
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPECIAL UNITARY PARAMETERIZED ESTIMATORS OF
ROTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper revisits the topic of rotation estimation through the lens of special
unitary matrices. We begin by reformulating Wahba’s problem using SU(2) to
derive multiple solutions that yield linear constraints on corresponding quaternion
parameters. We then explore applications of these constraints by formulating effi-
cient methods for related problems. Finally, from this theoretical foundation, we
propose two novel continuous representations for learning rotations in neural net-
works. Extensive experiments validate the effectiveness of the proposed methods.

1 INTRODUCTION

3D rotations are fundamental objects ubiquitously encountered in domains such as physics,
aerospace, and robotics. Many representations have been developed over the years to describe them
including rotation matrices, Euler angles, and quaternions. Each method has specific strengths such
as parameter efficiency, singularity avoidance, or interpretability. While special orthogonal matri-
ces SO(3) are widely used, their complex counterparts, special unitary matrices SU(2), are less
explored in areas like robotics and machine learning. This paper showcases the utility of special
unitary matrices by tackling rotation estimation from different perspectives.

1.1 WAHBA’S PROBLEM

Wahba’s problem (Wahba, 1965) is a fundamental problem in attitude estimation. The task refers
to the process of determining the orientation of a target coordinate frame relative to a reference
coordinate frame based on 3D unit vector observations. More formally, it is phrased as seeking the
optimal rotation matrix R minimizing the following loss:

min
R∈SO(3)

∑
i

wi||bi −Rai||2 (1)

where ai are the reference frame observations, bi are the corresponding target frame observations,
andwi are the real positive weights for each observation pair. The problem can be solved analytically
by finding the nearest special orthogonal matrix (in a Frobenius sense) to the matrix B below:

B =
∑
i

wibia
T
i (2)

Today, this solution is typically computed via singular value decomposition (Markley, 1987).

Alternatively, the solution can be estimated as a unit quaternion. Davenport (1968) introduced the
first such method in 1968 by showing that the optimal quaternion q is the eigenvector corresponding
to the largest eigenvalue of a 4x4 symmetric gain matrix K, which can be constructed as:

K =

[
Tr(B) zT

z B+BT − Tr(B)I

]
(3)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

where I is the identity matrix, Tr(B) =
∑

i Bii, and z =
∑

i wiai × bi. The solution via eigen-
decomposition is relatively slow as it solves for all the eigenvectors of the matrix which are not
needed. Later solutions improve upon this by calculating the characteristic equation of K and solv-
ing for only the largest eigenvalue (Shuster and Oh, 1981; Mortari, 1997; Wu et al., 2018). For an
overview of major algorithms, see Lourakis and Terzakis (2018).

1.2 REPRESENTATIONS FOR LEARNING ROTATIONS

In recent years, there has been great interest in representing rotations within neural networks, which
often struggle with learning structured outputs. Directly predicting common parameterizations such
as quaternions or Euler angles has generally performed relatively poorly (Geist et al., 2024). In fact,
it was shown that any 3D rotation parameterization in less than five real dimensions is discontinu-
ous, necessitating non-minimal representations for smooth learning (Zhou et al., 2019). Addition-
ally, challenges like double cover in some representations can further hinder learning. Two leading
approaches, Levinson et al. (2020) and Peretroukhin et al. (2020), essentially interpret network out-
puts as B and K matrices (Eqs. (2) and (3) respectively), mapping them to rotations via solutions
to Wahba’s problem. Thus, the two tasks can be linked. For a more in depth overview of the task,
see Geist et al. (2024).

1.3 CONTRIBUTIONS

This paper establishes new theoretical results on rotation estimation by utilizing special unitary
matrices within the framework of Wahba’s problem. We explore several applications of these results,
with particular emphasis on our two novel representations for learning rotations in neural networks.

We highly recommend the reader to first review Appendix A to become familiar with the
relevant mathematical background and notation used throughout the paper.

2 SOLUTIONS TO WAHBA’S PROBLEM VIA SU(2)

Transferring Wahba’s Problem to complex projective space, we can solve for the optimal rotation as
a special unitary matrix.

2.1 STEREOGRAPHIC PLANE SOLUTION

First, we establish the proper distance metric in complex projective space corresponding to the
spherical chordal metric in Eq. (1). For points a,b ∈ S2 and their stereographic projections ψ(a) =
z = [z1, z2]

T and ψ(b) = p = [p1, p2]
T , we can show that the metric can be expressed in the

following way (derivation in Appendix B.1.1):

||a− b||2 =
4|z1p2 − z2p1|2

||z||2||p||2
(4)

We now seek to find the rotation R parameterized by corresponding special unitary matrix U in
complex projective space that minimizes the objective in Eq. (1). Applying our derived metric and
Eqs. (32) and (34), we can construct for each weighted input correspondence zi and pi:

wi||bi −Rai||2 =
4wi|(−β̄zi,1 + ᾱzi,2)pi,1 − (αzi,1 + βzi,2)pi,2|2

(|αzi,1 + βz2,i|2 + | − β̄z1,1 + ᾱzi,2|2)||pi||2

=
4wi|(−β̄zi,1 + ᾱzi,2)pi,1 − (αzi,1 + βzi,2)pi,2|2

||Uzi||2||pi||2

where α, β are the complex parameters defining U from Eq. (31). By definition of unitary matrices,
||Uz||2 = ||z||2. Thus, we can rewrite our expression as the following target constraint:

4w|(−β̄zi,1 + ᾱzi,2)pi,1 − (αzi,1 + βzi,2)pi,2|2

||z||2||p||2
= 0 (5)

=⇒ 2
√
w((−β̄zi,1 + ᾱzi,2)pi,1 − (αzi,1 + βzi,2)pi,2)√

|zi,1|2 + |zi,2|2
√
|pi,1|2 + |pi,2|2

= 0 (6)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The expression is now just a linear function of rotation parameters. It is a general constraint as it
handles the entire complex projective space (proof in Appendix B.1.2). However, in practice, our
inputs are more commonly given as projection coordinates on the complex plane. As such, we have:

zi,1 = zi = xi + yii, pi,1 = pi = mi + nii, zi,2 = pi,2 = 1

for each point correspondence (xi, yi,mi, ni ∈ R). This simplifies the constraint to the following:
2
√
wi((−β̄zi + ᾱ)pi − αzi − β)√

|zi|2 + 1
√
|pi|2 + 1

= 0 (7)

We can rearrange the equation to the following linear form with u =
[
α β ᾱ β̄

]T
:

w′
i =

4wi

(|zi|2 + 1)(|pi|2 + 1)
(8)√

w′
i [−zi −1 pi −pizi]u =

√
w′

iAiu = 0 (9)
Each input point pair gives us a complex constraint Ai. Stacking Ai together and multiplying the
weights through, we can write the relation succinctly as Au = 0 (A is a complex n x 4 matrix for
n points). With noisy observations, the constraints do not hold exactly, so we aim to find the best
rotation that minimizes the least squares error ||Au||2. It is nontrivial to solve for the minimizing
vector u while ensuring the result will form a valid special unitary matrix (u1 = ū3, u2 = ū4,
u1ū1 + u2ū2 = 1). To more effectively solve this, we use Eq. (35) to transform the vector u to
a corresponding quaternion q = [wq xq yq zq]

T that has a simpler constraint (q must be unit
norm). We carry out the complex multiplication for each Aiu and break the constraint into two
constraints, one for the real and imaginary parts respectively:

w′
i =

4wi

(1 + x2i + y2i)(1 +m2
i + n2i)

(10)

√
w′

i

[
xi −mi −yi − ni 1 +mixi − niyi miyi + nixi
yi − ni xi +mi miyi + nixi 1−mixi + niyi

]
q =

√
w′

iDiq = 0 (11)

Multiplying the weights through again and stacking together Di for each correspondence into D
(real 2n x 4 matrix), we can arrive at the following constrained least squares objective:

||Dq||2 = qTDTDq = qT
(∑

i

w′
iD

T
i Di

)
q = qTGPq

min
q

qTGPq, s.t. ||q|| = 1 (12)

The formulated objective in Eq. (12) is equivalent to the original problem statement, and the solution
is well known as the eigenvector corresponding to the smallest eigenvalue of GP . Using Eq. (35)
again, we can map q back to a special unitary matrix U giving a solution to the problem. Note that
−q is also a solution since eigenvectors are only unique up to scale. However, the sign is irrelevant
as q and −q map to the same rotation due to the double cover of quaternions over SO(3) in Eq. (36).
For further theoretical details on this solution, see Appendix C.

2.2 APPROXIMATION VIA MÖBIUS TRANSFORMATIONS

We can approximate the previous solution in the complex domain by first estimating an optimal
Möbius transformation M and mapping it to a special unitary matrix. Relaxing the special unitary
conditions in Eq. (9), we can treat u as a flattened form of M, leading to a modified constraint A′

i
that holds when M aligns a stereographic point pair:

m = vec(M) = [σ ξ γ δ]
T

[−zi −1 pizi pi]m = A′
im = 0 (13)

Note that Eq. (13) does not preserve the metric in Eq. (4) between pi and transformed point ΦM(zi).
We can stack each A′

i into matrix A′ (n x 4 complex matrix) and similarly estimate the best (in a
least squares sense) Möbius transformation aligning the points as:

GM = A′HA′ =
∑
i

A′H
i A′

i

min
m

mHGMm s.t. ||m|| = 1 (14)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The constraint in Eq. (14) is necessary to prevent trivial solutions, but the choice of quadratic con-
straint on m is arbitrary. With our constraint choice, the optimal m is the complex eigenvector
corresponding to the smallest eigenvalue of GM . Since GM is positive semidefinite and Hermitian
(GH

M = GM) by construction, the eigenvalues are real and nonnegative, facilitating straightforward
ordering. If n < 4, m can be obtained directly from the kernel of A′. Either way, the solution is
not unique as eigenvectors and kernel vectors can be scaled arbitrarily, particulary by a phase eiθ.
However, by Eq. (42), scaled Möbius transformations are equivalent, so our result properly defines
the transformation.

Given m, we can reshape it into M and scale M to M∗ = det(M)−
1
2M (allowed since the scale

of M is arbitrary) so that det(M∗) = 1. It is known that the closest unitary matrix to M∗ in the
Frobenius sense can be computed by UVH (Keller, 1975), where U and VH are from the singular
value decomposition M∗ = UΣVH . Since det(M∗) = 1, the nearest unitary matrix to M∗ is
special unitary (proof in Appendix B.3.1) and in fact the approximate solution. Note that this matrix
is not necessarily the nearest special unitary matrix to M itself. By normalizing the determinant, we
prevent the rotation mapping from being affected by arbitrary phase scalings of m.

2.3 3D SPHERE SOLUTION

If our inputs are given as unit observations in 3D, we could project them by ψ and use the earlier
solution. However, through Eqs. (37) and (38), we see that we can act directly on 3D vectors with
special unitary matrices which suggests an alternative formulation. Upon examining the structure of
the matrices that χ maps to, one can show that Eq. (1) can be equivalently expressed as:

χ(ai) 7→ Zi, χ(bi) 7→ Pi∑
i

wi||bi −Rai||2 =
1

2

∑
i

wi||Pi −UZiU
H ||2F (15)

where || · ||F denotes the Frobenius norm and U is the special unitary matrix that maps to R. The
Frobenius norm is unitarily invariant, so we may multiply the inside expression on the right by U to
obtain a new target objective and corresponding constraint:

1

2

∑
i

wi||PiU−UZi||2F = 0 =⇒
√
wi

2
(PiU−UZi) = 0 (16)

We arrive at a linear constraint again via special unitary matrices. Inspecting the matrix within the
Frobenius norm reveals that the loss contribution from the top row elements is identical to that of the
bottom row elements. Consequently, we only need to compute the loss from a single row, allowing
us to eliminate the factor of 1

2 from equation Eq. (16). With ai = (xi, yi, zi) and bi = (mi, ni, pi),
we can write the following complex constraint:

√
wi

[
(mi − xi)i yi − zii 0 −ni − pii
−yi − zii (xi +mi)i ni + pii 0

]
u =

√
wiCiu = 0 (17)

Ci has a rank of at most 1 if a and b have the same magnitude. We reformulate the constraint, once
again breaking the complex terms of u into their real components. This yields the following linear
constraint in terms of quaternion parameters:

√
wi

 0 xi −mi yi − ni zi − pi
mi − xi 0 −zi − pi yi + ni
ni − yi zi + pi 0 −xi −mi

pi − zi −yi − ni xi +mi 0

q =
√
wiQiq = 0 (18)

Note that Qi is a 4x4 skew-symmetric matrix and has at most rank 2 if a and b have the same
magnitude. As a result, our optimization now becomes:∑

i

wiQ
T
i Qi = −

∑
i

wiQ
2
i = GS

min
q

qTGSq s.t. ||q|| = 1 (19)

The solution is once again the eigenvector corresponding to the smallest eigenvalue of GS .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 OPTIMIZATION METHODS FROM LINEAR QUATERNION CONSTRAINTS

Our previous general solutions are notably distinct from other methods as they allow for the prin-
cipled construction of linear constraints (Eqs. (11) and (18)) on quaternion parameters. We discuss
some applications and desirable properties of these results.

3.1 RESIDUAL BASED OPTIMIZATION

While Wahba’s problem admits a direct solution, many related rotation estimation tasks require it-
erative methods. These often involve repeatedly evaluating per-observation losses for a candidate
quaternion. Examples include alternative loss functions like the absolute chordal metric (L1 dis-
tance) or robust approaches such as iteratively reweighted least squares (IRLS). In these settings, our
linear constraints serve as a drop-in, efficient method for residual computation. The stereographic
formulation in Eq. (11) is especially appealing as it is far more compact (8 elements versus 12 for
Eq. (18)) while avoiding branching in construction, especially in the general case of Appendix C.2.

3.2 CONSTRAINED OPTIMIZATION

When the constraints for an observation pair hold exactly, our formulas yield a convenient analytical
characterization of all rotations that align the pair. A practical use case for this is rotation estimation
with an axis prior (e.g. a gravity vector measurement from an IMU). Traditional methods rely on
sequential rotations or intermediate coordinate frames to simplify the problem (Magner and Zee,
2018; Chandrasekhar, 2024). In contrast, because both Eqs. (11) and (18) reduce to rank 2 in this
setting, we can linearly express two quaternion parameters in terms of the other two and solve
directly and efficiently in a reduced space, eliminating the need for intermediate frames.

3.3 TWO-POINT CASE FOR WAHBA’S PROBLEM

More generally speaking, when the constraints hold exactly for one or more observation pairs (i.e.
noiseless scenarios), we can obtain the solution from the kernel of those constraints in closed-form.
For example, with two noiseless 3D sphere observation pairs, the aligning rotation can be given by:

q̃ =

[
(a1 + b1) · (a2 − b2)
(a1 − b1)× (a2 − b2)

]
(20)

where q̃ denotes the unnormalized form of rotation q. Appendix D describes our methods to robustly
and efficiently construct these rotations of exact alignment. These simple kernel formulations are
key to enabling our solutions to the case of Wahba’s problem when n = 2.

Weighted Wahba’s problem for the two-point case is well known to have closed-form expres-
sions (Shuster and Oh, 1981; Mortari, 1997; Markley, 2002). We propose an alternate solution
which is given by the weighted average of the two (unnormalized) rotations that each noiselessly
align the cross products of the reference and target sets, along with one of the two corresponding
observation pairs (proof in Appendix B.4.1). Using the average rotation definition from Markley
et al. (2007) (i.e. in Frobenius sense for SO(3)), the solution is:

n1 = a1 × a2, n2 =

√
||a1 × a2||2
||b1 × b2||2

(b1 × b2), q̃i =

[
(ai + bi) · (n1 − n2)
(ai − bi)× (n1 − n2)

]
τ = (w1 − w2)||q̃1||2||q̃2||2, ω = 2w1||q̃2||2(q̃1 · q̃2)

ν = 2w2||q̃1||2(q̃1 · q̃2), µ = τ +
√
τ2 + ων

q =
µq̃1 + νq̃2√

||q̃1||2µ2 + ||q̃2||2ν2 + 2(q̃1 · q̃2)µν
(21)

where q̃1 · q̃2 denotes the usual vector dot product between q̃1 and q̃2. See Appendix B.4.3 for
derivation and additional details.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Gram-Schmidt (b) 2-vec (c) QCQP/SVD (d) QuadMobius

Figure 1: (a)-(b) Illustration of difference between Gram-Schmidt and 2-vec in 2D. bx, by are
predicted axes directions from the model, and Rx, Ry are the orthogonalized coordinate axes from
each mapping. Gram-Schmidt favors bx, aligning Rx with it greedily while 2-vec uses bx,by in
a balanced way. (c)-(d) Conceptual illustration of QCQP, SVD, and QuadMobius maps in context
of Wahba’s problem in 3D. QCQP/SVD can be interpreted as direct projection of target points (red)
to an orthogonal frame. QuadMobius first maps those points to an intermediate representation—a
Möbius transformation, defined by three points (blue)—before projecting to an SU(2) rotation.

Unweighted In the case of w1 = w2, the optimal rotation simplifies to the rotation which exactly
aligns a1 + a2 to b1 + b2 and a1 − a2 to b1 − b2 (proof in Appendix B.4.2). This is given by:

s1 = a1 + a2, s2 =

√
1 + a1 · a2
1 + b1 · b2

(b1 + b2)

d1 = a1 − a2, d2 =

√
1− a1 · a2
1− b1 · b2

(b1 − b2)

q̃ =

[
(s1 + s2) · (d1 − d2)
(s1 − s2)× (d1 − d2)

]
(22)

The aligning rotation formulas are given in the form of equation Eq. (20) for simplicity, but in
practice we use the approach described in Appendix D.2 for robustness. In that case, singular cases
only arise when a1×a2 = 0 or b1×b2 = 0 where no unique solution exists, and a particular one may
be obtained via the special unitary constraints in equation Eq. (17) (see Appendix B.4.4). Notably,
the two solutions above are optimal in the sense of Wahba’s problem and simplified compared to
existing two-point methods, especially for the unweighted case (see Table 5).

An example use case of these methods is estimating the orientation of a camera given an image
of a rectangle. Under a pinhole camera model, the image of a 3D rectangle adheres to the rules of
perspective geometry. Since the rectangle’s opposite edges are parallel in 3D, their projections in the
image converge at vanishing points that represent the direction of these lines in the camera’s frame.
Because the two sets of parallel edges in the rectangle are orthogonal in 3D, the corresponding
vanishing points should also be orthogonal. However, due to measurement noise, this orthogonality
is often violated. Our two point solutions can recover the best estimate of the camera’s orientation
in these cases.

4 REPRESENTATIONS FOR LEARNING ROTATIONS

Based on previous formulations, we introduce two higher-dimensional representations for learning
rotations. See Appendix B.2 for derivation details and Appendix F for further theoretical support of
both representations.

2-vec The first is based on our formula for the optimal rotation from two unweighted observations
and is denoted 2-vec. Similar to the Gram-Schmidt map in Zhou et al. (2019), 2-vec interprets a 6D
output vector from a model as target 3D x and y axes (denoted bx, by). Unlike the Gram-Schmidt
method which greedily orthogonalizes the two vectors by assuming the x-axis prediction is correct,
2-vec maps the two vectors to a rotation optimally in the sense of Wahba’s problem, balancing error
from both axis predictions (Fig. 4). Eq. (22) could be used, but since the reference points are the
x, y coordinate axes, we can instead obtain a rotation matrix in a simpler fashion through the same

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

principle:

b′
y =

||bx||
||by||

by, b+ =
bx + b′

y

||bx + b′
y||
, b− =

bx − b′
y

||bx − b′
y||

R =
[

1√
2
(b+ + b−), 1√

2
(b+ − b−), b− × b+

]
∈ SO(3) (23)

This method has a similar singular region and computational complexity as that of Gram-Schmidt.

QuadMobius A second parameterization is based on the approximation from Section 2.2 involv-
ing Möbius transformations. Taking inspiration from the approach in Peretroukhin et al. (2020), a
(real) 16D network output Θ = {θi : i = 1 . . . 16} is arranged into the unique complex elements of
GM as below:

GM (Θ) =

 θ1 θ2 + θ3i θ4 + θ5i θ6 + θ7i
θ2 − θ3i θ8 θ9 + θ10i θ11 + θ12i
θ4 − θ5i θ9 − θ10i θ13 θ14 + θ15i
θ6 − θ7i θ11 − θ12i θ14 − θ15i θ16

 (24)

GM (Θ) is Hermitian with real (and assumed distinct) eigenvalues where we can select the eigen-
vector m corresponding to its smallest eigenvalue. After reshaping m to a Möbius transformation
M, we can map to a rotation by the approximation procedure in Section 2.2. The procedure can be
performed via singular value decomposition (M = UΣVH) to obtain a special unitary matrix Q:

Q =
√
det(UVH)UVH ∈ SU(2) (25)

Alternatively, we can algebraically solve for Q as follows:

M∗ =

√
det(M)

|det(M)|(2|det(M)|+ Tr(MHM))
M

Q = M∗ + adj(M∗)H ∈ SU(2) (26)

where Tr(·) denotes the trace and adj(·) denotes the adjugate. In both cases, Q is mapped to a
quaternion via Eqs. (35) and (45), and M is assumed to be nonsingular. We denote the SVD method
QuadMobiusSVD and the algebraic method QuadMobiusAlg. With these maps and our assump-
tions (observed valid in practice), we define a full mapping from Θ to q that has a defined numerical
derivative for backpropagation (see Appendix E for derivative formulas). We remark that this map
is motivated by ideas from Levinson et al. (2020) and Peretroukhin et al. (2020), inheriting many of
their properties (e.g. interpretation as Bingham belief (Kent, 1994), differentiability (Magnus, 1985;
Wan and Zhang, 2019)) while offering a potentially more flexible (higher-dimensional, complex)
learning representation.

5 EXPERIMENTS

5.1 WAHBA’S PROBLEM

Synthetic experiments are performed to validate the proposed methods for Wahba’s problem. For
each trial, a ground truth quaternion rotation qgt is randomly sampled from S3, and n reference
points are randomly sampled from S2. The reference points are rotated by qgt to obtain target ob-
servations. Gaussian noise is added to each component of each target observation, and the target
observations are subsequently re-normalized afterward. Weights are randomly sampled between 0
and 1. Accuracy is measured by the angular distance θerr = cos−1(2(qest · qgt)

2 − 1) in de-
grees between the estimated rotation qest and qgt, where (·, ·) denotes the usual vector dot product.
Numerical results shown in Appendix.

We first test our solutions to Wahba’s problem for both 3D and stereographic inputs (Eqs. (12)
and (19)). The input for the latter is created by projecting the 3D points by ψ. We also test the
approximate solution in Section 2.2. The solutions to all three are obtained by eigendecomposition
using Jacobi’s eigenvalue algorithm. For validation, we compare against several quaternion solvers

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

introduced over the past decades. For the two-point case, we also compare against the closed-form
solutions in Markley (2002) and Shuster and Oh (1981). All solutions were reimplemented and
optimized similarly in C++17 and compiled with the flag -O3. We perform one million trials for
each configuration.

Table 4 confirms that our optimal solvers match the results of Davenport’s Q-method in the general
case. In contrast, our Möbius approximation demonstrates a sensitivity to noise (potentially a benefit
in the learning context of next section). We note that this approximation could likely be improved
with a normalization step common in real homography estimation (Hartley and Zisserman, 2004).

Table 5 similarly confirms that our two-point methods achieve the same optimal results as existing
solvers. By utilizing unnormalized rotations, our weighted algorithm minimizes normalization costs,
streamlining the compute. Most notably, in the unweighted case, our tailored solution only requires
roughly a third of the multiplications of other methods, marking a significant gain in efficiency.

Chair Sofa Toilet
Mean Med. Acc5 Acc10 Mean Med. Acc5 Acc10 Mean Med. Acc5 Acc10

Euler 21.479 10.777 0.129 0.457 22.033 9.462 0.153 0.529 14.495 8.375 0.197 0.604
Quat 23.640 12.664 0.083 0.350 23.426 10.778 0.128 0.452 14.959 9.913 0.128 0.511
GS 13.606 6.320 0.350 0.738 15.015 5.469 0.441 0.801 6.586 3.708 0.682 0.915

QCQP 13.131 5.786 0.416 0.773 13.916 5.476 0.436 0.795 6.070 3.452 0.730 0.929
SVD 13.061 5.815 0.412 0.773 14.967 5.812 0.406 0.774 6.135 3.502 0.710 0.930
2-vec 12.544 6.100 0.380 0.751 15.077 6.217 0.364 0.753 6.069 3.483 0.713 0.926

QMAlg 12.604 5.696 0.425 0.783 14.336 5.657 0.419 0.793 6.079 3.590 0.714 0.930
QMSVD 13.157 6.211 0.366 0.748 13.683 5.421 0.443 0.799 6.026 3.601 0.699 0.926

Table 1: θerr mean/median and accuracy (subscript indicates threshold) on 3D shape alignment for
different ModelNet10-SO3 categories (Liao et al., 2019). Bold indicates best, underline indicates
second best.

5.2 LEARNING EXPERIMENTS

We conduct several experiments to evaluate our proposed rotation representations. The primary
loss function is the squared Frobenius norm ||Rpred − Rgt||2F , which we refer to as Chordal
L2, where Rpred is the predicted rotation and Rgt is the ground truth. For quaternion outputs,
Chordal L2 is computed same as Peretroukhin et al. (2020). We compare our representations—2-
vec, QuadMobiusAlg (QMAlg), and QuadMobiusSVD (QMSVD)—against several baselines: Eu-
ler angles (Tait-Bryan YXZ), Quat (quaternion), GS (Gram-Schmidt) (Zhou et al., 2019), QCQP
(Peretroukhin et al., 2020), and SVD (Levinson et al., 2020). In both QuadMobius variants, we use
the algebraic method in the forward pass to avoid SVD computation and isolate differences to the
backward pass. This section presents results on three public benchmarks. Additional synthetic ex-
periments exploring different learning conditions are included in Appendix G.2.2, and full training
details are provided in Appendix G.1.

ModelNet10-SO3 We first evaluate the representations on the 3D shape alignment task from Liao
et al. (2019) using the ModelNet10-SO3 dataset. This dataset comprises of images of 3D CAD
models under uniformly sampled rotations with multiple object models per category. The task is to
predict the object’s orientation directly from its image. Table 1 reports the results on three object
categories, chosen for their low rotational symmetry following the choice in Levinson et al. (2020).

Inverse Kinematics Next, we test the representations on an unsupervised learning task, applying
them to the inverse kinematics task from Zhou et al. (2019). Given 3D human pose joint locations
(from real-world motion capture data), a network predicts the joint orientations relative to a reference
pose and uses a fixed forward kinematics function to obtain predicted joint locations. The distance
loss is applied between the predicted and given joint locations. In this task, the rotations are used as
implicit representations through which the gradients must flow rather than direct prediction targets.
Fig. 2 compares the results of the different learning representations on this task.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Mean 25th 50th 75th

Euler 2.653 1.447 2.062 3.146
Quat 2.945 1.529 2.356 3.543
GS 1.629 0.8767 1.256 2.015

QCQP 1.511 0.7729 1.188 1.85
SVD 1.55 0.7647 1.16 1.855
2-vec 1.574 0.809 1.174 1.854

QMAlg 1.51 0.8633 1.182 1.757
QMSVD 1.509 0.7421 1.13 1.81

Figure 2: Results of unsupervised learning for Inverse Kinematics task (Zhou et al., 2019). Left:
Mean and percentile L2 distance error (cm) of predicted joint locations. Bold indicates best, under-
line indicates second best. Right: Ratios of joint errors relative to QMSVD across error percentiles
(Euler/Quat omitted due to large ratios).

Camera Pose Estimation Finally, we replicate the experiment from Walch et al. (2017) which
utilizes an LSTM to directly regress a camera’s pose from real world images. Training requires
simultaneously optimizing over both the camera’s orientation and translation. Data comes from
the Cambridge Landmarks dataset (Kendall et al., 2015) which includes labels estimated from tradi-
tional structure from motion pipelines. The results are seen in Table 2 from training on select scenes,
following the choice of Chen et al. (2022).

Results Overall, the proposed representations demonstrated strong performance and versatility
across the three benchmark tasks. Despite its lower dimensionality, 2-vec proved competitive, oc-
casionally achieving the best result. Notably, it typically outperforms Gram-Schmidt, positioning
itself as an attractive alternative. The QuadMobius approaches showed their potential by achieving
the top result in nearly all experiments over favorites like SVD and QCQP.

King’s College Shop Facade Old Hospital
Mean 25th 50th 75th Mean 25th 50th 75th Mean 25th 50th 75th

Euler 4.192 2.403 3.684 5.509 6.826 4.129 6.050 9.305 4.748 2.204 3.247 6.162
Quat 2.759 1.367 2.251 3.499 6.604 3.762 5.339 8.153 4.570 2.486 3.377 5.546
GS 3.298 1.764 2.583 4.137 6.559 4.376 5.660 8.343 4.295 1.897 3.070 5.698

QCQP 3.204 1.540 2.537 4.129 6.802 3.901 5.797 8.539 4.454 2.156 3.304 6.267
SVD 3.292 1.589 2.624 4.110 7.117 4.157 5.647 8.370 4.574 2.420 3.485 5.961
2-vec 3.085 1.536 2.371 4.014 7.118 3.789 5.762 8.957 4.294 2.085 2.950 5.292

QMAlg 2.631 1.337 2.052 3.267 6.317 4.050 5.268 7.758 4.426 2.035 3.238 5.640
QMSVD 2.706 1.391 2.177 3.345 6.715 4.074 5.710 8.947 4.409 2.077 3.146 5.744

Table 2: Mean and percentile θerr of predicted rotations from direct pose prediction on different
scenes in Cambridge Landmarks Dataset (Kendall et al., 2015). Bold indicates best, underline indi-
cates second best.

6 CONCLUSION

This paper demonstrated the utility of special unitary matrices for rotation estimation. Several new
formulas and algorithms were presented from this perspective for the real and complex domains,
tackling Wahba’s problem and rotation representations in neural networks. Various experiments con-
firmed the potential of these approaches. Future work may include further solidifying the theoretical
and empirical foundations of our rotation representations and applying special unitary matrices to
other tasks such as analytical camera pose estimation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jose Agustin Barrachina, Chengfang Ren, Gilles Vieillard, Christele Morisseau, and Jean-Philippe
Ovarlez. Theory and implementation of complex-valued neural networks, 2023.

Akshay Chandrasekhar. PoseGravity: Pose estimation from points and lines with axis prior. 2024.

Jiayi Chen, Yingda Yin, Tolga Birdal, Baoquan Chen, Leonidas J Guibas, and He Wang. Projective
manifold gradient layer for deep rotation regression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6646–6655, 2022.

Daniel Choukroun. Novel results on quaternion modeling and estimation from vector observations.
In AIAA Guidance, Navigation, and Control Conference, 2009.

Paul B. Davenport. A vector approach to the algebra of rotations with applications. 1968.

Andreas Geist, Jonas Frey, Mikel Zhobro, Anna Levina, and Georg Martius. Learning with 3d
rotations, a hitchhiker’s guide to so(3), 2024.

R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Second edition, 2004.

Joseph B. Keller. Closest unitary, orthogonal and hermitian operators to a given operator. Mathe-
matics Magazine, 48(4):192–197, 1975.

Alex Kendall, Matthew Grimes, and Roberto Cipolla. Research data supporting “posenet: A con-
volutional network for real-time 6-dof camera relocalization”, 2015. Dataset, King’s College,
University of Cambridge.

John T. Kent. The complex bingham distribution and shape analysis. Journal of the Royal Statistical
Society. Series B (Methodological), 56(2):285–299, 1994.

Jake Levinson, Carlos Esteves, Kefan Chen, Noah Snavely, Angjoo Kanazawa, Afshin Ros-
tamizadeh, and Ameesh Makadia. An analysis of svd for deep rotation estimation. 2020.

Shuai Liao, Efstratios Gavves, and Cees G. M. Snoek. Spherical regression: Learning viewpoints,
surface normals and 3d rotations on n-spheres. In CVPR, pages 9751–9759, 2019.

Xinyuan Liao. Complexnn: Complex neural network modules, 2023.

Manolis Lourakis and George Terzakis. Efficient absolute orientation revisited. 2018.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In ECCV, 2018.

Robert D. Magner and Robert E. Zee. Extending target tracking capabilities through trajectory and
momentum setpoint optimization. 32nd Annual AIAA/USU Conference on Small Satellites, 2018

Jan R. Magnus. On differentiating eigenvalues and eigenvectors. Econometric Theory, 1:179 – 191,
1985.

F. Landis Markley. Fast quaternion attitude estimation from two vector measurements. Journal of
Guidance, Control, and Dynamics, 25(2):411–414, 2002.

F. Landis Markley, Yang Cheng, John L. Crassidis, and Yaakov Oshman. Averaging quaternions.
Journal of Guidance, Control, and Dynamics, 30(4):1193–1197, 2007.

Landis Markley. Attitude determination using vector observations and the singular value decompo-
sition. J. Astronaut. Sci., 38, 1987.

Landis Markley. Attitude determination using two vector measurements. 1999.

D. Mortari. Esoq-2 single-point algorithm for fast optimal spacecraft attitude determination. 95,
1997.

D. Mortari, Landis Markley, and Puneet Singla. Optimal linear attitude estimator. Journal of Guid-
ance, Control, and Dynamics - J GUID CONTROL DYNAM, 30:1619–1627, 2007.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Caitong Peng and Daniel Choukroun. Singularity and error analysis of a simple quaternion estimator,
2024.

Valentin Peretroukhin, Matthew Giamou, W. Greene, David Rosen, Jonathan Kelly, and Nicholas
Roy. A smooth representation of belief over so(3) for deep rotation learning with uncertainty.
2020.

M. D. Shuster and S. D. Oh. Three-axis attitude determination from vector observations. Journal of
Guidance and Control, 4(1):70–77, 1981.

Grace Wahba. A least squares estimate of satellite attitude. SIAM Review, 7(3):409–409, 1965.

Florian Walch, Caner Hazirbas, Laura Leal-Taixé, Torsten Sattler, Sebastian Hilsenbeck, and Daniel
Cremers. Image-based localization using lstms for structured feature correlation. In ICCV, 2017.

Zhou-Quan Wan and Shi-Xin Zhang. Automatic differentiation for complex valued svd. 2019.

Jin Wu, Zebo Zhou, Bin Gao, Rui Li, Yuhua Cheng, and Hassen Fourati. Fast linear quaternion
attitude estimator using vector observations. IEEE Transactions on Automation Science and En-
gineering, 15(1):307–319, 2018.

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation
representations in neural networks. In 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5738–5746, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Special Unitary Parameterized Estimators of
Rotation
Appendix

A MATHEMATICAL BACKGROUND AND DEFINITIONS

The mathematical background for special unitary matrices and related concepts is briefly reviewed.
The formulas are all established and generally known. A complex square matrix U is defined as
unitary if:

UUH = UHU = I, |det(U)| = 1 (27)

where H denotes the conjugate transpose, | · | denotes complex magnitude, and det(·) denotes deter-
minant. The matrix is special unitary if it has the additional restriction that det(U) = 1 exactly.

Stereographic projection ψ is an invertible mapping of the sphere S2 = {(xs, ys, zs) | x2s+y2s+z2s =
1} from the point p∗ = (0, 0,−1) to the complex plane and is given by:

ψC(a) :
xs

1 + zs
+

ys
1 + zs

i = xp + ypi = z (28)

ψ−1
C (z) :

(2xp
1 + x2p + y2p

,
2yp

1 + x2p + y2p
,
1− x2p − y2p
1 + x2p + y2p

)
(29)

where a ∈ S2 and z ∈ C. This projection is visualized in Fig. 3. Note that ψC is undefined when
a = p∗. To overcome this, the map is extended to the complex projective space CP1 which includes
the point at infinity so we can define ψCP(p

∗) = ∞. The projection is now redefined below with
equivalence relations:

ψCP(a) 7→


[
z

1

]
∼ λ

[
z

1

]
, a ̸= p∗

∞ ∼
[
λ

0

]
, a = p∗

(30)

λ ∈ C, λ ̸= 0, ψ−1
CP (ψCP(a)) = a

In this paper, our use of ψ generally refers to ψCP. From the above definition, ψ(a) can be arbitrarily
scaled, and ψ bijectively maps the entire sphere to the complex projective space. Note that this
mapping is not unique, particularly since choice of p∗ is arbitrary (any point on S2 is valid). We
will use the specific projection defined above for this paper as it is convenient for image processing.

A special unitary matrix U ∈ SU(2) can generally be written as:

U =

[
α β
−β̄ ᾱ

]
(31)

αᾱ+ ββ̄ = 1, α, β ∈ C

where the bar denotes complex conjugation. U transforms a complex projective point z = [z1, z2]
T

and complex plane point z by:

U : z 7→ z′ = Uz =

[
α β
−β̄ ᾱ

] [
z1
z2

]
(32)

ΦU : z 7→ z′ =
αz + β

−β̄z + ᾱ
, −β̄z + ᾱ ̸= 0 (33)

These transformations are of importance as they act analogously to rotations of the unit sphere in
R3. Specifically, for a 3x3 rotation matrix R ∈ SO(3) that rotates a unit vector v ∈ S2 as v′ = Rv,
there exists some U such that:

v′ = (ψ−1 ◦U ◦ ψ)(v) (34)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

The exact relationship between SU(2) and SO(3) is made clearer by their relationships with unit
quaternions q ∈ H which also act as rotations in R3. The isomorphism between SU(2) and unit
quaternions is given as:

q = wq + xqi+ yqj + zqk, w2
q + x2q + y2q + z2q = 1, wq, xq, yq, zq ∈ R

α = wq + xqi, β = yq + zqi (35)

and the mapping of unit quaternions to special orthogonal matrices is given by:

Rq =

 1− 2y2q − 2z2q 2xqyq − 2wqzq 2xqzq + 2wqyq
2xqyq + 2wqzq 1− 2x2q − 2z2q 2yqzq − 2wqxq
2xqzq − 2wqyq 2yqzq + 2wqxq 1− 2x2q − 2y2q

 (36)

Eq. (36) is the well-known 2-to-1 surjective mapping between quaternions and rotation matrices. By
their isomorphism in Eq. (35), SU(2) also has a similar surjective mapping with SO(3), linking the
three rotation representations. Note that the mapping given by Eq. (35) is not unique. Furthermore,
special unitary matrices have the ability to act as rotations in R3 directly by first mapping points to
2x2 complex matrices. For a point x = (x, y, z) ∈ R3:

χ : x 7→ X =

[
xi y + zi

−y + zi −xi

]
(37)

χ(x1) 7→ X1, χ(x2) 7→ X2, x1,x2 ∈ R3

X2 = UX1U
H , U ∈ SU(2) (38)

Note if ||x|| = 1, χ(x) ∈ SU(2). Also note that the map χ is not uniquely defined either.

Relatedly, Möbius transformations are general 2x2 complex projective matrices, characterized sim-
ilarly by:

M =

[
σ ξ
γ δ

]
(39)

det(M) ̸= 0, σ, ξ, γ, δ ∈ C

M : z 7→ z′ = Mz =

[
σ ξ
γ δ

] [
z1
z2

]
(40)

ΦM : z 7→ z′ =
σz + ξ

γz + δ
, γz + δ ̸= 0 (41)

M ∼ λM, λ ∈ C, λ ̸= 0 (42)

Möbius transformations conformally map the complex projective plane onto itself. They are
uniquely determined (up to scale) by their action on three independent points, and SU(2) elements
constitute a subset of them.

B PROOFS AND DERIVATIONS

B.1 PROPER METRIC IN COMPLEX PROJECTIVE SPACE

B.1.1 DERIVATION OF METRIC

Complex projective rays are equivalent if they are linearly dependent. We can test this condition
by setting up the following constraint on complex vectors z = [z1, z2]

T and p = [p1, p2]
T for

z1, z2, p1, p2 ∈ C:

det
([
z1 p1
z2 p2

])
= z1p2 − z2p1 = 0

For vectors a = (xs, ys, zs),b = (ms, ns, ps) ∈ S2 (assume a ̸= p∗,b ̸= p∗) whose projections
via ψ (Eq. (30)) correspond to z and p respectively, we can show that testing the linear independence

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 3: Visualization of a stereographic projection from the sphere (S2) to the complex plane. The
projection is performed by taking the line between p∗ and each point and intersecting that line with
the plane through the equator. The point p∗ itself is mathematically mapped to infinity.

of complex vectors is in fact related to the chordal distance on a sphere:

z = λ1

[
xs + ysi
1 + zs

]
, p = λ2

[
ms + nsi
1 + ps

]
, λ1, λ2 ∈ C, λ1 ̸= 0, λ2 ̸= 0∣∣∣det([z1 z2

p1 p2

])∣∣∣2 = |λ1|2|λ2|2|(1 + ps)(xs + ysi)− (1 + zs)(ms + nsi)|2

= |λ1|2|λ2|2((1 + ps)
2(x2s + y2s) + (1 + zs)

2(m2
s + n2s)− 2(1 + ps)(1 + zs)(xsms + ysns))

= |λ1|2|λ2|2(1 + ps)(1 + zs)((1 + ps)(1− zs) + (1 + zs)(1− ps)− 2(xsms + ysns))

= |λ1|2|λ2|2(1 + ps)(1 + zs)(2− 2(xsms + ysns + zsps))

= |λ1|2|λ2|2(1 + ps)(1 + zs)||a− b||2

Notice that |λ1|2(1 + zs) =
|z1|2+|z2|2

2 and |λ2|2(1 + ps) =
|p1|2+|p2|2

2 . Substituting this into our
expression and rearranging, we arrive at the final expression for the equivalent distance metric in
complex projective space as:

||a− b||2 =
4|z1p2 − z2p1|2

(|z1|2 + |z2|2)(|p1|2 + |p2|2)
The last substitution may seem unnecessary at first; however, this form is more useful as it gener-
alizes the metric to hold even when a = p∗ or b = p∗ (proof below). It also gives an intuitive
interpretation that the spherical chordal distance is related to a type of “cross product” magnitude
between the two projective rays’ unit directions.

B.1.2 PROOF OF METRIC FOR POINTS AT INFINITY

Proposition 1 If a = p∗ or b = p∗ in Eq. (4), the proper metric is still valid.

Proof The squared distance between unit length points a = (xs, ys, zs) and b = p∗ = (0, 0,−1) is:

||a− b||2 = 2− 2aTb = 2(1 + zs)

Using vectors z = ψ(a) = λ1[xs + ysi, 1 + zs]
T ,p = ψ(p∗) = [λ2, 0]

T with nonzero λ1, λ2 ∈ C
and a ̸= p∗, we can calculate the same quantity via the formula in Eq. (4):

4|z1p2 − p1z2|2

||z||2||p||2
=

4| − λ1λ2(1 + zs)|2

2|λ1|2|λ2|2(1 + zs)
= 2(1 + zs)

thus showing that the two formulas yield the same quantity. It is easy to see that Eq. (4) is symmetric,
so the same result would hold if a = p∗ and b ̸= p∗. If a = b = p∗, we can see that ||a − b||2 is
clearly 0. At the same time, the numerator of Eq. (4) would be 0 while the denominator is nonzero as
the projective scalars λi ̸= 0 for any valid complex projective point. Thus, both quantities are equal
in that case as well, so the formula gives the spherical chordal distance between any two points on
the sphere via their stereographic projections.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2 REPRESENTATION DERIVATIONS

B.2.1 DERIVATION OF 2-VEC

For 3D vectors bx,by extracted from a model output representing predicted target x and y axes
respectively, we apply the method from Section 3.3 in the unweighted case to arrive at an optimal
rotation matrix (in the sense of Wahba’s problem). We assume bx × by ̸= 0. First, bx and by must

have the same norm for the method to be unweighted, so we transform by via b′
y =

√
||bx||2
||by||2by .

Since the reference points are constant (a1 = (1, 0, 0),a2 = (0, 1, 0)), we know that their normal-
ized sum and difference vectors are a+ = 1√

2
(1, 1, 0),a− = 1√

2
(1,−1, 0). Similarly, we create

normalized sum and difference vectors for the target points as b+ =
bx+b′

y

||bx+b′
y||

and b− =
bx−b′

y

||bx−b′
y||

.

The optimal rotation aligns a+ to b+ and a− to b− noiselessly. This can be achieved because all
the vectors have the same magnitude (normalizing to unit norm was found to be more stable than
matching magnitudes like b′

y) and because the sum and difference vectors are always orthogonal.
Since rotation matrices naturally encode how an orthogonal coordinate frame transforms in their
columns, we can construct the aligning rotation by joining the two rotations Ra and Rb which ro-
tate the coordinate frame to the reference sum/difference vectors and target sum/difference vectors
respectively:

Ra =
[
a+, a−, a+ × a−

]
, Rb =

[
b+, b−, b+ × b−]

R = RbR
T
a =

[
1√
2
(b+ + b−), 1√

2
(b+ − b−), b− × b+

]
Because the sum/difference vectors are orthogonal and have unit norm, Ra,Rb,R ∈ SO(3). Given
the natural representation of coordinate transformations in rotation matrices, using the rotation ma-
trix formulation was more appealing for the map than the quaternion formulation in Eq. (22). It
also provided a more direct comparison with the Gram-Schmidt map. Nonetheless, the core in-
sight was derived from the original linear constraints on quaternion parameters. The unweighted
method was chosen for its geometric and computational simplicity, but a weighted version of the
map incorporating the magnitudes of bx,by can be similarly formulated from Eq. (21).

B.2.2 DERIVATION OF QUADMOBIUS FORMULAS

Following the algorithm in Section 2.2, we normalize a 2x2 complex projective matrix M by its
determinant and find the nearest unitary matrix, which by Appendix B.3.1 is special unitary. The
following are two different approaches to impelement this. We assume M has full rank.

Linear Algebra Instead of normalizing M directly, we take a more streamlined approach by uti-
lizing the properties of polar decomposition and determinant. We express det(M) in polar form
as reiθ with r = |det(M)| ∈ R, r > 0 and eiθ = det(M)

|det(M)| lying on the unit circle. For polar
decomposition M = QP with unitary matrix Q and positive definite Hermitian matrix P, we have
det(M) = det(Q)det(P). Because Q is unitary, |det(Q)| = 1, and because P is positive definite
Hermitian, det(P) is real and nonnegative. It follows then that det(Q) = eiθ and det(P) = r.
To normalize M, we typically multiply it by a nonzero scalar λ ∈ C. For polar decomposition to
remain valid under this scaling, λ must distribute as λM =

(
λ
|λ|Q

)
(|λ|P), meaning that only the

phase of λ affects the unitary factor. Since the unitary factor Q is the nearest unitary matrix to M
in the Frobenius sense, the final solution is just λ

|λ|Q such that det(λ
|λ|Q) = 1 to be special unitary.

We can therefore reverse the order and first compute Q before normalizing its determinant. We find
a scalar λ′ such that det(λ′Q) = λ′2det(Q) = 1 (since Q is 2x2) for |λ′| = 1. We can easily solve
λ′ = det(Q)−

1
2 . Since Q = UVH from SVD (M = UΣVH) and |det(Q)| = 1, we can rewrite

our expression simply as
√
det(UVH)UVH . If M is singular, there is no unique solution as SVD

is no longer unique. This formula may still be used in practice with a specific SVD.

Algebraic First, we can normalize M to M′ = det(M)−
1
2M such that det(M′) = 1. Next,

we can utilize the isomorphism between SU(2) and quaternions in Eq. (35) to algebraically solve
for the nearest special unitary matrix. It’s easy to verify that the unitary matrix Q that minimizes

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

the Frobenius distance to M′ maximizes ℜ(Tr(M′HQ)) where ℜ(·) denotes the real part. From
Appendix B.3.1, we know that Q will be special unitary. Thus, we can express the optimization
problem (using symbols from Eqs. (31) and (39)) as:

max
Q∈SU(2)

ℜ(Tr(MHQ)) = ℜ(σα+ ξβ + δα− γβ)

= max
||q||=1

(ℜ(σ) + ℜ(δ))wq + (ℑ(σ)−ℑ(δ))xq + (ℜ(ξ)−ℜ(γ))yq + (ℑ(ξ) + ℑ(γ))zq

for quaternion q = wq + xqi + yqj + zqk and ℑ(·) denoting the imaginary part. For q to be a
valid rotation, it must have unit norm. Thus, the optimization problem can be rephrased as finding
the unit norm vector whose dot product with the coefficients of the quaternion parameters above
is maximized. The solution is trivially obtained by the unit norm vector in the direction of those
coefficients. Using Eq. (35) again, we can express the solution as:

q̃ = (ℜ(σ) + ℜ(δ)) + (ℑ(σ)−ℑ(δ))i+ (ℜ(ξ)−ℜ(γ))j + (ℑ(ξ) + ℑ(γ))k
α̃ = σ + δ, β̃ = ξ − γ

Q ∼ M′ + adj(M′)H

where tilde denotes unnormalized parameters and adj(·) denotes the adjugate. We can nor-

malize the parameters by dividing α̃ and β̃ by
√

|α̃|2 + |β̃|2 =
√

|σ + δ|2 + |ξ − γ|2 =√
Tr(M′HM′) + 2ℜ(det(M′)) =

√
Tr(M′HM′) + 2. Since that factor is real and distributes

linearly through α̃ and β̃ to the elements of M′, we can efficiently combine this normalization fac-
tor into the original normalization factor of det(M)−

1
2 in the first step. The combined normalization

factor can be written as:
1√

det(M)

1√
Tr(M′HM′) + 2

=
1√

det(M)

1√
Tr(MHM)
|det(M)| + 2

=

√
|det(M)|

det(M)(Tr(MHM) + 2|det(M)|)
=

√
det(M)

|det(M)|(Tr(MHM) + 2|det(M)|)

Applying this normalization factor to M to obtain M∗ will ensure that M∗ + adj(M∗)H ∈ SU(2).

B.3 NEAREST UNITARY MATRIX

B.3.1 PROOF OF NEAREST SPECIAL UNITARY MATRIX

Proposition 2 If Möbius transformation M has det(M) = 1, the nearest unitary matrix to M in the
Frobenius sense is special unitary.

Proof M has a singular value decomposition given as M = UΣVH where U and V are unitary
matrices and Σ is a diagonal matrix with singular values. The determinant of M can be expressed
as:

det(M) = det(U)det(Σ)det(VH) (43)

by product rule of determinants. Multiplying both sides by their complex conjugates, we obtain:

|det(M)|2 = |det(U)|2|det(Σ)|2|det(VH)|2

Since U and VH are unitary matrices, the magnitude of their determinant is 1, so the expression
simplifies to:

|det(M)|2 = |det(Σ)|2 =⇒ |det(M)| = |det(Σ)|

because the determinant magnitudes are real and nonnegative. Since Σ is a diagonal matrix with
real, nonnegative elements, its determinant is simply the product of its diagonal entries and is in
turn real and nonnegative. If det(M) = 1, then |det(Σ)| = det(Σ) = 1. Coming back to the first
expression, we can now write:

det(M) = det(U)det(VH) = det(UVH) = 1

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

It is known that closest unitary matrix to M in the Frobenius sense is the unitary part of polar
decomposition (Keller, 1975) which can be computed by UVH . From above, we can see that
det(UVH) = 1 which means that UVH is special unitary by definition.

In noiseless situations, Σ is observed to be the identity matrix if det(M) = 1. As noise is added,
the diagonal elements of Σ drift from 1, so Σ encodes a notion of how close a Möbius transfor-
mation’s action is to a rotation or how much noise the problem contains, making it a candidate for
optimization.

B.3.2 DERIVATION OF NEAREST UNITARY MATRIX DERIVATIVE

The nearest unitary matrix in the Frobenius sense to a complex square matrix M is given by the
unitary factor Q of its polar decomposition M = QP where P is a positive semidefinite Hermitian
matrix (Keller, 1975). We can find the derivative of Q with respect to the elements of M by taking
the derivative of both sides of the polar decomposition:

dM = d(QP)

dM = (dQ)P+Q(dP)

QH(dM) = QH(dQ)P+ dP

Taking the conjugate transpose of both sides and subtracting the two statements:

(dMH)Q = PH(dQH)Q+ dPH

QH(dM)− (dMH)Q = QH(dQ)P−PH(dQH)Q+ (dP− dPH)

We observe that because P is Hermitian for all values of M, dP must also be Hermitian, so the last
term cancels out. Furthermore, we can deduce the following from definition of unitary matrices:

QHQ = I

(dQH)Q+QH(dQ) = 0

(dQH)Q = −QH(dQ)

implying that (dQH)Q is skew-Hermitian. Denoting X = QH(dQ) and C = QH(dM) −
(dMH)Q, we can now write:

C = XP+PX

which takes the form of a Sylvester equation. Since P is Hermitian, it admits a diagonalization
P = YΛYH , where Y is unitary and Λ is a diagonal matrix of eigenvalues of P:

C = XYΛYH +YΛYHX

YHCY = (YHXY)Λ+Λ(YHXY)

The right hand side has the same term YHXY multiplied on the left and right respectively by
diagonal matrix Λ. As such, we can equivalently express the result as follows in order to solve for
X and ultimately dQ:

YHCY = (diag(Λ)⊕ diag(Λ))⊙ (YHXY)

YHXY =
YHCY

diag(Λ)⊕ diag(Λ)

X = Y
(YHCY

diag(Λ)⊕ diag(Λ)

)
YH

dQ = QY
(YH(QH(dM)− (dMH)Q)Y

diag(Λ)⊕ diag(Λ)

)
YH

where ⊕ denotes an outer sum operation, ⊙ denotes Hadamard multiplication (element-wise), the
division is Hadamard division (element-wise), and diag(·) is a vector formed from the diagonal
elements of the matrix . Note that this solution is only properly defined if M is nonsingular (i.e.
Λ has full rank). Otherwise, the polar decomposition is not unique and neither is its derivative. In
practice, we choose to replace any instances of division by 0 in the result above with multiplications
by 0 as a specific solution.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.4 TWO-POINT SOLUTIONS

B.4.1 PROOF OF WEIGHTED CASE

Proposition 3 Let ai and bi represent the reference and target points respectively and ka = a1×a2
and kb = b1×b2. For n = 2 points, ka ̸= 0, and kb ̸= 0, the optimal rotation to Wahba’s problem
is given as the weighted average (in the Frobenius sense) between two rotations R1 and R2 defined
by Riai = bi and Ri

ka

||ka|| =
kb

||kb|| .

Lemma: If all points lie in the plane z=0 and ka ̸= 0,kb ̸= 0, and ka · kb > 0, the optimal rotation
is a rotation around the z-axis.

Since all points lie in the plane z = 0, the last column and row of B (Eq. (2)) are zero. As a
result, the last column and row of BBT and BTB are also zero, so they both have a kernel vector
of (0, 0, 1). For the SVD of B given as UΣVT , the optimal rotation R (via Markley (1987)) can
take the form:

R =

[· · 0
· · 0
0 0 1

][
1 0 0
0 1 0
0 0 det(U)det(V)

][· · 0
· · 0
0 0 1

]
where det(U)det(V) is either 1 or -1 since U and V are orthogonal matrices. Thus, the last column
and row of R are both (0, 0, 1) or (0, 0,−1). In order for R to be a valid rotation matrix, the
remaining upper 2x2 submatrix must be an orthogonal matrix which can be generated by a single
parameter θ. Furthermore, the sign of the bottom right corner element of R must be the same as the
determinant of the upper 2x2 submatrix for det(R) = 1. These conditions reduce R to one of the
two general forms: [

cos(θ1) −sin(θ1) 0
sin(θ1) cos(θ1) 0

0 0 1

]
,

[
cos(θ2) sin(θ2) 0
sin(θ2) −cos(θ2) 0

0 0 −1

]
We denote the former as RSO and the latter as RO. The optimal solution to Wahba’s problem
maximizes the gain function Tr(RBT) Lourakis and Terzakis (2018). This quantity for both forms
can be expressed as below:

Tr(RSOB
T) = λ1,1cos(θ1) + λ1,2sin(θ1)

Tr(ROB
T) = λ2,1cos(θ2) + λ2,2sin(θ2)

λ1,1 = B1,1 +B2,2, λ1,2 = B2,1 −B1,2

λ2,1 = B1,1 −B2,2, λ2,2 = B2,1 +B1,2

The gain function in both cases is the dot product between (λi,1, λi,2) and (cos(θi), sin(θi)). Its
maximum value (subject to the constraint cos(θi)2 + sin(θi)

2 = 1) is obtained by the unit vector
aligned with (λi,1, λi,2), i.e.:

cos(θi) =
λi,1√

λ2i,1 + λ2i,2

, sin(θi) =
λi,2√

λ2i,1 + λ2i,2

Substituting this back into the gain function, we see that the optimal value is simply the magnitude
of (λi,1, λi,2):

Tr(RSOB
T) =

√
λ21,1 + λ21,2, T r(ROB

T) =
√
λ22,1 + λ22,2

Since the square root function is monotonically increasing, the larger of the two radicands corre-
sponds to the larger gain value. We can compare them directly by taking their difference:

(λ21,1 + λ21,2)− (λ22,1 + λ22,2) = 4w1w2(ka · kb)

wherewi are the weights. Since the weights are positive and the cross products are assumed nonzero,
the quantity above is positive when ka and kb point in the same direction and negative otherwise.
Thus, when the cross products of the reference and target sets are aligned, RSO corresponds to the
larger gain value and is the optimal rotation. It takes the form of a rotation about the z-axis.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof We assume that all points lie in the plane z = 0 and that the cross product of the reference
and target sets are nonzero and are aligned. This will be generalized later. We construct rotations
R1 and R2 to be rotations about the z-axis that align a1 to b1 and a2 to b2 respectively. Since the
input points have unit length and the vector norm is rotationally invariant, we can rewrite the loss
function as:

w1||b1 −Ra1||2 + w2||b2 −Ra2||2

= w1||a1 −RT
1 Ra1||2 + w2||a2 −RT

2 Ra2||2

= w1||(I−RT
1 R)a1||2 + w2||(I−RT

2 R)a2||2

= w1a
T
1 (I−RT

1 R)T (I−RT
1 R)a1 + w2a

T
2 (I−RT

2 R)T (I−RT
2 R)a2

= 2(w1 + w2)− 2w1a
T
1 R

T
1 Ra1 − 2w2a

T
2 R

T
2 Ra2

using the fact aTi R
T
i Rai = aTi R

TRiai. Under our assumptions, the lemma establishes that the
optimal rotation R is a rotation about the z-axis. Since both R1 and R2 are also rotations about the
z-axis, we can easily verify that the products RT

1 R and RT
2 R are rotations about the z-axis as well.

Using Rodrigues’ rotation formula, we can expand the term below as follows:

aT1 R
T
1 Ra1 = a1·(cos(ϕ)a1 + sin(ϕ)k× a1 + (1− cos(ϕ))(k · a1)k)

= cos(ϕ) + sin(ϕ)(a1 · (k× a1)) = cos(ϕ)

where ϕ is the angle of rotation of RT
1 R and k = [0, 0, 1]T is the axis of rotation. The simple result

is due to the fact that a1 is orthogonal to the axis of rotation and has unit length. On the other hand,
we note that the Frobenius norm between R1 and R computes the following:

||R1 −R||2F = Tr((R1 −R)T (R1 −R))

= 6− 2Tr(RT
1 R)

= 6− 2Tr(cos(ϕ)I+ sin(ϕ)[k]× + (1− cos(ϕ))kkT)

= 6− 6cos(ϕ)− 2(1− cos(ϕ)) = 4− 4cos(ϕ)

cos(ϕ) = 1− 1

4
||R1 −R||2F

The expansion of RT
1 R1 above is due to the axis-angle formula for rotation matrices where [k]×

denotes the traceless skew-symmetric matrix formed from k representing a vector cross product.
Deriving a similar result for aT2 R

T
2 Ra2 and plugging both back into our reformulated loss function,

we can rewrite it as:

2(w1 + w2)− 2w1(1−
1

4
||R1 −R||2F)− 2w2(1−

1

4
||R2 −R||2F)

=
1

2
w1||R1 −R||2F +

1

2
w2||R2 −R||2F

Through this expression, we can see that the rotation R which minimized our original loss is exactly
the rotation that represents the weighted average in the Frobenius sense between R1 and R2 as
specified in Markley et al. (2007). The uniform factor of 1

2 is irrelevant to the optimization.

Now we generalize the result. Starting from the assumed configuration, we can extend it to general
configurations by applying arbitrary rotations Ra and Rb to the reference and target points respec-
tively, transforming them into a′i and b′

i. In this new coordinate frame, the rotation matrix R′ is
related to the original optimal matrix R as shown below:∑

i

wi||bi −Rai||2 =
∑
i

wi||Rbbi −RbRai||2

=
∑
i

wi||Rbbi −RbR(RT
aRa)ai||2 =

∑
i

wi||b′
i − (RbRRT

a)a
′
i||2

R′ = RbRRT
a

Because the vector norm is invariant under rotation, the optimal loss value remains unchanged across
all coordinate frames. Since the optimal value from the original coordinate frame is preserved

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

above, R′ represents the optimal rotation in the new frame. Furthermore, the Frobenius norm is also
rotation-invariant, so we can apply the required rotations to estimate R′ as follows:∑

i

wi||Ri −R||2F =
∑
i

wi||RbRiR
T
a −RbRRT

a ||2F

=
∑
i

wi||RbRiR
T
a −R′||2F

R′
1 = RbR1R

T
a , R′

2 = RbR2R
T
a

Thus, in the general case, the optimal rotation is given by the weighted average rotation between R′
1

and R′
2. We can uniquely identify those rotations with at least two linearly independent points they

transform. Starting with the reference and target sets:

Riai ≡ bi

RbRi(R
T
aRa)ai = Rbbi

R′
ia

′
i = b′

i

Each rotation still aligns their respective reference point to their target point. Furthermore, in our
original coordinate frame, ka and kb are aligned and are parallel or antiparallel to Ri’s axis of
rotation (z-axis), so they are unchanged by Ri. As a result:

Ri
ka

||ka||
=

kb

||kb||

RbRi(R
T
aRa)

ka

||ka||
= Rb

kb

||kb||

R′
i

Ra(a1 × a2)

||Ra(a1 × a2)||
=

Rb(b1 × b2)

||Rb(b1 × b2)||

R′
i

a′1 × a′2
||a′1 × a′2||

=
b′
1 × b′

2

||b′
1 × b′

2||
due to rotations distributing over the cross product. Thus, we can identify R′

1 and R′
2 as the rotations

that align their corresponding reference point to their target point along with the cross products
of the reference and target sets. As the cross products are assumed nonzero and are orthogonal
to their respective point set, the two points aligned by each rotation are always independent and
therefore uniquely define the rotations. As shown, the optimal rotation is the weighted average in
the Frobenius sense between them.

B.4.2 PROOF OF UNWEIGHTED CASE

Proposition 4 Let ai, bi, and wi represent the reference points, target points, and weights respec-
tively. Given n = 2 points, w1 = w2, a1 × a2 ̸= 0, and b1 × b2 ̸= 0, the optimal rotation
to Wahba’s problem is given by the unique rotation R defined by R(a1+a2

||a1+a2||) = b1+b2

||b1+b2|| and

R(a1−a2

||a1−a2||) =
b1−b2

||b1−b2|| .

Proof For two 3D unit vectors v1 and v2, we introduce the following notation and easily verifiable
results:

ṽ− ≡ v1 − v2, ṽ+ ≡ v1 + v2

v− =
ṽ−

||ṽ−||
, v+ =

ṽ+

||ṽ+||
ṽ− · ṽ+ = 0

v1 · ṽ+ = v2 · ṽ+

ṽ− × ṽ+ = 2(v1 × v2)

v1 × v2 ̸= 0 =⇒ ṽ− ̸= 0, ṽ+ ̸= 0

If v1 × v2 ̸= 0, then the two vectors v− and v+ are well-defined and form an orthonormal basis
for the plane spanned by v1 and v2. Consequently, v− and v+ created from one pair of linearly
independent unit vectors can be perfectly aligned with those created from another pair.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

With a1 × a2 ̸= 0,b1 × b2 ̸= 0, we initially assume that the points are configured such that they
all lie in the plane z = 0 and that a+ = b+ and a− = b−. This is generalized later. For this
configuration, we note the following:

a1 × a2 =
1

2
(ã− × ã+)

=
1

2
||ã−||||ã+||(a− × a+) =

1

2
||ã−||||ã+||(b− × b+)

=
||ã−||||ã+||
2||b̃−||||b̃+||

(b̃− × b̃+) =
||ã−||||ã+||
||b̃−||||b̃+||

(b1 × b2)

=⇒ (a1 × a2) · (b1 × b2) > 0

Thus, the cross products are aligned in this configuration, and from the lemma in the general case
proof, the optimal rotation is a rotation about the z-axis.

From the dot product equality above, we can deduce that a+ is equidistant from a1,a2. The dot
product calculates the cosine of the angle between linearly independent unit vectors measured in the
plane spanned by the vectors (z = 0 in our case). We know from the proof in the general case that
the dot product of a unit vector in the plane z = 0 with itself after a rotation about the z-axis is
the cosine of the angle of rotation. That angle is measured in the plane perpendicular to the axis of
rotation, which is also the plane z = 0. Thus, constructing rotations Ra1

and Ra2
which rotate a+

about the z-axis to a1 and a2 respectively, we can write the following:

a1 · a+ = a2 · a+ = a+ · (Ra1
a+) = a+ · (Ra2

a+) = cos(ϕ)

where ϕ denotes the angle of rotation of Ra1
, making |ϕ| (canonically positive) the angle between

a1 and a+. In general, Ra1
̸= Ra2

, otherwise a1 and a2 would be identical. In order for the above
to still hold, the angle of rotation of Ra2

must have the same magnitude but opposite sign of ϕ. A
similar statement can be made for the target points.

Let Rb1 and Rb2 represent rotations about the z-axis that align b+ with b1 and b2 respectively.
Recall a+ = b+. We construct the rotations R1 = Rb1R

T
a1

and R2 = Rb2R
T
a2

which are also
about the z-axis to align a1 with b1 and a2 with b2 respectively. If ψ is the rotation angle of Rb1 ,
then the angle of rotation for R1 is −ϕ+ ψ since Ra1 and Rb1 share the same axis of rotation and
transposing a rotation matrix negates the rotation angle. For R2, the rotation angle is ϕ−ψ, as Ra2

rotates by −ϕ and Rb2
by −ψ. Thus, the rotation angles of R1 and R2 have equal magnitudes but

opposite signs.

From the proof in the general case, the optimal rotation R is the weighted average in the Frobenius
sense between the rotations R1 and R2 recently constructed. The weighted average rotation max-
imizes the quantity Tr(RB′T) where B′ =

∑
i wiRi Markley et al. (2007). Given the previously

made statements and the fact that w1 = w2, we can calculate B′ as:

R1 =

[
cos(−ϕ+ ψ) −sin(−ϕ+ ψ) 0
sin(−ϕ+ ψ) cos(−ϕ+ ψ) 0

0 0 1

]
, R2 =

[
cos(ϕ− ψ) −sin(ϕ− ψ) 0
sin(ϕ− ψ) cos(ϕ− ψ) 0

0 0 1

]
,

B′ = w1R1 + w2R2 = 2w1

[
cos(−ϕ+ ψ) 0 0

0 cos(−ϕ+ ψ) 0
0 0 1

]
due to the fact that sine is an odd function and cosine is an even function. Since R is a rotation about
the z-axis, we can directly compute Tr(RB′T) as 2w1(2cos(−ϕ + ψ)cos(θ) + 1) where θ is R’s
angle of rotation. We can trivially see that θ must take on a value of 0 or π (mod 2π) to be optimal,
depending on the sign of cos(−ϕ + ψ) as w1 is positive. That sign can be determined considering
a− and b− are aligned:

ã− · b̃− > 0

(Ra1
a+ −Ra2

a+) · (Rb1
b+ −Rb2

b+) > 0

a+ · ((Ra1
−Ra2

)T (Rb1
−Rb2

)a+) > 0

cos(−ϕ+ ψ)− cos(−ϕ− ψ)− cos(ϕ+ ψ) + cos(ϕ− ψ) > 0

2cos(−ϕ+ ψ)− 2cos(ϕ+ ψ) > 0

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Since a+ and b+ are also aligned, we can similarly derive 2cos(−ϕ+ψ)+2cos(ϕ+ψ) > 0. Adding
both inequalities together (valid since they are positive quantities), we find that cos(−ϕ + ψ) > 0.
Thus, θ must be 0 to maximize Tr(RB′T), resulting in R being the identity matrix and indicating
that the current alignment is the optimal one.

To generalize this, we again apply arbitrary rotations Ra,Rb to the reference and target sets respec-
tively, transforming them into a′i,b

′
i. From the proof in the general case, the new optimal rotation

R′ = RbRRT
a = RbR

T
a . Now, we simply verify below that this rotation aligns a′+ to b′+ and a′−

to b′− (combined ± notation for convenience):

a± = b± =
a1 ± a2

||a1 ± a2||
=

b1 ± b2

||b1 ± b2||
Rb(a1 ± a2)

||a1 ± a2||
=

b′
1 ± b′

2

||b′
1 ± b′

2||
RbR

T
a (a

′
1 ± a′2)

||a′1 ± a′2||
=

b′
1 ± b′

2

||b′
1 ± b′

2||
R′a′± = b′±

Since a′+ and a′− are orthogonal, they are also linearly independent, and their transformation
uniquely defines the rotation R′, thereby completing the proof.

B.4.3 AVERAGE OF TWO UNNORMALIZED QUATERNIONS

In Markley et al. (2007), it was shown that the average rotation matrix in the Frobenius sense can be
calculated via the quaternion q which optimizes the following:

M =
∑
i

wiqiq
T
i

max
q

qTMq s.t. ||q|| = 1

Where qi are the unit norm quaternions corresponding to the rotations being averaged (sign of qi

is irrelevant). The solution is the eigenvector corresponding to the largest eigenvalue of M. In the
two point approach to Wahba’s problem proposed previously, we need to construct two quaternion
rotations and average them. The formulation above assumes all quaternions have unit norm. How-
ever, it would be computationally advantageous (see Table 5) if we did not have to normalize the
constructed rotations, thereby avoiding two square root and division operations. From Markley et al.
(2007), it is known that the average rotation in the two rotation case is simply a linear combination
of the rotations being averaged. To average unnormalized quaterions q̃1 and q̃2, we can express M
and q as:

M = w1
||q̃2||2

||q̃1||2
q̃1q̃

T
1 + w2q̃2q̃

T
2

q = µq̃1 + νq̃2

where µ, ν are scalars. The above takes advantage of the fact that scaling M does not change its
eigenvectors. Thus, we reduce the problem from estimating a unit quaternion to estimating two
scalars. As a result, we can rewrite the objective as:

Γ =

[
||q̃1||2 q̃1 · q̃2

q̃1 · q̃2 ||q̃2||2
]
, v =

[
µ
ν

]
Λ1,1 = w1||q̃1||2||q̃2||2 + w2(q̃1 · q̃2)

2

Λ1,2 = Λ2,1 = (w1 + w2)||q̃2||2(q̃1 · q̃2)

Λ2,2 = ||q̃2||2
(
w2||q̃2||2 +

w1(q̃1 · q̃2)
2

||q̃1||2
)

max
v

vTΛv s.t. vTΓv = 1

where · denotes the usual vector dot product. Γ is the quadratic constraint ensuring that the linear
combination of q̃1 and q̃2 has unit norm, and Λ is the new 2x2 objective to optimize over. Using

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

the method of Lagrange multipliers, we find that the solution to the above takes the form of a gen-
eralized eigenvalue problem Λv = λΓv. Note that the scaling constraint Γ is positive semidefinite,
generally representing the equation of an ellipse. Assuming Γ is invertible and well-conditioned (it
is discussed later when this is not the case), the solution is the eigenvector of Γ−1Λ corresponding
to the largest eigenvalue. Through simplification and scaling, we can express the matrix similarly
as:

Γ−1Λ ∼
[
w1||q̃1||2||q̃2||2 w1||q̃2||2(q̃1 · q̃2)
w2||q̃1||2(q̃1 · q̃2) w2||q̃1||2||q̃2||2

]
which maintains its eigenvectors from before. Since the matrix is only 2x2, the eigenvector v corre-
sponding to the largest eigenvalue can be expressed in closed form. Scaling the eigenvector by the
constraint vTΓv = 1 and substituting it back into the original linear combination of q̃1 and q̃2, we
obtain the average quaternion as:

q =
µq̃1 + νq̃2√

||q̃1||2µ2 + ||q̃2||2ν2 + 2(q̃1 · q̃2)µν

where the values µ and ν can be expressed equivalently in two ways:

τ (1) = (w1 − w2)||q̃1||2||q̃2||2, ω(1) = 2w1||q̃2||2(q̃1 · q̃2), ν
(1) = 2w2||q̃1||2(q̃1 · q̃2)

µ(1) = τ (1) +
√
(τ (1))2 + ω(1)ν(1)

or

τ (2) = (w2 − w1)||q̃1||2||q̃2||2, ω(2) = 2w2||q̃1||2(q̃1 · q̃2), µ
(2) = 2w1||q̃2||2(q̃1 · q̃2)

ν(2) = τ (2) +
√

(τ (2))2 + ω(2)µ(2)

Both yield the same result except when q̃1 · q̃2 = 0 in which case the rotation corresponding to the
larger weight is chosen. If w1 = w2 in that case, then there is no unique solution and either of the
rotations can be selected. The former solution set is used when w1 > w2 and the latter is used when
w1 ≤ w2 as to approach the correct value as q̃1 · q̃2 → 0.

Note that the denominator in the expression for the average quaternion is simply
√
vTΓv. Previ-

ously, Γ was assumed non-singular and well-conditioned, but there are two cases in practice where
this fails to hold. The first is when q̃1 and q̃2 are linearly dependent, i.e. they represent the same
rotation. If we choose the solution constants above by the previously described strategy and examine
the expressions for µ and ν, then it can be seen that vTΓv is in fact strictly positive for nontrivial
solutions v and nonzero weights/magnitudes. Furthermore, it can also be seen that µq̃1 and νq̃2

share the same direction in this case and thus cannot cancel out. The second case occurs when the
magnitudes of q̃1 and/or q̃2 are small, causing Γ to be ill-conditioned. This case can be avoided by
using the strategy described in Appendix D.2 to only obtain quaternions of sufficient magnitude or
by simply scaling/normalizing the rotations when necessary.

B.4.4 DEGENERATE CASE SOLUTION

The degenerate case occurs when either of the cross products of the reference or target points vanish,
and the previous approaches for the two point case cannot be applied. This is because the solution
is no longer unique. A particular one can be efficiently found through the following approach.

We assume without loss of generality that the target points are collinear (the reference points may
or may not be) and the first target point is aligned with the x-axis (i.e. b1 = (1, 0, 0)). In this case,
the last two columns of the constraint Ci (Eq. (17)) vanish. We can thus write our optimization as:

Ci =

[
(m− x)i y − zi
−y − zi (x+m)i

]
, u =

[
α
β

]
Z =

∑
i

wiC
H
i Ci

min
u

uHZu s.t. uHu = 1

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

This optimization is simpler than before and can now be solved directly over the special unitary
parameters. Since Z is Hermitian and positive semidefinite, the solution is the complex eigenvector
of Z corresponding to the smallest eigenvalue. For reference points ai = (xi, yi, zi), this can be
expressed in closed form as:

ũ =

[
w1x1 + w2x2 + ||w1a1 + w2a2||
w1z1 + w2z2 − (w1y1 + w2y2)i

]
or

ũ =

[
w1x1 − w2x2 + ||w1a1 − w2a2||
w1z1 − w2z2 − (w1y1 − w2y2)i

]
where ũ is the unnormalized eigenvector and the correct solution depends on the target points’
configuration. If the dot product of the target points is positive, then the first expression is correct.
Otherwise, the second is correct. Note that eigenvectors are only unique up to scale, so even after
normalizing the solution so that uHu = 1, we can still apply an arbitary unitary scaling of eθi. This
corresponds to a rotation about the x-axis and parameterizes the family of optimal solutions.

For arbitrary collinear target points, we simply need to find any rotation aligning the x-axis to the
first target point b1 and then compose it with u. If the reference points were collinear instead, we
can swap the reference and target points in the above approach and invert the rotation afterwards. In
practice, we would choose the more degenerate (i.e. larger dot product magnitude) of the two sets
to treat as collinear.

Examining the solution closer, it can be seen that u represents a rotation aligning a weighted com-
bination of the reference points we refer to as the “weighted average” with the x-axis. The weighted
average takes the form of a sum (w1a1 + w2a2) or difference (w1a1 − w2a2) depending on the
sign of the dot product between target points. This suggests that a more straightforward approach
in practice would be to simply calculate the normalized weighted average of the reference points
and align it with b1 directly. This generalizes to the case when the reference points are collinear
similarly to before. If the weighted average is zero, then any rotation is optimal.

C ADDITIONAL STEREOGRAPHIC SOLUTION DETAILS

C.1 RECOVERING R

The solution U obtained precisely satisfies the relation in Eq. (34). However, using the maps laid
out in Eqs. (35) and (36) directly will lead to a rotation RU that is not necessarily equivalent to
the desired R in Eq. (1). This is because our choice of p∗ and choice of isomorphism between
quaternions and special unitary matrices can each add an implicit orthogonal transformation in their
map. Since their combined transformation Ψ and its inverse are applied before and after estimation
respectively, the relationship between U and R is characterized by the conjugate transformation:

R = ΨTRUΨ (44)

For our definitions, we find that Ψ is simply a 90 degree rotation about the y-axis. When applied
directly to the resulting q from the algorithm, the transformed quaternion is given as:

q∗ = wq − zqi+ yqj + xqk (45)

which is just a permutation/negation of the elements of q. We can verify that mapping q∗ to R via
Eq. (36) indeed gives us the true optimal solution to the problem.

C.2 GENERAL STEREOGRAPHIC CONSTRAINT

The generalized constraint between complex rays [z1, z2]
T and [p1, p2]

T where z1 = x1 + y1i,
z2 = x2 + y2i, p1 = m1 + n1i, and p2 = m2 + n2i is given by:

w′
i =

4wi

(|z1|2 + |z2|2)(|p1|2 + |p2|2)
Aiu = [−z1p2 −z2p2 p1z2 −p1z1]u = 0

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

for complex inputs and below for real inputs:

Di,0 =

[
m2x1 −m1x2 + n1y2 − n2y1 −m2y1 −m1y2 − n2x1 − n1x2
m2y1 −m1y2 + n2x1 − n1x2 m2x1 +m1x2 − n1y2 − n2y1

]
Di,1 =

[
m1x1 +m2x2 − n1y1 − n2y2 m1y1 −m2y2 + n1x1 − n2x2
m1y1 +m2y2 + n1x1 + n2x2 m2x2 −m1x1 + n1y1 − n2y2

]
Diq = [Di,0 Di,1]q = 0

We can verify that with z2 = 1 and p2 = 1, we obtain the original results in Eq. (9) and Eq. (11).
Furthermore, we can use z2 = 0 and p2 = 0 to calculate results involving the projective point
at infinity. Thus, there are no singularities using the general constraint. From this, we can derive
similar formulas and algorithms for the one and two point cases as those proposed earlier.

Similarly, the following is the general constraint for estimating a Möbius transformation from stere-
ographic inputs:

A′
im = [−z1p2 −z2p2 p1z1 p1z2]m = 0

D ROTATIONS OF EXACT ALIGNMENT

The equations in this section are derived from the constraint in Eq. (18) for 3D points. However, we
can easily derive similar equations for stereographic points using Eq. (11).

D.1 ONE-POINT CASE

Finding a rotation that aligns two unit vectors (i.e. b = Ra) is a special case of Wahba’s problem
where n = 1. Since aligning a pair of points constrains two out of three rotational degrees of
freedom (Di and Qi have rank 2), there are infinite solutions in this case. The rotation whose axis
is the cross product of the points is often chosen for geometric simplicity and can be calculated
efficiently as:

s =
√
2(1 + a · b)

q = (
s

2
,
a× b

s
) (46)

Instead, we may choose another convention where we constrain an element of the quaternion to be
0. Since the points can be perfectly aligned, qTGSq = 0, so q ∈ Null(Qi). Leveraging this fact,
we can simply take two linearly independent rows from Qi and set them to 0 explicitly, imposing a
rank 2 constraint. Given the homogeneous nature of this system, we can disregard the weight and
determine the rotation using straightforward linear algebra techniques. Each row below is a member
of the kernel that has a quaternion element equal to 0 (note only two rows are linearly independent):

0 x+m y + n z + p
x+m 0 z − p n− y
y + n p− z 0 x−m
z + p y − n m− x 0

 ∈ ker(Qi) (47)

Normalizing any nonzero row of Eq. (47) gives an optimal rotation. Compared to Eq. (46), this
approach has several advantages. First, the rotation is simpler to construct. Second, one of its
elements is guaranteed to be 0, so composing rotations and rotating points requires fewer operations
and memory accesses. This is particularly true for the first row of Eq. (47) as it represents a 180
degree rotation whose action on a point can be more efficiently computed as a reflection about an
axis. Finally, Eq. (46) has a singularity when the cross product vanishes. Although each row of
Eq. (47) has its own singular region, it is straightforward to systematically select another row that is
well-defined in that region.

D.2 NOISELESS TWO-POINT CASE

With two independent sets of correspondences, we are able to fully constrain the rotation to a unique
one. If we assume that the two sets can be aligned perfectly, then we can recover an optimal rotation

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

from the intersection of the constraint kernels. Two independent rows of Eq. (47) can be basis
vectors for the kernel of Q1. We can determine the optimal rotation by finding the member of
ker(Q1) (represented as a linear combination of basis vectors) that is orthogonal to an independent
row of Q2. For example, with the last two rows of Eq. (47) as a basis of Q1 and the first row of Q2,
we can solve for the linear combination weights a, b (note scale is arbitary): 0

x2 −m2

y2 − n2
z2 − p2

 · (a

 z1 + p1
y1 − n1
m1 − x1

0

+ b

 y1 + n1
p1 − z1

0
x1 −m1

) = 0

a = (x2 −m2)(z1 − p1) + (z2 − p2)(m1 − x1)

b = (x2 −m2)(y1 − n1) + (y2 − n2)(m1 − x1)

Substituting a and b back into the linear combination and dividing by m1 − x1 gives the result from
Eq. (20): This result is equivalent to the simple estimators found in Markley (1999); Choukroun
(2009). However, an issue with this approach is that the singular region of this estimator is not
simple, and the equation fails to produce a valid rotation under several conditions (see Peng and
Choukroun (2024)). Rather than checking each condition with a threshold or applying sequential
rotations to avoid these cases like other kernel methods, we can more systematically select the three
vectors in our computation to guarantee a valid result.

In general, we observe that for a point pair, either a+b or a−b will have at least one significantly
nonzero element. We can select the two rows from Eq. (47) corresponding to a nonzero element
from these vectors for the first point pair to ensure linearly independent kernel vectors. We then
choose one of the two rows of Q2 corresponding to a nonzero element of a + b or a − b for the
second point pair to solve for the rotation. For instance, if x1 +m1 ̸= 0 and y2 + n2 ̸= 0, we can
choose the first two rows of Eq. (47) and the last row of Q2 to produce another equation for the
rotation:

k1 = [p1 − z1 −y1 − n1 x1 +m1]
T

k2 = [z1 + p1 y1 − n1 m1 − x1]
T

k3 = [p2 − z2 −y2 − n2 x2 +m2]
T

q̃ =

[
k1 × k3

k2 · k3

]
(48)

Though the dot and cross products are in different indices from before, the formulation is equally
simple to compute. We select the nonzero elements by largest magnitude for robustness. At least
one of the two rows we select from Q2 will yield a valid rotation for a1 × a2 ̸= 0. Otherwise, the
rotation is any kernel vector of Q1. We verify row validity by checking if either coefficient a or
b for the relevant constraints is nonzero. Those coefficients are always reused in the final rotation
calculation (e.g. a and b are the second and first elements respectively in Eq. (48)). This process
therefore covers the whole domain and only requires a handful of operations and comparisons even
in the worst case.

E BACKPROPAGATION DERIVATIVES

For a simple complex square matrix G, the derivative of an eigenvector v of G with respect to the
elements of G can be computed as Magnus (1985):

dv = (λI−G)+(I− vvH

vHv
)(dG)v

where λ is the eigenvalue corresponding to v, I is the identity matrix, and + denotes the Moore-
Penrose pseudoinverse. Typically, vHv = 1 by convention for most eigenvector solvers. In our
original problem (Eq. (14)), GM is Hermitian as opposed to a general matrix, so the elements
of Θ are repeated in the matrix through conjugation. Using complex differentiation conventions
consistent with many deep learning frameworks, the loss derivative can be written as:

dL
d(GM)i,j

=
1

2

(〈 dv

dGi,j
,
dL
dv

〉
+

〈dL
dv
,

dv

dGj,i

〉)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(a) Gram-Schmidt (b) 2-vec

Figure 4: Density plot of loss gradient ratios for Gram-Schmidt and 2-vec. The x-axis represents
the loss L, and the y-axis shows the ratio of loss gradient magnitudes ∥∇bxL∥/∥∇byL∥ for the
predicted rotation axes bx and by . See Appendix F for details. 2-vec exhibits noticeably lower
variance, suggesting more stable gradients during learning.

where ⟨·, ·⟩ denotes the complex inner product and L is the scalar loss. dL
dΘ can be extracted from

the upper triangular portion of dL
dGM

(after reshaping to 4 x 4), multiplying by 2 for the off-diagonal
parameters to include the lower portion contribution. This method avoids the need for the other
eigenvectors or eigenvalues of GM that weren’t used in the forward pass.

For QuadMobiusSVD (Eq. (25)), the backpropagation must go through the SVD operation M =
UΣVH . It is well known that the nearest unitary matrix corresponds to the unitary component Q
of the polar decomposition of M = QP, where P is a positive semidefinite and Hermitian matrix
Keller (1975). Thus, instead of backpropagating through the SVD components individually, we
can backpropagate through Q in a more direct manner. Appendix B.3.2 outlines the details of the
derivative of Q with respect to the elements of M. Given the well-known relationships between the
polar decomposition and SVD (Q = UVH , P = VΣVH), we can reuse the SVD elements from
the forward pass to calculate the derivative more simply as:

S = diag(Σ)⊕ diag(Σ)

dQ = U
(UH(dM)V −VH(dMH)U

S

)
VH

where ⊕ denotes an outer sum operation, and the division is Hadamard division (element-wise).
From this equation, the numerical complex derivative can be expressed as follows (note the indices,
F is 2 x 2 x 2 x 2):

Fj,m,l,k = Uj,k(V
H)l,m

dL
dMj,m

=
〈
U
(FH

j,m

S

)
VH ,

dL
dQ

〉
F
−
〈 dL
dQ

, U
(Fj,m

S

)
VH

〉
F

where ⟨·, ·⟩F denotes the complex Frobenius inner product.

The remaining operations in the maps are algebraically straightforward to differentiate through. We
observe that the previous formulas compute the same gradients as PyTorch’s automatic differentia-
tion through complex functions torch.linalg.eigh and torch.linalg.svd but in a more
streamlined manner.

F THEORETICAL INVESTIGATIONS OF REPRESENTATIONS

2-vec The core idea behind 2-vec lies in leveraging a more optimal projection (in the sense of
Wahba’s problem) than Gram-Schmidt to improve learning performance without increasing com-
putational cost or dimensionality. To theoretically support this, we replicate the gradient analysis

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 5: Visualization of loss ratio between Gram-Schmidt (GS) representation and 2-vec represen-
tations for all reported figures in this paper (accuracy converted to 1-Acc to maintain directionality).
Gram-Schmidt performs around 10% worse on average than 2-vec with some experiments showing
a large discrepancy. 2-vec performed better on 41/52 reported metrics.

Figure 6: Plot of mean loss (Chordal L2) against dropout rate of map representations. Θ and M
denote whether dropout was applied to map inputs or intermediate representation for QuadMobius.

experiment from Geist et al. (2024) which evaluates how learning signals propagate through the
representations. We first generate a thousand random 6D vectors, each with components sampled
uniformly from [-2, 2]. Each vector is split into two 3D components, bx and by , representing
predicted target x, y coordinate axes. These are then mapped to a rotation matrix using both the
Gram-Schmidt and 2-vec methods. For each mapping, we compute the Frobenius norm loss L be-
tween the resulting rotation and the identity matrix. We then calculate the gradient magnitudes of L
with respect to bx and by and analyze their ratio. The results are plotted in Fig. 4. We can see that
the gradient ratios for 2-vec are more tightly concentrated around 1, indicating a relatively balanced
gradient flow between the two vectors. In contrast, the Gram-Schmidt method exhibits a wider
distribution with significant skew, often yielding ratios in the range of 10–100 which highlights its
disproportionate focus on bx. These results support the hypothesis that 2-vec facilitates more stable
gradients for optimization.

QuadMobius In our experiments, QuadMobius has consistently shown strong performance as a
learning representation. To better understand why, we conduct two experiments to probe its be-
havior. We begin by generating one thousand realistic map inputs Θ for each representation using
trained models from a synthetic Wahba’s problem (trial #15 in Appendix G.2.2). All models are
fed the same noiseless inputs on which they perform equivalently for fair comparison. In the first
experiment, we test how resilient each map is to corrupted inputs by applying dropout. Fig. 6 shows

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 7: Distribution plot of loss gradient magnitudes against loss L (Chordal L2). The left shows
the gradient with respect to the map inputs Θ, while the right shows the gradient with respect to the
Möbius transformation M estimated from eigendecomposition in QuadMobius.

the results of applying increasing dropout probability to Θ on mean loss. For QuadMobius, we
also test applying dropout to its intermediate Möbius transformation M instead (real and imaginary
parts treated independently). While we might expect the sensitivity to dropout to decrease with di-
mensionality, this is not necessarily the case as seen with QCQP. Notably, QuadMobius appears to
be the most resilient to dropout on Θ, but is also the most sensitive when applied to M. For the
second experiment, we replace 10% of the model inputs with outlier points from another rotation,
simulating out-of-domain inference. Fig. 7 plots the distribution of loss gradient magnitudes against
loss. Gradients with respect to Θ are similar across all maps, consistent with their equivalent perfor-
mance on the task. In contrast, gradients with respect to M in QuadMobius are both significantly
larger and more tightly concentrated, following a square root trend. Together, these two experiments
suggest that QuadMobius’s eigendecomposition step enables the learning of a stable intermediate
representation that is buffered against poor inputs, while its subsequent SU(2) projection ensures
predictable, high-fidelity gradient flow, leading to its strong empirical performance.

SU(2) A natural question is whether we can just directly predict an SU(2) representation and
project it onto the manifold. This approach is simpler than QuadMobius and still provides an
overparameterized representation (8D). However, like quaternions, SU(2) suffers from the issue
of double cover. Both Möbius transformation predictions M and −M map to the same 3D rotation,
introducing ambiguity in learning. Furthermore, one might hope the rows of M offer two differ-
ent estimates of a quaternion rotation (similar to theoretical arguments of information averaging in
SVD and QCQP). However, in SU(2) the rows encode the same information, so independence is
not enforced during learning. Empirically, SU(2) prediction performed much worse in synthetic
experiments than QuadMobius (often close to quaternion) and was thus not included in results.

To further validate the QuadMobius approach, we conducted a toy ablation experiment in Table 3.
We took 10k random map inputs and mapped them to quaternions. We then calculate the squared
quaternion loss (accounting for sign) against a set of random ground truth quaternions and com-
pare the loss gradient magnitudes of the inputs for the different map variants. The variants include
SVD projection only (8D -¿ SU(2)), Eigendecomposition only (16D -¿ Möbius transformation M,
taking the first row of M as a quaternion with and without normalization), and QuadMobius. The
percentiles of the gradient distributions and their subsequent percentile ranges are shown in the table
below. The QuadMobius approach yields a significantly tighter distribution and a lower amount of
large outlying values than the other isolated components, suggesting that it provides more stable
gradients for learning with both eigendecomposition and projection.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Method 10% 25% 50% 75% 90% 25-75% 10-90%

Projection 2.04e-5 2.66e-5 3.23e-5 3.65e-5 4.02e-5 9.90e-6 1.98e-5
Eig. (no norm) 2.06e-5 2.87e-5 3.41e-5 3.88e-5 4.08e-5 1.00e-5 2.02e-5
Eig. (norm) 1.43e-5 2.07e-5 2.51e-5 3.01e-5 3.20e-5 9.41e-6 1.78e-5
QuadMobius 1.46e-5 1.79e-5 2.20e-5 2.49e-5 2.64e-5 6.98e-6 1.17e-5

Table 3: Toy ablation experiment showing gradient magnitude distributions for isolated components
of QuadMobius algorithm. Bold indicates lowest for spread quantities.

G EXPERIMENTS

G.1 EXPERIMENT SETTINGS AND DETAILS

These are the specific experiment settings used to obtain the results in our learning experiments.

ModelNet10-SO3 ADAM optimizer, learning rate 5e-4, NVIDIA L1 GPU, batch size 100,
Chordal L2 loss, 300/400/800 epochs respectively for chair/sofa/toilet to train for roughly equal it-
erations given dataset size differences. Architecture is ShuffleNetV2-1.5 backbone Ma et al. (2018)
(used for its quick training) pretrained on ImageNet weights followed by two fully connected lay-
ers featuring ReLU activation and dropout applied before the layers with probability 0.4 and 0.25
respectively. Models saved by best average rotation error.

Inverse Kinematics Original author source code and settings Zhou et al. (2019) were utilized.
Trained on NVIDIA L1 GPU for 2 million iterations. Epoch with lowest median rotation error was
chosen for results.

Camera Pose Estimation Training code and settings obtained from Chen et al. (2022). Model
initialized from pretrained GoogleNet weights recommended by original paper. Used NVIDIA L1
GPU and beta values 500/100/1500 for King’s College/Shop Facade/Old Hospital. Trained for 1200
epochs with batch size 75. Models saved every 5 epochs, and models from last 300 epoch were used
for testing (batch size 1 in testing). Epoch with lowest median rotation error was chosen for results.

G.2 ADDITIONAL EXPERIMENTS

G.2.1 WAHBA’S PROBLEM

n = 3 n = 100
Algorithm ϵ = 1e−5 ϵ = 0.1 Timings ϵ = 1e−5 ϵ = 0.1 Timings

Q-method Davenport (1968) 7.4676e-4 7.4868 3.583 1.2487e-4 1.2551 5.375
QUEST Shuster and Oh (1981) 7.4676e-4 7.4868 0.250 1.2487e-4 1.2551 1.875

ESOQ2 Mortari (1997) 7.4694e-4 7.4869 0.375 1.2487e-4 1.2551 2.000
FLAE Wu et al. (2018) 7.4676e-4 7.4868 0.333 1.2487e-4 1.2551 1.875

OLAE Mortari et al. (2007) 7.7118e-4 7.8639 0.208 1.3120e-4 1.5952 2.167
Ours (GP , Eq. (12)) 7.4676e-4 7.4868 4.084 1.2487e-4 1.2551 9.917
Ours (GS , Eq. (19)) 7.4676e-4 7.4868 3.625 1.2487e-4 1.2551 6.500
Ours (GM , Eq. (14)) 1.2614e-3 12.608 0.917 3.5870e-4 3.7782 41.875

Table 4: Results of various Wahba’s Problem solvers against varying noise levels with n = {3, 100}.
Accuracy values reported are median θerr, and timing values are median runtimes in microseconds.
Timings taken with ϵnoise=0.1. See Section 5.1 for more info.

G.2.2 LEARNING WAHBA’S PROBLEM

To evaluate our rotation representations more robustly across various conditions, we replicate the
synthetic learning experiments from Peretroukhin et al. (2020); Levinson et al. (2020); Zhou et al.
(2019), using a fully-connected neural network from Peretroukhin et al. (2020) to learn the solution

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Algorithm x ÷ √
5th 50th 95th

QUEST (Shuster and Oh, 1981) 89 / 99 1 / 1 3 / 3 3.3082 / 3.4115 9.1727 / 9.3970 27.0520 / 27.1371
Fast 2 Vec (Markley, 2002) 72 / 78 3 / 3 4 / 4 3.3082 / 3.4115 9.1727 / 9.3970 27.0520 / 27.1371

SUPER (Ours) 29 / 74 3 / 2 3 / 3 3.3082 / 3.4115 9.1727 / 9.3970 27.0520 / 27.1371

Table 5: Operation counts and θerr percentiles (ϵnoise = 0.1) for two-point Wahba’s problem
solvers. Values given for unweighted/weighted algorithms without edge case handling. Bold in-
dicates best.

n LR Loss Dom Euler Quat GS QCQP SVD 2-vec QMAlg QMSVD

1 3 1e-4 L2 R 9.009/0 8.964/1 1.761/0 1.676/141 1.641/696 1.701/1 1.658/51 1.689/110
2 3 1e-4 L2 C 119.364/0 13.632/0 5.768/0 4.237/1 4.264/1 5.781/0 3.823/109 3.761/889
3 3 5e-4 L2 R 12.154/0 9.618/0 1.583/5 1.518/143 1.491/582 1.560/0 1.501/217 1.527/53
4 3 5e-4 L2 C 119.403/0 12.238/0 4.016/0 3.586/2 3.735/6 3.917/0 3.447/751 3.408/241
5 3 1e-3 L2 R 14.693/0 9.159/0 1.575/1 1.497/170 1.509/245 1.578/2 1.486/87 1.499/495
6 3 1e-3 L2 C 119.397/0 11.212/0 3.290/24 3.289/190 3.253/384 3.269/0 3.250/110 3.232/292
7 3 1e-4 L1 R 8.063/0 4.120/0 1.603/0 1.445/135 1.421/622 1.570/2 1.469/164 1.459/77
8 3 1e-4 L1 C 119.388/0 9.812/0 4.734/0 3.259/0 3.238/1 4.663/0 2.835/492 2.786/507
9 3 5e-4 L1 R 8.687/0 4.355/0 1.459/0 1.315/175 1.322/279 1.416/0 1.303/418 1.306/128
10 3 5e-4 L1 C 119.334/0 7.500/0 3.290/0 2.760/3 2.857/3 3.113/0 2.750/921 2.807/73
11 3 1e-3 L1 R 10.833/0 4.436/0 1.434/0 1.312/53 1.301/338 1.427/0 1.317/337 1.291/272
12 3 1e-3 L1 C 119.483/0 6.930/0 2.916/0 2.475/92 2.447/251 2.874/0 2.478/211 2.472/446
13 100 1e-4 L2 R 3.784/0 3.277/0 0.569/0 0.253/138 0.243/389 0.313/0 0.255/169 0.251/304
14 100 1e-4 L2 C 48.175/0 4.988/0 1.400/0 0.638/254 0.637/136 0.850/0 0.625/281 0.634/329
15 100 5e-4 L2 R 5.395/0 3.712/0 0.547/0 0.249/121 0.247/175 0.303/0 0.247/368 0.242/336
16 100 5e-4 L2 C 119.370/0 5.009/0 1.586/0 0.831/682 0.866/223 0.940/0 0.866/66 0.848/29
17 100 1e-3 L2 R 6.608/0 3.269/0 0.537/0 0.243/292 0.272/112 0.297/0 0.261/299 0.253/297
18 100 1e-3 L2 C 118.381/0 5.056/0 1.480/0 0.845/121 0.836/499 0.887/0 0.859/71 0.826/309
19 100 1e-4 L1 R 2.249/0 1.794/0 0.356/0 0.269/293 0.261/327 0.332/0 0.264/130 0.265/250
20 100 1e-4 L1 C 109.217/0 3.209/0 0.927/0 0.665/268 0.667/469 0.889/0 0.669/196 0.669/67
21 100 5e-4 L1 R 2.666/0 1.055/0 0.355/0 0.275/83 0.284/339 0.316/1 0.289/209 0.272/368
22 100 5e-4 L1 C 119.299/0 1.954/0 0.938/0 0.883/780 0.877/101 0.956/0 0.873/73 0.878/46
23 100 1e-3 L1 R 3.867/0 1.384/0 0.366/0 0.280/167 0.280/316 0.331/0 0.277/346 0.291/171
24 100 1e-3 L1 C 83.623/0 2.184/0 0.952/0 0.830/466 0.835/61 0.919/0 0.826/366 0.849/107

Table 6: Trial results for learning Wahba’s problem with different rotation representations. n is
number of points, LR is learning rate, Loss is type of chordal loss function, Dom is the domain,
specifying whether the network is real-valued or complex-valued. Results are shown as θerr/Ldr.
pairs where θerr is average rotation error on validation set, and Ldr. is the number of epochs where
that representation was a leader, i.e. had the lowest θerr overall as of that epoch. Bold indicates best
value, underline indicates second best.

to Wahba’s problem. Problem points and rotations are generated according to same procedure de-
scribed in Section 5.1. Each epoch, we dynamically generate 25,600 training samples and validate
on a fixed set of the same size (ϵnoise = 0.01 added to all samples). The models are trained for
1000 epochs with ADAM optimizer on an NVIDIA T4 GPU. In addition to Chordal L2, we also
define the loss function Chordal L1 analogously as the sum of absolute differences between the
elements of Rpred and Rgt. Finally, given our complex representations, we also evaluate training
complex-valued networks Liao (2023); Barrachina et al. (2023) of equivalent size for the task with
stereographic complex inputs (Eq. (30)). For real-valued representations, we take the real part of the
model output in this case.

As expected, the compact representations (Euler, Quat) performed relatively poorly. Overall, the
best performers (QCQP, SVD, QuadMobiusAlg, QuadMobiusSVD) were all quite competitive with
each other, having similar results and convergence rates. However, the QuadMobius representations
together demonstrated an edge, leading most of the epochs and having the lowest error in majority
of trials. Although mathematically equivalent, the two approaches produced different results with
neither approach consistently outperforming the other. On the other hand, 2-vec outperformed the

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

other non-eigendecomposition representations (including Gram-Schmidt), beating them on most
trials, at times by a large margin. Although significant differences for the complex cases were
not observed among representations, some of the complex-valued trials featured the highest leader
counts overall by our representations (e.g. trial #2, trial #10). The leader count gives a sense of
the convergence/dominance of the learning as well how cherry-picked the results may be based on
number of training epochs. See Fig. 8 for sample training/validation curves which illustrate the
advantage of noncompact representations and the competitiveness of our approaches.

G.2.3 REPRESENTATION TIMINGS

Euler Quat GS QCQP SVD 2-vec QMAlg QMSVD

Training 0.2123 0.0691 0.4903 0.5223 0.4904 0.4447 1.2231 1.6247
Inference 0.0401 0.0056 0.1050 0.2435 0.2737 0.0803 0.4298 0.6221

Table 7: Comparison of timings of different representations run with batch size 128. Measured on
Apple M1 Silicon CPU. Values reported are median measurements of 10000 runs in milleseconds.
Training includes forward and backward passes (PyTorch train mode), and Inference includes only
forward pass (PyTorch eval mode).

Table 7 shows the compute timings of the representations. 2-vec has notably fast inference tim-
ings. QuadMobius representations are slower than others as they involve complex arithmetic and
more compute steps overall. However, training time differences were observed to be negligible be-
tween them and QCQP/SVD as bottlenecks are typically present elsewhere in the pipeline (e.g. data
loading, network compute).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Fi
gu

re
8:

Pr
og

re
ss

io
n

of
av

er
ag

e
θ e

r
r

ov
er

th
e

tr
ai

ni
ng

an
d

va
lid

at
io

n
se

ts
fo

r
le

ar
ni

ng
W

ah
ba

’s
pr

ob
le

m
(A

pp
en

di
x

G
.2

.2
)

fo
r

tr
ia

l
#1

5
in

Ta
bl

e
6.

O
ra

ng
e

is
tr

ai
ni

ng
,b

lu
e

is
va

lid
at

io
n.

33

	Introduction
	Wahba's Problem
	Representations for Learning Rotations
	Contributions

	Solutions to Wahba's Problem via SU(2)
	Stereographic Plane Solution
	Approximation via Möbius Transformations
	3D Sphere Solution

	Optimization Methods From Linear Quaternion Constraints
	Residual Based Optimization
	Constrained Optimization
	Two-Point Case for Wahba's Problem

	Representations for Learning Rotations
	Experiments
	Wahba's Problem
	Learning Experiments

	Conclusion
	Mathematical Background and Definitions
	Proofs and Derivations
	Proper Metric in Complex Projective Space
	Derivation of Metric
	Proof of Metric for Points at Infinity

	Representation Derivations
	Derivation of 2-vec
	Derivation of QuadMobius Formulas

	Nearest Unitary Matrix
	Proof of Nearest Special Unitary Matrix
	Derivation of Nearest Unitary Matrix Derivative

	Two-Point Solutions
	Proof of Weighted Case
	Proof of Unweighted Case
	Average of Two Unnormalized Quaternions
	Degenerate Case Solution

	Additional Stereographic Solution Details
	Recovering R
	General Stereographic Constraint

	Rotations of Exact Alignment
	One-Point Case
	Noiseless Two-Point Case

	Backpropagation Derivatives
	Theoretical Investigations of Representations
	Experiments
	Experiment Settings and Details
	Additional Experiments
	Wahba's Problem
	Learning Wahba's Problem
	Representation Timings

