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Abstract. As the Internet of Things (IoT) plays an increasingly impor-
tant role in real life, the concern about IoT malware and botnet attacks is
considerably growing. Meanwhile, with new techniques such as edge com-
puting and artificial intelligence applied to IoT networks, these devices
nowadays become more functional than ever before, which challenges
many existing network anomaly detection systems due to the lack of
generalization ability to profile diverse activities.

To address it, this paper proposes IoTEnsemble, an ensemble network
anomaly detection framework. We propose a tree-based activity cluster-
ing method that aggregates network flows dedicated to the same activity
so that their traffic patterns remain identical. Based on the clustering
result, we implement an ensemble model in which each submodel only
needs to profile a specific activity, which highly reduces the burden of a
single model’s generalization ability. For evaluation, we build a 57.1 GB
IoT dataset collected in 9 months composed of comprehensive normal
and malicious traffic. Our evaluation proves that IoTEnsemble possesses
a state-of-the-art detection performance on various IoT botnet malware
and attack traffic, exhibiting a significantly better result than other base-
lines in a more intelligent and functional IoT network.
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1 Introduction

The number of the Internet of Things (IoT) connections worldwide will reach 5.8
billion by 2029 [5]. Nevertheless, IoT security issues remain severe, such as inse-
cure communications, lack of timely firmware updates, and weak configurations
by consumers, which highly increase the risk of being attacked [1].

The network anomaly detection system (NADS) is a promising solution,
which learns the pattern of normal traffic and can detect known and unknown
attack traffic by deviation from the normality. Since IoT devices are typically
low-functional, their traffic is relatively easy to model, and many studies have
proposed effective NADS solutions for IoT networks [12,26,28,37].

However, due to emerging technologies applied to IoT networks like edge/fog
computing and Artificial Intelligence of Things (AIoT), IoT devices are becoming
more functional than ever before [4], and thus the scope of “normal” network
activities becomes harder to define. Technically, different activities are far from
conforming to an independent identical distribution (i.i.d.), which challenges the
fundamental assumption of many algorithms [12,26,31,37]. Besides, the amount
and frequency of activities greatly depend on the user’s habits, such as a smart
camera barely connecting to a command server unless a user opens its app. As a
result, a NADS might produce inaccurate results on infrequent functions. These
facts are challenging the practicality of existing NADS.

To address them, a conceivable method is to “divide and conquer”: instead
of building a single comprehensive model, we cluster the traffic for each activity
and build multiple fine-grained submodels into an ensemble model, which reduces
the difficulty for one model to learn with a more specific pattern of normality.
However, to achieve it, the following challenges should be resolved:

1) Activity clustering. Many IoT devices use non-standard domain resolution,
dynamic ports or no certificates, possibly making rule-based clustering meth-
ods [10,13] unreliable. Besides, statistical clustering like K-Means usually
needs a priori like the number of clusters. Too coarse-grained clustering has
little significance, while too fine-grained clustering leads to excessive loads.

2) Heterogeneous IoT traffic. A variety of network protocols is used for IoT
communications, such as HTTP, MQTT, XMPP, CoAP and even many pro-
prietary protocols. This fact invalidates many proposed traffic representation
methods since they only focus on specific protocols [10,29,34] or rely on deep
packet inspection [38] which is incapable of handling encrypted traffic.

3) Nontrivial overhead. Running an ensemble of detection submodels simul-
taneously might be unrealistic for some deployment positions, such as a home
router or a gateway [28,37]. Also, since a NADS aims to treat all incoming traf-
fic suspicious and inspect each traffic flow, the mapping process from a 5-tuple
flow to an activity cluster must be efficient to avoid extra processing delay.

Toward this end, this paper proposes IoTEnsemble, which resolves the chal-
lenges above by the following design: 1) We propose a tree-based activity clus-
tering algorithm that combines traffic rules and traffic statistics to produce a
reliable clustering result. 2) We design a preprocessing pipeline that transforms
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any raw IP traffic into a data representation that only requires the first few
packets of a flow. 3) The clustering tree generates a set of rules that fast maps
a 5-tuple flow to an activity and provides a trigger-action mechanism for only
limited number of submodels being awakened during the execution.

We configure a real-world IoT testbed composed of 28 IoT devices running for
9 months. The experiment shows that IoTEnsemble outperforms the state-of-the-
art NADS in the detection of botnet-related attacks. In particular, while other
baselines are greatly affected by the increasing activities, IoTEnsemble shows
extremely little reduction in effectiveness, which demonstrates its feasibility to
secure a more diverse IoT ecosystem in the future.

We summarize our contributions as follows: 1) A reliable and efficient clus-
tering algorithm for device activities; 2) A state-of-the-art NADS that uses an
ensemble of autoencoders to profile diverse activities of increasingly functional
IoT networks; 3) A real-world IoT testbed with a diversity of devices and activ-
ities, contributing a 57.1 GB dataset as a benchmark for IoT networks.1

2 Related Work

2.1 IoT Security, Malware and Botnet

A report in 2016 gives a detailed summary of IoT threats, including vulnera-
bilities, insecure communications, data leaks, malware, service disruption, per-
sistence of these problems and “disposable” devices [1]. Among these threats,
malware is a persistently annoying issue, mainly because IoT devices have rel-
atively weak protections and improper configurations. Mirai, one of the most
notorious IoT malware that compromised over 600,000 devices and launched a
620 Gbps DDoS attack in 2016, has been studied by many researchers [6,17]. Its
infrastructure includes a report server, a loader server and a command and con-
trol (C&C) server. As its source code was somehow released [11], Mirai becomes
a paradigm for many variations [3,24,27]. Infected bots can be used for DDoS
attacks, scanning, spamming, data leaking or even cryptomining [2].

2.2 Network Anomaly Detection System

The network anomaly detection system (NADS) is commonly used against bot-
net and other network attacks. Bhuyan et al. summarize over 200 related works
and categorize NADS into seven classes [9]. Among these classes, many machine
learning-based (ML) methods are used, such as KNN, SVM, decision tree and
neural network. Recently, the community turns to deep learning (DL) for its
great generalization ability [20,25]. Compared to traditional ML, an advantage
of DL is to automate the feature extraction from raw traffic to reduce the reliance
on feature engineering. Tang et al. propose a seq2seq model to detect zero-day
attacks after a web application firewall [33]. However, it can only parse HTTP
packets, which is not suitable for heterogeneous IoT traffic. Maŕın et al. propose
1 Our datasets are made public: https://github.com/HeliosHuang/ESORICS.

https://github.com/HeliosHuang/ESORICS
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a DL-based malware traffic detection method relying on no handcrafted feature
engineering but using raw bytes as data representation [23]. Despite achieving
high accuracy, it lacks interpretability on encrypted traffic and may cause pri-
vacy violations in IoT scenarios. Mirsky et al. propose Kitsune, an unsupervised
NADS using an ensemble architecture similar to ours and achieving a state-of-art
performance [28], but it does not separate a device’s entire activity into multiple
specific activities. We will use Kitsune as a baseline in the evaluation to highlight
the advantage of IoTEnsemble.

2.3 Activity Clustering

Activity clustering is a technique to group the traffic dedicated to the same activ-
ity. It can be primarily divided into rule-based methods and statistical methods.
Rule-based methods identify the flows with the same or a certain range of domain
names [10], destination ports [15] or TLS/SSL certificates [13] as the same activ-
ity, which has great interpretability. However, simply matching the rules with
IoT traffic may cause unreliable clustering results since many IoT devices are
not manufactured to use fixed domains and ports. On the other hand, statistical
methods typically use statistical features of traffic along with ML algorithms for
clustering, such as packet size and flow rate [14,29]. The disadvantage of these
methods includes relatively weak interpretability and unstable validity due to
high sensitivity to the fluctuation of the statistical features. Other applications
like device identification [22,34] and app fingerprinting [10,13] also use activity
clustering techniques, but their design goal is different from ours as they can
ignore the commonly used activities between devices or apps and only identifies
a small proportion of unique activities for fingerprinting, whereas a NADS needs
to handle all traffic efficiently because it treats every flow as a suspicious target.

3 Threat Model

In this paper, adversaries are the people who infect and compromise IoT devices
as part of a botnet. They are assumed to have the following capabilities: 1) they
can infect a device by known or unknown exploits, which means zero-day attacks
are possible; 2) they can either be located in the same local area network (LAN)
as IoT devices or outside the LAN; 3) after infecting a device, they can command
the victim device to take malicious actions, such as data leaking, cryptomining,
spamming or attacking other devices and websites.

Our system is positioned inside the same LAN as the IoT devices to be
protected. The deployment could be on a home gateway or a computer that
is able to sniff all the traffic from and to the IoT devices, including the traffic
across the devices inside the LAN, which can be realized by mirroring the traffic
through the LAN interface on the home gateway to our system. Besides, we
assume that a newly connected device can be simply identified by its DHCP
messages and MAC addresses so that the traffic can be separated.

To define a clear scope of this paper, we also make the following assump-
tions: 1) IoT vendors are not adversaries; in other words, IoT devices are not
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manufactured initially to be malicious and no backdoors are pre-installed; 2) the
malicious activities launched by adversaries leave a trace on L3 network layer.
This paper does not consider the attacks on L1 and L2 network layers, such as
spoofing attacks on Bluetooth Low Energy (BLE).

4 Flow Clustering by Activity

4.1 IoT Network

Recent years have witnessed IoT’s astonishing promotion in functions, such as
AI-based functions like movement detection and face recognition in IP cameras.
In addition, many IoT vendors like Samsung SmartThings are building an ecosys-
tem for easy communications between devices. Accordingly, these functions are
reflected on the network by a variety of connections.

Although IoT devices are becoming more intelligent, they are still far from
general-purpose devices as most of their network communications are pre-set by
their vendors. This paper uses the expression network activity or simply activity
referring to a purpose that the network communications are dedicated to.

4.2 Design Goal

In this paper, the ultimate purpose of clustering is to group the traffic flows for
the same activity so that a submodel can easily learn each activity’s normal pat-
tern. Given this purpose and the condition of IoT networks, we list three design
goals for the clustering algorithm: 1) It has good interpretability for network
administrators to understand; 2) It needs as little prior knowledge as possible,
such as what protocols to use or the number of clusters; 3) It has an appropri-
ate granularity with as few numbers of clusters as possible and meanwhile still
achieves a reliable clustering validity.

To achieve these goals is not easy. For one thing, most ML-based clustering
methods disobey them. For another, rule-based methods usually cannot satisfy
the requirement of reliability due to the unstable IoT traffic rules deriving from
the use of non-standard domain resolution, dynamic ports, no TLS/SSL authen-
tication and proprietary protocols [15]. To propose a proper method, we firstly
give a motivating case about our observations on IoT traffic and activities.

4.3 A Motivating Case: TP-Link Camera

We manually traverse the functions of a TP-Link camera and monitor its network
activities by Wireshark. By associating the traffic with the triggered functions,
we notice seven activities (Table 1) including device status reporting (dev), API
call (api), business (biz, related to cloud service), stream relaying (relay), UPnP
broadcasting (UPnP), streaming to local apps (local) and request for public IP
(STUN) with their traffic characteristics, where Sps is the set of packet sizes
(TLS handshakes in bold) and Δt is the mean of packet inter-arrival time in two
directions. We present our three observations on these activities:



574 R. Li et al.

Table 1. Traffic characteristics of seven activities

Activity Domain/IP Protocol (port) Period TLS/SSL? Sps Δtout Δtin

dev n-device-api.; dynamic IP TCP (50443) 30 s � 153, 37, 52 0.25 0.042

api n-devs-ipc TCP (443) 3600 s � 134, 873, 319,

143, 457, 329, 121

12.59 0.12

biz biz-ipc TCP (443) – � 122, 849, 307,

131, 333, 141,

301, 237, 109

0.021 0.039

relay n-txc-relay-ipc-nj TCP (443) 900 s � 122, 857, 307,

131, 237, 381, 109

0.024 0.052

UPnP 255.255.255.255; local IP UDP (5001) 20 s × 278 20.0 –

local local IP UDP (dynamic) – × 48, 69, 92, 1476 0.15 0.15

STUN dynamic IP UDP (dynamic) – × 56, 96 0.097 0.024

Observation 1: A device could contain multiple activities that show greatly
different traffic patterns. For example, some of the activities in Table 1 use
encryption protocols, which clearly present distinct traffic patterns from the
other plaintext traffic. Also, these highly asynchronous activities due to diverse
periods result in different patterns of the device traffic in different time. These
facts challenge the generalization ability of training a single model to profile the
complex characteristics of the mixed traffic by diverse activities.

Observation 2: Rules like domains, protocols and ports are still effective for
preliminary clustering but do not always work. For example, the “dev” activity
contacts dynamic IP addresses not in any of its DNS answers (we did power off,
reset and reboot the device before the experiment to clear the cached domain
resolutions). Some ports like 443 and 5001 are stably used by certain activities,
but activities like local streaming and STUN always use random dynamic ports.

Observation 3: The set of packet sizes and inter-arrival time are surprisingly
helpful for distinguishing the activities. In fact, Trimananda et al. have found a
similar observation on the packet size of a request-reply packet sequence[34], but
it only works for TCP connections. We extend this observation by finding that
the request-reply sequence is not necessary – instead, a limited set of packet sizes
has identical efficacy, which also works with UDP activities. To the best of our
knowledge, it is the first time to find such an easy but effective observation for
activity clustering. We explain this observation by two points: 1) TLS provides
a stable and differential certificate exchange process (packet size in bold); 2) IoT
communications comply with strict data formatting.

We also analyze the traffic from other types of devices such as plugs and
speakers and find consistent observations. We attribute these observations to
the typically purpose-driven design of IoT devices – though a device may con-
tain a diverse set of functions, each of them is pre-set by the firmware for a
specific purpose and hardly changes its traffic patterns. This preliminary anal-
ysis suggests a possibility to combine traffic rules with spatial and temporal
statistics for reliable activity clustering.
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Fig. 1. An illustration of the tree-based activity clustering; bc/mc: broadcast-
ing/multicasting; sys: system port (0-1023); reg: registration port (1024-32767 in
Linux); dyn: dynamic port (32768-65535 in Linux).

4.4 Clustering Method

We present a tree-based clustering method for IoT traffic activity as Fig. 1 illus-
trates. Given Observation 2, a packet belonging to a bidirectional flow f :=
(device-IP, dst-domain/IP, src-port, dst-port, protocol) goes through the four-
level hierarchical rules for a preliminary clustering: 1) L4 protocol: protocol
is TCP or UDP; 2) address: dst-domain/IP is a specific domain, a remote IP
address, a local IP address or a broadcasting/multicasting address; 3) src-port
is a specific system port, or in registration/dynamic port range; 4) destination
port: dst-port is a specific system port, in registration port range or in dynamic
port range.

Note that the use of each system port has an individual tree path as it
typically indicates a specific service. Since IoT devices are at the client end, the
source port is usually useless for clustering (unless it is a system port like 22 for
SSH, 23 for Telnet, etc.) while the destination port in registration range reveals
some commonly used IoT services, such as 1900 for SSDP, 3478 for STUN, etc.

At the end of the tree, each leaf node is a hash table in which the key is f
and the value is an incremental statistical structure. This structure is defined by
a five tuple IS := (N in, Nout, T in, T out,S), where N is the number of packets,
T is the sum of packet inter-arrival time, in and out indicate the direction, S is
the set of packet sizes. The advantage of IS is its constant storage complexity
no matter how many packets a flow has. When a packet with direction d, packet
size s and inter-arrival time Δt arrives at a leaf node, IS is updated by:

N in ← N in + 1 if d = in else Nout ← Nout + 1

T in ← T in + Δt if d = in else T out ← T out + Δt

S.add(s)

(1)

For each leaf node, a more abstract flow rule can be obtained by merging the
flows on the leaf node to reduce the final number of clusters. Each two flows f1,
f2 with their incremental statistics IS1, IS2 are compared by two aspects:
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Algorithm 1. ClusterMerging
Input: An empty set K, hash table H, 5-tuple set L

1 f ← L.Pop();

2 IS := (N in, Nout, T in, T out, S) ← H[f ];
3 for fi in L do
4 if fi ⊆ f then
5 L.remove(fi); continue;

6 ISi := (N in
i , Nout

i , T in
i , T out

i , Si) ← H[fi];
7 if J(S, Si) > hs and b(λ, λi) < ht then
8 L.remove(fi); f ← merge(f, fi);

9 end for
10 K.add(f);
11 ClusterMerging(K, H, L);

Spatial Correlation. S1, S2 are compared by the Jaccard index: J(S1,S2) =
|S1∩S2|
|S1∪S2| . If the result surpasses a threshold hs, f1 and f2 are believed to be
spatially correlated.

Temporal Correlation. Packet inter-arrival time is typically modelled by a
Poisson process [7], which conforms to an exponential distribution f(t) = λe−λt.
By a set of observations t1, t2, ..., tN , parameter λ can be calculated by maximum
likelihood estimation: λ = N

T . The theoretical derivation of the estimation is
in AppendixA. Accordingly, λ1 and λ2 can be derived from IS1 and IS2 to
determine their distributions. We separately calculate the difference between
two parameters for two directions: b(λ1, λ2) = |λ1−λ2|

max(λ1,λ2)
. If any of the results is

below a threshold ht, f1 and f2 are believed to be temporally correlated.
For each hash table H at a leaf node and the set of its 5-tuple keys L,

we use a greedy strategy to compare and merge the flow rules as Algorithm 1
describes. In line 8, if two flows are correlated, they are merged into a new five
tuple where the new address and port will be their path name in the clustering
tree (e.g., “local”, “reg/dyn”, “dyn”). If the merged destination domains have
a common secondary-level domain, the new address will use a wildcard (e.g.,
*.tplink.com). The symbol of subset in line 4 means that f has a more abstract
expression that contains fi (e.g., src-port is 29983 in fi and “reg/dyn” in f).
This algorithm is recursive that has an average complexity of O(nlogn). By using
the Depth-First-Search (DFS) on the entire tree, the tuple sets on each leaf node
are finally merged into a single set K. We call the tuples in this set activity keys
as each of them indicates a rule for one activity. The next section presents the
use of activity keys for the construction of our framework.
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Fig. 2. An overview of IoTEnsemble’s architecture.

5 IoTEnsemble Design

5.1 Overview

IoTEnsemble is an anomaly detection framework designed for current increas-
ingly intelligent and functional IoT networks. Generally, it is a combination of
two detection stages:

Rule matching by activity keys that efficiently filters out the extremely
anomalous traffic flows with unknown domain, address or port range.

Ensemble model that learns each activity and detects anomalies by the
deviation from the normal traffic pattern.

Figure 2 illustrates IoTEnsemble’s overview. The preprocessing module firstly
handles the IoT network traffic and matches 5-tuple flows to activity keys. Sub-
sequently, it processes the first r packets of each flow into a numerical data repre-
sentation, where r is the fixed length of a packet window. The detection module
is composed of multiple submodels that profile one activity respectively. It fol-
lows a trigger-action mechanism which only awakens the submodels with similar
activities to the flow for the inspection, and the final detection result is voted
only by the awakened submodels. Compared to the basic ensemble architecture,
this mechanism reduces the overhead of multiple submodels’ simultaneous exe-
cution. Since IoTEnsemble is neither privacy-intrusive nor protocol-specific, it
is trusty and practical for wide usage scenarios. For example, the preprocessing
module can be deployed on a home router and the detection module can be
executed on a router, a personal computer or an edge server.

IoTEnsemble has two phases during the operation. The learning phase starts
with a new device joining the network and assumes that it will not be compro-
mised in an initial time window (e.g., one or two hours). During this period,
IoTEnsemble generates the activity key set and trains an ensemble model using
the observed network traffic. Then the framework enters the detection phase in
which the internal parameters of IoTEnsemble are fixed for inference. We discuss
how each component works in greater detail in the following subsections.

5.2 Preprocessing Module

Activity Key Set. As assumed in Sect. 3, all traffic is considered benign during
an initial observation window. Hence, we generate an activity key set and use
this set as a profile of normal activities for rule matching.
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Construction in Observation Window: As a device goes through its func-
tions to present all its activities, the activity key set is constructed by the fol-
lowing steps: 1) Initialize a clustering tree as Fig. 1; 2) Each tuple enters the tree
and follows the path condition to reach a leaf node and is stored in the hash
table; 3) At the end of the observation window, conduct the DFS on the tree
and run Algorithm 1 on each leaf node; 4) Merge the activity key set from each
leaf node and output the complete set K.

Utilization in Detection Phase: An incoming 5-tuple flow is mapped to
activity keys, which is simply a matching process with at most O(n) complexity
and is practical for online use. Given the abstract address and port range indi-
cators in an activity key (e.g., wildcard domains, “local”, “reg/dyn”, etc.), it is
a relaxed matching process and may result in multiple matches, which gives a
chance of further inspection to every possible activity key to reduce false posi-
tives. However, if a flow cannot match any of the activity keys, it will be directly
labeled as malicious traffic.

Preprocessing Pipeline. A traffic flow that matches activity keys will enter
the second detection stage by the ensemble model. To make a network flow pro-
cessible by an ML model, a preprocessing pipeline is built to convert a flow
of packets into a numerical vector. Formally, given a flow f and its pack-
ets by an ordered list pf = [p1, p2, ..., pl], it follows a pipeline of functions
{S(Slicing),R(Representation),P(Padding),N (Normalization)} to generate
a representation that describes the underlying characteristics of the flow.

Slicing: Some IoT flows last extremely long or even never end, such as keepalive
traffic with the server. To deal with this, we use a time window to slice a flow into
multiple small flows with equal intervals. We set two time windows separately
for TCP and UDP denoted by tT and tU .

Representation: The data representation derives from the sequential relation-
ship of IP packet size and inter-arrival time between packets in a flow. It is
motivated by the characteristics of botnets that generate sequential small pack-
ets when searching for susceptible hosts and follow a uniform pattern throughout
C&C life-cycle to reduce their observability on the network [36]. Packet size and
inter-arrival time form two ordered lists that only preserve the first r packets.
Based on our preliminary experiment, the first 100 packets have sufficed an
effective representation for the entire flow.

Padding: A list with less than r items is zero-padded to satisfy a fixed-length
input for an ML algorithm. Another use of padding is to reveal the length of a
flow – a long flow has more values in a list compared to short flows.

Normalization: We adopt the L2 norm to make each value in a list between 0
and 1 and stack two lists into a two-dimensional sequential data sample.
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5.3 Anomaly Detection Module

Ensemble Architecture. Figure 3 illustrates the overall architecture, which is
a combination of multiple unsupervised learning submodels that learn normal
activity’s traffic pattern. The advantages of using an unsupervised learning algo-
rithm include 1) no need for malicious traffic data for training; 2) the capability
of discovering zero-day attacks. We believe that such an ensemble architecture
is a good solution to an increasingly functional IoT network given a submodel
only learns a specific activity which better conforms to an i.i.d.

Fig. 3. An illustration of our ensemble model; only the submodels with matched activ-
ity keys engage in the execution.

A submodel is constructed by a one-dimensional Convolutional Neural Net-
work autoencoder (1D-CNN AE) [18]. It is an unsupervised model that brings
CNN’s invariant feature extraction to sequential data. It learns the latent distribu-
tion of the training data and adjusts its parameters to minimize the reconstruction
error between the input and output measured by root mean squared error (RMSE).
In the detection phase, a data sample inconsistent with the learned distribution
produces a higher reconstruction error and thus can be detected.

Learning Phase. The training of an ensemble model starts by the end of
the construction of activity key set K. A device’s network flows processed
by the pipeline {S,R,P,N} compose the training dataset denoted by X =
{Xk1 ,Xk2 , ...,Xkm

}, where Xki
represents the traffic data belonging to the activ-

ity with activity key ki. Each dataset is then split into a training subset for train-
ing a submodel’s parameter θ and a validation subset for the determination of a
hyperparameter φ, i.e., the threshold of RMSE. It is determined by a quantile of
order q, which can also be interpreted as the setting of true negative rate (TNR)
on the validation subset. Finally, an ensemble model M can be described as a
set of submodels: M = {Mk1 ,Mk2 , ...,Mkm

} where Mki
= {θki

, φki
},m = |K|.

Detection Phase. When a flow passes the rule matching, the matched activity
key set K̂ awakens the corresponding submodels in M and each of them par-
allelly inspects the feature vector v by comparing the reconstruction error to
its threshold, which is called the trigger-action mechanism. A flow is judged as
normal if any of the awakened submodels claims it is normal. The process of
detection phase is described by Algorithm 2.
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Algorithm 2: Ensemble Model Detection

Input: Ensemble model M, feature vector v, matched activity key set K̂
Output: Detection result and failed activity key set Υ

1 Initialize an empty set Υ ;
2 for k in K̂ do
3 Awaken submodel Mk = {θ, φ} from M;
4 v̂ ← hθ(v);
5 γ ← RMSE(v, v̂);
6 if γ > φ then
7 Append k into Υ ;
8 end for
9 if |Υ | < |K̂| then return (Negative, Υ );

10 else return (Positive, Υ );

6 Evaluation

6.1 Testbed and Dataset

To demonstrate a realistic and functional IoT network, we set up a real-world
testbed consisting of 28 popular IoT devices that cover most mainstream IoT
vendors in China and diverse device types. We basically categorize them into
camera, sound box, gateway and appliance. Figure 4 illustrates the network topol-
ogy of our testbed. To present each device’s activity, we consider both manual
and automated interaction as follows: 1) we explore each device’s functions by
instructions and app UI and make a list of functions for our researchers to trigger
at least once a day, such as pressing physical buttons, walking before a camera
or talking to a sound box; besides, the testbed is located in a public location
for free use; 2) we configure a laptop with Android Debug Bridge (ADB) and
an emulator installed with 19 apps for all devices, and run a Python script to
trigger their functions by app and voice commands (to four sound boxes) at reg-
ular intervals; for example, a smart camera is requested for streaming or a sound
box plays a song at 2pm every day. This testbed has been run for 9 months and
contributed over 57 GB data. Given that IoTEnsemble does not require a large
amount of data for training, we use the data of the first week for training and the
rest for testing. We also use two benchmark datasets: one from UNSW collected
in a lab environment [32] and one from NEU collected in an idle status of IoT
devices [30]. As synthesized without heterogeneous activities, they are used to
compare the performance between functional and low-functional IoT networks.

We make two Raspberry Pi boards infected by IoT malware (Mirai, BASH-
LITE [11]) and a C&C server (in WAN) for malware traffic collection. We modify
the packet header information like IP address to make it consistent with the IoT
devices. We also replay some public IoT botnet attack datasets as supplementary
[2,8,19]. All traffic is collected by a computer via port mirroring by the router,
making it a comprehensive IoT traffic dataset for evaluation.



IoTEnsemble: Detection of Botnet Attacks on Internet of Things 581

Fig. 4. Network topology of our testbed

6.2 Metrics

The detection performance of an IDS is typically evaluated by true positives
(TP ), true negatives (TN), false positives (FP ), false negatives (FN) and their
tradeoff. In our evaluations, we fix the true negative rate (TNR = TN

TN+FP ) by
adjusting the threshold φ and measure the true positive rate (TPR = TP

TP+FN ).
For our framework, each sample in the dataset is considered benign only if it
passes the inspection of both the detection stages.

The validity of activity clustering, however, is harder to evaluate as the target
of clustering is more subjective and therefore it lacks a general metric [16]. For a
fair and comprehensive comparison with both previous rule-based methods and
statistical methods, we propose a network-specific metric called cohesion index,
which is the mean of the standard deviation of the distance between every two
5-tuple flows within each cluster. It is further divided into rule cohesion (RC)
and statistical cohesion (SC). In RC, the distance is measured by the header
information: 1) add 1 if two destination IP addresses are not in the same range
(i.e., local, external, multicasting); 2) add 1 if two ports are not in the same
range (i.e., system port, register port, dynamic port); 3) add 1 if two L4 protocols
are different (i.e., TCP, UDP, ICMP). In SC, the distance is measured by the
vector distance composed of five commonly used statistical features for traffic
profiling (mean and variance of packet size, mean and variance of inter-arrival
time, inbound/outbound ratio). We also include the number of clusters (Nc)
in the metrics. To present the tradeoff between the cluster number and the
validity, which is one of our design goals, we multiple the two cohesion indexes
(after normalization) and the cluster number to form TOR and TOS . A method
with smaller cohesion and tradeoff indexes is better for our design goal.

6.3 Validity of Activity Clustering

Firstly, our method clearly satisfies the first two goals because: 1) it generates a
set of rules by the tree paths with good interpretability; 2) it does not assume any
prior knowledge about the traffic. As for the third goal, we compare our method
with four baselines, including two rule-based methods: 1) FlowPrint [13] that
uses destination and port numbers along with TLS certificates for clustering;
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Table 2. Comparison between activity clustering methods.

Type Method RC SC Nc TOR TOS

Rule-based FlowPrint 0.0029 0.4096 220.33 0.6407 90.24

MUDgee 0.2791 0.8775 29.22 8.156 25.64

Statistical Botminer 0.7185 0.5142 68.67 49.34 35.31

MCluster 0.4531 0.4682 110.56 50.09 51.76

Hybrid Ours 0.0682 0.6706 12.33 0.8414 8.270

2) MUDgee [15] that uses the rules upon the YANG model (RFC 6020) to
separate network activities; and two statistical methods: 3) Botminer [14], a
two-stage clustering framework using X-Means; 4) MCluster [29], a network-
level behavioral clustering system for malware detection.

We use a one-week dataset of normal device traffic for the evaluation. Table 2
shows the result. It can be seen that the rule-based methods have lower RC and
higher SC, and vice versa for the statistical methods, which is in line with their
design. Besides, we notice that the methods with the lowest RC (FlowPrint) and
the lowest SC (MCluster) result in a great number of clusters. It is reasonable
since more fine-grained clustering generally owns better cohesion inside each
cluster, while it does not accord with our design goal to reduce the overhead of
cluster numbers. Note that a high RC suggests the possibility of obviously wrong
clustering, such as treating a TCP flow and a UDP flow as the same activity
just because they are coincidentally similar in statistics. In contrast, our method
combines both of the advantages, using heuristic rules for preliminary clustering
and statistics for cluster merging, which demonstrates a better tradeoff between
the validity and the number of clusters. It proves that our method outperforms
previous works in the case of our design goal.

We also measure the observation window for a device to present all its activ-
ities. Before the experiment, we power off the devices and reset them to make
sure the cached configurations are cleared. The manual interaction and auto-
mated interaction methods mentioned above are separately adopted to traverse
the device’s activities. It shows that the average time of exhibiting all activities
by manual use is 20 days, whereas the average time of exhibiting all activities
by our automated script is only 100 min. It implies that the activity key set can
be reliably generated only within one or two hours after the connection, which
is practical for real use. The full result can be found in AppendixB.

6.4 Overall Performance

We train IoTEnsemble and evaluate its detection performance on four cate-
gories of attacks: C&C, DDoS, Scan and Leakage. We empirically set hs and
ht to 0.4 and 0.5, resulting in a stable number of clusters. The time window
for both UDP and TCP flows is set to 30 s. The sequence length r is 100. For
each submodel, the total amount of trainable parameters is 10530. We set two
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Fig. 5. Detection performance of IoTEnsemble (q = 0.99 and q = 0.98) and five base-
lines on four categories of attacks.

thresholds: q = 0.99 and q = 0.98, which means the FPR is set to be 0.01 and
0.02 on the validation dataset. To demonstrate the advantage of IoTEnsemble
over a single model’s architecture, six unsupervised baseline NADS are used: 1)
Kitsune [28], a state-of-the-art unsupervised NADS using an ensemble model of
multiple autoencoders; 2) SG(U), a single 1D-CNN AE model identical to the
submodel in IoTEnsemble trained without balanced data from different activi-
ties (unbalanced training); 3) SG(B) a single model identical to SG(U) trained
with balanced data from different activities by oversampling (balanced train-
ing); 4) LSG(U), a large single 1D-CNN AE model with approximately 16 times
trainable parameters as SG(U) by unbalanced training; 5) a large single model
identical to LSG(U) by balanced training; 6) IF(B) [21], an isolation forest by
balanced training. The threshold of the baselines is uniformly set by an FPR of
0.02.

Figure 5 illustrates the experiment result. Detailed results of each device are
in Appendix B. It shows that IoTEnsemble outperforms Kitsune and other base-
lines in all four attacks, suggesting that IoTEnsemble achieves a state-of-the-
art detection performance. We attribute the advantage to our reliable activity
clustering that makes the pattern of traffic better conform to an i.i.d. Besides,
LSG exhibits insignificant superiority over SG compared to the large difference
between their scales, showing that a single model’s generalization ability is chal-
lenged by the variety of activities. Another finding is that all baselines including
Kitsune exhibit worse detection performance on complex devices like cameras
and sound boxes, while IoTEnsemble shows little difference.
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Fig. 6. Comparison of detection performance on three datasets.

Figure 6 shows the comparison between IoTEnsemble and Kitsune on three
datasets, whose diversity of activities is getting enriched from left to right. It
again proves that the variety of device functionality apparently affects the per-
formance of Kitsune and meanwhile barely influences IoTEnsemble.

We highlight IoTEnsemble’s runtime advantage by its average 2.1 submod-
els simultaneously awakened during the execution (camera: 1.7/11.3, sound box:
3.9/12.7, gateway: 1.4/5.2, appliance: 1.4/5.7). Compared to a normal ensemble
model like Kitsune that has over 20 submodels for parallel inference, IoTEnsem-
ble is more efficient thanks to the trigger-action mechanism that only awakens
the best match submodels for execution. Moreover, we measure the average infer-
ence time of the ensemble model on a CPU computer (Intel Xeon(R) Gold 5117
@ 2.00 GHz with one single core used), resulting in about 244.59 µs, which is
extremely trivial compared to the time window of a sliced flow (30 s).

6.5 Discussion

Possible Attacks. It is possible that malware bypasses the first detection stage
by disguising the C&C channel as a normal service like HTTP. To assess its
impact, we modify half of the C&C traffic of four malware by encapsulation with
HTTP headers and ports. We choose part of the devices that normally use HTTP
traffic as victims so that the disguised C&C traffic can bypass their rules. As
Table 3 shows, even if they evade the first detection stage, most malware traffic
can still be detected by the second detection stage, which presents the robustness
of IoTEnsemble. As for evasive attacks [35], given the trigger-action mechanism,
it is difficult to find a perturbation for a dynamic combination of submodels while
maintain the malicious function. IoTEnsemble may be susceptible to poisoning
attacks that spoil the training data. However, it is not easy for an adversary
to compromise a device so fast considering our short observation window, and
afterwards most of the poisoning traffic can be easily filtered out.

Limitations. One limitation of IoTEnsemble is the false positive caused by nor-
mal but unseen activities, which is also an inherent drawback of unsupervised
learning-based methods. Nevertheless, as we have shown in the experiment, a
deliberately designed script can reduce the trigger time of complete device activi-
ties from days to minutes, which suggests a trivial probability of missing learning
from existing activities. Meanwhile, we believe that this limitation can be more
highlighted when new functions are induced by IoT firmware/software updates.
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Table 3. Detection on modified malware that bypasses the first detection stage.

Malware Camera Soundbox Gateway Appliance

Aidra 0.647 0.873 0.987 0.873

BASHLITE 0.958 1.00 1.00 1.00

Mirai 1.00 0.985 0.596 0.985

Xbash 1.00 1.00 1.00 1.00

To address it, a solution is to add a feedback function to IoTEnsemble by devel-
oping a controller app on the cellphone or the PC. An unseen activity is reported
to the app for a manual decision from the administrator, so that a correspond-
ing rule can be added to the first detection stage of IoTEnsemble to avoid the
same false positives. We consider the development of this function as part of our
future work.

7 Conclusion and Future Work

This paper presents IoTEnsemble, an anomaly detection framework against IoT
botnet attacks. It is designed to accommodate current increasingly functional
IoT devices with a variety of activities. It contains a two-stage detection process
of rule matching by a tree-based clustering algorithm and an ensemble model.
We set up a real-world testbed to generate a dataset that reveals the diversity of
IoT activities. The experiment result shows that, no matter how many activities
an IoT network exhibits, IoTEnsemble obtains a state-of-the-art performance on
botnet attacks. Our future work is to design and implement a plug-and-play pro-
grammable home router that secures an IoT network based on IoTEnsemble. To
fulfill this goal, we are trying to transform IoTEnsemble into a more lightweight
model that consumes fewer resources while still maintains its effectiveness.

A Maximum Likelihood Estimation

Suppose N observations of packet inter-arrival time t1, t2, ..., tN that conform to
an exponential distribution f(t) = λe−λt are sampled. T represents the sum of
each observation, i.e., T =

∑N
i=1 ti. The maximum likelihood estimation of the

parameter λ is derived as follow:

λ = arg max
λ

N∏

i=1

λe−λti = arg max
λ

N∑

i=1

ln λe−λti

= arg max
λ

N ln λ −
N∑

i=1

λti

=
N

∑N
i=1 ti

=
N

T
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B Complete Dataset Information and Evaluation Result

See Table 4.

Table 4. Complete experimental result of each device in the testbed; Nc is the number
of activity clusters; t0 and t1 are required time to observe all activities of a device by
manual use and automated script; the last 8 devices are not IP-enabled and they are
connected to the corresponding gateways.

Device Size Nc t0 t1 C&C DDoS Scan Leakage C&C DDoS Scan Leakage

(day) (min) q = 0.99 q = 0.98

360-camera 4.7 GB 13 6 150 1.0 1.0 0.992 1.0 1.0 1.0 0.992 1.0

360-doorbell 6.5 GB 17 6 100 1.0 0.956 1.0 1.0 1.0 0.976 1.0 1.0

EZVIZ-camera 2.9 GB 14 5 50 1.0 0.998 0.958 0.999 1.0 1.0 0.958 0.999

Hichip-camera 320MB 7 1 50 1.0 0.973 0.998 0.835 1.0 0.976 1.0 0.835

Mercury-camera 2.5 GB 13 13 100 0.993 1.0 0.992 1.0 0.993 1.0 0.992 1.0

Philips-camera 7.0 GB 6 2 80 1.0 1.0 0.951 1.0 1.0 1.0 0.951 1.0

Skyworth-camera 1.2 GB 7 6 100 0.998 1.0 0.942 0.997 0.998 1.0 0.994 0.997

TPLink-camera 3.8 GB 11 9 100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Xiaomi-camera 4.7 GB 14 13 120 1.0 0.976 0.933 1.0 1.0 0.976 0.933 1.0

Biu-speaker 3.4 GB 6 5 240 1.0 0.999 1.0 1.0 1.0 1.0 1.0 1.0

Xiaomi-soundbox 9.5 GB 23 7 390 1.0 0.913 1.0 0.999 1.0 0.927 1.0 0.999

Xiaodu-audio 7.7 GB 9 3 280 1.0 0.635 1.0 1.0 1.0 0.986 1.0 1.0

Aqara-gateway 366MB 5 7 30 1.0 0.962 0.941 1.0 1.0 0.995 0.941 1.0

Gree-gateway 242MB 5 1 30 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

TCL-gateway 903MB 4 1 30 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

iHORN-gateway 241MB 3 1 20 1.0 1.0 1.0 0.999 1.0 1.0 1.0 0.999

Xiaomi-gateway 594MB 9 3 40 1.0 0.960 1.0 1.0 1.0 0.976 1.0 1.0

HONYAR-strip 211MB 5 1 40 1.0 1.0 0.991 1.0 1.0 1.0 0.991 1.0

WiZ-LED 221MB 5 3 20 1.0 0.976 1.0 1.0 1.0 0.976 1.0 1.0

Xiaomi-plug 208MB 7 5 30 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

iHorn-temperature \ \ \ \ \ \ \ \ \ \ \ \
iHorn-door sensor \ \ \ \ \ \ \ \ \ \ \ \
iHorn-body sensor \ \ \ \ \ \ \ \ \ \ \ \
Xiaomi-light sensor \ \ \ \ \ \ \ \ \ \ \ \
Xiaomi-temperature \ \ \ \ \ \ \ \ \ \ \ \
Xiaodu-doorbell \ \ \ \ \ \ \ \ \ \ \ \
Aqara-water sensor \ \ \ \ \ \ \ \ \ \ \ \
TCL-body sensor \ \ \ \ \ \ \ \ \ \ \ \
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