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Abstract

Structural Causal Models (SCMs) offer a principled framework to reason about
interventions and support out-of-distribution generalization, which are key goals
in scientific discovery. However, the task of learning SCMs from observed data
poses formidable challenges, and often requires training a separate model for each
dataset. In this work, we propose amortized inference of SCMs by training a
single model on multiple datasets sampled from different SCMs. We first use
a transformer-based architecture for amortized learning of dataset embeddings,
and then extend the Fixed-Point Approach (FiP) [[Scetbon et al., 2024] to infer
SCMs conditionally on their dataset embeddings. As a byproduct, our method can
generate observational and interventional data from novel SCMs at inference time,
without updating parameters. Empirical results show that our amortized procedure
performs on par with baselines trained specifically for each dataset on both in and
out-of-distribution problems, and also outperforms them in scare data regimes.

1 Introduction

Learning structural causal models (SCMs) from observations is a core problem in many scientific
domains [Sachs et al., 2005} [Foster et al., 2011} Xie et al.,[2012], as SCMs provide a principled way
to model the data generation process. They enable simulation of controlled interventions, offering
the potential to accelerate scientific discovery by predicting the outcomes of unseen experiments
without requiring costly/time-consuming lab trials [Ke et al.| [2023| [Zhang et al., 2024]]. However,
solving this inverse problem of learning SCMs from observed data is challenging as both the causal
graph and the causal mechanisms are unknown a priori. Recovering causal graphs is an NP-hard
combinatorial optimization problem as the space of causal graphs is super-exponential [Chickering
et al., 2004]]. This subsequently complicates the estimation of causal mechanisms via maximum
likelihood estimation per node [Blobaum et al.,2022]. To address these challenges, recent approaches
have focused on learning causal mechanisms with partial causal structure, using techniques such as
autoregressive flows [[Khemakhem et al., 2021} |Geftner et al.|[2022} Javaloy et al.,2023]], or modeling
SCMs as fixed-point iterations via transformers [[Scetbon et al.| 2024]].

Despite these advances, a major limitation remains: each new dataset requires training a specific
model, that prevents the transfer of causal knowledge across datasets. Amortized inference offers
a solution by learning a single model that can generalize across instances of the same optimization
problem by exploiting their shared structure [Andrychowicz et al.l [2016| |Gordon et al., [2019].
This results in models that can quickly adapt to new instances at test time [Finn et al.l [2017].
Amortized inference has been shown success in several challenging tasks, like bayesian posterior
estimation [Garnelo et al., 2018} Miiller et al.,|2021]], sampling from unnormalized densities [Akhound+
Sadegh et al.,[2024} Sendera et al.||2024]], as well as causal structure learning [Lorch et al., [2022} Ke
et al.| 2022]], which is more aligned with our paper.
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Figure 1: Sketch of the approach proposed in this work. Given a dataset of observations D x and
a causal graph G obtained from an unknown SCM S(Pp, G, F), the encoder produces a dataset
embedding p(Dx,G), which serves as a condition to instantiate Cond-FiP. Then for any point
z € RY, T(z,Dx,G) aims at replicating the functional mechanism F(2) of the generative SCM.

In this work, we tackle the novel problem of amortized inference of causal mechanisms for additive
noise SCMs. We propose a two-step approach where we first learn dataset embeddings via in-context
learning [Garg et al.,|2022]] to represent the task-specific information. These embeddings are then used
to condition the fixed-point (FiP) approach [Scetbon et al.l 2024]] for modeling causal mechanisms.
This conditional modification, termed Cond-FiP, enables the model to adapt the causal mechanism
for each specific instance (Figure[T). Our key contributions are highlighted below.

* We propose Cond-FiP, a novel extension of FiP approach that enables amortized inference
by training a single model across different instances from the functional class of SCMs.

* For novel SCMs at inference, Cond-FiP can recover the causal mechanisms from the input
observations without updating any parameters, thereby allowing us to generate observational
and interventional data on the fly.

* We show empirically that Cond-FiP achieves similar performances as the state-of-the-art
(SOTA) approaches trained from scratch for each dataset on both in and out-of-distribution
(OOD) problems. Further, Cond-FiP obtains better results than baselines in scare data
regimes, due to its amortized inference procedure.

2 Amortized Causal Learning

2.1 Brief Overview of Amortized Inference

Amortized inference aims to learn a shared inference mechanism across multiple tasks that enables
fast adaptation to new tasks at test time. Consider a task 7" that defines a distribution over inputs (Z£)

and targets (YY), i.e, Z,Y ~ Pp. Given a collection of tasks (T(k))K and some objective function

k=1
L, the goal is to learn a model 7Ty shared across tasks as follows:
arg min > Ezyer, ., LY, To(Z, 1)) (1)
k
where I(*) denotes additional context for task 7*), such as dataset with samples [Z;, - , Z,,].

Instead of retraining from scratch, the model should leverage the context I " to adapt to the task T

A classic approach for this is meta-learning [Andrychowicz et al., 2016 [Finn et al.L[2017], that utilizes
context I' by task-specific finetuning. These methods typically learn a shared initialization that is
refined for a specific task via few gradient steps in an inner optimization loop.

In contrast, in-context learning (ICL) [Miiller et al.| [2021] [ Xie et al., 2021}, |Garg et al., 2022]] avoids
this inner loop by using transformer-based architectures. By attending to the context I ' during the



65
66
67

68

69
70
71
72

73
74
75
76

77
78

79

80
81

82
83
84

85
86
87
88

89

90
91
92
93
94

95

96
97
98

99

100

101

102

103
104
105
106

forward pass, ICL methods adapt to a specific task without any parameter updates. This ability
arises from the observation that transformers can implicitly approximate learning algorithms such as
gradient descent within their activation dynamics [|Akyiirek et al., 2022, [Von Oswald et al., [2023].

2.2 Problem Setup

We start by formally defining structural causal models (SCMs). An SCM defines the causal generative
process of a set of d endogenous (causal) random variables V' = { X3, - -- , X4}, where each causal
variable X; is defined as a function of a subset of other causal variables (V' \ {X;}) and an exogenous
noise variable NN;:

X; = Fy(PA(X;), N;) s.t. PA(X;) C V', X; € PA(X;) @

Hence, an SCM S(Pn, G, F') describes the data-generation process of X := [X7, -+, X4] ~ Px
from the noise variables IN := [Ny, - - - , Ng] ~ P via the function F' := [F},--- , Fy], and a graph
G € {0,1}%*4 indicating the parents of each X, thatis [G]; ; := 1 if X; € PA(X;). We make the
following assumptions about SCMs.

* G is a directed and acyclic graph (DAG), and noise variables are mutually independent
(Markovian SCM).

* SCMs are restricted to be additive noise models (ANM), i.e., X; = F;(PA(X;)) + N;.

While the first assumption is pretty standard, we make the ANM assumption for training the proposed
dataset encoder in Section[3.1]

Consider a distribution over SCMs S(Pn, G, F') ~ Ps. Then the goal with amortized inference of
causal mechanisms is to learn a single model 7y that can approximate the true causal mechanism
F(2) for any input z € R?. With task specific context as I = (Dx, G) in equation we have

arg mginESN]psEZNIPxL(F(Z)a%(zanyg)) ©)

Note that we consider access to causal graph G as part of the input context, which is available when
training on synthetic SCMs. Even if we don’t have access to G, we can use prior works on amortized
causal learning [Lorch et al., 2022, [Ke et al.|[2022] to infer the causal graphs from observations D x .
This justifies our setup where the causal graphs are provided as part of the context to the model.

3 Methodology: Conditional FiP

We present our methodology for learning the model 7 (., Dx, G) that consists of two components:
(1) a dataset encoder that generates dataset embeddings p(Dx, G) from the input context, and (2)
a conditional variant of FiP [Scetbon et al.| [2024], termed Cond-FiP that allows it to leverage the
task-specific context for amortized inference via the learned dataset embeddings p(Dx, G). We first
present our dataset encoder, then Cond-FiP, and conclude with data generation via Cond-Fip.

3.1 Dataset Encoder

The objective of this section is to develop a method capable of producing efficient latent representa-
tions of datasets. To achieve this, we propose to train an encoder that predicts the noise samples from
their associated observations given the causal structures via in-context learning.

Training Setting. We consider empirical representations of K SCMs (S P, " Fk) ) 2(21, each
sampled independently from a distribution over SCMs S (]P’gf,), g, F®*)) ~ Ps. Each empirical
representation, denoted (Df,];), G")K_ | contains n observations Df,’? = [X{k), cee Xf,,k)]T €
R™*4_ and the causal graph g““) € {0, 1}dXd. For training, we also need the associated noise

samples Dg\];) = [Nl(k)7 e ,N7(,k)]T € R"*4 which play the role of the target variable in our
prediction task. For simplicity, we drop the index £ in our notation and assume access to the full
distribution Ps. The objective is to recover the true noise Dy from a dataset of observations D x
and the causal graph G, which provide us with dataset embeddings as detailed below.



107
108
109
110
111
112

113
114
115
116
17
118
119

120
121

122
123
124

125
126
127

128
129

130

131
132

133
134
135
136
137

138
139
140
141

142
143
144
145

146
147
148

Encoder Architecture. Following [Lorch et al.l 2021} |Scetbon et al., |2024]], we encode datasets
using a transformer-based architecture that alternates attention over both sample and node dimension.
Given a dataset D x, we first apply a linear embedding L(Dx) € R™"*4*dn where dJ, is the hidden
dimension. The encoder E then applies transformer blocks, each comprising self-attention followed
by an MLP [Vaswani et al.,[2017]], where the attention mechanism is applied either across the samples
n or the nodes d alternately. Recall the standard self-attention is defined as

exp((QK™ — M)/V/dy)
exp((QK™ — M)/V/dy) 14

where Q, K € R4*9 denote the keys and queries for a single attention head, and M € {0, +o00}?*4
is a (potential) mask. When attending over samples, the encoder uses standard self-attention without
masking (M = {0}"*"™). But for node-wise attention, we incorporate causal structure by masking
invalid dependencies using mask M = 400 x (1 — G) in standard self-attention, with the convention
that 0 x (+00) = 0. Finally, the embeddings F(L(Dx),G) € R"*¥*dx are passed to a prediction
network H : R"*4xdn _ R™xd implemented as 2-hidden layers MLP to project back to the original
data space.

Training Procedure. We minimize the mean squared error (MSE) of predicting the target Dy from
the input (Dx, G) over the distribution of SCMs Ps available during training:

Es-ps||Dn — H o E(L(Dx),G)|[3 -

Further, as we restrict ourselves to the case of ANMs, we can equivalently reformulate our training
objective in order to predict the causal mechanism rather than the noise samples, as F(Dx) :=
Dx — Dp. Therefore, we instead propose to train our encoder as follows:

Es~ps||F(Dx) — H o E(L(Dx),G)l|3 -

Note that ANM assumption provides a simplified true mapping from data to noise as = — x — F(z),
which is difficult to obtain in general SCMs. Please check Appendix [A.2] for more details on
justification for ANMs and why recovering noise is equivalent to learning the inverse SCM.

Inference. Given a new dataset D x and its causal graph G, encoder provides us with the dataset
embedding (Dx,G) := E(L(Dx),G) € R"*dxdn,

3.2 Cond-FiP: Conditional Fixed-Point Decoder

We now present the modification of FiP that uses the learned dataset embeddings p(Dx,G) for
amortized inference of causal mechanisms.

Training Setting. Analogous to the encoder training setup, we assume that we have access to a
distribution of SCMs S(Pn, G, F') ~ Ps at training time, from which we can extract empirical
representations (D x, G). Our goal is to train 7 such that given the context (Dx, G) from an SCM
S(Pn,G, F) ~ Pg, the induced conditional function z € RY — T (2, Dx,G) € R? approximates
the true causal mechanisms F' : z € R? — F(z) € R¢ (E.q..

Decoder Architecture. The design of our decoder is based on the FiP architecture for fixed-point
SCM learning, with two major differences: (1) we use the dataset embeddings u(Dx, G) as a high
dimensional codebook to embed the nodes, and (2) we leverage adaptive layer norm operators [Peebles
and Xiel 2023|| in the transformer blocks of FiP to enable conditional attention mechanisms.

Conditional Embedding. The key change of our decoder compared to the original FiP is in
the embedding of the input. FiP proposes to embed a data point z := [21,...,24] € R? into a
high dimensional space using a learnable codebook C := [C1,...,Cy]T € R¥*4n and positional
embedding P := [Py, ..., Py]T € R4*" from which they define:

Zemb ‘= [2’1 *Cl,... , 2d *Cd]T + P € Rdth

This ensures that the embedded samples preserve the original causal structure. However, this
embedding layer is only adapted if the samples considered are all drawn from the same observational
distribution, as the representation of the nodes given by the codebook C, is fixed. In order to
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generalize their embedding strategy to the case where multiple SCMs are considered, we consider
conditional codebooks and positional embeddings adapted for each dataset. Given a dataset Dx and
a causal graph G, we propose to define the conditional codebook and positional embedding as

P(Dx,G) = u(Dx,G)Wp

where y(Dx, G) := MaxPool(E(L(Dx),G)) € R is obtained by max-pooling w.r.t the sample
dimension the dataset embedding E(L(Dx),G) € R"*4*dn produced by our trained encoder, and
We,Wp € R >dn are learnable parameters. Then we propose to embed any point z € R?
conditionally on the context (Dx, G) as follows:

Zemd :=[21 ¥ C1(Dx,G),. .., 24 * Ca(Dx,G)]" + P(Dx,G) € R

Adaptive Transfomer Block. Once an input z € R? has been embedded as zem, € R4¥% FiP
models SCMs by simulating the reconstruction of the data from noise. Starting from 1q € R a
learnable parameter, they propose to update the current noise L > 1 times by computing:

g1 = W(DAM (720, Zemb) Zemb + T0¢)

where h refers to the MLP block, and for clarity, we omit both the layer’s dependence on its
parameters and the inclusion of layer normalization in the notation. Note that here FiP considers
the DAG-Attention mechanism (details in Appendix in order to correctly model the root
nodes of the SCM. To obtain a conditional formulation, we first replace the starting noise 1y with
ng = u(Dx,G)Wy, € R%%4n  where Wh, € R4rXdn ig a learnable parameter. Then we add
adaptive layer normalization operators [Peebles and Xiel |2023] to both attention and MLP blocks,
where each scale or shift is obtained by applying a 1 hidden-layer MLP to the embedding u(Dx, G).

Projection. To project back the latent representation of z obtained from previous stages, 77, € R*%r
we use a linear operation to get 2 = nyp Wy € R9, where Wy € R% is learnable.

Training Procedure. The result of forward pass can be summarized as Z = T (2, Dx, G), where we
omit the dependence of Z on context (Dx, G) for simplicity. We train the model 7 by minimizing
the reconstruction error of the true causal mechanisms estimated by our model over the distribution
of SCMs Pg, as shown below.

Es~psEzpy|T (2, Dx,G) — F(2)|3 O]

where z ~ Px is chosen independent of the random dataset D x. To compute @), we propose to
sample n independent samples X7, ..., X, from Px, leading to a new dataset Dx- independent of
Dx, and we obtain the following optimzation problem:

Es~rs|T(Dx', Dx,G) — F(Dx/)|3 -

3.3 Inference with Cond-FiP

We provide a summary of inference procedure with Cond-FiP, with details in Appendix

Observational Generation. Cond-FiP is capable of generating new data samples: given a random
vector noise n ~ Py, we can estimate the observational sample associated according to an unknown
SCM S(Pn, G, F) ~ Pgs as long as we have access to its empirical representation (Dx,G).
Formally, starting from ny = n, we infer the associated observation by computing for { =1, ..., d:

ng="T(ni1,Dx,G)+n. (5)
After (at most) d iterations, 14 corresponds to the observational sample associated to the original
noise n according to our conditional SCM T (-, Dx, G). To sample noise from Pp;, we leverage

cond-FiP that can estimates noise samples under the ANM assumption by computing l/)]\\r =
Dx —T(Dx,u(Dx,G)). From these estimated noise samples, we can efficiently estimate the joint
distribution of the noise by computing the inverse cdfs of the marginals as proposed in FiP.

Interventional Generation. Cond-FiP also enables the estimation of interventions given an empirical
representation (Dx, G) of an unkown SCM S(Pn, G, F') ~ Ps. To achieve this, we start from a
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noise sample n, and we generate the associated intervened sample 2% by directly modifying the
conditional SCM provided by Cond-FiP. More specifically, we modify in place the SCM obtained
by Cond-FiP, leading to its interventional version 7% (-, Dx, G). Now, generating an intervened
sample can be done by applying the loop defined in (§), starting from n and using the intervened
SCM T9%(., Dx, G) rather than the original one.

4 Experiments

We begin by describing our experimental setup in Section[4.1] and then present the results of our
empirical analysis in Section[d.2] where we benchmark Cond-FiP against state-of-the-art baselines.

4.1 Setup

Data Generation Process. We use the synthetic data generation procedure proposed by [Lorch et al.
[2022] to generate SCMs as this framework supports a wide variety of SCMs, making it well-suited
for amortized training. It allows sampling of graphs from different schemes and noise variables from
diverse distributions. Further, we can also control the complexity of causal mechanisms, choosing
between linear (LIN) functions or random fourier features (RFF’) for non-linear causal mechanisms.
We construct two distribution of SCMs, Py, and Poyr, which vary based on the choice for sampling
causal graphs, noise variables, and causal relationships, see Appendix for more details.

Training Datasets. We randomly sample~ 4e6 SCMs from the Py distribution, each with d = 20
total nodes. From each SCM, we extract the causal graph G and generate ny.,;, = 400 observations to
obtain D x. This procedure is used to generate training data both the dataset encoder and Cond-FiP,
with each epoch containing ~ 400 randomly generated datasets.

Test Datasets. We evaluate the model’s generalization both in-distribution and out-of-distribution by
sampling test datasets from Py and Poyr, respectively. The test datasets are categorized as follows:
LIN IN and RFF IN where the SCM are sampled from Py with linear and non-linear causal
mechanisms respectively. Similarly, we define LIN OUT and RFF OUT where the SCMs are
sampled from Poyr instead.

For each category, we vary the total nodes d € [10, 20, 50, 100] and sample 6 or 9 SCMs per d, based
on the available schemes for sampling the causal graphs (check Appendix for details). This
results in a total of 120 test datasets, supporting a comprehensive evaluation of the methods. For
each SCM we generate ney = 800 samples, split equally into task context D x and queries D x for
evaluation. An interesting aspect of our test setup is we assess the model’s ability to generalize to
larger graphs (d = 50, d = 100), despite training only with d = 20 node graphs.

Model Architecture. For both the dataset encoder and cond-FiP, we set the embedding dimension to
dp = 256 and the hidden dimension of MLP blocks to 512. Both of our transformer-based models
contains 4 attention layers and each attention consists of 8 attention heads. Please check Appendix[B.2]
for further details and Cond-FiP’s memory and compute requirements.

Baselines. We compare Cond-FiP against FiP [Scetbon et al., 2024], DECI [Geffner et al., [2022]],
and DoWhy [Blobaum et al., 2022]]. Since the baselines do not have any amortization procedure,
they are trained from scratch on each test setting. For a fair comparison with our method, we use the
same context set D x with 400 samples to train the baselines, which was used to obtain the dataset
embeddings in Cond-FiP. All the methods are then evaluated on the remaining 400 samples in query
set Dx . Also, we provide the true graph G to all the baselines to ensure consistency with Cond-FiP.

To avoid potential confusion, we clarify that the notion of distribution shift is defined w.r.t Cond-FiP’s
training setup. For the baselines, there is no distribution shift as they are trained on the context
(Dx) drawn from the specific test distribution. The most important comparison is with the baseline
FiP, as Cond-FiP is its amortized counterpart. Further, we do not report detailed comparisons with
CausalNF [Javaloy et al.| [2023]] as its performance was consistently weaker than other baselines,
check Appendix [J|for details.

Evaluation Tasks. We evaluate the methods on the following three tasks. Noise Prediction: given

the observations D x and the true graph G, infer the noise variables D . Sample Generation: given

the noise samples Dy and the true graph G, generate the causal variables Dx. Interventional
Generation: generate intervened samples from noise samples D and the true graph G.
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Figure 2: In-Distribution Results. Benchmarking Cond-FiP for various evaluation tasks, with
datasets sampled from RFF IN with d = 20. The y-axis denotes the RMSE, with mean and
standard error over the respective test datasets. Results indicate Cond-FiP can generalize to novel
in-distribution instances, with detailed results in Appendix E}
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Figure 3: OOD Results. Benchmarking Cond-FiP for various evaluation tasks, with datasets sampled
from RFF OUT with d = 100 to test for OOD generalization. The y-axis denotes the RMSE, with
mean and standard error over the respective test datasets. Results indicate Cond-FiP can generalize to
novel OOD instances and larger graphs, with detailed results in AppendixE}

Metric. Let us denote a predicted & true target as Y € Ruesd gnd Y € Rmes*d_ Then RMSE
is computed as —— 2"y /1||[Y];, — [Y'];]|2. Note that we scale RMSE by dimension d, which

Test =1

allows us to compare results across different graph sizes.

4.2 Results

Generalization to OOD data and larger graphs. In Figure 2| we first present results for in-
distribution generalization using test datasets sampled from RFF IN for graphs with d = 20 nodes.
Cond-FiP performs competitively with baselines trained from scratch on each test instance, hence it
successfully generalizes to novel in-distribution instances. Notably, Cond-FiP was never explicitly
trained to generate interventional data, and its strong performance on this task further supports that it
captures the underlying causal mechanisms.

Next we consider the more challenging case of OOD generalization using test datasets sampled from
RFF OUT and graphs with d = 100 nodes, while the Cond-FiP was trained only with d = 20
node graphs. As shown in Figure [3] Cond-FiP continues to perform well, indicating successful
generalization to OOD instances and significantly larger graphs! Due to space constraints, we report
results for SCMs with non-linear mechanisms—the more challenging setting. Full results for both
in-distribution and OOD scenarios are available in Appendix [C] where our findings remain consistent.

We also assess Cond-FiP’s sensitivity to distribution shifts by varying the magnitude of distribution
shift (details in Appendix[D)). We consider two cases, where we control the severity in distribution shift
by controlling the causal mechanisms or the noise variables. We find that Cond-FiP is more robust to
shifts in causal mechanisms, with minimal performance degradation. However, its performance is
more sensitive to shifts in noise distributions, deteriorating as the magnitude of shift increases.

Better Generalization in Scare Data Regimes. An advantage of amortized inference methods is
their ability to generalize well when context D x for test instances is small. As the context size
decreases, baselines often suffer significant performance drops as they require training from scratch.
In contrast, Cond-FiP is less impacted as its parameters remain unchanged at inference time, and
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Figure 5: OOD Results without True Graph. Benchmarking Cond-FiP for various evaluation tasks,
with datasets sampled from RFF OUT with d = 100 where the true graph G is not present in input
context, rather its inferred via AVICI. The y-axis denotes the RMSE, with mean and standard error
over the respective test datasets. Results indicate Cond-FiP can generalize to novel instances even in
the absence of true graph, with detailed results in Appendix [H

the inductive bias learned during training enables effective generalization even with limited context.
In Figure ] we demonstrate this in the challenging OOD setting (RFF OUT;, d = 100), where
Cond-FiP outperforms the baselines. Please check Appendix [E|for further details.

Generalization without True Causal Graph. So far, our results assume access to the true causal
graph (G) as part of the input context to Cond-FiP. However, Cond-FiP can be extended to operate
without this information by first inferring the graph using amortized structure learning methods [Lorch
et al., 2022, Ke et al.,[2022]]. We demonstrate this in FigureE]for the RFF OUT; setting with d = 100
nodes, using graphs inferred via AVICI [Lorch et al.| [2022] for both Cond-FiP and the baselines. The
results show that Cond-FiP remains competitive, further supporting its ability to capture underlying
causal mechanisms. Please check Appendix [F for more details.

Ablation Study. We conduct ablation studies on both the encoder and decoder to better understand
how the training data affects generalization performance. We find that Cond-FiP remains competitive
even when the encoder is trained on only RFF data, compared to training on a mixture of both. In
contrast, decoder performance benefits more noticeably from training on the combined dataset. Please
check Appendix [G.1I|and[G.2]for more details regarding the ablation experiments.

Generalization to novel data simulators. We further evaluate Cond-FiP on test datasets generated
using C-Suite [Geffner et al., [2022], a synthetic data simulator distinct from the training simulator.
As shown in Figure[6| Cond-FiP generalizes well to these novel instances. Additionally, we consider
a modified C-Suite benchmark with Gaussian mixture model noise. Results in Figure[7, Appendix [H]
show that Cond-FiP also generalizes to instances with more complex noise distributions.

Finally, we show that Cond-FiP can generalize to the real-world instances using the Sachs
dataset [Sachs et al., [2005]]. Although Cond-FiP cannot be trained on real-world datasets since
the encoder requires access to true noise variables, it can still be used for inference. We evaluate
the quality of generated samples by comparing them to observed data using the Maximum Mean
Discrepancy (MMD) metric [Gretton et al.,|2012]. See Appendix [[|for more details.
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Figure 6: CSuite Results. Benchmarking Cond-FiP on the various evaluation tasks on the CSuite
benchmark, which uses a different data simulator than the Cond-FiP’s training data simulator. The
y-axis denotes the RMSE, with mean and standard error across the 9 test datasets.

5 Related Works

Amortized Causal Learning. Amortized inference has gained traction in causality research,
particularly for structure learning. Early works by |Lorch et al.|[2022] and [Ke et al.|[2022] introduced
transformer-based models trained on multiple synthetic datasets using supervised objectives for
amortized inference of causal structure. Their approach aligns with recent works on in-context
learning of function classes via transformers [Miiller et al., 2021, |Akyiirek et al., 2022} |Garg et al.,
2022, |[Von Oswald et al.| [2023]]. Subsequent improvements targeted OOD generalization [Wu et al.|
2024] and applications to gene regulatory networks [Ke et al.l |2023]]. Beyond structure learning,
amortized methods have been developed for ATE estimation [Nilforoshan et al.l 2023, |Zhang et al.,
2023| [Sauter et al., [2025]], model selection [Gupta et al.,|2023]], and partial causal discovery tasks
such as learning topological order [Scetbon et al.l |2024]. However, amortized inference of causal
mechanisms in SCMs remains unaddressed, which is the central focus of our work.

Autoregressive Causal Learning. Most causal discovery methods focus first on structure learn-
ing [Chickering} 2002, [Peters et al.l 2014} Zheng et al.| 2018], followed by per-node maximum
likelihood estimation to recover the causal mechanisms [Blobaum et al.,[2022]. In constrast, recent
works on causal autoregressive flows [Khemakhem et al., 2021} |Geffner et al.| 2022] Javaloy et al.,
2023|| focus on SOTA normalizing flow based generative models to infer causal mechanisms. Further,
FiP [Scetbon et al.| 2024] modeled SCMs as fixed-point problems over causal (topological) ordering
of nodes using transformer-based architectures. These approaches efficiently learn SCMs but require
training a separate model per dataset. In this work, we extend FiP to enable amortized inference of
causal mechanisms across different SCM instances, removing this limitation.

6 Conclusion

In this work, we propose novel methodology for training a single model for amortized inference of
SCMs. Cond-FiP not only generalizes to unseens in-distribution instances, but also to a wide range
of OOD instances, including larger graphs, complex noise distributions, and real-world data. To
the best of our knowledge, this is the first approach to demonstrate the feasibility of learning causal
mechanisms in a reusable, foundational manner—paving the way for a paradigmatic shift towards the
assimilation of causal knowledge across datasets.

Limitations. Our training is limited to synthetic additive noise SCMs due to the requirement
of true noise variables for learning the dataset encoder. However, the conditional FiP decoder
(see Section [3.2) does not rely on this assumption and can be applied to general SCMs given
pretrained dataset embeddings. A promising direction for future work is to explore more general
encoding schemes, such as self-supervised learning, or design an implicit in-context learning approach
to remove the need for dataset embeddings via direct attention over the context [Mittal et al., [2024].

While Cond-FiP generalizes to larger graphs, it does not yet benefit from larger context sizes at
inference (Appendix [K.T)), suggesting the need to scale both the model and training data for richer
contexts. Additionally, although Cond-FiP performs well on generating interventional samples,
it doesn’t perform well on counterfactual generation (Appendix [K.2). Future work will explore
scaling Cond-FiP to larger problem instances and application for more complex tasks (counterfactual
generation) in real-world scenarios.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the main claim of amortized inference of causal mechanisms of SCMs
accurately reflects the paper’s contributions and scope. We have done a comprehensive
benchmarking of the proposed approach against state-of-the-art baselines to justify our
claims.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, in the conclusion section we discuss the limitations pertaining to Additive
Noise Model assumption for training dataset encoder, along with issues in generalization to
large context and counterfactual generation. We also provide more details in Appendix [K]
regarding the limitations of Cond-FiP.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: There are no theoretical results developed in this paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Yes, we provide details about the experiment setup in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We used publicly available datasets for academic research, hence no issues
with open access to data. We plan to open-source the code along with comprehensive
documentation to facilitate reproducibility of our experiments. For the submission phase,
in Appendix [B.3] we provide an anonymized version of the codebase is not directly exe-
cutable, but provides full access to the implementation of all components of our framework.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, these details are provided in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, in all our figures and tables, the captions provide exact details about the
error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, these details are provided in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conforms in every respect with the
NeurIPS Code of Ethics

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, we provide this at the end of the paper in in Appendix [} and do not think
there are any negative societal impact of our work.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: No, the outcome of this paper is to not release any data/model that may have
some potential misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we have properly cited whenever we any prior assets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new asset developed in the paper is the codebase for our proposed method
Cond-FiP. We plan to open-source the code along with comprehensive documentation to
facilitate reproducibility of our experiments. For the submission phase, in Appendix [B.3]
provide an anonymized version of the codebase is not directly executable, but provides full
access to the implementation of all components of our framework.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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743 * The answer NA means that the paper does not involve crowdsourcing nor research with
744 human subjects.

745 * Depending on the country in which research is conducted, IRB approval (or equivalent)
746 may be required for any human subjects research. If you obtained IRB approval, you
747 should clearly state this in the paper.

748 * We recognize that the procedures for this may vary significantly between institutions
749 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
750 guidelines for their institution.

751 * For initial submissions, do not include any information that would break anonymity (if
752 applicable), such as the institution conducting the review.

753 16. Declaration of LLM usage

754 Question: Does the paper describe the usage of LLMs if it is an important, original, or
755 non-standard component of the core methods in this research? Note that if the LLM is used
756 only for writing, editing, or formatting purposes and does not impact the core methodology,
757 scientific rigorousness, or originality of the research, declaration is not required.

758 Answer:|[NA] .

759 Justification: Proposed method Cond-FiP method development in this research does not
760 involve LLMs as any important, original, or non-standard components.

761 Guidelines:

762 * The answer NA means that the core method development in this research does not
763 involve LLMs as any important, original, or non-standard components.

764 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
765 for what should or should not be described.
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A Additional Details on Cond-FiP

A.1 DAG-Attention Mechanism

In FiP [Scetbon et al., [2024] the authors propose to leverage the transformer architecture to learn
SCMs from observations. By reparameterizing an SCM according to a topological ordering induced
by its graph, the authors show that any SCM can be reformulated as a fixed-point problem of the
form X = H(X, N) where H admits a simple triangular structure:

JacoH(x,n)]; ; =0, if j >4
Jac, H(x,n)|;; =0, if i#j,

where Jac, H, Jac,, H denote the Jacobian of H w.r.t the first and second variables respectively.
Motivated by this fixed-point reformulation, FiP considers a transformer-based architecture to model
the functional relationships of SCMs and propose a new attention mechanism to represent DAGs in a
differentiable manner. Recall that the standard attention matrix is defined as:

exp((QK™ — M)/Vdn)

Am(QK) = QKT = M)/Vdr) 1,

(6)

where Q, K € R4*4 denote the keys and queries for a single attention head, and M € {0, +o00}?*4
is a (potential) mask. When M is chosen to be a triangular mask, the attention mechanism (6) enables
to parameterize the effects of previous nodes on the current one However, the normalization inherent
to the softmax operator in standard attention mechanisms prevents effective modeling of root nodes,
which should not be influenced by any other node in the graph. To alleviate this issue, FiP proposes
to consider the following formulation instead:

exp((QK™ — M)/ /dp,)

PAM (@ K = QKT — M) /vdn) 1)

@)

where V;(v) = v; if v; > 1, else V;(v) = 1 for any v € R%. While softmax forces the coefficients

along each row of the attention matrix to sum to one, the attention mechanism described in allows
the rows to sum in [0, 1], thus enabling to model root nodes in attention.

A.2 Details on Encoder Training

Additive Noise Model Assumption. Our method relies on the ANM assumption only for the
training the encoder. This is because we require the encoder to predict the noise from data in order to
obtain embeddings, and under the ANM assumption, the mapping from data to noise can be easily
expressed as  — x — F'(x) where F is the generative functional mechanism of the generative ANM.
However, if we were to consider general SCMs, i.e. of the form X = F(X, N), we would need
access to the mapping * — F~!(z,-)(x) (assuming this function is invertible), which for general
functions is not tractable. Also, note that the ANM assumption by default ensures invertibility since
the jacobian w.r.t noise is a triangular matrix with nonzero diagonal elements. An interesting future
work would be to consider a more general dataset encoding (using self-supervised techniques) that
do not require the ANM assumption, but we believe this is out of the scope of this work.

We now provide further details on training the encoder and show how recovering the noise is equivalent
to learn the inverse causal generative process. Recall that an SCM is an implicit generative model
that, given a noise sample N, generates the corresponding observation according to the following
fixed-point equation in X

X = F(X,N)

More precisely, to generate the associated observation, one must solve the above fixed-point equation
in X given the noise N. Let us now introduce the following notation that will be instrumental for the
subsequent discussion: we denote Fn(2) : z — F(z,N).

Due to the specific structure of F' (determined by the DAG G associated with the SCM), the fixed-
point equation mentioned above can be efficiently solved by iteratively applying the function Fy
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to the noise (see Eq. (5) in the manuscript). As a direct consequence, the observation X can be
expressed as a function of the noise:
X = Foen(N)

where Fyen(N) := (Fn)°#(N), d is the number of nodes, and o denotes the composition operation. In
the following we refer to Fy, as the explicit generative model induced by the SCM.

Conversely, assuming that the mapping z — Fyen(2) is invertible, then one can express the noise as a
function of the data:
N = F 1 (X)

gen

Therefore, learning to recover the noise from observation is equivalent to learn the function Fg;nl,

which is exactly the inverse of the explicit generative model Fi,. It is also worth noting that under
the ANM assumption (i.e. F/(X,N) = f(X) + N), Fy, is in fact always invertible and its inverse
admits a simple expression which is

Fn(2) = 2 = f(2)

Therefore, in this specific case, learning the inverse generative model Fg;nl is exactly equivalent to
learning the causal mechanism function f.

A.3 Inference with Cond-FiP

Sample Generation. Given a dataset Dx and its causal graph G, we denote z — T (2, Dx,G)
the function infered by Cond-FiP. This function defines the predicted SCM obtained by our model,
and we can directly use it to generate new points. More precisely, given a noise sample n, we can
generate the associated observational sample by solving the following equation in x:

X:T(X7DX7g)+n

To solve this fixed-point equation, we rely on the fact that G is a DAG, which enables to solve
the fixed-point problem using the following simple iterative procedure. Starting with zg = n, we
compute for £ = 1, ..., d where d is the number of nodes

zg =T (z¢-1,Dx,G) +n

After d iterations we obtain the following,

Zq = T(Zd,Dx,g) +n

Therefore, z, is the solution of the fixed-point problem above, which corresponds to the observational
sample associated to n according to our predicted SCM z — T (2, Dx, G).

Interventional Prediction. Recall that given a dataset Dx and its causal graph G, z €
R? — T(z,Dx,G) € R denotes the SCM infered by Cond-FiP. Let us also denote
the coordinate-wise formulation of our SCM defined for any z € RY as T(z,Dx,G) =
[[T(z2,Dx,6)1,---,[T(2,Dx,G)]a), where foralli € {1,...,d}, z € R* — [T(2,Dx,G)); €
R is a real-valued function.

In order to intervene on this predicted SCM, we simply have to modify in place the predicted function.
For example, assume that we want to perform the following intervention do(X;) = a. Then, to obtain
the intervened SCM, we define a new function z — T9(X)=¢(z Dy, G) defined for any z € R? as:
[TeD=2(2, Dx,G)]; == [T (2, Dx,9)); if j # i and [T*XD=%(z, Dx, G)); := a.

Now, using this intervened SCM z — T9(X)=¢(2 Dy G), we can apply the exact same generation
procedure as the one introduced above to generate intervened samples according to our intervened
SCM.

22



871

872

874
875

876
877
878
879
880

882
883

884
885
886

887
888
889

890
891

893

894
895

896

897
898
899
900

901

903
904

905
906

907

908
909
910

911
912
913

914
915
916

917
918

B Details on Experiment Setup with AVICI Benchmark

B.1 AVICI Benchmark

We use the synthetic data generation procedure proposed by |Lorch et al.|[2022] to generate SCMs
in our empirical study. It provides access to a wide variety of SCMs, hence making it an excellent
setting for amortized training.

e Graphs: We have the option to sample graphs as per the following schemes: Erods-
Renyi [Erdos and Renyi, [1959]], scale-free models [Barabasi and Albert, |[1999]], Watts-
Strogatz [[Watts and Strogatz, |1998|], and stochastic block models [Holland et al., |1983]].

* Noise Variables: To sample noise variables, we can choose from either the gaussian or
laplace distribution where variances are sampled randomly.

* Functional Mechanisms: We can control the complexity of causal relationships: either
we set them to be linear (LIN) functions randomly sampled, or use random fourier features
(RFF) for generating random non-linear causal relationships.

We construct two distribution of SCMs Py, and Poyr, which vary based on the choice for sampling
causal graphs, noise variables, and causal relationships. The classification aids in understanding the
creation of train and test datasets.

* In-Distribution (P1y): We sample causal graphs using the Erods-Renyi and scale-free
models schemes. Noise variables are sampled from the gaussian distribution, and we allow
for both LIN and RFF causal relationships.

* QOut-of-Distribution (Pgyr): Causal graphs are drawn from Watts-Strogatz and stochastic
block models schemes. Noise variables follow the laplace distribution, and both the LIN
and RFF cases are used to sample functions. However, the parameters of these distributions
are sampled from a different range as compared to Ppy to create a distribution shift.

We provide further details on the shift in the support of parameters for functional mechanisms below.
For complete details please refer to Table 3, Appendix in|Lorch et al.|[2022].

¢ Linear Functional Mechanism.
— In-Distribution (Py)
x Weights: ~ UL(1,3), Bias ~ U(—3, 3).
— Out-of-Distribution (Poyr)
x Weights: ~ U1 (0.5,2) UUL(2,4), Bias ~ U(-3, 3).
* RFF Functional Mechanism.
— In-Distribution (Py)
* Length Scale: ~ U(7,10), Output Scale: ~ U(5,8)UU(8,12), Bias ~ Uy (-3, 3).
— Out-of-Distribution (Poyr):
x Length Scale: ~ U(10,20), Output Scale: ~ U(8,12) U U(18,22), Bias ~
UL+(-3,3).

Test Datasets.

e LIN IN: SCMs sampled from Py with linear causal mechanisms. We have 3 different
options for sampling graphs in this case, and we randomly sample 3 different SCMs for
each scenario, leading to a total of 9 instances.

* RFF IN: SCMs sampled from Py with non-linear causal mechanisms. We have 3 different
options for sampling graphs in this case, and we randomly sample 3 different SCMs for
each scenario, leading to a total of 9 instances.

e LIN OUT: SCMs sampled from Poyr with linear causal mechanisms. We have 2 different

options for sampling graphs in this case, and we randomly sample 3 different SCMs for
each scenario, leading to a total of 6 instances.

* RFF OUT: SCMs sampled from Poyr with non-linear causal mechanisms. We have 2
different options for sampling graphs in this case, and we randomly sample 3 different
SCMs for each scenario, leading to a total of 6 instances.
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B.2 Model Architecture and Training Details

For both the dataset encoder and cond-FiP, we set the embedding dimension to d;, = 256 and the
hidden dimension of MLP blocks to 512. Both of our transformer-based models contains 4 attention
layers and each attention consists of 8 attention heads. The models were trained for a total of 10k
epochs with the Adam optimizer [Paszke et al., 2017[], where we used a learning rate of le — 4
and a weight decay of 5e — 9. Each epoch contains ~ 400 randomly generated datasets from the
distribution Pry. We also use the EMA implementation of [Karras et al., 2023] to train our models.

Memory Requirements. We trained Cond-FiP on a single L40 GPU with 48GB of memory, using
an effective batch size of 8 with gradient accumulation. We outline the detailed memory computation
as follows:

» Each batch consists of n = 400 samples with dimension d = 20 requiring less than 1 MiB
of data in FP32 precision.

* Storing the model on the GPU requires under 100 MiB.

* Our transformer architecture has 4 attention layers, a 256-dimensional embedding space,
and a 512-dimensional feedforward network. Using a standard (non-flash) attention imple-
mentation, a forward pass consumes approximately 30 GiB of GPU memory.

Compared to the baselines, Cond-FiP has similar memory requirements to DECI [Geffner et al.|
2022] and FiP [Scetbon et al., |2024], as all three train neural networks of comparable size. The
main exception is DoWhy [Blobaum et al., 2022]], which fits simpler models for each node, but this
approach does not scale well as the graph size increases.

Computational Cost. Like other amortized approaches, Cond-FiP has a higher training cost than
the baselines, as it is trained across multiple datasets. While the cost of each forward-pass is
comparable to FiP, we trained Cond-FiP over approximately 4M datasets in an amortized manner.
However, Cond-FiP offers a significant advantage at inference time since it requires only a single
forward pass to generate predictions, whereas the baselines must be retrained from scratch for each
new dataset. Thus, while Cond-FiP incurs a higher one-time training cost, its substantially faster at
inference.

B.3 Code Repository

We plan to open-source the code along with comprehensive documentation to facilitate reproducibility
of our experiments. For the submission, we have prepared an anonymized version of the codebase,
which can be accessed via this link: https://anonymous.4open.science/r/neurips_2025_
condfip-1277/|.

Please note that while the codebase is not directly executable, it provides full access to the implemen-
tation of all components of our framework:

* cond-fip/models contains the implementation of the transformer-based encoder and the
Cond-FIP architecture.

* cond-fip/tasks includes the training and inference methods associated with our framework.
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ss7 C Complete Results for Cond-FiP on AVICI Benchmark

Method ~ Total Nodes LIN IN RFFIN  LINOUT RFFOUT
DoWhy 10 0.03(0.0) 0.13(0.02) 0.04(0.01) 0.11 (0.01)
DECI 10 0.09 (0.01) 0.23(0.03) 0.12(0.01) 0.23 (0.03)
FiP 10 0.04(0.0)  0.09(0.01) 0.06 (0.01) 0.08 (0.01)
Cond-FiP 10 0.06 (0.01) 0.10(0.01) 0.07 (0.01) 0.10 (0.01)
DoWhy 20 0.03(0.01) 0.15(0.02) 0.03(0.0) 0.23 (0.01)
DECT 20 0.10 (0. 02) 0.21 (0.03) 0.08 (0.02) 0.23 (0.02)
FiP 20 0.04(0.0) 0.12(0.02) 0.05(0.0) 0.15 (0.02)
Cond-FiP 20 0.06 (0. 01) 0.09 (0.01) 0.07 (0.0)  0.12(0.0)

DoWhy 50 0.03(0.0) 0.18(0.03) 0.03(0.0) 0.29 (0.03)
DECI 50 0.09 (0.01) 0.24(0.02) 0.07 (0.01) 0.29 (0.02)
FiP 50 0.04(0.0) 0.14(0.03) 0.04 (0.0)  0.23 (0.04)
Cond-FiP 50 0.06 (0. 01) 0.10 (0.01)  0.07 (0.01) 0.14 (0.01)
DoWhy 100 0.03(0.0) 0.20 (0.03) 0.03 (0.0)  0.31(0.02)
DECI 100 0.08 (0. 02) 0.26 (0.03) 0.07 (0.01)  0.30 (0.02)
FiP 100 0.04(0.0)  0.16 (0.03) 0.04 (0.0)  0.24 (0.02)
Cond-FiP 100 0.05 (0. 0) 0.10 (0.01)  0.07 (0.01)  0.16 (0.01)

Table 1: Results for Noise Prediction. We compare Cond-FiP against the baselines for the task of
predicting noise variables from the input observations. Each cell reports the mean (standard error)
RMSE over the multiple test datasets for each scenario. Shaded rows denote the case where the
graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that Cond-FiP

generalizes to both in-distribution and OOD instances.

Method Total Nodes LIN IN RFF IN LINOUT RFFOUT
DoWhy 10 0.05 (0.0) 0.18 (0.03) 0.06 (0.01) 0.12(0.02)
DECI 10 0.15(0.02) 0.33(0.04) 0.16 (0.02) 0.27 (0.03)
FiP 10 0.07 (0.0) 0.13 (0.02) 0.08 (0.01) 0.11 (0.02)
Cond-FiP 10 0.06 (0.01) 0.14 (0.02) 0.05(0.01) 0.08 (0.01)
DoWhy 20 0.06 (0.01) 0.27 (0.05) 0.05 (0.0) 0.39 (0.04)
DECI 20 0.16 (0.02) 0.39 (0.05) 0.13(0.02) 0.44 (0.04)
FiP 20 0.08 (0.01) 0.23 (0.05) 0.08 (0.01) 0.27 (0.04)
Cond-FiP 20 0.05(0.01) 0.24 (0.06) 0.07 (0.01) 0.30 (0.03)
DoWhy 50 0.08 (0.01) 0.35(0.09) 0.06 (0.01) 0.54 (0.06)
DECI 50 0.15(0.01) 0.46 (0.06) 0.13(0.02) 0.67 (0.06)
FiP 50 0.09 (0.01) 0.26 (0.05) 0.08 (0.01) 0.48 (0.06)
Cond-FiP 50 0.08 (0.01) 0.25(0.05) 0.07(0.0) 0.48 (0.07)
DoWhy 100  0.06 (0.0) 0.33 (0.07) 0.06 (0.01) 0.63 (0.07)
DECI 100 0.14 (0.02) 0.50 (0.09) 0.14 (0.02) 0.71 (0.08)
FiP 100 0.08 (0.01) 0.3 (0.06) 0.09 (0.01)  0.55 (0.08)
Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 2: Results for Sample Generation. We compare Cond-FiP against the baselines for the task of
generating samples from the input noise variables. Each cell reports the mean (standard error) RMSE
over the multiple test datasets for each scenario. Shaded rows denote the case where the graph size is
larger than the train graph sizes (d = 20) for Cond-FiP. Results show that Cond-FiP generalizes to

both in-distribution and OOD instances.
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Method Total Nodes LIN IN RFF IN LIN OUT RFFOUT

DoWhy 10 0.08(0.03) 0.19(0.04) 0.05(0.01) 0.12 (0.02)
DECI 10 0.17(0.02) 0.34(0.04) 0.13(0.02) 0.25 (0.03)
FiP 10 0.08 (0.01) 0.15(0.02) 0.07 (0.01) 0.09 (0.01)
Cond-FiP 10 0.10(0.03) 0.21 (0.03) 0.07 (0.01) 0.11 (0.01)
DoWhy 20 0.06 (0.01) 0.27 (0.06) 0.05 (0.0)  0.36 (0.03)
DECI 20 0.16 (0.02) 0.38(0.05) 0.15(0.04) 0.42 (0.03)
FiP 20 0.09 (0.01) 0.23(0.05) 0.12(0.04) 0.25 (0.03)
Cond-FiP 20 0.09(0.01) 0.24(0.05) 0.14 (0.03) 0.31 (0.03)
DoWhy 50 0.08 (0.01) 0.29 (0.05) 0.06 (0.01) 0.53 (0.06)
DECI 50 0.17(0.02) 0.44(0.06) 0.13 (0.02) 0.64 (0.06)
FiP 50 0.11(0.02) 0.25(0.05) 0.09 (0.01) 0.46 (0.06)
Cond-FiP 50 0.13(0.02) 0.27(0.04) 0.12(0.02) 0.48 (0.07)
DoWhy 100 0.05(0.0)  0.33(0.07) 0.06 (0.01) 0.60 (0.07)
DECI 100 0.14 (0.02) 0.49 (0.08) 0.15 (0.02) 0.70 (0.08)
FiP 100 0.08 (0.01) 0.29 (0.07) 0.10 (0.01) 0.54 (0.08)
Cond-FiP 100 0.10 (0.01) 0.30 (0.06) 0.14 (0.02)  0.56 (0.07)

Table 3: Results for Interventional Generation. We compare Cond-FiP against the baselines for
the task of generating interventional data from the input noise variables. Each cell reports the mean
(standard error) RMSE over the multiple test datasets for each scenario. Shaded rows denote the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that
Cond-FiP generalizes to both in-distribution and OOD instances.
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D Experiments on Sensitivity to Distribution Shifts on AVICI benchmark

In Appendix [C](Table[I] Table[2] Table[3), we tested OOD genrealization with datasets sampled from
SCM following a different distribution (LIN OUT, RFF OUT) than the datasets used for training
Cond-FiP (LIN IN, RFF IN). We now analyze how sensitive is Cond-FiP to distribution shifts by
comparing its performance across scenarios as the severity of the distribution shift is increased.

To illustrate how we control the magnitude of distribution shift, we discuss the difference in the
distribution of causal mechanisms across Py and Poyt. The distribution shift arises because the
support of the parameters of causal mechanisms changes from Py to Poyr. For example, for linear
causal mechanism case, the weights in Py are sampled uniformly from (—3,—1) U (1, 3); while
in Poyr they are sampled from uniformly from (0.5,4). We now change the support set of the
parameters in Poyr to (0.5¢,4a), so that by increasing o we make the distribution shift more
severe. We follow this procedure for the support set of all the parameters associated with functional
mechanisms and generate distributions (Poyr(«r)) with varying shift w.r.t Pry by changing «. Note
that & = 1 corresponds to the same Poyr as the one used for sampling datasets in our main results.

We conduct two experiments for evaluating the robustness of Cond-FiP to distribution shifts, described
ahead.

* Controlling Shift in Causal Mechanisms. We start with the parameter configuration of
Poyr from the setup in main results; and then control the magnitude of shift by changing
the support set of parameters of causal mechanisms.

* Controlling Shift in Noise Variables. We start with the parameter configuration of Poyr
from the setup in main results; and then control the magnitude of shift by changing the
support set of parameters of noise distribution.

Tables ] [5 and [6] provide results for the case of controlling shift via causal mechanisms, for the task
of noise prediction, sample generation, and interventional generation respectively. We find that the
performance of Cond-FiP does not change much as we increase «, indicating that Cond-FiP is robust
to the varying levels of distribution shits in causal mechanisms.

However, for the case of controlling shift via noise variables (Table and[9) we find that Cond-FiP
is quite sensitive to the varying levels of distribution shift in noise variables. The performance of
Cond-FiP degrades with increasing magnitude of the shift («) for all the tasks.

27



Total Nodes | Shift Level (o) | LIN OUT | RFF OUT

10 1 0.07 (0.01) | 0.10 (0.01)
10 2 0.06 (0.01) | 0.10 (0.01)
10 5 0.05 (0.01) | 0.10 (0.01)
10 10 0.05 (0.01) | 0.10 (0.01)
20 1 0.07 (0.0) | 0.12(0.0)

20 2 0.06 (0.0) | 0.13 (0.01)
20 5 0.05 (0.0) | 0.11 (0.01)
20 10 0.05 (0.0) | 0.10 (0.01)
50 1 0.07 (0.01) | 0.14 (0.01)
50 2 0.05 (0.01) | 0.17 (0.01)
50 5 0.05 (0.01) | 0.14 (0.01)
50 10 0.04 (0.0) | 0.14 (0.01)
100 1 0.07 (0.01) | 0.16 (0.01)
100 2 0.05 (0.01) | 0.18 (0.0)

100 5 0.05 (0.0) | 0.17 (0.01)
100 10 0.05 (0.0) | 0.16 (0.01)

Table 4: Results for Noise Prediction under Distribution Shifts in Causal Mechanisms. We
evaluate the robustness of Cond-FiP to distribution shifts in the parametrization of causal mechanisms.
We vary the distribution shift controlled by a, where o« = 1 corresponds to the results in Table
Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
We find that Cond-FiP is robust to varying levels of distribution shift in causal mechanisms.

Total Nodes | Shift Level () | LINOUT | RFF OUT

10 1 0.05 (0.01) | 0.08 (0.01)
10 2 0.05 (0.0) | 0.07 (0.01)
10 5 0.05 (0.0) | 0.07 (0.01)
10 10 0.06 (0.0) | 0.06 (0.01)
20 1 0.07 (0.01) | 0.30 (0.03)
20 2 0.06 (0.01) | 0.34 (0.05)
20 5 0.06 (0.01) | 0.35 (0.05)
20 10 0.06 (0.01) | 0.29 (0.07)
50 1 0.07 (0.0) | 0.48 (0.07)
50 2 0.07 (0.0) | 0.47 (0.07)
50 5 0.07 (0.01) | 0.38 (0.06)
50 10 0.07 (0.01) | 0.32 (0.06)
100 1 0.09 (0.01) | 0.57 (0.07)
100 2 0.09 (0.01) | 0.60 (0.05)
100 5 0.09 (0.01) | 0.58 (0.05)
100 10 0.12 (0.02) | 0.56 (0.06)

Table 5: Results for Sample Generation under Distribution Shifts in Causal Mechanisms. We
evaluate the robustness of Cond-FiP to distribution shifts in the parametrization of causal mechanisms.
We vary the distribution shift controlled by «, where o = 1 corresponds to the results in Table 2]
Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
We find that Cond-FiP is robust to varying levels of distribution shift in causal mechanisms.
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Total Nodes | Shift Level () | LINOUT | RFF OUT

10 1 0.07 (0.01) | 0.11 (0.01)
10 2 0.07 (0.01) | 0.11 (0.01)
10 5 0.07 (0.01) | 0.10 (0.01)
10 10 0.06 (0.01) | 0.10 (0.01)
20 1 0.14 (0.03) | 0.31 (0.03)
20 2 0.10 (0.02) | 0.33 (0.04)
20 5 0.17 (0.1) | 0.34 (0.04)
20 10 0.10 (0.03) | 0.28 (0.05)
50 1 0.12 (0.02) | 0.48 (0.07)
50 2 0.12 (0.03) | 0.47 (0.07)
50 5 0.11 (0.01) | 0.39 (0.06)
50 10 0.11 (0.02) | 0.32 (0.06)
100 1 0.14 (0.02) | 0.58 (0.07)
100 2 0.13 (0.02) | 0.60 (0.06)
100 5 0.14 (0.03) | 0.58 (0.05)
100 10 0.18 (0.04) | 0.55 (0.06)

Table 6: Results for Interventional Generation under Distribution Shifts in Causal Mechanisms.
We evaluate the robustness of Cond-FiP to distribution shifts in the parametrization of causal mech-
anisms. We vary the distribution shift controlled by «, where @ = 1 corresponds to the results
in Table E} Each cell reports the mean (standard error) RMSE over the multiple test datasets for each
scenario. We find that Cond-FiP is robust to varying levels of distribution shift in causal mechanisms.

Total Nodes | Shift Level (o) | LINOUT | RFF OUT
10 1 0.07 (0.01) | 0.10 (0.01)
10 2 0.07 (0.01) | 0.11 (0.01)
10 5 0.07 (0.01) | 0.18 (0.02)
10 10 0.08 (0.01) | 0.26 (0.04)
20 1 0.07 (0.0) | 0.12 (0.0)
20 2 0.07 (0.0) | 0.16 (0.01)
20 5 0.07 (0.0) | 0.30 (0.01)
20 10 0.07 (0.0) | 0.41 (0.02)
50 1 0.07 (0.01) | 0.14 (0.01)
50 2 0.07 (0.01) | 0.19 (0.01)
50 5 0.07 (0.01) | 0.33 (0.02)
50 10 0.07 (0.01) | 0.44 (0.02)
100 1 0.07 (0.01) | 0.16 (0.01)
100 2 0.07 (0.01) | 0.22 (0.0)
100 5 0.07 (0.01) | 0.35(0.01)
100 10 0.07 (0.01) | 0.44 (0.01)

Table 7: Results for Noise Prediction under Distribution Shifts in Noise Variables. We evaluate
the robustness of Cond-FiP to distribution shifts in the parametrization of noise distribution. We vary
the distribution shift controlled by «, where o = 1 corresponds to the results in Table[I] Each cell
reports the mean (standard error) RMSE over the multiple test datasets for each scenario. We find
that Cond-FiP is sensitive to varying levels of distribution shift in noise variables, its performance
decreases with increasing magnitude of the shift.
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Total Nodes | Shift Level (o) | LIN OUT

| RFF OUT

10 1 0.05 (0.01) | 0.08 (0.01)
10 2 0.05 (0.0) | 0.13 (0.03)
10 5 0.05 (0.01) | 0.28 (0.06)
10 10 0.05 (0.01) | 0.36 (0.08)
20 1 0.07 (0.01) | 0.30 (0.03)
20 2 0.07 (0.01) | 0.45 (0.04)
20 5 0.07 (0.01) | 0.59 (0.03)
20 10 0.07 (0.01) | 0.58 (0.02)
50 1 0.07 (0.0) | 0.48 (0.07)
50 2 0.07 (0.0) | 0.59 (0.06)
50 5 0.07 (0.0) | 0.64 (0.03)
50 10 0.07 (0.0) | 0.58 (0.02)
100 1 0.09 (0.01) | 0.57 (0.07)
100 2 0.09 (0.01) | 0.63 (0.05)
100 5 0.09 (0.01) | 0.65 (0.03)
100 10 0.09 (0.01) | 0.59 (0.02)

Table 8: Results for Sample Generation under Distribution Shifts in Noise Variables. We evaluate
the robustness of Cond-FiP to distribution shifts in the parametrization of noise distribution. We vary
the distribution shift controlled by «, where a = 1 corresponds to the results in Table 2] Each cell
reports the mean (standard error) RMSE over the multiple test datasets for each scenario. We find
that Cond-FiP is sensitive to varying levels of distribution shift in noise variables, its performance
decreases with increasing magnitude of the shift.

Total Nodes | Shift Level (o) | LIN OUT | RFF OUT
10 1 0.07 (0.01) | 0.11 (0.01)
10 2 0.07 (0.01) | 0.14 (0.02)
10 5 0.07 (0.01) | 0.25 (0.05)
10 10 0.07 (0.01) | 0.32 (0.06)
20 1 0.14 (0.03) | 0.31 (0.03)
20 2 0.14 (0.03) | 0.42 (0.03)
20 5 0.14 (0.03) | 0.57 (0.03)
20 10 0.14 (0.03) | 0.56 (0.02)
50 1 0.12 (0.02) | 0.48 (0.07)
50 2 0.12 (0.01) | 0.58 (0.06)
50 5 0.12 (0.01) | 0.65 (0.04)
50 10 0.12 (0.01) | 0.59 (0.02)
100 1 0.14 (0.02) | 0.58 (0.07)
100 2 0.14 (0.02) | 0.65 (0.06)
100 5 0.14 (0.02) | 0.67 (0.04)
100 10 0.14 (0.02) | 0.60 (0.03)

Table 9: Results for Interventional Generation under Distribution Shifts in Noise Variables. We
evaluate the robustness of Cond-FiP to distribution shifts in the parametrization of noise distribution.
We vary the distribution shift controlled by o, where o = 1 corresponds to the results in Table[3] Each
cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. We find
that Cond-FiP is sensitive to varying levels of distribution shift in noise variables, its performance
decreases with increasing magnitude of the shift.
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E Experiment on Generalization in Scarce Data Regime on AVICI
benchmark

E.1 Experiments with np,_, = 100

In this section we benchmark Cond-FiP against the baselines for the scenario when test datasets
in the input context have smaller sample size (np,.., = 100) as compared to the train datasets
(np,.., = 400) in Appendix[C]

We report the results for the task of noise prediction, sample generation, and interventional generation
in Table [I0} Table[T1] and Table [I2]respectively. We find that Cond-FiP exhibits superior generaliza-
tion as compared to baselines. For example, in the case of RFF IN, Cond-FiP is even better than FiP
for all the tasks! This can be attributed to the advantage of amortized inference; as the sample size
in test dataset decreases, the generalization of baselines would be affected a lot since they require
training from scratch on these datasets. However, amortized inference methods would be impacted
less as they do not have to trained from scratch, and the inductive bias learned by them can help them
generalize even with smaller input context.

Method Total Nodes LIN IN RFF IN LINOUT RFFOUT

DoWhy 10 0.06 (0.01) 0.22(0.03) 0.09 (0.01) 0.16 (0.03)
DECI 10 0.15(0.01) 0.3(0.02)  0.22(0.01) 0.3 (0.03)

FiP 10 0.07 (0.01) 0.18(0.01) 0.12(0.01) 0.11 (0.01)
Cond-FiP 10 0.07 (0.01) 0.14(0.01) 0.09 (0.01) 0.14 (0.01)
DoWhy 20 0.06 (0.01) 0.27 (0.05) 0.07 (0.01) 0.37 (0.01)
DECI 20 0.15(0.02) 0.33(0.02) 0.17 (0.02) 0.35 (0.03)
FiP 20 0.09 (0.01) 0.21(0.03) 0.1(0.01)  0.27 (0.03)
Cond-FiP 20 0.08 (0.01) 0.12(0.01) 0.1(0.01)  0.15 (0.01)
DolWhy 50 0.06 (0.01) 0.29 (0.04) 0.05 (0.01) 0.47 (0.04)
DECI 50 0.14 (0.01) 0.33(0.02) 0.14 (0.02) 0.4 (0.03)

FiP 50 0.08 (0.01) 0.23(0.03) 0.08 (0.01) 0.37 (0.04)
Cond-FiP 50 0.08(0.0) 0.12(0.01) 0.08 (0.01) 0.15 (0.01)
DoWhy 100 0.06 (0.01) 0.31(0.04) 0.06 (0.01) 0.5 (0.03)

DECI 100 0.13(0.01) 0.36 (0.03) 0.12(0.02) 0.44 (0.02)
FiP 100 0.08 (0.01) 0.25(0.04) 0.1 (0.01)  0.39 (0.03)
Cond-FiP 100 0.07(0.0)  0.13(0.01) 0.08 (0.01) 0.17 (0.01)

Table 10: Results for Noise Prediction with Smaller Sample Size (np, , = 100). We compare
Cond-FiP against the baselines for the task of predicting noise variable from input observations. Each
test dataset contains 100 samples, as opposed to 400 samples in Table[I] Each cell reports the mean
(standard error) RMSE over the multiple test datasets for each scenario. Shaded rows deonte the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that
Cond-FiP generalizes much better than the baselines in this low-data regime.
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Method Total Nodes LIN IN RFF IN LIN OUT RFFOUT

DoWhy 10 0.1(0.01) 0.3(0.06) 0.12(0.02) 0.19 (0.03)
DECIT 10 0.23(0.01) 0.45(0.04) 0.31(0.02) 0.38 (0.04)
FiP 10 0.13(0.01) 0.29(0.04) 0.18 (0.02) 0.15 (0.03)
Cond-FiP 10 0.09(0.01) 0.2(0.03)  0.09 (0.02) 0.14 (0.02)
DolWhy 20 0.11(0.01) 0.47(0.15) 0.11(0.02) 0.5 (0.03)

DECI 20 0.26 (0.02) 0.53(0.05) 0.26 (0.03) 0.57 (0.04)
FiP 20 0.17(0.02) 0.34(0.06) 0.17 (0.02) 0.39 (0.03)
Cond-FiP 20 0.08(0.0) 0.31(0.06) 0.13(0.01) 0.37 (0.02)
DoWhy 50 0.11(0.01) 0.42(0.08) 0.09 (0.01) 0.66 (0.06)
DECT 50 0.23(0.02) 0.59 (0.08) 0.27 (0.04) 0.73 (0.06)
FiP 50 0.13(0.01) 0.38(0.07) 0.14 (0.01) 0.58 (0.06)
Cond-FiP 50 0.1(0.01) 0.32(0.05) 0.12(0.01) 0.54 (0.05)
DoWhy 100 0.11(0.01) 0.44 (0.08) 0.11 (0.01) 0.74 (0.05)
DECI 100 0.25(0.02) 0.62(0.08) 0.25(0.01) 0.78 (0.07)
FiP 100 0.15(0.01) 0.4 (0.07)  0.19 (0.02) 0.67 (0.07)
Cond-FiP 100 0.11(0.01) 0.35(0.07) 0.14 (0.02) 0.63 (0.07)

Table 11: Results for Sample Generation with Smaller Sample Size (np,,., = 100). We compare
Cond-FiP against the baselines for the task of generating samples from the input noise variable. Each
test dataset contains 100 samples, as opposed to 400 samples in Table 2] Each cell reports the mean
(standard error) RMSE over the multiple test datasets for each scenario. Shaded rows deonte the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that
Cond-FiP generalizes much better than the baselines in this low-data regime.

Method Total Nodes LIN IN RFF IN LINOUT RFFOUT

DoWhy 10 0.09 (0.01) 0.34(0.08) 0.11 (0.01) 0.2 (0.04)

DECI 10 0.24(0.02) 0.43(0.04) 0.26 (0.03) 0.35 (0.04)
FiP 10 0.13(0.01) 0.29(0.04) 0.14 (0.02) 0.14 (0.03)
Cond-FiP 10 0.09 (0.02) 0.21(0.03) 0.09 (0.01) 0.12 (0.02)
DoWhy 20 0.1(0.01) 0.37(0.08) 0.11(0.02) 0.49 (0.04)
DECT 20 0.25(0.03) 0.5(0.05) 0.28 (0.03) 0.54 (0.04)
FiP 20 0.16 (0.01) 0.33(0.06) 0.2 (0.03)  0.38 (0.03)
Cond-FiP 20 0.1(0.01) 0.27(0.05) 0.15(0.02) 0.29 (0.03)
DoWhy 50 0.12(0.02) 0.49 (0.14) 0.09 (0.01) 0.64 (0.07)
DECI 50 0.26 (0.03) 0.56 (0.07) 0.26 (0.03) 0.72 (0.06)
FiP 50 0.16 (0.02) 0.36 (0.06) 0.15(0.01) 0.57 (0.06)
Cond-FiP 50 0.13(0.02) 0.29(0.04) 0.12(0.01) 0.49 (0.07)
DoWhy 100 0.11 (0.01) 0.46 (0.07) 0.11(0.01) 1.16 (0.38)
DECT 100 0.24 (0.02) 0.62 (0.08) 0.26 (0.01) 0.78 (0.07)
FiP 100 0.16 (0.02) 0.39 (0.07) 0.2 (0.02)  0.66 (0.07)
Cond-FiP 100 0.12(0.02) 0.32(0.07) 0.13 (0.01) 0.58 (0.07)

Table 12: Results for Interventional Generation with Smaller Sample Size (np, , = 100). We
compare Cond-FiP against the baselines for the task of generating interventional data from the input
noise variable. Each test dataset contains 100 samples, as opposed to 400 samples in Table[3] Each
cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded
rows deonte the case where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.
Results show that Cond-FiP generalizes much better than the baselines in this low-data regime.
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E.2 Experiments with np, ., = 50

We conduct more experiments for the smaller sample size scenarios, where decrease the sample size
even further to np,.,, = 50 samples. We report the results for the task of noise prediction, sample
generation, and interventional generation in Table[I3] Table[I4] and Table[I3|respectively. We find
that baselines perform much worse than Cond-FiP for the all different SCM distributions, highlighting
the efficacy of Cond-FiP for inferring causal mechanisms when the input context has smaller sample
size. Note that there were issues with training DoWhy for such a small dataset, hence we do not
consider them for this scenario.

Method Total Nodes LIN IN RFF IN LINOUT RFFOUT

DECI 10 0.19 (0.02) 0.41(0.03) 0.2 (0.02)  0.42 (0.04)
FiP 10 0.13(0.03) 0.27(0.03) 0.15(0.02) 0.21 (0.03)
Cond-FiP 10 0.09 (0.01) 0.17(0.01) 0.11 (0.01) 0.16 (0.01)
DECI 20 0.2(0.01) 0.42(0.03) 0.25(0.04) 0.45 (0.05)
FiP 20 0.12(0.01) 0.33(0.04) 0.15(0.02) 0.35 (0.04)
Cond-FiP 20 0.1(0.01) 0.16(0.01) 0.11(0.01) 0.17 (0.01)
DECI 50 0.2(0.02) 0.43(0.02) 0.2(0.03) 0.5 (0.05)

FiP 50 0.13(0.01) 0.32(0.03) 0.13(0.01) 0.49 (0.05)
Cond-FiP 50 0.1(0.01) 0.16(0.0) 0.1(0.01)  0.17 (0.01)
DECI 100 0.19 (0.02) 0.43 (0.03) 0.21 (0.01) 0.53 (0.02)
FiP 100 0.11(0.01) 0.32(0.04) 0.13 (0.01) 0.48 (0.02)
Cond-FiP 100 0.09 (0.01) 0.16 (0.01) 0.09 (0.01) 0.18 (0.01)

Table 13: Results for Noise Prediction with Smaller Sample Size (np, ., = 50). We compare
Cond-FiP against the baselines for the task of predicting noise variable from input observations. Each
test dataset contains 50 samples, as opposed to 400 samples in Table[T} Each cell reports the mean
(standard error) RMSE over the multiple test datasets for each scenario. Shaded rows denote the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that
Cond-FiP generalizes much better than the baselines in this low-data regime.

33



Method Total Nodes LIN IN RFF IN LINOUT RFFOUT

DECI 10 0.31(0.02) 0.58(0.05) 0.27 (0.04) 0.49 (0.07)
FiP 10 0.2(0.03) 0.4(0.05) 0.21(0.03) 0.25 (0.04)
Cond-FiP 10 0.12(0.02) 0.28(0.03) 0.12 (0.01) 0.18 (0.03)
DECI 20 0.34(0.02) 0.66 (0.08) 0.39 (0.07) 0.68 (0.05)
FiP 20 0.2(0.01)  0.51(0.08) 0.25(0.04) 0.51 (0.02)
Cond-FiP 20 0.13(0.01) 0.4(0.06) 0.19(0.02) 0.43 (0.02)
DECI 50 0.32(0.02) 0.66 (0.06) 0.36(0.02) 0.8 (0.06)

FiP 50 0.2(0.01)  0.48(0.07) 0.22(0.02) 0.69 (0.06)
Cond-FiP 50 0.15(0.02) 0.4(0.05) 0.16 (0.01) 0.59 (0.06)
DECI 100 0.36 (0.04) 0.68 (0.08) 0.39 (0.03) 0.84 (0.06)
FiP 100 0.2(0.02)  0.49 (0.09) 0.28 (0.03) 0.73 (0.07)
Cond-FiP 100 0.16 (0.01) 0.42 (0.07) 0.22 (0.01) 0.65 (0.06)

Table 14: Results for Sample Generation with Smaller Sample Size (np, , = 50). We compare
Cond-FiP against the baselines for the task of generating samples from the input noise variable. Each
test dataset contains 50 samples, as opposed to 400 samples in Table[2] Each cell reports the mean
(standard error) RMSE over the multiple test datasets for each scenario. Shaded rows denote the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that
Cond-FiP generalizes much better than the baselines in this low-data regime.

Method Total Nodes LIN IN RFF IN LINOUT RFFOUT

DECI 10 0.3(0.03) 0.53(0.05) 0.26 (0.04) 0.42 (0.05)
FiP 10 021 (0.04) 0.35(0.04) 0.2 (0.03)  0.22 (0.03)
Cond-FiP 10 0.12(0.01) 0.19(0.03) 0.07 (0.01) 0.14 (0.02)
DECT 20 0.33(0.02) 0.6(0.06) 0.43 (0.07) 0.63 (0.04)
FiP 20 0.21(0.02) 0.46 (0.07) 0.29 (0.04) 0.49 (0.02)
Cond-FiP 20 0.11(0.01) 0.29 (0.06) 0.15(0.02) 0.32 (0.03)
DECI 50 0.34(0.02) 0.66(0.07) 0.34(0.02) 0.78 (0.06)
FiP 50 0.21(0.02) 0.46 (0.07) 0.23(0.02) 0.68 (0.06)
Cond-FiP 50 0.13(0.02) 0.31(0.05) 0.12(0.02) 0.51 (0.07)
DECI 100 0.37 (0.04) 0.67 (0.08) 0.4 (0.04)  0.84 (0.06)
FiP 100 0.21(0.02) 0.49 (0.08) 0.28 (0.03) 0.73 (0.07)
Cond-FiP 100 0.12(0.01) 0.33 (0.07) 0.14 (0.01) 0.58 (0.07)

Table 15: Results for Interventional Generation with Smaller Sample Size (np, ., = 50). We
compare Cond-FiP against the baselines for the task of generating interventional data from the input
noise variable. Each test dataset contains 50 samples, as opposed to 400 samples in Table[3] Each
cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded
rows deonte the case where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.
Results show that Cond-FiP generalizes much better than the baselines in this low-data regime.
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F Experiments without True Causal Graph on AVICI Benchmark

Results in Appendix [C](Table[I] Table [2] Table 3] require the knowledge of true graph (G) as part
of the input context to Cond-FiP. In this section we conduct where we don’t provide the true graph
in the input context, rather we infer the graph G using an amortized causal discovery approach
(AVICI [Lorch et al., 2022|]) from the observational data D x. We chose AVICI for this task since it
can enable to amortized inference of causal graphs, hence allowing the combined pipeline of AVICI +
Cond-FiP can perform amortized inference of SCMs. More precisely, AVICI infers the graph from
a novel instance G from input context D x without updating any parameters, and we pass (Q ,Dx)
as the input context for Cond-FiP. Therefore, for any z € R¢, Cond-FiP ( T(z,Dx, Q)) aims to
replicate the functional mechanism F'(z) of the underlying SCM.

The results for benchmarking Cond-FiP with inferred graphs using AVICI for the task of noise
prediction, sample generation, and interventional generation are provided in Table [I6] Table
and Table @]respectively. For a fair comparison, the baselines FiP, DECI, and DoWhy also use
the inferred graph (%)) by AVICI instead of the true graph (G). We find that Cond-FiP remains
competitive to baselines even for the scenario of unknown true causal graph. Hence, our training
procedure can be extended for amortized inference of both causal graphs and causal mechanisms of
the SCM.

Method Total Nodes LIN IN RFF IN LINOUT RFFOUT

DoWhy 10 0.16 (0.05) 0.24 (0.04) 0.12 (0.03) 0.12 (0.02)
DECI 10 0.21(0.05) 0.29(0.04) 0.16 (0.03) 0.19 (0.04)
FiP 10 0.16 (0.05) 0.2(0.04)  0.13(0.03) 0.09 (0.01)
Cond-FiP 10 0.15(0.05) 0.2(0.04) 0.13(0.03) 0.11 (0.01)
DoWhy 20 0.19 (0.05) 0.22(0.03) 0.2(0.03)  0.26 (0.01)
DECT 20 0.23(0.05) 0.28(0.03) 0.24 (0.04) 0.28 (0.02)
FiP 20 0.2(0.05) 0.2(0.03) 0.21(0.03) 0.21 (0.02)
Cond-FiP 20 0.18 (0.05) 0.17(0.02) 0.21 (0.03) 0.16 (0.02)
DoWhy 50 0.44 (0.05) 0.3(0.03)  0.51 (0.03) 0.38 (0.04)
DECI 50 0.46 (0.05) 0.33(0.04) 0.52(0.03) 0.42 (0.05)
FiP 50 0.44 (0.05) 0.28(0.04) 0.51 (0.03) 0.35 (0.05)
Cond-FiP 50 0.43 (0.05) 0.24(0.03) 0.53 (0.03) 0.29 (0.04)
DoWhy 100 0.49 (0.06) 0.38 (0.03) 0.64 (0.03) 0.53 (0.04)
DECT 100 0.5 (0.06)  0.41 (0.03) 0.64 (0.03) 0.55 (0.03)
FiP 100 0.49 (0.06) 0.37 (0.03) 0.64 (0.03) 0.51 (0.04)
Cond-FiP 100 0.48 (0.06) 0.34 (0.03) 0.64 (0.03) 0.49 (0.04)

Table 16: Results for Noise Prediction without True Graph. We compare Cond-FiP against the
baselines for the task of predicting noise variable from input observations. Unlike experiments
in Table [I} the true graph G is not present in input context, rather its inferred via AVICI [Lorch
et al.,|2022]]. Each cell reports the mean (standard error) RMSE over the multiple test datasets for
each scenario. Shaded rows deonte the case where the graph size is larger than the train graph sizes
(d = 20) for Cond-FiP. Results indicate Cond-FiP can generalize to novel instances even in the
absence of true graph.
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Method Total Nodes LIN IN RFF IN LINOUT RFFOUT

DoWhy 10 0.22(0.07) 0.29 (0.05) 0.13 (0.04) 0.14 (0.02)
DECI 10 0.29 (0.06) 0.39(0.05) 0.18 (0.04) 0.22 (0.05)
FiP 10 0.23(0.06) 0.26 (0.05) 0.15(0.04) 0.12 (0.02)
Cond-FiP 10 0.22(0.07) 0.26(0.05) 0.13 (0.04) 0.11 (0.02)
DoWhy 20 0.25(0.05) 0.38(0.06) 0.29 (0.06) 0.42 (0.03)
DECI 20 0.3(0.06) 0.52(0.07) 0.34(0.06) 0.47 (0.04)
FiP 20 0.26 (0.05) 0.37(0.07) 0.3 (0.06)  0.33 (0.04)
Cond-FiP 20 0.24 (0.05) 0.36 (0.06) 0.29 (0.06) 0.35 (0.03)
DoWhy 50 0.53(0.07) 0.46 (0.06) 0.58 (0.03) 0.59 (0.07)
DECI 50 0.55(0.07) 0.54(0.07) 0.59 (0.02) 0.66 (0.06)
FiP 50 0.53(0.07) 0.44 (0.05) 0.58 (0.02) 0.53 (0.07)
Cond-FiP 50 0.52(0.07) 0.43(0.05) 0.58 (0.02) 0.53 (0.07)
DoWhy 100 0.67 (0.07) 0.52 (0.06) 0.69 (0.02) 0.68 (0.04)
DECI 100 0.69 (0.08) 0.57 (0.08) 0.69 (0.02) 0.71 (0.04)
FiP 100 0.66 (0.07) 0.5(0.07)  0.68 (0.02) 0.64 (0.05)
Cond-FiP 100 0.64 (0.06) 0.49 (0.06) 0.68 (0.02) 0.63 (0.05)

Table 17: Results for Sample Generation without True Graph. We compare Cond-FiP against
the baselines for the task of generating samples from the input noise variable. Unlike experiments
in Table 2] the true graph G is not present in input context, rather its inferred via AVICI [LCorch:
et al.,|2022].. Each cell reports the mean (standard error) RMSE over the multiple test datasets for
each scenario. Shaded rows deonte the case where the graph size is larger than the train graph sizes
(d = 20) for Cond-FiP. Results indicate Cond-FiP can generalize to novel instances even in the
absence of true graph.

Method Total Nodes LIN IN RFF IN LINOUT RFFOUT

DoWhy 10 0.32(0.09) 0.3(0.05) 0.13(0.04) 0.13 (0.02)
DECI 10 0.37(0.08) 0.39 (0.05) 0.17 (0.03) 0.21 (0.04)
FiP 10 0.32(0.08) 0.27 (0.05) 0.14 (0.04) 0.1 (0.02)

Cond-FiP 10 0.31(0.08) 0.3(0.05) 0.14 (0.04) 0.13 (0.02)
DoWhy 20 0.29 (0.06) 0.38(0.07) 0.37 (0.05) 0.4 (0.03)

DECI 20 0.34(0.06) 0.51(0.07) 0.41(0.05) 0.43 (0.03)
FiP 20 0.3(0.06) 0.37(0.07) 0.38(0.05) 0.31(0.03)
Cond-FiP 20 0.29 (0.06) 0.37(0.06) 0.37 (0.05) 0.33 (0.03)
DoWhy 50 0.54 (0.08) 0.45(0.06) 0.62(0.04) 0.57 (0.06)
DECI 50 0.57 (0.08) 0.52(0.07) 0.63(0.03) 0.64 (0.06)
FiP 50 0.55(0.08) 0.43(0.05) 0.62(0.03) 0.51 (0.07)
Cond-FiP 50 0.54 (0.08) 0.43(0.05) 0.62(0.03) 0.51 (0.06)
DoWhy 100 0.66 (0.06) 0.52 (0.07) 0.71 (0.05) 0.65 (0.05)
DECI 100 0.68 (0.07) 0.58 (0.09) 0.71 (0.05) 0.7 (0.04)

FiP 100 0.65 (0.06) 0.51 (0.07) 0.71 (0.05) 0.62 (0.05)
Cond-FiP 100 0.64 (0.06) 0.49 (0.06) 0.7 (0.04)  0.62 (0.05)

Table 18: Results for Interventional Generation without True Graph. We compare Cond-FiP
against the baselines for the task of interventional data from the input noise variable. Unlike
experiments in Table [3] the true graph G is not present in input context, rather its inferred via
AVICI [Lorch et al.| 2022]]. Each cell reports the mean (standard error) RMSE over the multiple test
datasets for each scenario. Shaded rows deonte the case where the graph size is larger than the train
graph sizes (d = 20) for Cond-FiP. Results indicate Cond-FiP can generalize to novel instances even
in the absence of true graph.
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G Ablation Study on AVICI benchmark

G.1 Ablation Study of Encoder

We conduct an ablation study where we train two variants of the encoder in Cond-FiP described as
follows:

* Cond-FiP (LIN): We sample SCMs with linear causal mechanisms during training of the
encoder.

* Cond-FiP (RFF): We sample SCMs with non-linear causal mechanisms during training of
the encoder.

Note that for the training the subsequent decoder, we sample SCMs with both linear and rff causal
mechanisms as in the main results ( Table[I] Table[2] and Table [3). Note that in the main results,
the encoder was trained by sampling SCMs with both linear and rff functional relationships. Hence,
this ablation helps us to understand whether the strategy of training encoder on mixed functional
relationships can bring more generalization to the amortization process, or if we should have trained
encoders specialized for linear and non-linear functional relationships.

We present our results of the ablation study for the task of noise prediction, sample generation, and
interventional generation in Table [T9] Table [20] Table 21| respectively. Our findings indicate that
Cond-FiP is robust to the choice of encoder training strategy! Even though the encoder for Cond-FiP
(RFF) was only trained on data from non-linear SCMs, its generalization performance is similar to
Cond-FiP where the encoder was trained on data from both linear and non-linear SCMs.

Method Total Nodes LIN IN RFF IN LINOUT RFFOUT
Cond-FiP(LIN) 10 0.07(0.01) 0.21(0.02) 0.08 (0.01) 0.2 (0.03)

Cond-FiP(RFF) 10 0.06 (0.01) 0.11 (0.01) 0.07 (0.01) 0.09 (0.01)
Cond-FiP 10 0.06 (0.01) 0.1 (0.01) 0.07 (0.01) 0.1 (0.01)

Cond-FiP(LIN) 20 0.07 (0.01) 0.19(0.02) 0.09 (0.01) 0.21 (0.01)
Cond-FiP(RFF) 20 0.06 (0.01) 0.09 (0.01) 0.1(0.02) 0.11 (0.01)
Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.07 (0.0) 0.12 (0.0)

Cond-FiP(LIN) 50 0.07(0.01) 0.21(0.02) 0.07 (0.01) 0.24 (0.01)
Cond-FiP(RFF) 50 0.07(0.01) 0.09 (0.01) 0.07 (0.0) 0.14 (0.01)
Cond-FiP 50 0.06 (0.01) 0.1(0.01) 0.07 (0.01) 0.14 (0.01)
Cond-FiP(LIN) 100  0.06 (0.0) 0.22 (0.02) 0.07 (0.01) 0.26 (0.01)
Cond-FiP(RFF) 100  0.06 (0.01) 0.09 (0.01) 0.07 (0.01) 0.14 (0.01)

Cond-FiP 100 0.05(0.0)  0.1(0.01)  0.07 (0.01) 0.16 (0.01)

Table 19: Encoder Ablation for Noise Prediction. We compare Cond-FiP against the baselines
for the task of predicting noise variable from input observations against two variants. One variant
corresponds to the encoder trained on SCMs with only linear functional relationships, Cond-FiP(LIN).
Similarly, we have another variant where the decoder was trained on SCMs with only rff functional
relationships, Cond-FiP(RFF). Each cell reports the mean (standard error) RMSE over the multiple
test datasets for each scenario. Results show that training on only non-linear SCMs (Cond-FiP(RFF))
gives similar performance as training on both linear and non-linear SCMs (Cond-FiP).
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Method Total Nodes LIN IN RFF IN LINOUT RFFOUT

Cond-FiP(LIN) 10 0.05(0.01) 0.14(0.02) 0.06 (0.0)  0.08 (0.01)
Cond-FiP(RFF) 10 0.08 (0.01) 0.18(0.06) 0.06 (0.0) 0.07 (0.01)
Cond-FiP 10 0.06 (0.01) 0.14(0.02) 0.05 (0.01) 0.08 (0.01)
Cond-FiP(LIN) 20 0.05(0.01) 0.25(0.06) 0.07 (0.01) 0.3 (0.03)

Cond-FiP(RFF) 20 0.08(0.01) 0.22(0.05) 0.11(0.01) 0.29 (0.03)
Cond-FiP 20 0.05(0.01) 0.24 (0.06) 0.07 (0.01) 0.3 (0.03)

Cond-FiP(LIN) 50 0.08 (0.01) 0.26(0.05) 0.11 (0.04) 0.52 (0.08)
Cond-FiP(RFF) 50 0.11(0.01) 0.26(0.05) 0.15(0.02) 0.48 (0.07)
Cond-FiP 50 0.08 (0.01) 0.25(0.05) 0.07 (0. ) 0.48 (0.07)
Cond-FiP(LIN) 100 0.07 (0.01) 0.27 (0.06) 0.08 (0.0)  0.57 (0.07)
Cond-FiP(RFF) 100 0.11 (0.01) 0.29 (0.08) 0.18 (0. 03) 0.61 (0.08)
Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 20: Encoder Ablation for Sample Generation. We compare Cond-FiP against the baselines
for the task of generating samples from input noise variables against two variants. One variant
corresponds to the encoder trained on SCMs with only linear functional relationships, Cond-FiP(LIN).
Similarly, we have another variant where the decoder was trained on SCMs with only rff functional
relationships, Cond-FiP(RFF). Each cell reports the mean (standard error) RMSE over the multiple
test datasets for each scenario. Results show that training on only non-linear SCMs (Cond-FiP(RFF))
gives similar performance as training on both linear and non-linear SCMs (Cond-FiP).

Method Total Nodes LIN IN RFF IN LINOUT RFF OUT
Cond-FiP(LIN) 10 0.09(0.02) 0.2(0.03)  0.06 (0.01) 0.1 (0.01)
Cond-FiP(RFF) 10 0.13(0.04) 0.23(0.08) 0.08(0.01) 0.1 (0.01)
Cond-FiP 10 0.1(0.03) 0.21(0.03) 0.07(0.01) 0.11 (0.01)
Cond-FiP(LIN) 20 0.08 (0.01) 0.24 (0.05) 0.12(0.04) 0.3 (0.03)
Cond-FiP(RFF) 20 0.13(0.02) 0.23(0.05) 0.13(0.03) 0.31 (0.02)
Cond-FiP 20 0.09 (0.01) 0.24(0.05) 0.14 (0.03) 0.31 (0.03)
Cond-FiP(LIN) 50 0.12(0.02) 0.29(0.05) 0.1(0.01)  0.51 (0.07)
Cond-FiP(RFF) 50 0.14 (0.02) 0.29 (0.05) 0.18 (0.03) 0.47 (0.06)
Cond-FiP 50 0.13(0.02) 0.27(0.04) 0.12(0.02) 0.48 (0.07)
Cond-FiP(LIN) 100 0.1(0.01) 0.3(0.06) 0.12(0.01) 0.56 (0.07)
Cond-FiP(RFF) 100 0.12(0.01) 0.31(0.07) 0.2(0.04) 0.6 (0.09)
Cond-FiP 100 0.1 (0.01) 0.3(0.06)  0.14 (0.02) 0.58 (0.07)

Table 21: Encoder Ablation for Interventional Generation. We compare Cond-FiP against the
baselines for the task of generating interventional data from input noise variables against two variants.
One variant corresponds to the encoder trained on SCMs with only linear functional relationships,
Cond-FiP(LIN). Similarly, we have another variant where the decoder was trained on SCMs with
only rff functional relationships, Cond-FiP(RFF). Each cell reports the mean (standard error) RMSE
over the multiple test datasets for each scenario. Results show that training on only non-linear
SCMs (Cond-FiP(RFF)) gives similar performance as training on both linear and non-linear SCMs
(Cond-FiP).
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G.2 Ablation Study of Decoder

We conduct an ablation study where we train two variants of the decoder Cond-FiP described as
follows:

* Cond-FiP (LIN): We sample SCMs with linear functional relationships during training.
* Cond-FiP (RFF): We sample SCMs with non-linear functional relationships for training.

Note that in the main results (Table [2, Table [3) we show the performances of Cond-FiP trained by
sampling SCMs with both linear and non-linear causal mechanisms. Hence, this ablations helps
us to understand whether the strategy of training on mixed causal mechanisms can bring more
generalization to the amortization process, or if we should have trained decoders specialized for linear
and non-linear functional relationships.

We present the results of our ablation study in Table [22|and Table[23] for the task of sample generation
and interventional generation respectively. Our findings indicate that Cond-FiP decoder trained
for both linear and non-linear functional relationships is able to specialize for both the scenarios.
While Cond-FiP (LIN) is only able to perform well for linear benchmarks, and similarly Cond-FiP
(RFF) can only achieve decent predictions for non-linear benchmarks, Cond-FiP is achieve the best
performances on both the linear and non-linear benchmarks.

Method Total Nodes LIN IN RFF IN LINOUT RFFOUT
Cond-FiP(LIN) 10 0.07 (0.02) 0.4 (0.06) 0.07 (0.01) 0.25 (0.06)
Cond-FiP(RFF) 10 0.1(0.02) 0.15 (0.02) 0.08 (0.01) 0.09 (0.01)
Cond-FiP 10 0.06 (0.01) 0.14 (0.02) 0.05 (0.01) 0.08 (0.01)
Cond-FiP(LIN) 20 0.07(0.01) 0.44 (0.07) 0.10(0.01) 0.58 (0.02)
Cond-FiP(RFF) 20 0.11 (0.01) 0.26 (0.06) 0.14 (0.01) 0.31 (0.03)
Cond-FiP 20 0.05(0.01) 0.24 (0.06) 0.07(0.01) 0.3 (0.03)

Cond-FiP(LIN) 50 0.10 (0.01) 0.5 (0.07) 0.14 (0.02) 0.69 (0.04)
Cond-FiP(RFF) 50 0.15(0.02) 0.27 (0.05) 0.19(0.02) 0.5 (0.07)

Cond-FiP 50 0.08 (0.01) 0.25(0.05) 0.07 (0.0) 0.48 (0.07)
Cond-FiP(LIN) 100 0.1 (0.01) 0.51 (0.07) 0.15(0.02) 0.72(0.04)
Cond-FiP(RFF) 100 0.16 (0.03) 0.29 (0.07) 0.27 (0.04) 0.59 (0.06)
Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 22: Decoder Ablation for Sample Generation. We compare Cond-FiP for the task of
generating samples from input noise variables against two variants. One variant corresponds to a
decoder trained on SCMs with only linear functional relationships, Cond-FiP(LIN). Similarly, we
have another variant where the decoder was trained on SCMs with only rff functional relationships,
Cond-FiP(RFF). Each cell reports the mean (standard error) RMSE over the multiple test datasets
for each scenario. Results indicate that training on both linear and non-linear SCMs is crucial to
generalize effectively in all scenarios.
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Method Total Nodes LIN IN RFF IN LINOUT RFFOUT

Cond-FiP(LIN) 10 0.09 (0.02) 0.40 (0.07) 0.06 (0.01) 0.22 (0.04)
Cond-FiP(RFF) 10 0.16 (0.05) 0.22(0.03) 0.08 (0.01) 0.11 (0.01)
Cond-FiP 10 0.10 (0.03) 0.21 (0.03) 0.07 (0.01) 0.11 (0.01)
Cond-FiP(LIN) 20 0.10 (0.01) 0.45(0.07) 0.16 (0.03) 0.57 (0.02)
Cond-FiP(RFF) 20 0.14(0.02) 0.26 (0.05) 0.21 (0.03) 0.32 (0.02)
Cond-FiP 20 0.09 (0.01) 0.24(0.05) 0.14 (0.03) 0.31 (0.03)
Cond-FiP(LIN) 50 0.14 (0.02) 0.49 (0.07) 0.14 (0.02) 0.68 (0.04)
Cond-FiP(RFF) 50 0.19(0.03) 0.28 (0.05) 0.21 (0.03) 0.49 (0.06)
Cond-FiP 50 0.13(0.02) 0.27(0.04) 0.12(0.02) 0.48 (0.07)
Cond-FiP(LIN) 100 0.12(0.02) 0.52(0.07) 0.18 (0.03) 0.71 (0.04)
Cond-FiP(RFF) 100 0.18 (0.03) 0.32(0.07) 0.24(0.04) 0.59 (0.07)
Cond-FiP 100 0.10 (0.01) 0.30 (0.06) 0.14 (0.02) 0.58 (0.07)

Table 23: Decoder Ablation for Interventional Generation. We compare Cond-FiP against two
variants for the task of interventional data from input noise variables. One variant corresponds to a
decoder trained on SCMs with only linear functional relationships, Cond-FiP(LIN). Similarly, we
have another variant where the decoder was trained on SCMs with only rff functional relationships,
Cond-FiP(RFF). Each cell reports the mean (standard error) RMSE over the multiple test datasets
for each scenario. Results indicate that training on both linear and non-linear SCMs is crucial to
generalize effectively in all scenarios.
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H Experiments on CSuite with Complex Noise Distributions
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Figure 7: We compare Cond-FiP against the baselines for the different evaluation tasks on the Large
Backdoor and Weak Arrow datasets from the CSuite benchmark, where the noise distribution
is modified to be a multi-modal gaussian mixture model. We experiment with 6 different cases of
the noise distribution for each dataset. The y-axis denotes the RMSE for the respective tasks across
the 12 scenarios (datasets & noise distribution). Results indicate that Cond-FiP can generalize to
instances with more complex noise distributions like gaussian mixture models.

To conduct more OOD evaluations, we modify the noise distribution of the Large Backdoor and Weak
Arrow datasets from the Csuite benchmark such that the noise variables are sampled from a guassian
mixture model (GMM). We considered the following cases for the GMM noise distribution.

* Noise is sampled with equal probability from either N(—2, 1) and N(2,1).
* Noise is sampled with equal probability from either N(—2,2) and N(2,2).
* Noise is sampled with equal probability from either N(—2, 1) and N (2, 2).
* Noise is sampled with equal probability from either N(—5,1) and N(5,1).
* Noise is sampled with equal probability from either N(—5,2) and N (5, 2).
* Noise is sampled with equal probability from either N(—5, 1) and N (5, 2).

This leads to a total of 12 experimental setting with 6 different GMM noise distribution for both
the Large Backdoor and Weak Arrow datasets from the CSuite benchmark. Results in Figure
demonstrate that Cond-FiP remains competitive with baselines across all tasks. Importantly, while
baselines were trained from scratch for each specific gaussian mixture noise distribution, Cond-
FiP was pretrained only on gaussian noise and generalizes effectively to settings with GMM noise
distribtion.
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I Experiments on Real World Benchmark

Method | MMD(DE, DEY)  MMD(DL™, DXy | MMD(Dgext, DY)

DoWhy 0.015 0.014 0.005
DECI 0.014 0.005 0.005
FiP 0.015 0.005 0.005
Cond-FiP | 0.013 0.005 0.005

Table 24: Results for Sachs dataset. We benchmark Cond-FiP against the baselines for the task of
generating observational data on the real world Sachs benchmark. Each cell reports the MMD, and
we also report the reconstruction error for all of the methods. Results indicate that Cond-FiP matches
the performance of baselines trained from scratch.

We use the real world flow cytometry dataset [Sachs et al.l|2005] to benchmark Cond-FiP againts the
baselines. This dataset contains n ~ 800 observational samples expressed in a d = 11 dimensional
space, and the reference (true) causal graph. We split this into context D" € Rmeonex X apd
queries D™ € R *d_ each of size Neonext = Nquery = 400. Note that the context dataset is to
used to train the baselines and obtain dataset embedding for Cond-FiP, while the query dataset is used
for evaluation of all the methods.

Since we don’t have access to the true causal mechanisms, we cannot compute RMSE for noise
prediction or sample generation like we did in our experiments with synthetic benchmarks. Instead

for each method, we obtain the noise predictions Df{’,“‘e’“ on the context, and use it to fit a gaussian
distribution for each component (node). Then we use the learned gaussian distribution to sample new

noise variables, D(}f}ery , which are mapped to the observations as per the causal mechanisms learned
by each method, D%”. Finally, we compute the maximum mean discrepancy (MMD) distance

between D% and D% as metric to determine whether the method has captured the true causal
mechanisms. For consistency, we also evaluate the reconstruction performances of the models by

using directly the inferred noise from context D™ from the models, and then compute MMD

between their reconstructed data (D) and the query data (D%™).

Table [24] presents our results, where for reference we also report the MMD distance between samples
from the context and query split, which should serve as the gold standard since both the datasets are
sampled from the same distribution. We find that Cond-FiP is competitive with the baselines that
were trained from scratch. Except DoWhy, the MMD distance with reconstructed samples from the
methods are close to oracle performance.

No Interventional Generation Results. Note that Cond-FiP (and the other baselines considered
in this work) only supports hard interventions while the interventional data available for Sachs are
soft interventions (i.e. the interventional operations applied are unknown). Hence, we are unable to
provide a comprehensive evaluation of Cond-FiP (as well as the other baselines) for interventional
predictions on Sachs.
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J Comparing Cond-FiP with CausalNF

We also compare Cond-FiP with CausalNF [Javaloy et al., 2023] for the task of noise prediction
(Table@) and sample generation (Table [26)). The test datasets consist of ns = 400 samples, exact
same setup as in our main results (Tablelzm@Table@ and Table[3). To ensure a fair comparison, we
provided CausalNF with the true causal graph.

Our analysis reveals that CausalNF underperforms compared to Cond-FiP in both tasks, and it is
also a weaker baseline relative to FiP. Note also the authors did not experiment with large graphs
for CausalNF; the largest graph they used contained approximately 10 nodes. Also, they trained
CausalNF on much larger datasets with a sample size of 20k, while our setup has datasets with 400
samples only.

Method Total Nodes LIN IN RFF IN LIN OUT RFFOUT

CausalNF 10 0.16 (0.02) 0.41(0.09) 0.38 (0.04) 0.35 (0.02)
Cond-FiP 10 0.06 (0.01) 0.10 (0.01) 0.07 (0.01) 0.10 (0.01)
CausalNF 20 0.18(0.03) 0.45(0.12) 0.29 (0.05) 0.36 (0.03)
Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.07 (0.00) 0.12 (0.00)
CausalNF 50 0.25(0.03) 0.56 (0.09) 0.45 (0.06) 0.38 (0.04)
Cond-FiP 50 0.06 (0.01) 0.10 (0.01) 0.07 (0.01) 0.14 (0.01)
CausalNF 100 0.24 (0.02) 0.80 (0.1)  0.37 (0.06) 0.49 (0.05)
Cond-FiP 100 0.05(0.0)  0.10 (0.01) 0.07 (0.01) 0.16 (0.01)

Table 25: Results for Noise Prediction with CausalNF. We compare Cond-FiP against CausalNF for
the task of predicting noise variables from input observations. We find that CausalNF underperforms
compared to Cond-FiP by a significant margin.

Method Total Nodes LIN IN RFF IN LINOUT RFFOUT

CausalNF 10 0.27(0.07) 0.29 (0.04) 0.20 (0.03) 0.20 (0.03)
Cond-FiP 10 0.06 (0.01) 0.14(0.02) 0.05 (0.01) 0.08 (0.01)
CausalNF 20 0.23(0.02) 0.36 (0.05) 0.22(0.02) 0.45 (0.02)
Cond-FiP 20 0.05(0.01) 0.24(0.06) 0.07 (0.01) 0.30 (0.03)
CausalNF 50 1.5(0.26) 0.93(0.13) 3.09 (0.55) 0.95 (0.04)
Cond-FiP 50 0.08 (0.01) 0.25(0.05) 0.07 (0.00) 0.48 (0.07)
CausalNF 100 1.23(0.13) 0.85(0.08) 1.67 (0.13) 0.96 (0.04)
Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 26: Results for Sample Generation with CausalNF. We compare Cond-FiP against CausalNF
for the task of generating samples from input noise variables. We find that CausalNF underperforms
compared to Cond-FiP by a significant margin.
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K Limitations of Cond-FiP

K.1 Evaluating Generalization of Cond-Fip to Larger Sample Size

In the main results (Table[I] Table[2] and Table[3)), we evaluated Cond-FiP’s generalization capabilities
to larger graphs (d = 50, d = 100) than those used for training (d = 20). In this section, we carry
a similar experiment where instead of increasing the total nodes in the graph, we test Cond-FiP on
datasets with more samples np, ., = 1000, while Cond-FiP was only trained for datasets with sample
size np = 400.

The results for the experiments are presented in Table [27] Table [28] and Table [29]for the task of noise
prediction, sample generation, and interventional generation respectively. Our findings indicate that
Cond-FiP is still able to compete with other baseline in this regime. However, we observe that the
performances of Cond-FiP did not improve by increasing the sample size compared to the results
obtained for the 400 samples case, meaning that the performance of our models depends exclusively
on the setting used at training time. We leave for future works the learning of a larger instance of
Cond-FiP trained on larger sample size problems.

Method Total Nodes LIN IN RFF IN LINOUT RFFOUT

DoWhy 10 0.02(0.0) 0.10(0.01) 0.21 (0.04) 0.23 (0.02)
DECI 10 0.05(0.01) 0.12(0.01) 0.21 (0.04) 0.27 (0.03)
FiP 10 0.03(0.0) 0.06(0.0) 0.21(0.04) 0.23 (0.02)
Cond-FiP 10 0.05(0.01) 0.11(0.01) 0.21 (0.04) 0.25 (0.02)
DoWhy 20 0.02(0.0) 0.11(0.02) 0.16 (0.01) 0.3 (0.02)

DECI 20 0.04 (0.01) 0.11(0.02) 0.16 (0.01) 0.29 (0.02)
FiP 20 0.03(0.0) 0.08(0.02) 0.16(0.01) 0.26 (0.02)
Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.18 (0.01) 0.26 (0.01)

Table 27: Results for Noise Prediction with Larger Sample Size (np, ., = 1000). We compare
Cond-FiP against the baselines for the task of predicting noise variables from the input observations.
Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
Results indicate that Cond-FiP does not yet benefit from larger context sizes at inference, suggesting
the need to scale both the model and training data for richer contexts.
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Method Total Nodes LIN IN RFF IN LINOUT RFFOUT

DoWhy 10 0.04(0.0) 0.14 (0.02) 0.29 (0.04) 0.3 (0.03)
DECT 10 0.07 (0.01) 0.17(0.02) 0.29 (0.04) 0.33 (0.04)
FiP 10 0.05(0.0)  0.09 (0.01) 0.29 (0.04) 0.29 (0.03)
Cond-FiP 10 0.05(0.01) 0.14(0.02) 0.29 (0.04) 0.29 (0.03)
DoWhy 20 0.04 (0.01) 0.21(0.05) 0.28 (0.01) 0.55 (0.06)
DECI 20 0.07(0.01) 0.21(0.04) 0.29(0.01) 0.59 (0.06)
FiP 20 0.05(0.0) 0.17(0.04) 0.28 (0.01) 0.53 (0.06)
Cond-FiP 20 0.05(0.0) 0.24(0.05) 0.28 (0.01) 0.53 (0.06)

Table 28: Results for Sample Generation with Larger Sample Size (np, ., = 1000). We compare
Cond-FiP against the baselines for the task of generating samples from the input noise variables.
Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
Results indicate that Cond-FiP does not yet benefit from larger context sizes at inference, suggesting
the need to scale both the model and training data for richer contexts.

Method Total Nodes LIN IN RFF IN LINOUT RFFOUT

DoWhy 10 0.04 (0.01) 0.16 (0.03) 0.26 (0.03) 0.27 (0.03)
DECI 10 0.09 (0.01) 0.19(0.02) 0.26 (0.03) 0.31 (0.04)
FiP 10 0.05(0.01) 0.12(0.02) 0.26 (0.03) 0.27 (0.03)
Cond-FiP 10 0.09 (0.02) 0.19(0.03) 0.27 (0.03) 0.3 (0.03)

DoWhy 20 0.04 (0.0) 0.20 (0.04) 0.26 (0.01) 0.53 (0.06)
DECI 20 0.08 (0.01) 0.20 (0.03) 0.29 (0.02) 0.54 (0.05)
FiP 20 0.06 (0.01) 0.16 (0.04) 0.28 (0.02) 0.48 (0.06)
Cond-FiP 20 0.07 (0.01) 0.27(0.05) 0.30 (0.02) 0.51 (0.06)

Table 29: Results for Interventional Generation with Larger Sample Size (np,. ., = 1000). We
compare Cond-FiP against the baselines for the task of generating interventional data from the input
noise variables. Each cell reports the mean (standard error) RMSE over the multiple test datasets
for each scenario.Results indicate that Cond-FiP does not yet benefit from larger context sizes at
inference, suggesting the need to scale both the model and training data for richer contexts.
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K.2 Counterfactual Generation with Cond-FiP

We provide results (Table[30) for bechmarking Cond-FiP against baselines for the task of counter-
factual generation. We operate in the same setup as the one in our main results (np, ., = 400) Ap-
pendix [C]and all the methods are provided with the true casual graph. We observe that Unlike the
tasks of noise prediction, sample & interventional generation, we find that Cond-FiP is worse than the
baselines for the task of counterfactual generation. This can be explained as the training of Cond-FiP
decoder relies on the true noise variables, and the model struggles to generalize the learned functional
mechanisms when provided with inferred noise variables. We leave the improvement of Cond-FiP
for counterfactual generation as future work.

Method Total Nodes LIN IN RFF IN LINOUT RFFOUT

DoWhy 10 0.03(0.03) 0.13(0.03) 0.0(0.0)  0.04 (0.01)
DECI 10 0.1(0.02) 0.2(0.03)  0.04(0.01) 0.11 (0.02)
FiP 10 0.03(0.01) 0.09(0.02) 0.02(0.0)  0.03 (0.01)
Cond-FiP 10 0.09 (0.03) 0.21(0.03) 0.05(0.01) 0.11 (0.01)
DoWhy 20 0.01(0.0) 0.12(0.03) 0.0(0.0)  0.13 (0.02)
DECI 20 0.06 (0.01) 0.15(0.03) 0.07 (0.03) 0.15 (0.02)
FiP 20 0.03(0.01) 0.1(0.03) 0.06(0.04) 0.09 (0.02)
Cond-FiP 20 0.09 (0.02) 0.26 (0.05) 0.13(0.02) 0.3 (0.03)

DoWhy 50 0.0(0.0)  0.09(0.02) 0.0(0.0)  0.17 (0.04)
DECI 50 0.04(0.01) 0.11(0.02) 0.03(0.01) 0.18 (0.04)
FiP 50 0.03(0.01) 0.08(0.02) 0.03(0.01) 0.14 (0.04)
Cond-FiP 50 0.1(0.02) 0.26(0.04) 0.1(0.01)  0.46 (0.06)
DoWhy 100 0.0 (0.0)  0.08(0.02) 0.0(0.0)  0.2(0.05)

DECT 100 0.02(0.01) 0.1(0.02)  0.02(0.01) 0.22 (0.05)
FiP 100 0.01 (0.01) 0.07 (0.02) 0.02 (0.01) 0.19 (0.05)
Cond-FiP 100 0.09 (0.02) 0.29 (0.06) 0.13 (0.02) 0.56 (0.08)

Table 30: Results for Counterfactual Generation. We compare Cond-FiP against the baselines for
the task of generating counterfactual data from the input noise variables. Each cell reports the mean
(standard error) RMSE over the multiple test datasets for each scenario. Shaded rows denote the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results indicate that
Cond-FiP struggles with counterfactual generation and cannot always match the performance of
baselines trained from scratch.

L. Broader Impact

We propose novel methodology for amortized inference of causal mechanisms in structural causal
models, representing an initial step toward the development of causal foundational models. Integrating
causal principles into machine learning has been widely suggested to improve robustness and
reliability, an important property for high-stakes domains such as healthcare, policy, and scientific
discovery. By advancing core methodology in causal inference, our work may indirectly support
the creation of machine learning systems that are more transparent and trustworthy. However, our
research currently does not target any societal application, and does not pose foreseeable risks or
negative consequences.
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