Under review as a conference paper at ICLR 2026

SPECIAL UNITARY PARAMETERIZED ESTIMATORS OF
ROTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper revisits the topic of rotation estimation through the lens of special
unitary matrices. We begin by reformulating Wahba’s problem using SU(2) to
derive multiple solutions that yield linear constraints on corresponding quaternion
parameters. We then explore applications of these constraints by formulating effi-
cient methods for related problems. Finally, from this theoretical foundation, we
propose two novel continuous representations for learning rotations in neural net-
works. Extensive experiments validate the effectiveness of the proposed methods.

1 INTRODUCTION

3D rotations are fundamental objects ubiquitously encountered in domains such as physics,
aerospace, and robotics. Many representations have been developed over the years to describe them
including rotation matrices, Euler angles, and quaternions. Each method has specific strengths such
as parameter efficiency, singularity avoidance, or interpretability. While special orthogonal matri-
ces SO(3) are widely used, their complex counterparts, special unitary matrices SU(2), are less
explored in areas like robotics and machine learning. This paper showcases the utility of special
unitary matrices by tackling rotation estimation from different perspectives.

1.1 WAHBA’S PROBLEM

Wahba’s problem (Wahbal |1965) is a fundamental problem in attitude estimation. The task refers
to the process of determining the orientation of a target coordinate frame relative to a reference
coordinate frame based on 3D unit vector observations. More formally, it is phrased as seeking the
optimal rotation matrix R minimizing the following loss:

min w;|[b; — Ra;||? 1
RGSO(B)Z illb: il M
where a; are the reference frame observations, b; are the corresponding target frame observations,
and w; are the real positive weights for each observation pair. The problem can be solved analytically
by finding the nearest special orthogonal matrix (in a Frobenius sense) to the matrix B below:

B =) wb;a] )

Today, this solution is typically computed via singular value decomposition (Markley, |1987).

Alternatively, the solution can be estimated as a unit quaternion. [Davenport| (1968)) introduced the
first such method in 1968 by showing that the optimal quaternion q is the eigenvector corresponding
to the largest eigenvalue of a 4x4 symmetric gain matrix K, which can be constructed as:

Tr(B) z!

K= B+ BT — Tr(B)I )
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where I is the identity matrix, 7r(B) = >, B;;, and z = ), w;a; x b;. The solution via eigen-
decomposition is relatively slow as it solves for all the eigenvectors of the matrix which are not
needed. Later solutions improve upon this by calculating the characteristic equation of K and solv-
ing for only the largest eigenvalue (Shuster and Oh, |1981; Mortari, [1997; [Wu et al., [2018). For an
overview of major algorithms, see Lourakis and Terzakis| (2018)).

1.2 REPRESENTATIONS FOR LEARNING ROTATIONS

In recent years, there has been great interest in representing rotations within neural networks, which
often struggle with learning structured outputs. Directly predicting common parameterizations such
as quaternions or Euler angles has generally performed relatively poorly (Geist et al.||2024). In fact,
it was shown that any 3D rotation parameterization in less than five real dimensions is discontinu-
ous, necessitating non-minimal representations for smooth learning (Zhou et al., |2019). Addition-
ally, challenges like double cover in some representations can further hinder learning. Two leading
approaches, |Levinson et al.[(2020) and |Peretroukhin et al.|(2020), essentially interpret network out-
puts as B and K matrices and |(3)| respectively), mapping them to rotations via solutions
to Wahba’s problem. Thus, the two tasks can be linked. For a more in depth overview of the task,
see |Geist et al.[(2024).

1.3 CONTRIBUTIONS

This paper establishes new theoretical results on rotation estimation by utilizing special unitary
matrices within the framework of Wahba’s problem. We explore several applications of these results,
with particular emphasis on our two novel representations for learning rotations in neural networks.

We highly recommend the reader to first review to become familiar with the
relevant mathematical background and notation used throughout the paper.

2 SOLUTIONS TO WAHBA’S PROBLEM VIA SU(2)

Transferring Wahba’s Problem to complex projective space, we can solve for the optimal rotation as
a special unitary matrix.

2.1 STEREOGRAPHIC PLANE SOLUTION

First, we establish the proper distance metric in complex projective space corresponding to the
spherical chordal metric in|Eq. (1)} For points a, b € S? and their stereographic projections )(a) =

z = [z1,20]7 and (b) = p = [p1,p2]T, we can show that the metric can be expressed in the
following way (derivation in[Appendix B.T.T):
4)21p2 — zop1 |?
a2 = el 4)
|22 |[pll

We now seek to find the rotation R parameterized by corresponding special unitary matrix U in
complex projective space that minimizes the objective in[Eq. (D] Applying our derived metric and
Eqgs. (32)|and[(34)] we can construct for each weighted input correspondence z; and p;:

2

w;[bs — Ray||? = 4w;|(=Bziq + azi2)pin — (@zin + B2zi2)pio
L= v ) |2 _ D) 112
(lazin + Bzo,l® + | — Bz + azi2?)||pi|
_ dw;|(—Bzia + a@zi2)pi1 — (azi1 + Bzi2)pisal?

10242 ps[?
where «, § are the complex parameters defining U from|Eq. (31)| By definition of unitary matrices,
||Uz||> = ||z||?. Thus, we can rewrite our expression as the following target constraint:

dw|(=Bzi1 + Gzi2)pin — (zi1 + Bzi2)pial?

||z|1*|p|[? a

2Vw((—Bzia + @z 2)pin — (azi1 + Bzi2)pi2)
\/|Z7L,1|2 + |Zi,2|2\/|pi,1|2 + |pi2|?

0 (5)

= =0 (6)
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The expression is now just a linear function of rotation parameters. It is a general constraint as it

handles the entire complex projective space (proof in |[Appendix B.1.2). However, in practice, our
inputs are more commonly given as projection coordinates on the complex plane. As such, we have:

Zi1 = 2 = T; +Yil, Pi1=Dp;=m; +Nit, 22 =pi2=1
for each point correspondence (z;, ¥;, mi, n; € R). This simplifies the constraint to the following:

2y/w; ((—Bzi + &)p; — az; — B) _

(7
VIzP +1VIpP +1
We can rearrange the equation to the following linear form with u = [a B8 @ B} T,
dw;
w) = = (8)

(lzi* + D(|pi* + 1)
Vwi[—z =1 pi —pizilu=/wAu=0 9)

Each input point pair gives us a complex constraint A;. Stacking A; together and multiplying the
weights through, we can write the relation succinctly as Au = 0 (A is a complex 7 x 4 matrix for
n points). With noisy observations, the constraints do not hold exactly, so we aim to find the best
rotation that minimizes the least squares error ||Aul|2. It is nontrivial to solve for the minimizing
vector u while ensuring the result will form a valid special unitary matrix (u; = Us, Uy = Uy,
u;ii; + usti; = 1). To more effectively solve this, we use to transform the vector u to
a corresponding quaternion q = [wg T4 Yq zq]T that has a simpler constraint (q must be unit
norm). We carry out the complex multiplication for each A,;u and break the constraint into two
constraints, one for the real and imaginary parts respectively:

4w;
w = ¢ 10
(422 +y2) (1 +mE+n?) (10)

T my —y— g Lmar — gy My ng D e —
Yilyi—ni witmi mayi+nag 1—mixi+niyjq_ wiDia=0 (D

Multiplying the weights through again and stacking together D, for each correspondence into D
(real 2n x 4 matrix), we can arrive at the following constrained least squares objective:

IDq|* = q"D"Dq = q" (> wiD{D;)a=q"Gprq

min q Gpq, s.t. ||q|| =1 (12)
q

The formulated objective in[Eq. (I2)]is equivalent to the original problem statement, and the solution
is well known as the eigenvector corresponding to the smallest eigenvalue of G p. Using
again, we can map q back to a special unitary matrix U giving a solution to the problem. Note that
—q is also a solution since eigenvectors are only unique up to scale. However, the sign is irrelevant
as q and —q map to the same rotation due to the double cover of quaternions over SO(3) in[Eq. (36)|

For further theoretical details on this solution, see

2.2  APPROXIMATION VIA MOBIUS TRANSFORMATIONS

We can approximate the previous solution in the complex domain by first estimating an optimal
Mobius transformation M and mapping it to a special unitary matrix. Relaxing the special unitary
conditions in [Eq. (9)| we can treat u as a flattened form of M, leading to a modified constraint A’
that holds when M aligns a stereographic point pair:

m=vecM)=[c & v 6]T

Note that|[Eq. (13)|does not preserve the metric in[Eq. (4)|between p; and transformed point ®yg(2;).
We can stack each A/ into matrix A’ (n x 4 complex matrix) and similarly estimate the best (in a

least squares sense) Mobius transformation aligning the points as:
TH A7 TH A1
Gy =A"A =3 AMA]
i

minm?Gym st |m| =1 (14)
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The constraint in [Eq. (I4)]is necessary to prevent trivial solutions, but the choice of quadratic con-
straint on m is arbitrary. With our constraint choice, the optimal m is the complex eigenvector
corresponding to the smallest eigenvalue of G ;. Since Gy is positive semidefinite and Hermitian
(GI, = G ) by construction, the eigenvalues are real and nonnegative, facilitating straightforward
ordering. If n < 4, m can be obtained directly from the kernel of A’. Either way, the solution is
not unique as eigenvectors and kernel vectors can be scaled arbitrarily, particulary by a phase e*.
However, by [Eq. (42)] scaled M&bius transformations are equivalent, so our result properly defines

the transformation.

Given m, we can reshape it into M and scale M to M* = det(M)’%M (allowed since the scale
of M is arbitrary) so that det(M*) = 1. It is known that the closest unitary matrix to M* in the
Frobenius sense can be computed by UVH (Keller,|1975), where U and V¥ are from the singular
value decomposition M* = UXV#, Since det(M*) = 1, the nearest unitary matrix to M* is
special unitary (proof in[Appendix B.3.T)) and in fact the approximate solution. Note that this matrix
is not necessarily the nearest special unitary matrix to M itself. By normalizing the determinant, we
prevent the rotation mapping from being affected by arbitrary phase scalings of m.

2.3 3D SPHERE SOLUTION

If our inputs are given as unit observations in 3D, we could project them by v and use the earlier
solution. However, through [Egs. (37)| and [[38)] we see that we can act directly on 3D vectors with
special unitary matrices which suggests an alternative formulation. Upon examining the structure of
the matrices that y maps to, one can show that[Eq. (T)|can be equivalently expressed as:

x(a;) = Z;, x(b;) — P;

1
ZwiHbFRaiH?:izwiHPFUZiUHH% (15)

where || - || denotes the Frobenius norm and U is the special unitary matrix that maps to R. The
Frobenius norm is unitarily invariant, so we may multiply the inside expression on the right by U to
obtain a new target objective and corresponding constraint:

1 2 w;
§Zwi|\PiUfUZi||F:O = ,/?(PiUfUZi):O (16)

We arrive at a linear constraint again via special unitary matrices. Inspecting the matrix within the
Frobenius norm reveals that the loss contribution from the top row elements is identical to that of the
bottom row elements. Consequently, we only need to compute the loss from a single row, allowing
us to eliminate the factor of % from equation With a; = (24, v:, z;) and b; = (m;, ns, p;),
we can write the following complex constraint:

— (ml — in)i Yi — Zii 0 —Nn; — pii _ L
Wi —Y; — Zﬂ (I’l + ml)z n; +pﬂ 0 u= \/Eiclu =0 (17)

C,; has a rank of at most 1 if a and b have the same magnitude. We reformulate the constraint, once
again breaking the complex terms of u into their real components. This yields the following linear
constraint in terms of quaternion parameters:

0 Ti—mg Y =N Zi — D
- |my — 0 —2;—pi Yt ny — O —
VUil ni—y ozt 0 —z,—m;| 47 ViQa=0 (18)
Pi =z —Yi—ni Titmy 0

Note that Q; is a 4x4 skew-symmetric matrix and has at most rank 2 if a and b have the same
magnitude. As a result, our optimization now becomes:

> wiQfQi=-) w,Q =Gs
minq’ Gsq s.t.||q|| =1 (19)
q

The solution is once again the eigenvector corresponding to the smallest eigenvalue of Gg.
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3  OPTIMIZATION METHODS FROM LINEAR QUATERNION CONSTRAINTS

Our previous general solutions are notably distinct from other methods as they allow for the prin-
cipled construction of linear constraints (Egs. (11)|and [(18)) on quaternion parameters. We discuss
some applications and desirable properties of these results.

3.1 RESIDUAL BASED OPTIMIZATION

While Wahba’s problem admits a direct solution, many related rotation estimation tasks require it-
erative methods. These often involve repeatedly evaluating per-observation losses for a candidate
quaternion. Examples include alternative loss functions like the absolute chordal metric (L4 dis-
tance) or robust approaches such as iteratively reweighted least squares (IRLS). In these settings, our
linear constraints serve as a drop-in, efficient method for residual computation. The stereographic
formulation in [Eq. (TT)|is especially appealing as it is far more compact (8 elements versus 12 for

while avoiding branching in construction, especially in the general case of

3.2 CONSTRAINED OPTIMIZATION

When the constraints for an observation pair hold exactly, our formulas yield a convenient analytical
characterization of all rotations that align the pair. A practical use case for this is rotation estimation
with an axis prior (e.g. a gravity vector measurement from an IMU). Traditional methods rely on
sequential rotations or intermediate coordinate frames to simplify the problem (Magner and Zee|
2018}, [Chandrasekhar} 2024). In contrast, because both [Egs. (11)] and [(T8)] reduce to rank 2 in this
setting, we can linearly express two quaternion parameters in terms of the other two and solve
directly and efficiently in a reduced space, eliminating the need for intermediate frames.

3.3 Two-POINT CASE FOR WAHBA’S PROBLEM

More generally speaking, when the constraints hold exactly for one or more observation pairs (i.e.
noiseless scenarios), we can obtain the solution from the kernel of those constraints in closed-form.
For example, with two noiseless 3D sphere observation pairs, the aligning rotation can be given by:

~ (a1 +b1)~(a2—b2)

- (a1 — bl) X (a2 — b2) (20)

where g denotes the unnormalized form of rotation q. [Appendix D]describes our methods to robustly
and efficiently construct these rotations of exact alignment. These simple kernel formulations are
key to enabling our solutions to the case of Wahba’s problem when n = 2.

Weighted Wahba’s problem for the two-point case is well known to have closed-form expres-
sions (Shuster and Oh| [1981; Mortaril (1997; Markleyl [2002). We propose an alternate solution
which is given by the weighted average of the two (unnormalized) rotations that each noiselessly
align the cross products of the reference and target sets, along with one of the two corresponding

observation pairs (proof in [Appendix B.4.T). Using the average rotation definition from Markley
et al[(2007) (i.e. in Frobenius sense for SO(3)), the solution is:

_ _ ||a1 X a*2||2 ~ (ai +b7,) . (n1 — 1’12)
np=a; xaz, nz2=4j m(bl xbs), ai= (a; — b;) X (n; — ny)

7= (w1 —wa)l|@]]?[|@l?, w = 2w1|G:l|*(d: - q2)
v= 2“’2||(~11||2(0I1 “Q), p=T+VTE+wr
_ 1A + va
V0alPp? +[laz|?v? + 2(a: - @)

where q; - qo denotes the usual vector dot product between q; and G. See for
derivation and additional details.

q 1)
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(a) Gram-Schmidt (b) 2-vec (c) QCQP/SVD (d) QuadMobius

Figure 1: (a)-(b) Illustration of difference between Gram-Schmidt and 2-vec in 2D. by, by, are
predicted axes directions from the model, and Ry, R, are the orthogonalized coordinate axes from
each mapping. Gram-Schmidt favors by, aligning Ry with it greedily while 2-vec uses by, by in
a balanced way. (c)-(d) Conceptual illustration of QCQP, SVD, and QuadMobius maps in context
of Wahba’s problem in 3D. QCQP/SVD can be interpreted as direct projection of target points (red)
to an orthogonal frame. QuadMobius first maps those points to an intermediate representation—a
Mobius transformation, defined by three points (blue)—before projecting to an SU (2) rotation.

Unweighted In the case of w; = ws, the optimal rotation simplifies to the rotation which exactly
aligns a; + as to by + bs and a; — as to by — by (proof in{Appendix B.4.2). This is given by:

l14+a;-a
S; =a; +az, S2= \/ﬁ(bl + by)

1—31'32

di=a; —ay, dy= m(b1—b2)
- | (s1+s2)(d —do)
4= |:(Sll— 522) X (dll — d22):| (22)

The aligning rotation formulas are given in the form of equation for simplicity, but in
practice we use the approach described in[Appendix D.2]for robustness. In that case, singular cases
only arise when a; xay = 0 or by xby = 0 where no unique solution exists, and a particular one may
be obtained via the special unitary constraints in equation [Eq. (17)] (see [Appendix B.4.4). Notably,
the two solutions above are optimal in the sense of Wahba’s problem and simplified compared to
existing two-point methods, especially for the unweighted case (see[Table 3.

An example use case of these methods is estimating the orientation of a camera given an image
of a rectangle. Under a pinhole camera model, the image of a 3D rectangle adheres to the rules of
perspective geometry. Since the rectangle’s opposite edges are parallel in 3D, their projections in the
image converge at vanishing points that represent the direction of these lines in the camera’s frame.
Because the two sets of parallel edges in the rectangle are orthogonal in 3D, the corresponding
vanishing points should also be orthogonal. However, due to measurement noise, this orthogonality
is often violated. Our two point solutions can recover the best estimate of the camera’s orientation
in these cases.

4 REPRESENTATIONS FOR LEARNING ROTATIONS

Based on previous formulations, we introduce two higher-dimensional representations for learning

rotations. See for derivation details and [Appendix F for further theoretical support of

both representations.

2-vec The first is based on our formula for the optimal rotation from two unweighted observations
and is denoted 2-vec. Similar to the Gram-Schmidt map in|Zhou et al.|(2019)), 2-vec interprets a 6D
output vector from a model as target 3D x and y axes (denoted b,, b,). Unlike the Gram-Schmidt
method which greedily orthogonalizes the two vectors by assuming the x-axis prediction is correct,
2-vec maps the two vectors to a rotation optimally in the sense of Wahba’s problem, balancing error
from both axis predictions (Fig. 3)). [Eq. (22)| could be used, but since the reference points are the
x,y coordinate axes, we can instead obtain a rotation matrix in a simpler fashion through the same
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principle:
b, b, + b/ b, — b’
b= Pally e Petby o bamhy
[y ] bz + by | [[by — by |
R — {%(b* +b7), L5(b* —b7), b x b+} (23)

This method has a similar singular region and computational complexity as that of Gram-Schmidt.

QuadMobius A second parameterization is based on the approximation from involv-
ing Mobius transformations. Taking inspiration from the approach in [Peretroukhin et al.|(2020), a
(real) 16D network output © = {6, : i = 1...16} is arranged into the unique complex elements of
G/ as below:

01 0y + 031 04 + 051 O + 071
92 — 932 08 99 -+ 0101' 911 -+ 912i
0y — 051 Oy — 0101 013 014 + 6158
O — 071 011 — 0121 014 — 0151 016

Gu(0) = (24)

G/(©) is Hermitian with real (and assumed distinct) eigenvalues where we can select the eigen-
vector m corresponding to its smallest eigenvalue. After reshaping m to a Mobius transformation
M, we can map to a rotation by the approximation procedure in The procedure can be
performed via singular value decomposition (M = UXV ) to obtain a special unitary matrix Q:

Q= WUVH € SU(2) (25)

Alternatively, we can algebraically solve for Q as follows:

. det(M)
M= \/|det(M)|(2det(M)| i) M
Q= M" + adj(M*) € SU(2) (26)

where T'r(-) denotes the trace and adj(-) denotes the adjugate. In both cases, Q is mapped to a
quaternion via[Egs. (35)|and[(45)] and M is assumed to be nonsingular. We denote the SVD method
QuadMobiusSVD and the algebraic method QuadMobiusAlg. With these maps and our assump-
tions (observed valid in practice), we define a full mapping from © to q that has a defined numerical
derivative for backpropagation (see for derivative formulas). We remark that this map
is motivated by ideas from |[Levinson et al.[(2020) and [Peretroukhin et al.[(2020), inheriting many of
their properties (e.g. interpretation as Bingham belief (Kent, |[1994)), differentiability (Magnus, 1985
Wan and Zhang| 2019))) while offering a potentially more flexible (higher-dimensional, complex)
learning representation.

5 EXPERIMENTS

5.1 WAHBA’S PROBLEM

Synthetic experiments are performed to validate the proposed methods for Wahba’s problem. For
each trial, a ground truth quaternion rotation qg; is randomly sampled from S3, and n reference
points are randomly sampled from S2. The reference points are rotated by qg ¢ to obtain target ob-
servations. Gaussian noise is added to each component of each target observation, and the target
observations are subsequently re-normalized afterward. Weights are randomly sampled between 0
and 1. Accuracy is measured by the angular distance 0., = cos™ (2(qest - qgt)* — 1) in de-
grees between the estimated rotation q.,; and qg;, where (-, ) denotes the usual vector dot product.
Numerical results shown in Appendix.

We first test our solutions to Wahba’s problem for both 3D and stereographic inputs
and [(19)). The input for the latter is created by projecting the 3D points by ). We also test the
approximate solution in The solutions to all three are obtained by eigendecomposition
using Jacobi’s eigenvalue algorithm. For validation, we compare against several quaternion solvers
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introduced over the past decades. For the two-point case, we also compare against the closed-form
solutions in Markley| (2002) and |Shuster and Oh| (1981). All solutions were reimplemented and
optimized similarly in C4++417 and compiled with the flag —~03. We perform one million trials for
each configuration.

'Table 4| confirms that our optimal solvers match the results of Davenport’s Q-method in the general
case. In contrast, our Mbius approximation demonstrates a sensitivity to noise (potentially a benefit
in the learning context of next section). We note that this approximation could likely be improved
with a normalization step common in real homography estimation (Hartley and Zisserman) 2004).

similarly confirms that our two-point methods achieve the same optimal results as existing
solvers. By utilizing unnormalized rotations, our weighted algorithm minimizes normalization costs,
streamlining the compute. Most notably, in the unweighted case, our tailored solution only requires
roughly a third of the multiplications of other methods, marking a significant gain in efficiency.

Chair Sofa Toilet
Mean Med. Accs Accio| Mean Med. Accs Accio| Mean Med. Accs Accig

Euler [21.479 10.777 0.129 0.457 |22.033 9.462 0.153 0.529 | 14.495 8.375 0.197 0.604
Quat [23.640 12.664 0.083 0.350 |23.426 10.778 0.128 0.452 |14.959 9.913 0.128 0.511
GS 13.606 6.320 0.350 0.738 |15.015 5.469 0.441 0.801 | 6.586 3.708 0.682 0.915
QCQP |13.131 5.786 0.416 0.773 |13.916 5.476 0.436 0.795 | 6.070 3.452 0.730 0.929
SVD |13.061 5.815 0.412 0.773 |14.967 5.812 0.406 0.774 | 6.135 3.502 0.710 0.930
2-vec [12.544 6.100 0.380 0.751 |15.077 6.217 0.364 0.753 | 6.069 3.483 0.713 0.926
QMAIlg [12.604 5.696 0.425 0.783 | 14.336 5.657 0.419 0.793 | 6.079 3.590 0.714 0.930
QMSVD | 13.157 6.211 0.366 0.748 [13.683 5.421 0.443 0.799 | 6.026 3.601 0.699 0.926

Table 1: 6., mean/median and accuracy (subscript indicates threshold) on 3D shape alignment for
different ModelNet10-SO3 categories (Liao et al., 2019). Bold indicates best, underline indicates
second best.

5.2 LEARNING EXPERIMENTS

We conduct several experiments to evaluate our proposed rotation representations. The primary
loss function is the squared Frobenius norm ||R,req — Ryt||%, which we refer to as Chordal
L2, where R4 is the predicted rotation and R, is the ground truth. For quaternion outputs,
Chordal L2 is computed same as |Peretroukhin et al.| (2020). We compare our representations—2-
vec, QuadMobiusAlg (QMAIg), and QuadMobiusSVD (QMSVD)—against several baselines: Eu-
ler angles (Tait-Bryan YXZ), Quat (quaternion), GS (Gram-Schmidt) (Zhou et al., 2019), QCQP
(Peretroukhin et al.| [2020), and SVD (Levinson et al.,[2020). In both QuadMobius variants, we use
the algebraic method in the forward pass to avoid SVD computation and isolate differences to the
backward pass. This section presents results on three public benchmarks. Additional synthetic ex-

periments exploring different learning conditions are included in[Appendix G.2.2] and full training
details are provided in

ModelNet10-SO3 We first evaluate the representations on the 3D shape alignment task from Liao
et al.| (2019) using the ModelNet10-SO3 dataset. This dataset comprises of images of 3D CAD
models under uniformly sampled rotations with multiple object models per category. The task is to
predict the object’s orientation directly from its image. reports the results on three object
categories, chosen for their low rotational symmetry following the choice in [Levinson et al.| (2020).

Inverse Kinematics Next, we test the representations on an unsupervised learning task, applying
them to the inverse kinematics task from Zhou et al|(2019). Given 3D human pose joint locations
(from real-world motion capture data), a network predicts the joint orientations relative to a reference
pose and uses a fixed forward kinematics function to obtain predicted joint locations. The distance
loss is applied between the predicted and given joint locations. In this task, the rotations are used as
implicit representations through which the gradients must flow rather than direct prediction targets.
compares the results of the different learning representations on this task.
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Figure 2: Results of unsupervised learning for Inverse Kinematics task (Zhou et al.,2019). Left: L2
distance error (cm) of predicted joint locations. Bold indicates best, underline indicates second best.
Right: Ratios of joint errors relative to QMSVD across error percentiles (Euler/Quat omitted due to
large ratios).

Camera Pose Estimation Finally, we replicate the experiment from Walch et al.| (2017) which
utilizes an LSTM to directly regress a camera’s pose from real world images. Training requires
simultaneously optimizing over both the camera’s orientation and translation. Data comes from
the Cambridge Landmarks dataset (Kendall et al.,|2015) which includes labels estimated from tradi-
tional structure from motion pipelines. The results are seen in[Table 2|from training on select scenes,
following the choice of |(Chen et al.[(2022).

Results Overall, the proposed representations demonstrated strong performance and versatility
across the three benchmark tasks. Despite its lower dimensionality, 2-vec proved competitive, oc-
casionally achieving the best result. Notably, it typically outperforms Gram-Schmidt, positioning
itself as an attractive alternative. The QuadMobius approaches showed their potential by achieving
the top result in nearly all experiments over favorites like SVD and QCQP.

King’s College Shop Facade Old Hospital
Mean 25" 50" 75" | Mean 25" 50" 75" |Mean 25'" 50" 75t

Euler |4.192 2403 3.684 5.509 | 6.826 4.129 6.050 9.305 | 4.748 2.204 3.247 6.162
Quat | 2.759 1.367 2.251 3.499|6.604 3.762 5.339 8.153 | 4570 2.486 3.377 5.546
GS 3298 1.764 2.583 4.137 | 6.559 4.376 5.660 8.343 |4.295 1.897 3.070 5.698
QCQP |3.204 1540 2.537 4.129 | 6.802 3.901 5.797 8.539 | 4454 2.156 3.304 6.267
SVD |3.292 1.589 2.624 4.110|7.117 4.157 5.647 8.370|4.574 2.420 3.485 5.961
2-vec |3.085 1.536 2.371 4.014|7.118 3.789 5.762 8.957 | 4.294 2.085 2.950 5.292
QMAlg |2.631 1.337 2.052 3.267 | 6.317 4.050 5.268 7.758 | 4.426 2.035 3.238 5.640
QMSVD | 2.706 1.391 2.177 3.345 | 6.715 4.074 5.710 8.947 | 4409 2.077 3.146 5.744

Table 2: 6., of predicted rotations from direct pose prediction on different scenes in Cambridge
Landmarks Dataset (Kendall et al., [2015). Bold indicates best, underline indicates second best.

6 CONCLUSION

This paper demonstrated the utility of special unitary matrices for rotation estimation. Several new
formulas and algorithms were presented from this perspective for the real and complex domains,
tackling Wahba’s problem and rotation representations in neural networks. Various experiments con-
firmed the potential of these approaches. Future work may include further solidifying the theoretical
and empirical foundations of our rotation representations and applying special unitary matrices to
other tasks such as analytical camera pose estimation.
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7 LLM USAGE

LLMs were used in the development of this paper, primarily for polishing and rephrasing the writing.

8 REPRODUCIBILITY

For theoretical portions, the main paper body as well as Appendix B contains several proofs and
derivations supporting the claims made. For the benchmark experiments, anonymized code and
implementation can be found at below (each folder has up to few GBs):

Link: https://mega.nz/folder/Yv9Swaha
Decryption Key: 421k30Tyds1RgAyOuGgHew

For algorithm implementations, see “SUPER Wahba’s Problem/SUPER.hpp” and “SUPER Learn-
ing/SUPER Learning/SUPER maps.py” for C++ and Python code respectively.

See each folder’s README for specific instructions. Folders are self contained with appropriate
data. SUPER Wahba’s Problem contains C++ code for the classic problem while the other folders

contain learning code. See paper body and for training details.
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Special Unitary Parameterized Estimators of
Rotation

Appendix

A  MATHEMATICAL BACKGROUND AND DEFINITIONS

The mathematical background for special unitary matrices and related concepts is briefly reviewed.
The formulas are all established and generally known. A complex square matrix U is defined as
unitary if:

UUA =UfU =1, |det(U)| =1 (27)
where ¥ denotes the conjugate transpose and | - | is the complex magnitude. The matrix is special
unitary if it has the additional restriction that det(U) = 1 exactly.

Stereographic projection ) is an invertible mapping of the sphere S? = {(zs, ys, 25) | 2 +y2+22 =
1} from the point p* = (0,0, —1) to the complex plane and is given by:

Ts Ys . .
P(a) : T+ s 1+Zz:xp+ypz:z (28)
2 2
7/)71(2)' ( 2z, 2yp 1 -, fyp> 29)
N4 a2 42 T4 a2 g2 122 4 y2

where a € S? and z € C. Note that v is undefined when a = p*. To overcome this, the map is
extended to the complex projective space CP' which includes the point at infinity so we can define
1(p*) = oo. The projection is now redefined below with equivalence relations:

2] e
bla) - [A (30)

*

0
NEC, A£0, v (d(a) =a

From this, ¢)(a) can be arbitrarily scaled, and ¢ bijectively maps the entire sphere to the complex
projective space. Note that this mapping is not unique, particularly since choice of p* is arbitrary
(any point on S? is valid). We will use the specific projection defined above for this paper as it is
convenient for image processing.

| am

A special unitary matrix U € SU(2) can generally be written as:

U:[O‘— [_3] (31)
aa+pBB=1, a,feC

U transforms a complex projective point z = [21, 23] and complex plane point z by:

U:z—2 =Uz= [_aﬁ ﬂ {zj (32)
) y_oaz+ B o
<I>U.z'—>z—7_gz+d, Bz+a#0 (33)

These transformations are of importance as they act analogously to rotations of the unit sphere in
R3. Specifically, for a 3x3 rotation matrix R € SO(3) that rotates a unit vector v € S? as v/ = Ry,
there exists some U such that:

vi= () oUoy)(v) (34)

12
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The exact relationship between SU(2) and SO(3) is made clearer by their relationships with unit
quaternions g € H which also act as rotations in R®. The isomorphism between SU(2) and unit
quaternions is given as:

q = Wq + xqt + Yqj + 24k, wg —|—x3 —&—y? —l—zg =1, wq,%q,Yq,2¢ €ER
o= wWq + Tgt, B=yq+ 24l (35)
and the mapping of unit quaternions to special orthogonal matrices is given by:

1—2y2 — 222 2wyq —2wezg 2Tqzq + 2wqy,
Ry = |2z4yq +2wezq 1— Qx?l — 223 2Yq2q — 2WqTq (36)
2Tqzq — 2WqYq 2YqRq T 2wexgy 11— 2333 - 2y3

[Eq. (36)]is the well-known 2-to-1 surjective mapping between quaternions and rotation matrices. By
their isomorphism in[Eq. (35)] SU(2) also has a similar surjective mapping with SO(3), linking the
three rotation representations. Note that the mapping given by m is not unique. Furthermore,
special unitary matrices have the ability to act as rotations in R* directly by first mapping points to
2x2 complex matrices. For a point x = (z,y, 2) € R%:

) . i Y+ zi
X'XHX_[—y—kzi —xi} (37)
x(x1) = Xy, x(x2) = Xa, x1,%x2 € R®
X, =UX,U? UesSU(2) (38)

Note if ||x|| = 1, x(x) € SU(2). Also note that the map  is not uniquely defined either.

Relatedly, Mobius transformations are general 2x2 complex projective matrices, characterized sim-
ilarly by:

o ¢
M=7 4] (39)
det(M) 0, 0,6,7,6 € C
Miae g =Ma= |7 ][] (40)
By = 2S5 20 1)
z+4
M~ AM, AeC, A0 (42)

Mobius transformations conformally map the complex projective plane onto itself. They are
uniquely determined (up to scale) by their action on three independent points, and SU (2) elements
constitute a subset of them.

B PROOFS AND DERIVATIONS

B.1 PROPER METRIC IN COMPLEX PROJECTIVE SPACE

B.1.1 DERIVATION OF METRIC

Complex projective rays are equivalent if they are linearly dependent. We can test this condition
by setting up the following constraint on complex vectors z = [21,22]7 and p = [p1,po]” for
21,22,p1,p2 € C:

det({z g;] ): z1p2 — z2p1 =0

For vectors a = (4, ¥ys, 25), b = (Mg, ns,ps) € S? (assume a # p*, b # p*) whose projections
via 1 (Eq. (30)) correspond to z and p respectively, we can show that testing the linear independence

13
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of complex vectors is in fact related to the chordal distance on a sphere:

S+ S. S S.
z=\ {””ng, p = {mlj;ls’], AL A2 €C, AL #0,X2 #0

det({;i ;ﬂ )2: AP X2 P[(1 + ps) (s + yst) — (1 + 25) (mg + ngd)|?
= PR (142 (2 62) + (14 27 (3 + ) = 201+ pa) (Lt 20) (ams + yana)
= AP A2P(1+ps) (L + 2) (1 +ps) (1 — 25) + (1 + 25) (1 — ps) — 2(wsms + ysns))
= AP AP (1 + ps) (1 + 25)(2 — 2(xsms + ysns + 25Ds))
= PPl (14 ps) (1 + 25)|la — b||?

2 2 2 2
Notice that |A;|?(1 + z,) = % and |A2|?(1 + ps) = %. Substituting this into our
expression and rearranging, we arrive at the final expression for the equivalent distance metric in
complex projective space as:
4|z1p2 — 2op1 2
(lz1[? + |22[*) (Ipa [ + [p2]?)

The last substitution may seem unnecessary at first; however, this form is more useful as it gener-
alizes the metric to hold even when a = p* or b = p* (proof below). It also gives an intuitive
interpretation that the spherical chordal distance is related to a type of “cross product” magnitude
between the two projective rays’ unit directions.

la—bl* =

B.1.2 PROOF OF METRIC FOR POINTS AT INFINITY
Proposition 1 [fa = p* orb = p* in the proper metric is still valid.
Proof The squared distance between unit length points a = (s, ys, 25) and b = p* = (0,0, —1) is:

lla—b|[?=2-2aTb =2(1+ z,)

Using vectors z = ¥(a) = A\i[zs + ysi, 1 + 25]T, p = ¥(p*) = [Aa, 0]7 with nonzero A\;, Ay € C
and a # p*, we can calculate the same quantity via the formula in[Eq. (4)

4 — 2 4] — A1 A (1 s 2
\211?22 p1§2| _ | 21 2(2 + 2)] —2(1 + z,)
|1z]12[pl| 2[A A2 (1 + 25)

thus showing that the two formulas yield the same quantity. It is easy to see that[Eq. (4)]is symmetric,
so the same result would hold if a = p* and b # p*. If a = b = p*, we can see that ||a — b||? is
clearly 0. At the same time, the numerator of would be 0 while the denominator is nonzero as
the projective scalars A; # 0 for any valid complex projective point. Thus, both quantities are equal
in that case as well, so the formula gives the spherical chordal distance between any two points on
the sphere via their stereographic projections.

B.2 REPRESENTATION DERIVATIONS
B.2.1 DERIVATION OF 2-VEC

For 3D vectors b,, b, extracted from a model output representing predicted target x and y axes
respectively, we apply the method from in the unweighted case to arrive at an optimal
rotation matrix (in the sense of Wahba’s problem). We assume b, x b, # 0. First, b, and b, must

have the same norm for the method to be unweighted, so we transform b, via b; = %by.
y
Since the reference points are constant (a; = (1,0,0),a; = (0, 1,0)), we know that their normal-
ized sum and difference vectors are at = %(1, 1,0),a” = %(1, —1,0). Similarly, we create
b, +b, b, —b,

. . . L _
normalized sum and difference vectors for the target points as b™ = B, 511 andb™ = b, BT

The optimal rotation aligns a* to b™ and a~ to b™ noiselessly. This can be achieved because all
the vectors have the same magnitude (normalizing to unit norm was found to be more stable than

14
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matching magnitudes like b!) and because the sum and difference vectors are always orthogonal.
Since rotation matrices naturally encode how an orthogonal coordinate frame transforms in their
columns, we can construct the aligning rotation by joining the two rotations R, and Ry, which ro-
tate the coordinate frame to the reference sum/difference vectors and target sum/difference vectors
respectively:

R.=[a", a-, a"xa |, Rp=[b", b", b xb"]

R:RbR;{:[%(bJﬁi—b—), L (bt —b"), b—xb+]

Because the sum/difference vectors are orthogonal and have unit norm, Ra, Rp, R € SO(3). Given
the natural representation of coordinate transformations in rotation matrices, using the rotation ma-
trix formulation was more appealing for the map than the quaternion formulation in It
also provided a more direct comparison with the Gram-Schmidt map. Nonetheless, the core in-
sight was derived from the original linear constraints on quaternion parameters. The unweighted
method was chosen for its geometric and computational simplicity, but a weighted version of the
map incorporating the magnitudes of b, b, can be similarly formulated from

B.2.2 DERIVATION OF QUADMOBIUS FORMULAS

Following the algorithm in [Section 2.2] we normalize a 2x2 complex projective matrix M by its

determinant and find the nearest unitary matrix, which by is special unitary. The
following are two different approaches to impelement this. We assume M has full rank.

Linear Algebra Instead of normalizing M directly, we take a more streamlined approach by uti-

lizing the properties of polar decomposition and determinant. We express det(M) in polar form
as re’? with r = |det(M)| € R,7 > 0 and ¢ = |ZiEM;\ lying on the unit circle. For polar
decomposition M = QP with unitary matrix Q and positive definite Hermitian matrix P, we have
det(M) = det(Q)det(P). Because Q is unitary, |det(Q)| = 1, and because P is positive definite
Hermitian, det(P) is real and nonnegative. It follows then that det(Q) = €' and det(P) = r.
To normalize M, we typically multiply it by a nonzero scalar A € C. For polar decomposition to

remain valid under this scaling, A must distribute as AM = (ﬁQ) (|A\|P), meaning that only the
phase of \ affects the unitary factor. Since the unitary factor Q is the nearest unitary matrix to M
in the Frobenius sense, the final solution is just |—:\\|Q such that det(ﬁQ) = 1 to be special unitary.

We can therefore reverse the order and first compute Q before normalizing its determinant. We find
a scalar \" such that det(\N'Q) = M\2det(Q) = 1 (since Q is 2x2) for |\'| = 1. We can easily solve

N = det(Q)~z. Since Q = UV¥ from SVD (M = UXVH) and |det(Q)| = 1, we can rewrite

our expression simply as \/det(UVH)UVH  If M is singular, there is no unique solution as SVD
is no longer unique. This formula may still be used in practice with a specific SVD.

Algebraic  First, we can normalize M to M’ = det(M)~2M such that det(M’) = 1. Next,
we can utilize the isomorphism between SU(2) and quaternions in to algebraically solve
for the nearest special unitary matrix. It’s easy to verify that the unitary matrix Q that minimizes
the Frobenius distance to M’ maximizes %(7Tr(M' Q)) where R(-) denotes the real part. From

Appendix B.3.1, we know that Q will be special unitary. Thus, we can express the optimization
problem (using symbols from[Egs. (31)|and|(39)) as:

e e e
Qmax R(Tr(M"7Q)) = R(Ga + {6 + da — )

= Hliﬁ?i{l(%(o) + R(0))wq + (S(0) = 3(8))zg + (R(E) = R(V))yq + (S(€) + (7)) %

for quaternion q = wy + 4% + yJ + 24k and (-) denoting the imaginary part. For q to be a
valid rotation, it must have unit norm. Thus, the optimization problem can be rephrased as finding
the unit norm vector whose dot product with the coefficients of the quaternion parameters above
is maximized. The solution is trivially obtained by the unit norm vector in the direction of those
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coefficients. Using[Eq. (35)| again, we can express the solution as:
q = (R(o) +R(9)) + (3(0) = 3(9))i + (R(E) = R(7))J + (&) +3(v)k
a=0+0d, f=£¢-7
Q ~ M + adj(M")

where tilde denotes unnormalized parameters and adj(-) denotes the adjugate. We can nor-

malize the parameters by dividing & and 3 by \/\ol|2+ B2 = \/\a+g|2+ € =712 =
VIr(MEM) + 2R(det(M/)) = /Tr(M/HM) Since that factor is real and distributes

linearly through & and 6 to the elements of M, we can efﬁmently combine this normalization fac-

tor into the original normalization factor of det(IM)~2 in the first step. The combined normalization
factor can be written as:

1 1 1 1
Vdet(M) /Tr(M/EM) + 2 \/det T\’d l:/éll\i/ll;/\l) 19
_ |det(M)| det(M)
—\ det(M)(Tr(MHEM) + 2|det(M |det(M)|(Tr(MHM) + 2|det(M)])

Applying this normalization factor to M to obtain M* will ensure that M* + adj(M*)¥ € SU(2).

B.3 NEAREST UNITARY MATRIX
B.3.1 PROOF OF NEAREST SPECIAL UNITARY MATRIX

Proposition 2 If Mobius transformation M has det(M) = 1, the nearest unitary matrix to M in the
Frobenius sense is special unitary.

Proof M has a singular value decomposition given as M = UX V¥ where U and V are unitary
matrices and X is a diagonal matrix with singular values. The determinant of M can be expressed
as:

det(M) = det(U)det(Z)det(VH) (43)
by product rule of determinants. Multiplying both sides by their complex conjugates, we obtain:
|det(M)|? = |det(U)|*|det(E)[*|det(V)[*

Since U and V¥ are unitary matrices, the magnitude of their determinant is 1, so the expression
simplifies to:

|det(M)|? = |det(2)|? = |det(M)| = |det(X)]

because the determinant magnitudes are real and nonnegative. Since X is a diagonal matrix with
real, nonnegative elements, its determinant is simply the product of its diagonal entries and is in
turn real and nonnegative. If det(M) = 1, then |det(X)| = det(X) = 1. Coming back to the first
expression, we can now write:

det(M) = det(U)det(VH) = det(UVH) =

It is known that closest unitary matrix to M in the Frobenius sense is the unitary part of polar
decomposition (Keller, |1975) which can be computed by UV#. From above, we can see that
det(UV*H) = 1 which means that UV# is special unitary by definition.

In noiseless situations, X is observed to be the identity matrix if det(IM) = 1. As noise is added,
the diagonal elements of 3 drift from 1, so 3 encodes a notion of how close a Mdbius transfor-
mation’s action is to a rotation or how much noise the problem contains, making it a candidate for
optimization.
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B.3.2 DERIVATION OF NEAREST UNITARY MATRIX DERIVATIVE

The nearest unitary matrix in the Frobenius sense to a complex square matrix M is given by the
unitary factor Q of its polar decomposition M = QP where P is a positive semidefinite Hermitian
matrix (Keller, [1975). We can find the derivative of Q with respect to the elements of M by taking
the derivative of both sides of the polar decomposition:

dM = d(QP)
dM = (dQ)P + Q(dP)
Q" (dM) = Q" (dQ)P + dP
Taking the conjugate transpose of both sides and subtracting the two statements:
(@M™")Q = P (dQ")Q + dP”
Q" (dM) — (dM™)Q = Q" (dQ)P — P(dQ")Q + (dP — dP™)

‘We observe that because P is Hermitian for all values of M, dP must also be Hermitian, so the last
term cancels out. Furthermore, we can deduce the following from definition of unitary matrices:

Q7Q=1I
(@Q")Q+Q"(dQ) =0
@QMQ = -Q"(dQ)

implying that (dQ*)Q is skew-Hermitian. Denoting X = Q(dQ) and C = Q¥ (dM) —
(dM*™)Q, we can now write:

C=XP+PX

which takes the form of a Sylvester equation. Since P is Hermitian, it admits a diagonalization
P = YAY", where Y is unitary and A is a diagonal matrix of eigenvalues of P:
C=XYAY" + YAY'X
YZCY = (YEXY)A + A(YIXY)
The right hand side has the same term YZ XY multiplied on the left and right respectively by
diagonal matrix A. As such, we can equivalently express the result as follows in order to solve for
X and ultimately dQ:
Y?CY = (diag(A) @ diag(A)) ® (Y?XY)

YHCY

diag(A) @ diag(A)
YHECY
(d?ﬁag( ) ® diag(A

YH(Q" (dM) — (dMH)Q)Y

diag(A) & diag(A)

YIXY =

X = YH

iQ=QY( h&

where @ denotes an outer sum operation, ® denotes Hadamard multiplication (element-wise), the
division is Hadamard division (element-wise), and diag(-) is a vector formed from the diagonal
elements of the matrix . Note that this solution is only properly defined if M is nonsingular (i.e.
A has full rank). Otherwise, the polar decomposition is not unique and neither is its derivative. In
practice, we choose to replace any instances of division by 0 in the result above with multiplications
by 0 as a specific solution.

B.4 TwoO-POINT SOLUTIONS

B.4.1 PROOF OF WEIGHTED CASE

Proposition 3 Let a; and b; represent the reference and target points respectively and k, = a; X as
and k, = by X by, For n = 2 points, k, # 0, and k;, # 0, the optimal rotation to Wahba’s problem
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is given as the weighted average (in the Frobenius sense) between two rotations R, and Ry defined

by Riai = bl and RliHEZH = 7”;[:”

Lemmac: If all points lie in the plane z=0 and k, # 0,k # 0, and k,, - k;, > 0, the optimal rotation
is a rotation around the z-axis.

Since all points lie in the plane z = 0, the last column and row of B are zero. As a
result, the last column and row of BB and BB are also zero, so they both have a kernel vector
of (0,0,1). For the SVD of B given as UXV7, the optimal rotation R. (via Markley| (1987)) can
take the form:

. 0771 O 0 - -0

R:[. | oHo L0 H | o]

0 0 1] |0 0 det(U)det(V)] [0 0 1
where det(U)det(V) is either 1 or -1 since U and V are orthogonal matrices. Thus, the last column
and row of R are both (0,0,1) or (0,0,—1). In order for R to be a valid rotation matrix, the
remaining upper 2x2 submatrix must be an orthogonal matrix which can be generated by a single
parameter 6. Furthermore, the sign of the bottom right corner element of R must be the same as the

determinant of the upper 2x2 submatrix for det(R) = 1. These conditions reduce R to one of the
two general forms:

sin(61) cos(1) O sin(2) —cos(f2) 0

[005(01) —sin(f) 0] [005(02) sin(62) 0]
0 o 1l [ o 0 -1

We denote the former as Rgo and the latter as Rp. The optimal solution to Wahba’s problem
maximizes the gain function 77(RB7') |Lourakis and Terzakis| (2018). This quantity for both forms
can be expressed as below:

T?“(RSOBT) = A11008(61) + A1 25in(601)
Tr(RoBT) = Aa,1€05(02) + Ag25in(02)
Mi1=B11+Ba2, M2=By; —Bis
A1 =B11—B22, A22=B21+Bi>
The gain function in both cases is the dot product between (X; 1, \; 2) and (cos(6;), sin(6;)). Its

maximum value (subject to the constraint cos(6;)? + sin(6;)* = 1) is obtained by the unit vector
aligned with (A; 1, Ai2), i.e.:

cos(6;) = 7)\i’1 sin(6;) = Air2

VAR AL VAL AL

Substituting this back into the gain function, we see that the optimal value is simply the magnitude

of ()\i71,>\i’2):
Tr(RsoB”) = /A1, +A,, Tr(RoB”) =/ A}, +A3,

Since the square root function is monotonically increasing, the larger of the two radicands corre-
sponds to the larger gain value. We can compare them directly by taking their difference:

AT+ 2AT2) = (A5 + A3 ) = dwrwa(k, - k)

where w; are the weights. Since the weights are positive and the cross products are assumed nonzero,
the quantity above is positive when k, and k; point in the same direction and negative otherwise.
Thus, when the cross products of the reference and target sets are aligned, Rgo corresponds to the
larger gain value and is the optimal rotation. It takes the form of a rotation about the z-axis.

Proof We assume that all points lie in the plane z = 0 and that the cross product of the reference
and target sets are nonzero and are aligned. This will be generalized later. We construct rotations
R, and R to be rotations about the z-axis that align a; to b; and as to by respectively. Since the
input points have unit length and the vector norm is rotationally invariant, we can rewrite the loss
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function as:
wi||by — Ray||? + ws||by — Rag||?
= wi|la; — RTRa, ||? 4+ ws|jaz — RIRay||?
= wi||I - R{R)ay|* + wol|(I - RFR)a||?
=wal (I-RIR)"(I-RIR)a; +wqal (I-RIR)T(I-RIR)a,
= 2(wy + wy) — 2wial RTRa; — 2w.al REIRay

using the fact al R7 Ra; = al RTR;a;. Under our assumptions, the lemma establishes that the
optimal rotation R is a rotation about the z-axis. Since both R, and R are also rotations about the

z-axis, we can easily verify that the products RT R and R R are rotations about the z-axis as well.
Using Rodrigues’ rotation formula, we can expand the term below as follows:

alRTRa; = a;-(cos(¢)a; + sin(d)k x a; + (1 — cos(¢))(k - a; k)
— cos(9) + sin(d)(ar - (k x ay)) = cos(9)

where ¢ is the angle of rotation of RTR and k = [0,0, 1]7 is the axis of rotation. The simple result
is due to the fact that a; is orthogonal to the axis of rotation and has unit length. On the other hand,
we note that the Frobenius norm between R; and R computes the following:

|R1 — R[|% = Tr((R: — R)"(R1 — R))
=6—27r(RTR)
=6 — 277 (cos(¢)I + sin(¢)[k]x + (1 — cos(4))kk”)
=6 — 6cos(¢p) — 2(1 — cos(¢)) = 4 — 4cos(¢)

1
cos(d) = 1= ||y — RI 3.

The expansion of RTR; above is due to the axis-angle formula for rotation matrices where [K]x
denotes the traceless skew-symmetric matrix formed from k representing a vector cross product.
Deriving a similar result for al RZ Ra, and plugging both back into our reformulated loss function,
we can rewrite it as:

1 1
2(wy + wa) — 2wy (1 - 1||R1 —RJ|%) — 2wa(1 - 1||Rz - RJ%)

1 1
= jwil|Ry — R|[% + Fw2||R2 — R|[%
Through this expression, we can see that the rotation R which minimized our original loss is exactly
the rotation that represents the weighted average in the Frobenius sense between R, and Ry as

specified in[Markley et al.|(2007)). The uniform factor of % is irrelevant to the optimization.

Now we generalize the result. Starting from the assumed configuration, we can extend it to general
configurations by applying arbitrary rotations R, and R to the reference and target points respec-
tively, transforming them into a and b. In this new coordinate frame, the rotation matrix R’ is
related to the original optimal matrix R as shown below:

> wi|lb; — Ray[|> =) wi[|Rsb; — RyRay||?

?

=Y wil[Ryb; — RyR(R{Ra)ay||* = Y wil|b] — (RyRR])al||?

R’ = R,RR”
Because the vector norm is invariant under rotation, the optimal loss value remains unchanged across
all coordinate frames. Since the optimal value from the original coordinate frame is preserved
above, R’ represents the optimal rotation in the new frame. Furthermore, the Frobenius norm is also
rotation-invariant, so we can apply the required rotations to estimate R’ as follows:

> wilR; = R[[7 =Y wi|RyRR] - R,RR] |7
= ZwiHRbRiRZ - R/||%

R| = R,R;R!, R, = R,RyR”
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Thus, in the general case, the optimal rotation is given by the weighted average rotation between R/
and R),. We can uniquely identify those rotations with at least two linearly independent points they
transform. Starting with the reference and target sets:

Riai = bl
R,R;(RTR,)a; = Ryb;
R/a. = b/

Each rotation still aligns their respective reference point to their target point. Furthermore, in our
original coordinate frame, k, and k; are aligned and are parallel or antiparallel to R;’s axis of
rotation (z-axis), so they are unchanged by R,;. As a result:

ke k
kol kol
T ka kb
FoR (R Ra) 1 = o]
R/ R.(a; x as) _ Ry(by x bg)
‘[[Ra(ar x az)[|  [[Ry(b1 x by|
, ap xay by xbj
"lag x ab||  [[by x bh|

due to rotations distributing over the cross product. Thus, we can identify R} and R/, as the rotations
that align their corresponding reference point to their target point along with the cross products
of the reference and target sets. As the cross products are assumed nonzero and are orthogonal
to their respective point set, the two points aligned by each rotation are always independent and
therefore uniquely define the rotations. As shown, the optimal rotation is the weighted average in
the Frobenius sense between them.

B.4.2 PROOF OF UNWEIGHTED CASE

Proposition 4 Let a;, b;, and w; represent the reference points, target points, and weights respec-
tively. Given n = 2 points, w1 = ws, a1 X az # 0, and by x by # 0, the optimal rotation
to Wahba’s problem is given by the unique rotation R defined by R(22122.) = and

[la1+az|

b;+bo
[[b1+ba]|

aj;—as — bl 7b2
Rfai=aan) = mibaTr
Proof For two 3D unit vectors v, and vs, we introduce the following notation and easily verifiable
results:

\N/'_Evl—VQ, v =vVv] + Vo

ViXVe#0 = Vv #£0, VT #£0

If vi x vo # 0, then the two vectors v~ and v are well-defined and form an orthonormal basis
for the plane spanned by v; and v,. Consequently, v~ and v created from one pair of linearly
independent unit vectors can be perfectly aligned with those created from another pair.

With a; x as # 0,b; x by # 0, we initially assume that the points are configured such that they
all lie in the plane z = 0 and that a* = b* and a— = b~. This is generalized later. For this
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configuration, we note the following:

1
a] X ag = 5(57 X £~i+)

| Lo
= slla”llla*([(a” xa®) = Slla”[[[la*||(b” x b)

B T S [
2|~ |[[[b*]] b= [[|[b*]|
= (a; X as)-(by Xxby) >0

(b1 X bg)

Thus, the cross products are aligned in this configuration, and from the lemma in the general case
proof, the optimal rotation is a rotation about the z-axis.

From the dot product equality above, we can deduce that a™ is equidistant from a;, a;. The dot
product calculates the cosine of the angle between linearly independent unit vectors measured in the
plane spanned by the vectors (z = 0 in our case). We know from the proof in the general case that
the dot product of a unit vector in the plane z = 0 with itself after a rotation about the z-axis is
the cosine of the angle of rotation. That angle is measured in the plane perpendicular to the axis of
rotation, which is also the plane z = 0. Thus, constructing rotations R,, and R,, which rotate at
about the z-axis to a; and a, respectively, we can write the following:

aj-at =ay-at =at . (Rya") =at: (Ra,a™) = cos(¢)

where ¢ denotes the angle of rotation of R, , making |#| (canonically positive) the angle between
a; and a™. In general, Ry, # Ra,, otherwise a; and a; would be identical. In order for the above
to still hold, the angle of rotation of R,, must have the same magnitude but opposite sign of ¢. A
similar statement can be made for the target points.

Let Rp, and Ry, represent rotations about the z-axis that align b* with by and bs respectively.
Recall at = b*. We construct the rotations R; = RblRZ1 and Ry = szRZQ which are also
about the z-axis to align a; with b; and ap with bg respectively. If v is the rotation angle of Ry, ,
then the angle of rotation for R; is —¢ + 1 since R4, and Ry, share the same axis of rotation and
transposing a rotation matrix negates the rotation angle. For Ry, the rotation angle is ¢ — 1), as Ra,
rotates by —¢ and Ry, by —1). Thus, the rotation angles of R; and Ry have equal magnitudes but
opposite signs.

From the proof in the general case, the optimal rotation R is the weighted average in the Frobenius
sense between the rotations R; and Ry recently constructed. The weighted average rotation max-
imizes the quantity 7r(RB'") where B’ = 3", w;R; Markley et al. (2007). Given the previously
made statements and the fact that w; = ws, we can calculate B’ as:

cos(=¢ + ) —sin(=¢p+1¢) 0 cos(¢ — 1) —sin(¢—¢) 0
Ry = |sin(=¢+¢) cos(—p+1) 0] ; Ro= [sin(cﬁ —¢)  cos(¢p— ) 0] ;
0 0 0 0

1 1
cos(—¢ + 1) 0 0
B/ = w1R1 + w2R2 = 2’[1)1 0 COS(_¢ + 1/’) 0
0 0 1

due to the fact that sine is an odd function and cosine is an even function. Since R is a rotation about
the z-axis, we can directly compute 77 (RB'T) as 2w; (2cos(—¢ + 1)cos(6) + 1) where 6 is R’s
angle of rotation. We can trivially see that # must take on a value of 0 or 7 (mod 27) to be optimal,
depending on the sign of cos(—¢ + 1) as w is positive. That sign can be determined considering
a~ and b~ are aligned:

a~ b~ >0
(Ra,at — Ra,a®) - (Rp,b™ — Rp,b*) > 0
a®- ((Ra1 - Raz)T(Rbl - Rb2)3+) >0
cos(—=¢ + ) — cos(—¢ — 1) — cos(¢ + ) + cos(¢ — ) > 0
2cos(—¢ + 1) — 2cos(¢p + ) >0

Since a* and b are also aligned, we can similarly derive 2cos(—¢+1)+2cos(¢+1)) > 0. Adding
both inequalities together (valid since they are positive quantities), we find that cos(—¢ + 1) > 0.
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Thus, § must be 0 to maximize Tr(RB'T), resulting in R being the identity matrix and indicating
that the current alignment is the optimal one.

To generalize this, we again apply arbitrary rotations R, Ry, to the reference and target sets respec-
tively, transforming them into aj, b}. From the proof in the general case, the new optimal rotation
R’ = RyRRI = Ry;RY. Now, we simply verify below that this rotation aligns a’* to b’* and a’~
to b’~ (combined = notation for convenience):

at — bt — a; + as _ b; £+ by
lar £ as][ /by & by|
Rb(alﬂzag) - b/1:|:b/2
llar £ ag||  [[b] £ bb]|
RyRI(a) +ay) bl +b)
CEC
R/a/:t:b/:t

Since a’t and a’~ are orthogonal, they are also linearly independent, and their transformation
uniquely defines the rotation R/, thereby completing the proof.

B.4.3 AVERAGE OF TWO UNNORMALIZED QUATERNIONS

In Markley et al.[(2007), it was shown that the average rotation matrix in the Frobenius sense can be
calculated via the quaternion q which optimizes the following:

M = Z wi gy
i
mczliquMq st |lql| =1

Where q; are the unit norm quaternions corresponding to the rotations being averaged (sign of q;
is irrelevant). The solution is the eigenvector corresponding to the largest eigenvalue of M. In the
two point approach to Wahba’s problem proposed previously, we need to construct two quaternion
rotations and average them. The formulation above assumes all quaternions have unit norm. How-
ever, it would be computationally advantageous (see if we did not have to normalize the
constructed rotations, thereby avoiding two square root and division operations. From Markley et al.
(2007), it is known that the average rotation in the two rotation case is simply a linear combination
of the rotations being averaged. To average unnormalized quaterions q; and gz, we can express M
and q as:

||Ga|I?

e |2
q = pq1 + vde
where p, v are scalars. The above takes advantage of the fact that scaling M does not change its

eigenvectors. Thus, we reduce the problem from estimating a unit quaternion to estimating two
scalars. As a result, we can rewrite the objective as:

F:[quqg%yvzyq
ai- a2 |lazl v
A =wil|an|]?]|Ge|® + w2 (@ - @2)?
Arp=Agy = (w1 +w2)||@l[*(a1 - G2)
w1 (1 -512)2)
a2

max vIAv st. viTv=1
v

M = w, Q10! + wo @G

Ay = 1@l (w2l +

where - denotes the usual vector dot product. I' is the quadratic constraint ensuring that the linear
combination of q; and g9 has unit norm, and A is the new 2x2 objective to optimize over. Using
the method of Lagrange multipliers, we find that the solution to the above takes the form of a gen-
eralized eigenvalue problem Av = AI'v. Note that the scaling constraint I" is positive semidefinite,
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generally representing the equation of an ellipse. Assuming I is invertible and well-conditioned (it
is discussed later when this is not the case), the solution is the eigenvector of I'"! A corresponding
to the largest eigenvalue. Through simplification and scaling, we can express the matrix similarly
as:

1 willqel*(q - q2)

1A ~ | willa]]?/la %

~ 2 ~ ~ ~ 2 ~

wollqu|[* (@1 - G2)  wella|]?[|a2
which maintains its eigenvectors from before. Since the matrix is only 2x2, the eigenvector v corre-
sponding to the largest eigenvalue can be expressed in closed form. Scaling the eigenvector by the
constraint v T'v = 1 and substituting it back into the original linear combination of q; and q», we
obtain the average quaternion as:
_ par + vde

VI@IP e+ [alPr? + 2@ - az)v

where the values p and v can be expressed equivalently in two ways:

q

T = (w1 — w2)||€11||2\|612||2, wl) = 2w1||612|\2((i1 “q2), v = 2w2||(~11\|2(0[1 “q2)
uM = 70 ¢ \/(Tu))z 4wy

or
73 = (wy — wy)[|@|Pll@:l?, w® = 2wsll@|*(d1 - d2), p® = 2w |G| (d) - @2)
L2 — 72 L \/(Tu))z + W@ @)

Both yield the same result except when q; - g2 = 0 in which case the rotation corresponding to the
larger weight is chosen. If w; = ws in that case, then there is no unique solution and either of the
rotations can be selected. The former solution set is used when w; > ws and the latter is used when
w1 < wy as to approach the correct value as q1 - g2 — 0.

Note that the denominator in the expression for the average quaternion is simply vV vIT'v. Previ-
ously, I' was assumed non-singular and well-conditioned, but there are two cases in practice where
this fails to hold. The first is when q; and q are linearly dependent, i.e. they represent the same
rotation. If we choose the solution constants above by the previously described strategy and examine
the expressions for . and v, then it can be seen that vZ T'v is in fact strictly positive for nontrivial
solutions v and nonzero weights/magnitudes. Furthermore, it can also be seen that ©q; and vqs
share the same direction in this case and thus cannot cancel out. The second case occurs when the
magnitudes of q; and/or gy are small, causing I" to be ill-conditioned. This case can be avoided by

using the strategy described in to only obtain quaternions of sufficient magnitude or
by simply scaling/normalizing the rotations when necessary.

B.4.4 DEGENERATE CASE SOLUTION

The degenerate case occurs when either of the cross products of the reference or target points vanish,
and the previous approaches for the two point case cannot be applied. This is because the solution
is no longer unique. A particular one can be efficiently found through the following approach.

We assume without loss of generality that the target points are collinear (the reference points may
or may not be) and the first target point is aligned with the x-axis (i.e. by = (1,0,0)). In this case,
the last two columns of the constraint C; vanish. We can thus write our optimization as:

|m=—2x)i y-—=zi |
Ci{—y—zi (:E—l—m)i]’ u{ﬁ]
Z=>) wC/C;

minu?Zu s.t. ufu=1
u

This optimization is simpler than before and can now be solved directly over the special unitary
parameters. Since Z is Hermitian and positive semidefinite, the solution is the complex eigenvector
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of Z corresponding to the smallest eigenvalue. For reference points a, = (z;, y;, 2;), this can be
expressed in closed form as:

o

_ (w11 +waxs + [lwiaq + w2a2|'|
w121 + waze — (WY1 + Wway2)i

or

G- |Wir —waws + [|lwiay — w2a2|'|
w121 — wazg — (W1Y1 — Way2)i

where 1 is the unnormalized eigenvector and the correct solution depends on the target points’
configuration. If the dot product of the target points is positive, then the first expression is correct.
Otherwise, the second is correct. Note that eigenvectors are only unique up to scale, so even after
normalizing the solution so that u”’u = 1, we can still apply an arbitary unitary scaling of e?*. This
corresponds to a rotation about the x-axis and parameterizes the family of optimal solutions.

For arbitrary collinear target points, we simply need to find any rotation aligning the x-axis to the
first target point by and then compose it with u. If the reference points were collinear instead, we
can swap the reference and target points in the above approach and invert the rotation afterwards. In
practice, we would choose the more degenerate (i.e. larger dot product magnitude) of the two sets
to treat as collinear.

Examining the solution closer, it can be seen that u represents a rotation aligning a weighted com-
bination of the reference points we refer to as the “weighted average” with the x-axis. The weighted
average takes the form of a sum (wja; + weas) or difference (wia; — weas) depending on the
sign of the dot product between target points. This suggests that a more straightforward approach
in practice would be to simply calculate the normalized weighted average of the reference points
and align it with by directly. This generalizes to the case when the reference points are collinear
similarly to before. If the weighted average is zero, then any rotation is optimal.

C ADDITIONAL STEREOGRAPHIC SOLUTION DETAILS

C.1 RECOVERING R

The solution U obtained precisely satisfies the relation in [Eq. (34)] However, using the maps laid
out in [Egs. (35)] and [(36)] directly will lead to a rotation Ry that is not necessarily equivalent to
the desired R in This is because our choice of p* and choice of isomorphism between
quaternions and special unitary matrices can each add an implicit orthogonal transformation in their
map. Since their combined transformation ¥ and its inverse are applied before and after estimation
respectively, the relationship between U and R is characterized by the conjugate transformation:

R=9"Ry¥ (44)

For our definitions, we find that ¥ is simply a 90 degree rotation about the y-axis. When applied
directly to the resulting q from the algorithm, the transformed quaternion is given as:

q" = wg — 2t + YgJ + Tk (45)
which is just a permutation/negation of the elements of q. We can verify that mapping g* to R via
Eq. (36)|indeed gives us the true optimal solution to the problem.

C.2 GENERAL STEREOGRAPHIC CONSTRAINT

The generalized constraint between complex rays [z1, z2]7 and [py,ps]? where 21 = 21 + 11,
Zo = X2 + Y2i, p1 = M1 + N1, and po = Mg + nat is given by:

w = 4w;
o (m P+ =) (1 + p2?)
Aju=[-z1p2 —22p2 p1z2 —p1z1ju=0

24



Under review as a conference paper at ICLR 2026

for complex inputs and below for real inputs:

D, = |72%1 T M tniy2 — N2y —Mayr — Miy2 — N2¥1 — N1T2
z’ MoY1 — MiY2 + N2T1 — N1T2 Mokl + M1T2 — N1Y2 — N2Y1

D, = miTy + Moz — N1Y1 — N2Y2  MaYyr — M2Y2 + N1T1 — N2T2
- miy1 + Moy + N1x1 + NoT2 Moz — M1T1 + N1Y1 — N2Y2

D.gq=[D;o D;i]gq=0

We can verify that with zo = 1 and p» = 1, we obtain the original results in[Eq. (9)]and [Eq. (I1T)}
Furthermore, we can use zo = 0 and ps = 0 to calculate results involving the projective point
at infinity. Thus, there are no singularities using the general constraint. From this, we can derive
similar formulas and algorithms for the one and two point cases as those proposed earlier.

Similarly, the following is the general constraint for estimating a Mobius transformation from stere-
ographic inputs:

Am = [—z1py —2p2 p1z1 Przelm=0

D ROTATIONS OF EXACT ALIGNMENT

The equations in this section are derived from the constraint in[Eq. (18)|for 3D points. However, we
can easily derive similar equations for stereographic points using|Eq. (1T)]

D.1 ONE-POINT CASE

Finding a rotation that aligns two unit vectors (i.e. b = Ra) is a special case of Wahba’s problem
where n = 1. Since aligning a pair of points constrains two out of three rotational degrees of
freedom (D; and Q; have rank 2), there are infinite solutions in this case. The rotation whose axis
is the cross product of the points is often chosen for geometric simplicity and can be calculated
efficiently as:

s=+/2(1+a-b)

) (46)

_(f axb
q= 9

S

Instead, we may choose another convention where we constrain an element of the quaternion to be
0. Since the points can be perfectly aligned, g7 Gsq = 0, so q € Null(Q;). Leveraging this fact,
we can simply take two linearly independent rows from Q; and set them to 0 explicitly, imposing a
rank 2 constraint. Given the homogeneous nature of this system, we can disregard the weight and
determine the rotation using straightforward linear algebra techniques. Each row below is a member
of the kernel that has a quaternion element equal to O (note only two rows are linearly independent):

0 r+m y+n z4+p
z+m 0 Z—p n-—y
y+n p—=z 0 rT—m
z+p y—-n m-—=z 0

Normalizing any nonzero row of gives an optimal rotation. Compared to [Eq. (46)] this
approach has several advantages. First, the rotation is simpler to construct. Second, one of its

elements is guaranteed to be 0, so composing rotations and rotating points requires fewer operations
and memory accesses. This is particularly true for the first row of as it represents a 180
degree rotation whose action on a point can be more efficiently computed as a reflection about an
axis. Finally, [Eq. (46) has a singularity when the cross product vanishes. Although each row of
[Eq. (47)|has its own singular region, it is straightforward to systematically select another row that is
well-defined in that region.

€ ker(Q;) 47)

D.2 NOISELESS TWO-POINT CASE

With two independent sets of correspondences, we are able to fully constrain the rotation to a unique
one. If we assume that the two sets can be aligned perfectly, then we can recover an optimal rotation
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from the intersection of the constraint kernels. Two independent rows of can be basis
vectors for the kernel of Q;. We can determine the optimal rotation by finding the member of
ker(Qq) (represented as a linear combination of basis vectors) that is orthogonal to an independent
row of Q. For example, with the last two rows of as a basis of Q; and the first row of Qo,
we can solve for the linear combination weights a, b (note scale is arbitary):

0 z1+p1 Y1+
T2 —Mm2| Y1 —n p1— 2z _
Y2 — N2 (a m1 — T1 +b 0 )=0
Z2 — P2 0 T1—my

a= (r2 —ma)(21 — p1) + (22 — p2) (M1 — 1)
b= (r2 —ma)(y1 — 1) + (y2 — n2)(m1 — 1)

Substituting a and b back into the linear combination and dividing by m; — 21 gives the result from
This result is equivalent to the simple estimators found in [Markley| (1999)); [Choukroun
(2009). However, an issue with this approach is that the singular region of this estimator is not
simple, and the equation fails to produce a valid rotation under several conditions (see |Peng and
Choukroun| (2024)). Rather than checking each condition with a threshold or applying sequential
rotations to avoid these cases like other kernel methods, we can more systematically select the three
vectors in our computation to guarantee a valid result.

In general, we observe that for a point pair, either a + b or a — b will have at least one significantly
nonzero element. We can select the two rows from corresponding to a nonzero element
from these vectors for the first point pair to ensure linearly independent kernel vectors. We then
choose one of the two rows of Qs corresponding to a nonzero element of a + b or a — b for the
second point pair to solve for the rotation. For instance, if 1 + m; # 0 and ys + ne # 0, we can
choose the first two rows of and the last row of Q5 to produce another equation for the
rotation:

ki=p1—2z —p1—n1 x1+ m1]T
k2 = [Zl +p1 Yy —ny mi — Q?ﬂT

ky=[p2—2 —-y2—n2 x2+ m2]T

~ k1><k3
q= |:k2-k3:| (48)

Though the dot and cross products are in different indices from before, the formulation is equally
simple to compute. We select the nonzero elements by largest magnitude for robustness. At least
one of the two rows we select from Q5 will yield a valid rotation for a; x ay # 0. Otherwise, the
rotation is any kernel vector of Q;. We verify row validity by checking if either coefficient a or
b for the relevant constraints is nonzero. Those coefficients are always reused in the final rotation
calculation (e.g. a and b are the second and first elements respectively in [Eq. (48)). This process
therefore covers the whole domain and only requires a handful of operations and comparisons even
in the worst case.

E BACKPROPAGATION DERIVATIVES

For a simple complex square matrix (, the derivative of an eigenvector v of G with respect to the
elements of G can be computed as|Magnus| (1985):

vvi

dv=(\—G)*(I- ‘;—V)(d(})v

where ) is the eigenvalue corresponding to v, I is the identity matrix, and * denotes the Moore-
Penrose pseudoinverse. Typically, vi7v = 1 by convention for most eigenvector solvers. In our
original problem (Eq. (14)), G, is Hermitian as opposed to a general matrix, so the elements
of © are repeated in the matrix through conjugation. Using complex differentiation conventions
consistent with many deep learning frameworks, the loss derivative can be written as:

e~ (e &)+ (& aa)
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Figure 3: Density plot of loss gradient ratios for Gram-Schmidt and 2-vec. The x-axis represents
the loss £, and the y-axis shows the ratio of loss gradient magnitudes ||V, L||/||Vp, L]| for the
predicted rotation axes b, and b,. See for details. 2-vec exhibits noticeably lower
variance, suggesting more stable gradients during learning.

where (-, -) denotes the complex inner product and L is the scalar loss. % can be extracted from
the upper triangular portion of ﬁ (after reshaping to 4 x 4), multiplying by 2 for the off-diagonal
parameters to include the lower portion contribution. This method avoids the need for the other

eigenvectors or eigenvalues of G, that weren’t used in the forward pass.

For QuadMobiusSVD (Eg. (23)), the backpropagation must go through the SVD operation M =
UXVH, Itis well known that the nearest unitary matrix corresponds to the unitary component Q
of the polar decomposition of M = QP, where P is a positive semidefinite and Hermitian matrix
(1975). Thus, instead of backpropagating through the SVD components individually, we
can backpropagate through Q in a more direct manner. [Appendix B.3.2] outlines the details of the
derivative of Q with respect to the elements of M. Given the well-known relationships between the
polar decomposition and SVD (Q = UV, P = VEV#), we can reuse the SVD elements from
the forward pass to calculate the derivative more simply as:

S = diag(X) & diag(X%)
1o - U(UH(dM)V —SVH(dMH)U)VH

where & denotes an outer sum operation, and the division is Hadamard division (element-wise).
From this equation, the numerical complex derivative can be expressed as follows (note the indices,
Fis2x2x2x2):

Fjmik=Ujk(VT)im

Fi i m
ai— - (Vv ), - (g vE)v),

where (-, -) p denotes the complex Frobenius inner product.

The remaining operations in the maps are algebraically straightforward to differentiate through. We
observe that the previous formulas compute the same gradients as PyTorch’s automatic differentia-
tion through complex functions torch.linalg.eighand torch.linalg. svd butin a more
streamlined manner.

F THEORETICAL INVESTIGATIONS OF REPRESENTATIONS

2-vec The core idea behind 2-vec lies in leveraging a more optimal projection (in the sense of
Wahba’s problem) than Gram-Schmidt to improve learning performance without increasing com-
putational cost or dimensionality. To theoretically support this, we replicate the gradient analysis
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Figure 4: Plot of mean loss (Chordal L2) against dropout rate of map representations. © and M
denote whether dropout was applied to map inputs or intermediate representation for QuadMobius.
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Figure 5: Distribution plot of loss gradient magnitudes against loss £ (Chordal L2). The left shows
the gradient with respect to the map inputs ©, while the right shows the gradient with respect to the
Mobius transformation M estimated from eigendecomposition in QuadMobius.

experiment from |Geist et al.| (2024)) which evaluates how learning signals propagate through the
representations. We first generate a thousand random 6D vectors, each with components sampled
uniformly from [-2, 2]. Each vector is split into two 3D components, b, and b,, representing
predicted target =,y coordinate axes. These are then mapped to a rotation matrix using both the
Gram-Schmidt and 2-vec methods. For each mapping, we compute the Frobenius norm loss £ be-
tween the resulting rotation and the identity matrix. We then calculate the gradient magnitudes of £
with respect to b, and b, and analyze their ratio. The results are plotted in We can see that
the gradient ratios for 2-vec are more tightly concentrated around 1, indicating a relatively balanced
gradient flow between the two vectors. In contrast, the Gram-Schmidt method exhibits a wider
distribution with significant skew, often yielding ratios in the range of 10-100 which highlights its
disproportionate focus on b,. These results support the hypothesis that 2-vec facilitates more stable
gradients for optimization.

QuadMobius In our experiments, QuadMobius has consistently shown strong performance as a
learning representation. To better understand why, we conduct two experiments to probe its be-
havior. We begin by generating one thousand realistic map inputs © for each representation using
trained models from a synthetic Wahba’s problem (trial #15 in [Appendix G.2.2). All models are
fed the same noiseless inputs on which they perform equivalently for fair comparison. In the first
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Method | 10% 25% 50% 75% 90% | 25-75% 10-90%

Projection 2.04e-5 2.66e-5 3.23e-5 3.65e-5 4.02e-5 | 9.90e-6  1.98e-5
Eig. (nonorm) | 2.06e-5 2.87e-5 3.4le-5 3.88e-5 4.08e-5 1.00e-5 2.02e-5
Eig. (norm) 1.43e-5 2.07e-5 2.51e-5 3.0le-5 3.20e-5 9.41e-6 1.78e-5
QuadMobius 1.46e-5 1.79¢e-5 2.20e-5 2.49e-5 2.64e-5 | 6.98e-6 1.17e-5

Table 3: Toy ablation experiment showing gradient magnitude distributions for isolated components
of QuadMobius algorithm. Bold indicates lowest for spread quantities.

experiment, we test how resilient each map is to corrupted inputs by applying dropout. shows
the results of applying increasing dropout probability to © on mean loss. For QuadMobius, we
also test applying dropout to its intermediate Mobius transformation M instead (real and imaginary
parts treated independently). While we might expect the sensitivity to dropout to decrease with di-
mensionality, this is not necessarily the case as seen with QCQP. Notably, QuadMobius appears to
be the most resilient to dropout on ©, but is also the most sensitive when applied to M. For the
second experiment, we replace 10% of the model inputs with outlier points from another rotation,
simulating out-of-domain inference. [Fig. 3| plots the distribution of loss gradient magnitudes against
loss. Gradients with respect to © are similar across all maps, consistent with their equivalent perfor-
mance on the task. In contrast, gradients with respect to M in QuadMobius are both significantly
larger and more tightly concentrated, following a square root trend. Together, these two experiments
suggest that QuadMobius’s eigendecomposition step enables the learning of a stable intermediate
representation that is buffered against poor inputs, while its subsequent SU(2) projection ensures
predictable, high-fidelity gradient flow, leading to its strong empirical performance.

SU(2) A natural question is whether we can just directly predict an SU(2) representation and
project it onto the manifold. This approach is simpler than QuadMobius and still provides an
overparameterized representation (8D). However, like quaternions, SU(2) suffers from the issue
of double cover. Both Mobius transformation predictions M and —IM map to the same 3D rotation,
introducing ambiguity in learning. Furthermore, one might hope the rows of M offer two differ-
ent estimates of a quaternion rotation (similar to theoretical arguments of information averaging in
SVD and QCQP). However, in SU(2) the rows encode the same information, so independence is
not enforced during learning. Empirically, SU(2) prediction performed much worse in synthetic
experiments than QuadMobius (often close to quaternion) and was thus not included in results.

To further validate the QuadMobius approach, we conducted a toy ablation experiment in
We took 10k random map inputs and mapped them to quaternions. We then calculate the squared
quaternion loss (accounting for sign) against a set of random ground truth quaternions and com-
pare the loss gradient magnitudes of the inputs for the different map variants. The variants include
SVD projection only (8D -; SU(2)), Eigendecomposition only (16D -; M&bius transformation M,
taking the first row of M as a quaternion with and without normalization), and QuadMobius. The
percentiles of the gradient distributions and their subsequent percentile ranges are shown in the table
below. The QuadMobius approach yields a significantly tighter distribution and a lower amount of
large outlying values than the other isolated components, suggesting that it provides more stable
gradients for learning with both eigendecomposition and projection.

G EXPERIMENTS

G.1 EXPERIMENT SETTINGS AND DETAILS

These are the specific experiment settings used to obtain the results in our learning experiments.

ModelNet10-SO3 ADAM optimizer, learning rate Se-4, NVIDIA L1 GPU, batch size 100,
Chordal L2 loss, 300/400/800 epochs respectively for chair/sofa/toilet to train for roughly equal it-
erations given dataset size differences. Architecture is ShuffleNetV2-1.5 backbone Ma et al.| (2018))
(used for its quick training) pretrained on ImageNet weights followed by two fully connected lay-
ers featuring ReLU activation and dropout applied before the layers with probability 0.4 and 0.25
respectively. Models saved by best average rotation error.

29



Under review as a conference paper at ICLR 2026

Inverse Kinematics Original author source code and settings Zhou et al.| (2019) were utilized.
Trained on NVIDIA L1 GPU for 2 million iterations. Epoch with lowest median rotation error was
chosen for results.

Camera Pose Estimation Training code and settings obtained from |Chen et al.| (2022). Model
initialized from pretrained GoogleNet weights recommended by original paper. Used NVIDIA L1
GPU and beta values 500/100/1500 for King’s College/Shop Facade/Old Hospital. Trained for 1200
epochs with batch size 75. Models saved every 5 epochs, and models from last 300 epoch were used
for testing (batch size 1 in testing). Epoch with lowest median rotation error was chosen for results.

G.2 ADDITIONAL EXPERIMENTS

G.2.1 WAHBA’S PROBLEM

n=3 n = 100
Algorithm e=1le™® e=1le”® €=0.1|Timings|e=1le™® e=1le”® e=0.1|Timings

Q-method |Davenport| (1968) |7.4676e-4 7.4678e-2 7.4868 | 3.583 |1.2487e-4 1.2487e-2 1.2551 | 5.375
QUEST [Shuster and Oh|(1981) | 7.4676e-4 7.4678e-2 7.4868 | 0.250 |1.2487e-4 1.2487e-2 1.2551 | 1.875
ESOQ2 |Mortari| (1997) 7.4694e-4 7.4691e-2 7.4869 | 0.375 |1.2487e-4 1.2487e-2 1.2551 | 2.000
FLAE Wu et al.|(2018) 7.4676e-4 7.4678e-2 7.4868 | 0.333 |1.2487e-4 1.2487e-2 1.2551 | 1.875
OLAE Mortari et al.|(2007) |7.7118e-4 7.7138e-2 7.8639 | 0.208 |1.3120e-4 1.3145e-2 1.5952 | 2.167

Ours (Gp, [Eq. (12)) 7.4676e-4 7.4678e-2 7.4868 | 4.084 |1.2487e-4 1.2487e-2 1.2551 | 9.917
Ours (GS,IE. (19)) 7.4676e-4 7.4678e-2 7.4868 | 3.625 |1.2487e-4 1.2487e-2 1.2551 | 6.500
Ours (G, WI 1.2614e-3 1.2613e-1 12.608 | 0.917 |3.5870e-4 3.5871e-2 3.7782 | 41.875

Table 4: Results of various Wahba’s Problem solvers against varying noise levels with n = {3,100}.
Accuracy values reported are median 6,.,-, and timing values are median runtimes in microseconds.

Timings taken with €,,,;5.=0.1. See for more info.

Algorithm | x A 5th 50" 95th

QUEST (Shuster and Oh, |1981) | 89/99 1/1 3/3|3.3082/3.4115 9.1727/9.3970 27.0520/27.1371
Fast 2 Vec (Markley,[2002) |72/78 3/3 4/4|3.3082/3.4115 9.1727/9.3970 27.0520/27.1371
SUPER (Ours) 29/74 3/2 3/3|3.3082/3.4115 9.1727/9.3970 27.0520/27.1371

Table 5: Operation counts and 6., percentiles (€,,0;sc = 0.1) for two-point Wahba’s problem
solvers. Values given for unweighted/weighted algorithms without edge case handling. Bold in-
dicates best.

G.2.2 LEARNING WAHBA’S PROBLEM

To evaluate our rotation representations more robustly across various conditions, we replicate the
synthetic learning experiments from |Peretroukhin et al.| (2020); Levinson et al.| (2020); Zhou et al.
(2019), using a fully-connected neural network from Peretroukhin et al.| (2020) to learn the solution
to Wahba’s problem. Problem points and rotations are generated according to same procedure de-
scribed in Each epoch, we dynamically generate 25,600 training samples and validate
on a fixed set of the same size (€,0;5¢ = 0.01 added to all samples). The models are trained for
1000 epochs with ADAM optimizer on an NVIDIA T4 GPU. In addition to Chordal L2, we also
define the loss function Chordal L1 analogously as the sum of absolute differences between the
elements of R,,..q and Ry;. Finally, given our complex representations, we also evaluate training
complex-valued networks |Liao (2023); Barrachina et al.| (2023) of equivalent size for the task with
stereographic complex inputs (Eq. (30)). For real-valued representations, we take the real part of the
model output in this case.

As expected, the compact representations (Euler, Quat) performed relatively poorly. Overall, the
best performers (QCQP, SVD, QuadMobiusAlg, QuadMobiusSVD) were all quite competitive with
each other, having similar results and convergence rates. However, the QuadMobius representations
together demonstrated an edge, leading most of the epochs and having the lowest error in majority
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#| n | LR |Loss|Dom| Euler Quat GS QCQP SVD | 2-vec QMAlg QMSVD
1] 3 |le-4| L2 | R | 9.009/0 8.964/1 1.761/0 1.676/141 1.641/696|1.701/1 1.658/51 1.689/110
2 3 |le4| L2 | C [119.364/0 13.632/0 5.768/0 4.237/1 4.264/1 |5.781/0 3.823/109 3.761/889
31 3 [5e-4| L2 | R [12.154/0 9.618/0 1.583/5 1.518/143 1.491/582|1.560/0 1.501/217 1.527/53
4| 3 |Se-4| L2 | C |119.403/0 12.238/0 4.016/0 3.586/2  3.735/6 |3.917/0 3.447/751 3.408/241
513 |1e-3] L2 | R | 14.693/0 9.159/0 1.575/1 1.497/170 1.509/245|1.578/2 1.486/87 1.499/495
6| 3 |1e-3| L2 | C |119.397/0 11.212/0 3.290/24 3.289/190 3.253/384|3.269/0 3.250/110 3.232/292
71 3 |le-4| L1 | R | 8.063/0 4.120/0 1.603/0 1.445/135 1.421/622|1.570/2 1.469/164 1.459/77
8| 3 |le4| L1 | C [119.388/0 9.812/0 4.734/0 3.259/0  3.238/1 [4.663/0 2.835/492 2.786/507
9| 3 |5e-4| L1 | R | 8.687/0 4.355/0 1.459/0 1.315/175 1.322/279|1.416/0 1.303/418 1.306/128
10| 3 [Se-4| L1 | C [119.334/0 7.500/0 3.290/0 2.760/3  2.857/3 |3.113/0 2.750/921 2.807/73
11| 3 |1e-3| L1 | R | 10.833/0 4.436/0 1.434/0 1.312/53 1.301/338|1.427/0 1.317/337 1.291/272
12| 3 [1e-3| L1 | C |119.483/0 6.930/0 2.916/0 2.475/92 2.447/251(2.874/0 2.478/211 2.472/446
13|/100|1e-4| L2 | R | 3.784/0 3.277/0 0.569/0 0.253/138 0.243/389|0.313/0 0.255/169 0.251/304
14{100|1e-4| L2 | C | 48.175/0 4.988/0 1.400/0 0.638/254 0.637/136(0.850/0 0.625/281 0.634/329
15/100(5e-4| L2 | R | 5.395/0 3.712/0 0.547/0 0.249/121 0.247/175]0.303/0 0.247/368 0.242/336
16{100(5e-4| L2 | C [119.370/0 5.009/0 1.586/0 0.831/682 0.866/223]0.940/0 0.866/66 0.848/29
17|/100(1e-3| L2 | R | 6.608/0 3.269/0 0.537/0 0.243/292 0.272/112]0.297/0 0.261/299 0.253/297
18{100|1e-3| L2 | C [118.381/0 5.056/0 1.480/0 0.845/121 0.836/499(0.887/0 0.859/71 0.826/309
19|100(1e-4| L1 | R | 2.249/0 1.794/0 0.356/0 0.269/293 0.261/327|0.332/0 0.264/130 0.265/250
20(100|1e-4| L1 | C [109.217/0 3.209/0 0.927/0 0.665/268 0.667/469|0.889/0 0.669/196 0.669/67
21|100(5e-4| L1 | R | 2.666/0 1.055/0 0.355/0 0.275/83 0.284/339[0.316/1 0.289/209 0.272/368
221100(5e-4| L1 | C [119.299/0 1.954/0 0.938/0 0.883/780 0.877/101|0.956/0 0.873/73 0.878/46
23|100(1e-3| L1 | R | 3.867/0 1.384/0 0.366/0 0.280/167 0.280/316|0.331/0 0.277/346 0.291/171
241100|1e-3| L1 | C |83.623/0 2.184/0 0.952/0 0.830/466 0.835/61 [0.919/0 0.826/366 0.849/107

Table 6: Trial results for learning Wahba’s problem with different rotation representations. n is
number of points, LR is learning rate, Loss is type of chordal loss function, Dom is the domain,
specifying whether the network is real-valued or complex-valued. Results are shown as 6,.-/Ldr.
pairs where ..., is average rotation error on validation set, and Ldr. is the number of epochs where
that representation was a leader, i.e. had the lowest 6.,.,. overall as of that epoch. Bold indicates best
value, underline indicates second best.

of trials. Although mathematically equivalent, the two approaches produced different results with
neither approach consistently outperforming the other. On the other hand, 2-vec outperformed the
other non-eigendecomposition representations (including Gram-Schmidt), beating them on most
trials, at times by a large margin. Although significant differences for the complex cases were
not observed among representations, some of the complex-valued trials featured the highest leader
counts overall by our representations (e.g. trial #2, trial #10). The leader count gives a sense of
the convergence/dominance of the learning as well how cherry-picked the results may be based on
number of training epochs. See for sample training/validation curves which illustrate the
advantage of noncompact representations and the competitiveness of our approaches.

G.2.3 REPRESENTATION TIMINGS

| Euler  Quat GS QCQP SVD 2-vec QMAIlg QMSVD
Training | 0.2123 0.0691 0.4903 0.5223 0.4904 0.4447 1.2231 1.6247
Inference | 0.0401 0.0056 0.1050 0.2435 0.2737 0.0803 0.4298 0.6221

Table 7: Comparison of timings of different representations run with batch size 128. Measured on
Apple M1 Silicon CPU. Values reported are median measurements of 10000 runs in milleseconds.
Training includes forward and backward passes (PyTorch train mode), and Inference includes only
forward pass (PyTorch eval mode).

shows the compute timings of the representations. 2-vec has notably fast inference tim-
ings. QuadMobius representations are slower than others as they involve complex arithmetic and
more compute steps overall. However, training time differences were observed to be negligible be-
tween them and QCQP/SVD as bottlenecks are typically present elsewhere in the pipeline (e.g. data
loading, network compute).
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Figure 6: Progression of average 6., over the training and validation sets for learning Wahba’s problem (Appendix G.2.2) for trial #15 in m Orange is
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