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Abstract

Visual hallucination (VH) occurs when a mul-001
timodal large language model (MLLM) gen-002
erates responses with incorrect visual details003
for prompts. Existing methods for generating004
VH test cases primarily rely on human annota-005
tions, typically in the form of triples: (image,006
question, answer). In this paper, we introduce007
VHExpansion, the first automated method for008
expanding VH test cases for MLLMs. Given009
an initial VH test case, VHExpansion auto-010
matically expands it by perturbing the ques-011
tion and answer through negation as well as012
modifying the image using both common and013
adversarial perturbations. Additionally, we014
propose a new evaluation metric, symmetric015
accuracy, which measures the proportion of016
correctly answered VH test-case pairs. Each017
pair consists of a test case and its negated coun-018
terpart. Our theoretical analysis shows that019
symmetric accuracy is an unbiased evaluation020
metric that remains unaffected by the imbal-021
ance of VH testing cases with varying answers022
when an MLLM is randomly guessing the an-023
swers, whereas traditional accuracy is prone024
to such imbalance. We apply VHExpansion to025
expand three VH datasets annotated manually026
and use these expanded datasets to benchmark027
seven MLLMs. Our evaluation shows that VH-028
Expansion effectively identifies more VH test029
cases. Moreover, symmetric accuracy, being030
unbiased, leads to different conclusions about031
the vulnerability of MLLMs to VH compared032
to traditional accuracy metric. Finally, we show033
that fine-tuning MLLMs on the expanded VH034
dataset generated by VHExpansion mitigates035
VH more effectively than fine-tuning on the036
original, manually annotated dataset. We will037
publish code and data upon paper acceptance.038

1 Introduction039

Given a prompt containing both an image and040

a question, multimodal large language models041

(MLLMs) (Li et al., 2024b; Liu et al., 2023; Bai042

Figure 1: An example of visual hallucination (VH) in
MLLM. The red text indicates the hallucinated response,
since there are actually six spots on the butterfly’s wings.

et al., 2023a; Li et al., 2023a; Tong et al., 2024a; 043

Li et al., 2024a) generate a text response. MLLMs 044

extend the capabilities of large language models 045

(LLMs) (AI@Meta, 2024; Bai et al., 2023b; Tou- 046

vron et al., 2023; Yang et al., 2024; Chiang et al., 047

2023) by enabling them to understand visual in- 048

puts. An MLLM typically comprises three main 049

components: a vision encoder, a vision-language 050

connector, and an LLM. Specifically, the vision 051

encoder extracts visual embedding vectors from 052

the image in the prompt, while the vision-language 053

connector aligns these visual embedding vectors 054

with the token-based input used by the LLM. The 055

LLM then generates the text response based on the 056

outputs of the vision-language connector and the 057

text in the prompt. This integration allows MLLMs 058

to tackle complex tasks like Visual Question An- 059

swering (VQA) (Tong et al., 2024b; Huang et al., 060

2024; Li et al., 2023b; Fu et al., 2023). 061

Despite significant advancements, MLLMs are 062

prone to a critical flaw known as visual hallucina- 063

tion (VH) (Huang et al., 2024; Liu et al., 2024), 064

where the model generates responses containing 065

incorrect or misleading visual information. For ex- 066

ample, Figure 1 illustrates a VH case where the 067

MLLM provides an incorrect response regarding 068

the number of spots on a butterfly’s wings. VH 069

can lead to catastrophic outcomes, especially in 070

high-stakes applications such as autonomous driv- 071

ing (Wen et al., 2023; Chen et al., 2024), medical 072

diagnostics (Qiu et al., 2022), and content moder- 073
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ation (Kumar et al., 2024). Therefore, VH poses074

significant obstacles to the safe deployments of075

MLLMs. This concern is highlighted in the U.S.076

Executive Order on Trustworthy AI (House, 2023),077

which emphasized rigorous testing of AI systems to078

identify and mitigate their potential harms. There-079

fore, developing methods to test and mitigate VH080

in MLLMs is crucial for ensuring their safety.081

Existing VH testing relies on either manual (Li082

et al., 2023b) or semi-automated (Huang et al.,083

2024; Tong et al., 2024b) methods to construct test084

cases, both of which require extensive human anno-085

tations. As MLLMs evolve rapidly, these methods086

struggle to scale up VH testing, limiting the num-087

ber of test cases and thus hindering comprehensive088

testing of MLLMs’ vulnerability to VH. Further-089

more, existing VH testing methods do not con-090

sider adversarial testing (Goodfellow et al., 2014;091

Carlini and Wagner, 2017) in a white-box setting,092

where an adversary with full knowledge of the tar-093

get MLLM can craft adversarial examples to trigger094

VH through adding human-imperceptible perturba-095

tions to the images. This is particularly relevant096

for open-sourced MLLMs whose model parame-097

ters are public. Thus, automated and adversarial098

methods for generating VH test cases are urgently099

needed.100

Our work: To address these challenges, we intro-101

duce VHExpansion, the first automated framework102

to generate VH test cases for MLLMs. Given an103

initial VH test case, VHExpansion generates ad-104

ditional ones using a combination of negation as105

well as common and adversarial image perturba-106

tions. Each VH test case is a VQA triple consisting107

of an image, a question, and a ground-truth an-108

swer. Negation flips the question and answer. To109

automate negation, we leverage an LLM with a110

specifically designed prompt. For common image111

perturbations, we process the image via frequently112

encountered image processing operations such as113

JPEG compression, Gaussian noise, etc.. For ad-114

versarial image perturbations, we add a human-115

imperceptible perturbation to the image so that the116

resulting embedding vector, generated by the vision117

encoder, differs significantly from the original. We118

formulate finding the perturbation as a constrained119

optimization problem, solved using Projected Gra-120

dient Descent (Madry et al., 2018) or the iterative121

Fast Gradient Sign Method (Kurakin et al., 2018).122

We apply VHExpansion to expand three existing123

VH datasets annotated manually and use these ex-124

panded datasets to benchmark seven MLLMs. Our 125

evaluation demonstrates that VHExpansion effec- 126

tively identifies more VH test cases. 127

Moreover, we introduce a new evaluation met- 128

ric called symmetric accuracy, which measures 129

the proportion of correctly answered VH test-case 130

pairs, where each pair includes a VH test case and 131

its negated counterpart. Symmetric accuracy cap- 132

tures the consistency of an MLLM in accurately 133

answering both the original and negated questions. 134

In fact, we theoretically show that symmetric ac- 135

curacy is an unbiased evaluation metric that re- 136

mains unaffected by the imbalance of VH testing 137

cases with varying answers when an MLLM is ran- 138

domly guessing the answers, whereas traditional 139

accuracy is prone to such imbalance. Our empirical 140

benchmark results show that symmetric accuracy 141

and traditional accuracy can lead to different con- 142

clusions about MLLMs’ vulnerability to VH. For 143

instance, on the POPE dataset (Li et al., 2023b), 144

Cambrian-1 (Tong et al., 2024a) achieves a higher 145

traditional accuracy than LLaVA-NeXT (Li et al., 146

2024a) (0.887 vs. 0.879), but performs worse in 147

symmetric accuracy (0.745 vs. 0.798). 148

Finally, we demonstrate that fine-tuning an 149

MLLM on the expanded VH test cases generated 150

by VHExpansion significantly mitigates visual hal- 151

lucinations. For example, our experiments show 152

that when fine-tuning LLaVA-1.5 on the POPE 153

dataset, using randomly sampled 200 VH test cases 154

results in a symmetric accuracy of 0.180, whereas 155

fine-tuning on both the sampled VH test cases and 156

the corresponding expanded 1,800 more VH test 157

cases achieves a symmetric accuracy of 0.711. This 158

highlights the effectiveness of VHExpansion in mit- 159

igating VH in MLLMs. Additionally, our evalua- 160

tion shows that fine-tuning does not compromise 161

the model’s performance on other general-purpose 162

VQA datasets, preserving its broader functionality. 163

To summarize, we make the following contribu- 164

tions in this work: 165

• We introduce VHExpansion, the first auto- 166

mated framework for generating VH test cases 167

in MLLMs, combining negation and common 168

and adversarial image perturbations. 169

• We propose a new evaluation metric, symmet- 170

ric accuracy, to quantify an MLLM’s perfor- 171

mance. Symmetric accuracy is unaffected by 172

the imbalance of test cases when an MLLM 173

makes random guessing. 174
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• We demonstrate that fine-tuning MLLMs on175

the expanded test cases generated by VH-176

Expansion significantly mitigates VH while177

maintaining general performance on other178

VQA datasets.179

2 Related Work180

2.1 MLLMs181

MLLMs (Li et al., 2024b; Liu et al., 2023; Bai182

et al., 2023a; Li et al., 2023a; Tong et al., 2024a;183

Li et al., 2024a) have revolutionized the ability184

of LLMs to respond to prompts containing im-185

ages and questions. Recall that MLLMs typically186

comprise three components: a vision encoder, a187

vision-language connector, and an LLM. Vision188

encoders are often pre-trained via self-supervised189

learning (Radford et al., 2021; Oquab et al., 2023)190

on large datasets of unlabeled images or image-text191

pairs. Among the widely used vision encoders are192

those from the CLIP family (Radford et al., 2021),193

including CLIP-ViT-L/14 (Radford et al., 2021),194

EVA-CLIP ViT-g/14 (Fang et al., 2023), and Open-195

CLIP ConvNeXt-XXL (Ilharco et al., 2021; Liu196

et al., 2022). Cambrian-1 (Tong et al., 2024a)197

also incorporates other vision encoders, includ-198

ing DINOv2 ViT-L/14 (Oquab et al., 2023) and199

SigLIP ViT-SO400M/14 (Zhai et al., 2023). Re-200

cently, several types of vision-language connectors201

have been introduced, such as 2-layer multilayer202

perceptrons (MLPs), Q-Former (Dai et al., 2023),203

1-layer cross-attention mechanisms (Bai et al.,204

2023b), and Spatial Visual Aggregator (Tong et al.,205

2024a). The backbone LLMs used in MLLMs206

can be models like Llama2 (Touvron et al., 2023),207

Llama3 (AI@Meta, 2024), Vicuna (Chiang et al.,208

2023), and Qwen (Bai et al., 2023a).209

2.2 Methods to Generate VH Test Cases210

To detect and mitigate VH in MLLMs, several211

methods to generate VH test cases (Li et al., 2023b;212

Huang et al., 2024; Tong et al., 2024b; Guan et al.,213

2023) have been proposed. These methods can214

be categorized into two types: manual and semi-215

automatic. Manual methods (Li et al., 2023b; Guan216

et al., 2023) involve creating each VH test case217

through human effort. For example, POPE (Li218

et al., 2023b) requires human annotation for each219

image to identify the objects within it and then220

design corresponding questions based on these ob-221

jects, including some randomly introduced non-222

existent objects. Note that the images in POPE are223

also human-created.224

To reduce the human labor involved in generat- 225

ing VH test cases, semi-automatic methods (Huang 226

et al., 2024) have been developed. For in- 227

stance, VHTest uses GPT-4V (Achiam et al., 228

2023) and DALL·E-3 (Betker et al., 2023) to fa- 229

cilitate construction of VH test cases. Specifi- 230

cally, it first employs CLIP (Radford et al., 2021) 231

and DINO (Oquab et al., 2023) to detect images 232

from benchmark datasets that may trigger VH in 233

MLLMs. These images are then passed to GPT- 234

4V to generate textual descriptions. The gen- 235

erated text descriptions are subsequently passed 236

to DALL·E-3 to create more images. Based on 237

these AI-generated images, human workers manu- 238

ally identify objects within them and design ques- 239

tions, along with the corresponding ground-truth 240

answers. Similarly, MMVP (Tong et al., 2024b) 241

uses CLIP and DINO to identify image pairs that 242

have a high CLIP score but a low DINO score. 243

Human workers then manually examine the differ- 244

ences between these paired images and formulate 245

questions/answers based on those differences. 246

2.3 Mitigating VH via Fine-tuning 247

With VH datasets constructed by these methods, 248

MLLMs can be fine-tuned on them to mitigate 249

VH (Huang et al., 2024). This approach enables the 250

MLLMs to learn from instances of VH, allowing 251

them to distinguish between accurate visual repre- 252

sentations and hallucinated content. By exposing 253

the models to diverse VH instances during fine- 254

tuning, they can better generalize and reduce the 255

occurrence of hallucinations (Huang et al., 2024). 256

3 Our VHExpansion 257

Figure 2 shows an overview of our VHExpansion. 258

Given an initial VH test case, VHExpansion au- 259

tomatically generates additional VH test cases by 260

modifying the question and answer through nega- 261

tion, as well as modifying the image through com- 262

mon and adversarial image perturbations. We de- 263

note a VH test case as {xI , xQ, yA}, where xI and 264

xQ are respectively the image and text question in 265

the prompt, while yA is the ground-truth answer. To 266

support automated evaluation, we focus on binary 267

questions in this work, i.e., yA is either “yes” or 268

“no”. Note that non-binary question-answer pairs 269

(xQ, yA) can be rewritten as binary counterparts. 270
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Figure 2: Overview of VHExpansion. Green text and boxes indicate text and images modified by VHExpansion.

3.1 Modifying Question xQ and Answer yA271

via Negation272

Given a VH test case {xI , xQ, yA}, the goal of273

negation is to transform it into {xI ,¬xQ,¬yA}.274

Our VHExpansion automates this process using an275

LLM with a custom prompt (showed in Figure 3).276

This prompt takes xQ as input and instructs the277

LLM to output a negated question using predefined278

transformation rules, such as adding negation pre-279

fixes or modifying key words to reverse the mean-280

ing of xQ.281

Negation Prompt

Rephrase the following question to be a
negated question for the original question.
The rephrase method is to add prefix ‘Is
it false’ before the original question in a
declarative sentence or change all occur-
rences of the “a/an” to “no” for simple
cases. Below are the rules must be fol-
lowed when rephrasing the question: DO
NOT CHANGE OR ADD ANY INFOR-
MATION to the sentence, such as the case
of any letters except the first letter of the sen-
tence, tenses, the order of clauses, pronouns,
etc.. You should only return the rephrased
question. The question is: [xQ].

Figure 3: Prompt used to instruct an LLM to negate a
question xQ.

The primary intuition behind negation is that an282

MLLM may simply guess the answer (i.e., “yes”283

or “no”) correctly for binary questions without re-284

ally understanding the image. In particular, some285

MLLMs such as LLaVA-1.5 tend to answer “yes"286

for binary questions (Liu et al., 2023). Therefore,287

if the VH test cases are imbalanced and a majority288

of them have “yes" as ground-truth answers, such289

MLLMs would have high accuracy without under-290

standing the images, misleading developers to think 291

that the MLLMs are not vulnerable to visual hallu- 292

cination. However, such MLLMs would be likely 293

to answer incorrectly for the negated questions, 294

leading to low accuracy on them. Thus, the VH test 295

cases and their negated versions can better quantify 296

the vulnerability of an MLLM to visual hallucina- 297

tion. In fact, in Section 4, we propose a new eval- 298

uation metric, called symmetric accuracy, which 299

measures the percentage of correctly answered VH 300

test-case pairs, each of which includes a test case 301

and its negated version. In Section 4, we theoreti- 302

cally show that symmetric accuracy is unaffected 303

by the imbalance of VH test cases with answers 304

“yes” and “no” when the MLLM makes random 305

guessing, while accuracy on the original VH test 306

cases alone is prone to such imbalance. 307

3.2 Modifying Image XI 308

Common image perturbations: In real-world 309

scenarios, images often undergo standard editing 310

operations for various purposes. For example, im- 311

ages are frequently compressed using formats like 312

JPEG to reduce transmission costs over the Inter- 313

net. These image edits are known as common 314

image perturbations (Hendrycks and Dietterich, 315

2019). Our VHExpansion uses these perturbations 316

to generate additional VH test cases. Given a VH 317

test case {xI , xQ, yA}, we apply a common per- 318

turbation method T to the image xI , creating a 319

new VH test case {T (xI), xQ, yA}. The intuition 320

is that for a slightly perturbed image T (xI), the 321

ground-truth answer yA should remain unchanged 322

for the same question xQ. However, this subtle al- 323

teration may trigger VH in an MLLM. We focus on 324

four common image perturbations: Gaussian Noise, 325

Brightness Adjustments, Defocus Blur, and JPEG 326

Compression. Further details on these common 327

perturbations are provided in Appendix C. 328

Adversarial image perturbations: In the con- 329
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text of adversarial image perturbations, we con-330

sider a white-box setting where an adversary, with331

full knowledge of the target MLLM’s model pa-332

rameters, crafts nearly-imperceptible adversarial333

perturbations to generate VH test cases. Given an334

original VH test case {xI , xQ, yA}, the adversar-335

ial image perturbation generates a new test case336

{xI + δ∗, xQ, yA}, where δ∗ is the adversarial per-337

turbation. Our intuition is that for a VH test case338

that does not trigger VH in an MLLM M , VHEx-339

pansion creates perturbations that cause the pro-340

jected visual embedding vector from the vision-341

language connector to differ from the original. Con-342

versely, if the test case already triggers VH in M ,343

VHExpansion generates perturbations that make344

the projected visual embedding vector similar to345

the original. Formally, for an MLLM M with vi-346

sion encoder ME and vision-language connector347

MC , we formulate finding δ∗ as the solution to the348

following constrained optimization problem:349

δ∗ =


argminδ (− cos (Φ(xI),Φ(xI + δ))) ,

if xI does not trigger VH,

argminδ (cos (Φ(xI),Φ(xI + δ))) ,

if xI triggers VH,

350

s.t. ||δ||∞ ≤ ϵ, (1)351

where Φ = ME ◦ MC denotes the concatena-352

tion of the vision encoder and the vision-language353

connector, cos denotes cosine similarity, and ϵ354

is the ℓ∞-norm constraint on the perturbation δ355

added to the image xI . Note that when the VH356

test case already triggers VH, we initialize δ to be357

a non-zero vector with random value and apply358

early stopping to avoid the optimization result to359

be identical with the original image input xI ; and360

when the VH test case does not trigger VH, we361

initialize δ to be zero. Our algorithm solves the362

optimization problem in Equation 1 using either363

Projected Gradient Descent (PGD) (Madry et al.,364

2018) or the iterative Fast Gradient Sign Method365

(I-FGSM) (Kurakin et al., 2018). PGD iteratively366

updates δ via gradient ascent: δ = δ−γ·∇δl, where367

l = cos (ME ◦MC(xI),ME ◦MC(xI + δ)), fol-368

lowed by projecting δ onto the feasible region369

using δ = clip(δ,−ϵ, ϵ). I-FGSM differs from370

PGD by using the sign of the gradient instead:371

δ = δ − γ · sign(∇δl).372

4 Theoretical Analysis 373

In this section, we theoretically analyze the stan- 374

dard accuracy metric and our proposed symmetric 375

accuracy metric for evaluating an MLLM model’s 376

performance when the model is making random 377

guessing. Suppose we are given a VH test case 378

t = {xI , xQ, yA}, sampled from the distribution T 379

of VH test cases, i.e., t ∼ T . Our analysis focuses 380

on binary questions, i.e., yA is either “yes” or “no”. 381

Specifically, we denote by q the probability that 382

a randomly sampled t has a ground-truth answer 383

“yes”. In other words, a randomly sampled t has a 384

ground-truth answer “no” with probability 1− q. q 385

quantifies the imbalance of the VH test cases with 386

answers “yes” and “no”. 387

We denote by f an MLLM model and f(xI , xQ) 388

the MLLM’s answer for the VH test case. 389

f(xI , xQ) ̸= yA indicates that the MLLM hallu- 390

cinates. When the MLLM model makes random 391

guessing to answer the test case without under- 392

standing the image xI and question xQ, it outputs 393

an answer “yes” or “no” randomly. Suppose the 394

MLLM model guesses “yes" with probability p and 395

“no" with probability 1− p. 396

An evaluation metric measures the performance 397

of an MLLM model f on the VH test cases whose 398

distribution is T . Specifically, an evaluation metric 399

takes T and f as input and outputs a number (e.g., 400

between 0 and 1), with a smaller number indicating 401

that f is more vulnerable to VH test cases from the 402

distribution T . An evaluation metric is unbiased 403

if it does not depend on the imbalance of the VH 404

test cases when the model f makes random guess- 405

ing, i.e., it does not depend on q. Otherwise, the 406

evaluation metric is biased. Formally, we have the 407

following definition. 408

Definition 1 (Unbiased Evaluation Metric). An 409

evaluation metric is said to be unbiased if does 410

not depend on q when the MLLM model makes 411

random guessing. 412

Next, we formally define accuracy and prove 413

that accuracy is a biased evaluation metric. 414

Definition 2 (Accuracy). Accuracy is the probabil- 415

ity that an MLLM model f correctly answers a VH 416

test case t = {xI , xQ, yA} sampled from T . For- 417

mally, we have: accuracy = Prt∼T (f(xI , xQ) = 418

yA). 419

Theorem 1. Accuracy is a biased evaluation met- 420

ric when p ̸= 1
2 , where p is the probability that the 421

MLLM model guesses answer “yes”. 422
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Table 1: Statistics of existing VH datasets manually
annotated.
Dataset # Images # VH Test Cases

MMVP Tong et al. (2024b) 300 300
VHTest Huang et al. (2024) 650 1,200
POPE Li et al. (2023b) 500 9,000

Proof. Please refer to Appendix A.423

The above theorem shows that accuracy of an424

MLLM model depends on q once it does not guess425

uniformly at random, and thus can be artificially426

inflated by random guessing, leading to mislead-427

ing conclusions on an MLLM’s vulnerability to428

visual hallucination. To address this limitation, we429

propose a new metric called symmetric accuracy.430

Formally, it is defined as follows:431

Definition 3 (Symmetric Accuracy). Symmet-432

ric accuracy is the probability that an MLLM433

model f correctly answers a VH test case t =434

{xI , xQ, yA} sampled from T and its negated ver-435

sion. Formally, we have: symmetric accuracy =436

Prt∼T (f(xI , xQ) = yA ∧ f(xI ,¬xQ) = ¬yA).437

We prove that symmetric accuracy is an unbiased438

evaluation metric in the following theorem:439

Theorem 2. Symmetric accuracy is an unbiased440

evaluation metric.441

Proof. Please refer to Appendix B.442

5 Experiments443

5.1 Experimental Setup444

VH datasets: We use three popular VH datasets:445

MMVP (Tong et al., 2024b), VHTest (Huang et al.,446

2024), and POPE (Li et al., 2023b). MMVP and447

VHTest consist of VH test cases across various448

object properties in images, such as color, count-449

ing, and position. In contrast, POPE focuses on450

VQA test cases related to existence VH, specifi-451

cally identifying whether an object is present in an452

image. Table 1 summarizes the key statistics of453

these datasets.454

MLLMs: In our experiments, we evaluate seven455

MLLMs in total. In particular, six of these mod-456

els are open-source, including LLaVA-1.5 (Liu457

et al., 2023), InstructBLIP (Dai et al., 2023), Qwen-458

VL-Chat (Bai et al., 2023b), LLaVA-NeXT (Li459

et al., 2024a), LLaVA-OneVision (Li et al., 2024b),460

and Cambrian-1 (Tong et al., 2024a), alongside461

one closed-source model, GPT-4o (OpenAI, 2024).462

These MLLMs demonstrate state-of-the-art per- 463

formance across various VQA benchmarks and 464

have diverse model architectures. Details of these 465

MLLMs are shown in the Table C. 466

Evaluation metrics: We use accuracy and sym- 467

metric accuracy as our evaluation metrics, both of 468

which are formally defined in Section 4. In our 469

experiments, we illustrate how symmetric accuracy 470

leads to different conclusions about the vulnerabil- 471

ity of MLLMs to VH compared to the traditional 472

accuracy metric. Subsequently, we use symmetric 473

accuracy as our default evaluation metric unless 474

otherwise mentioned. We also report the number 475

of successful VH test cases generated by our VH- 476

Expansion. 477

Parameter settings: Unless otherwise mentioned, 478

we use LLaVA-1.5 on MMVP dataset by default. 479

We use GPT-4o as the LLM to negate all questions 480

in VH test cases due to its state-of-the-art perfor- 481

mance. We use the default parameter settings for 482

all MLLMs. For common image perturbations, de- 483

tails are shown in Appendix C. For adversarial im- 484

age perturbations, the default setting is: ℓ∞-norm 485

constraint ϵ = 8/255, with 500 epochs for non- 486

hallucinated VH test cases and 100 epochs for hal- 487

lucinated test cases. In hallucinated test cases, each 488

pixel of the initial perturbation is set to 5/255 or 489

−5/255 uniformly at random. 490

5.2 Experimental Results 491

For detailed analyses, please refer to Appendix E 492

and F for ablation studies on adversarial image 493

perturbation and fine-tuning learning rates. 494

Symmetric accuracy v.s. accuracy: Table 2 495

shows accuracy and symmetric accuracy of the 496

seven MLLMs across the three datasets MMVP, 497

VHTest, and POPE. We have three main observa- 498

tions. First, symmetric accuracy reveals different 499

conclusions about MLLM vulnerability to VH com- 500

pared to traditional accuracy. For example, on the 501

POPE dataset, Cambrian-1 has higher traditional 502

accuracy than LLaVA-NeXT but performs worse in 503

symmetric accuracy Second, when comparing sym- 504

metric accuracy across MLLMs, GPT-4o achieves 505

the highest scores on MMVP and VHTest, par- 506

ticularly on MMVP, indicating it is less prone to 507

visual hallucinations than other models. LLaVA- 508

OneVision scores the highest symmetric accuracy 509

on POPE , likely due to its fine-tuning on simpler 510

existence-based questions and possible overlap be- 511

tween POPE and its training data. Third, across 512
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Table 2: Accuracy, symmetric accuracy, and # new successful VH test cases for seven MLLMs on the three VH
datasets.

(a) MMVP dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
Accuracy 0.638 0.533 0.607 0.649 0.697 0.717 0.813

Symmetric Accuracy 0.356 0.320 0.210 0.268 0.430 0.333 0.663
# New Successful

VH test cases 145 166 175 178 126 152 85

(b) VHTest dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
Accuracy 0.542 0.499 0.537 0.631 0.588 0.632 0.709

Symmetric Accuracy 0.308 0.117 0.156 0.260 0.287 0.328 0.423
# New Successful

VH test cases 599 643 627 670 585 647 523

(c) POPE dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
Accuracy 0.861 0.860 0.692 0.887 0.879 0.889 0.861

Symmetric Accuracy 0.468 0.444 0.354 0.745 0.798 0.843 0.425
# New Successful

VH test cases 3,978 4,368 4,845 2,046 1,281 976 4,504

VH datasets, all MLLMs perform worse on VHT-513

est, with InstructBLIP scoring only 0.117. This is514

likely because VHTest contains AI-generated im-515

ages and more complex questions that the models516

have not trained on, making it more challenging.517

Common and Adversarial image perturbations518

generate more VH test cases: Table 3 shows519

the symmetric accuracy on the three datasets of520

different MLLMs before and after adversarial im-521

age perturbations. Our main observation is that522

adversarial perturbations cause significant drops in523

symmetric accuracy for all MLLMs. When com-524

paring I-FGSM with PGD, I-FGSM consistently525

results in a larger decrease in accuracy, indicating it526

is more effective. To conclude, MLLMs are vulner-527

able to adversarial perturbations, emphasizing the528

need for improved adversarial robustness. The re-529

sults and analysis of common image perturbations,530

along with additional adversarial image perturba-531

tion results, are provided in Table A, Table D, and532

Appendix D.533

Manual verification for negation: The correct-534

ness of our proposed symmetric accuracy metric535

relies on the validity of the negated questions gener-536

ated by LLMs. Since LLMs may exhibit hallucina-537

tions, it is necessary to verify whether the negated538

questions generated by the LLM are correct.539

To validate the correctness of these negated ques-540

tions, we randomly sampled 200 VQA triples (100541

original-negation pairs) from each of the MMVP,542

VHTest, and POPE datasets, which were evaluated543

by four independent annotators. The annotators’544

task was to assess if each negated question was a545

correct negation of its corresponding original ques- 546

tion. The annotators unanimously agreed that all 547

negated questions were correctly generated by the 548

LLM. This result demonstrates the reliability of the 549

LLM in generating valid negations. 550

5.3 Mitigating VH via Fine-tuning 551

(Huang et al., 2024) demonstrate that fine-tuning 552

MLLMs on VH datasets constructed using VH test 553

case generation methods can help mitigate VH. In 554

this section, we compare the symmetric accuracy 555

across three scenarios: 1) before fine-tuning, 2) 556

fine-tuning on original VH test cases generated by 557

other methods, and 3) fine-tuning on original VH 558

test cases generated by other methods combined 559

with expanded VH test cases from our VHExpan- 560

sion. 561

Experimental settings: We use LLaVA-1.5 as the 562

fine-tuning MLLM. For fine-tuning on the origi- 563

nal VH test cases generated by other methods, we 564

randomly sample 200 VH test cases from each of 565

the MMVP, VHTest, and POPE datasets, along 566

with 4,000 randomly sampled VQA triples from 567

the LLaVA-1.5 fine-tuning data (Liu et al., 2023). 568

For fine-tuning on our expanded VH test cases, we 569

expand the previously sampled 200 VH test cases 570

from each of the three datasets using negation and 571

adversarial image perturbations, resulting in 800 572

VH test cases. To further increase data diversity, 573

we use GPT-4o to rephrase the questions four times 574

for each VH test case, generating four additional 575

versions of each. Consequently, our expanded fine- 576

tuning set contains 4,000 VH test cases and the 577

sampled 4,000 VQA triples from the fine-tuning 578

7



Table 3: Symmetric accuracy on the three datasets of different MLLMs before and after adversarial image
perturbations. We cannot perform adversarial image perturbations for Cambrian-1 because of our limited GPU
memory, and we do not have results for GPT-4o because it is closed-source.

(a) MMVP dataset

Perturbation LLaVA-1.5 InstructBLIP Qwen-VL-Chat LLaVA-NeXT LLaVA-OneVision
No perturbation 0.356 0.320 0.210 0.430 0.333

I-FGSM 0.051 0.080 0.027 0.263 0.297
PGD 0.094 0.080 0.051 0.287 0.283

(b) VHTest dataset

Perturbation LLaVA-1.5 InstructBLIP Qwen-VL-Chat LLaVA-NeXT LLaVA-OneVision
No perturbation 0.308 0.117 0.156 0.287 0.328

I-FGSM 0.102 0.053 0.097 0.144 0.147
PGD 0.166 0.059 0.117 0.204 0.249

(c) POPE dataset

Perturbation LLaVA-1.5 InstructBLIP Qwen-VL-Chat LLaVA-NeXT LLaVA-OneVision
No perturbation 0.468 0.444 0.354 0.798 0.843

I-FGSM 0.017 0.152 0.072 0.526 0.573
PGD 0.030 0.174 0.088 0.553 0.761

Table 4: Symmetric accuracy before and after fine-tuning on different image and VQA combinations.

Before Fine-tuning After Fine-tuning on
Original VH Test Cases

After Fine-tuning on Our
Expanded VH Test Cases

MMVP 0.207 0.172 0.343
VHTest 0.206 0.208 0.225
POPE 0.180 0.189 0.711

Table 5: Scores on MME Perception and MME Cognition before and after fine-tuning.

Before Fine-tuning After Fine-tuning on
Original VH Test Cases

After Fine-tuning on Our
Expanded VH Test Cases

MME Perception 1459.3 1456.7 1434.4
MME Cognition 335.4 327.5 323.9

data of LLaVA-1.5. All remaining VH test cases579

from the three VH datasets, along with their adver-580

sarially perturbed versions, are used as evaluation581

data.582

Following LLaVA-1.5 (Liu et al., 2023), we fine-583

tune LLaVA-1.5 using LoRA (Hu et al., 2021) with584

a learning rate of 1.8 × 10−6 for one epoch. All585

other parameters are set to the default fine-tuning586

settings of LLaVA-1.5.587

Experimental results: The comparison results588

of fine-tuning are shown in Table 4 and Table 5.589

Our findings demonstrate that fine-tuning on our590

expanded VH test cases significantly improves sym-591

metric accuracy across the three VH datasets. For592

instance, on the POPE dataset, symmetric accu-593

racy increases slightly from 0.180 to 0.189 after594

fine-tuning on the original VH test cases, but rises595

substantially to 0.711 after fine-tuning on our ex-596

panded VH test cases. This highlights the effective-597

ness of using VH test cases generated by our VH-598

Expansion to mitigate VH in MLLMs. Moreover,599

Table 5 shows that fine-tuning on our expanded VH600

test cases maintains the model’s performance on601

other general-purpose VQA datasets, MME Per-602

ception and MME Recognition (Fu et al., 2023). 603

6 Conclusion 604

In this paper, we introduce VHExpansion, an au- 605

tomated framework to generate VH test cases for 606

MLLMs. VHExpansion significantly advances VH 607

testing by automating the generation of test cases 608

through techniques such as negation and image per- 609

turbations, both common and adversarial. We also 610

propose an unbiased evaluation metric, symmetric 611

accuracy, to measure the consistency of MLLMs in 612

answering VH test cases and their negated counter- 613

parts. Our experiments demonstrate that, given VH 614

test cases, VHExpansion can find more successful 615

VH test cases. Importantly, fine-tuning MLLMs on 616

the expanded VH test cases generated by VHExpan- 617

sion significantly mitigates VH, while maintaining 618

general performance on standard VQA tasks. 619

7 Limitations 620

Our VHExpansion is limited to binary questions 621

for MLLMs. Future work will focus on expand- 622

ing to open-ended questions, potentially leveraging 623

LLMs for question generation and analysis. 624
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A Appendix806

A Proof of Theorem 1807

Proof. Standard accuracy is defined as:808

Accuracy = Prt∼T (f(xI , xQ) = yA). Since809

the model’s predictions are independent of yA810

when random guessing:811

E[Accuracy] = P (YA = Yes) · P (f(XI , XQ) = Yes)812

+ P (YA = No) · P (f(XI , XQ) = No)813

= q · p+ (1− q) · (1− p)814

= 1 + (2p− 1) · q − p.815

This expression shows that E[Accuracy] de-816

pends on the class distribution (P (yA = Yes)) if817

p ̸= 1
2 . If the model’s bias aligns with the majority818

class (e.g., p is large when P (yA = Yes) is large),819

E[Accuracy] is artificially inflated, even though the820

model is merely guessing.821

Therefore, standard accuracy is biased due to822

class imbalance and model bias.823

B Proof of Theorem 2824

Proof. Let S denote symmetric accuracy, then S =825

Prt∼T (f(xI , xQ) = yA ∧ f(xI ,¬xQ) = ¬yA).826

Since model predictions are independent of yA and827

independent between xQ and ¬xQ under random828

guessing:829

E[S] = P (f(xI , xQ) = yA) · P (f(xI ,¬xQ) = ¬yA)830

= P (yA = Yes) · P (f(xI , xQ) = Yes)·831

P (f(xI ,¬xQ) = No)832

+ P (yA = No) · P (f(xI , xQ) = No)·833

P (f(xI ,¬xQ) = Yes)834

= q · p(1− p) + (1− q) · p(1− p)835

= p(1− p). (2)836

Therefore, E[S] = p(1−p), which is independent837

of the class distribution (P (yA = Yes)). Thus,838

symmetric accuracy is an unbiased evaluation met-839

ric with respect to class imbalance.840

841

C Details of Common Image842

Perturbations843

• Gaussian Noise In this method, Gaussian844

noise is randomly sampled from a distribu-845

tion with zero mean and a standard deviation846

of σ. The image pixel values are first con-847

verted to the range [0, 1], and the generated848

noise is then added to these values. This pro- 849

cess simulates the noise real-world images 850

might experience during transmission. In our 851

experiments, the standard deviation σ is set to 852

0.08. 853

• Brightness This method adjusts image bright- 854

ness by modifying its V (value) channel in the 855

HSV color space. The input image is first nor- 856

malized to [0, 1] and converted from RGB to 857

HSV. The brightness is then altered by adding 858

a constant c to the V channel, with values 859

clipped to the range [0, 1]. The image is fi- 860

nally converted back to RGB. In our experi- 861

ments, the constant c is set to 0.5. 862

• Defocus Blur This method applies a defocus 863

blur to the image using a disk-shaped kernel. 864

The input image is normalized to [0, 1], and 865

a disk kernel of radius c is generated. Each 866

of the three RGB channels is filtered indepen- 867

dently with this kernel, then recombined and 868

clipped to the range [0, 1]. The radius c is set 869

to 5 in our experiments. 870

• JPEG Compression This method compresses 871

the input image using a specified quality factor 872

q. Lower q values result in higher compres- 873

sion and more artifacts, while higher values 874

retain more image quality. In our experiments, 875

the quality factor q is set to 30. 876

D Experimental Results on Common 877

Image Perturbations 878

Table A shows the symmetric accuracy on three 879

datasets of different MLLMs before and after com- 880

mon image perturbations. We observe that sym- 881

metric accuracy slightly decreases after common 882

image perturbations in most cases. This shows that 883

most MLLMs are generally robust against com- 884

mon perturbations. However, there are still some 885

notable exceptions. For example, Defocus Blur sig- 886

nificantly reduces LLaVA-OneVision’s accuracy 887

on POPE, from 0.843 to 0.646; while three of 888

four common perturbations even increase Instruct- 889

BLIP’s symmetric accuracy on VHTest. Compared 890

to adversarial image perturbations, MLLMs are 891

more robust against common ones. 892
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Table A: Symmetric accuracy and # new successful VH test cases on the three datasets of different MLLMs before
and after common image perturbations. Due to API query limits, we sample 3,000 VH test cases from the POPE
dataset for GPT-4o.

(a) MMVP dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
No Perturbation 0.356 0.320 0.210 0.268 0.430 0.333 0.663
Gaussian Noise 0.353 0.187 0.147 0.213 0.370 0.317 0.643

Brightness 0.317 0.177 0.160 0.190 0.357 0.273 0.613
Defocus Blur 0.353 0.163 0.193 0.183 0.297 0.317 0.543

JPEG Compression 0.373 0.253 0.213 0.270 0.410 0.347 0.657

(b) # New successful VH test cases on MMVP dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
Gaussian Noise 275 305 295 274 237 259 158

Brightness 270 300 309 270 238 273 165
Defocus Blur 256 305 296 283 255 262 185

JPEG Compression 253 299 285 279 233 239 148

(c) VHTest dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
No perturbation 0.308 0.117 0.156 0.260 0.287 0.328 0.423
Gaussian Noise 0.312 0.138 0.170 0.258 0.272 0.279 0.429

Brightness 0.292 0.124 0.164 0.238 0.278 0.287 0.392
Defocus Blur 0.302 0.110 0.125 0.154 0.282 0.278 0.271

JPEG Compression 0.312 0.177 0.193 0.282 0.293 0.289 0.433

(d) # New successful VH test cases on VHTest dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
Gaussian Noise 1,142 1,210 1,196 1,112 1,089 1,167 937

Brightness 1,160 1,209 1,212 1,114 1,079 1,139 1,001
Defocus Blur 1,162 1,210 1,210 1,133 1,086 1,145 1,164

JPEG Compression 1,168 1,216 1,220 1,075 1,069 1,129 938

(e) POPE dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
No perturbation 0.468 0.444 0.354 0.745 0.798 0.843 0.425
Gaussian Noise 0.462 0.433 0.413 0.735 0.782 0.828 0.412

Brightness 0.444 0.428 0.345 0.738 0.757 0.819 0.389
Defocus Blur 0.449 0.435 0.486 0.699 0.789 0.646 0.396

JPEG Compression 0.465 0.440 0.402 0.726 0.828 0.724 0.410

(f) # New successful VH test cases on POPE dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
Gaussian Noise 5,297 5,686 6,567 3,291 2,594 2,177 872

Brightness 5,502 5,788 7,662 3,221 2,634 2,337 916
Defocus Blur 5,429 5,727 5,410 4,025 3,049 3,605 897

JPEG Compression 5,260 5,685 6,909 3,173 2,535 2,878 896

E Ablation Study on Adversarial Image893

Perturbation894

We conduct a comprehensive ablation study on ad-895

versarial image perturbation using I-FGSM, since it896

is the most effective method to generate successful897

VH test cases in our VHExpansion.898

Impact of ℓ∞-norm constraint ϵ: Recall that I-899

FGSM projects the perturbation into the feasible900

region defined by the ℓ∞-norm constraint ϵ at each901

iteration. Table Ba shows the effect of varying ϵ902

on symmetric accuracy. We observe that symmet-903

ric accuracy initially decreases and then stabilizes904

as the ℓ∞-norm constraint ϵ increases. For exam-905

ple, at ϵ = 4/255, symmetric accuracy is 0.080, 906

dropping to 0.051 at ϵ = 8/255, after which it 907

converges. This trend occurs because larger pertur- 908

bations changes the visual embedding vector more 909

significantly of an image for a non-hallucinated VH 910

test case, which is more likely to trigger VH and 911

thereby reducing symmetric accuracy. 912

Impact of perturbation step size γ: The per- 913

turbation step size γ controls the update in every 914

iteration of I-FGSM. Table Bb shows the impact 915

of γ on symmetric accuracy. We observe that sym- 916

metric accuracy is relatively insensitive to different 917

small perturbation step size γ. 918
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Table B: Ablation study on symmetric accuracy for ad-
versarial image perturbations for LLaVA-1.5 on MMVP
dataset when using I-FGSM.

(a) ℓ∞-norm constraint ϵ

ϵ 4/255 8/255 12/255 16/255
Symmetric
Accuracy 0.080 0.051 0.047 0.053

(b) Perturbation step size γ

γ 0.3/255 0.4/255 0.5/255 0.6/255 0.7/255
Symmetric
Accuracy 0.051 0.059 0.051 0.054 0.040

(c) Iterations for hallucinated VH test cases

Iterations 50 75 100 125 150
Symmetric
Accuracy 0.049 0.062 0.051 0.042 0.054

(d) Iterations for non-hallucinated VH test cases

Iterations 100 300 500 700 900
Symmetric
Accuracy 0.090 0.058 0.051 0.050 0.050

(e) Repetition of evaluation

# Repetition 1 2 3 4 5
Symmetric
Accuracy 0.043 0.040 0.051 0.047 0.049

(f) Temperature of MLLM

Temperature 0.0 0.2 0.4 0.6 0.8 1.0
Symmetric
Accuracy 0.037 0.051 0.066 0.099 0.104 0.096

Impact of iterations: Since I-FGSM solves the919

optimization problem in Equation 1 iteratively, we920

study the impact of the number of iterations and921

present the results in Table Bc and Table Bd for922

hallucinated and non-hallucinated VH test cases,923

respectively. For hallucinated VH test cases, we ob-924

serve that symmetric accuracy remains consistently925

low as the number of iterations increases from 50926

to 150. This is because I-FGSM updates the adver-927

sarial perturbations to increase the cosine similarity928

between the original and perturbed images for hal-929

lucinated VH test cases, maintaining the effective-930

ness of VH test cases. In non-hallucinated VH test931

cases, symmetric accuracy initially decreases and932

then stabilizes as the number of iterations increases933

from 100 to 900.934

Impact of repetition of evaluation: Due to the935

inherent randomness in the decoding algorithm of936

MLLMs, we repeat the evaluation and report the av-937

erage symmetric accuracy in Table Be, varying the938

number of repetitions. We observe that symmetric939

accuracy remains consistent across different repe-940

tition counts, ranging from 0.040 to 0.051. This941

suggests that symmetric accuracy stabilizes after942

only a few repetitions, with even a single evaluation943

providing reliable results, thus avoiding unneces- 944

sary computational overhead. 945

Impact of MLLM’s temperature: Temperature 946

controls the randomness of MLLMs’ responses, 947

with higher temperatures typically leading to more 948

diverse outputs. Table Bf shows the impact of tem- 949

perature on LLaVA-1.5’s symmetric accuracy. We 950

observe a slight increase in symmetric accuracy as 951

the temperature increases from 0 to 1, likely be- 952

cause the MLLM explores more diverse outputs at 953

higher temperatures. 954

F Ablation Study on Fine-tuning 955

Learning Rate 956

Figure A illustrates the impact of different fine- 957

tuning learning rates on symmetric accuracy for 958

the MMVP dataset, scores on MME Perception 959

and scores on MME Cognition. We observe that 960

performance across these datasets is highly sensi- 961

tive to the fine-tuning learning rate. At the learning 962

rate of 1.8× 10−6, the fine-tuned MLLM achieves 963

the best trade-off among performances on all three 964

datasets. 965
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(a) MMVP dataset (b) MME Perception (c) MME Cognition
Figure A: Impact of learning rate on symmetric accuracy for the MMVP dataset, and scores on MME perception and
MME cognition, when fine-tuning LLaVA-1.5 on our expanded VH test cases. The red horizontal lines represent
the performance of LLaVA-1.5 before fine-tuning.

Table C: Details of MLLMs.
MLLM Vision Encoder Connector LLM

LLaVA-1.5 (Liu et al., 2023) CLIP-ViT-L/14 (Radford et al., 2021) 2-layer MLP Llama2-7B (Touvron et al., 2023)

InstructBLIP (Dai et al., 2023) EVA-CLIP ViT-g/14 (Fang et al., 2023) Q-Former (Li et al., 2023a) Vicuna-7B (Chiang et al., 2023)

Qwen-VL-Chat (Bai et al., 2023b) OpenCLIP ViT-bigG (Ilharco et al., 2021) 1-layer Cross-Attention Qwen-7B (Bai et al., 2023a)

LLaVA-NEXT (Li et al., 2024a) CLIP-ViT-L/14 2-layer MLP Llama3-8B (AI@Meta, 2024)

LLaVA-OneVision (Li et al., 2024b) SigLIP ViT-SO400M/14 (Zhai et al., 2023) 2-layer MLP Qwen2-7B (Yang et al., 2024)

Cambrian-1 (Tong et al., 2024a)

CLIP ViT-L/14 Spatial Visual
Aggregator

(Tong et al., 2024a)
Llama3-8BSigLIP ViT-SO400M/14

OpenCLIP ConvNeXt-XXL (Liu et al., 2022)
DINOv2 ViT-L/14 (Oquab et al., 2023)

GPT-4o (OpenAI, 2024) - - -

Table D: # new successful VH test cases on the three datasets of different MLLMs before and after adversarial
image perturbations. We cannot perform adversarial image perturbations for Cambrian-1 because of our limited
GPU memory, and we do not have results for GPT-4o because it is closed-source.

(a) # New successful VH test cases on the MMVP dataset

Perturbation LLaVA-1.5 InstructBLIP Qwen-VL-Chat LLaVA-NeXT LLaVA-OneVision
I-FGSM 416 390 320 297 300

PGD 357 373 321 312 297

(b) # New successful VH test cases on VHTest dataset

Perturbation LLaVA-1.5 InstructBLIP Qwen-VL-Chat LLaVA-NeXT LLaVA-OneVision
I-FGSM 1,493 1,306 1,243 1,246 1,322

PGD 1,341 1,290 1,233 1,205 1,186

(c) # New successful VH test cases on POPE dataset

Perturbation LLaVA-1.5 InstructBLIP Qwen-VL-Chat LLaVA-NeXT LLaVA-OneVision
I-FGSM 7,588 8,627 10,340 5,453 4,717

PGD 10,246 8,414 10,029 5,296 2,940
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