

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SPECIAL UNITARY PARAMETERIZED ESTIMATORS OF ROTATION

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper revisits the topic of rotation estimation through the lens of special unitary matrices. We begin by reformulating Wahba’s problem using $SU(2)$ to derive multiple solutions that yield linear constraints on corresponding quaternion parameters. We then explore applications of these constraints by formulating efficient methods for related problems. Finally, from this theoretical foundation, we propose two novel continuous representations for learning rotations in neural networks. Extensive experiments validate the effectiveness of the proposed methods.

1 INTRODUCTION

3D rotations are fundamental objects ubiquitously encountered in domains such as physics, aerospace, and robotics. Many representations have been developed over the years to describe them including rotation matrices, Euler angles, and quaternions. Each method has specific strengths such as parameter efficiency, singularity avoidance, or interpretability. While special orthogonal matrices $SO(3)$ are widely used, their complex counterparts, special unitary matrices $SU(2)$, are less explored in areas like robotics and machine learning. This paper showcases the utility of special unitary matrices by tackling rotation estimation from different perspectives.

1.1 WAHBA’S PROBLEM

Wahba’s problem (Wahba, 1965) is a fundamental problem in attitude estimation. The task refers to the process of determining the orientation of a target coordinate frame relative to a reference coordinate frame based on 3D unit vector observations. More formally, it is phrased as seeking the optimal rotation matrix \mathbf{R} minimizing the following loss:

$$\min_{\mathbf{R} \in SO(3)} \sum_i w_i \|\mathbf{b}_i - \mathbf{R}\mathbf{a}_i\|^2 \quad (1)$$

where \mathbf{a}_i are the reference frame observations, \mathbf{b}_i are the corresponding target frame observations, and w_i are the real positive weights for each observation pair. The problem can be solved analytically by finding the nearest special orthogonal matrix (in a Frobenius sense) to the matrix \mathbf{B} below:

$$\mathbf{B} = \sum_i w_i \mathbf{b}_i \mathbf{a}_i^T \quad (2)$$

Today, this solution is typically computed via singular value decomposition (Markley, 1987).

Alternatively, the solution can be estimated as a unit quaternion. Davenport (1968) introduced the first such method in 1968 by showing that the optimal quaternion \mathbf{q} is the eigenvector corresponding to the largest eigenvalue of a 4x4 symmetric gain matrix \mathbf{K} , which can be constructed as:

$$\mathbf{K} = \begin{bmatrix} Tr(\mathbf{B}) & \mathbf{z}^T \\ \mathbf{z} & \mathbf{B}^T - Tr(\mathbf{B})\mathbf{I} \end{bmatrix} \quad (3)$$

054 where \mathbf{I} is the identity matrix, $Tr(\mathbf{B}) = \sum_i \mathbf{B}_{ii}$, and $\mathbf{z} = \sum_i w_i \mathbf{a}_i \times \mathbf{b}_i$. The solution via eigen-
 055 decomposition is relatively slow as it solves for all the eigenvectors of the matrix which are not
 056 needed. Later solutions improve upon this by calculating the characteristic equation of \mathbf{K} and solving
 057 for only the largest eigenvalue (Shuster and Oh, 1981; Mortari, 1997; Wu et al., 2018). For an
 058 overview of major algorithms, see Lourakis and Terzakis (2018).

060 1.2 REPRESENTATIONS FOR LEARNING ROTATIONS

061 In recent years, there has been great interest in representing rotations within neural networks, which
 062 often struggle with learning structured outputs. Directly predicting common parameterizations such
 063 as quaternions or Euler angles has generally performed relatively poorly (Geist et al., 2024). In fact,
 064 it was shown that any 3D rotation parameterization in less than five real dimensions is discontinuous,
 065 necessitating non-minimal representations for smooth learning (Zhou et al., 2019). Additionally,
 066 challenges like double cover in some representations can further hinder learning. Two leading
 067 approaches, Levinson et al. (2020) and Peretroukhin et al. (2020), essentially interpret network out-
 068 puts as \mathbf{B} and \mathbf{K} matrices (Eqs. (2) and (3) respectively), mapping them to rotations via solutions
 069 to Wahba’s problem. Thus, the two tasks can be linked. For a more in depth overview of the task,
 070 see Geist et al. (2024).

072 1.3 CONTRIBUTIONS

073 This paper establishes new theoretical results on rotation estimation by utilizing special unitary
 074 matrices within the framework of Wahba’s problem. We explore several applications of these results,
 075 with particular emphasis on our two novel representations for learning rotations in neural networks.

076 **We highly recommend the reader to first review Appendix A to become familiar with the
 077 relevant mathematical background and notation used throughout the paper.**

080 2 SOLUTIONS TO WAHBA’S PROBLEM VIA SU(2)

081 Transferring Wahba’s Problem to complex projective space, we can solve for the optimal rotation as
 082 a special unitary matrix.

085 2.1 STEREOGRAPHIC PLANE SOLUTION

086 First, we establish the proper distance metric in complex projective space corresponding to the
 087 spherical chordal metric in Eq. (1). For points $\mathbf{a}, \mathbf{b} \in S^2$ and their stereographic projections $\psi(\mathbf{a}) =$
 088 $\mathbf{z} = [z_1, z_2]^T$ and $\psi(\mathbf{b}) = \mathbf{p} = [p_1, p_2]^T$, we can show that the metric can be expressed in the
 089 following way (derivation in Appendix B.1.1):

$$091 \quad \|\mathbf{a} - \mathbf{b}\|^2 = \frac{4|z_1 p_2 - z_2 p_1|^2}{\|\mathbf{z}\|^2 \|\mathbf{p}\|^2} \quad (4)$$

092 We now seek to find the rotation \mathbf{R} parameterized by corresponding special unitary matrix \mathbf{U} in
 093 complex projective space that minimizes the objective in Eq. (1). Applying our derived metric and
 094 Eqs. (32) and (34), we can construct for each weighted input correspondence \mathbf{z}_i and \mathbf{p}_i :

$$095 \quad w_i \|\mathbf{b}_i - \mathbf{R}\mathbf{a}_i\|^2 = \frac{4w_i|(-\bar{\beta}z_{i,1} + \bar{\alpha}z_{i,2})p_{i,1} - (\alpha z_{i,1} + \beta z_{i,2})p_{i,2}|^2}{(|\alpha z_{i,1} + \beta z_{i,2}|^2 + |\bar{\beta}z_{i,1} + \bar{\alpha}z_{i,2}|^2) \|\mathbf{p}_i\|^2} \\ 096 \quad = \frac{4w_i|(-\bar{\beta}z_{i,1} + \bar{\alpha}z_{i,2})p_{i,1} - (\alpha z_{i,1} + \beta z_{i,2})p_{i,2}|^2}{\|\mathbf{U}\mathbf{z}_i\|^2 \|\mathbf{p}_i\|^2} \quad (5)$$

101 where α, β are the complex parameters defining \mathbf{U} from Eq. (31). By definition of unitary matrices,
 102 $\|\mathbf{U}\mathbf{z}\|^2 = \|\mathbf{z}\|^2$. Thus, we can rewrite our expression as the following target constraint:

$$103 \quad \frac{4w|(-\bar{\beta}z_{i,1} + \bar{\alpha}z_{i,2})p_{i,1} - (\alpha z_{i,1} + \beta z_{i,2})p_{i,2}|^2}{\|\mathbf{z}\|^2 \|\mathbf{p}\|^2} = 0 \quad (5)$$

$$104 \quad \Rightarrow \frac{2\sqrt{w}|(-\bar{\beta}z_{i,1} + \bar{\alpha}z_{i,2})p_{i,1} - (\alpha z_{i,1} + \beta z_{i,2})p_{i,2}|}{\sqrt{|z_{i,1}|^2 + |z_{i,2}|^2} \sqrt{|p_{i,1}|^2 + |p_{i,2}|^2}} = 0 \quad (6)$$

108 The expression is now just a linear function of rotation parameters. It is a general constraint as it
 109 handles the entire complex projective space (proof in Appendix B.1.2). However, in practice, our
 110 inputs are more commonly given as projection coordinates on the complex plane. As such, we have:
 111

$$z_{i,1} = z_i = x_i + y_i i, \quad p_{i,1} = p_i = m_i + n_i i, \quad z_{i,2} = p_{i,2} = 1$$

112 for each point correspondence $(x_i, y_i, m_i, n_i \in \mathbb{R})$. This simplifies the constraint to the following:
 113

$$\frac{2\sqrt{w_i}((- \bar{\beta}z_i + \bar{\alpha})p_i - \alpha z_i - \beta)}{\sqrt{|z_i|^2 + 1}\sqrt{|p_i|^2 + 1}} = 0 \quad (7)$$

116 We can rearrange the equation to the following linear form with $\mathbf{u} = [\alpha \quad \beta \quad \bar{\alpha} \quad \bar{\beta}]^T$:
 117

$$w'_i = \frac{4w_i}{(|z_i|^2 + 1)(|p_i|^2 + 1)} \quad (8)$$

$$\sqrt{w'_i} [-z_i \quad -1 \quad p_i \quad -p_i z_i] \mathbf{u} = \sqrt{w'_i} \mathbf{A}_i \mathbf{u} = 0 \quad (9)$$

120 Each input point pair gives us a complex constraint \mathbf{A}_i . Stacking \mathbf{A}_i together and multiplying the
 121 weights through, we can write the relation succinctly as $\mathbf{A}\mathbf{u} = 0$ (\mathbf{A} is a complex $n \times 4$ matrix for
 122 n points). With noisy observations, the constraints do not hold exactly, so we aim to find the best
 123 rotation that minimizes the least squares error $\|\mathbf{A}\mathbf{u}\|^2$. It is nontrivial to solve for the minimizing
 124 vector \mathbf{u} while ensuring the result will form a valid special unitary matrix ($\mathbf{u}_1 = \bar{\mathbf{u}}_3$, $\mathbf{u}_2 = \bar{\mathbf{u}}_4$,
 125 $\mathbf{u}_1 \bar{\mathbf{u}}_1 + \mathbf{u}_2 \bar{\mathbf{u}}_2 = 1$). To more effectively solve this, we use Eq. (35) to transform the vector \mathbf{u} to
 126 a corresponding quaternion $\mathbf{q} = [w_q \quad x_q \quad y_q \quad z_q]^T$ that has a simpler constraint (\mathbf{q} must be unit
 127 norm). We carry out the complex multiplication for each $\mathbf{A}_i \mathbf{u}$ and break the constraint into two
 128 constraints, one for the real and imaginary parts respectively:
 129

$$w'_i = \frac{4w_i}{(1 + x_i^2 + y_i^2)(1 + m_i^2 + n_i^2)} \quad (10)$$

$$\sqrt{w'_i} \begin{bmatrix} x_i - m_i & -y_i - n_i & 1 + m_i x_i - n_i y_i & m_i y_i + n_i x_i \\ y_i - n_i & x_i + m_i & m_i y_i + n_i x_i & 1 - m_i x_i + n_i y_i \end{bmatrix} \mathbf{q} = \sqrt{w'_i} \mathbf{D}_i \mathbf{q} = 0 \quad (11)$$

135 Multiplying the weights through again and stacking together \mathbf{D}_i for each correspondence into \mathbf{D}
 136 (real $2n \times 4$ matrix), we can arrive at the following constrained least squares objective:
 137

$$\begin{aligned} \|\mathbf{D}\mathbf{q}\|^2 &= \mathbf{q}^T \mathbf{D}^T \mathbf{D} \mathbf{q} = \mathbf{q}^T \left(\sum_i w'_i \mathbf{D}_i^T \mathbf{D}_i \right) \mathbf{q} = \mathbf{q}^T \mathbf{G}_P \mathbf{q} \\ &\min_{\mathbf{q}} \mathbf{q}^T \mathbf{G}_P \mathbf{q}, \text{ s.t. } \|\mathbf{q}\| = 1 \end{aligned} \quad (12)$$

141 The formulated objective in Eq. (12) is equivalent to the original problem statement, and the solution
 142 is well known as the eigenvector corresponding to the smallest eigenvalue of \mathbf{G}_P . Using Eq. (35)
 143 again, we can map \mathbf{q} back to a special unitary matrix \mathbf{U} giving a solution to the problem. Note that
 144 $-\mathbf{q}$ is also a solution since eigenvectors are only unique up to scale. However, the sign is irrelevant
 145 as \mathbf{q} and $-\mathbf{q}$ map to the same rotation due to the double cover of quaternions over $SO(3)$ in Eq. (36).
 146 For further theoretical details on this solution, see Appendix C.

147 2.2 APPROXIMATION VIA MÖBIUS TRANSFORMATIONS

149 We can approximate the previous solution in the complex domain by first estimating an optimal
 150 Möbius transformation \mathbf{M} and mapping it to a special unitary matrix. Relaxing the special unitary
 151 conditions in Eq. (9), we can treat \mathbf{u} as a flattened form of \mathbf{M} , leading to a modified constraint \mathbf{A}'_i
 152 that holds when \mathbf{M} aligns a stereographic point pair:
 153

$$\begin{aligned} \mathbf{m} &= \text{vec}(\mathbf{M}) = [\sigma \quad \xi \quad \gamma \quad \delta]^T \\ [-z_i \quad -1 \quad p_i z_i \quad p_i] \mathbf{m} &= \mathbf{A}'_i \mathbf{m} = 0 \end{aligned} \quad (13)$$

156 Note that Eq. (13) does not preserve the metric in Eq. (4) between p_i and transformed point $\Phi_{\mathbf{M}}(z_i)$.
 157 We can stack each \mathbf{A}'_i into matrix \mathbf{A}' ($n \times 4$ complex matrix) and similarly estimate the best (in a
 158 least squares sense) Möbius transformation aligning the points as:
 159

$$\begin{aligned} \mathbf{G}_M &= \mathbf{A}'^H \mathbf{A}' = \sum_i \mathbf{A}'_i^H \mathbf{A}'_i \\ \min_{\mathbf{m}} \mathbf{m}^H \mathbf{G}_M \mathbf{m} &\text{ s.t. } \|\mathbf{m}\| = 1 \end{aligned} \quad (14)$$

The constraint in Eq. (14) is necessary to prevent trivial solutions, but the choice of quadratic constraint on \mathbf{m} is arbitrary. With our constraint choice, the optimal \mathbf{m} is the complex eigenvector corresponding to the smallest eigenvalue of \mathbf{G}_M . Since \mathbf{G}_M is positive semidefinite and Hermitian ($\mathbf{G}_M^H = \mathbf{G}_M$) by construction, the eigenvalues are real and nonnegative, facilitating straightforward ordering. If $n < 4$, \mathbf{m} can be obtained directly from the kernel of \mathbf{A}' . Either way, the solution is not unique as eigenvectors and kernel vectors can be scaled arbitrarily, particularly by a phase $e^{i\theta}$. However, by Eq. (42), scaled Möbius transformations are equivalent, so our result properly defines the transformation.

Given \mathbf{m} , we can reshape it into \mathbf{M} and scale \mathbf{M} to $\mathbf{M}^* = \det(\mathbf{M})^{-\frac{1}{2}}\mathbf{M}$ (allowed since the scale of \mathbf{M} is arbitrary) so that $\det(\mathbf{M}^*) = 1$. It is known that the closest unitary matrix to \mathbf{M}^* in the Frobenius sense can be computed by $\mathbf{U}\mathbf{V}^H$ (Keller, 1975), where \mathbf{U} and \mathbf{V}^H are from the singular value decomposition $\mathbf{M}^* = \mathbf{U}\Sigma\mathbf{V}^H$. Since $\det(\mathbf{M}^*) = 1$, the nearest unitary matrix to \mathbf{M}^* is special unitary (proof in Appendix B.3.1) and in fact the approximate solution. Note that this matrix is not necessarily the nearest special unitary matrix to \mathbf{M} itself. By normalizing the determinant, we prevent the rotation mapping from being affected by arbitrary phase scalings of \mathbf{m} .

2.3 3D SPHERE SOLUTION

If our inputs are given as unit observations in 3D, we could project them by ψ and use the earlier solution. However, through Eqs. (37) and (38), we see that we can act directly on 3D vectors with special unitary matrices which suggests an alternative formulation. Upon examining the structure of the matrices that χ maps to, one can show that Eq. (1) can be equivalently expressed as:

$$\begin{aligned} \chi(\mathbf{a}_i) &\mapsto \mathbf{Z}_i, \quad \chi(\mathbf{b}_i) \mapsto \mathbf{P}_i \\ \sum_i w_i \|\mathbf{b}_i - \mathbf{R}\mathbf{a}_i\|^2 &= \frac{1}{2} \sum_i w_i \|\mathbf{P}_i - \mathbf{U}\mathbf{Z}_i\mathbf{U}^H\|_F^2 \end{aligned} \quad (15)$$

where $\|\cdot\|_F$ denotes the Frobenius norm and \mathbf{U} is the special unitary matrix that maps to \mathbf{R} . The Frobenius norm is unitarily invariant, so we may multiply the inside expression on the right by \mathbf{U} to obtain a new target objective and corresponding constraint:

$$\frac{1}{2} \sum_i w_i \|\mathbf{P}_i \mathbf{U} - \mathbf{U} \mathbf{Z}_i\|_F^2 = 0 \implies \sqrt{\frac{w_i}{2}} (\mathbf{P}_i \mathbf{U} - \mathbf{U} \mathbf{Z}_i) = 0 \quad (16)$$

We arrive at a linear constraint again via special unitary matrices. Inspecting the matrix within the Frobenius norm reveals that the loss contribution from the top row elements is identical to that of the bottom row elements. Consequently, we only need to compute the loss from a single row, allowing us to eliminate the factor of $\frac{1}{2}$ from equation Eq. (16). With $\mathbf{a}_i = (x_i, y_i, z_i)$ and $\mathbf{b}_i = (m_i, n_i, p_i)$, we can write the following complex constraint:

$$\sqrt{w_i} \begin{bmatrix} (m_i - x_i)i & y_i - z_i i & 0 & -n_i - p_i i \\ -y_i - z_i i & (x_i + m_i)i & n_i + p_i i & 0 \end{bmatrix} \mathbf{u} = \sqrt{w_i} \mathbf{C}_i \mathbf{u} = 0 \quad (17)$$

\mathbf{C}_i has a rank of at most 1 if \mathbf{a} and \mathbf{b} have the same magnitude. We reformulate the constraint, once again breaking the complex terms of \mathbf{u} into their real components. This yields the following linear constraint in terms of quaternion parameters:

$$\sqrt{w_i} \begin{bmatrix} 0 & x_i - m_i & y_i - n_i & z_i - p_i \\ m_i - x_i & 0 & -z_i - p_i & y_i + n_i \\ n_i - y_i & z_i + p_i & 0 & -x_i - m_i \\ p_i - z_i & -y_i - n_i & x_i + m_i & 0 \end{bmatrix} \mathbf{q} = \sqrt{w_i} \mathbf{Q}_i \mathbf{q} = 0 \quad (18)$$

Note that \mathbf{Q}_i is a 4x4 skew-symmetric matrix and has at most rank 2 if \mathbf{a} and \mathbf{b} have the same magnitude. As a result, our optimization now becomes:

$$\begin{aligned} \sum_i w_i \mathbf{Q}_i^T \mathbf{Q}_i &= - \sum_i w_i \mathbf{Q}_i^2 = \mathbf{G}_S \\ \min_{\mathbf{q}} \mathbf{q}^T \mathbf{G}_S \mathbf{q} \quad &\text{s.t. } \|\mathbf{q}\| = 1 \end{aligned} \quad (19)$$

The solution is once again the eigenvector corresponding to the smallest eigenvalue of \mathbf{G}_S .

216

3 OPTIMIZATION METHODS FROM LINEAR QUATERNION CONSTRAINTS

217

218 Our previous general solutions are notably distinct from other methods as they allow for the prin-
219 cipled construction of linear constraints (Eqs. (11) and (18)) on quaternion parameters. We discuss
220 some applications and desirable properties of these results.
221

222

3.1 RESIDUAL BASED OPTIMIZATION

223

224 While Wahba’s problem admits a direct solution, many related rotation estimation tasks require it-
225 erative methods. These often involve repeatedly evaluating per-observation losses for a candidate
226 quaternion. Examples include alternative loss functions like the absolute chordal metric (L_1 dis-
227 tance) or robust approaches such as iteratively reweighted least squares (IRLS). In these settings, our
228 linear constraints serve as a drop-in, efficient method for residual computation. The stereographic
229 formulation in Eq. (11) is especially appealing as it is far more compact (8 elements versus 12 for
230 Eq. (18)) while avoiding branching in construction, especially in the general case of Appendix C.2.
231

232

3.2 CONSTRAINED OPTIMIZATION

233

234 When the constraints for an observation pair hold exactly, our formulas yield a convenient analytical
235 characterization of all rotations that align the pair. A practical use case for this is rotation estimation
236 with an axis prior (e.g. a gravity vector measurement from an IMU). Traditional methods rely on
237 sequential rotations or intermediate coordinate frames to simplify the problem (Magner and Zee,
238 2018; Chandrasekhar, 2024). In contrast, because both Eqs. (11) and (18) reduce to rank 2 in this
239 setting, we can linearly express two quaternion parameters in terms of the other two and solve
240 directly and efficiently in a reduced space, eliminating the need for intermediate frames.
241

242

3.3 TWO-POINT CASE FOR WAHBA’S PROBLEM

243

244 More generally speaking, when the constraints hold exactly for one or more observation pairs (i.e.
245 noiseless scenarios), we can obtain the solution from the kernel of those constraints in closed-form.
246 For example, with two noiseless 3D sphere observation pairs, the aligning rotation can be given by:
247

248
$$\tilde{\mathbf{q}} = \begin{bmatrix} (\mathbf{a}_1 + \mathbf{b}_1) \cdot (\mathbf{a}_2 - \mathbf{b}_2) \\ (\mathbf{a}_1 - \mathbf{b}_1) \times (\mathbf{a}_2 - \mathbf{b}_2) \end{bmatrix} \quad (20)$$
249

250 where $\tilde{\mathbf{q}}$ denotes the unnormalized form of rotation \mathbf{q} . Appendix D describes our methods to robustly
251 and efficiently construct these rotations of exact alignment. These simple kernel formulations are
252 key to enabling our solutions to the case of Wahba’s problem when $n = 2$.
253

254 **Weighted** Wahba’s problem for the two-point case is well known to have closed-form expres-
255 sions (Shuster and Oh, 1981; Mortari, 1997; Markley, 2002). We propose an alternate solution
256 which is given by the weighted average of the two (unnormalized) rotations that each noiselessly
257 align the cross products of the reference and target sets, along with one of the two corresponding
258 observation pairs (proof in Appendix B.4.1). Using the average rotation definition from Markley
259 et al. (2007) (i.e. in Frobenius sense for $SO(3)$), the solution is:
260

261
$$\mathbf{n}_1 = \mathbf{a}_1 \times \mathbf{a}_2, \quad \mathbf{n}_2 = \sqrt{\frac{||\mathbf{a}_1 \times \mathbf{a}_2||^2}{||\mathbf{b}_1 \times \mathbf{b}_2||^2}} (\mathbf{b}_1 \times \mathbf{b}_2), \quad \tilde{\mathbf{q}}_i = \begin{bmatrix} (\mathbf{a}_i + \mathbf{b}_i) \cdot (\mathbf{n}_1 - \mathbf{n}_2) \\ (\mathbf{a}_i - \mathbf{b}_i) \times (\mathbf{n}_1 - \mathbf{n}_2) \end{bmatrix}$$
262
$$\tau = (w_1 - w_2) ||\tilde{\mathbf{q}}_1||^2 ||\tilde{\mathbf{q}}_2||^2, \quad \omega = 2w_1 ||\tilde{\mathbf{q}}_2||^2 (\tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2)$$
263
$$\nu = 2w_2 ||\tilde{\mathbf{q}}_1||^2 (\tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2), \quad \mu = \tau + \sqrt{\tau^2 + \omega\nu}$$
264
$$\mathbf{q} = \frac{\mu\tilde{\mathbf{q}}_1 + \nu\tilde{\mathbf{q}}_2}{\sqrt{||\tilde{\mathbf{q}}_1||^2\mu^2 + ||\tilde{\mathbf{q}}_2||^2\nu^2 + 2(\tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2)\mu\nu}} \quad (21)$$
265

266 where $\tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2$ denotes the usual vector dot product between $\tilde{\mathbf{q}}_1$ and $\tilde{\mathbf{q}}_2$. See Appendix B.4.3 for
267 derivation and additional details.
268

Figure 1: (a)-(b) Illustration of difference between Gram-Schmidt and 2-vec in 2D. b_x , b_y are predicted axes directions from the model, and R_x , R_y are the orthogonalized coordinate axes from each mapping. Gram-Schmidt favors b_x , aligning R_x with it greedily while 2-vec uses b_x , b_y in a balanced way. (c)-(d) Conceptual illustration of QCQP, SVD, and QuadMobius maps in context of Wahba’s problem in 3D. QCQP/SVD can be interpreted as direct projection of target points (red) to an orthogonal frame. QuadMobius first maps those points to an intermediate representation—a Möbius transformation, defined by three points (blue)—before projecting to an $SU(2)$ rotation.

Unweighted In the case of $w_1 = w_2$, the optimal rotation simplifies to the rotation which exactly aligns $\mathbf{a}_1 + \mathbf{a}_2$ to $\mathbf{b}_1 + \mathbf{b}_2$ and $\mathbf{a}_1 - \mathbf{a}_2$ to $\mathbf{b}_1 - \mathbf{b}_2$ (proof in Appendix B.4.2). This is given by:

$$\begin{aligned} \mathbf{s}_1 &= \mathbf{a}_1 + \mathbf{a}_2, & \mathbf{s}_2 &= \sqrt{\frac{1 + \mathbf{a}_1 \cdot \mathbf{a}_2}{1 + \mathbf{b}_1 \cdot \mathbf{b}_2}} (\mathbf{b}_1 + \mathbf{b}_2) \\ \mathbf{d}_1 &= \mathbf{a}_1 - \mathbf{a}_2, & \mathbf{d}_2 &= \sqrt{\frac{1 - \mathbf{a}_1 \cdot \mathbf{a}_2}{1 - \mathbf{b}_1 \cdot \mathbf{b}_2}} (\mathbf{b}_1 - \mathbf{b}_2) \\ \tilde{\mathbf{q}} &= \begin{bmatrix} (\mathbf{s}_1 + \mathbf{s}_2) \cdot (\mathbf{d}_1 - \mathbf{d}_2) \\ (\mathbf{s}_1 - \mathbf{s}_2) \times (\mathbf{d}_1 - \mathbf{d}_2) \end{bmatrix} \end{aligned} \quad (22)$$

The aligning rotation formulas are given in the form of equation Eq. (20) for simplicity, but in practice we use the approach described in Appendix D.2 for robustness. In that case, singular cases only arise when $\mathbf{a}_1 \times \mathbf{a}_2 = 0$ or $\mathbf{b}_1 \times \mathbf{b}_2 = 0$ where no unique solution exists, and a particular one may be obtained via the special unitary constraints in equation Eq. (17) (see Appendix B.4.4). Notably, the two solutions above are optimal in the sense of Wahba’s problem and simplified compared to existing two-point methods, especially for the unweighted case (see Table 5).

An example use case of these methods is estimating the orientation of a camera given an image of a rectangle. Under a pinhole camera model, the image of a 3D rectangle adheres to the rules of perspective geometry. Since the rectangle’s opposite edges are parallel in 3D, their projections in the image converge at vanishing points that represent the direction of these lines in the camera’s frame. Because the two sets of parallel edges in the rectangle are orthogonal in 3D, the corresponding vanishing points should also be orthogonal. However, due to measurement noise, this orthogonality is often violated. Our two point solutions can recover the best estimate of the camera’s orientation in these cases.

4 REPRESENTATIONS FOR LEARNING ROTATIONS

Based on previous formulations, we introduce two higher-dimensional representations for learning rotations. See Appendix B.2 for derivation details and Appendix F for further theoretical support of both representations.

2-vec The first is based on our formula for the optimal rotation from two unweighted observations and is denoted 2-vec. Similar to the Gram-Schmidt map in Zhou et al. (2019), 2-vec interprets a 6D output vector from a model as target 3D x and y axes (denoted \mathbf{b}_x , \mathbf{b}_y). Unlike the Gram-Schmidt method which greedily orthogonalizes the two vectors by assuming the x -axis prediction is correct, 2-vec maps the two vectors to a rotation optimally in the sense of Wahba’s problem, balancing error from both axis predictions (Fig. 4). Eq. (22) could be used, but since the reference points are the x , y coordinate axes, we can instead obtain a rotation matrix in a simpler fashion through the same

324 principle:

$$\begin{aligned} 326 \quad \mathbf{b}'_y &= \frac{\|\mathbf{b}_x\|}{\|\mathbf{b}_y\|} \mathbf{b}_y, \quad \mathbf{b}^+ = \frac{\mathbf{b}_x + \mathbf{b}'_y}{\|\mathbf{b}_x + \mathbf{b}'_y\|}, \quad \mathbf{b}^- = \frac{\mathbf{b}_x - \mathbf{b}'_y}{\|\mathbf{b}_x - \mathbf{b}'_y\|} \\ 327 \quad \mathbf{R} &= \left[\frac{1}{\sqrt{2}}(\mathbf{b}^+ + \mathbf{b}^-), \frac{1}{\sqrt{2}}(\mathbf{b}^+ - \mathbf{b}^-), \mathbf{b}^- \times \mathbf{b}^+ \right] \in SO(3) \end{aligned} \quad (23)$$

330 This method has a similar singular region and computational complexity as that of Gram-Schmidt.

332 **QuadMöbius** A second parameterization is based on the approximation from Section 2.2 involving
 333 Möbius transformations. Taking inspiration from the approach in Peretroukhin et al. (2020), a
 334 (real) 16D network output $\Theta = \{\theta_i : i = 1 \dots 16\}$ is arranged into the unique complex elements of
 335 \mathbf{G}_M as below:

$$\mathbf{G}_M(\Theta) = \begin{bmatrix} \theta_1 & \theta_2 + \theta_3i & \theta_4 + \theta_5i & \theta_6 + \theta_7i \\ \theta_2 - \theta_3i & \theta_8 & \theta_9 + \theta_{10}i & \theta_{11} + \theta_{12}i \\ \theta_4 - \theta_5i & \theta_9 - \theta_{10}i & \theta_{13} & \theta_{14} + \theta_{15}i \\ \theta_6 - \theta_7i & \theta_{11} - \theta_{12}i & \theta_{14} - \theta_{15}i & \theta_{16} \end{bmatrix} \quad (24)$$

341 $\mathbf{G}_M(\Theta)$ is Hermitian with real (and assumed distinct) eigenvalues where we can select the eigen-
 342 vector \mathbf{m} corresponding to its smallest eigenvalue. After reshaping \mathbf{m} to a Möbius transformation
 343 \mathbf{M} , we can map to a rotation by the approximation procedure in Section 2.2. The procedure can be
 344 performed via singular value decomposition ($\mathbf{M} = \mathbf{U}\Sigma\mathbf{V}^H$) to obtain a special unitary matrix \mathbf{Q} :

$$\mathbf{Q} = \sqrt{\det(\mathbf{U}\mathbf{V}^H)} \mathbf{U}\mathbf{V}^H \in SU(2) \quad (25)$$

347 Alternatively, we can algebraically solve for \mathbf{Q} as follows:

$$\begin{aligned} 349 \quad \mathbf{M}^* &= \sqrt{\frac{\det(\mathbf{M})}{|\det(\mathbf{M})|(2|\det(\mathbf{M})| + \text{Tr}(\mathbf{M}^H\mathbf{M}))}} \mathbf{M} \\ 350 \quad \mathbf{Q} &= \mathbf{M}^* + \text{adj}(\mathbf{M}^*)^H \in SU(2) \end{aligned} \quad (26)$$

353 where $\text{Tr}(\cdot)$ denotes the trace and $\text{adj}(\cdot)$ denotes the adjugate. In both cases, \mathbf{Q} is mapped to a
 354 quaternion via Eqs. (35) and (45), and \mathbf{M} is assumed to be nonsingular. We denote the SVD method
 355 **QuadMöbiusSVD** and the algebraic method **QuadMöbiusAlg**. With these maps and our assump-
 356 tions (observed valid in practice), we define a full mapping from Θ to \mathbf{q} that has a defined numerical
 357 derivative for backpropagation (see Appendix E for derivative formulas). We remark that this map
 358 is motivated by ideas from Levinson et al. (2020) and Peretroukhin et al. (2020), inheriting many of
 359 their properties (e.g. interpretation as Bingham belief (Kent, 1994), differentiability (Magnus, 1985;
 360 Wan and Zhang, 2019)) while offering a potentially more flexible (higher-dimensional, complex)
 361 learning representation.

363 5 EXPERIMENTS

365 5.1 WAHBA'S PROBLEM

367 Synthetic experiments are performed to validate the proposed methods for Wahba's problem. For
 368 each trial, a ground truth quaternion rotation \mathbf{q}_{gt} is randomly sampled from S^3 , and n reference
 369 points are randomly sampled from S^2 . The reference points are rotated by \mathbf{q}_{gt} to obtain target ob-
 370 servations. Gaussian noise is added to each component of each target observation, and the target
 371 observations are subsequently re-normalized afterward. Weights are randomly sampled between 0
 372 and 1. Accuracy is measured by the angular distance $\theta_{err} = \cos^{-1}(2(\mathbf{q}_{est} \cdot \mathbf{q}_{gt})^2 - 1)$ in de-
 373 grees between the estimated rotation \mathbf{q}_{est} and \mathbf{q}_{gt} , where (\cdot, \cdot) denotes the usual vector dot product.
 374 Numerical results shown in Appendix.

375 We first test our solutions to Wahba's problem for both 3D and stereographic inputs (Eqs. (12)
 376 and (19)). The input for the latter is created by projecting the 3D points by ψ . We also test the
 377 approximate solution in Section 2.2. The solutions to all three are obtained by eigendecomposition
 using Jacobi's eigenvalue algorithm. For validation, we compare against several quaternion solvers

378 introduced over the past decades. For the two-point case, we also compare against the closed-form
 379 solutions in Markley (2002) and Shuster and Oh (1981). All solutions were reimplemented and
 380 optimized similarly in C++17 and compiled with the flag `-O3`. We perform one million trials for
 381 each configuration.

382 Table 4 confirms that our optimal solvers match the results of Davenport’s Q-method in the general
 383 case. In contrast, our Möbius approximation demonstrates a sensitivity to noise (potentially a benefit
 384 in the learning context of next section). We note that this approximation could likely be improved
 385 with a normalization step common in real homography estimation (Hartley and Zisserman, 2004).
 386

387 Table 5 similarly confirms that our two-point methods achieve the same optimal results as existing
 388 solvers. By utilizing unnormalized rotations, our weighted algorithm minimizes normalization costs,
 389 streamlining the compute. Most notably, in the unweighted case, our tailored solution only requires
 390 roughly a third of the multiplications of other methods, marking a significant gain in efficiency.

	Chair				Sofa				Toilet			
	Mean	Med.	Acc ₅	Acc ₁₀	Mean	Med.	Acc ₅	Acc ₁₀	Mean	Med.	Acc ₅	Acc ₁₀
Euler	21.479	10.777	0.129	0.457	22.033	9.462	0.153	0.529	14.495	8.375	0.197	0.604
Quat	23.640	12.664	0.083	0.350	23.426	10.778	0.128	0.452	14.959	9.913	0.128	0.511
GS	13.606	6.320	0.350	0.738	15.015	<u>5.469</u>	<u>0.441</u>	0.801	6.586	3.708	0.682	0.915
QCQP	13.131	5.786	0.416	0.773	13.916	5.476	0.436	0.795	6.070	3.452	0.730	0.929
SVD	13.061	5.815	0.412	0.773	14.967	5.812	0.406	0.774	6.135	3.502	0.710	0.930
2-vec	12.544	6.100	0.380	0.751	15.077	6.217	0.364	0.753	6.069	3.483	0.713	0.926
QMAlg	12.604	5.696	0.425	0.783	14.336	5.657	0.419	0.793	6.079	3.590	0.714	0.930
QMSVD	13.157	6.211	0.366	0.748	13.683	5.421	0.443	0.799	6.026	3.601	0.699	0.926

401
 402 Table 1: θ_{err} mean/median and accuracy (subscript indicates threshold) on 3D shape alignment for
 403 different ModelNet10-SO3 categories (Liao et al., 2019). Bold indicates best, underline indicates
 404 second best.

407 5.2 LEARNING EXPERIMENTS

409 We conduct several experiments to evaluate our proposed rotation representations. The primary
 410 loss function is the squared Frobenius norm $\|\mathbf{R}_{pred} - \mathbf{R}_{gt}\|_F^2$, which we refer to as **Chordal**
 411 **L2**, where \mathbf{R}_{pred} is the predicted rotation and \mathbf{R}_{gt} is the ground truth. For quaternion outputs,
 412 Chordal L2 is computed same as Peretroukhin et al. (2020). We compare our representations—**2-**
 413 **vec**, QuadMobiusAlg (**QMAlg**), and QuadMobiusSVD (**QMSVD**)—against several baselines: **Eu-**
 414 **ler** angles (Tait-Bryan YXZ), **Quat** (quaternion), **GS** (Gram-Schmidt) (Zhou et al., 2019), **QCQP**
 415 (Peretroukhin et al., 2020), and **SVD** (Levinson et al., 2020). In both QuadMobius variants, we use
 416 the algebraic method in the forward pass to avoid SVD computation and isolate differences to the
 417 backward pass. This section presents results on three public benchmarks. Additional synthetic ex-
 418 periments exploring different learning conditions are included in Appendix G.2.2, and full training
 419 details are provided in Appendix G.1.

420 **ModelNet10-SO3** We first evaluate the representations on the 3D shape alignment task from Liao
 421 et al. (2019) using the ModelNet10-SO3 dataset. This dataset comprises of images of 3D CAD
 422 models under uniformly sampled rotations with multiple object models per category. The task is to
 423 predict the object’s orientation directly from its image. Table 1 reports the results on three object
 424 categories, chosen for their low rotational symmetry following the choice in Levinson et al. (2020).
 425

426 **Inverse Kinematics** Next, we test the representations on an unsupervised learning task, applying
 427 them to the inverse kinematics task from Zhou et al. (2019). Given 3D human pose joint locations
 428 (from real-world motion capture data), a network predicts the joint orientations relative to a reference
 429 pose and uses a fixed forward kinematics function to obtain predicted joint locations. The distance
 430 loss is applied between the predicted and given joint locations. In this task, the rotations are used as
 431 implicit representations through which the gradients must flow rather than direct prediction targets.
 Fig. 2 compares the results of the different learning representations on this task.

Figure 2: Results of unsupervised learning for Inverse Kinematics task (Zhou et al., 2019). Left: Mean and percentile L2 distance error (cm) of predicted joint locations. Bold indicates best, underline indicates second best. Right: Ratios of joint errors relative to QMSVD across error percentiles (Euler/Quat omitted due to large ratios).

Camera Pose Estimation Finally, we replicate the experiment from Walch et al. (2017) which utilizes an LSTM to directly regress a camera’s pose from real world images. Training requires simultaneously optimizing over both the camera’s orientation and translation. Data comes from the Cambridge Landmarks dataset (Kendall et al., 2015) which includes labels estimated from traditional structure from motion pipelines. The results are seen in Table 2 from training on select scenes, following the choice of Chen et al. (2022).

Results Overall, the proposed representations demonstrated strong performance and versatility across the three benchmark tasks. Despite its lower dimensionality, 2-vec proved competitive, occasionally achieving the best result. Notably, it typically outperforms Gram-Schmidt, positioning itself as an attractive alternative. The QuadMobius approaches showed their potential by achieving the top result in nearly all experiments over favorites like SVD and QCQP.

	King’s College				Shop Facade				Old Hospital			
	Mean	25 th	50 th	75 th	Mean	25 th	50 th	75 th	Mean	25 th	50 th	75 th
Euler	4.192	2.403	3.684	5.509	6.826	4.129	6.050	9.305	4.748	2.204	3.247	6.162
Quat	2.759	<u>1.367</u>	2.251	3.499	6.604	3.762	<u>5.339</u>	<u>8.153</u>	4.570	2.486	3.377	<u>5.546</u>
GS	3.298	1.764	2.583	4.137	<u>6.559</u>	4.376	5.660	8.343	<u>4.295</u>	1.897	<u>3.070</u>	5.698
QCQP	3.204	1.540	2.537	4.129	6.802	3.901	5.797	8.539	4.454	2.156	3.304	6.267
SVD	3.292	1.589	2.624	4.110	7.117	4.157	5.647	8.370	4.574	2.420	3.485	5.961
2-vec	3.085	1.536	2.371	4.014	7.118	<u>3.789</u>	5.762	8.957	4.294	2.085	2.950	5.292
QMAlg	2.631	<u>1.337</u>	2.052	3.267	6.317	4.050	5.268	7.758	4.426	<u>2.035</u>	3.238	5.640
QMSVD	<u>2.706</u>	1.391	<u>2.177</u>	<u>3.345</u>	6.715	4.074	5.710	8.947	4.409	<u>2.077</u>	3.146	5.744

Table 2: Mean and percentile θ_{err} of predicted rotations from direct pose prediction on different scenes in Cambridge Landmarks Dataset (Kendall et al., 2015). Bold indicates best, underline indicates second best.

6 CONCLUSION

This paper demonstrated the utility of special unitary matrices for rotation estimation. Several new formulas and algorithms were presented from this perspective for the real and complex domains, tackling Wahba’s problem and rotation representations in neural networks. Various experiments confirmed the potential of these approaches. Future work may include further solidifying the theoretical and empirical foundations of our rotation representations and applying special unitary matrices to other tasks such as analytical camera pose estimation.

486 REFERENCES
487

488 Jose Agustin Barrachina, Chengfang Ren, Gilles Vieillard, Christele Morisseau, and Jean-Philippe
489 Ovarlez. Theory and implementation of complex-valued neural networks, 2023.

490 Akshay Chandrasekhar. PoseGravity: Pose estimation from points and lines with axis prior. 2024.

491

492 Jiayi Chen, Yingda Yin, Tolga Birdal, Baoquan Chen, Leonidas J Guibas, and He Wang. Projective
493 manifold gradient layer for deep rotation regression. In *Proceedings of the IEEE/CVF Conference*
494 *on Computer Vision and Pattern Recognition*, pages 6646–6655, 2022.

495 Daniel Choukroun. Novel results on quaternion modeling and estimation from vector observations.
496 In *AIAA Guidance, Navigation, and Control Conference*, 2009.

497

498 Paul B. Davenport. A vector approach to the algebra of rotations with applications. 1968.

499 Andreas Geist, Jonas Frey, Mikel Zobro, Anna Levina, and Georg Martius. Learning with 3d
500 rotations, a hitchhiker’s guide to $so(3)$, 2024.

501

502 R. I. Hartley and A. Zisserman. *Multiple View Geometry in Computer Vision*. Second edition, 2004.

503 Joseph B. Keller. Closest unitary, orthogonal and hermitian operators to a given operator. *Mathe-*
504 *matics Magazine*, 48(4):192–197, 1975.

505

506 Alex Kendall, Matthew Grimes, and Roberto Cipolla. Research data supporting “posenet: A con-
507 volutional network for real-time 6-dof camera relocalization”, 2015. Dataset, King’s College,
508 University of Cambridge.

509

510 John T. Kent. The complex bingham distribution and shape analysis. *Journal of the Royal Statistical*
511 *Society. Series B (Methodological)*, 56(2):285–299, 1994.

512 Jake Levinson, Carlos Esteves, Kefan Chen, Noah Snavely, Angjoo Kanazawa, Afshin Ros-
513 tamizadeh, and Ameesh Makadia. An analysis of svd for deep rotation estimation. 2020.

514 Shuai Liao, Efstratios Gavves, and Cees G. M. Snoek. Spherical regression: Learning viewpoints,
515 surface normals and 3d rotations on n-spheres. In *CVPR*, pages 9751–9759, 2019.

516

517 Xinyuan Liao. Complexnn: Complex neural network modules, 2023.

518 Manolis Lourakis and George Terzakis. Efficient absolute orientation revisited. 2018.

519

520 Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
521 efficient cnn architecture design. In *ECCV*, 2018.

522

523 Robert D. Magner and Robert E. Zee. Extending target tracking capabilities through trajectory and
524 momentum setpoint optimization. *32nd Annual AIAA/USU Conference on Small Satellites*, 2018

525

526 Jan R. Magnus. On differentiating eigenvalues and eigenvectors. *Econometric Theory*, 1:179 – 191,
527 1985.

528

529 F. Landis Markley. Fast quaternion attitude estimation from two vector measurements. *Journal of*
530 *Guidance, Control, and Dynamics*, 25(2):411–414, 2002.

531

532 F. Landis Markley, Yang Cheng, John L. Crassidis, and Yaakov Oshman. Averaging quaternions.
533 *Journal of Guidance, Control, and Dynamics*, 30(4):1193–1197, 2007.

534

535 Landis Markley. Attitude determination using vector observations and the singular value decompo-
536 sition. *J. Astronaut. Sci.*, 38, 1987.

537

538 Landis Markley. Attitude determination using two vector measurements. 1999.

539 D. Mortari. Esoq-2 single-point algorithm for fast optimal spacecraft attitude determination. 95,
1997.

D. Mortari, Landis Markley, and Puneet Singla. Optimal linear attitude estimator. *Journal of Guid-
ance, Control, and Dynamics - J G UID CONTROL DYNAM*, 30:1619–1627, 2007.

540 Caitong Peng and Daniel Choukroun. Singularity and error analysis of a simple quaternion estimator,
541 2024.

542

543 Valentin Peretroukhin, Matthew Giamou, W. Greene, David Rosen, Jonathan Kelly, and Nicholas
544 Roy. A smooth representation of belief over $so(3)$ for deep rotation learning with uncertainty.
545 2020.

546 M. D. Shuster and S. D. Oh. Three-axis attitude determination from vector observations. *Journal of*
547 *Guidance and Control*, 4(1):70–77, 1981.

548

549 Grace Wahba. A least squares estimate of satellite attitude. *SIAM Review*, 7(3):409–409, 1965.

550

551 Florian Walch, Caner Hazirbas, Laura Leal-Taixé, Torsten Sattler, Sebastian Hilsenbeck, and Daniel
552 Cremers. Image-based localization using lstms for structured feature correlation. In *ICCV*, 2017.

553

554 Zhou-Quan Wan and Shi-Xin Zhang. Automatic differentiation for complex valued svd. 2019.

555

556 Jin Wu, Zebo Zhou, Bin Gao, Rui Li, Yuhua Cheng, and Hassen Fourati. Fast linear quaternion
557 attitude estimator using vector observations. *IEEE Transactions on Automation Science and En-*
558 *gineering*, 15(1):307–319, 2018.

559

560 Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation
561 representations in neural networks. In *2019 IEEE/CVF Conference on Computer Vision and*
562 *Pattern Recognition (CVPR)*, pages 5738–5746, 2019.

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

Special Unitary Parameterized Estimators of Rotation

Appendix

A MATHEMATICAL BACKGROUND AND DEFINITIONS

The mathematical background for special unitary matrices and related concepts is briefly reviewed. The formulas are all established and generally known. A complex square matrix \mathbf{U} is defined as unitary if:

$$\mathbf{U}\mathbf{U}^H = \mathbf{U}^H\mathbf{U} = \mathbf{I}, \quad |\det(\mathbf{U})| = 1 \quad (27)$$

where H denotes the conjugate transpose, $|\cdot|$ denotes complex magnitude, and $\det(\cdot)$ denotes determinant. The matrix is *special unitary* if it has the additional restriction that $\det(\mathbf{U}) = 1$ exactly.

Stereographic projection ψ is an invertible mapping of the sphere $S^2 = \{(x_s, y_s, z_s) \mid x_s^2 + y_s^2 + z_s^2 = 1\}$ from the point $\mathbf{p}^* = (0, 0, -1)$ to the complex plane and is given by:

$$\psi_{\mathbb{C}}(\mathbf{a}) : \frac{x_s}{1+z_s} + \frac{y_s}{1+z_s}i = x_p + y_p i = z \quad (28)$$

$$\psi_{\mathbb{C}}^{-1}(z) : \left(\frac{2x_p}{1+x_p^2+y_p^2}, \frac{2y_p}{1+x_p^2+y_p^2}, \frac{1-x_p^2-y_p^2}{1+x_p^2+y_p^2} \right) \quad (29)$$

where $\mathbf{a} \in S^2$ and $z \in \mathbb{C}$. This projection is visualized in Fig. 3. Note that $\psi_{\mathbb{C}}$ is undefined when $\mathbf{a} = \mathbf{p}^*$. To overcome this, the map is extended to the complex projective space \mathbb{CP}^1 which includes the point at infinity so we can define $\psi_{\mathbb{CP}}(\mathbf{p}^*) = \infty$. The projection is now redefined below with equivalence relations:

$$\psi_{\mathbb{CP}}(\mathbf{a}) \mapsto \begin{cases} \begin{bmatrix} z \\ 1 \end{bmatrix} \sim \lambda \begin{bmatrix} z \\ 1 \end{bmatrix}, & \mathbf{a} \neq \mathbf{p}^* \\ \infty \sim \begin{bmatrix} \lambda \\ 0 \end{bmatrix}, & \mathbf{a} = \mathbf{p}^* \end{cases} \quad (30)$$

In this paper, our use of ψ generally refers to $\psi_{\mathbb{CP}}$. From the above definition, $\psi(\mathbf{a})$ can be arbitrarily scaled, and ψ bijectively maps the entire sphere to the complex projective space. Note that this mapping is not unique, particularly since choice of \mathbf{p}^* is arbitrary (any point on S^2 is valid). We will use the specific projection defined above for this paper as it is convenient for image processing.

A special unitary matrix $\mathbf{U} \in SU(2)$ can generally be written as:

$$\mathbf{U} = \begin{bmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{bmatrix} \quad (31)$$

$$\alpha\bar{\alpha} + \beta\bar{\beta} = 1, \quad \alpha, \beta \in \mathbb{C}$$

where the bar denotes complex conjugation. \mathbf{U} transforms a complex projective point $\mathbf{z} = [z_1, z_2]^T$ and complex plane point z by:

$$\mathbf{U} : \mathbf{z} \mapsto \mathbf{z}' = \mathbf{U}\mathbf{z} = \begin{bmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \quad (32)$$

$$\Phi_{\mathbf{U}} : z \mapsto z' = \frac{\alpha z + \beta}{-\bar{\beta}z + \bar{\alpha}}, \quad -\bar{\beta}z + \bar{\alpha} \neq 0 \quad (33)$$

These transformations are of importance as they act analogously to rotations of the unit sphere in \mathbb{R}^3 . Specifically, for a 3×3 rotation matrix $\mathbf{R} \in SO(3)$ that rotates a unit vector $\mathbf{v} \in S^2$ as $\mathbf{v}' = \mathbf{R}\mathbf{v}$, there exists some \mathbf{U} such that:

$$\mathbf{v}' \equiv (\psi^{-1} \circ \mathbf{U} \circ \psi)(\mathbf{v}) \quad (34)$$

648 The exact relationship between $SU(2)$ and $SO(3)$ is made clearer by their relationships with unit
 649 quaternions $\mathbf{q} \in \mathbb{H}$ which also act as rotations in \mathbb{R}^3 . The isomorphism between $SU(2)$ and unit
 650 quaternions is given as:

$$652 \quad \mathbf{q} = w_q + x_q i + y_q j + z_q k, \quad w_q^2 + x_q^2 + y_q^2 + z_q^2 = 1, \quad w_q, x_q, y_q, z_q \in \mathbb{R} \\ 653 \quad \alpha = w_q + x_q i, \quad \beta = y_q + z_q i \quad (35)$$

654 and the mapping of unit quaternions to special orthogonal matrices is given by:

$$656 \quad \mathbf{R}_{\mathbf{q}} = \begin{bmatrix} 1 - 2y_q^2 - 2z_q^2 & 2x_q y_q - 2w_q z_q & 2x_q z_q + 2w_q y_q \\ 657 \quad 2x_q y_q + 2w_q z_q & 1 - 2x_q^2 - 2z_q^2 & 2y_q z_q - 2w_q x_q \\ 658 \quad 2x_q z_q - 2w_q y_q & 2y_q z_q + 2w_q x_q & 1 - 2x_q^2 - 2y_q^2 \end{bmatrix} \quad (36)$$

660 Eq. (36) is the well-known 2-to-1 surjective mapping between quaternions and rotation matrices. By
 661 their isomorphism in Eq. (35), $SU(2)$ also has a similar surjective mapping with $SO(3)$, linking the
 662 three rotation representations. Note that the mapping given by Eq. (35) is not unique. Furthermore,
 663 special unitary matrices have the ability to act as rotations in \mathbb{R}^3 directly by first mapping points to
 664 2x2 complex matrices. For a point $\mathbf{x} = (x, y, z) \in \mathbb{R}^3$:

$$665 \quad \chi : \mathbf{x} \mapsto \mathbf{X} = \begin{bmatrix} xi & y + zi \\ -y + zi & -xi \end{bmatrix} \quad (37) \\ 666 \quad \chi(\mathbf{x}_1) \mapsto \mathbf{X}_1, \quad \chi(\mathbf{x}_2) \mapsto \mathbf{X}_2, \quad \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^3 \\ 667 \quad \mathbf{X}_2 = \mathbf{U} \mathbf{X}_1 \mathbf{U}^H, \quad \mathbf{U} \in SU(2) \quad (38)$$

668 Note if $\|\mathbf{x}\| = 1$, $\chi(\mathbf{x}) \in SU(2)$. Also note that the map χ is not uniquely defined either.

669 Relatedly, Möbius transformations are general 2x2 complex projective matrices, characterized sim-
 670 ilarly by:

$$671 \quad \mathbf{M} = \begin{bmatrix} \sigma & \xi \\ \gamma & \delta \end{bmatrix} \quad (39) \\ 672 \quad \det(\mathbf{M}) \neq 0, \quad \sigma, \xi, \gamma, \delta \in \mathbb{C} \\ 673 \quad \mathbf{M} : \mathbf{z} \mapsto \mathbf{z}' = \mathbf{M} \mathbf{z} = \begin{bmatrix} \sigma & \xi \\ \gamma & \delta \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \quad (40) \\ 674 \quad \Phi_{\mathbf{M}} : z \mapsto z' = \frac{\sigma z + \xi}{\gamma z + \delta}, \quad \gamma z + \delta \neq 0 \quad (41) \\ 675 \quad \mathbf{M} \sim \lambda \mathbf{M}, \quad \lambda \in \mathbb{C}, \quad \lambda \neq 0 \quad (42)$$

676 Möbius transformations conformally map the complex projective plane onto itself. They are
 677 uniquely determined (up to scale) by their action on three independent points, and $SU(2)$ elements
 678 constitute a subset of them.

679 B PROOFS AND DERIVATIONS

680 B.1 PROPER METRIC IN COMPLEX PROJECTIVE SPACE

681 B.1.1 DERIVATION OF METRIC

682 Complex projective rays are equivalent if they are linearly dependent. We can test this condition
 683 by setting up the following constraint on complex vectors $\mathbf{z} = [z_1, z_2]^T$ and $\mathbf{p} = [p_1, p_2]^T$ for
 684 $z_1, z_2, p_1, p_2 \in \mathbb{C}$:

$$685 \quad \det \left(\begin{bmatrix} z_1 & p_1 \\ z_2 & p_2 \end{bmatrix} \right) = z_1 p_2 - z_2 p_1 = 0$$

686 For vectors $\mathbf{a} = (x_s, y_s, z_s), \mathbf{b} = (m_s, n_s, p_s) \in S^2$ (assume $\mathbf{a} \neq \mathbf{p}^*, \mathbf{b} \neq \mathbf{p}^*$) whose projections
 687 via ψ (Eq. (30)) correspond to \mathbf{z} and \mathbf{p} respectively, we can show that testing the linear independence

702
703
704
705
706
707
708
709
710
711
712
713
714

715 Figure 3: Visualization of a stereographic projection from the sphere (S^2) to the complex plane. The
716 projection is performed by taking the line between p^* and each point and intersecting that line with
717 the plane through the equator. The point p^* itself is mathematically mapped to infinity.

718
719 of complex vectors is in fact related to the chordal distance on a sphere:
720

$$\begin{aligned} 721 \mathbf{z} &= \lambda_1 \begin{bmatrix} x_s + y_s i \\ 1 + z_s \end{bmatrix}, \quad \mathbf{p} = \lambda_2 \begin{bmatrix} m_s + n_s i \\ 1 + p_s \end{bmatrix}, \quad \lambda_1, \lambda_2 \in \mathbb{C}, \quad \lambda_1 \neq 0, \lambda_2 \neq 0 \\ 722 &\left| \det \begin{pmatrix} z_1 & z_2 \\ p_1 & p_2 \end{pmatrix} \right|^2 = |\lambda_1|^2 |\lambda_2|^2 |(1 + p_s)(x_s + y_s i) - (1 + z_s)(m_s + n_s i)|^2 \\ 723 &= |\lambda_1|^2 |\lambda_2|^2 ((1 + p_s)^2 (x_s^2 + y_s^2) + (1 + z_s)^2 (m_s^2 + n_s^2) - 2(1 + p_s)(1 + z_s)(x_s m_s + y_s n_s)) \\ 724 &= |\lambda_1|^2 |\lambda_2|^2 (1 + p_s)(1 + z_s)((1 + p_s)(1 - z_s) + (1 + z_s)(1 - p_s) - 2(x_s m_s + y_s n_s)) \\ 725 &= |\lambda_1|^2 |\lambda_2|^2 (1 + p_s)(1 + z_s)(2 - 2(x_s m_s + y_s n_s + z_s p_s)) \\ 726 &= |\lambda_1|^2 |\lambda_2|^2 (1 + p_s)(1 + z_s) \|\mathbf{a} - \mathbf{b}\|^2 \\ 727 &= |\lambda_1|^2 |\lambda_2|^2 (1 + p_s)(1 + z_s) \|\mathbf{a} - \mathbf{b}\|^2 \\ 728 &= |\lambda_1|^2 |\lambda_2|^2 (1 + p_s)(1 + z_s) \|\mathbf{a} - \mathbf{b}\|^2 \\ 729 &= |\lambda_1|^2 |\lambda_2|^2 (1 + p_s)(1 + z_s) \|\mathbf{a} - \mathbf{b}\|^2 \\ 730 &= |\lambda_1|^2 |\lambda_2|^2 (1 + p_s)(1 + z_s) \|\mathbf{a} - \mathbf{b}\|^2 \end{aligned}$$

731 Notice that $|\lambda_1|^2(1 + z_s) = \frac{|z_1|^2 + |z_2|^2}{2}$ and $|\lambda_2|^2(1 + p_s) = \frac{|p_1|^2 + |p_2|^2}{2}$. Substituting this into our
732 expression and rearranging, we arrive at the final expression for the equivalent distance metric in
733 complex projective space as:

$$734 \|\mathbf{a} - \mathbf{b}\|^2 = \frac{4|z_1 p_2 - z_2 p_1|^2}{(|z_1|^2 + |z_2|^2)(|p_1|^2 + |p_2|^2)}$$

735 The last substitution may seem unnecessary at first; however, this form is more useful as it generalizes
736 the metric to hold even when $\mathbf{a} = \mathbf{p}^*$ or $\mathbf{b} = \mathbf{p}^*$ (proof below). It also gives an intuitive
737 interpretation that the spherical chordal distance is related to a type of “cross product” magnitude
738 between the two projective rays’ unit directions.

740 B.1.2 PROOF OF METRIC FOR POINTS AT INFINITY

741 **Proposition 1** If $\mathbf{a} = \mathbf{p}^*$ or $\mathbf{b} = \mathbf{p}^*$ in Eq. (4), the proper metric is still valid.

742 *Proof* The squared distance between unit length points $\mathbf{a} = (x_s, y_s, z_s)$ and $\mathbf{b} = \mathbf{p}^* = (0, 0, -1)$ is:

$$743 \|\mathbf{a} - \mathbf{b}\|^2 = 2 - 2\mathbf{a}^T \mathbf{b} = 2(1 + z_s)$$

744 Using vectors $\mathbf{z} = \psi(\mathbf{a}) = \lambda_1[x_s + y_s i, 1 + z_s]^T$, $\mathbf{p} = \psi(\mathbf{p}^*) = [\lambda_2, 0]^T$ with nonzero $\lambda_1, \lambda_2 \in \mathbb{C}$
745 and $\mathbf{a} \neq \mathbf{p}^*$, we can calculate the same quantity via the formula in Eq. (4):

$$746 \frac{4|z_1 p_2 - z_2 p_1|^2}{\|\mathbf{z}\|^2 \|\mathbf{p}\|^2} = \frac{4|-\lambda_1 \lambda_2(1 + z_s)|^2}{2|\lambda_1|^2 |\lambda_2|^2 (1 + z_s)} = 2(1 + z_s)$$

747 thus showing that the two formulas yield the same quantity. It is easy to see that Eq. (4) is symmetric,
748 so the same result would hold if $\mathbf{a} = \mathbf{p}^*$ and $\mathbf{b} \neq \mathbf{p}^*$. If $\mathbf{a} = \mathbf{b} = \mathbf{p}^*$, we can see that $\|\mathbf{a} - \mathbf{b}\|^2$ is
749 clearly 0. At the same time, the numerator of Eq. (4) would be 0 while the denominator is nonzero as
750 the projective scalars $\lambda_i \neq 0$ for any valid complex projective point. Thus, both quantities are equal
751 in that case as well, so the formula gives the spherical chordal distance between any two points on
752 the sphere via their stereographic projections.

756 B.2 REPRESENTATION DERIVATIONS
757758 B.2.1 DERIVATION OF 2-VEC
759

760 For 3D vectors $\mathbf{b}_x, \mathbf{b}_y$ extracted from a model output representing predicted target x and y axes
761 respectively, we apply the method from Section 3.3 in the unweighted case to arrive at an optimal
762 rotation matrix (in the sense of Wahba’s problem). We assume $\mathbf{b}_x \times \mathbf{b}_y \neq 0$. First, \mathbf{b}_x and \mathbf{b}_y must
763 have the same norm for the method to be unweighted, so we transform \mathbf{b}_y via $\mathbf{b}'_y = \sqrt{\frac{\|\mathbf{b}_x\|^2}{\|\mathbf{b}_y\|^2}} \mathbf{b}_y$.
764 Since the reference points are constant ($\mathbf{a}_1 = (1, 0, 0), \mathbf{a}_2 = (0, 1, 0)$), we know that their normal-
765 ized sum and difference vectors are $\mathbf{a}^+ = \frac{1}{\sqrt{2}}(1, 1, 0), \mathbf{a}^- = \frac{1}{\sqrt{2}}(1, -1, 0)$. Similarly, we create
766 normalized sum and difference vectors for the target points as $\mathbf{b}^+ = \frac{\mathbf{b}_x + \mathbf{b}'_y}{\|\mathbf{b}_x + \mathbf{b}'_y\|}$ and $\mathbf{b}^- = \frac{\mathbf{b}_x - \mathbf{b}'_y}{\|\mathbf{b}_x - \mathbf{b}'_y\|}$.
767 The optimal rotation aligns \mathbf{a}^+ to \mathbf{b}^+ and \mathbf{a}^- to \mathbf{b}^- noiselessly. This can be achieved because all
768 the vectors have the same magnitude (normalizing to unit norm was found to be more stable than
769 matching magnitudes like \mathbf{b}'_y) and because the sum and difference vectors are always orthogonal.
770 Since rotation matrices naturally encode how an orthogonal coordinate frame transforms in their
771 columns, we can construct the aligning rotation by joining the two rotations \mathbf{R}_a and \mathbf{R}_b which ro-
772 late the coordinate frame to the reference sum/difference vectors and target sum/difference vectors
773 respectively:
774

$$\mathbf{R}_a = [\mathbf{a}^+, \mathbf{a}^-, \mathbf{a}^+ \times \mathbf{a}^-], \quad \mathbf{R}_b = [\mathbf{b}^+, \mathbf{b}^-, \mathbf{b}^+ \times \mathbf{b}^-]$$

$$\mathbf{R} = \mathbf{R}_b \mathbf{R}_a^T = \left[\frac{1}{\sqrt{2}}(\mathbf{b}^+ + \mathbf{b}^-), \frac{1}{\sqrt{2}}(\mathbf{b}^+ - \mathbf{b}^-), \mathbf{b}^- \times \mathbf{b}^+ \right]$$

775 Because the sum/difference vectors are orthogonal and have unit norm, $\mathbf{R}_a, \mathbf{R}_b, \mathbf{R} \in SO(3)$. Given
776 the natural representation of coordinate transformations in rotation matrices, using the rotation ma-
777 trix formulation was more appealing for the map than the quaternion formulation in Eq. (22). It
778 also provided a more direct comparison with the Gram-Schmidt map. Nonetheless, the core in-
779 sight was derived from the original linear constraints on quaternion parameters. The unweighted
780 method was chosen for its geometric and computational simplicity, but a weighted version of the
781 map incorporating the magnitudes of $\mathbf{b}_x, \mathbf{b}_y$ can be similarly formulated from Eq. (21).
782

783 B.2.2 DERIVATION OF QUADMOBIUS FORMULAS
784

785 Following the algorithm in Section 2.2, we normalize a 2x2 complex projective matrix \mathbf{M} by its
786 determinant and find the nearest unitary matrix, which by Appendix B.3.1 is special unitary. The
787 following are two different approaches to implement this. We assume \mathbf{M} has full rank.
788

789 **Linear Algebra** Instead of normalizing \mathbf{M} directly, we take a more streamlined approach by uti-
790 lizing the properties of polar decomposition and determinant. We express $\det(\mathbf{M})$ in polar form
791 as $re^{i\theta}$ with $r = |\det(\mathbf{M})| \in \mathbb{R}, r > 0$ and $e^{i\theta} = \frac{\det(\mathbf{M})}{|\det(\mathbf{M})|}$ lying on the unit circle. For polar
792 decomposition $\mathbf{M} = \mathbf{Q}\mathbf{P}$ with unitary matrix \mathbf{Q} and positive definite Hermitian matrix \mathbf{P} , we have
793 $\det(\mathbf{M}) = \det(\mathbf{Q})\det(\mathbf{P})$. Because \mathbf{Q} is unitary, $|\det(\mathbf{Q})| = 1$, and because \mathbf{P} is positive definite
794 Hermitian, $\det(\mathbf{P})$ is real and nonnegative. It follows then that $\det(\mathbf{Q}) = e^{i\theta}$ and $\det(\mathbf{P}) = r$.
795 To normalize \mathbf{M} , we typically multiply it by a nonzero scalar $\lambda \in \mathbb{C}$. For polar decomposition to
796 remain valid under this scaling, λ must distribute as $\lambda\mathbf{M} = \left(\frac{\lambda}{|\lambda|}\mathbf{Q}\right)(|\lambda|\mathbf{P})$, meaning that only the
797 phase of λ affects the unitary factor. Since the unitary factor \mathbf{Q} is the nearest unitary matrix to \mathbf{M}
798 in the Frobenius sense, the final solution is just $\frac{\lambda}{|\lambda|}\mathbf{Q}$ such that $\det(\frac{\lambda}{|\lambda|}\mathbf{Q}) = 1$ to be special unitary.
799 We can therefore reverse the order and first compute \mathbf{Q} before normalizing its determinant. We find
800 a scalar λ' such that $\det(\lambda'\mathbf{Q}) = \lambda'^2\det(\mathbf{Q}) = 1$ (since \mathbf{Q} is 2x2) for $|\lambda'| = 1$. We can easily solve
801 $\lambda' = \det(\mathbf{Q})^{-\frac{1}{2}}$. Since $\mathbf{Q} = \mathbf{U}\mathbf{V}^H$ from SVD ($\mathbf{M} = \mathbf{U}\Sigma\mathbf{V}^H$) and $|\det(\mathbf{Q})| = 1$, we can rewrite
802 our expression simply as $\sqrt{\det(\mathbf{U}\mathbf{V}^H)}\mathbf{U}\mathbf{V}^H$. If \mathbf{M} is singular, there is no unique solution as SVD
803 is no longer unique. This formula may still be used in practice with a specific SVD.
804

805 **Algebraic** First, we can normalize \mathbf{M} to $\mathbf{M}' = \det(\mathbf{M})^{-\frac{1}{2}}\mathbf{M}$ such that $\det(\mathbf{M}') = 1$. Next,
806 we can utilize the isomorphism between $SU(2)$ and quaternions in Eq. (35) to algebraically solve
807 for the nearest special unitary matrix. It’s easy to verify that the unitary matrix \mathbf{Q} that minimizes
808

the Frobenius distance to \mathbf{M}' maximizes $\Re(Tr(\mathbf{M}'^H \mathbf{Q}))$ where $\Re(\cdot)$ denotes the real part. From Appendix B.3.1, we know that \mathbf{Q} will be special unitary. Thus, we can express the optimization problem (using symbols from Eqs. (31) and (39)) as:

$$\begin{aligned} \max_{\mathbf{Q} \in SU(2)} \Re(Tr(\mathbf{M}'^H \mathbf{Q})) &= \Re(\bar{\sigma}\alpha + \bar{\xi}\beta + \bar{\delta}\alpha - \bar{\gamma}\beta) \\ &= \max_{\|\mathbf{q}\|=1} (\Re(\sigma) + \Re(\delta))w_q + (\Im(\sigma) - \Im(\delta))x_q + (\Re(\xi) - \Re(\gamma))y_q + (\Im(\xi) + \Im(\gamma))z_q \end{aligned}$$

for quaternion $\mathbf{q} = w_q + x_qi + y_qj + z_qk$ and $\Im(\cdot)$ denoting the imaginary part. For \mathbf{q} to be a valid rotation, it must have unit norm. Thus, the optimization problem can be rephrased as finding the unit norm vector whose dot product with the coefficients of the quaternion parameters above is maximized. The solution is trivially obtained by the unit norm vector in the direction of those coefficients. Using Eq. (35) again, we can express the solution as:

$$\begin{aligned} \tilde{\mathbf{q}} &= (\Re(\sigma) + \Re(\delta)) + (\Im(\sigma) - \Im(\delta))i + (\Re(\xi) - \Re(\gamma))j + (\Im(\xi) + \Im(\gamma))k \\ \tilde{\alpha} &= \sigma + \bar{\delta}, \quad \tilde{\beta} = \xi - \bar{\gamma} \\ \mathbf{Q} &\sim \mathbf{M}' + adj(\mathbf{M}')^H \end{aligned}$$

where tilde denotes unnormalized parameters and $adj(\cdot)$ denotes the adjugate. We can normalize the parameters by dividing $\tilde{\alpha}$ and $\tilde{\beta}$ by $\sqrt{|\tilde{\alpha}|^2 + |\tilde{\beta}|^2} = \sqrt{|\sigma + \bar{\delta}|^2 + |\xi - \bar{\gamma}|^2} = \sqrt{Tr(\mathbf{M}'^H \mathbf{M}') + 2\Re(\det(\mathbf{M}'))} = \sqrt{Tr(\mathbf{M}'^H \mathbf{M}') + 2}$. Since that factor is real and distributes linearly through $\tilde{\alpha}$ and $\tilde{\beta}$ to the elements of \mathbf{M}' , we can efficiently combine this normalization factor into the original normalization factor of $\det(\mathbf{M})^{-\frac{1}{2}}$ in the first step. The combined normalization factor can be written as:

$$\begin{aligned} \frac{1}{\sqrt{\det(\mathbf{M})}} \frac{1}{\sqrt{Tr(\mathbf{M}'^H \mathbf{M}') + 2}} &= \frac{1}{\sqrt{\det(\mathbf{M})}} \frac{1}{\sqrt{\frac{Tr(\mathbf{M}'^H \mathbf{M})}{|\det(\mathbf{M})|} + 2}} \\ &= \sqrt{\frac{|\det(\mathbf{M})|}{\det(\mathbf{M})(Tr(\mathbf{M}'^H \mathbf{M}) + 2|\det(\mathbf{M})|)}} = \sqrt{\frac{\det(\mathbf{M})}{|\det(\mathbf{M})|(Tr(\mathbf{M}'^H \mathbf{M}) + 2|\det(\mathbf{M})|)}} \end{aligned}$$

Applying this normalization factor to \mathbf{M} to obtain \mathbf{M}^* will ensure that $\mathbf{M}^* + adj(\mathbf{M}^*)^H \in SU(2)$.

B.3 NEAREST UNITARY MATRIX

B.3.1 PROOF OF NEAREST SPECIAL UNITARY MATRIX

Proposition 2 *If Möbius transformation \mathbf{M} has $\det(\mathbf{M}) = 1$, the nearest unitary matrix to \mathbf{M} in the Frobenius sense is special unitary.*

Proof \mathbf{M} has a singular value decomposition given as $\mathbf{M} = \mathbf{U}\Sigma\mathbf{V}^H$ where \mathbf{U} and \mathbf{V} are unitary matrices and Σ is a diagonal matrix with singular values. The determinant of \mathbf{M} can be expressed as:

$$\det(\mathbf{M}) = \det(\mathbf{U})\det(\Sigma)\det(\mathbf{V}^H) \quad (43)$$

by product rule of determinants. Multiplying both sides by their complex conjugates, we obtain:

$$|\det(\mathbf{M})|^2 = |\det(\mathbf{U})|^2|\det(\Sigma)|^2|\det(\mathbf{V}^H)|^2$$

Since \mathbf{U} and \mathbf{V}^H are unitary matrices, the magnitude of their determinant is 1, so the expression simplifies to:

$$|\det(\mathbf{M})|^2 = |\det(\Sigma)|^2 \implies |\det(\mathbf{M})| = |\det(\Sigma)|$$

because the determinant magnitudes are real and nonnegative. Since Σ is a diagonal matrix with real, nonnegative elements, its determinant is simply the product of its diagonal entries and is in turn real and nonnegative. If $\det(\mathbf{M}) = 1$, then $|\det(\Sigma)| = \det(\Sigma) = 1$. Coming back to the first expression, we can now write:

$$\det(\mathbf{M}) = \det(\mathbf{U})\det(\mathbf{V}^H) = \det(\mathbf{U}\mathbf{V}^H) = 1$$

864 It is known that closest unitary matrix to \mathbf{M} in the Frobenius sense is the unitary part of polar
 865 decomposition (Keller, 1975) which can be computed by $\mathbf{U}\mathbf{V}^H$. From above, we can see that
 866 $\det(\mathbf{U}\mathbf{V}^H) = 1$ which means that $\mathbf{U}\mathbf{V}^H$ is special unitary by definition.
 867

868 In noiseless situations, Σ is observed to be the identity matrix if $\det(\mathbf{M}) = 1$. As noise is added,
 869 the diagonal elements of Σ drift from 1, so Σ encodes a notion of how close a Möbius transfor-
 870 mation's action is to a rotation or how much noise the problem contains, making it a candidate for
 871 optimization.
 872

872 B.3.2 DERIVATION OF NEAREST UNITARY MATRIX DERIVATIVE

874 The nearest unitary matrix in the Frobenius sense to a complex square matrix \mathbf{M} is given by the
 875 unitary factor \mathbf{Q} of its polar decomposition $\mathbf{M} = \mathbf{Q}\mathbf{P}$ where \mathbf{P} is a positive semidefinite Hermitian
 876 matrix (Keller, 1975). We can find the derivative of \mathbf{Q} with respect to the elements of \mathbf{M} by taking
 877 the derivative of both sides of the polar decomposition:
 878

$$\begin{aligned} d\mathbf{M} &= d(\mathbf{Q}\mathbf{P}) \\ d\mathbf{M} &= (d\mathbf{Q})\mathbf{P} + \mathbf{Q}(d\mathbf{P}) \\ \mathbf{Q}^H(d\mathbf{M}) &= \mathbf{Q}^H(d\mathbf{Q})\mathbf{P} + d\mathbf{P} \end{aligned}$$

882 Taking the conjugate transpose of both sides and subtracting the two statements:
 883

$$\begin{aligned} (d\mathbf{M}^H)\mathbf{Q} &= \mathbf{P}^H(d\mathbf{Q}^H)\mathbf{Q} + d\mathbf{P}^H \\ \mathbf{Q}^H(d\mathbf{M}) - (d\mathbf{M}^H)\mathbf{Q} &= \mathbf{Q}^H(d\mathbf{Q})\mathbf{P} - \mathbf{P}^H(d\mathbf{Q}^H)\mathbf{Q} + (d\mathbf{P} - d\mathbf{P}^H) \end{aligned}$$

886 We observe that because \mathbf{P} is Hermitian for all values of \mathbf{M} , $d\mathbf{P}$ must also be Hermitian, so the last
 887 term cancels out. Furthermore, we can deduce the following from definition of unitary matrices:
 888

$$\begin{aligned} \mathbf{Q}^H\mathbf{Q} &= \mathbf{I} \\ (d\mathbf{Q}^H)\mathbf{Q} + \mathbf{Q}^H(d\mathbf{Q}) &= 0 \\ (d\mathbf{Q}^H)\mathbf{Q} &= -\mathbf{Q}^H(d\mathbf{Q}) \end{aligned}$$

893 implying that $(d\mathbf{Q}^H)\mathbf{Q}$ is skew-Hermitian. Denoting $\mathbf{X} = \mathbf{Q}^H(d\mathbf{Q})$ and $\mathbf{C} = \mathbf{Q}^H(d\mathbf{M}) -$
 894 $(d\mathbf{M}^H)\mathbf{Q}$, we can now write:
 895

$$\mathbf{C} = \mathbf{XP} + \mathbf{PX}$$

896 which takes the form of a Sylvester equation. Since \mathbf{P} is Hermitian, it admits a diagonalization
 897 $\mathbf{P} = \mathbf{Y}\Lambda\mathbf{Y}^H$, where \mathbf{Y} is unitary and Λ is a diagonal matrix of eigenvalues of \mathbf{P} :
 898

$$\begin{aligned} \mathbf{C} &= \mathbf{XY}\Lambda\mathbf{Y}^H + \mathbf{Y}\Lambda\mathbf{Y}^H\mathbf{X} \\ \mathbf{Y}^H\mathbf{C}\mathbf{Y} &= (\mathbf{Y}^H\mathbf{XY})\Lambda + \Lambda(\mathbf{Y}^H\mathbf{XY}) \end{aligned}$$

901 The right hand side has the same term $\mathbf{Y}^H\mathbf{XY}$ multiplied on the left and right respectively by
 902 diagonal matrix Λ . As such, we can equivalently express the result as follows in order to solve for
 903 \mathbf{X} and ultimately $d\mathbf{Q}$:
 904

$$\begin{aligned} \mathbf{Y}^H\mathbf{C}\mathbf{Y} &= (\text{diag}(\Lambda) \oplus \text{diag}(\Lambda)) \odot (\mathbf{Y}^H\mathbf{XY}) \\ \mathbf{Y}^H\mathbf{XY} &= \frac{\mathbf{Y}^H\mathbf{CY}}{\text{diag}(\Lambda) \oplus \text{diag}(\Lambda)} \\ \mathbf{X} &= \mathbf{Y} \left(\frac{\mathbf{Y}^H\mathbf{CY}}{\text{diag}(\Lambda) \oplus \text{diag}(\Lambda)} \right) \mathbf{Y}^H \\ d\mathbf{Q} &= \mathbf{Q}\mathbf{Y} \left(\frac{\mathbf{Y}^H(\mathbf{Q}^H(d\mathbf{M}) - (d\mathbf{M}^H)\mathbf{Q})\mathbf{Y}}{\text{diag}(\Lambda) \oplus \text{diag}(\Lambda)} \right) \mathbf{Y}^H \end{aligned}$$

913 where \oplus denotes an outer sum operation, \odot denotes Hadamard multiplication (element-wise), the
 914 division is Hadamard division (element-wise), and $\text{diag}(\cdot)$ is a vector formed from the diagonal
 915 elements of the matrix. Note that this solution is only properly defined if \mathbf{M} is nonsingular (i.e.
 916 Λ has full rank). Otherwise, the polar decomposition is not unique and neither is its derivative. In
 917 practice, we choose to replace any instances of division by 0 in the result above with multiplications
 by 0 as a specific solution.
 918

918 B.4 TWO-POINT SOLUTIONS
919920 B.4.1 PROOF OF WEIGHTED CASE
921

922 **Proposition 3** Let \mathbf{a}_i and \mathbf{b}_i represent the reference and target points respectively and $\mathbf{k}_a = \mathbf{a}_1 \times \mathbf{a}_2$
923 and $\mathbf{k}_b = \mathbf{b}_1 \times \mathbf{b}_2$. For $n = 2$ points, $\mathbf{k}_a \neq \mathbf{0}$, and $\mathbf{k}_b \neq \mathbf{0}$, the optimal rotation to Wahba's problem
924 is given as the weighted average (in the Frobenius sense) between two rotations \mathbf{R}_1 and \mathbf{R}_2 defined
925 by $\mathbf{R}_i \mathbf{a}_i = \mathbf{b}_i$ and $\mathbf{R}_i \frac{\mathbf{k}_a}{\|\mathbf{k}_a\|} = \frac{\mathbf{k}_b}{\|\mathbf{k}_b\|}$.

926 *Lemma: If all points lie in the plane $z=0$ and $\mathbf{k}_a \neq \mathbf{0}$, $\mathbf{k}_b \neq \mathbf{0}$, and $\mathbf{k}_a \cdot \mathbf{k}_b > 0$, the optimal rotation
927 is a rotation around the z -axis.*

928 Since all points lie in the plane $z = 0$, the last column and row of \mathbf{B} (Eq. (2)) are zero. As a
929 result, the last column and row of $\mathbf{B}\mathbf{B}^T$ and $\mathbf{B}^T\mathbf{B}$ are also zero, so they both have a kernel vector
930 of $(0, 0, 1)$. For the SVD of \mathbf{B} given as $\mathbf{U}\Sigma\mathbf{V}^T$, the optimal rotation \mathbf{R} (via Markley (1987)) can
931 take the form:

$$932 \mathbf{R} = \begin{bmatrix} \cdot & \cdot & 0 \\ \cdot & \cdot & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \det(\mathbf{U})\det(\mathbf{V}) \end{bmatrix} \begin{bmatrix} \cdot & \cdot & 0 \\ \cdot & \cdot & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

936 where $\det(\mathbf{U})\det(\mathbf{V})$ is either 1 or -1 since \mathbf{U} and \mathbf{V} are orthogonal matrices. Thus, the last column
937 and row of \mathbf{R} are both $(0, 0, 1)$ or $(0, 0, -1)$. In order for \mathbf{R} to be a valid rotation matrix, the
938 remaining upper 2×2 submatrix must be an orthogonal matrix which can be generated by a single
939 parameter θ . Furthermore, the sign of the bottom right corner element of \mathbf{R} must be the same as the
940 determinant of the upper 2×2 submatrix for $\det(\mathbf{R}) = 1$. These conditions reduce \mathbf{R} to one of the
941 two general forms:

$$942 \begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) & 0 \\ \sin(\theta_1) & \cos(\theta_1) & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} \cos(\theta_2) & \sin(\theta_2) & 0 \\ \sin(\theta_2) & -\cos(\theta_2) & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

945 We denote the former as \mathbf{R}_{SO} and the latter as \mathbf{R}_O . The optimal solution to Wahba's problem
946 maximizes the gain function $\text{Tr}(\mathbf{R}\mathbf{B}^T)$ Lourakis and Terzakis (2018). This quantity for both forms
947 can be expressed as below:

$$948 \text{Tr}(\mathbf{R}_{SO}\mathbf{B}^T) = \lambda_{1,1}\cos(\theta_1) + \lambda_{1,2}\sin(\theta_1)$$

$$949 \text{Tr}(\mathbf{R}_O\mathbf{B}^T) = \lambda_{2,1}\cos(\theta_2) + \lambda_{2,2}\sin(\theta_2)$$

$$950 \lambda_{1,1} = \mathbf{B}_{1,1} + \mathbf{B}_{2,2}, \quad \lambda_{1,2} = \mathbf{B}_{2,1} - \mathbf{B}_{1,2}$$

$$951 \lambda_{2,1} = \mathbf{B}_{1,1} - \mathbf{B}_{2,2}, \quad \lambda_{2,2} = \mathbf{B}_{2,1} + \mathbf{B}_{1,2}$$

954 The gain function in both cases is the dot product between $(\lambda_{i,1}, \lambda_{i,2})$ and $(\cos(\theta_i), \sin(\theta_i))$. Its
955 maximum value (subject to the constraint $\cos(\theta_i)^2 + \sin(\theta_i)^2 = 1$) is obtained by the unit vector
956 aligned with $(\lambda_{i,1}, \lambda_{i,2})$, i.e.:

$$957 \cos(\theta_i) = \frac{\lambda_{i,1}}{\sqrt{\lambda_{i,1}^2 + \lambda_{i,2}^2}}, \quad \sin(\theta_i) = \frac{\lambda_{i,2}}{\sqrt{\lambda_{i,1}^2 + \lambda_{i,2}^2}}$$

958 Substituting this back into the gain function, we see that the optimal value is simply the magnitude
959 of $(\lambda_{i,1}, \lambda_{i,2})$:

$$960 \text{Tr}(\mathbf{R}_{SO}\mathbf{B}^T) = \sqrt{\lambda_{1,1}^2 + \lambda_{1,2}^2}, \quad \text{Tr}(\mathbf{R}_O\mathbf{B}^T) = \sqrt{\lambda_{2,1}^2 + \lambda_{2,2}^2}$$

961 Since the square root function is monotonically increasing, the larger of the two radicands corre-
962 sponds to the larger gain value. We can compare them directly by taking their difference:

$$963 (\lambda_{1,1}^2 + \lambda_{1,2}^2) - (\lambda_{2,1}^2 + \lambda_{2,2}^2) = 4w_1w_2(\mathbf{k}_a \cdot \mathbf{k}_b)$$

964 where w_i are the weights. Since the weights are positive and the cross products are assumed nonzero,
965 the quantity above is positive when \mathbf{k}_a and \mathbf{k}_b point in the same direction and negative otherwise.
966 Thus, when the cross products of the reference and target sets are aligned, \mathbf{R}_{SO} corresponds to the
967 larger gain value and is the optimal rotation. It takes the form of a rotation about the z -axis.

972 *Proof* We assume that all points lie in the plane $z = 0$ and that the cross product of the reference
 973 and target sets are nonzero and are aligned. This will be generalized later. We construct rotations
 974 \mathbf{R}_1 and \mathbf{R}_2 to be rotations about the z-axis that align \mathbf{a}_1 to \mathbf{b}_1 and \mathbf{a}_2 to \mathbf{b}_2 respectively. Since the
 975 input points have unit length and the vector norm is rotationally invariant, we can rewrite the loss
 976 function as:

$$\begin{aligned}
 & w_1 \|\mathbf{b}_1 - \mathbf{R}\mathbf{a}_1\|^2 + w_2 \|\mathbf{b}_2 - \mathbf{R}\mathbf{a}_2\|^2 \\
 &= w_1 \|\mathbf{a}_1 - \mathbf{R}_1^T \mathbf{R}\mathbf{a}_1\|^2 + w_2 \|\mathbf{a}_2 - \mathbf{R}_2^T \mathbf{R}\mathbf{a}_2\|^2 \\
 &= w_1 \|(\mathbf{I} - \mathbf{R}_1^T \mathbf{R})\mathbf{a}_1\|^2 + w_2 \|(\mathbf{I} - \mathbf{R}_2^T \mathbf{R})\mathbf{a}_2\|^2 \\
 &= w_1 \mathbf{a}_1^T (\mathbf{I} - \mathbf{R}_1^T \mathbf{R})^T (\mathbf{I} - \mathbf{R}_1^T \mathbf{R}) \mathbf{a}_1 + w_2 \mathbf{a}_2^T (\mathbf{I} - \mathbf{R}_2^T \mathbf{R})^T (\mathbf{I} - \mathbf{R}_2^T \mathbf{R}) \mathbf{a}_2 \\
 &= 2(w_1 + w_2) - 2w_1 \mathbf{a}_1^T \mathbf{R}_1^T \mathbf{R} \mathbf{a}_1 - 2w_2 \mathbf{a}_2^T \mathbf{R}_2^T \mathbf{R} \mathbf{a}_2
 \end{aligned}$$

984 using the fact $\mathbf{a}_i^T \mathbf{R}_i^T \mathbf{R} \mathbf{a}_i = \mathbf{a}_i^T \mathbf{R}^T \mathbf{R} \mathbf{a}_i$. Under our assumptions, the lemma establishes that the
 985 optimal rotation \mathbf{R} is a rotation about the z-axis. Since both \mathbf{R}_1 and \mathbf{R}_2 are also rotations about the
 986 z-axis, we can easily verify that the products $\mathbf{R}_1^T \mathbf{R}$ and $\mathbf{R}_2^T \mathbf{R}$ are rotations about the z-axis as well.
 987 Using Rodrigues' rotation formula, we can expand the term below as follows:

$$\begin{aligned}
 \mathbf{a}_1^T \mathbf{R}_1^T \mathbf{R} \mathbf{a}_1 &= \mathbf{a}_1 \cdot (\cos(\phi) \mathbf{a}_1 + \sin(\phi) \mathbf{k} \times \mathbf{a}_1 + (1 - \cos(\phi)) (\mathbf{k} \cdot \mathbf{a}_1) \mathbf{k}) \\
 &= \cos(\phi) + \sin(\phi) (\mathbf{a}_1 \cdot (\mathbf{k} \times \mathbf{a}_1)) = \cos(\phi)
 \end{aligned}$$

992 where ϕ is the angle of rotation of $\mathbf{R}_1^T \mathbf{R}$ and $\mathbf{k} = [0, 0, 1]^T$ is the axis of rotation. The simple result
 993 is due to the fact that \mathbf{a}_1 is orthogonal to the axis of rotation and has unit length. On the other hand,
 994 we note that the Frobenius norm between \mathbf{R}_1 and \mathbf{R} computes the following:

$$\begin{aligned}
 \|\mathbf{R}_1 - \mathbf{R}\|_F^2 &= \text{Tr}((\mathbf{R}_1 - \mathbf{R})^T (\mathbf{R}_1 - \mathbf{R})) \\
 &= 6 - 2\text{Tr}(\mathbf{R}_1^T \mathbf{R}) \\
 &= 6 - 2\text{Tr}(\cos(\phi) \mathbf{I} + \sin(\phi) [\mathbf{k}]_\times + (1 - \cos(\phi)) \mathbf{k} \mathbf{k}^T) \\
 &= 6 - 6\cos(\phi) - 2(1 - \cos(\phi)) = 4 - 4\cos(\phi) \\
 \cos(\phi) &= 1 - \frac{1}{4} \|\mathbf{R}_1 - \mathbf{R}\|_F^2
 \end{aligned}$$

1003 The expansion of $\mathbf{R}_1^T \mathbf{R}_1$ above is due to the axis-angle formula for rotation matrices where $[\mathbf{k}]_\times$
 1004 denotes the traceless skew-symmetric matrix formed from \mathbf{k} representing a vector cross product.
 1005 Deriving a similar result for $\mathbf{a}_2^T \mathbf{R}_2^T \mathbf{R} \mathbf{a}_2$ and plugging both back into our reformulated loss function,
 1006 we can rewrite it as:

$$\begin{aligned}
 & 2(w_1 + w_2) - 2w_1(1 - \frac{1}{4} \|\mathbf{R}_1 - \mathbf{R}\|_F^2) - 2w_2(1 - \frac{1}{4} \|\mathbf{R}_2 - \mathbf{R}\|_F^2) \\
 &= \frac{1}{2} w_1 \|\mathbf{R}_1 - \mathbf{R}\|_F^2 + \frac{1}{2} w_2 \|\mathbf{R}_2 - \mathbf{R}\|_F^2
 \end{aligned}$$

1011 Through this expression, we can see that the rotation \mathbf{R} which minimized our original loss is exactly
 1012 the rotation that represents the weighted average in the Frobenius sense between \mathbf{R}_1 and \mathbf{R}_2 as
 1013 specified in Markley et al. (2007). The uniform factor of $\frac{1}{2}$ is irrelevant to the optimization.

1014 Now we generalize the result. Starting from the assumed configuration, we can extend it to general
 1015 configurations by applying arbitrary rotations \mathbf{R}_a and \mathbf{R}_b to the reference and target points respec-
 1016 tively, transforming them into \mathbf{a}'_i and \mathbf{b}'_i . In this new coordinate frame, the rotation matrix \mathbf{R}' is
 1017 related to the original optimal matrix \mathbf{R} as shown below:

$$\begin{aligned}
 \sum_i w_i \|\mathbf{b}_i - \mathbf{R}\mathbf{a}_i\|^2 &= \sum_i w_i \|\mathbf{R}_b \mathbf{b}_i - \mathbf{R}_b \mathbf{R} \mathbf{a}_i\|^2 \\
 &= \sum_i w_i \|\mathbf{R}_b \mathbf{b}_i - \mathbf{R}_b \mathbf{R} (\mathbf{R}_a^T \mathbf{R}_a) \mathbf{a}_i\|^2 = \sum_i w_i \|\mathbf{b}'_i - (\mathbf{R}_b \mathbf{R} \mathbf{R}_a^T) \mathbf{a}'_i\|^2 \\
 \mathbf{R}' &= \mathbf{R}_b \mathbf{R} \mathbf{R}_a^T
 \end{aligned}$$

1025 Because the vector norm is invariant under rotation, the optimal loss value remains unchanged across
 1026 all coordinate frames. Since the optimal value from the original coordinate frame is preserved

above, \mathbf{R}' represents the optimal rotation in the new frame. Furthermore, the Frobenius norm is also rotation-invariant, so we can apply the required rotations to estimate \mathbf{R}' as follows:

$$\begin{aligned} \sum_i w_i \|\mathbf{R}_i - \mathbf{R}\|_F^2 &= \sum_i w_i \|\mathbf{R}_b \mathbf{R}_i \mathbf{R}_a^T - \mathbf{R}_b \mathbf{R} \mathbf{R}_a^T\|_F^2 \\ &= \sum_i w_i \|\mathbf{R}_b \mathbf{R}_i \mathbf{R}_a^T - \mathbf{R}'\|_F^2 \\ \mathbf{R}'_1 &= \mathbf{R}_b \mathbf{R}_1 \mathbf{R}_a^T, \quad \mathbf{R}'_2 = \mathbf{R}_b \mathbf{R}_2 \mathbf{R}_a^T \end{aligned}$$

Thus, in the general case, the optimal rotation is given by the weighted average rotation between \mathbf{R}'_1 and \mathbf{R}'_2 . We can uniquely identify those rotations with at least two linearly independent points they transform. Starting with the reference and target sets:

$$\begin{aligned} \mathbf{R}_i \mathbf{a}_i &\equiv \mathbf{b}_i \\ \mathbf{R}_b \mathbf{R}_i (\mathbf{R}_a^T \mathbf{R}_a) \mathbf{a}_i &= \mathbf{R}_b \mathbf{b}_i \\ \mathbf{R}'_i \mathbf{a}'_i &= \mathbf{b}'_i \end{aligned}$$

Each rotation still aligns their respective reference point to their target point. Furthermore, in our original coordinate frame, \mathbf{k}_a and \mathbf{k}_b are aligned and are parallel or antiparallel to \mathbf{R}_i 's axis of rotation (z-axis), so they are unchanged by \mathbf{R}_i . As a result:

$$\begin{aligned} \mathbf{R}_i \frac{\mathbf{k}_a}{\|\mathbf{k}_a\|} &= \frac{\mathbf{k}_b}{\|\mathbf{k}_b\|} \\ \mathbf{R}_b \mathbf{R}_i (\mathbf{R}_a^T \mathbf{R}_a) \frac{\mathbf{k}_a}{\|\mathbf{k}_a\|} &= \mathbf{R}_b \frac{\mathbf{k}_b}{\|\mathbf{k}_b\|} \\ \mathbf{R}'_i \frac{\mathbf{R}_a(\mathbf{a}_1 \times \mathbf{a}_2)}{\|\mathbf{R}_a(\mathbf{a}_1 \times \mathbf{a}_2)\|} &= \frac{\mathbf{R}_b(\mathbf{b}_1 \times \mathbf{b}_2)}{\|\mathbf{R}_b(\mathbf{b}_1 \times \mathbf{b}_2)\|} \\ \mathbf{R}'_i \frac{\mathbf{a}'_1 \times \mathbf{a}'_2}{\|\mathbf{a}'_1 \times \mathbf{a}'_2\|} &= \frac{\mathbf{b}'_1 \times \mathbf{b}'_2}{\|\mathbf{b}'_1 \times \mathbf{b}'_2\|} \end{aligned}$$

due to rotations distributing over the cross product. Thus, we can identify \mathbf{R}'_1 and \mathbf{R}'_2 as the rotations that align their corresponding reference point to their target point along with the cross products of the reference and target sets. As the cross products are assumed nonzero and are orthogonal to their respective point set, the two points aligned by each rotation are always independent and therefore uniquely define the rotations. As shown, the optimal rotation is the weighted average in the Frobenius sense between them.

B.4.2 PROOF OF UNWEIGHTED CASE

Proposition 4 Let \mathbf{a}_i , \mathbf{b}_i , and w_i represent the reference points, target points, and weights respectively. Given $n = 2$ points, $w_1 = w_2$, $\mathbf{a}_1 \times \mathbf{a}_2 \neq \mathbf{0}$, and $\mathbf{b}_1 \times \mathbf{b}_2 \neq \mathbf{0}$, the optimal rotation to Wahba's problem is given by the unique rotation \mathbf{R} defined by $\mathbf{R}(\frac{\mathbf{a}_1 + \mathbf{a}_2}{\|\mathbf{a}_1 + \mathbf{a}_2\|}) = \frac{\mathbf{b}_1 + \mathbf{b}_2}{\|\mathbf{b}_1 + \mathbf{b}_2\|}$ and $\mathbf{R}(\frac{\mathbf{a}_1 - \mathbf{a}_2}{\|\mathbf{a}_1 - \mathbf{a}_2\|}) = \frac{\mathbf{b}_1 - \mathbf{b}_2}{\|\mathbf{b}_1 - \mathbf{b}_2\|}$.

Proof For two 3D unit vectors \mathbf{v}_1 and \mathbf{v}_2 , we introduce the following notation and easily verifiable results:

$$\begin{aligned} \tilde{\mathbf{v}}^- &\equiv \mathbf{v}_1 - \mathbf{v}_2, \quad \tilde{\mathbf{v}}^+ \equiv \mathbf{v}_1 + \mathbf{v}_2 \\ \mathbf{v}^- &= \frac{\tilde{\mathbf{v}}^-}{\|\tilde{\mathbf{v}}^-\|}, \quad \mathbf{v}^+ = \frac{\tilde{\mathbf{v}}^+}{\|\tilde{\mathbf{v}}^+\|} \\ \tilde{\mathbf{v}}^- \cdot \tilde{\mathbf{v}}^+ &= 0 \\ \mathbf{v}_1 \cdot \tilde{\mathbf{v}}^+ &= \mathbf{v}_2 \cdot \tilde{\mathbf{v}}^+ \\ \tilde{\mathbf{v}}^- \times \tilde{\mathbf{v}}^+ &= 2(\mathbf{v}_1 \times \mathbf{v}_2) \\ \mathbf{v}_1 \times \mathbf{v}_2 \neq \mathbf{0} &\implies \tilde{\mathbf{v}}^- \neq \mathbf{0}, \quad \tilde{\mathbf{v}}^+ \neq \mathbf{0} \end{aligned}$$

If $\mathbf{v}_1 \times \mathbf{v}_2 \neq \mathbf{0}$, then the two vectors \mathbf{v}^- and \mathbf{v}^+ are well-defined and form an orthonormal basis for the plane spanned by \mathbf{v}_1 and \mathbf{v}_2 . Consequently, \mathbf{v}^- and \mathbf{v}^+ created from one pair of linearly independent unit vectors can be perfectly aligned with those created from another pair.

With $\mathbf{a}_1 \times \mathbf{a}_2 \neq \mathbf{0}$, $\mathbf{b}_1 \times \mathbf{b}_2 \neq \mathbf{0}$, we initially assume that the points are configured such that they all lie in the plane $z = 0$ and that $\mathbf{a}^+ = \mathbf{b}^+$ and $\mathbf{a}^- = \mathbf{b}^-$. This is generalized later. For this configuration, we note the following:

$$\begin{aligned} \mathbf{a}_1 \times \mathbf{a}_2 &= \frac{1}{2}(\tilde{\mathbf{a}}^- \times \tilde{\mathbf{a}}^+) \\ &= \frac{1}{2}\|\tilde{\mathbf{a}}^-\|\|\tilde{\mathbf{a}}^+\|(\mathbf{a}^- \times \mathbf{a}^+) = \frac{1}{2}\|\tilde{\mathbf{a}}^-\|\|\tilde{\mathbf{a}}^+\|(\mathbf{b}^- \times \mathbf{b}^+) \\ &= \frac{\|\tilde{\mathbf{a}}^-\|\|\tilde{\mathbf{a}}^+\|}{2\|\tilde{\mathbf{b}}^-\|\|\tilde{\mathbf{b}}^+\|}(\tilde{\mathbf{b}}^- \times \tilde{\mathbf{b}}^+) = \frac{\|\tilde{\mathbf{a}}^-\|\|\tilde{\mathbf{a}}^+\|}{\|\tilde{\mathbf{b}}^-\|\|\tilde{\mathbf{b}}^+\|}(\mathbf{b}_1 \times \mathbf{b}_2) \\ &\implies (\mathbf{a}_1 \times \mathbf{a}_2) \cdot (\mathbf{b}_1 \times \mathbf{b}_2) > 0 \end{aligned}$$

Thus, the cross products are aligned in this configuration, and from the lemma in the general case proof, the optimal rotation is a rotation about the z-axis.

From the dot product equality above, we can deduce that \mathbf{a}^+ is equidistant from $\mathbf{a}_1, \mathbf{a}_2$. The dot product calculates the cosine of the angle between linearly independent unit vectors measured in the plane spanned by the vectors ($z = 0$ in our case). We know from the proof in the general case that the dot product of a unit vector in the plane $z = 0$ with itself after a rotation about the z-axis is the cosine of the angle of rotation. That angle is measured in the plane perpendicular to the axis of rotation, which is also the plane $z = 0$. Thus, constructing rotations $\mathbf{R}_{\mathbf{a}_1}$ and $\mathbf{R}_{\mathbf{a}_2}$ which rotate \mathbf{a}^+ about the z-axis to \mathbf{a}_1 and \mathbf{a}_2 respectively, we can write the following:

$$\mathbf{a}_1 \cdot \mathbf{a}^+ = \mathbf{a}_2 \cdot \mathbf{a}^+ = \mathbf{a}^+ \cdot (\mathbf{R}_{\mathbf{a}_1} \mathbf{a}^+) = \mathbf{a}^+ \cdot (\mathbf{R}_{\mathbf{a}_2} \mathbf{a}^+) = \cos(\phi)$$

where ϕ denotes the angle of rotation of $\mathbf{R}_{\mathbf{a}_1}$, making $|\phi|$ (canonically positive) the angle between \mathbf{a}_1 and \mathbf{a}^+ . In general, $\mathbf{R}_{\mathbf{a}_1} \neq \mathbf{R}_{\mathbf{a}_2}$, otherwise \mathbf{a}_1 and \mathbf{a}_2 would be identical. In order for the above to still hold, the angle of rotation of $\mathbf{R}_{\mathbf{a}_2}$ must have the same magnitude but opposite sign of ϕ . A similar statement can be made for the target points.

Let $\mathbf{R}_{\mathbf{b}_1}$ and $\mathbf{R}_{\mathbf{b}_2}$ represent rotations about the z-axis that align \mathbf{b}^+ with \mathbf{b}_1 and \mathbf{b}_2 respectively. Recall $\mathbf{a}^+ = \mathbf{b}^+$. We construct the rotations $\mathbf{R}_1 = \mathbf{R}_{\mathbf{b}_1} \mathbf{R}_{\mathbf{a}_1}^T$ and $\mathbf{R}_2 = \mathbf{R}_{\mathbf{b}_2} \mathbf{R}_{\mathbf{a}_2}^T$ which are also about the z-axis to align \mathbf{a}_1 with \mathbf{b}_1 and \mathbf{a}_2 with \mathbf{b}_2 respectively. If ψ is the rotation angle of $\mathbf{R}_{\mathbf{b}_1}$, then the angle of rotation for \mathbf{R}_1 is $-\phi + \psi$ since $\mathbf{R}_{\mathbf{a}_1}$ and $\mathbf{R}_{\mathbf{b}_1}$ share the same axis of rotation and transposing a rotation matrix negates the rotation angle. For \mathbf{R}_2 , the rotation angle is $\phi - \psi$, as $\mathbf{R}_{\mathbf{a}_2}$ rotates by $-\phi$ and $\mathbf{R}_{\mathbf{b}_2}$ by $-\psi$. Thus, the rotation angles of \mathbf{R}_1 and \mathbf{R}_2 have equal magnitudes but opposite signs.

From the proof in the general case, the optimal rotation \mathbf{R} is the weighted average in the Frobenius sense between the rotations \mathbf{R}_1 and \mathbf{R}_2 recently constructed. The weighted average rotation maximizes the quantity $\text{Tr}(\mathbf{R}\mathbf{B}'^T)$ where $\mathbf{B}' = \sum_i w_i \mathbf{R}_i$ Markley et al. (2007). Given the previously made statements and the fact that $w_1 = w_2$, we can calculate \mathbf{B}' as:

$$\begin{aligned} \mathbf{R}_1 &= \begin{bmatrix} \cos(-\phi + \psi) & -\sin(-\phi + \psi) & 0 \\ \sin(-\phi + \psi) & \cos(-\phi + \psi) & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{R}_2 = \begin{bmatrix} \cos(\phi - \psi) & -\sin(\phi - \psi) & 0 \\ \sin(\phi - \psi) & \cos(\phi - \psi) & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\ \mathbf{B}' &= w_1 \mathbf{R}_1 + w_2 \mathbf{R}_2 = 2w_1 \begin{bmatrix} \cos(-\phi + \psi) & 0 & 0 \\ 0 & \cos(-\phi + \psi) & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

due to the fact that sine is an odd function and cosine is an even function. Since \mathbf{R} is a rotation about the z-axis, we can directly compute $\text{Tr}(\mathbf{R}\mathbf{B}'^T)$ as $2w_1(2\cos(-\phi + \psi)\cos(\theta) + 1)$ where θ is \mathbf{R} 's angle of rotation. We can trivially see that θ must take on a value of 0 or π (mod 2π) to be optimal, depending on the sign of $\cos(-\phi + \psi)$ as w_1 is positive. That sign can be determined considering \mathbf{a}^- and \mathbf{b}^- are aligned:

$$\begin{aligned} \tilde{\mathbf{a}}^- \cdot \tilde{\mathbf{b}}^- &> 0 \\ (\mathbf{R}_{\mathbf{a}_1} \mathbf{a}^+ - \mathbf{R}_{\mathbf{a}_2} \mathbf{a}^+) \cdot (\mathbf{R}_{\mathbf{b}_1} \mathbf{b}^+ - \mathbf{R}_{\mathbf{b}_2} \mathbf{b}^+) &> 0 \\ \mathbf{a}^+ \cdot ((\mathbf{R}_{\mathbf{a}_1} - \mathbf{R}_{\mathbf{a}_2})^T (\mathbf{R}_{\mathbf{b}_1} - \mathbf{R}_{\mathbf{b}_2}) \mathbf{a}^+) &> 0 \\ \cos(-\phi + \psi) - \cos(-\phi - \psi) - \cos(\phi + \psi) + \cos(\phi - \psi) &> 0 \\ 2\cos(-\phi + \psi) - 2\cos(\phi + \psi) &> 0 \end{aligned}$$

1134 Since \mathbf{a}^+ and \mathbf{b}^+ are also aligned, we can similarly derive $2\cos(-\phi+\psi)+2\cos(\phi+\psi) > 0$. Adding
 1135 both inequalities together (valid since they are positive quantities), we find that $\cos(-\phi+\psi) > 0$.
 1136 Thus, θ must be 0 to maximize $\text{Tr}(\mathbf{R}\mathbf{B}^T)$, resulting in \mathbf{R} being the identity matrix and indicating
 1137 that the current alignment is the optimal one.

1138 To generalize this, we again apply arbitrary rotations $\mathbf{R}_a, \mathbf{R}_b$ to the reference and target sets respec-
 1139 tively, transforming them into $\mathbf{a}'_i, \mathbf{b}'_i$. From the proof in the general case, the new optimal rotation
 1140 $\mathbf{R}' = \mathbf{R}_b \mathbf{R} \mathbf{R}_a^T = \mathbf{R}_b \mathbf{R}_a^T$. Now, we simply verify below that this rotation aligns \mathbf{a}'^+ to \mathbf{b}'^+ and \mathbf{a}'^-
 1141 to \mathbf{b}'^- (combined \pm notation for convenience):
 1142

$$\begin{aligned} \mathbf{a}^\pm &= \mathbf{b}^\pm = \frac{\mathbf{a}_1 \pm \mathbf{a}_2}{\|\mathbf{a}_1 \pm \mathbf{a}_2\|} = \frac{\mathbf{b}_1 \pm \mathbf{b}_2}{\|\mathbf{b}_1 \pm \mathbf{b}_2\|} \\ \frac{\mathbf{R}_b(\mathbf{a}_1 \pm \mathbf{a}_2)}{\|\mathbf{a}_1 \pm \mathbf{a}_2\|} &= \frac{\mathbf{b}'_1 \pm \mathbf{b}'_2}{\|\mathbf{b}'_1 \pm \mathbf{b}'_2\|} \\ \frac{\mathbf{R}_b \mathbf{R}_a^T(\mathbf{a}'_1 \pm \mathbf{a}'_2)}{\|\mathbf{a}'_1 \pm \mathbf{a}'_2\|} &= \frac{\mathbf{b}'_1 \pm \mathbf{b}'_2}{\|\mathbf{b}'_1 \pm \mathbf{b}'_2\|} \\ \mathbf{R}' \mathbf{a}'^\pm &= \mathbf{b}'^\pm \end{aligned}$$

1151 Since \mathbf{a}'^+ and \mathbf{a}'^- are orthogonal, they are also linearly independent, and their transformation
 1152 uniquely defines the rotation \mathbf{R}' , thereby completing the proof.
 1153

1154 B.4.3 AVERAGE OF TWO UNNORMALIZED QUATERNIONS

1155 In Markley et al. (2007), it was shown that the average rotation matrix in the Frobenius sense can be
 1156 calculated via the quaternion \mathbf{q} which optimizes the following:
 1157

$$\begin{aligned} \mathbf{M} &= \sum_i w_i \mathbf{q}_i \mathbf{q}_i^T \\ \max_{\mathbf{q}} \mathbf{q}^T \mathbf{M} \mathbf{q} \text{ s.t. } \|\mathbf{q}\| &= 1 \end{aligned}$$

1162 Where \mathbf{q}_i are the unit norm quaternions corresponding to the rotations being averaged (sign of \mathbf{q}_i
 1163 is irrelevant). The solution is the eigenvector corresponding to the largest eigenvalue of \mathbf{M} . In the
 1164 two point approach to Wahba's problem proposed previously, we need to construct two quaternion
 1165 rotations and average them. The formulation above assumes all quaternions have unit norm. How-
 1166 ever, it would be computationally advantageous (see Table 5) if we did not have to normalize the
 1167 constructed rotations, thereby avoiding two square root and division operations. From Markley et al.
 1168 (2007), it is known that the average rotation in the two rotation case is simply a linear combination
 1169 of the rotations being averaged. To average unnormalized quaternions $\tilde{\mathbf{q}}_1$ and $\tilde{\mathbf{q}}_2$, we can express \mathbf{M}
 1170 and \mathbf{q} as:
 1171

$$\begin{aligned} \mathbf{M} &= w_1 \frac{\|\tilde{\mathbf{q}}_2\|^2}{\|\tilde{\mathbf{q}}_1\|^2} \tilde{\mathbf{q}}_1 \tilde{\mathbf{q}}_1^T + w_2 \tilde{\mathbf{q}}_2 \tilde{\mathbf{q}}_2^T \\ \mathbf{q} &= \mu \tilde{\mathbf{q}}_1 + \nu \tilde{\mathbf{q}}_2 \end{aligned}$$

1174 where μ, ν are scalars. The above takes advantage of the fact that scaling \mathbf{M} does not change its
 1175 eigenvectors. Thus, we reduce the problem from estimating a unit quaternion to estimating two
 1176 scalars. As a result, we can rewrite the objective as:
 1177

$$\begin{aligned} \mathbf{\Gamma} &= \begin{bmatrix} \|\tilde{\mathbf{q}}_1\|^2 & \tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2 \\ \tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2 & \|\tilde{\mathbf{q}}_2\|^2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} \mu \\ \nu \end{bmatrix} \\ \mathbf{\Lambda}_{1,1} &= w_1 \|\tilde{\mathbf{q}}_1\|^2 \|\tilde{\mathbf{q}}_2\|^2 + w_2 (\tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2)^2 \\ \mathbf{\Lambda}_{1,2} &= \mathbf{\Lambda}_{2,1} = (w_1 + w_2) \|\tilde{\mathbf{q}}_2\|^2 (\tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2) \\ \mathbf{\Lambda}_{2,2} &= \|\tilde{\mathbf{q}}_2\|^2 \left(w_2 \|\tilde{\mathbf{q}}_2\|^2 + \frac{w_1 (\tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2)^2}{\|\tilde{\mathbf{q}}_1\|^2} \right) \\ \max_{\mathbf{v}} \mathbf{v}^T \mathbf{\Lambda} \mathbf{v} \text{ s.t. } \mathbf{v}^T \mathbf{\Gamma} \mathbf{v} &= 1 \end{aligned}$$

1187 where \cdot denotes the usual vector dot product. $\mathbf{\Gamma}$ is the quadratic constraint ensuring that the linear
 1188 combination of $\tilde{\mathbf{q}}_1$ and $\tilde{\mathbf{q}}_2$ has unit norm, and $\mathbf{\Lambda}$ is the new 2x2 objective to optimize over. Using

1188 the method of Lagrange multipliers, we find that the solution to the above takes the form of a gen-
 1189 eralized eigenvalue problem $\Lambda \mathbf{v} = \lambda \Gamma \mathbf{v}$. Note that the scaling constraint Γ is positive semidefinite,
 1190 generally representing the equation of an ellipse. Assuming Γ is invertible and well-conditioned (it
 1191 is discussed later when this is not the case), the solution is the eigenvector of $\Gamma^{-1} \Lambda$ corresponding
 1192 to the largest eigenvalue. Through simplification and scaling, we can express the matrix similarly
 1193 as:

$$\Gamma^{-1} \Lambda \sim \begin{bmatrix} w_1 \|\tilde{\mathbf{q}}_1\|^2 \|\tilde{\mathbf{q}}_2\|^2 & w_1 \|\tilde{\mathbf{q}}_2\|^2 (\tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2) \\ w_2 \|\tilde{\mathbf{q}}_1\|^2 (\tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2) & w_2 \|\tilde{\mathbf{q}}_1\|^2 \|\tilde{\mathbf{q}}_2\|^2 \end{bmatrix}$$

1197 which maintains its eigenvectors from before. Since the matrix is only 2x2, the eigenvector \mathbf{v} corre-
 1198 sponding to the largest eigenvalue can be expressed in closed form. Scaling the eigenvector by the
 1199 constraint $\mathbf{v}^T \Gamma \mathbf{v} = 1$ and substituting it back into the original linear combination of $\tilde{\mathbf{q}}_1$ and $\tilde{\mathbf{q}}_2$, we
 1200 obtain the average quaternion as:

$$\mathbf{q} = \frac{\mu \tilde{\mathbf{q}}_1 + \nu \tilde{\mathbf{q}}_2}{\sqrt{\|\tilde{\mathbf{q}}_1\|^2 \mu^2 + \|\tilde{\mathbf{q}}_2\|^2 \nu^2 + 2(\tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2) \mu \nu}}$$

1204 where the values μ and ν can be expressed equivalently in two ways:

$$\begin{aligned} \tau^{(1)} &= (w_1 - w_2) \|\tilde{\mathbf{q}}_1\|^2 \|\tilde{\mathbf{q}}_2\|^2, \quad \omega^{(1)} = 2w_1 \|\tilde{\mathbf{q}}_2\|^2 (\tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2), \quad \nu^{(1)} = 2w_2 \|\tilde{\mathbf{q}}_1\|^2 (\tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2) \\ \mu^{(1)} &= \tau^{(1)} + \sqrt{(\tau^{(1)})^2 + \omega^{(1)} \nu^{(1)}} \end{aligned}$$

1209 or

$$\begin{aligned} \tau^{(2)} &= (w_2 - w_1) \|\tilde{\mathbf{q}}_1\|^2 \|\tilde{\mathbf{q}}_2\|^2, \quad \omega^{(2)} = 2w_2 \|\tilde{\mathbf{q}}_1\|^2 (\tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2), \quad \mu^{(2)} = 2w_1 \|\tilde{\mathbf{q}}_2\|^2 (\tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2) \\ \nu^{(2)} &= \tau^{(2)} + \sqrt{(\tau^{(2)})^2 + \omega^{(2)} \mu^{(2)}} \end{aligned}$$

1210 Both yield the same result except when $\tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2 = 0$ in which case the rotation corresponding to the
 1211 larger weight is chosen. If $w_1 = w_2$ in that case, then there is no unique solution and either of the
 1212 rotations can be selected. The former solution set is used when $w_1 > w_2$ and the latter is used when
 1213 $w_1 \leq w_2$ as to approach the correct value as $\tilde{\mathbf{q}}_1 \cdot \tilde{\mathbf{q}}_2 \rightarrow 0$.

1214 Note that the denominator in the expression for the average quaternion is simply $\sqrt{\mathbf{v}^T \Gamma \mathbf{v}}$. Previ-
 1215 ously, Γ was assumed non-singular and well-conditioned, but there are two cases in practice where
 1216 this fails to hold. The first is when $\tilde{\mathbf{q}}_1$ and $\tilde{\mathbf{q}}_2$ are linearly dependent, i.e. they represent the same
 1217 rotation. If we choose the solution constants above by the previously described strategy and examine
 1218 the expressions for μ and ν , then it can be seen that $\mathbf{v}^T \Gamma \mathbf{v}$ is in fact strictly positive for nontrivial
 1219 solutions \mathbf{v} and nonzero weights/magnitudes. Furthermore, it can also be seen that $\mu \tilde{\mathbf{q}}_1$ and $\nu \tilde{\mathbf{q}}_2$
 1220 share the same direction in this case and thus cannot cancel out. The second case occurs when the
 1221 magnitudes of $\tilde{\mathbf{q}}_1$ and/or $\tilde{\mathbf{q}}_2$ are small, causing Γ to be ill-conditioned. This case can be avoided by
 1222 using the strategy described in Appendix D.2 to only obtain quaternions of sufficient magnitude or
 1223 by simply scaling/normalizing the rotations when necessary.

1228 B.4.4 DEGENERATE CASE SOLUTION

1229 The degenerate case occurs when either of the cross products of the reference or target points vanish,
 1230 and the previous approaches for the two point case cannot be applied. This is because the solution
 1231 is no longer unique. A particular one can be efficiently found through the following approach.

1232 We assume without loss of generality that the target points are collinear (the reference points may
 1233 or may not be) and the first target point is aligned with the x-axis (i.e. $\mathbf{b}_1 = (1, 0, 0)$). In this case,
 1234 the last two columns of the constraint \mathbf{C}_i (Eq. (17)) vanish. We can thus write our optimization as:

$$\begin{aligned} \mathbf{C}_i &= \begin{bmatrix} (m - x)i & y - zi \\ -y - zi & (x + m)i \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \\ \mathbf{Z} &= \sum_i w_i \mathbf{C}_i^H \mathbf{C}_i \\ \min_{\mathbf{u}} \mathbf{u}^H \mathbf{Z} \mathbf{u} \quad &s.t. \quad \mathbf{u}^H \mathbf{u} = 1 \end{aligned}$$

This optimization is simpler than before and can now be solved directly over the special unitary parameters. Since \mathbf{Z} is Hermitian and positive semidefinite, the solution is the complex eigenvector of \mathbf{Z} corresponding to the smallest eigenvalue. For reference points $\mathbf{a}_i = (x_i, y_i, z_i)$, this can be expressed in closed form as:

$$\tilde{\mathbf{u}} = \begin{bmatrix} w_1 x_1 + w_2 x_2 + ||w_1 \mathbf{a}_1 + w_2 \mathbf{a}_2|| \\ w_1 z_1 + w_2 z_2 - (w_1 y_1 + w_2 y_2)i \end{bmatrix}$$

or

$$\tilde{\mathbf{u}} = \begin{bmatrix} w_1 x_1 - w_2 x_2 + ||w_1 \mathbf{a}_1 - w_2 \mathbf{a}_2|| \\ w_1 z_1 - w_2 z_2 - (w_1 y_1 - w_2 y_2)i \end{bmatrix}$$

where $\tilde{\mathbf{u}}$ is the unnormalized eigenvector and the correct solution depends on the target points' configuration. If the dot product of the target points is positive, then the first expression is correct. Otherwise, the second is correct. Note that eigenvectors are only unique up to scale, so even after normalizing the solution so that $\mathbf{u}^H \mathbf{u} = 1$, we can still apply an arbitrary unitary scaling of $e^{\theta i}$. This corresponds to a rotation about the x-axis and parameterizes the family of optimal solutions.

For arbitrary collinear target points, we simply need to find any rotation aligning the x-axis to the first target point \mathbf{b}_1 and then compose it with \mathbf{u} . If the reference points were collinear instead, we can swap the reference and target points in the above approach and invert the rotation afterwards. In practice, we would choose the more degenerate (i.e. larger dot product magnitude) of the two sets to treat as collinear.

Examining the solution closer, it can be seen that \mathbf{u} represents a rotation aligning a weighted combination of the reference points we refer to as the “weighted average” with the x-axis. The weighted average takes the form of a sum ($w_1 \mathbf{a}_1 + w_2 \mathbf{a}_2$) or difference ($w_1 \mathbf{a}_1 - w_2 \mathbf{a}_2$) depending on the sign of the dot product between target points. This suggests that a more straightforward approach in practice would be to simply calculate the normalized weighted average of the reference points and align it with \mathbf{b}_1 directly. This generalizes to the case when the reference points are collinear similarly to before. If the weighted average is zero, then any rotation is optimal.

C ADDITIONAL STEREOGRAPHIC SOLUTION DETAILS

C.1 RECOVERING \mathbf{R}

The solution \mathbf{U} obtained precisely satisfies the relation in Eq. (34). However, using the maps laid out in Eqs. (35) and (36) directly will lead to a rotation \mathbf{R}_U that is not necessarily equivalent to the desired \mathbf{R} in Eq. (1). This is because our choice of \mathbf{p}^* and choice of isomorphism between quaternions and special unitary matrices can each add an implicit orthogonal transformation in their map. Since their combined transformation Ψ and its inverse are applied before and after estimation respectively, the relationship between \mathbf{U} and \mathbf{R} is characterized by the conjugate transformation:

$$\mathbf{R} = \Psi^T \mathbf{R}_U \Psi \quad (44)$$

For our definitions, we find that Ψ is simply a 90 degree rotation about the y-axis. When applied directly to the resulting \mathbf{q} from the algorithm, the transformed quaternion is given as:

$$\mathbf{q}^* = w_q - z_q i + y_q j + x_q k \quad (45)$$

which is just a permutation/negation of the elements of \mathbf{q} . We can verify that mapping \mathbf{q}^* to \mathbf{R} via Eq. (36) indeed gives us the true optimal solution to the problem.

C.2 GENERAL STEREOGRAPHIC CONSTRAINT

The generalized constraint between complex rays $[z_1, z_2]^T$ and $[p_1, p_2]^T$ where $z_1 = x_1 + y_1 i$, $z_2 = x_2 + y_2 i$, $p_1 = m_1 + n_1 i$, and $p_2 = m_2 + n_2 i$ is given by:

$$w'_i = \frac{4w_i}{(|z_1|^2 + |z_2|^2)(|p_1|^2 + |p_2|^2)}$$

$$\mathbf{A}_i \mathbf{u} = [-z_1 p_2 \quad -z_2 p_2 \quad p_1 z_2 \quad -p_1 z_1] \mathbf{u} = 0$$

1296 for complex inputs and below for real inputs:
 1297

$$\mathbf{D}_{i,0} = \begin{bmatrix} m_2x_1 - m_1x_2 + n_1y_2 - n_2y_1 & -m_2y_1 - m_1y_2 - n_2x_1 - n_1x_2 \\ m_2y_1 - m_1y_2 + n_2x_1 - n_1x_2 & m_2x_1 + m_1x_2 - n_1y_2 - n_2y_1 \end{bmatrix}$$

$$\mathbf{D}_{i,1} = \begin{bmatrix} m_1x_1 + m_2x_2 - n_1y_1 - n_2y_2 & m_1y_1 - m_2y_2 + n_1x_1 - n_2x_2 \\ m_1y_1 + m_2y_2 + n_1x_1 + n_2x_2 & m_2x_2 - m_1x_1 + n_1y_1 - n_2y_2 \end{bmatrix}$$

$$\mathbf{D}_i \mathbf{q} = [\mathbf{D}_{i,0} \quad \mathbf{D}_{i,1}] \mathbf{q} = 0$$

1304 We can verify that with $z_2 = 1$ and $p_2 = 1$, we obtain the original results in Eq. (9) and Eq. (11).
 1305 Furthermore, we can use $z_2 = 0$ and $p_2 = 0$ to calculate results involving the projective point
 1306 at infinity. Thus, there are no singularities using the general constraint. From this, we can derive
 1307 similar formulas and algorithms for the one and two point cases as those proposed earlier.

1308 Similarly, the following is the general constraint for estimating a Möbius transformation from stere-
 1309 ographic inputs:

$$\mathbf{A}'_i \mathbf{m} = [-z_1p_2 \quad -z_2p_2 \quad p_1z_1 \quad p_1z_2] \mathbf{m} = 0$$

1312 D ROTATIONS OF EXACT ALIGNMENT

1315 The equations in this section are derived from the constraint in Eq. (18) for 3D points. However, we
 1316 can easily derive similar equations for stereographic points using Eq. (11).

1318 D.1 ONE-POINT CASE

1319 Finding a rotation that aligns two unit vectors (i.e. $\mathbf{b} = \mathbf{R}\mathbf{a}$) is a special case of Wahba’s problem
 1320 where $n = 1$. Since aligning a pair of points constrains two out of three rotational degrees of
 1321 freedom (\mathbf{D}_i and \mathbf{Q}_i have rank 2), there are infinite solutions in this case. The rotation whose axis
 1322 is the cross product of the points is often chosen for geometric simplicity and can be calculated
 1323 efficiently as:

$$s = \sqrt{2(1 + \mathbf{a} \cdot \mathbf{b})}$$

$$\mathbf{q} = \left(\frac{s}{2}, \frac{\mathbf{a} \times \mathbf{b}}{s} \right) \quad (46)$$

1328 Instead, we may choose another convention where we constrain an element of the quaternion to be
 1329 0. Since the points can be perfectly aligned, $\mathbf{q}^T \mathbf{G}_S \mathbf{q} = 0$, so $\mathbf{q} \in \text{Null}(\mathbf{Q}_i)$. Leveraging this fact,
 1330 we can simply take two linearly independent rows from \mathbf{Q}_i and set them to 0 explicitly, imposing a
 1331 rank 2 constraint. Given the homogeneous nature of this system, we can disregard the weight and
 1332 determine the rotation using straightforward linear algebra techniques. Each row below is a member
 1333 of the kernel that has a quaternion element equal to 0 (note only two rows are linearly independent):

$$\begin{Bmatrix} 0 & x+m & y+n & z+p \\ x+m & 0 & z-p & n-y \\ y+n & p-z & 0 & x-m \\ z+p & y-n & m-x & 0 \end{Bmatrix} \in \text{ker}(\mathbf{Q}_i) \quad (47)$$

1338 Normalizing any nonzero row of Eq. (47) gives an optimal rotation. Compared to Eq. (46), this
 1339 approach has several advantages. First, the rotation is simpler to construct. Second, one of its
 1340 elements is guaranteed to be 0, so composing rotations and rotating points requires fewer operations
 1341 and memory accesses. This is particularly true for the first row of Eq. (47) as it represents a 180
 1342 degree rotation whose action on a point can be more efficiently computed as a reflection about an
 1343 axis. Finally, Eq. (46) has a singularity when the cross product vanishes. Although each row of
 1344 Eq. (47) has its own singular region, it is straightforward to systematically select another row that is
 1345 well-defined in that region.

1346 D.2 NOISELESS TWO-POINT CASE

1348 With two independent sets of correspondences, we are able to fully constrain the rotation to a unique
 1349 one. If we assume that the two sets can be aligned perfectly, then we can recover an optimal rotation

from the intersection of the constraint kernels. Two independent rows of Eq. (47) can be basis vectors for the kernel of \mathbf{Q}_1 . We can determine the optimal rotation by finding the member of $\text{ker}(\mathbf{Q}_1)$ (represented as a linear combination of basis vectors) that is orthogonal to an independent row of \mathbf{Q}_2 . For example, with the last two rows of Eq. (47) as a basis of \mathbf{Q}_1 and the first row of \mathbf{Q}_2 , we can solve for the linear combination weights a, b (note scale is arbitrary):

$$\begin{aligned} & \begin{bmatrix} 0 \\ x_2 - m_2 \\ y_2 - n_2 \\ z_2 - p_2 \end{bmatrix} \cdot (a \begin{bmatrix} z_1 + p_1 \\ y_1 - n_1 \\ m_1 - x_1 \\ 0 \end{bmatrix} + b \begin{bmatrix} y_1 + n_1 \\ p_1 - z_1 \\ 0 \\ x_1 - m_1 \end{bmatrix}) = 0 \\ & a = (x_2 - m_2)(z_1 - p_1) + (z_2 - p_2)(m_1 - x_1) \\ & b = (x_2 - m_2)(y_1 - n_1) + (y_2 - n_2)(m_1 - x_1) \end{aligned}$$

Substituting a and b back into the linear combination and dividing by $m_1 - x_1$ gives the result from Eq. (20): This result is equivalent to the simple estimators found in Markley (1999); Choukroun (2009). However, an issue with this approach is that the singular region of this estimator is not simple, and the equation fails to produce a valid rotation under several conditions (see Peng and Choukroun (2024)). Rather than checking each condition with a threshold or applying sequential rotations to avoid these cases like other kernel methods, we can more systematically select the three vectors in our computation to guarantee a valid result.

In general, we observe that for a point pair, either $\mathbf{a} + \mathbf{b}$ or $\mathbf{a} - \mathbf{b}$ will have at least one significantly nonzero element. We can select the two rows from Eq. (47) corresponding to a nonzero element from these vectors for the first point pair to ensure linearly independent kernel vectors. We then choose one of the two rows of \mathbf{Q}_2 corresponding to a nonzero element of $\mathbf{a} + \mathbf{b}$ or $\mathbf{a} - \mathbf{b}$ for the second point pair to solve for the rotation. For instance, if $x_1 + m_1 \neq 0$ and $y_2 + n_2 \neq 0$, we can choose the first two rows of Eq. (47) and the last row of \mathbf{Q}_2 to produce another equation for the rotation:

$$\begin{aligned} \mathbf{k}_1 &= [p_1 - z_1 \quad -y_1 - n_1 \quad x_1 + m_1]^T \\ \mathbf{k}_2 &= [z_1 + p_1 \quad y_1 - n_1 \quad m_1 - x_1]^T \\ \mathbf{k}_3 &= [p_2 - z_2 \quad -y_2 - n_2 \quad x_2 + m_2]^T \\ \tilde{\mathbf{q}} &= \begin{bmatrix} \mathbf{k}_1 \times \mathbf{k}_3 \\ \mathbf{k}_2 \cdot \mathbf{k}_3 \end{bmatrix} \end{aligned} \tag{48}$$

Though the dot and cross products are in different indices from before, the formulation is equally simple to compute. We select the nonzero elements by largest magnitude for robustness. At least one of the two rows we select from \mathbf{Q}_2 will yield a valid rotation for $\mathbf{a}_1 \times \mathbf{a}_2 \neq 0$. Otherwise, the rotation is any kernel vector of \mathbf{Q}_1 . We verify row validity by checking if either coefficient a or b for the relevant constraints is nonzero. Those coefficients are always reused in the final rotation calculation (e.g. a and b are the second and first elements respectively in Eq. (48)). This process therefore covers the whole domain and only requires a handful of operations and comparisons even in the worst case.

E BACKPROPAGATION DERIVATIVES

For a simple complex square matrix \mathbf{G} , the derivative of an eigenvector \mathbf{v} of \mathbf{G} with respect to the elements of \mathbf{G} can be computed as Magnus (1985):

$$d\mathbf{v} = (\lambda \mathbf{I} - \mathbf{G})^+ (\mathbf{I} - \frac{\mathbf{v}\mathbf{v}^H}{\mathbf{v}^H \mathbf{v}}) (d\mathbf{G}) \mathbf{v}$$

where λ is the eigenvalue corresponding to \mathbf{v} , \mathbf{I} is the identity matrix, and $^+$ denotes the Moore-Penrose pseudoinverse. Typically, $\mathbf{v}^H \mathbf{v} = 1$ by convention for most eigenvector solvers. In our original problem (Eq. (14)), \mathbf{G}_M is Hermitian as opposed to a general matrix, so the elements of Θ are repeated in the matrix through conjugation. Using complex differentiation conventions consistent with many deep learning frameworks, the loss derivative can be written as:

$$\frac{d\mathcal{L}}{d(\mathbf{G}_M)_{i,j}} = \frac{1}{2} \left(\left\langle \frac{d\mathbf{v}}{d\mathbf{G}_{i,j}}, \frac{d\mathcal{L}}{d\mathbf{v}} \right\rangle + \left\langle \frac{d\mathcal{L}}{d\mathbf{v}}, \frac{d\mathbf{v}}{d\mathbf{G}_{j,i}} \right\rangle \right)$$

Figure 4: Density plot of loss gradient ratios for Gram-Schmidt and 2-vec. The x-axis represents the loss \mathcal{L} , and the y-axis shows the ratio of loss gradient magnitudes $\|\nabla_{\mathbf{b}_x} \mathcal{L}\| / \|\nabla_{\mathbf{b}_y} \mathcal{L}\|$ for the predicted rotation axes \mathbf{b}_x and \mathbf{b}_y . See Appendix F for details. 2-vec exhibits noticeably lower variance, suggesting more stable gradients during learning.

where $\langle \cdot, \cdot \rangle$ denotes the complex inner product and \mathcal{L} is the scalar loss. $\frac{d\mathcal{L}}{d\Theta}$ can be extracted from the upper triangular portion of $\frac{d\mathcal{L}}{d\mathbf{G}_M}$ (after reshaping to 4×4), multiplying by 2 for the off-diagonal parameters to include the lower portion contribution. This method avoids the need for the other eigenvectors or eigenvalues of \mathbf{G}_M that weren't used in the forward pass.

For QuadMobiusSVD (Eq. (25)), the backpropagation must go through the SVD operation $\mathbf{M} = \mathbf{U}\Sigma\mathbf{V}^H$. It is well known that the nearest unitary matrix corresponds to the unitary component \mathbf{Q} of the polar decomposition of $\mathbf{M} = \mathbf{Q}\mathbf{P}$, where \mathbf{P} is a positive semidefinite and Hermitian matrix Keller (1975). Thus, instead of backpropagating through the SVD components individually, we can backpropagate through \mathbf{Q} in a more direct manner. Appendix B.3.2 outlines the details of the derivative of \mathbf{Q} with respect to the elements of \mathbf{M} . Given the well-known relationships between the polar decomposition and SVD ($\mathbf{Q} = \mathbf{U}\mathbf{V}^H$, $\mathbf{P} = \mathbf{V}\Sigma\mathbf{V}^H$), we can reuse the SVD elements from the forward pass to calculate the derivative more simply as:

$$\begin{aligned} \mathbf{S} &= \text{diag}(\Sigma) \oplus \text{diag}(\Sigma) \\ d\mathbf{Q} &= \mathbf{U} \left(\frac{\mathbf{U}^H(d\mathbf{M})\mathbf{V} - \mathbf{V}^H(d\mathbf{M}^H)\mathbf{U}}{\mathbf{S}} \right) \mathbf{V}^H \end{aligned}$$

where \oplus denotes an outer sum operation, and the division is Hadamard division (element-wise). From this equation, the numerical complex derivative can be expressed as follows (note the indices, \mathbf{F} is $2 \times 2 \times 2 \times 2$):

$$\begin{aligned} \mathbf{F}_{j,m,l,k} &= \mathbf{U}_{j,k}(\mathbf{V}^H)_{l,m} \\ \frac{d\mathcal{L}}{d\mathbf{M}_{j,m}} &= \left\langle \mathbf{U} \left(\frac{\mathbf{F}_{j,m}^H}{\mathbf{S}} \right) \mathbf{V}^H, \frac{d\mathcal{L}}{d\mathbf{Q}} \right\rangle_F - \left\langle \frac{d\mathcal{L}}{d\mathbf{Q}}, \mathbf{U} \left(\frac{\mathbf{F}_{j,m}}{\mathbf{S}} \right) \mathbf{V}^H \right\rangle_F \end{aligned}$$

where $\langle \cdot, \cdot \rangle_F$ denotes the complex Frobenius inner product.

The remaining operations in the maps are algebraically straightforward to differentiate through. We observe that the previous formulas compute the same gradients as PyTorch's automatic differentiation through complex functions `torch.linalg.eigh` and `torch.linalg.svd` but in a more streamlined manner.

F THEORETICAL INVESTIGATIONS OF REPRESENTATIONS

2-vec The core idea behind 2-vec lies in leveraging a more optimal projection (in the sense of Wahba's problem) than Gram-Schmidt to improve learning performance without increasing computational cost or dimensionality. To theoretically support this, we replicate the gradient analysis

1472 Figure 5: Visualization of loss ratio between Gram-Schmidt (GS) representation and 2-vec representations for all reported figures in this paper (accuracy converted to 1-Acc to maintain directionality).
1473 Gram-Schmidt performs around 10% worse on average than 2-vec with some experiments showing
1474 a large discrepancy. 2-vec performed better on 41/52 reported metrics.
1475

1491 Figure 6: Plot of mean loss (Chordal L2) against dropout rate of map representations. Θ and M
1492 denote whether dropout was applied to map inputs or intermediate representation for QuadMobius.
1493

1494 experiment from Geist et al. (2024) which evaluates how learning signals propagate through the
1495 representations. We first generate a thousand random 6D vectors, each with components sampled
1496 uniformly from $[-2, 2]$. Each vector is split into two 3D components, \mathbf{b}_x and \mathbf{b}_y , representing
1497 predicted target x, y coordinate axes. These are then mapped to a rotation matrix using both the
1498 Gram-Schmidt and 2-vec methods. For each mapping, we compute the Frobenius norm loss \mathcal{L}
1499 between the resulting rotation and the identity matrix. We then calculate the gradient magnitudes of \mathcal{L}
1500 with respect to \mathbf{b}_x and \mathbf{b}_y and analyze their ratio. The results are plotted in Fig. 4. We can see that
1501 the gradient ratios for 2-vec are more tightly concentrated around 1, indicating a relatively balanced
1502 gradient flow between the two vectors. In contrast, the Gram-Schmidt method exhibits a wider
1503 distribution with significant skew, often yielding ratios in the range of 10–100 which highlights its
1504 disproportionate focus on \mathbf{b}_x . These results support the hypothesis that 2-vec facilitates more stable
1505 gradients for optimization.

1506
1507 **QuadMobius** In our experiments, QuadMobius has consistently shown strong performance as a
1508 learning representation. To better understand why, we conduct two experiments to probe its be-
1509 havior. We begin by generating one thousand realistic map inputs Θ for each representation using
1510 trained models from a synthetic Wahba’s problem (trial #15 in Appendix G.2.2). All models are
1511 fed the same noiseless inputs on which they perform equivalently for fair comparison. In the first
experiment, we test how resilient each map is to corrupted inputs by applying dropout. Fig. 6 shows

Figure 7: Distribution plot of loss gradient magnitudes against loss \mathcal{L} (Chordal L2). The left shows the gradient with respect to the map inputs Θ , while the right shows the gradient with respect to the Möbius transformation M estimated from eigendecomposition in QuadMobius.

the results of applying increasing dropout probability to Θ on mean loss. For QuadMobius, we also test applying dropout to its intermediate Möbius transformation M instead (real and imaginary parts treated independently). While we might expect the sensitivity to dropout to decrease with dimensionality, this is not necessarily the case as seen with QCQP. Notably, QuadMobius appears to be the most resilient to dropout on Θ , but is also the most sensitive when applied to M . For the second experiment, we replace 10% of the model inputs with outlier points from another rotation, simulating out-of-domain inference. Fig. 7 plots the distribution of loss gradient magnitudes against loss. Gradients with respect to Θ are similar across all maps, consistent with their equivalent performance on the task. In contrast, gradients with respect to M in QuadMobius are both significantly larger and more tightly concentrated, following a square root trend. Together, these two experiments suggest that QuadMobius’s eigendecomposition step enables the learning of a stable intermediate representation that is buffered against poor inputs, while its subsequent $SU(2)$ projection ensures predictable, high-fidelity gradient flow, leading to its strong empirical performance.

SU(2) A natural question is whether we can just directly predict an $SU(2)$ representation and project it onto the manifold. This approach is simpler than QuadMobius and still provides an overparameterized representation (8D). However, like quaternions, $SU(2)$ suffers from the issue of double cover. Both Möbius transformation predictions M and $-M$ map to the same 3D rotation, introducing ambiguity in learning. Furthermore, one might hope the rows of M offer two different estimates of a quaternion rotation (similar to theoretical arguments of information averaging in SVD and QCQP). However, in $SU(2)$ the rows encode the same information, so independence is not enforced during learning. Empirically, $SU(2)$ prediction performed much worse in synthetic experiments than QuadMobius (often close to quaternion) and was thus not included in results.

To further validate the QuadMobius approach, we conducted a toy ablation experiment in Table 3. We took 10k random map inputs and mapped them to quaternions. We then calculate the squared quaternion loss (accounting for sign) against a set of random ground truth quaternions and compare the loss gradient magnitudes of the inputs for the different map variants. The variants include SVD projection only (8D $-i$, $SU(2)$), Eigendecomposition only (16D $-i$, Möbius transformation M , taking the first row of M as a quaternion with and without normalization), and QuadMobius. The percentiles of the gradient distributions and their subsequent percentile ranges are shown in the table below. The QuadMobius approach yields a significantly tighter distribution and a lower amount of large outlying values than the other isolated components, suggesting that it provides more stable gradients for learning with both eigendecomposition and projection.

Method	10%	25%	50%	75%	90%	25-75%	10-90%
Projection	2.04e-5	2.66e-5	3.23e-5	3.65e-5	4.02e-5	9.90e-6	1.98e-5
Eig. (no norm)	2.06e-5	2.87e-5	3.41e-5	3.88e-5	4.08e-5	1.00e-5	2.02e-5
Eig. (norm)	1.43e-5	2.07e-5	2.51e-5	3.01e-5	3.20e-5	9.41e-6	1.78e-5
QuadMobius	1.46e-5	1.79e-5	2.20e-5	2.49e-5	2.64e-5	6.98e-6	1.17e-5

Table 3: Toy ablation experiment showing gradient magnitude distributions for isolated components of QuadMobius algorithm. Bold indicates lowest for spread quantities.

G EXPERIMENTS

G.1 EXPERIMENT SETTINGS AND DETAILS

These are the specific experiment settings used to obtain the results in our learning experiments.

ModelNet10-SO3 ADAM optimizer, learning rate 5e-4, NVIDIA L1 GPU, batch size 100, Chordal L2 loss, 300/400/800 epochs respectively for chair/sofa/toilet to train for roughly equal iterations given dataset size differences. Architecture is ShuffleNetV2-1.5 backbone Ma et al. (2018) (used for its quick training) pretrained on ImageNet weights followed by two fully connected layers featuring ReLU activation and dropout applied before the layers with probability 0.4 and 0.25 respectively. Models saved by best average rotation error.

Inverse Kinematics Original author source code and settings Zhou et al. (2019) were utilized. Trained on NVIDIA L1 GPU for 2 million iterations. Epoch with lowest median rotation error was chosen for results.

Camera Pose Estimation Training code and settings obtained from Chen et al. (2022). Model initialized from pretrained GoogleNet weights recommended by original paper. Used NVIDIA L1 GPU and beta values 500/100/1500 for King’s College/Shop Facade/Old Hospital. Trained for 1200 epochs with batch size 75. Models saved every 5 epochs, and models from last 300 epoch were used for testing (batch size 1 in testing). Epoch with lowest median rotation error was chosen for results.

G.2 ADDITIONAL EXPERIMENTS

G.2.1 WAHBA’S PROBLEM

Algorithm	$n = 3$		$n = 100$		Timings
	$\epsilon = 1e^{-5}$	$\epsilon = 0.1$	$\epsilon = 1e^{-5}$	$\epsilon = 0.1$	
Q-method Davenport (1968)	7.4676e-4	7.4868	3.583	1.2487e-4	1.2551
QUEST Shuster and Oh (1981)	7.4676e-4	7.4868	0.250	1.2487e-4	1.2551
ESOQ2 Mortari (1997)	7.4694e-4	7.4869	0.375	1.2487e-4	1.2551
FLAE Wu et al. (2018)	7.4676e-4	7.4868	0.333	1.2487e-4	1.2551
OLAE Mortari et al. (2007)	7.7118e-4	7.8639	0.208	1.3120e-4	1.5952
Ours (\mathbf{G}_P , Eq. (12))	7.4676e-4	7.4868	4.084	1.2487e-4	1.2551
Ours (\mathbf{G}_S , Eq. (19))	7.4676e-4	7.4868	3.625	1.2487e-4	1.2551
Ours (\mathbf{G}_M , Eq. (14))	1.2614e-3	12.608	0.917	3.5870e-4	3.7782
					41.875

Table 4: Results of various Wahba’s Problem solvers against varying noise levels with $n = \{3, 100\}$. Accuracy values reported are median θ_{err} , and timing values are median runtimes in microseconds. Timings taken with $\epsilon_{noise}=0.1$. See Section 5.1 for more info.

G.2.2 LEARNING WAHBA’S PROBLEM

To evaluate our rotation representations more robustly across various conditions, we replicate the synthetic learning experiments from Peretroukhin et al. (2020); Levinson et al. (2020); Zhou et al. (2019), using a fully-connected neural network from Peretroukhin et al. (2020) to learn the solution

	Algorithm	x	\div	$\sqrt{\cdot}$	5^{th}	50^{th}	95^{th}
QUEST (Shuster and Oh, 1981)		89 / 99	1 / 1	3 / 3	3.3082 / 3.4115	9.1727 / 9.3970	27.0520 / 27.1371
Fast 2 Vec (Markley, 2002)		72 / 78	3 / 3	4 / 4	3.3082 / 3.4115	9.1727 / 9.3970	27.0520 / 27.1371
SUPER (Ours)		29 / 74	3 / 2	3 / 3	3.3082 / 3.4115	9.1727 / 9.3970	27.0520 / 27.1371

Table 5: Operation counts and θ_{err} percentiles ($\epsilon_{noise} = 0.1$) for two-point Wahba’s problem solvers. Values given for unweighted/weighted algorithms without edge case handling. Bold indicates best.

#	n	LR	Loss	Dom	Euler	Quat	GS	QCQP	SVD	2-vec	QMAlg	QMSVD
1	3	1e-4	L2	R	9.009/0	8.964/1	1.761/0	1.676/141	1.641/696	1.701/1	<u>1.658</u> /51	1.689/110
2	3	1e-4	L2	C	119.364/0	13.632/0	5.768/0	4.237/1	4.264/1	5.781/0	<u>3.823</u> /109	3.761/889
3	3	5e-4	L2	R	12.154/0	9.618/0	1.583/5	1.518/143	1.491/582	1.560/0	<u>1.501</u> /217	1.527/53
4	3	5e-4	L2	C	119.403/0	12.238/0	4.016/0	3.586/2	3.735/6	3.917/0	<u>3.447</u> / 751	3.408 /241
5	3	1e-3	L2	R	14.693/0	9.159/0	1.575/1	1.497/170	1.509/245	1.578/2	1.486 /87	1.499/ 495
6	3	1e-3	L2	C	119.397/0	11.212/0	3.290/24	3.289/190	3.253/ 384	3.269/0	<u>3.250</u> /110	3.232 /292
7	3	1e-4	L1	R	8.063/0	4.120/0	1.603/0	<u>1.445</u> /135	1.421/622	1.570/2	<u>1.469</u> /164	1.459/77
8	3	1e-4	L1	C	119.388/0	9.812/0	4.734/0	3.259/0	3.238/1	4.663/0	<u>2.835</u> /492	2.786 /507
9	3	5e-4	L1	R	8.687/0	4.355/0	1.459/0	1.315/175	1.322/ <u>279</u>	1.416/0	1.303 / <u>418</u>	<u>1.306</u> /128
10	3	5e-4	L1	C	119.334/0	7.500/0	3.290/0	<u>2.760</u> /3	2.857/3	3.113/0	2.750 / <u>921</u>	2.807/73
11	3	1e-3	L1	R	10.833/0	4.436/0	1.434/0	1.312/53	<u>1.301</u> / 338	1.427/0	1.317/337	1.291 /272
12	3	1e-3	L1	C	119.483/0	6.930/0	2.916/0	2.475/92	2.447 / <u>251</u>	2.874/0	2.478/211	<u>2.472</u> / 446
13	100	1e-4	L2	R	3.784/0	3.277/0	0.569/0	0.253/138	0.243 / <u>389</u>	0.313/0	0.255/169	<u>0.251</u> /304
14	100	1e-4	L2	C	48.175/0	4.988/0	1.400/0	0.638/254	0.637/136	0.850/0	0.625 / <u>281</u>	<u>0.634</u> / 329
15	100	5e-4	L2	R	5.395/0	3.712/0	0.547/0	0.249/121	0.247/175	0.303/0	0.247/ <u>368</u>	0.242 / <u>336</u>
16	100	5e-4	L2	C	119.370/0	5.009/0	1.586/0	0.831 / <u>682</u>	0.866/ <u>223</u>	0.940/0	0.866/66	0.848/29
17	100	1e-3	L2	R	6.608/0	3.269/0	0.537/0	0.243 /292	0.272/112	0.297/0	0.261/ 299	<u>0.253</u> /297
18	100	1e-3	L2	C	118.381/0	5.056/0	1.480/0	0.845/121	<u>0.836</u> / 499	0.887/0	0.859/71	0.826 /309
19	100	1e-4	L1	R	2.249/0	1.794/0	0.356/0	0.269/293	0.261 / <u>327</u>	0.332/0	0.264/130	0.265/250
20	100	1e-4	L1	C	109.217/0	3.209/0	0.927/0	0.665 /268	0.667/ 469	0.889/0	0.669/196	0.669/67
21	100	5e-4	L1	R	2.666/0	1.055/0	0.355/0	0.275/83	0.284/339	0.316/1	0.289/209	0.272 / <u>368</u>
22	100	5e-4	L1	C	119.299/0	1.954/0	0.938/0	0.883/ 780	<u>0.877</u> / 101	0.956/0	0.873 /73	0.878/46
23	100	1e-3	L1	R	3.867/0	1.384/0	0.366/0	0.280/167	0.280/ <u>316</u>	0.331/0	0.277 / <u>346</u>	0.291/171
24	100	1e-3	L1	C	83.623/0	2.184/0	0.952/0	<u>0.830</u> / 466	0.835/61	0.919/0	0.826 / <u>366</u>	0.849/107

Table 6: Trial results for learning Wahba’s problem with different rotation representations. n is number of points, LR is learning rate, Loss is type of chordal loss function, Dom is the domain, specifying whether the network is real-valued or complex-valued. Results are shown as θ_{err} /Ldr. pairs where θ_{err} is average rotation error on validation set, and Ldr. is the number of epochs where that representation was a leader, i.e. had the lowest θ_{err} overall as of that epoch. Bold indicates best value, underline indicates second best.

to Wahba’s problem. Problem points and rotations are generated according to same procedure described in Section 5.1. Each epoch, we dynamically generate 25,600 training samples and validate on a fixed set of the same size ($\epsilon_{noise} = 0.01$ added to all samples). The models are trained for 1000 epochs with ADAM optimizer on an NVIDIA T4 GPU. In addition to Chordal L2, we also define the loss function Chordal L1 analogously as the sum of absolute differences between the elements of \mathbf{R}_{pred} and \mathbf{R}_{gt} . Finally, given our complex representations, we also evaluate training complex-valued networks Liao (2023); Barrachina et al. (2023) of equivalent size for the task with stereographic complex inputs (Eq. (30)). For real-valued representations, we take the real part of the model output in this case.

As expected, the compact representations (Euler, Quat) performed relatively poorly. Overall, the best performers (QCQP, SVD, QuadMobiusAlg, QuadMobiusSVD) were all quite competitive with each other, having similar results and convergence rates. However, the QuadMobius representations together demonstrated an edge, leading most of the epochs and having the lowest error in majority of trials. Although mathematically equivalent, the two approaches produced different results with neither approach consistently outperforming the other. On the other hand, 2-vec outperformed the

1674 other non-eigendecomposition representations (including Gram-Schmidt), beating them on most
 1675 trials, at times by a large margin. Although significant differences for the complex cases were
 1676 not observed among representations, some of the complex-valued trials featured the highest leader
 1677 counts overall by our representations (e.g. trial #2, trial #10). The leader count gives a sense of
 1678 the convergence/dominance of the learning as well how cherry-picked the results may be based on
 1679 number of training epochs. See Fig. 8 for sample training/validation curves which illustrate the
 1680 advantage of noncompact representations and the competitiveness of our approaches.

1681 G.2.3 REPRESENTATION TIMINGS

	Euler	Quat	GS	QCQP	SVD	2-vec	QMAlg	QMSVD
Training	0.2123	0.0691	0.4903	0.5223	0.4904	0.4447	1.2231	1.6247
Inference	0.0401	0.0056	0.1050	0.2435	0.2737	0.0803	0.4298	0.6221

1687 Table 7: Comparison of timings of different representations run with batch size 128. Measured on
 1688 Apple M1 Silicon CPU. Values reported are median measurements of 10000 runs in milliseconds.
 1689 Training includes forward and backward passes (PyTorch train mode), and Inference includes only
 1690 forward pass (PyTorch eval mode).

1691 Table 7 shows the compute timings of the representations. 2-vec has notably fast inference tim-
 1692 ings. QuadMobius representations are slower than others as they involve complex arithmetic and
 1693 more compute steps overall. However, training time differences were observed to be negligible be-
 1694 tween them and QCQP/SVD as bottlenecks are typically present elsewhere in the pipeline (e.g. data
 1695 loading, network compute).

1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

Figure 8: Progression of average θ_{err} over the training and validation sets for learning Wahba's problem (Appendix G.2.2) for trial #15 in Table 6. Orange is training, blue is validation.