations and real-world tasks. In the simulation, RecFlow Policy achieves significant im-
provements over baseline diffusion models, with an average success rate increase of 60.3% across
66 tasks. Real-world evaluations further demonstrate its advantages, particularly in tasks involv-
ing high precision and long-horizon manipulation, where RecFlow Policy outperforms traditional
methods by a large margin. Notably, in complex real-world robotic manipulation tasks like flower
arrangement and building a champagne tower, which demand continuous fine-grained control, our
approach excels in managing dynamic objects and executing highly accurate sequential manipula-
tions.

Our contributions are: (i) We present RecFlow Policy, a method that combines the efficiency of
deterministic flow with the power of generative modeling to enable fast and accurate visuomotor
control; (ii) We demonstrate the superiority of our approach in a broad range of robotic manipula-
tion tasks, showcasing its ability to handle both simple and complex scenarios with minimal com-
putational overhead; (iii) We highlight the potential for RecFlow Policy to enable real-time robotic
applications, where fast decision-making and robust performance are critical.

2 RELATED WORK

2.1 DIFFUSION MODELS IN ROBOTICS

Diffusion models have demonstrated their ability to express complex multimodal distributions, ex-
hibiting stable training dynamics and robustness to hyperparameter variations. This has led to their
widespread application in various robotic tasks, including motion planning Janner et al. (2022);
Luo et al. (2024); Carvalho et al. (2023); Saha et al. (2024); Huang et al. (2023), imitation learning
Pearce et al. (2023); Chi et al.; Ha et al. (2023); Xian et al. (2023); Li et al.; Ze et al. (2024); Li et al.;
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Figure 2: Overview of our method. We train a visuomotor policy in an iterative manner to trans-
port straight between noise distribution and target action space, hence enabling lightning one-step
sampling during inference. The rectified action flow is selectively refined, lowering the potential
accumulated error brought by multiple reflows.

Wang et al. (2024); Chen et al. (2024); Sridhar et al. (2023); Zhao et al. (2024); Chi et al. (2024),
goal-conditioned imitation learning Reuss et al.; 2024); Chen et al. (2023a); Zhang et al. (2023), and
grasp prediction Urain et al. (2023). Most of these works focus on sequential trajectory generation
by denoising over the full horizon. For instance, Diffuser Janner et al. (2022) produces a sequence
spanning the entire episode while Diffusion Policy Chi et al. samples plans over a shorter action
horizon. Chen et al. (2024) leverages the Stochastic Interpolants to integrate source distributions
into diffusion-style imitation learning, but it relies on a sufficiently informative source policy and
its precision decreases when the number of diffusion steps is reduced to a single digit. Although
these methods have shown impressive results in modeling complex distributions, their reliance on
iterative denoising steps makes them impractical for real-time robotic applications. Our proposed
RecFlow Policy addresses this limitation by replacing the diffusion process with a rectified action
flow, enabling a deterministic and fast action synthesis without sacrificing accuracy.

Recently, flow matching Lipman et al. (2022), a variant of diffusion, has shown its potential to repre-
sent complex continuous action distributions. AdaFlow Hu et al. (2024) devises a variance-adaptive
ODE solver that can adjust its step size in the inference stage. However, AdaFlow only reduces to a
one-step generator when the action distribution is uni-modal, partly due to the lack of reflow. Also,
the method is not tested on real robots or more comprehensive simulation domains. Braun et al.
(2024) leverages the Riemannian extension of flow matching models, but it only conducts two proof-
of-concept experiments on LASA handwriting dataset. π0 Black et al. (2024) utilizes a pre-trained
Vision-Language Model to produce actions via flow matching and able to handle high-frequency
action chunks. Although it is trained via the flow matching loss, π0 still requires 10 integration steps
since reflow or refine is not applied. In contrast, our method shows high precision even with one-step
prediction.

Notably, we not only successfully adapt rectified ODE, namely reflow, for robot motion learning,
but also mitigate the possible accumulated error caused by the multiple reflows with our proposed
refinement. Also, RecFlow Policy is verified on comprehensive simulation and real-world experi-
ments.

2.2 ACCELERATING DIFFUSION MODELS FOR ROBOTICS

Efforts to speed up diffusion models have been explored extensively in both image generation Karras
et al.; Song et al. (b;a); Kim et al. (2024) and robotics. For example, Reuss et al. reduced denoising
steps to 3 for goal-conditioned action generation, while Consistency Policy Prasad et al. (2024)
adapted Consistency Trajectory Models Kim et al. (2024) to achieve faster inference with minimal
performance loss. However, these methods often require complex distillation processes or introduce
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constraints, such as overly smooth trajectories in Dynamical Motion Primitives (DMPs) Scheikl et al.
(2024). Streaming Diffusion Policy (SDP) Høeg et al. (2024) and related approaches like Rolling
Diffusion Ruhe et al. (2024) and Temporally Entangled Diffusion Zhang et al. (2024) improve speed
through parallelization or buffering, but they often incur significant memory overhead or require
intricate implementation.

In contrast, RecFlow Policy simplifies the process by leveraging rectified action flow, which elimi-
nates the need for iterative denoising. By learning a deterministic coupling between noisy and clean
actions, RecFlow Policy achieves fast and memory-efficient inference without relying on complex
buffering or distillation procedures, making it highly suitable for real-time robotic control.

2.3 DISTILLATION AND CONSISTENCY MODELS

Distillation-based techniques have been explored to accelerate diffusion model inference speeds in
the text-to-image domain Song et al. (b). Many of these distillation techniques start with a pre-
trained teacher model and train a new student model to take larger steps over the ODE trajectories
that the teacher has already learned Kim et al. (2024); Prasad et al. (2024). By taking these larger
steps, the student model can complete a generation in a smaller total number of steps. Consistency
models, in particular, support both single and multi-step sampling of outputs. Consistency distil-
lation techniques exploit the self-consistency property of ODE trajectories by training the student
model to predict the same output when given two distinct points along the same ODE trajectory
Song et al. (b). This objective was first introduced by Song et al. (b), who chose a pair of adjacent
input points and taught the student model to map those input points to the same starting point on
the given ODE trajectory. Kim et al. (2024) generalized this method by training for arbitrary step
sizes and arbitrarily spaced input points, achieving state-of-the-art results in the image-generation
domain.

While distillation and consistency models have shown promise in reducing inference time, they
often require extensive training and careful tuning of hyperparameters. RecFlow Policy avoids these
complexities by directly learning a deterministic coupling between noisy and clean actions, enabling
single-step generation without the need for iterative distillation or consistency training.

2.4 NON-DIFFUSION BASED ALTERNATIVES

There has been a long line of work using non-diffusion-based model architectures for visuomotor
robotics policies. Such alternatives often perform worse than diffusion policies on the same tasks
or require external computational resources that may be unavailable in many robotics settings. For
example, Zhao et al. offers policy learning via a Conditional VAE instead of diffusion model, and
Behavioral Transformers Shafiullah et al. (2022) represent a key alternative to Diffusion Policies,
but they often struggle to match the performance of diffusion-based methods, especially in complex,
multi-modal tasks. While non-diffusion methods offer simplicity, they often fail to capture the
complexity of real-world tasks. RecFlow Policy bridges this gap by combining the simplicity of
deterministic models with the expressive power of diffusion-based approaches, enabling fast and
accurate visuomotor control without the need for external computational resources.

Overall, while significant progress has been made in accelerating diffusion models for robotics,
achieving real-time performance without sacrificing accuracy remains a challenge. Our work builds
on these advancements by introducing RecFlow Policy, which leverages rectified flow to achieve
fast and accurate visuomotor control. By replacing the iterative denoising process with a deter-
ministic coupling, RecFlow Policy offers a streamlined and efficient solution for real-time robotic
applications.

3 METHOD

A visuomotor policy solves the task of observing a sequence of visual observations and predicts
the next action to execute in the environment. We formulate our visuomotor policy as a Rectified
Flow Model, denoted as RecFlow Policy. As formulated in the method of probability flows Song
et al. (2021b), the target at timestep 0 is iteratively denoised from a random noise at timestep T . In
robot learning scenarios, an action space with respect to the corresponding task observation consists
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of all possible actions of the robot. The condition in visuomotor policies often includes image
sequences, i.e. what the robot has visually observed until now. In this paper, we use a CNN network
to encode an image sequence as conditioning. We model specific conditional action spaces A with
its corresponding conditioning, and construct the couplings (aT ,a0) drawn from noise distribution
aT ∈ N (0, I) and action distribution a0 ∈ A, facilitating one-step inference with even superior
accuracy.

In this section, we first describe our modeling of action space in Subsection 3.1. Then, we intro-
duce the training process and inference procedure of RecFlow Policy in Subsection 3.2 and Subsec-
tion 3.3, respectively. The training details are covered in Subsection 3.4.

3.1 RECTIFIED ACTION FLOW

We first introduce our method by describing how we model the action space. The objective of mod-
eling is to construct a simple yet unique mapping between two empirical observations derived from
their respective distributions. We interpret the mapping in the form of ordinary differentiable model
(ODE) on time t ∈ [0, T ], as per the rectified flow model Liu et al. (2023a). In a vanilla diffusion-
based policy, we have two actions (aT ,a0). The former is a noisy robot motion aT ∈ Rd sampled
from the unit Gaussian N (0, I), and the latter is the target clean action a0 ∈ Rd derived from the
expert action distribution conditioned on the current observations, for example, RGB images. We
denote the conditional action distribution as A. Given a specific action and a random noisy action,
we want to find the coupling, i.e., the transport plan, of their distributions N (0, I) and A. Note that
at with t ∈ [0, T ] represents a vanilla noisy robot action, without specifying whether it belongs to a
coupling.

Before the policy is well-trained, the drift force v : Rd → Rd is set to drive the flow to follow the
direction

(
a0 − aT

)
of the linear path pointing from aT to a0 as straight as possible, by solving a

simple least squares regression problem:

min
v

∫ 1

0

E
[
||(a0 − aT )− v

(
at, t

)
||2

]
dt, (1)

where at is the linear interpolation of aT and a0, i.e.,

at =
t

T
aT +

T − t

T
a0, t ∈ [0, T ]. (2)

Naturally, at follows the ODE of dat = (a0−aT )dt, where any update of at requires the information
of the target clean action a0. By fitting the drift v with a0 − aT , the rectified action flow causalizes
the paths of linear interpolation at, relieving the burden of involving the target action (which is
unknown during inference) when simulating the ODE flow.

Given the Cauchy-Lipschitz Theorem, the solution of a well-defined ODE should be unique. This
gives the non-crossing property of the flows, i.e., paths following dat = v(at, t)dt is unique and
will never intersect each other at any time t ∈ (0, T ]. Otherwise, at the intersection â, the flow
can go towards different directions, making the solution non-unique. However, the paths of the
interpolation at may cross each other. Thanks to the Equation (1), the interleaved trajectories are
rewired after optimizing it.

Now the solution of the Equation (1) is our policy network. Given a noise aT ∼ N (0, I), our
policy gives the corresponding reflowed action a0. This rectified coupling (aT ,a0) guarantees that
the transport cost is not higher than any random (action×noise) pair simultaneously for all convex
cost functions, which can easily be proved via Jensen’s inequality. In this way, we have found a
deterministic mapping between the action space A and a unit Gaussian N (0, I).

In practice, the drift v is parameterized with our neural policy network and we can solve Equation (1)
with any stochastic optimizer. The trained 1-RecFlow Policy is denoted as v1. To make a distinction,
our 1-RecFlow Policy is trained with the random noise and the groundtruth action pairs (a0T ,a

0
0),

and the derived coupling is denoted as (a1T ,a
1
0). Eventually, the desired 1-RecFlow Policy action

flow induced between their distributions (N (0, I) and A) is

da1t = v1(a1t , t)dt, t ∈ [0, T ], (3)
which converts the noise a1T ∈ N (0, I) in the coupling (a1T ,a

1
0) to the action a10 which follows the

conditioned expert action distribution. Algorithm 1 shows the training streamline.
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After the drift v is estimated, we solve the ODE forwardly starting from aT ∼ N (0, I) to transfer
N (0, I) to A, or backwardly starting from a0 ∼ A to transfer A to N (0, I). By doing this, we
obtain the coupling of these distributions. In our settings, we first sample noise a1T ∼ N (0, I) and
then generate a10 forwardly following dat = v1(a1t , t)dt starting from noise a1T . Here v1 is the
1-RecFlow Policy trained with data (a0T ,a

0
0), and t ∈ [0, T ] is the sampling timestep. The coupling

generation steps are outlined in Algorithm 2.

We can train our policy recursively using the rectified couplings as the substitution of the former
pairs. The k-th policy network yielded by the k-th iteration is denoted as k-RecFlow Policy, where
k ∈ N∗. To be specific, the k-RecFlow Policy is trained using the coupling (ak−1

T ,ak−1
0 ) are gener-

ated via (k-1)-RecFlow Policy. The k-RecFlow Policy action flow has a velocity vk that satisfies

dakt = vk(akt , t)dt, t ∈ [0, T ], (4)

where the noise akT ∈ N (0, I) and the the action ak0 in the coupling (akT ,a
k
0) are generated via

k-RecFlow Policy and can be used to train (k+1)-RecFlow Policy. Algorithm 2 displays the detailed
reflow pipeline. To simplify, the RecFlow Policy in this paper refers to the 2-RecFlow Policy. This
procedure increasingly straightens the paths of the flows. The straighter the paths are, the smaller
the time-discretization error in numerical simulation will be. Perfectly straight paths can be exactly
simulated with a single Euler step. This addresses the very bottleneck of high inference cost in
existing continuous-time ODE-based models, such as the Diffusion Policy Chi et al. (2023a) built
upon Probability Flow ODE Song et al. (2021b).

(a) Random sample 
pairs

(c) Generated 
couplings (after reflow)

(d) Refined couplings

Refined 
Action

Noise

Action

Noise

Action

Noise

(b) Generated couplings 
(before reflow)

Action

Noise

Figure 3: Sampling trajectories of RecFlow Policy at different stages. Randomly sampled pairs
in (a) have crossing flows. Couplings in (b) have been rewired so they do not intersect with each
other at the same denoising timestep. The trajectories in (c) and (d) are nearly straight. Therefore,
we can apply one-step sampling without compromising performance.

3.2 TRAINING

To train a model capable of single-step generation, we begin by training a 1-RecFlow Policy model.

3.2.1 1-RECFLOW POLICY MODEL

Our 1-RecFlow Policy model takes as input the current noisy action at at timestep t ∈ (0, T ] along
the ODE, as well as the condition O. We used the current-observed images as the visual condition,
and agent position as the low-dimensional condition. Both modalities go through an observation
encoder to obtain the condition O.

We denote our policy network as v : Rd → Rd with parameter θ, where d is the dimension of the
action. Firstly, a timestep t is randomly sampled from Uniform([0, T ]). a00 is the groundtruth action.
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Algorithm 1: 1-RecFlow Policy

Input: Noise and target action pairs (a0T ,a
0
0), sampled from N (0, I) and A respectively. The

corresponding visual observation sequence O = ([Image], [robot state]). Initial
parameters of the policy v0 : Rd → Rd.

Procedure:
1 while terminal condition do
2 Sample timestep t ∼ Uniform([0, 1]).
3 Compute a0t = ta0T + (T − t)a00.
4 Evaluate E

[
||a00 − a0T − vθ(a

0
t , t)||2

]
.

5 Update parameters parameters of v0.
6 end

Output: The trained 1-RecFlow Policy with velocity estimation v1.

Algorithm 2: ⋆k-Reflow

Input: k-RecFlow Policy with velocity estimation vk. Number of couplings N .
Procedure:
// Coupling generation

1 for i = 1 to N do
2 Sample noise akT ∼ N (0, I).
3 Generate action ak0 following dat = vk(akt , t)dt starting from noise akT .
4 Construct coupling (akT ,a

k
0).

5 end
// Training

6 Initialize parameters of vk+1 as the same as vk.
7 while terminal condition do
8 Sample timestep t ∼ Uniform([0, 1]).
9 Compute akt = takT + (T − t)ak0 .

10 Evaluate E
[
||ak0 − akT − vk+1(akt , t)||2

]
.

11 Update parameters of vk+1.
12 end

Output: (k + 1)-RecFlow Policy. Coupling (akT ,a
k
0).

⋆Reflow is optional and can be done multiple times.

The current noisy action is computed as

a0t =
t

T
a0T +

T − t

T
a00. (5)

RecFlow Policy’s output is trained to fit the vector a00−a0T , i.e., the difference between target action
and the initial noise. Then we estimate the loss

L(θ) = E
[
||(a00 − a0T )− v

(
ta0T + (T − t)a00,O, t

)
||2

]
. (6)

After minimizing Equation 6, we obtain our 1-RecFlow Policy model. Algorithm 1 demonstrates
the training routine.

3.2.2 K-RECFLOW POLICY MODEL

To straighten the paths of flow to a larger extent, we can further repeat almost the same procedure
in Subsubsection 3.2.1. The difference is that we use the generated couplings of the (k-1)-RecFlow
Policy.

Assume that k-RecFlow Policy is already trained. We randomly sample multiple noise [akT ]n from
N (0, I). Then pass them through k-RecFlow Policy to get the denoised actions [ak0 ]n. Note that
we still use the same conditioning as in the last training round during this procedure. The coupling
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Algorithm 3: †Refine after k-reflow

Input: Target action ak0 and corresponding visual observation sequence O. Action distance
threshold δ.

Procedure:
1 Find the nearest condition in ground-truth conditions to O. Its corresponding action is ak,∗0 .
2 if d(ak0 ,a

k,∗
0 ) < δ then

3 ak,refine
0

.
= ak,∗0

4 else
5 ak,refine

0
.
= ak0

6 end
Output: Refined target action ak,refine

0 .
†Refine can be selectively done before the next (k+1)-reflow.

pairs
(
akT ,a

k
0

)
n

are then used as training data of the (k+1)-RecFlow Policy. This process is named
as reflow. Algorithm 2 demonstrates the routine.

3.2.3 REFINEMENT

It is noteworthy that in the visuomotor settings, one of the conditioning is the RGB images, which
are rendered in expert demonstrations in advance of training 1-RecFlow Policy. However, after
reflow, the generated actions [a10]n are no longer the same as groundtruth actions. Therefore, the
corresponding images are no longer aligned with them.

To mitigate the performance degradation brought by reflow, we design an approach to refine the
generated actions [a10]n. Per generated action a0, we apply a traversal among groundtruth actions to
find its nearest twin. If the twins’ distance is below the threshold, we replace the generated action
with the groundtruth one. We emphasize that action spaces are different in terms of conditioning, so
this approach is equivalent to freezing conditioning and finding the coupling. There are three cases:
Having found its nearest twin means that the prediction error results from the reflow. Replacing it
will not change the least transport costs property. Or, the reflowed model predicts another possible
solution rather than that generated by the expert policy. It reflects the policy’s multimodality and
we do not interfere with it. Otherwise, it predicts an action that does not help complete the task.
However, this mistake happens irregularly, so it is likely that the error caused by a few steps will be
offset afterward.

The pipeline is shown in Algorithm 3.

3.3 INFERENCE

3.3.1 RECFLOW POLICY SAMPLING

During sampling, we compute dat = v(at, t)dt. Starting from aT , we iteratively solve for a0, i.e.,

a0 = aT +

T∑
t=1

dat. (7)

3.3.2 ONE-STEP SAMPLING

Using a well-trained k-RecFlow Policy, a one-step prediction is sufficient to approximate the target
coupling action using ak0 = akT + v

(
akT , t

)
. There exists a trade-off between training costs and

performance. If the k-RecFlow Policy has heavily degraded performance with one-step sampling, it
means the flow is not straight enough. In this case, it is wise to repeat the reflow process for a few
more iterations to further smooth the paths of the ODE. However, it may sacrifice accuracy after too
many reflows. If the ancestor model has an accuracy below 100%, which is an extremely common
case, the generated couplings will not be 100% correct. In this case, the next reflowed model may
learn from a set of actions composed of successful actions and pseudo-ground truth (failed) actions,
decreasing its success rate. Applying our refine before each reflow would lessen its damage.
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3.4 IMPLEMENTATION DETAILS

For RecFlow Policy network, we adopt the 1D convolutional U-Net architecture from Diffusion
Policy Chi et al. (2023a). This architecture conditions on observations and the diffusion timestep t
using FiLM Perez et al. (2018) blocks, and diffuses through the action domain using 1D convolu-
tional blocks. For the observation encoder, we randomly initialize per input modality a ResNet-18
followed by a spatial softmax pooling and a ReLU activation. The BatchNorm is replaced with
GroupNorm for stable training.

For the training methodology, we make a few changes to our baseline from Chi et al. (2023a). We
change the training objective from sample or epsilon prediction in Diffusion Policy to difference
between noise and target action prediction. To be specific, the policy predicts the drift v = a0 −aT ,
where a0 ∈ A is the clean action and aT ∈ N (0, I) is the noise. Since we only make minor
changes to the training of vanilla diffusion-based policies, it does not involve extra costs and is easy
to implement on any diffusion-based policy by modifying a few lines of code.

We adopt a CNN-based backbone, since a Transformer-based backbone requires more hyperparam-
eter tuning, as described in Diffusion PolicyChi et al. (2023a). However, as Chi et al. (2023a) rec-
ommend, one may replace CNN with Transformer if the task is complex or action changes at a high
rate. Nevertheless, this substitution would have similar effects on RecFlow Policy and our baselines.
Hence, choosing the CNN-based backbone does not weaken or nullify our fair comparison.

When performing the reflow, we freeze the observation encoder for two reasons. First, the ground
truth actions and their corresponding images are fed into the model in former training. Pairing
images with changed actions would hurt the observation encoder’s performance. Next, it would
accelerate the training process and thus mitigate the training costs of reflow.

Other dataset-related details are described in the Subsection 4.2.

4 SIMULATION EXPERIMENTS

4.1 ALGORITHM

We follow the procedure in Algorithm 1, 2, and 3. Starting with drawing noise and action pair
(aT ,a0) from N (0, I)×A, the 1-RecFlow Policy is trained by minimizing Equation 1. K-RecFlow
Policy is obtained by repeating reflow k − 1 times. The only difference between training the first
RecFlow Policy and its k − 1 successors is that the input pair of reflow is the generated coupling
(a·T ,a

·
0).

After obtaining a k-RecFlow Policy, distilling the relation of (akT ,a
k
0) into a student policy would

help to directly predict the target action without simulating the flow. However, we empirically found
that distillation is not necessary in most cases. To be specific, the target is well approximated by
the 1-step update via our k-RecFlow Policy so we save the effort of distillation. Nevertheless, the
distillation can be done efficiently given that the flow is already nearly straight. Please refer to
Figure 3 for the sampling trajectories visualization of our policies. We should underscore that reflow
is not a kind of distillation, for the process only aims at finding the couplings with lower transport
costs which would further facilitate 1-step inference.

In the sampling phase, it is also feasible to process backwardly, i.e., start from a0 ∼ A and follow
da0 = −v(a0, t)dt to derive its coupling aT . Intuitively, starting from groundtruth action a0 would
circumvent the error brought by generating pseudo-groundtruth actions. However, the generated
noise aT would not completely conform to a Gaussian distribution as observational conditioning is
introduced, and thus still cause degradation.

4.2 EXPERIMENT SETUP

We systematically evaluate RecFlow Policy on 66 tasks from 5 benchmarks in simulation. We
found RecFlow Policy consistently outperforms the current state-of-the-art algorithms on all of the

9



Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

simulation benchmarks, with an average success rate improvement of 60.0%. In this section, we
provide an overview of our simulation domains, our evaluation methodology on the tasks, and our
core findings.

We use DDIM Song et al. (2021a) as the noise scheduler and predict the vector a0 − aT instead of
epsilon or sample prediction, with 100 timesteps during training. We train 1000 epochs for Meta-
World and Adroit tasks given their simplicity and 3050 epochs for RoboMimic tasks and Push-T. For
Franka Kitchen, we train 5000 epochs due to its long-horizon and multi-task complexity. Real-world
tasks are trained with 1000 epochs. The optimizer used is AdamW with the same hyperparameters
as that used in Chi et al. (2023a). Batch size is 64 for RecFlow Policy and all the baselines except
Franka Kitchen where the batch size is 256.

Before the reflow phase, we sample 10 couplings in each action space, saving both generation time
and reflow training time. More importantly, the relatively small group of samples is empirically
sufficient to learn from.

4.2.1 SIMULATION BENCHMARK

Though the simulation environments are increasingly realistic nowadays (Makoviychuk et al., 2021;
Xiang et al., 2020; Todorov et al., 2012; Zhu et al., 2020), a notable gap between simulation and
real-world scenarios persists (Ze et al., 2023; Lei et al., 2023; Chen et al., 2023b). This discrepancy
underscores two key aspects: (a) the importance of real robot experiments and (b) the necessity of
large-scale diverse simulation tasks for more scientific benchmarking. Therefore, for simulation ex-
periments, we collect in total 66 tasks from 5 domains, covering diverse robotic skills. These tasks
range from challenging scenarios like bi-manual manipulation (Mandlekar et al., 2021), and articu-
lated object manipulation (Gupta et al., 2019; Rajeswaran et al., 2017; Yu et al., 2020), to simpler
tasks like parallel gripper manipulation (Yu et al., 2020). Properties for each task are summarized
in Table 1. Our experimental setup uses the MuJoCo (Todorov et al., 2012) physics simulator. The
stable contact dynamics of MuJoCo makes it well suited for contact-rich manipulation tasks, espe-
cially with dexterous hands. The kinematics, the dynamics, and the sensing details of the physical
hardware are carefully modeled to encourage physical realism, ensuring the rendered visual contexts
are reasonable.

Adroit (Rajeswaran et al., 2017) domain involves controlling a 24-DoF dexterous hand manipula-
tor, designed to address challenges in dynamic and dexterous manipulation. There are 4 tasks in this
dataset, including object relocation, in-hand manipulation, manipulating environmental props, and
tool use. A task example is shown in Fig 4. Trajectories for this domain are collected with agents
trained by VRL3 Wang et al. (2022).

Figure 4: A rollout of pen task from Adroit. This task requires dexterous hand manipulation to
spin the pen.

Robomimic (Mandlekar et al., 2021) is a large-scale robotic manipulation benchmark designed to
study imitation learning and offline reinforcement learning. The benchmark consists of 5 tasks with
a proficient human teleoperated demonstration dataset for each and mixed proficient/non-proficient
human demonstration datasets for 4 of the tasks (9 variants in total). A task example is shown in
Fig 5. We report results on proficient human tele-operated demonstrations for image-based observa-
tions. In this domain, we use position control, following Chi et al. (2023b)

Push-T (Florence et al., 2022) requires pushing a T-shaped block (gray) to a fixed target (red) with
a circular end-effector (blue). Variation is added by random initial conditions for the T block and
end-effector. The task requires exploiting complex and contact-rich object dynamics to push the T
block precisely, using point contacts. There are two variants: one with RGB image observations
and another with 9 2D keypoints obtained from the ground truth pose of the T block, both with
proprioception for end-effector location.

10



Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Figure 5: A rollout of transport task from RoboMimic. This task involves two agents interacting
with three objects, including a lid, a hammer, and a cube.

Meta-World (Yu et al., 2020) is an open-source simulated benchmark for meta-reinforcement learn-
ing and multi-task learning consisting of 50 distinct robotic manipulation tasks. A task example is
shown in Fig 6. The task distributions are sufficiently broad to test the generalization of the al-
gorithms. We use the script policies in Meta-World to generate expert demonstrations. All the
algorithms use the same demonstrations to ensure a fair comparison. Following Seo et al. (2023),
tasks in Meta-World are categorized into different difficulty levels easy, medium, hard, and very
hard. The tasks in each category are shown in Table 2.

Figure 6: A rollout of assembly task from Meta-World. This task requires delicate picking and
placing the circle around the stick.
Franka Kitchen (Gupta et al., 2019) is a popular environment for evaluating the ability of imitation
learning and offline reinforcement learning methods to learn multiple long-horizon tasks. A task
example is shown in Fig 7. The Franka Kitchen environment contains 7 objects for interaction
and comes with a human demonstration dataset of 566 demonstrations, each completing 4 tasks in
arbitrary order. The goal is to execute as many demonstrated tasks as possible, regardless of order,
showcasing both short-horizon and long-horizon multimodality.

Figure 7: A rollout of Franka Kitchen tasks. This long-horizon task consists of several subtasks,
including interacting with 7 potential objects.

4.2.2 EVALUATION METHODOLOGY

Models are evaluated among 10 rollouts in all corresponding tasks except for lift, can, and square in
RoboMimic and push-T where they are evaluated among 50 rollouts. Scores of push-T are calculated
as the IoU of the T-shaped block and the fixed target, while the others report the average success
rates.

Each trained policy is evaluated with 3 different seeds with all the other settings fixed, and then we
report the average success rate and the standard deviation among them.

We evaluate the accuracy of RecFlow Policy with a 1-step Euler solver, ensuring a high inference
speed. On Adroit, we evaluate our baselines with 10 sampling steps, while on the other domains,
we do 100 timesteps if not specified.

4.3 EFFECTIVENESS

Comparing RecFlow Policy with SOTA methods in simulation. Our main baseline is the image-
based Diffusion Policy Chi et al. (2023b). All settings, such as training epochs, seeds, learning
rate schedule, and image resolution for all methods are the same across all experiments, ensuring
a fair comparison. Please refer to Table 3 for a summarized report. We observe that RecFlow
Policy achieves a success rate exceeding 80% in 31 tasks, whereas Diffusion Policy does in only 16
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Table 1: Task suite of RecFlow Policy in simulation, including Adroit (Rajeswaran et al., 2017),
RoboMimic (Zhu et al., 2020), Franka Kitchen (Gupta et al., 2019), Push-T (Florence et al., 2022),
MetaWorld (Yu et al., 2020). ActD: the highest action dimension for the domain. #Demo: Number
of expert demonstrations used for each task in the domain. Art: articulated objects. Rigid: rigid
objects.

Simulation Benchmark (66 Tasks)
Domain End-effector Object Simulator ActD #Task #Demo

Adroit Dexterous hand Rigid/Art MuJoCo 28 3 50
RoboMimic Gripper Rigid MuJoCo 7 or 14 5 50
Franka Kitchen Gripper Rigid/Art MuJoCo 9 7 50
Push-T Circular Rigid MuJoCo 2 1 50
MetaWorld Gripper Rigid/Art MuJoCo 4 50 45

tasks. The average success rate of RecFlow Policy reaches 62.3%, while Diffusion Policy only gets
38.9%. The policies trained on Franka Kitchen are only given low-dimensional conditioning to test
our method without visual inputs. RecFlow Policy still achieves all 100% accuracy, surpassing the
SOTA policy and showing the robustness of our method with respect to the modality of conditioning.

Comparing RecFlow Policy with more baselines in simulation. We also include Consistency
Policy Prasad et al. (2024) as our baseline. Due to the time-consuming procedure of training a
teacher model and then distilling it into a student model in Consistency Policy pipeline, we only
evaluate its performance on a few randomly selected tasks across various domains. In RoboMimic
tasks, we follow the original settings in its paper. For Push-T and Meta-World tasks, we run its
pipeline using our settings. The results are reported in Table 4. RecFlow Policy shows consistent
improvement on all benchmarks.

Table 2: Main results on 66 simulation tasks. Results for each task are provided in this table. A
summary across domains is shown in Table 3.

Adroit (Rajeswaran et al., 2017) RoboMimic (Mandlekar et al., 2021)
Alg. \ Task Pen Door Hammer Lift Can Square Transport Tool Hang

RecFlow Policy 52±8 37±5 35±4 100±0 100±0 91±3 89±5 97±5

Diffusion Policy 20±7 23±6 32±6 100±0 99±1 95±3 89±7 83±2

Kitchen (Gupta et al., 2019) Push-T (Florence et al., 2022)Alg. \ Task p1 p2 p3 p4 p5 p6 p7

RecFlow Policy 100±0 100±0 100±0 100±0 7±3 0±0 0±0 80±2

Diffusion Policy 100±0 100±0 99±1 98±2 3±2 0±0 0±0 78±1

Meta-World (Yu et al., 2020) (Easy)
Alg. \ Task Button Press Button Press Topdown Button Press Topdown Wall Button Press Wall Coffee Button Dial Turn Door Close

RecFlow Policy 87±9 87±9 93±9 93±9 100±0 67±9 100±0

Diffusion Policy 67±9 67±9 67±19 100±0 93±9 27±9 0±0

Meta-World (Easy)
Alg. \ Task Door Lock Door Open Door Unlock Drawer Close Drawer Open Faucet Close Faucet Open Handle Press Handle Pull

RecFlow Policy 27±9 93±9 100±0 100±0 100±0 87±9 93±9 73±25 13±9

Diffusion Policy 20±16 20±0 93±9 67±25 93±9 93±9 53±9 47±9 6±9

Meta-World (Easy)
Alg. \ Task Handle Press Side Handle Pull Side Lever Pull Plate Slide Plate Slide Back Plate Slide Back Side Plate Slide Side Reach

RecFlow Policy 93±9 27±9 60±16 87±9 73±9 100±0 100±0 33±9

Diffusion Policy 20±16 0±0 20±0 80±0 73±19 67±25 100±0 40±0

Meta-World (Easy) Meta-World (Medium)
Alg. \ Task Reach Wall Window Close Window Open Peg Unplug Side Basketball Bin Picking Box Close Coffee Pull Coffee Push

RecFlow Policy 67±9 100±0 87±9 47±25 0±0 53±25 27±19 80±16 100±0

Diffusion Policy 47±9 73±19 33±25 20±16 0±0 0±0 13±9 27±9 20±16

Meta-World (Medium) Meta-World (Hard)
Alg. \ Task Hammer Peg Insert Side Push Wall Soccer Sweep Sweep Into Assembly Hand Insert Pick Out of Hole Pick Place

RecFlow Policy 33±9 13±19 13±19 27±9 13±9 20±16 33±9 40±16 47±25 33±9

Diffusion Policy 67±19 0±0 13±9 20±16 27±9 27±19 27±9 27±9 0±0 0±0

Meta-World (Hard) Meta-World (Very Hard) AverageAlg. \ Task Push Push Back Shelf Place Disassemble Stick Pull Stick Push Pick Place Wall

RecFlow Policy 47±9 53±19 7±9 87±9 13±19 80±16 20±0 62.2
Diffusion Policy 13±9 33±9 0±0 60±16 7±9 80±16 13±19 38.9
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Table 3: Main simulation results. Averaged over 66 tasks, RecFlow Policy achieves 60.3% relative
improvement compared to Diffusion Policy. Success rates for individual tasks are in Table 2.

Algorithm \ Task Adroit RoboMimic Kitchen Push-T Meta-World Meta-World Meta-World Meta-World Average
(3) (5) (7) (1) Easy (28) Medium (11) Hard (6) Very Hard (5) (66)

RecFlow Policy 41.3 95.4 58.1 80.0 78.1 34.5 42.2 41.4 62.3 (↑ 60.3%)
Diffusion Policy 25.0 93.2 57.1 78.0 38.3 19.5 16.7 32.0 38.9

Table 4: Comparing RecFlow Policy with more baselines in simulation. We include Diffusion
Policy, 1-step DDIM, and Consistency Policy.

Algorithm \ Task Adroit Push-T RoboMimic AveragePen Square

RecFlow Policy 52±8 80±2 97±5 76.3
Diffusion Policy (100-step) 20±7 78±1 83±2 60.3
Diffusion Policy (1-step) 0±0 70±0 0±0 23.3
Consistency Policy (1-step) 32±8 71±2 89±2 64.0

4.4 EFFICIENCY

We use assembly task in Meta-World to measure inference latency. Per action prediction step,
RecFlow Policy only denoises once while Diffusion Policy does 100 times, according to their orig-
inal settings. Since other functions, such as observation encoding, consume little time compared
with sampling, RecFlow Policy achieves significant speedup.

After warming up for 200 iterations, we evaluate the average latency of one prediction over 800
rollouts. Then we exclude the top 25% and bottom 25% durations to compute the average time of
400 prediction steps. Table 5 showcases wall clock times for each of the algorithms in one simulation
task, specifically over Meta-World assembly, without loss of generality. The settings are the same
as described in the main experiments. RecFlow Policy achieves 98.7% acceleration compared with
Diffusion Policy, while reaching a higher average accuracy among all domains.

Consistency Policy uses 1-step sampling and obtains inference speed comparable to ours. However,
we also observe much larger time consumption when distilling its teacher model into a student
model, partly due to the Huber loss which involves more operands. Hence, its training takes more
effort than RecFlow Policy. Additionally, while showing comparable inference speed, Consistency
Policy performs worse compared to RecFlow Policy.

We also report the runtime of 1-step DDIM inference. Although its speed is on a par with ours, it
sacrifices most of the performance and thus fails in almost every task, similar to Consistency Policy.

Table 5: Inference latency for one action prediction step in simulation (ms). Simulation infer-
ence speeds were measured on an NVIDIA RTX 6000 Ada GPU and averaged over 400 rollouts.
Benchmarking was done with vanilla Diffusion Policy and Consistency Policy since we used them
as our baselines, and with 1-step DDIM since we also only solve once.

Algorithm NFE Inference Latency (ms)

RecFlow Policy 1 16.72
Diffusion Policy 100 1287
Consistency Policy 1 18.35
1-step DDIM 1 16.16

4.5 ROBUSTNESS

During evaluation, we observed that RecFlow Policy shows more robustness than Diffusion Policy.
Take Adroit door and pen as examples. Evaluated on one checkpoint iteratively using different
inference seeds, our algorithm sees a lower variance in accuracy than that of Diffusion Policy. This
is an extremely important attribute because in diffusion-based algorithms, different noise latent are
heavily related to the final performance. A well-generalized algorithm should maintain a steady
success rate among different initial noise samples to avoid fluctuation in performance during random
evaluation. The robustness of RecFlow Policy may be mainly attributed to the straight and stable
sampling trajectories of rectified flow modeling. Results are shown in Figure 8.
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Figure 8: Success Rate of Adroit (%). We evaluate door and pen tasks to show the accuracy
variance of RecFlow Policy and baseline Diffusion Policy (DP).

4.6 ABLATION

3D inputs. To demonstrate our method has the capability to generalize to inputs with other modal-
ities, we take the 3D point clouds as inputs. We compare RecFlow Policy with 3D Diffusion Pol-
icy (Ze et al., 2024) (DP3) on Adroit. We only substitute the policy network for DP3 policy. All the
other settings are the same as the baseline, to make a fair comparison. The number of demos is 10,
the same as reported in the 3D Diffusion Policy paper. We train the models with seed 0. We evaluate
them with 3 seeds, and then report the average maximum success rate among them. As shown in
Table 6, RecFlow Policy performs slightly better than 3D Diffusion Policy. Although 3D Diffusion
Policy shows similar average accuracy, it is unstable and the performance varies among different
initializations of the noise latent. This is reflected in the higher variance of the success rates. We
further evaluate the models using 10 seeds and report the accuracy distribution in Figure 9.
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Figure 9: Success Rate on 3D Adroit inputs (%). We evaluate 3 simulated tasks to show the
accuracy variance of RecFlow Policy and 3D Diffusion Policy (3DP).
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Table 6: Results on 3D inputs. We compare RecFlow Policy and 3D Diffusion Policy on 3D inputs
from Adroit.

Algorithm \ Task Adroit AverageHammer Door Pen

RecFlow Policy 95±4 57±6 59±4 70±5

3D Diffusion Policy 83±12 53±12 50±15 62±13

Visual encoder. We test RecFlow Policy with different encoders for visual conditions, includ-
ing widely-used pre-trained encoders, i.e., ViT-S/14 model of DINOv2 and the ViT-B/16 model of
CLIP. As shown in Table 7, using pre-trained encoders experiences a drop in performance. There
has been a long-standing bottleneck in collecting proficient human-teleoperated demonstrations in
robotic settings. Large networks easily overfit to a small set of demonstrations, leading to perfor-
mance degradation. Also, using a larger network increases the running time and overall training
time. Experiments prove that our method easily performs well with our visual encoder trained from
scratch, alleviating the burden of relying on a heavy, pre-trained one.

Table 7: Ablation on encoders. We replace RecFlow Policy Encoder with other widely-used pre-
trained encoders, including pre-trained CLIP (Radford et al., 2021) encoder and DINOv2 (Oquab
et al., 2023) encoder

Encoders Network Meta-World RoboMimic AverageDoor-unlock Plate-slide-side Pick-out-of-hole Lift

RecFlow Policy Encoder CNN 100±0 100±0 47±25 100±0 87±6

CLIP encoder ViT-B/16 33±9 87±9 0±0 91±4 53±6

DINOv2 encoder ViT-S/14 80±0 100±0 7±9 100±0 72±2

Designs. Some works argue that although the distillation of the diffusion process can be used to
accelerate policy synthesis, it is computationally expensive and can hurt both the accuracy and di-
versity of synthesized actions. In this paper, we show that although this statement holds true in some
circumstances, we can still neutralize the drawbacks of reflow by our refine method. Here we test the
performance of 1-RecFlow Policy, 2-RecFlow Policy, and refined 2-RecFlow Policy. We choose 3
tasks with significantly different 1-RecFlow Policy accuracy on Meta-World and Adroit to prove our
point. As presented in Table 8, on tasks with low success rate, such as pen and assembly, reflowing
may lead to poorer performance. However, the 2-RecFlow Policy score remains high when it comes
to 100% 1-RecFlow Policy accuracy tasks, such as the plate-slide-side task. It proves our hypothesis
that the performance degradation brought by reflow is a kind of error accumulation. Fortunately, our
proposed refine technique compensates for accuracy loss and achieves a much higher score, some-
times even better than 1-RecFlow Policy. Note that π0 Black et al. (2024) is equivalent to the first
policy in Table 8. Although it is also trained via the flow matching loss, π0 does not involve any
reflow or refine, which effectiveness is underlined by the numbers in the last row in Table 8. This
means that vanilla flow-based policies can be strengthened with our proposed methods, since ours
can be implemented upon π0 or any other policy that uses flow matching loss.

Table 8: Ablation on reflow and refine design choices in RecFlow Policy. We test our refine
approach by training a Refined 2-RecFlow Policy. Both 2-RecFlow Policy and Refined 2-RecFlow
Policy are trained upon the 1-RecFlow Policy in the first row.

Designs \ Task #Steps Adroit Meta-World AveragePen Assembly Plate Slide Side

1-RecFlow Policy 100 43±6 27±9 100±0 56.7
Reflowed 2-RecFlow Policy 1 40±8 7±9 100±0 49.0
Refined 2-RecFlow Policy 1 52±8 33±9 100±0 61.7

Solver. A 1-step Euler solver works well in the default k-RecFlow Policy inference settings. To test
its effect, we replace the 1-step solver with a 100-step solver. Intuitively, a solver with more steps
would contribute to a higher accuracy since the truncation error introduced by using an approxima-
tion is decreased in every denoising loop. We also evaluate the performance of the Runge-Kutta
method of order 5(4) from Scipy rk4, denoted as RK45. It adaptively decides the step size and
number of steps N based on user-specified relative and absolute tolerances. This solver takes much
longer time to reach its target when the policy is far from well-trained, since the flow direction is
heavily deviated from x0−xT and what it does is just random walking. Nevertheless, RK45 should
solve the ODE with only a few steps after the policy is trained. We choose the same RK45 param-
eters as Song et al. (2021b). Results are shown in Table 9. The RK45 solver shows the highest
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success rate for RecFlow Policy without refinement, while the 100-step solver achieves the best per-
formance for the refined 2-RecFlow Policy. While more denoising steps lead to higher accuracy, the
difference between the 1-step solver and is reduced to 0 after the proposed refinement.

Notwithstanding the comparable success rate, a 1-step solver exceeds its 100-step counterpart in
inference efficiency by approximately two orders of magnitude. Since the number of sampling steps
of RK45 is not fixed to 1, it still lags behind RecFlow Policy with respect to efficiency.

Table 9: Ablation on solver choices in RecFlow Policy. We test the effect of the 1-step Euler solver
by replacing it with a 100-step solver and a RK45 solver with adaptive timesteps N .

Solver \ Task Adroit Meta-World AveragePen Assembly Plate Slide Side

1-RecFlow Policy
1-step solver 43±6 27±9 100±0 57±5

100-step solver 45±7 30±6 100±0 58±4

RK45 solver 46±7 30±9 100±0 59±5

2-RecFlow Policy
1-step solver 40±8 7±9 100±0 49±6

100-step solver 40±4 25±9 100±0 55±4

RK45 solver 45±6 30±8 100±0 58±5

Refined 1-step solver 52±8 33±9 100±0 62±6

2-RecFlow Policy 100-step solver 52±6 33±6 100±0 62±4

RK45 solver 50±4 31±4 100±0 60±3

Efficient scaling with demonstrations. We also evaluate the method’s performance with respect
to few-shot learning on 3 tasks in RoboMimic and 3 tasks in Meta-World. Table 10 shows that
RecFlow Policy always obtains a success rate above 5% even with only 10% of the demonstrations.
Note that the tasks we chose from Meta-World are all in hard and very hard levels, and 10% refers
to only 4 demonstrations. In RoboMimic tasks, RecFlow Policy always succeeds in more than 40%
rollouts, even when the number of training demonstrations decreases to 5. This underscores that our
method learns efficiently from training data.

5 REAL WORLD EXPERIMENTS

Tasks. To comprehensively evaluate our method in the real world, we select 4 representative manip-
ulation tasks: Placing Apples in a Fruit Bowl, Floating Object Manipulation, Flower Arrangement,
and Mini Champagne Tower. Each task presents challenges in terms of precision, dexterity, and
long-horizon.

1) Placing Apples in a Fruit Bowl: The robot arm is required to pick up an apple and place it into
a fruit bowl. This task requires an accurate grasping pose for objects with irregular shapes and
accurate pick-and-place capabilities.

2) Floating Object Manipulation: The robot arm is required to pick up a rubber duck that is floating
on the water, move it a bit, and then put it back in the water. The rubber duck can move on the water
and the interaction between the rubber duck, the gripper, and the water is quite complicated. This
task requires the visuomotor policies to have spatial generalization to objects with distinct locations
and effectively manipulate dynamic objects with visual observations.

3) Flower Arrangement: The robot arm is required to pick up a bouquet of flowers, change their
orientations, and insert them into a narrow-neck vase. This task demands highly precise continu-
ous control for successfully inserting deformable objects into a small opening, making it ideal for
evaluating the imitation accuracy of visuomotor policies.

4) Mini Champagne Tower: The robot arm is required to build a three-layer champagne tower con-
taining 10 champagne flutes: 6 on the first layer, 3 on the second, and 1 on the top. This involves
sequentially picking up and precisely placing 3 champagne flutes at the center of the initial base
layer of 6, followed by placing the final flute on top of the 3-flute layer. This task demands highly
precise grasping poses to pick up the champagne flutes with very small openings, highly accurate
place positions to maintain the stability of the champagne tower and also avoid collisions with other
champagne flutes, making it ideal for evaluating visuomotor policies’ long-horizon imitation accu-
racy.
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Table 10: Few-shot learning ability. We use 10%, 25%, and 50% of the original demonstrations to
test RecFlow Policy’s few-shot learning performance.

Algorithm #demos Meta-World RoboMimic AverageDisassemble Pick-out-of-hole Stick-Pull Lift Can Square Transport

RecFlow Policy 100% 87±9 47±25 13±19 100±0 100±0 91±3 89±5 75±9

Diffusion Policy 60±16 0±0 7±9 100±0 99±1 95±3 89±7 64±5

RecFlow Policy 50% 13±9 20±16 7±9 100±0 100±0 80±2 91±4 59±6

Diffusion Policy 40±0 0±0 0±0 100±0 99±1 76±4 85±6 57±2

RecFlow Policy 25% 13±9 7±9 27±19 100±0 83±1 60±2 89±3 54±6

Diffusion Policy 13±9 0±0 7±9 100±0 87±2 57±2 87±3 50±4

RecFlow Policy 10% 20±16 7±9 7±9 100±0 63±1 40±4 63±5 43±6

Diffusion Policy 7±9 7±9 0±0 100±0 60±2 39±3 65±6 40±4

Table 11: Main results for real robot experiments. Each task is evaluated with 10 trials.

Real Robot Benchmark (4 Tasks)
Task Diffusion Policy RecFlow Policy

Putting Apple in the Bowl 100% 100%
Floating Object Manipulation 60% 70%
Flower Arrangement 20% 80%
Champagne Tower 10% 40%

5.1 EXPERIMENT SETUP

We use a 6-DoF UR5e robot arm with a 1-DoF Robotiq gripper as our test embodiment, and we use
a RealSense 415 Camera mounted on the side of the workspace to capture visual observations. In
addition, we leverage the Gello Wu et al. (2024) teleoperation system to collect real-world robotic
demonstrations. To train the visuomotor policies, we collect 50 demos for each task of Placing
Apples in a Fruit Bowl, Flower Arrangement, Mini Champagne Tower, and we collect 100 demos
for Floating Object Manipulation. We adopt the Diffusion Policy Chi et al. (2023a) as the baseline
method. For each task, we use a 480 × 640 image from the current timestep and proprioceptive data
from the past six steps as inputs. The model outputs a sequence of 16 future actions. We adopt
the same inputs, outputs, and model architecture as the Diffusion Policy for a fair comparison. Our
real-world Experiment setup is shown in Figure 10.

5.2 EXPERIMENTAL ANALYSIS

Real-world manipulation results. Table 11 summarizes the success rates compared to the Diffu-
sion Policy in real-world robotic manipulation tasks. The results demonstrate that RecFlow Policy
consistently outperforms Diffusion Policy in tasks requiring high precision, dexterity, and long-
horizon sequential manipulation. For Placing Apples in a Fruit Bowl, both policies achieve a 100%
success rate, indicating that they are equally capable of handling precise pick-and-place tasks for
objects with irregular shapes. However, as the task complexity increases, RecFlow Policy exhibits
superior performance, particularly in tasks that involve dynamic objects, deformable materials, or
multi-step manipulation sequences. In Floating Object Manipulation, where the robot must handle a
rubber duck floating on water, RecFlow Policy achieves 70% success, outperforming Diffusion Pol-
icy’s 60%. The improvement suggests that the continuous rectification process in RecFlow Policy
enables more stable and adaptive visuomotor control, allowing the policy to better handle dynamic
interactions between the gripper, the floating object, and the water surface. The Flower Arrangement
task, which requires delicate manipulation of deformable objects and precise insertion into a narrow
vase, further highlights RecFlow Policy’s advantages. RecFlow Policy achieves a success rate of
80%, significantly surpassing Diffusion Policy’s 20%. This suggests that RecFlow Policy’s ability
to generate highly precise, single-step action predictions is particularly beneficial for tasks requiring
continuous fine-grained control. The most challenging task, Mini Champagne Tower, involves long-
horizon sequential manipulation and requires both precise grasping and stable object placement.
Here, RecFlow Policy achieves 40% success, a notable improvement over Diffusion Policy’s 10%.
This improvement underscores RecFlow Policy’s ability to generate stable and accurate actions in
long-horizon manipulation scenarios.

Handling different object appearance. Figure 11 illustrates the ability of RecFlow Policy to per-
form grasping across different objects after being trained on a single instance (apple). The policy,
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Camera

(a) Putting Apple in the
Bowl.

Camera

(b) Floating Object Ma-
nipulation.

Camera

(c) Flower Arrange-
ment.

(d) Mini Champagne
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Figure 10: Real-world experimental setup. We design 4 robotic manipulation tasks to evaluate
the accuracy of visuomotor policies in the real world. Each task presents challenges in terms of
precision, dexterity, and long-horizon sequential manipulation.

(a) Grasping an apple. (b) Grasping an orange cube. (c) Grasping a rubber duck.

Figure 11: Grasping different objects with one policy. RecFlow Policy trained on the apple can
generalize to other objects (cube, rubber duck) with similar sizes and locations.

trained on grasping an apple, successfully executes grasping motions for objects with similar sizes
and spatial locations, including an orange cube and a rubber duck. This suggests that RecFlow
Policy can leverage learned visuomotor patterns to handle variations in object appearance while
maintaining successful grasp execution.
Manipulating dynamic objects. Figure 12 illustrates how RecFlow Policy adjusts its action trajec-
tory to approach and grasp a moving rubber duck on water. Unlike static object grasping, this task
requires the policy to continuously refine its motion based on the real-time position of the floating
object. The sequential images show that RecFlow Policy successfully tracks and aligns with the
rubber duck’s position, demonstrating its capability to handle object movement and generalize to
different object locations. The results indicate that RecFlow Policy can generate effective visuo-
motor actions to compensate for object drift, allowing successful execution even when the object’s
location is not fixed. This highlights its suitability for real-world tasks that involve dynamic and
continuously changing environments.

Comparison of manipulation accuracy. Figure 13 presents a qualitative comparison between the
Diffusion Policy and RecFlow Policy in the Flower Arrangement task, which requires precise control
to insert a bouquet into a narrow-neck vase. The sequential images highlight the differences in
execution: while the Diffusion Policy struggles with accurate alignment and insertion, RecFlow
Policy maintains a more stable and controlled trajectory, successfully positioning the bouquet into
the vase. The improved performance of RecFlow Policy can be attributed to its ability to produce
more direct and refined action trajectories, reducing deviations that could lead to failure. These
results indicate that RecFlow Policy provides better control precision and stability, particularly in
fine manipulation tasks that require high accuracy in both motion execution and final placement.

Long-horizon sequential manipulation. Figure 14 illustrates the execution of a complex long-
horizon robotic manipulation task using RecFlow Policy — constructing a miniature champagne
tower. This task requires precise grasping, careful placement, and sequential manipulation to ensure
the stability of the tower. The sequential frames show that RecFlow Policy successfully completes
the task by accurately positioning each champagne flute without causing instability or collisions.
The success in this task highlights the ability of RecFlow Policy to handle multi-step decision-
making while maintaining fine-grained control over object placement. This demonstrates the pol-
icy’s effectiveness in long-horizon imitation learning, where accumulated errors in execution can
significantly impact success rates. The ability to stably build structured object arrangements sug-
gests that RecFlow Policy is well-suited for precise, sequential robotic tasks requiring sustained
accuracy over multiple steps.
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Figure 12: Floating object manipulation. RecFlow Policy dynamically adjusts its action trajectory
to approach and grab the moving rubber duck on the water, which demonstrates generalization ability
to different object locations.

(a) Diffusion policy.

(b) RecFlow Policy.

Figure 13: Qualitative comparisons. Compared to the diffusion policy, RecFlow Policy achieves
higher manipulation accuracy, particularly in precise robotic manipulation tasks like inserting a
bouquet into a narrow-neck vase.

6 CONCLUSION

In this work, we introduced RecFlow Policy, a fast and accurate visuomotor policy learning frame-
work that replaces the iterative denoising process of diffusion models with rectified flow. Our ap-
proach enables efficient and precise action synthesis in one step, making it particularly suitable for
real-time robotic manipulation. Through extensive real-world evaluations, RecFlow Policy demon-
strated superior performance in tasks requiring high precision, dexterity, and long-horizon manipu-
lation, such as flower arrangement and champagne tower construction. Compared to the diffusion
policy, RecFlow Policy achieves higher success rates while significantly reducing inference latency,
allowing for more responsive and stable robot execution. These results highlight the potential of
RecFlow Policy as a scalable and effective solution for real-time visuomotor control in complex
manipulation tasks.

7 LIMITATION

While RecFlow Policy achieves fast and accurate visuomotor policy learning, it still requires a sub-
stantial number of demonstrations to ensure strong performance across different tasks. Similar to
Diffusion Policy and others, the reliance on high-quality expert demonstrations may limit its appli-
cability in scenarios where large-scale data collection is challenging. Future work could focus on
reducing the demonstration requirement through more effective data augmentation, self-supervised
learning, or integrating multi-modal sensory inputs for enhanced adaptability.
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Figure 14: Long-horizon and highly-precise robotic manipulation. RecFlow Policy successfully
constructs a miniature champagne tower, demonstrating effective long-horizon imitation learning
and highly precise sequential robotic manipulation.
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