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ABSTRACT

With the rising interest in research on Large Multi-modal Models (LMMs) for
video understanding, many studies have emphasized general video comprehen-
sion capabilities, neglecting the systematic exploration into video quality un-
derstanding. To address this oversight, we introduce Q-Bench-Video in this pa-
per, a new benchmark specifically designed to evaluate LMMs’ proficiency in
discerning video quality. a) To ensure video source diversity, Q-Bench-Video en-
compasses videos from natural scenes, AI-generated Content (AIGC), and Com-
puter Graphics (CG). b) Building on the traditional multiple-choice questions for-
mat with the Yes-or-No and What-How categories, we include Open-ended ques-
tions to better evaluate complex scenarios. Additionally, we incorporate the video
pair quality comparison question to enhance comprehensiveness. c) Beyond
the traditional Technical, Aesthetic, and Temporal distortions, we have expanded
our evaluation aspects to include the dimension of AIGC distortions, which ad-
dresses the increasing demand for video generation. Finally, we collect a total
of 2,378 question-answer pairs and test them on 12 open-source & 5 proprietary
LMMs. Our findings indicate that while LMMs have a foundational understand-
ing of video quality, their performance remains incomplete and imprecise, with a
notable discrepancy compared to human performance. Through Q-Bench-Video,
we seek to catalyze community interest, stimulate further research, and unlock the
untapped potential of LMMs to close the gap in video quality understanding.

1 INTRODUCTION

As the field of artificial intelligence (AI) continues to evolve, Large Multi-modal Models
(LMMs) (Ye et al., 2024; Li et al., 2024a; Chen et al., 2024; Ke et al., 2023; Xu et al., 2024) are pro-
gressively utilized in high-level video understanding tasks. These models have shown remarkable
capabilities in analyzing and interpreting the semantic content of videos, such as classifying objects,
identifying actions, and recognizing events. However, the aspect of video quality, which is vital
for optimizing compression and transmission systems, enhancing viewer experience, and es-
tablishing standards for high-quality video generation, has received less attention. Although
numerous LMM video benchmarks (Fu et al., 2024; Fang et al., 2024; Wu et al., 2024a) have been
developed to assess the semantic understanding of videos by LMMs comprehensively, benchmarks
systematically targeting video quality are still lacking. Additionally, while semantic understanding
is closely linked to high-level video information, the perception and understanding of low-level in-
formation are crucial in video quality (Chikkerur et al., 2011; Li et al., 2024b). Thus, current video
benchmarks fail to adequately evaluate the video quality understanding capabilities of LMMs.

To address this gap, we introduce Q-Bench-Video, a novel benchmark specifically designed to sys-
tematically evaluate the video quality understanding of LMMs. As illustrated in Fig. 1, our bench-
mark encompasses a wide range of video content, including natural scenes, AI-generated Content
(AIGC), and Computer Graphics (CG), ensuring diversity in video sources. In addition, to maintain
a reasonable distribution of source video quality, we employ uniform sampling from video datasets
that contain subjective quality annotations. This approach guarantees comprehensive coverage of
the quality spectrum while avoiding imbalanced quality distributions. Moreover, we extend beyond
traditional video evaluations by incorporating both multiple-choice questions (MCQs) and open-
ended questions. This enables a more thorough analysis of LMMs’ ability to discern video quality
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Figure 1: The construction overview of the proposed Q-Bench-Video. To ensure diversity in video
content, we collect natural scenes, AIGC, and CG videos from video quality assessment datasets as
depicted in (a). To achieve a balanced quality distribution among the sampled videos, we employ
uniform sampling for quality control. As indicated in (c-1) and (c-2), we utilize three types of
questions (Yes-or-No, What-How, Open-ended) and address a comprehensive range of quality con-
cerns including Technical, Aesthetic, Temporal, and AIGC distortions. Additionally, we incorporate
the video pairs comparison task to enhance the comprehensiveness of the benchmark.

across diverse scenarios. We further introduce a new evaluation dimension specifically tailored to
assess distortions related to AIGC, which are increasingly prominent in video generation tasks. Rec-
ognizing the importance of quality comparison settings in real-world applications, such as camera
parameter optimization and AIGC video generation, we further incorporate video pairs to facili-
tate quality comparison assessment as well. In total, we collect 1800 videos and annotated 2,378
question-answer pairs for validation, creating a robust framework for systematic evaluation.

Through the rigorous experiment, we demonstrate that while LMMs show promise in video quality
assessment, their performance lags significantly behind human-level understanding. By offering a
systematic and thorough evaluation of LMMs’ video quality perception, Q-Bench-Video aims to
foster research in this underexplored area and push the boundaries of LMM capabilities.

Our contributions can be summarized as follows:

• We introduce Q-Bench-Video, the first comprehensive benchmark explicitly designed to
assess the video quality understanding capabilities of LMMs. This benchmark includes
a diverse collection of source videos and ensures a balanced quality distribution, comple-
mented by human-crafted question-answer annotations to enable thorough evaluation.

• Our evaluation framework spans four key quality dimensions: Technical, Aesthetic, Tem-
poral, and AIGC distortions, which offers a holistic evaluation approach to video quality
assessment. Uniquely, Q-Bench-Video enhances its utility by introducing the task of video
pairs comparison, which sets it apart from existing video benchmarks.

• We conduct a comprehensive evaluation using both proprietary and open-source LMMs
to measure their effectiveness in understanding video quality. The results expose notable
deficiencies in current LMMs, while also shedding light on performance variations across
different quality dimensions. These findings provide critical insights and suggest promising
directions for future enhancements in the field of video quality understanding.
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Table 1: Overview of the diverse video source datasets in the Q-Bench-Video. We consider various
video content types, including natural scenes, AIGC, and CG videos. The term ‘MOS’ denotes
that the videos are annotated via Mean Opinion Scores under ITU standards (itu, 2000). We have
conducted uniform sampling based on their quality labels to ensure a balanced quality distribution.

Video Type Video Source Dataset MOS Quality Concerns Sampled Size Full Dataset Size

Natural (1000)

LSVQ (Ying et al., 2021) ✓ Spatial & Temporal 600 39K
MaxWell (Wu et al., 2023b) ✓ Spatial & Temporal & Aesthetic 350 4.5K
WaterlooSQoE-III (Duanmu et al., 2018) ✓ Quality-of-Experience 20 450
WaterlooSQoE-IV (Duanmu et al., 2020) ✓ Quality-of-Experience 30 1,350

AIGC (600) T2VQA-DB (Kou et al., 2024) ✓ Quality & Text Alignment 200 10K
VideoFeedback (He et al., 2024b) × Quality & Text Alignment 400 37.6K

CG (200) LIVE-YT-Gaming (Yu et al., 2023) ✓ Visual Quality 200 600

2 RELATED WORKS

2.1 LARGE MULTI-MODAL VIDEO MODELS AND BENCHMARKS

The rapid advancement of Large Multi-modal Models (LMMs) in recent years (Liu et al., 2023b;a;
2024a; Chen et al., 2024; Zhang et al., 2023a; Ye et al., 2023a) has showcased their remarkable
perception and cognitive abilities across various multimodal benchmarks for images (Liu et al.,
2023d; Wu et al., 2024b; Fu et al., 2023; Zhang et al., 2024d; Marino et al., 2019). As development
progresses, the focus of visual analysis has gradually shifted from images to videos. Early efforts (Li
et al., 2023a; Lin et al., 2023; Liu et al., 2023c; Xu et al., 2024) aimed at unlocking the video
understanding potential of LMMs have yielded promising results. However, initial video-based
benchmarks (Li et al., 2023b; Wang et al., 2023; Mangalam et al., 2023) typically concentrated on
specific aspects of video comprehension, falling short of fully capturing the performance of these
models due to limitations such as a lack of diversity in video types and inadequate coverage of
temporal dynamics. In response, more recent video benchmarks (Fu et al., 2024; Fang et al., 2024)
have moved toward a more comprehensive evaluation of LMMs. Nonetheless, these efforts primarily
focus on high-level semantic understanding without systematic exploration of video quality.

2.2 VIDEO QUALITY ASSESSMENT

Video Quality Assessment (VQA) is a task aimed at quantifying video scores based on visual qual-
ity. Initially, early VQA methods employ hand-crafted features extracted from videos and regress the
features into quality scores (Zheng et al., 2022; Vu et al., 2011; Li et al., 2018). With the emergence
of deep neural networks, a shift occurr as numerous methods adopted deep learning techniques for
VQA tasks (Li et al., 2019; Sun et al., 2022; Li et al., 2022; Wen et al., 2024). As the field progresses,
newer methods begin incorporating considerations for both temporal dynamics and aesthetic quali-
ties, leading to a more holistic approach to video quality analysis (Wu et al., 2022a; 2023a; Zhang
et al., 2023b; Ahn & Lee, 2018; He et al., 2024a). Moreover, the evolution of large-scale models has
further revolutionized VQA methodologies. Many recent approaches have redefined the traditional
quality assessment process into a quality question-answering format (Wu et al., 2024c; Ge et al.,
2024; Zhang et al., 2024b). This adaptation leverages the substantial prior knowledge embedded in
large models to enhance the precision of quality quantification (Zhang et al., 2024c). Despite these
technological advances, VQA still grapples with challenges in providing interpretable quality scores
and deepening the understanding of how models perceive and analyze video quality.

3 BENCHMARK CONSTRUCTION

3.1 BENCHMARK PRINCIPLE

The Q-Bench-Video is designed based on three guiding principles: (1) It encompasses a broad
spectrum of video content, including natural scenes, AIGC, and CG videos. (2) It ensures a
comprehensive and representative sampling process across a wide quality range, enhancing the
benchmark’s overall effectiveness. (3) It primarily focuses on the aspects of video quality that
significantly influence the viewing experience, including technical, aesthetic, temporal, and AIGC
distortions. This significantly differs from other video benchmarks that prioritize semantic under-
standing. Additionally, the video pair quality comparison is integrated to address the challenges
associated with comparing video quality. The construction can be overviewed in Fig. 1.

3
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3.2 SOURCE VIDEOS COLLECTION

As shown in Table 1, the source videos are primarily gathered from video quality assessment
datasets. We selected videos from these datasets for two main reasons: (1) These datasets have
inherently considered the diversity of quality features during video selection; (2) These datasets
possess quality annotations that adhere to ITU standards (itu, 2000) (with the exception of Vide-
oFeedback), which allow us to accurately and authentically sample videos.

Our sampling method primarily employs a uniform approach, extracting videos evenly from each
dataset based on the quality range. Moreover, considering the current popularity of AIGC and CG
videos, we have also incorporated a selection of these video types. For a detailed description of the
datasets and the sampling procedure, please refer to Appendix A and Appendix B.

3.3 BENCHMARK DESIGNS

In this section, we provide a detailed description of the design of Q-Bench-Video. In this bench-
mark, the meta-structure tuple (V,Q,A,C) of each data item can be decomposed into several com-
ponents: the video object V (which can be a single video or a pair of videos), the video quality query
Q, the set of possible answers A, and the correct answer C. The question samples are listed in Fig. 2.

3.3.1 QUESTION TYPES

Yes-or-No Questions. The basic Yes-or-No questions are designed to prompt LMMs to make binary
judgments on video quality queries, typically limited to the answers Yes or No. To address the
potential bias in LMMs that may skew towards yes responses, we employ a rigorous annotation
process. This process ensures that the distribution of correct answers, either Yes or No, remains
balanced at about 50%/50% ratio (see Appendix D). This balanced approach allows for a more
accurate assessment of LMMs’ performance on Yes-or-No questions.

What-How Questions. The What-How questions are commonly utilized in benchmarks for LMMs.
The What questions focus on identifying specific distortions (e.g., What is the most apparent dis-
tortion in this video?). On the other hand, the How questions are employed to distinguish the finer
details of distortion levels (e.g., How is the overall clarity of this video?). Including both What and
How questions allows Q-Bench-Video to thoroughly and meticulously evaluate LMMs’ ability on
identifying video distortions and evaluating the distortion levels.

Open-ended Questions. It’s important to note that the two types of questions previously mentioned
require LMMs to select the correct answer from a predefined set. However, in many real-world
scenarios, Open-ended Questions, which do not restrict responses to a predefined set, are often more
necessary and challenging for LMMs (e.g., What are the possible factors that lead to the low clarity
of this video? Please list and explain.). By adopting this form of questioning, we can better assess
an LMM’s ability to perceive video quality in real-world conditions.

3.3.2 QUALITY CONCERNS

It’s important to recognize that video quality can be influenced by multiple factors on some occa-
sions. Therefore, a query tuple (V,Q,A,C) does not need to be restricted to a single concern. It
can address multiple concerns simultaneously. For instance, the question Is this video clear and
well-composed? can be seen as evaluating both technical and aesthetic quality understanding.

Technical Distortions. Technical distortions refer to the low-level degradation in video quality that
arises from the limitations of recording, compression, and transmission (Su et al., 2021; Ying et al.,
2021). These distortions often include artifacts such as blurring, noise, compression artifact, expo-
sure, etc., which are directly tied to the technical processes used in video production and delivery.

Aesthetic Distortions. Aesthetic distortions involve deviations from the intended visual style, artis-
tic design, or creative intent that negatively affect the viewer’s perception of the video (Wu et al.,
2022b; Huang et al., 2024). These distortions can include aspects such as confusing color, poor
composition, lighting inconsistencies, or distracting elements that reduce the overall aesthetic ap-
peal. Unlike technical distortions, aesthetic distortions are subjective and might be affected by
viewer preference, cultural context, or artistic norms.
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Q: Does the fabric in this video exhibit good 
clarity and proper lighting?
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(b)  Quality Concern

(c)  Single Video vs. Video Pairs

Q: What quality issues do not exist in this video?
A. None of the options  B. Blurriness
C.  Overexposure            D. Underexposure

Q: Why is it difficult for viewers to identify the dish the man is cooking in the video?
Open-ended Response: The video has severe compression blur and block artifacts, significantly reducing 
the discernibility of objects in the video.

Q: What feelings does this video evoke?
Open-ended Response: This video depicts a castle in a 
unnatural and twisted jungle, where the plants have 
bizarre, sharp structures and dull colors. The atmos-
phere is eerie and terrifying, creating a sense of horror.
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Q: Does this video have severe camera shake?
A. No  
B. Yes

Q: What is the most impactful quality issue of this video?
A. Noise                 B. Incorrect human structure 
C.  Blurriness            D. Overexposure

Q: How is the overall lighting level in this game video?
A. Very poor                   B. Poor
C.  Average                   D. Good

Q: Is the main character in this game video rendered 
in high details but with relatively low clarity?
A. Yes                             B. No
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Q: Is the exposure of the first video more balanced than the second video?        A. No          B. Yes

Q: Are both videos primarily in cold colors?                    A. Yes                             B. No

VS

VS

Figure 2: The visualization samples from Q-Bench-Video, with the question-answer content most
representative of each subcategory being underlined. It is important to note that, regarding quality
concerns, a single question-answer annotation may not only focus on one distortion dimension.
Therefore, the distortion visualization examples shown in (b) primarily highlight instances that are
most closely aligned with the mentioned distortion types.
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Temporal Distortions. Temporal distortions are related to the degradation of visual quality over
time, impacting the fluidity and consistency of the video (Seshadrinathan & Bovik, 2009). These
distortions manifest as issues like screen shake, flickering, motion inconsistency, frame drops, and
stuttering that result from unstable shooting devices, dramatically changing lighting conditions, and
unstable bitrate environments (Wu et al., 2023b). Such disruptions hinder the viewer’s natural per-
ception of the video, leading to a disjointed and unpleasant viewing experience.

AIGC Distortions. AIGC distortions pertain to imperfections and unnaturalness specifically aris-
ing from the generation of video content through AI models (Liu et al., 2024b; Zhang et al., 2024c).
These distortions may include unnatural textures, inconsistent lighting, uncanny facial features, or
unrealistic object behavior that result from limitations or biases in the training data, model archi-
tecture, or generative process. These distortions are unique to AI-generated content and require
specialized evaluation metrics that consider both the technical and perceptual quality aspects.

3.3.3 SINGLE VIDEOS & VIDEO PAIRS

Accurately comparing and jointly analyzing the quality of video pairs is sometimes more crucial
than assessing the quality of a single video, especially in scenarios such as performance tests in
video compression and quality control in video generation (In which it is more important to find out
Which video is better in visual quality and why?) (Zhu et al., 2024; Wu et al., 2024d). Therefore, in
Q-Bench-Video, we include video quality queries for both single videos and video pairs.

Single Videos. Queries related to single videos can primarily be categorized into two types: a)
Global perception, which involves questions about the overall visual quality of the video, such as
How is the overall contrast of this video? b) Referring perception, which focuses on the visual
quality of specific elements within the video, like querying What is the most apparent distortion
when the player strikes the ball? Through these approaches, we aim to comprehensively evaluate
the LMMs’ ability to perceive both the overall and localized aspects of video quality.

Video Pairs. Firstly, to ensure that the comparison of video pairs is clear and meaningful, compar-
isons are only made between videos from the same source, such as videos from natural sources
being paired together while CG videos and AIGC videos are not being paired. There are mainly two
types of video pair categories: a) Joint analysis, which involves understanding the shared quality
features of the video pairs, for example, such as asking Are both videos blurry? b) Comparative
analysis, which involves comparing the quality dimension across two videos, such as How does the
level of brightness in the first video compare to that in the second one? It is important to note that
we further categorize comparisons based on the difference in quality labels of the videos involved
into coarse-grain (with relatively more significant visual quality differences) and fine-grain (with
relatively minor visual quality differences) comparisons. More details can be found in Appendix J.

3.3.4 QUESTIONS & ANSWERS ANNOTATION

The annotation process of Q-Bench-Video is conducted in a well-controlled laboratory environ-
ment. A total of 8 experts are employed and trained to ensure the consistency of the annotations.
The experts are required to watch the videos in their entirety before making annotations. Each anno-
tated question-answer pair is then reviewed by at least three other experts to ensure its validity and
accuracy. The annotation details and GUI visualization are presented in Appendix C.

3.4 BENCHMARK SETTING & EVALUATION

Unless specifically stated otherwise, for Video LMMs we typically analyze by uniformly sampling 16
frames from the video, while for Image LMMs, the sampling is reduced to 8 frames. For Yes-or-No
and What-How questions, if the LMMs can accurately respond with the options, we directly record
the accuracy of the responses as results. If the LMMs cannot provide option-based answers, we
implement a GPT-assisted evaluation strategy to help judge the accuracy of the answers. For Open-
ended questions, since the answers are open-ended and cannot be directly quantified for accuracy,
we also employ the GPT-assisted evaluation strategy. This involves GPT scoring the responses
based on their accuracy, completeness, and relevance compared to the annotated answer. Details
about benchmark setting and evaluation can be found in the Appendix E and Appendix G.
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(a) Overall performance on Q-Bench-Video.
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(b) Subcategory performance on Q-Bench-Video.

Figure 3: A concise summary of the LMMs’ performance on Q-Bench-Video. (a) provides a com-
parison detailing the overall performance of humans and 17 selected LMMs, including both pro-
prietary and open-source models. (b) illustrates a radar chart that outlines the performance of the
top-2 proprietary LMMs (GPT-4o & Gemini 1.5 Pro) and open-source LMMs (mPLUG-Owl3 &
LLaVA-OneVision) across various subcategories within Q-Bench-Video.

4 RESULTS OF Q-BENCH-VIDEO

4.1 EXPERIMENTAL SETTING

LMMs Participants. A total of 17 LMMs (12 Open-source LMMs and 5 Proprietary LMMs) are
included for validation, which includes a) 3 Open-source Image LMMs: LLaVA-Next (Liu et al.,
2024a), LLaVA-v1.5 (Liu et al., 2023a), and mPLUG-Owl2 (Ye et al., 2023b); b) 9 Open-source
Video LMMs: mPLUG-Owl3 (Ye et al., 2024), LLaVA-OneVision (Li et al., 2024a), InternVL-
Chat (Chen et al., 2024), VILA1.5 (Ke et al., 2023), PLLaVA (Xu et al., 2024), LLaVA-Next-
Video (Zhang et al., 2024a), ST-LLM (Liu et al., 2023c), Video-LLaVA (Lin et al., 2023), and
VideoChat2 (Li et al., 2023a); c) 5 Proprietary LMMs: Gemini 1.5 Flash, Gemini 1.5 Pro (Team,
2024), GPT-4o mini, GPT-4o, and GPT-4 Turbo (Achiam et al., 2023).

Subsets Split. The Q-Bench-Video is divided into test (1,186 question-answer items) and dev
(1,192 question-answer items) subsets. The correct answers will be released and proprietary for the
dev and test subsets respectively. All discussions and analyses are based on the test subset.
The details for the human performance on the test subset can be found in Appendix F.

4.2 FINDINGS

The overall performance and subcategory comparisons (human vs. top-performing LMMs) on Q-
Bench-Video can be quickly glanced at Fig. 3. Detailed performance across the subcategories for
each LMM are shown in Table 2 (Question Types & Quality Concerns) and Table 3 (Single Videos
vs. Video Pairs) respectively. The organization of the findings is as follows:

1) General Performance. Human>Proprietary LMMs>Open-source LMMs>Random guess.
From the performance results presented in Table 2, we observe that nearly all LMMs significantly
outperform random guess, demonstrating their basic capability to understand video quality. Among
the open-source LMMs, the recently released mPLUG-Owl3 achieves the highest overall perfor-
mance at 52.39%, even slightly surpassing GPT-4o mini (52.20%), followed closely by LLaVA-
OneVision (51.70%) and InternVL-Chat (51.11%). Image LMMs deliver moderate performance.
Although they outperform some Video LMMs, the gap between them and the latest Video LMMs is
still notable. Benefiting from larger training datasets and more parameters, proprietary LMMs (ex-
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Table 2: Results on the test subset for the video quality perception ability of LMMs. The best
performance is marked in bold and the second performance is underlined for Open-source and Pro-
prietary LMMs respectively. The Open-ended questions are judged as 0.00% for Random guess.

Sub-categories Question Types Quality Concerns
Overall↑

LMM (LLM)
Yes-or What Open

Tech.↑ Aes.↑ Temp.↑ AIGC↑
-No↑ -How↑ -ended↑

Random guess 50.00% 25.00% 0.00% 23.70% 23.46% 25.83% 21.69% 25.67%
Human 86.57% 81.00% 77.11% 79.22% 80.23% 82.72% 86.21% 81.56%
Open-source Image LMMs
LLaVA-Next (Mistral-7B) 62.83% 45.14% 33.69% 46.38% 57.86% 47.84% 48.46% 47.52%
LLaVA-v1.5 (Vicuna-v1.5-13B) 52.98% 46.44% 37.01% 45.77% 58.12% 45.30% 46.48% 45.64%
mPLUG-Owl2 (LLaMA2-7B) 59.19% 39.07% 31.19% 42.07% 52.38% 41.71% 39.37% 43.43%
Open-source Video LMMs
mPLUG-Owl3 (Qwen2-7B) 60.48% 56.39% 39.48% 52.68% 58.31% 52.05% 43.49% 52.39%
LLaVA-OneVision (Qwen2-7B) 61.34% 53.88% 39.15% 49.35% 64.15% 50.68% 44.30% 51.70%
InternVL-Chat (Vicuna-7B) 66.02% 52.13% 33.93% 48.42% 52.73% 50.59% 53.12% 51.11%
VILA1.5 (LLaMA3-8B) 61.95% 46.00% 39.60% 47.85% 57.85% 45.65% 42.57% 49.41%
PLLaVA (Mistral-7B) 65.63% 52.33% 32.23% 49.69% 61.32% 50.96% 53.64% 50.39%
LLaVA-Next-Video (Mistral-7B) 61.34% 45.95% 38.10% 49.03% 60.94% 46.97% 49.40% 48.69%
ST-LLM (Vicuna-v1.1-7B) 44.63% 28.50% 32.78% 34.99% 46.11% 34.28% 34.02% 35.42%
Video-LLaVA (Vicuna-v1.5-7B) 64.67% 40.79% 29.11% 43.25% 54.04% 42.38% 42.76% 43.49%
VideoChat2 (Mistral-7B) 56.09% 29.98% 34.99% 39.26% 50.02% 38.25% 35.88% 40.56%
Proprietary LMMs
Gemini 1.5 Flash 65.48% 56.79% 47.51% 54.11% 66.58% 53.51% 50.22% 56.78%
Gemini 1.5 Pro 65.42% 62.35% 47.57% 56.80% 69.61% 53.38% 53.26% 58.63%
GPT-4o mini 62.95% 50.93% 42.10% 49.38% 60.90% 48.43% 41.71% 52.20%
GPT-4o 67.48% 58.79% 49.25% 56.01% 58.57% 65.39% 52.22% 58.70%
GPT-4 Turbo 66.93% 58.33% 40.15% 54.23% 66.23% 54.00% 52.04% 56.36%

cept GPT-4o mini) outperform all open-source models. However, even the best-performing model,
GPT-4o, which achieved an overall performance of 58.70%, still lags behind human performance by
22.86%. This gap highlights that, despite the advancements in current state-of-the-art LMMs, there
remains a significant need for improvement in video quality understanding ability.

2) Question Types. Open-ended questions are more challenging for LMMs. From Table 2,
a discernible hierarchy in task difficulty for video quality assessment emerges for both humans
and LMMs, arranged as follows: Open-ended >What-How >Yes-or-No. It is crucial to highlight
that while humans exhibit a performance decline in Open-ended tasks by approximately 9.46%
compared to Yes-or-No tasks, and about 3.89% compared to What-How tasks, these reductions are
markedly less pronounced than those observed in LMMs for the Open-ended questions. This dispar-
ity underscores a significant proficiency gap between LMMs’ capability in handling straightforward,
closed-form questions and their effectiveness in navigating the complexities of real-world problem-
solving, particularly in the context of video quality evaluation.

3) Quality Concerns. LMMs exhibit unbalanced performance across different types of distor-
tions. From Table 2, it is evident that humans are particularly good at identifying AIGC distortions,
while LMMs demonstrate stronger performance in detecting Aesthetic distortions. This distinction
likely stems from the inherent sensitivity of humans to the conspicuous unnaturalness of AIGC dis-
tortions, which readily draws human attention. In contrast, Aesthetic distortions, which often involve
high-level semantic nuances, align more closely with the training contexts of LMMs, enabling them
to excel in this area. However, LMMs face challenges with AIGC distortions due to insufficient
exposure to such anomalies during their pretraining phases, specific architectural constraints, and
imperfections in the generation process. In the case of proprietary LMMs, their performance on
Technical and Temporal distortions appear comparably consistent, indicating a uniform capability
in recognizing these two types of distortions. Nonetheless, across all four subcategories, LMMs ex-
hibit a notable performance disparity compared to humans, with varying degrees of accuracy among
the different types of distortions. This variability highlights the need for significant enhancements
in LMMs’ abilities to accurately understand and interpret various distortion types.
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Table 3: Results on the test subset for the video quality perception ability across single videos
and video pairs of LMMs. The best performance is marked in bold and the second performance is
underlined for Open-source and Proprietary LMMs respectively.

Sub-categories Single Videos Video Pairs

LMM (LLM) Global↑ Referring↑ Overall↑ Joint↑ Compare Compare
Overall↑

-fine↑ -coarse↑
Random guess 21.49% 27.08% 24.47% 29.58% 31.93% 27.40% 29.46%
Human 78.87% 80.43% 79.65% 84.90% 87.34% 89.11% 87.56%
LLaVA-Next (Mistral-7B) 51.33% 50.20% 50.73% 38.03% 48.00% 42.48% 43.46%
LLaVA-v1.5 (Vicuna-v1.5-13B) 47.99% 51.94% 50.10% 27.72% 34.60% 42.12% 36.42%
mPLUG-Owl2 (LLaMA2-7B) 46.86% 43.51% 45.07% 51.49% 37.10% 40.28% 43.69%
Open-source Video LMMs
mPLUG-Owl3 (Qwen2-7B) 52.46% 50.60% 51.47% 48.03% 54.90% 59.20% 55.31%
LLaVA-OneVision (Qwen2-7B) 51.56% 48.43% 49.89% 53.48% 58.10% 63.36% 59.41%
InternVL-Chat (Vicuna-7B) 51.15% 51.86% 51.52% 48.85% 51.10% 49.20% 49.79%
VILA1.5 (LLaMA3-8B) 52.35% 47.37% 49.69% 56.11% 45.40% 48.04% 48.84%
PLLaVA (Mistral-7B) 51.44% 55.49% 53.60% 40.36% 50.40% 54.16% 49.90%
LLaVA-Next-Video (Mistral-7B) 51.33% 50.20% 50.73% 38.03% 48.00% 42.48% 43.46%
ST-LLM (Vicuna-v1.1-7B) 36.54% 36.49% 36.51% 28.03% 36.80% 32.08% 32.87%
Video-LLaVA (Vicuna-v1.5-7B) 45.46% 44.67% 45.04% 49.36% 42.00% 43.00% 44.01%
VideoChat2 (Mistral-7B) 43.52% 38.27% 40.72% 57.23% 44.40% 41.64% 45.93%
Proprietary LMMs
Gemini 1.5 Flash 58.00% 53.18% 55.43% 46.59% 65.30% 68.84% 62.77%
Gemini 1.5 Pro 52.36% 61.41% 57.19% 45.43% 65.30% 72.00% 63.55%
GPT-4o mini 52.67% 48.96% 50.69% 44.00% 60.50% 63.88% 58.02%
GPT-4o 58.75% 54.18% 56.31% 46.93% 67.30% 69.24% 63.80%
GPT-4 Turbo 57.36% 52.80% 54.93% 46.13% 62.50% 64.80% 59.84%

4) Single Videos vs. Video Pairs. LMMs demonstrate superior capabilities in comparing video
quality. From Table 3, we observe that for single videos, LMMs achieve similar performance in
Global and Referring quality perception (except for Gemini 1.5 Pro), without any significant trend
of the performance for one subcategory over the other. This suggests that LMMs have comparable
abilities in perceiving both Global video quality and Referring video quality. In terms of com-
parison, however, LMMs clearly outperform their performance on single video analysis and joint
analysis. Notably, LMMs perform significantly better in the Compare-coarse subcategory, where
video pairs have more pronounced quality differences, than in the Compare-fine subcategory. This
highlights that LMMs are more adept at comparing video quality than analyzing the quality of sin-
gle videos. This advantage in comparative assessment can be attributed to the inherent clarity in
pairwise comparisons, which provide explicit contrasts, as opposed to the more ambiguous nature
of evaluating a single video. Both humans and LMMs exhibit enhanced performance in comparative
tasks. Although there is still a significant accuracy gap between LMMs and humans, LMMs show
promising potential as effective tools for comparing video quality.

5 CONCLUSION

In this paper, we introduce Q-Bench-Video, the first comprehensive benchmark explicitly designed
to evaluate Large Multi-modal Models’ (LMMs) understanding of video quality. Our benchmark
includes a diverse range of video types, questions that challenge multiple aspects of video quality,
and a holistic evaluation framework encompassing Technical, Aesthetic, Temporal, and AIGC dis-
tortions. Through extensive experimentation with 17 open-source and proprietary LMMs, we find
that while LMMs show promise in discerning video quality, their performance remains significantly
below human-level understanding, especially when addressing Open-ended questions and AIGC-
specific distortions. These findings highlight the current limitations of LMMs in video quality per-
ception and underscore the need for further advancements in this area. By offering Q-Bench-Video,
we aim to stimulate future research and drive improvements in the field, ultimately bridging the gap
between LMM and human video quality assessment capabilities.
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6 ETHICS STATEMENT

This submission fully complies with the ethical standards outlined by ICLR 2025. In particular,
we adhere to ICLR’s guidelines for responsible AI development, ensuring that our research does
not contribute to harm, bias, or discrimination. All data used in this study is sourced from publicly
available, ethically curated datasets, and our methodologies have been designed to promote fairness,
accountability, and transparency in the evaluation of video quality.

Given the nature of evaluating video quality using large multi-modal models (LMMs), we have
taken careful measures to ensure that the methodologies proposed in this study are applied in a way
that promotes fair use and contributes positively to the field. We explicitly avoid the development
of tools or systems that could be misused for deceptive or malicious purposes, such as content
manipulation or exploitation. Our benchmark aims to support the responsible advancement of video
quality assessment, which is critical for improving visual media technologies. We acknowledge
the inherent risks of bias and fairness in the datasets used, particularly with AI-generated content
(AIGC) and human evaluation. In this regard, we have applied uniform sampling methods across
video datasets and employed a diverse set of human annotators to minimize subjective bias and
ensure balanced quality distribution. The annotation processes were carefully designed and reviewed
by multiple experts to ensure consistency and fairness across different video content types.
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A SOURCE VIDEO DATASET INTRODUCTION

In this section, we briefly introduce the video quality assessment (VQA) datasets as follows:

• LSVQ (Ying et al., 2021): The LSVQ dataset is currently the largest VQA dataset, com-
prising over 39,000 real-world videos and 5.5 million human perceptual quality annota-
tions. It primarily focuses on both spatial and temporal aspects of technical visual quality.

• MaxWell (Wu et al., 2023b): The MaxWell dataset presents a comprehensive subjective
study, gathering over two million human opinions on 13 distinct quality factors across 4,543
in-the-wild natural scene videos. These quality factors include technical aspects (sharp-
ness, focus, noise, motion blur, flicker, exposure, compression artifacts, fluency) as well as
aesthetic aspects (content appeal, composition, color, lighting, and camera trajectory).

• WaterlooSQoE-III (Duanmu et al., 2018): The WaterlooSQoE-III dataset comprises 20
RAW HD reference videos and 450 simulated streaming videos. To generate meaningful
and representative test videos, a series of DASH video streaming experiments are con-
ducted, capturing relevant streaming activities and reconstructing the streaming sessions
using video processing tools. The WaterlooSQoE-III dataset primarily focuses on assess-
ing the quality of experience (QoE) in streaming video.

• WaterlooSQoE-IV (Duanmu et al., 2020): The WaterlooSQoE-IV dataset is currently
the largest subject-rated VQA dataset for quality of experience, featuring 1,350 adaptive
streaming videos. These videos are generated from a diverse range of source content, video
encoders, network conditions, adaptive bitrate (ABR) algorithms, and viewing devices.

• T2VQA-DB (Kou et al., 2024): The T2VQA-DB dataset utilizes 9 different video gener-
ation models to create 10,000 AIGC videos. A total of 27 subjects are invited to assess
the perceptual quality of each video, focusing on two main aspects: text-video alignment
and video fidelity. Text-video alignment refers to how well the generated video content
corresponds to the given text description, while video fidelity encompasses factors such as
distortion, saturation, motion consistency, and content coherence.

• VideoFeedback (He et al., 2024b): The VideoFeedback dataset contains human-provided
multi-aspect scores for 37.6K synthesized videos generated by 11 different video generative
models. The scores assess various aspects, including visual quality, temporal consistency,
dynamic realism, text-to-video alignment, and factual consistency.

• LIVE-YT-Gaming (Yu et al., 2023): The LIVE-YT-Gaming dataset consists of 600 real
user-generated gaming videos. A subjective human study is conducted on this dataset,
resulting in 18,600 quality ratings provided by 61 participants. The primary focus of the
study is on evaluating the visual quality of the videos.

We mainly sample the videos from these VQA datasets for the following reasons: 1) The VQA
datasets mentioned above feature well-designed video selection processes and rigorous human anno-
tation standards. The quality labels can help us control the quality distribution of Q-Bench-Video.
2) Moreover, these datasets are mostly focused on quality issues (close to low-level information)
and therefore usually isolated from high-level multi-modal video datasets. Thus sampling videos
from VQA datasets can help prevent overlap with pre-training data used by LMMs to minimize the
possibility of data leakage. As a result, these VQA datasets are well-suited to serve as sources for
Q-Bench-Video, contributing to a more robust and accurate evaluation.

B VIDEO SAMPLING APPROACH

We apply a uniform sampling approach directly based on the quality scores of the videos. Specifi-
cally, as the MaxWell and VideoFeedback datasets have multiple labels for one video, we decided
to use the overall quality score from the MaxWell dataset and the visual quality score from the Vide-
oFeedback dataset as the quality score for the sampling process. For other VQA datasets, where
only a single quality score is provided for each video, that score is used for sampling. Given a VQA
dataset where each video vi has an associated quality score qi in the range [qmin, qmax], we divide this
range into five equal intervals and perform uniform sampling of the scores across these intervals.

Step 1: Define the Quality Score Range.
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Let qi represent the quality score for video vi, where the quality score is bounded by:

qmin ≤ qi ≤ qmax, ∀i, (1)

where qmin and qmax represent the min and max quality scores within the VQA dataset.

Step 2: Divide the Range into Five Equal Intervals.

To uniformly divide the quality score range [qmin, qmax] into five equal intervals, we first calculate
the width of each interval ∆q:

∆q =
qmax − qmin

5
, (2)

Thus, the five intervals are defined as follows:

[qmin, qmin +∆q), [qmin +∆q, qmin + 2∆q), . . . , [qmin + 4∆q, qmax], (3)

Step 3: Uniform Sampling Across the Intervals.

We can then perform uniform sampling within these intervals. If we want to ensure uniform sam-
pling across the entire score range, the probability of selecting a score from each interval should
be the same. Let X be the random variable representing the quality score, and the probability of
sampling from any interval Ij is:

P (X ∈ Ij) =
1

5
, j = 1, 2, 3, 4, 5, (4)

where Ij represents the j-th interval.

Step 4: Sampling Within Each Interval.

Within each interval Ij = [qmin + (j − 1)∆q, qmin + j∆q), a score Xj is sampled uniformly:

Xj ∼ U (qmin + (j − 1)∆q, qmin + j∆q) , (5)

Final Formula. The overall uniform sampling process across the five intervals can be described as:

X =


U (qmin, qmin +∆q) , with probability 1

5 ,

U (qmin +∆q, qmin + 2∆q) , with probability 1
5 ,

...
U (qmin + 4∆q, qmax) , with probability 1

5 ,

(6)

This process ensures that the quality scores are uniformly sampled across the entire score range
divided into five equal intervals.

C ANNOTATION PROCESS

A group of eight experts, all with professional photography skills and extensive experience, partic-
ipate in the subjective annotation experiment for Q-Bench-Video. The experiment takes place in a
controlled lab environment with standard indoor lighting. A Dell 4K monitor with a resolution of
3840 × 2160 is used to display the interfaces, as shown in Fig 4. To avoid fatigue, each expert labels
up to 30 videos per day, and every annotation is carefully reviewed by at least three other experts
before final approval. This process ensures the highest level of accuracy and rigor in the Q-Bench-
Video labels, making performance testing of Q-Bench-Video more precise and meaningful.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Annotation GUI for single videos of Q-Bench-Video.

(b) Annotation GUI for video pairs of Q-Bench-Video.

Figure 4: Illustration of the annotation GUIs for Q-Bench-Video. (a) shows the interface for an-
notating single videos, where the annotator can select the question type and play the videos using
the Video Play button. The annotator can also switch to the next and previous annotation with the
Next and Previous buttons. (b) presents the interface for annotating video pairs. When the annotator
presses the Video Play button, the video pairs are played sequentially, with a five-second gray screen
serving as an interval between the two videos.

D YES-OR-NO RATIO

As indicated in numerous previous works (Zhang et al., 2024c; Wu et al., 2024b), LMMs often
exhibit a bias when answering Yes-or-No questions, such as a tendency to favor Yes over No. To
mitigate this issue, we specifically examine the distribution of correct answers for Yes-or-No ques-
tions and adjust the questions to ensure a balanced 50%/50% ratio between Yes and No answers. For
illustration, we provide an example to demonstrate how we modify the questions:

Question-answer before modification.

Q: Is this video of high clarity?
A. Yes (Correct) N. No

Question-answer after modification.

Q: Is this video of low clarity?
A. Yes N. No (Correct)

E BENCHMARK SETTING

E.1 SAMPLING FRAMES.

Given the sensitivity of temporal quality to the frame number, we ensure fairness in comparisons by
standardizing the input to uniformly sample 16 frames. For Image LMMs, the frame number is 8.
Specifically, for single videos, we sample 16 frames uniformly from each video. For video pairs, we
sample 8 frames from each video and create a composite 16-frame input.
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E.2 PROMPT FOR SINGLE VIDEOS ON MCQ

# User: You will receive [Frame Num] distinct frames that have been uniformly sampled from a
video sequence, arranged in the same temporal order as they appear in the video. Please analyze
these frames and answer the question based on your observations. [Question] [Answers] Please
answer the question in the following format: the uppercase letter of the correct answer option itself
+’.’. Please do not add any other answers beyond this.

E.3 PROMPT FOR SINGLE VIDEOS ON OPEN-ENDED QUESTIONS

# User: You will receive [Frame Num] distinct frames that have been uniformly sampled from a
video sequence, arranged in the same temporal order as they appear in the video. Please analyze
these frames and provide a detailed and accurate answer from the perspective of visual quality based
on your observations. [Question]

E.4 PROMPT FOR VIDEO PAIRS ON MCQ

# User: You will receive [Frame Num] distinct frames in total. The first [Frame Num/2] frames and
[Frame Num/2]-[Frame Num] frames are uniformly sampled from the first and the second video
sequence, arranged in the same temporal order as they appear in the videos. The first video frames:
[Frames1]. The second video frames: [Frames2]. Please analyze these frames and answer the
questions based on your observations. [Question] [Answers] Please answer the question in the
following format: the uppercase letter of the correct answer option itself +’.’. Please do not add any
other answers beyond this.

E.5 PROMPT FOR VIDEO PAIRS ON OPEN-ENDED QUESTIONS

# User: You will receive [Frame Num] distinct frames in total. The [Frame Num/2] frames and
[Frame Num/2]-[Frame Num] frames are uniformly sampled from the first and second video se-
quences, arranged in the same temporal order as they appear in videos. The first video frames:
[Frames1]. The second video frames: [Frames2]. Please analyze these frames and provide a de-
tailed and accurate answer based on your observations. [Question]

F HUMAN PERFORMANCE ON Q-BENCH-VIDEO

To evaluate the gap between LMMs and human performance in video quality understanding, we in-
vite three human participants to take part in experiments using the test subset of Q-Bench-Video.
The experimental setup and procedure are identical to the annotation environment previously de-
scribed (See Appendix C). It’s worth noting that the participants undergo a brief training session
to familiarize themselves with the tasks and acquire the necessary knowledge of video quality. Af-
terward, they complete the test, and we record their average scores as the final results of human
performance. The human performance testing interface is shown in Fig. 5.

G EVALUATION DETAILS

G.1 EVALUATION ON MCQS

For MCQ evaluation, we measure the performance directly based on accuracy. However, in cases
where LMMs do not directly return an option, we have established the following process: If the
LMM returns an option letter as instructed, we directly calculate its accuracy. If the LMM does not
respond with an option letter, we use a GPT-involved method (using GPT-4o) to evaluate whether
the answer is correct before calculating the accuracy. To mitigate errors due to randomness, we
conduct five rounds of testing. An answer is considered correct if it is deemed accurate in three or
more of these rounds. The prompt for judging answer correctness is as follows:

#System: You are a helpful assistant that grades answers related to visual video quality. There are a
lot of special terms or keywords related to video processing and photography. You will pay attention
to the context of ‘quality evaluation’ when grading.
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Figure 5: Illustration of the human performance testing interface. The human participants are al-
lowed to select an option as their answer to the MCQ questions or write down their response to the
open-ended questions in the text box below.

#User: You will now be provided with a question [question] and a set of options [answers] with
option [correct answer] being the correct answer. Additionally, there will be an answer [response]
provided by a respondent. Please determine whether the respondent’s answer is correct considering
the context of the question. Even if the word choice is not completely the same, you can decide
based on the given options and see whether the one in the answer is close enough to the given
correct answer, The result is 1 if the answer is correct and else the result is 0. Please only provide
the result in the following format: Score:

G.2 MCQ EVALUATION EXAMPLE

#User: You will now be provided with a question [How is the clarity of the first child that appears in
the video? ] and a set of options [“A. Average, with average clarity, some facial details are missing,
but movements are smooth”, “B. Above average, with good clarity, facial details are relatively
clear”, “C. Very good, clear frames, with rich facial details and smooth movements”, “D. Very
poor, with low clarity, facial details are missing, presence of frame drops, and heavy shadowing in
movements”] with option [“A. Average, with average clarity, some facial details are missing, but
movements are smooth”] being the correct answer. Additionally, there will be an answer [“The
first child that appeared in the video had with average clarity, some facial details are missing, but
movements are smooth.”] provided by a respondent. Please determine whether the respondent’s
answer is correct considering the context of the question. Even if the word choice is not completely
the same, you can decide based on the given options and see whether the one in the answer is close
enough to the given correct answer, The result is 1 if the answer is correct and else the result is 0.
Please only provide the result in the following format: Score:

5-round GPT score: [1, 1, 1, 1, 1]

G.3 EVALUATION ON OPEN-ENDED QUESTIONS

For evaluating open-ended questions, we also employ a 5-round GPT-involved evaluation strategy.
GPT (using GPT-4o) is tasked with scoring the LMM responses based on three criteria: complete-
ness, accuracy, and relevance, with scores from {0, 1, 2}. To facilitate calculation, we sum the
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Q: How is the clarity of the first child that appears in the video?
A. Average, with average clarity, some facial details are missing, but movements 

are smooth
B. Above average, with good clarity, facial details are relatively clear
C. Very good, clear frames, with rich facial details and smooth movements
D. Very poor, with low clarity, facial details are missing, presence of frame drops, 

and heavy shadowing in movements

LLaVA-Next: C
LLaVA-v1.5: A
mPLUG-Owl2: C
mPLUG-Owl3: D.
LLaVA-OneVision: C
InternVL-Chat: D
VILA1.5: A.
PLLaVA: D
ST-LLM: The first child that appeared 
in the video had with average clarity, 
some facial details are missing, but 
movements are smooth.</s>

LLaVA-Next-Video: D
Video-LLaVA: A
VideoChat2: A. with average clarity, 
some facial details are missing, but 
movements are smooth </s>
Gemini 1.5 Flash: C
Gemini 1.5 Pro: A.
GPT-4o mini: C.            
GPT-4o: C.           
GPT-4 Turbo: A.
Human: A              

Figure 6: Qualitative comparison for LMM on MCQ response.

scores from all five rounds and normalize the total to a range between 0 and 1, which is then used as
the ‘accuracy’ performance. Consider the evaluation of open-ended questions using a 5-round GPT-
involved scoring system. Let Si be the score assigned by GPT in the i-th round, which assesses the
response based on three criteria: completeness, accuracy, and relevance. Each score Si can take a
value in {0, 1, 2}. The total score accumulated over the five rounds is calculated as:

T =

5∑
i=1

Si

To normalize this score into an accuracy metric between 0 and 1, we use the following normalization:

Accuracy =
T

10
This normalization assumes the maximum possible score T is 10, corresponding to a perfect score
of 2 across all 5 rounds. The prompt for evaluation on open-ended questions is as follows:

#System: You are a helpful assistant that grades answers related to visual video quality. There are a
lot of special terms or keywords related to video processing and photography. You will pay attention
to the context of ‘quality evaluation’ when grading.

#User: Given the question [question], evaluate whether the response [response] completely matches
the correct answer [correct answer]. First, check the response and please rate score 0 if the re-
sponse is not a valid answer. Please rate score 2 if the response completely or almost completely
matches the correct answer on completeness, accuracy, and relevance. Please rate score 1 if the
response partly matches the correct answer on completeness, accuracy, and relevance. Please rate
score 0 if the response doesn’t match the correct answer on completeness, accuracy, and relevance
at all. Please only provide the result in the following format: Score:

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Question: The little girl in the lower part of this video appears with good visual quality, please briefly 
analyze the reasons.

LLaVA-Next-Video: The video shows a young girl sitting and reading a book. The quality of the video is good 
because it is a close-up shot, which allows for clear visibility of the girl's facial features and the details of the 
book she is reading. The lighting is also good, as it is bright enough to see the text on the book clearly. The focus 
is sharp, capturing the girl's expression and the book's details without any distortion. The composition of the 
video is also well-balanced, with the girl centrally positioned and the book in focus.

VILA1.5: The little girl in the lower part of the video screen appears with good quality because the video is shot 
in high resolution.

PLLaVA: The little girl in the lower part of the video screen appears with good quality because she is the main 
subject, and her actions and expressions are the focus of the viewer's attention. The camera is positioned to 
capture her face and upper body, which are the most expressive parts of a person. Additionally, the lighting and 
composition of the video emphasize her features, making her appear more prominent. The other individuals in the 
video are not as clearly visible or detailed, which helps to draw the viewer's attention to the girl.

InternVL-Chat:  The little girl in the lower part of the video screen appears with good quality because she is the 
main subject of the video. The focus is on her actions, such as reading a book, which is the primary activity in the 
scene. The other people in the background are not the main focus, so their video quality is not as high as the little 
girl's.

LLaVA-OneVision: The little girl in the lower part of this video screen appears with good quality due to several 
factors. Firstly, the lighting in the room is bright and even, which helps to illuminate her face and clothing clearly 
without harsh shadows. Secondly, the camera's focus is sharp on her, allowing for the details of her dress, hair, 
and facial features to be visible. Lastly, the resolution of the video seems high, contributing to the clarity and 
detail that can be observed in her appearance.

mPLUG-Owl3:. The little girl in the video appears with good quality due to several factors. Firstly, the lighting 
in the room is even, which helps to ensure that the details of her face and clothing are clearly visible. Secondly, 
the focus on the girl is sharp, allowing for a clear view of her expressions and the book she is reading.Lastly, the 
color saturation and contrast are well-balanced, making the colors of her dress and the book stand out without 
being oversaturated.

Gemini 1.5 Pro: The little girl is in focus while the background is slightly out of focus, indicating a shallow 
depth of field. This technique helps to draw attention to the main subject, the little girl, by blurring the less 
important background. This is a common practice in videography and photography to create visually appealing 
and engaging content.

GPT-4o:   The video frames depict a sequence where a little girl is sitting and reading a book in what appears to 
be a reading class or group setting. Here are some observations regarding the quality and content of the frames 
featuring the girl:
1.Stable Scene: The girl remains relatively stationary throughout the sequence, focused on her book. This lack of 
movement helps maintain a clear and sharp video without motion blur.
2.Good Lighting: The lighting appears consistent and sufficient, contributing to the overall high quality of the 
video. Proper lighting can significantly affect the clarity and perceived quality of a video frame
3.Proximity and Focus: The girl is prominently in the foreground and seems to be the focal point of the camera. 
The close proximity and camera focus on her enhance the detail and sharpness of her video.
4.Color Contrast: The girl is wearing a brightly colored dress with a distinct pattern. This contrast with the 
background and other elements in the room makes her stand out, adding to the perceptual quality of her video.
5.Composition: The framing is well-composed, with the girl positioned centrally or prominently in the frame. 
This effective composition helps draw viewer attention to her, ensuring that she is a clear and central figure in the 
video sequence.
6.Quality of Recording Equipment: Assuming the video was recorded with a good-quality camera, the equipment 
itself would contribute to achieving a higher resolution and better quality frames.
Given these factors, the overall quality of the frames featuring the girl can be attributed to good lighting, stability, 
focus, composition, and possibly high-quality recording equipment.

Annotation Response: The overall lighting of the video is appropriate and even. The contrast and saturation 
are natural, and the camera is stable without shaking. This makes the little girl's facial features, hair, and 
overall movements appear clear and natural, giving a high visual quality presentation.

Figure 7: Qualitative comparison for LMM on ppen-ended question response.
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Table 4: Results on the dev subset for the video quality perception ability of LMMs.
Sub-categories Question Types Quality Concerns

Overall↑
LMM (LLM)

Yes-or What Open
Tech.↑ Aes.↑ Temp.↑ AIGC↑

-No↑ -How↑ -ended↑
Random guess 50.00% 25.00% 0.00% 25.74% 21.98% 26.56% 25.54% 27.14%
Open-source Image LMMs
LLaVA-Next (Mistral-7B) 63.20% 43.78% 30.42% 45.95% 54.83% 45.63% 46.24% 47.00%
LLaVA-v1.5 (Vicuna-v1.5-13B) 53.40% 46.87% 33.85% 55.83% 55.90% 44.91% 45.96% 45.57%
mPLUG-Owl2 (LLaMA2-7B) 59.61% 38.83% 31.57% 42.49% 53.28% 44.73% 40.07% 44.20%
Open-source Video LMMs
mPLUG-Owl3 (Qwen2-7B) 60.82% 56.52% 35.84% 51.34% 60.46% 54.26% 37.30% 52.44%
LLaVA-OneVision (Qwen2-7B) 62.13% 52.23% 38.56% 48.74% 61.53% 48.81% 44.57% 52.12%
InternVL-Chat (Vicuna-7B) 70.21% 48.65% 32.20% 50.24% 49.50% 52.96% 47.69% 51.91%
VILA1.5 (LLaMA3-8B) 61.59% 47.30% 36.88% 46.74% 59.30% 47.57% 43.67% 49.62%
PLLaVA (Mistral-7B) 65.13% 54.23% 29.44% 50.31% 60.09% 50.13% 50.75% 51.23%
LLaVA-Next-Video (Mistral-7B) 65.98% 45.31% 31.92% 48.11% 57.33% 47.09% 45.56% 48.97%
ST-LLM (Vicuna-v1.1-7B) 46.43% 28.45% 32.31% 33.32% 45.66% 36.01% 32.62% 35.89%
Video-LLaVA (Vicuna-v1.5-7B) 64.36% 39.38% 30.86% 43.35% 55.97% 45.58% 43.64% 45.89%
VideoChat2 (Mistral-7B) 56.54% 33.13% 35.36% 39.09% 49.27% 41.59% 38.04% 42.06%
Proprietary LMMs
Gemini 1.5 Flash 66.21% 59.36% 46.06% 54.01% 67.31% 56.89% 52.23% 57.99%
Gemini 1.5 Pro 65.93% 61.33% 47.15% 56.23% 68.23% 56.00% 54.04% 58.36%
GPT-4o mini 63.00% 50.65% 42.16% 49.66% 60.88% 50.31% 43.84% 52.78%
GPT-4o 67.21% 58.36% 45.50% 54.15% 67.50% 57.08% 52.39% 58.11%
GPT-4 Turbo 66.67% 58.46% 44.18% 54.53% 63.99% 51.96% 45.73% 56.40%

G.4 OPEN-ENDED QUESTION EVALUATION EXAMPLE

#User: Given the question [“The little girl in the lower part of this video appears with good visual
quality, please briefly analyze the reasons.”], evaluate whether the response [“The little girl in the
lower part of the video screen appears with good quality because the video is shot in high resolu-
tion.”] completely matches the correct answer [“The overall lighting of the video is appropriate and
even. The contrast and saturation are natural, and the camera is stable without shaking. This makes
the little girl’s facial features, hair, and overall movements appear clear and natural, giving a high
visual quality presentation.”]. First, check the response and please rate score 0 if the response is
not a valid answer. Please rate score 2 if the response completely or almost completely matches the
correct answer on completeness, accuracy, and relevance. Please rate score 1 if the response partly
matches the correct answer on completeness, accuracy, and relevance. Please rate score 0 if the
response doesn’t match the correct answer on completeness, accuracy, and relevance at all. Please
only provide the result in the following format: Score:

5-round GPT score: [0, 0, 1, 0, 0] Final Score: 1/10 = 0.1

H QUALITATIVE VISUALIZATION RESULTS

In Fig. 6, we present an example of LMM responses to MCQ questions. First, it is clear that most
LMMs can follow the instructions well to select the option they believe is correct, except for ST-
LLM, which requires further checking to determine if the answer is correct (See Appendix G for
details about GPT-assisted evaluation approach). Secondly, for basic quality assessments like clarity,
which are relatively simple for humans, about half of the LMMs still failed to answer correctly. This
again highlights the need to improve LMM video understanding capabilities.

In Fig. 7, we further highlight a case involving the top-performing LMM responding to the open-
ended question. In contrast to the relatively straightforward multiple-choice questions, there is a
noticeable performance gap among LMMs when addressing open-ended questions. For example,
GPT-4o delivers the most detailed and accurate responses, while VILA1.5 produces significantly
shorter and less comprehensive answers. This variation in performance on open-ended tasks under-
scores the current instability in LMMs’ video quality understanding.
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Table 5: Results on the dev subset for the video quality perception ability across single videos and
video pairs of LMMs.

Sub-categories Single Videos Video Pairs

LMM (LLM) Global↑ Referring↑ Overall↑ Joint↑ Compare Compare
Overall↑

-fine↑ -coarse↑
Random guess 22.29% 29.15% 25.67% 31.47% 32.45% 30.80% 31.50%
Open-source Image LMMs
LLaVA-Next (Mistral-7B) 62.83% 45.14% 33.69% 46.38% 57.86% 47.84% 48.46%
LLaVA-v1.5 (Vicuna-v1.5-13B) 45.91% 55.01% 50.42% 33.41% 39.11% 33.37% 35.39%
mPLUG-Owl2 (LLaMA2-7B) 45.80% 45.05% 45.43% 55.14% 46.00% 38.12% 44.14%
Open-source Video LMMs
mPLUG-Owl3 (Qwen2-7B) 51.71% 48.78% 50.26% 56.60% 51.52% 65.75% 59.03%
LLaVA-OneVision (Qwen2-7B) 49.41% 49.35% 49.38% 57.93% 64.53% 66.98% 64.39%
InternVL-Chat (Vicuna-7B) 49.43% 54.05% 51.72% 44.74% 53.67% 52.14% 50.50%
VILA1.5 (LLaMA3-8B) 46.55% 48.69% 47.61% 54.17% 48.25% 53.10% 51.61%
PLLaVA (Mistral-7B) 48.21% 55.01% 51.58% 35.69% 57.45% 52.16% 50.86%
LLaVA-Next-Video (Mistral-7B) 47.01% 52.23% 49.59% 29.83% 52.74% 51.22% 47.66%
ST-LLM (Vicuna-v1.1-7B) 34.06% 37.93% 35.98% 24.83% 35.47% 39.71% 35.38%
Video-LLaVA (Vicuna-v1.5-7B) 43.66% 47.73% 45.67% 41.86% 44.30% 58.91% 50.54%
VideoChat2 (Mistral-7B) 38.91% 40.47% 39.68% 50.52% 48.11% 50.07% 49.47%
Proprietary LMMs
Gemini 1.5 Flash 53.83% 56.25% 55.03% 47.48% 67.83% 69.09% 64.03%
Gemini 1.5 Pro 51.98% 60.80% 56.35% 43.41% 68.30% 69.81% 64.13%
GPT-4o mini 50.03% 49.88% 49.95% 46.69% 60.53% 66.39% 59.36%
GPT-4o 57.98% 54.39% 56.17% 48.00% 67.64% 70.17% 65.09%
GPT-4 Turbo 55.03% 55.47% 55.25% 49.76% 62.60% 64.29% 60.81%

Algorithm 1 Classification of Video Pairs in VQA Dataset

1: Input: Set of videos V with quality scores
2: Output: Classifications of video pairs as Compare-coarse or Compare-fine
3: Initialize list of video pairs P to empty
4: for each pair (vi, vj) ∈ V × V , i ̸= j do
5: Add (vi, vj) to P
6: end for
7: Randomly select pairs from P without repetition
8: Calculate ∆qij = |qi − qj | for each (vi, vj) ∈ P
9: Rank all pairs (vi, vj) by ∆qij

10: θ ←Median of all ∆qij
11: for each (vi, vj) ∈ P do
12: if ∆qij > θ then
13: Label (vi, vj) as Compare-coarse
14: else
15: Label (vi, vj) as Compare-fine
16: end if
17: end for

I PERFORMANCE ON THE dev SUBSET

The performance results on the dev subset of Q-Bench-Video are illustrated in Table 4 and Table 5.
This subset is planned to be opened to the public in the future. As such, the performance results will
serve primarily as a reference. Currently, all evaluated LMMs have not been exposed to this subset,
making it suitable for cross-validation with the test subset. Although there are slight differences
in LMM performance between the dev and test subsets, the overall gap is minimal, essentially
maintaining the performance trends and rankings of the LMMs. Specifically, LLaVA-OneVision
and mPLUG-Owl3 continue to hold the top two spots among open-source models, while GPT-4o
and Gemini 1.5 Pro lead among proprietary models, suggesting that Q-Bench-Video is a reliable
and stable benchmark for video quality understanding.
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J COMPARISON FOR VIDEO PAIRS

In this section, we focus on discussing how to categorize the annotations into Compare-fine and
Compare-coarse classifications. We collect videos from the VQA dataset that already have annotated
quality scores. Since our comparisons are confined to video pairs from the same VQA dataset source,
the quality scores between video pairs are valid and meaningful. Within single VQA dataset, we
randomly select video pairs without repetition, and then rank all video pairs based on the differences
in their quality scores. A median value is then chosen as the threshold. Pairs with a difference
exceeding this threshold are labeled as Compare-coarse, while those with a difference below it are
labeled as Compare-fine. The pseudocode for this procedure is detailed in Algorithm 1.

K LIMITATIONS & SOCIAL IMPACT

Limitations. 1) Subjectivity in Evaluation: Although the benchmark includes efforts to minimize
subjective bias by using expert annotations, aesthetic aspects such as visual appeal and composition
inherently involve subjective judgments. Even among trained experts, there might be variations in
opinions on what constitutes high or low aesthetic quality. 2) Rapid Evolution of AIGC Distortions:
The benchmark includes evaluation specifically tailored to AIGC distortions. However, given the
fast-paced advancements in AI-generated video technology, future generations of generative models
may produce fewer visible distortions or entirely new types of artifacts. This implies that the current
version of Q-Bench-Video might partly become outdated in the future.

Social Impact. By focusing on video quality understanding, this benchmark encourages the devel-
opment of LMMs that can discern not only the semantic content but also the technical and aesthetic
quality of videos. This has broad applications, from improving video compression algorithms to en-
hancing user experience in media platforms. Ultimately, Q-Bench-Video could lead to the creation
of better tools for optimizing video quality across diverse industries.
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