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Abstract

Structural Causal Models (SCMs) offer a principled framework to reason about1

interventions and support out-of-distribution generalization, which are key goals2

in scientific discovery. However, the task of learning SCMs from observed data3

poses formidable challenges, and often requires training a separate model for each4

dataset. In this work, we propose amortized inference of SCMs by training a5

single model on multiple datasets sampled from different SCMs. We first use6

a transformer-based architecture for amortized learning of dataset embeddings,7

and then extend the Fixed-Point Approach (FiP) [Scetbon et al., 2024] to infer8

SCMs conditionally on their dataset embeddings. As a byproduct, our method can9

generate observational and interventional data from novel SCMs at inference time,10

without updating parameters. Empirical results show that our amortized procedure11

performs on par with baselines trained specifically for each dataset on both in and12

out-of-distribution problems, and also outperforms them in scare data regimes.13

1 Introduction14

Learning structural causal models (SCMs) from observations is a core problem in many scientific15

domains [Sachs et al., 2005, Foster et al., 2011, Xie et al., 2012], as SCMs provide a principled way16

to model the data generation process. They enable simulation of controlled interventions, offering17

the potential to accelerate scientific discovery by predicting the outcomes of unseen experiments18

without requiring costly/time-consuming lab trials [Ke et al., 2023, Zhang et al., 2024]. However,19

solving this inverse problem of learning SCMs from observed data is challenging as both the causal20

graph and the causal mechanisms are unknown a priori. Recovering causal graphs is an NP-hard21

combinatorial optimization problem as the space of causal graphs is super-exponential [Chickering22

et al., 2004]. This subsequently complicates the estimation of causal mechanisms via maximum23

likelihood estimation per node [Blöbaum et al., 2022]. To address these challenges, recent approaches24

have focused on learning causal mechanisms with partial causal structure, using techniques such as25

autoregressive flows [Khemakhem et al., 2021, Geffner et al., 2022, Javaloy et al., 2023], or modeling26

SCMs as fixed-point iterations via transformers [Scetbon et al., 2024].27

Despite these advances, a major limitation remains: each new dataset requires training a specific28

model, that prevents the transfer of causal knowledge across datasets. Amortized inference offers29

a solution by learning a single model that can generalize across instances of the same optimization30

problem by exploiting their shared structure [Andrychowicz et al., 2016, Gordon et al., 2019].31

This results in models that can quickly adapt to new instances at test time [Finn et al., 2017].32

Amortized inference has been shown success in several challenging tasks, like bayesian posterior33

estimation [Garnelo et al., 2018, Müller et al., 2021], sampling from unnormalized densities [Akhound-34

Sadegh et al., 2024, Sendera et al., 2024], as well as causal structure learning [Lorch et al., 2022, Ke35

et al., 2022], which is more aligned with our paper.36
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Figure 1: Sketch of the approach proposed in this work. Given a dataset of observations DX and
a causal graph G obtained from an unknown SCM S(PN ,G,F ), the encoder produces a dataset
embedding µ(DX ,G), which serves as a condition to instantiate Cond-FiP. Then for any point
z ∈ Rd, T (z, DX ,G) aims at replicating the functional mechanism F (z) of the generative SCM.

In this work, we tackle the novel problem of amortized inference of causal mechanisms for additive37

noise SCMs. We propose a two-step approach where we first learn dataset embeddings via in-context38

learning [Garg et al., 2022] to represent the task-specific information. These embeddings are then used39

to condition the fixed-point (FiP) approach [Scetbon et al., 2024] for modeling causal mechanisms.40

This conditional modification, termed Cond-FiP, enables the model to adapt the causal mechanism41

for each specific instance (Figure 1). Our key contributions are highlighted below.42

• We propose Cond-FiP, a novel extension of FiP approach that enables amortized inference43

by training a single model across different instances from the functional class of SCMs.44

• For novel SCMs at inference, Cond-FiP can recover the causal mechanisms from the input45

observations without updating any parameters, thereby allowing us to generate observational46

and interventional data on the fly.47

• We show empirically that Cond-FiP achieves similar performances as the state-of-the-art48

(SOTA) approaches trained from scratch for each dataset on both in and out-of-distribution49

(OOD) problems. Further, Cond-FiP obtains better results than baselines in scare data50

regimes, due to its amortized inference procedure.51

2 Amortized Causal Learning52

2.1 Brief Overview of Amortized Inference53

Amortized inference aims to learn a shared inference mechanism across multiple tasks that enables54

fast adaptation to new tasks at test time. Consider a task T that defines a distribution over inputs (Z)55

and targets (Y ), i.e, Z,Y ∼ PT . Given a collection of tasks
(
T (k)

)K
k=1

and some objective function56

L, the goal is to learn a model Tθ shared across tasks as follows:57

argmin
θ

∑
k

EZ,Y ∼P
T (k)

L(Y , Tθ(Z, I(k))) (1)

where I(k) denotes additional context for task T (k), such as dataset with samples [Z1, · · · ,Zn].58

Instead of retraining from scratch, the model should leverage the context I
′

to adapt to the task T
′
.59

A classic approach for this is meta-learning [Andrychowicz et al., 2016, Finn et al., 2017], that utilizes60

context I
′

by task-specific finetuning. These methods typically learn a shared initialization that is61

refined for a specific task via few gradient steps in an inner optimization loop.62

In contrast, in-context learning (ICL) [Müller et al., 2021, Xie et al., 2021, Garg et al., 2022] avoids63

this inner loop by using transformer-based architectures. By attending to the context I
′

during the64
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forward pass, ICL methods adapt to a specific task without any parameter updates. This ability65

arises from the observation that transformers can implicitly approximate learning algorithms such as66

gradient descent within their activation dynamics [Akyürek et al., 2022, Von Oswald et al., 2023].67

2.2 Problem Setup68

We start by formally defining structural causal models (SCMs). An SCM defines the causal generative69

process of a set of d endogenous (causal) random variables V = {X1, · · · , Xd}, where each causal70

variable Xi is defined as a function of a subset of other causal variables (V \{Xi}) and an exogenous71

noise variable Ni:72

Xi = Fi(PA(Xi), Ni) s.t. PA(Xi) ⊂ V , Xi ̸∈ PA(Xi) (2)

Hence, an SCM S(PN ,G,F ) describes the data-generation process of X := [X1, · · · , Xd] ∼ PX73

from the noise variables N := [N1, · · · , Nd] ∼ PN via the function F := [F1, · · · , Fd], and a graph74

G ∈ {0, 1}d×d indicating the parents of each Xi, that is [G]i,j := 1 if Xj ∈ PA(Xi). We make the75

following assumptions about SCMs.76

• G is a directed and acyclic graph (DAG), and noise variables are mutually independent77

(Markovian SCM).78

• SCMs are restricted to be additive noise models (ANM), i.e., Xi = Fi(PA(Xi)) +Ni.79

While the first assumption is pretty standard, we make the ANM assumption for training the proposed80

dataset encoder in Section 3.1.81

Consider a distribution over SCMs S(PN ,G,F ) ∼ PS . Then the goal with amortized inference of82

causal mechanisms is to learn a single model Tθ that can approximate the true causal mechanism83

F (z) for any input z ∈ Rd. With task specific context as I = (DX,G) in equation 1, we have84

argmin
θ

ES∼PSEz∼PX
L(F (z), Tθ(z, DX,G)) (3)

Note that we consider access to causal graph G as part of the input context, which is available when85

training on synthetic SCMs. Even if we don’t have access to G, we can use prior works on amortized86

causal learning [Lorch et al., 2022, Ke et al., 2022] to infer the causal graphs from observations DX .87

This justifies our setup where the causal graphs are provided as part of the context to the model.88

3 Methodology: Conditional FiP89

We present our methodology for learning the model T (., DX ,G) that consists of two components:90

(1) a dataset encoder that generates dataset embeddings µ(DX ,G) from the input context, and (2)91

a conditional variant of FiP [Scetbon et al., 2024], termed Cond-FiP that allows it to leverage the92

task-specific context for amortized inference via the learned dataset embeddings µ(DX ,G). We first93

present our dataset encoder, then Cond-FiP, and conclude with data generation via Cond-Fip.94

3.1 Dataset Encoder95

The objective of this section is to develop a method capable of producing efficient latent representa-96

tions of datasets. To achieve this, we propose to train an encoder that predicts the noise samples from97

their associated observations given the causal structures via in-context learning.98

Training Setting. We consider empirical representations of K SCMs
(
S(P(k)

N ,G(k),F (k))
)K
k=1

, each99

sampled independently from a distribution over SCMs S(P(k)
N ,G(k),F (k)) ∼ PS . Each empirical100

representation, denoted (D
(k)
X ,G(k))Kk=1, contains n observations D

(k)
X := [X

(k)
1 , . . . ,X

(k)
n ]T ∈101

Rn×d, and the causal graph G(k) ∈ {0, 1}d×d. For training, we also need the associated noise102

samples D
(k)
N := [N

(k)
1 , . . . ,N

(k)
n ]T ∈ Rn×d, which play the role of the target variable in our103

prediction task. For simplicity, we drop the index k in our notation and assume access to the full104

distribution PS . The objective is to recover the true noise DN from a dataset of observations DX105

and the causal graph G, which provide us with dataset embeddings as detailed below.106
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Encoder Architecture. Following [Lorch et al., 2021, Scetbon et al., 2024], we encode datasets107

using a transformer-based architecture that alternates attention over both sample and node dimension.108

Given a dataset DX , we first apply a linear embedding L(DX) ∈ Rn×d×dh , where dh is the hidden109

dimension. The encoder E then applies transformer blocks, each comprising self-attention followed110

by an MLP [Vaswani et al., 2017], where the attention mechanism is applied either across the samples111

n or the nodes d alternately. Recall the standard self-attention is defined as112

AM (Q,K) =
exp((QKT −M)/

√
dh)

exp((QKT −M)/
√
dh) 1d

where Q,K ∈ Rd×dh denote the keys and queries for a single attention head, and M ∈ {0,+∞}d×d113

is a (potential) mask. When attending over samples, the encoder uses standard self-attention without114

masking (M = {0}n×n). But for node-wise attention, we incorporate causal structure by masking115

invalid dependencies using mask M = +∞× (1−G) in standard self-attention, with the convention116

that 0× (+∞) = 0. Finally, the embeddings E(L(DX),G) ∈ Rn×d×dh are passed to a prediction117

network H : Rn×d×dh → Rn×d, implemented as 2-hidden layers MLP to project back to the original118

data space.119

Training Procedure. We minimize the mean squared error (MSE) of predicting the target DN from120

the input (DX ,G) over the distribution of SCMs PS available during training:121

ES∼PS ||DN −H ◦ E(L(DX),G)||22 .

Further, as we restrict ourselves to the case of ANMs, we can equivalently reformulate our training122

objective in order to predict the causal mechanism rather than the noise samples, as F (DX) :=123

DX −DN . Therefore, we instead propose to train our encoder as follows:124

ES∼PS ||F (DX)−H ◦ E(L(DX),G)||22 .

Note that ANM assumption provides a simplified true mapping from data to noise as x → x− F (x),125

which is difficult to obtain in general SCMs. Please check Appendix A.2 for more details on126

justification for ANMs and why recovering noise is equivalent to learning the inverse SCM.127

Inference. Given a new dataset DX and its causal graph G, encoder provides us with the dataset128

embedding µ(DX ,G) := E(L(DX),G) ∈ Rn×d×dh .129

3.2 Cond-FiP: Conditional Fixed-Point Decoder130

We now present the modification of FiP that uses the learned dataset embeddings µ(DX ,G) for131

amortized inference of causal mechanisms.132

Training Setting. Analogous to the encoder training setup, we assume that we have access to a133

distribution of SCMs S(PN ,G,F ) ∼ PS at training time, from which we can extract empirical134

representations (DX ,G). Our goal is to train T such that given the context (DX ,G) from an SCM135

S(PN ,G,F ) ∼ PS , the induced conditional function z ∈ Rd → T (z, DX ,G) ∈ Rd approximates136

the true causal mechanisms F : z ∈ Rd → F (z) ∈ Rd (E.q. 3).137

Decoder Architecture. The design of our decoder is based on the FiP architecture for fixed-point138

SCM learning, with two major differences: (1) we use the dataset embeddings µ(DX ,G) as a high139

dimensional codebook to embed the nodes, and (2) we leverage adaptive layer norm operators [Peebles140

and Xie, 2023] in the transformer blocks of FiP to enable conditional attention mechanisms.141

Conditional Embedding. The key change of our decoder compared to the original FiP is in142

the embedding of the input. FiP proposes to embed a data point z := [z1, . . . , zd] ∈ Rd into a143

high dimensional space using a learnable codebook C := [C1, . . . , Cd]
T ∈ Rd×dh and positional144

embedding P := [P1, . . . , Pd]
T ∈ Rd×dh , from which they define:145

zemb := [z1 ∗ C1, . . . , zd ∗ Cd]
T + P ∈ Rd×dh

This ensures that the embedded samples preserve the original causal structure. However, this146

embedding layer is only adapted if the samples considered are all drawn from the same observational147

distribution, as the representation of the nodes given by the codebook C, is fixed. In order to148
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generalize their embedding strategy to the case where multiple SCMs are considered, we consider149

conditional codebooks and positional embeddings adapted for each dataset. Given a dataset DX and150

a causal graph G, we propose to define the conditional codebook and positional embedding as151

C(DX ,G) := µ(DX ,G)WC

P (DX ,G) := µ(DX ,G)WP

where µ(DX ,G) := MaxPool(E(L(DX),G)) ∈ Rd×dh is obtained by max-pooling w.r.t the sample152

dimension the dataset embedding E(L(DX),G) ∈ Rn×d×dh produced by our trained encoder, and153

WC ,WP ∈ Rdh×dh are learnable parameters. Then we propose to embed any point z ∈ Rd154

conditionally on the context (DX ,G) as follows:155

zemb :=[z1 ∗ C1(DX ,G), . . . , zd ∗ Cd(DX ,G)]T + P (DX ,G) ∈ Rd×dh

Adaptive Transfomer Block. Once an input z ∈ Rd has been embedded as zemb ∈ Rd×dh , FiP156

models SCMs by simulating the reconstruction of the data from noise. Starting from n0 ∈ Rd×dh a157

learnable parameter, they propose to update the current noise L ≥ 1 times by computing:158

nℓ+1 = h(DAM (nℓ, zemb)zemb + nℓ)

where h refers to the MLP block, and for clarity, we omit both the layer’s dependence on its159

parameters and the inclusion of layer normalization in the notation. Note that here FiP considers160

the DAG-Attention mechanism (details in Appendix A.1) in order to correctly model the root161

nodes of the SCM. To obtain a conditional formulation, we first replace the starting noise n0 with162

n0 := µ(DX ,G)Wn0
∈ Rd×dh , where Wn0

∈ Rdh×dh is a learnable parameter. Then we add163

adaptive layer normalization operators [Peebles and Xie, 2023] to both attention and MLP blocks,164

where each scale or shift is obtained by applying a 1 hidden-layer MLP to the embedding µ(DX ,G).165

Projection. To project back the latent representation of z obtained from previous stages, nL ∈ Rd×dh ,166

we use a linear operation to get ẑ = nLWout ∈ Rd, where Wout ∈ Rdh is learnable.167

Training Procedure. The result of forward pass can be summarized as ẑ = T (z, DX ,G), where we168

omit the dependence of ẑ on context (DX ,G) for simplicity. We train the model T by minimizing169

the reconstruction error of the true causal mechanisms estimated by our model over the distribution170

of SCMs PS , as shown below.171

ES∼PSEz∼PX
∥T (z, DX ,G)− F (z)∥22 (4)

where z ∼ PX is chosen independent of the random dataset DX . To compute (4), we propose to172

sample n independent samples X ′
1, . . . ,X

′
n from PX , leading to a new dataset DX′ independent of173

DX , and we obtain the following optimzation problem:174

ES∼PS∥T (DX′ , DX ,G)− F (DX′)∥22 .

3.3 Inference with Cond-FiP175

We provide a summary of inference procedure with Cond-FiP, with details in Appendix A.3.176

Observational Generation. Cond-FiP is capable of generating new data samples: given a random177

vector noise n ∼ PN , we can estimate the observational sample associated according to an unknown178

SCM S(PN ,G,F ) ∼ PS as long as we have access to its empirical representation (DX ,G).179

Formally, starting from n0 = n, we infer the associated observation by computing for ℓ = 1, . . . , d:180

nℓ = T (nℓ−1, DX ,G) + n . (5)

After (at most) d iterations, nd corresponds to the observational sample associated to the original181

noise n according to our conditional SCM T (·, DX ,G). To sample noise from PN , we leverage182

cond-FiP that can estimates noise samples under the ANM assumption by computing D̂N :=183

DX −T (DX , µ(DX ,G)). From these estimated noise samples, we can efficiently estimate the joint184

distribution of the noise by computing the inverse cdfs of the marginals as proposed in FiP.185

Interventional Generation. Cond-FiP also enables the estimation of interventions given an empirical186

representation (DX ,G) of an unkown SCM S(PN ,G,F ) ∼ PS . To achieve this, we start from a187
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noise sample n, and we generate the associated intervened sample ẑdo by directly modifying the188

conditional SCM provided by Cond-FiP. More specifically, we modify in place the SCM obtained189

by Cond-FiP, leading to its interventional version T do(·, DX ,G). Now, generating an intervened190

sample can be done by applying the loop defined in (5), starting from n and using the intervened191

SCM T do(·, DX ,G) rather than the original one.192

4 Experiments193

We begin by describing our experimental setup in Section 4.1, and then present the results of our194

empirical analysis in Section 4.2, where we benchmark Cond-FiP against state-of-the-art baselines.195

4.1 Setup196

Data Generation Process. We use the synthetic data generation procedure proposed by Lorch et al.197

[2022] to generate SCMs as this framework supports a wide variety of SCMs, making it well-suited198

for amortized training. It allows sampling of graphs from different schemes and noise variables from199

diverse distributions. Further, we can also control the complexity of causal mechanisms, choosing200

between linear (LIN) functions or random fourier features (RFF) for non-linear causal mechanisms.201

We construct two distribution of SCMs, PIN, and POUT, which vary based on the choice for sampling202

causal graphs, noise variables, and causal relationships, see Appendix B.1 for more details.203

Training Datasets. We randomly sample≃ 4e6 SCMs from the PIN distribution, each with d = 20204

total nodes. From each SCM, we extract the causal graph G and generate ntrain = 400 observations to205

obtain DX . This procedure is used to generate training data both the dataset encoder and Cond-FiP,206

with each epoch containing ≃ 400 randomly generated datasets.207

Test Datasets. We evaluate the model’s generalization both in-distribution and out-of-distribution by208

sampling test datasets from PIN and POUT, respectively. The test datasets are categorized as follows:209

LIN IN and RFF IN where the SCM are sampled from PIN with linear and non-linear causal210

mechanisms respectively. Similarly, we define LIN OUT and RFF OUT where the SCMs are211

sampled from POUT instead.212

For each category, we vary the total nodes d ∈ [10, 20, 50, 100] and sample 6 or 9 SCMs per d, based213

on the available schemes for sampling the causal graphs (check Appendix B.1 for details). This214

results in a total of 120 test datasets, supporting a comprehensive evaluation of the methods. For215

each SCM we generate ntest = 800 samples, split equally into task context DX and queries DX′ for216

evaluation. An interesting aspect of our test setup is we assess the model’s ability to generalize to217

larger graphs (d = 50, d = 100), despite training only with d = 20 node graphs.218

Model Architecture. For both the dataset encoder and cond-FiP, we set the embedding dimension to219

dh = 256 and the hidden dimension of MLP blocks to 512. Both of our transformer-based models220

contains 4 attention layers and each attention consists of 8 attention heads. Please check Appendix B.2221

for further details and Cond-FiP’s memory and compute requirements.222

Baselines. We compare Cond-FiP against FiP [Scetbon et al., 2024], DECI [Geffner et al., 2022],223

and DoWhy [Blöbaum et al., 2022]. Since the baselines do not have any amortization procedure,224

they are trained from scratch on each test setting. For a fair comparison with our method, we use the225

same context set DX with 400 samples to train the baselines, which was used to obtain the dataset226

embeddings in Cond-FiP. All the methods are then evaluated on the remaining 400 samples in query227

set DX′ . Also, we provide the true graph G to all the baselines to ensure consistency with Cond-FiP.228

To avoid potential confusion, we clarify that the notion of distribution shift is defined w.r.t Cond-FiP’s229

training setup. For the baselines, there is no distribution shift as they are trained on the context230

(DX ) drawn from the specific test distribution. The most important comparison is with the baseline231

FiP, as Cond-FiP is its amortized counterpart. Further, we do not report detailed comparisons with232

CausalNF [Javaloy et al., 2023] as its performance was consistently weaker than other baselines,233

check Appendix J for details.234

Evaluation Tasks. We evaluate the methods on the following three tasks. Noise Prediction: given235

the observations DX and the true graph G, infer the noise variables D̂N . Sample Generation: given236

the noise samples DN and the true graph G, generate the causal variables D̂X . Interventional237

Generation: generate intervened samples from noise samples DN and the true graph G.238
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Figure 2: In-Distribution Results. Benchmarking Cond-FiP for various evaluation tasks, with
datasets sampled from RFF IN with d = 20. The y-axis denotes the RMSE, with mean and
standard error over the respective test datasets. Results indicate Cond-FiP can generalize to novel
in-distribution instances, with detailed results in Appendix C.
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Figure 3: OOD Results. Benchmarking Cond-FiP for various evaluation tasks, with datasets sampled
from RFF OUT with d = 100 to test for OOD generalization. The y-axis denotes the RMSE, with
mean and standard error over the respective test datasets. Results indicate Cond-FiP can generalize to
novel OOD instances and larger graphs, with detailed results in Appendix C.

Metric. Let us denote a predicted & true target as Ŷ ∈ Rntest×d and Y ∈ Rntest×d. Then RMSE239

is computed as 1
ntest

∑ntest
i=1

√
1
d∥[Y ]i − [Ŷ ]i∥22. Note that we scale RMSE by dimension d, which240

allows us to compare results across different graph sizes.241

4.2 Results242

Generalization to OOD data and larger graphs. In Figure 2, we first present results for in-243

distribution generalization using test datasets sampled from RFF IN for graphs with d = 20 nodes.244

Cond-FiP performs competitively with baselines trained from scratch on each test instance, hence it245

successfully generalizes to novel in-distribution instances. Notably, Cond-FiP was never explicitly246

trained to generate interventional data, and its strong performance on this task further supports that it247

captures the underlying causal mechanisms.248

Next we consider the more challenging case of OOD generalization using test datasets sampled from249

RFF OUT and graphs with d = 100 nodes, while the Cond-FiP was trained only with d = 20250

node graphs. As shown in Figure 3, Cond-FiP continues to perform well, indicating successful251

generalization to OOD instances and significantly larger graphs! Due to space constraints, we report252

results for SCMs with non-linear mechanisms—the more challenging setting. Full results for both253

in-distribution and OOD scenarios are available in Appendix C, where our findings remain consistent.254

We also assess Cond-FiP’s sensitivity to distribution shifts by varying the magnitude of distribution255

shift (details in Appendix D). We consider two cases, where we control the severity in distribution shift256

by controlling the causal mechanisms or the noise variables. We find that Cond-FiP is more robust to257

shifts in causal mechanisms, with minimal performance degradation. However, its performance is258

more sensitive to shifts in noise distributions, deteriorating as the magnitude of shift increases.259

Better Generalization in Scare Data Regimes. An advantage of amortized inference methods is260

their ability to generalize well when context DX for test instances is small. As the context size261

decreases, baselines often suffer significant performance drops as they require training from scratch.262

In contrast, Cond-FiP is less impacted as its parameters remain unchanged at inference time, and263
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Figure 4: Scarce Data Regime Results. Benchmarking Cond-FiP on the various evaluation tasks
(RFF OUT and d = 100) as we reduce the test dataset size. The y-axis denotes the RMSE, with
mean and standard error over the respective test datasets. Cond-FiP generalizes much better than the
baselines in the low-data regime, with detailed results in Appendix E.
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Figure 5: OOD Results without True Graph. Benchmarking Cond-FiP for various evaluation tasks,
with datasets sampled from RFF OUT with d = 100 where the true graph G is not present in input
context, rather its inferred via AVICI. The y-axis denotes the RMSE, with mean and standard error
over the respective test datasets. Results indicate Cond-FiP can generalize to novel instances even in
the absence of true graph, with detailed results in Appendix F.

the inductive bias learned during training enables effective generalization even with limited context.264

In Figure 4, we demonstrate this in the challenging OOD setting (RFF OUT;, d = 100), where265

Cond-FiP outperforms the baselines. Please check Appendix E for further details.266

Generalization without True Causal Graph. So far, our results assume access to the true causal267

graph (G) as part of the input context to Cond-FiP. However, Cond-FiP can be extended to operate268

without this information by first inferring the graph using amortized structure learning methods [Lorch269

et al., 2022, Ke et al., 2022]. We demonstrate this in Figure 5 for the RFF OUT; setting with d = 100270

nodes, using graphs inferred via AVICI [Lorch et al., 2022] for both Cond-FiP and the baselines. The271

results show that Cond-FiP remains competitive, further supporting its ability to capture underlying272

causal mechanisms. Please check Appendix F for more details.273

Ablation Study. We conduct ablation studies on both the encoder and decoder to better understand274

how the training data affects generalization performance. We find that Cond-FiP remains competitive275

even when the encoder is trained on only RFF data, compared to training on a mixture of both. In276

contrast, decoder performance benefits more noticeably from training on the combined dataset. Please277

check Appendix G.1 and G.2 for more details regarding the ablation experiments.278

Generalization to novel data simulators. We further evaluate Cond-FiP on test datasets generated279

using C-Suite [Geffner et al., 2022], a synthetic data simulator distinct from the training simulator.280

As shown in Figure 6, Cond-FiP generalizes well to these novel instances. Additionally, we consider281

a modified C-Suite benchmark with Gaussian mixture model noise. Results in Figure 7, Appendix H282

show that Cond-FiP also generalizes to instances with more complex noise distributions.283

Finally, we show that Cond-FiP can generalize to the real-world instances using the Sachs284

dataset [Sachs et al., 2005]. Although Cond-FiP cannot be trained on real-world datasets since285

the encoder requires access to true noise variables, it can still be used for inference. We evaluate286

the quality of generated samples by comparing them to observed data using the Maximum Mean287

Discrepancy (MMD) metric [Gretton et al., 2012]. See Appendix I for more details.288
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Figure 6: CSuite Results. Benchmarking Cond-FiP on the various evaluation tasks on the CSuite
benchmark, which uses a different data simulator than the Cond-FiP’s training data simulator. The
y-axis denotes the RMSE, with mean and standard error across the 9 test datasets.

5 Related Works289

Amortized Causal Learning. Amortized inference has gained traction in causality research,290

particularly for structure learning. Early works by Lorch et al. [2022] and Ke et al. [2022] introduced291

transformer-based models trained on multiple synthetic datasets using supervised objectives for292

amortized inference of causal structure. Their approach aligns with recent works on in-context293

learning of function classes via transformers [Müller et al., 2021, Akyürek et al., 2022, Garg et al.,294

2022, Von Oswald et al., 2023]. Subsequent improvements targeted OOD generalization [Wu et al.,295

2024] and applications to gene regulatory networks [Ke et al., 2023]. Beyond structure learning,296

amortized methods have been developed for ATE estimation [Nilforoshan et al., 2023, Zhang et al.,297

2023, Sauter et al., 2025], model selection [Gupta et al., 2023], and partial causal discovery tasks298

such as learning topological order [Scetbon et al., 2024]. However, amortized inference of causal299

mechanisms in SCMs remains unaddressed, which is the central focus of our work.300

Autoregressive Causal Learning. Most causal discovery methods focus first on structure learn-301

ing [Chickering, 2002, Peters et al., 2014, Zheng et al., 2018], followed by per-node maximum302

likelihood estimation to recover the causal mechanisms [Blöbaum et al., 2022]. In constrast, recent303

works on causal autoregressive flows [Khemakhem et al., 2021, Geffner et al., 2022, Javaloy et al.,304

2023] focus on SOTA normalizing flow based generative models to infer causal mechanisms. Further,305

FiP [Scetbon et al., 2024] modeled SCMs as fixed-point problems over causal (topological) ordering306

of nodes using transformer-based architectures. These approaches efficiently learn SCMs but require307

training a separate model per dataset. In this work, we extend FiP to enable amortized inference of308

causal mechanisms across different SCM instances, removing this limitation.309

6 Conclusion310

In this work, we propose novel methodology for training a single model for amortized inference of311

SCMs. Cond-FiP not only generalizes to unseens in-distribution instances, but also to a wide range312

of OOD instances, including larger graphs, complex noise distributions, and real-world data. To313

the best of our knowledge, this is the first approach to demonstrate the feasibility of learning causal314

mechanisms in a reusable, foundational manner—paving the way for a paradigmatic shift towards the315

assimilation of causal knowledge across datasets.316

Limitations. Our training is limited to synthetic additive noise SCMs due to the requirement317

of true noise variables for learning the dataset encoder. However, the conditional FiP decoder318

(see Section 3.2) does not rely on this assumption and can be applied to general SCMs given319

pretrained dataset embeddings. A promising direction for future work is to explore more general320

encoding schemes, such as self-supervised learning, or design an implicit in-context learning approach321

to remove the need for dataset embeddings via direct attention over the context [Mittal et al., 2024].322

While Cond-FiP generalizes to larger graphs, it does not yet benefit from larger context sizes at323

inference (Appendix K.1), suggesting the need to scale both the model and training data for richer324

contexts. Additionally, although Cond-FiP performs well on generating interventional samples,325

it doesn’t perform well on counterfactual generation (Appendix K.2). Future work will explore326

scaling Cond-FiP to larger problem instances and application for more complex tasks (counterfactual327

generation) in real-world scenarios.328
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NeurIPS Paper Checklist429

1. Claims430

Question: Do the main claims made in the abstract and introduction accurately reflect the431

paper’s contributions and scope?432

Answer: [Yes]433

Justification: Yes, the main claim of amortized inference of causal mechanisms of SCMs434

accurately reflects the paper’s contributions and scope. We have done a comprehensive435

benchmarking of the proposed approach against state-of-the-art baselines to justify our436

claims.437

Guidelines:438

• The answer NA means that the abstract and introduction do not include the claims439

made in the paper.440

• The abstract and/or introduction should clearly state the claims made, including the441

contributions made in the paper and important assumptions and limitations. A No or442

NA answer to this question will not be perceived well by the reviewers.443

• The claims made should match theoretical and experimental results, and reflect how444

much the results can be expected to generalize to other settings.445

• It is fine to include aspirational goals as motivation as long as it is clear that these goals446

are not attained by the paper.447

2. Limitations448

Question: Does the paper discuss the limitations of the work performed by the authors?449

Answer: [Yes]450

Justification: Yes, in the conclusion section we discuss the limitations pertaining to Additive451

Noise Model assumption for training dataset encoder, along with issues in generalization to452

large context and counterfactual generation. We also provide more details in Appendix K453

regarding the limitations of Cond-FiP.454
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• The answer NA means that the paper has no limitation while the answer No means that456

the paper has limitations, but those are not discussed in the paper.457

• The authors are encouraged to create a separate "Limitations" section in their paper.458

• The paper should point out any strong assumptions and how robust the results are to459

violations of these assumptions (e.g., independence assumptions, noiseless settings,460

model well-specification, asymptotic approximations only holding locally). The authors461

should reflect on how these assumptions might be violated in practice and what the462

implications would be.463

• The authors should reflect on the scope of the claims made, e.g., if the approach was464

only tested on a few datasets or with a few runs. In general, empirical results often465

depend on implicit assumptions, which should be articulated.466

• The authors should reflect on the factors that influence the performance of the approach.467

For example, a facial recognition algorithm may perform poorly when image resolution468

is low or images are taken in low lighting. Or a speech-to-text system might not be469

used reliably to provide closed captions for online lectures because it fails to handle470

technical jargon.471

• The authors should discuss the computational efficiency of the proposed algorithms472

and how they scale with dataset size.473

• If applicable, the authors should discuss possible limitations of their approach to474

address problems of privacy and fairness.475

• While the authors might fear that complete honesty about limitations might be used by476

reviewers as grounds for rejection, a worse outcome might be that reviewers discover477

limitations that aren’t acknowledged in the paper. The authors should use their best478

judgment and recognize that individual actions in favor of transparency play an impor-479

tant role in developing norms that preserve the integrity of the community. Reviewers480

will be specifically instructed to not penalize honesty concerning limitations.481
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3. Theory assumptions and proofs482

Question: For each theoretical result, does the paper provide the full set of assumptions and483

a complete (and correct) proof?484

Answer: [NA]485

Justification: There are no theoretical results developed in this paper.486

Guidelines:487

• The answer NA means that the paper does not include theoretical results.488

• All the theorems, formulas, and proofs in the paper should be numbered and cross-489

referenced.490

• All assumptions should be clearly stated or referenced in the statement of any theorems.491

• The proofs can either appear in the main paper or the supplemental material, but if492

they appear in the supplemental material, the authors are encouraged to provide a short493

proof sketch to provide intuition.494

• Inversely, any informal proof provided in the core of the paper should be complemented495

by formal proofs provided in appendix or supplemental material.496

• Theorems and Lemmas that the proof relies upon should be properly referenced.497

4. Experimental result reproducibility498

Question: Does the paper fully disclose all the information needed to reproduce the main ex-499

perimental results of the paper to the extent that it affects the main claims and/or conclusions500

of the paper (regardless of whether the code and data are provided or not)?501

Answer: [Yes]502

Justification: Yes, we provide details about the experiment setup in Appendix B.503

Guidelines:504

• The answer NA means that the paper does not include experiments.505

• If the paper includes experiments, a No answer to this question will not be perceived506

well by the reviewers: Making the paper reproducible is important, regardless of507

whether the code and data are provided or not.508

• If the contribution is a dataset and/or model, the authors should describe the steps taken509

to make their results reproducible or verifiable.510

• Depending on the contribution, reproducibility can be accomplished in various ways.511

For example, if the contribution is a novel architecture, describing the architecture fully512

might suffice, or if the contribution is a specific model and empirical evaluation, it may513

be necessary to either make it possible for others to replicate the model with the same514

dataset, or provide access to the model. In general. releasing code and data is often515

one good way to accomplish this, but reproducibility can also be provided via detailed516

instructions for how to replicate the results, access to a hosted model (e.g., in the case517

of a large language model), releasing of a model checkpoint, or other means that are518

appropriate to the research performed.519

• While NeurIPS does not require releasing code, the conference does require all submis-520

sions to provide some reasonable avenue for reproducibility, which may depend on the521

nature of the contribution. For example522

(a) If the contribution is primarily a new algorithm, the paper should make it clear how523

to reproduce that algorithm.524

(b) If the contribution is primarily a new model architecture, the paper should describe525

the architecture clearly and fully.526

(c) If the contribution is a new model (e.g., a large language model), then there should527

either be a way to access this model for reproducing the results or a way to reproduce528

the model (e.g., with an open-source dataset or instructions for how to construct529

the dataset).530

(d) We recognize that reproducibility may be tricky in some cases, in which case531

authors are welcome to describe the particular way they provide for reproducibility.532

In the case of closed-source models, it may be that access to the model is limited in533

some way (e.g., to registered users), but it should be possible for other researchers534

to have some path to reproducing or verifying the results.535
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5. Open access to data and code536

Question: Does the paper provide open access to the data and code, with sufficient instruc-537

tions to faithfully reproduce the main experimental results, as described in supplemental538

material?539

Answer: [Yes]540

Justification: We used publicly available datasets for academic research, hence no issues541

with open access to data. We plan to open-source the code along with comprehensive542

documentation to facilitate reproducibility of our experiments. For the submission phase,543

in Appendix B.3 we provide an anonymized version of the codebase is not directly exe-544

cutable, but provides full access to the implementation of all components of our framework.545
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• The answer NA means that paper does not include experiments requiring code.547

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/548

public/guides/CodeSubmissionPolicy) for more details.549

• While we encourage the release of code and data, we understand that this might not be550

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not551

including code, unless this is central to the contribution (e.g., for a new open-source552

benchmark).553

• The instructions should contain the exact command and environment needed to run to554

reproduce the results. See the NeurIPS code and data submission guidelines (https:555

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.556

• The authors should provide instructions on data access and preparation, including how557

to access the raw data, preprocessed data, intermediate data, and generated data, etc.558

• The authors should provide scripts to reproduce all experimental results for the new559

proposed method and baselines. If only a subset of experiments are reproducible, they560

should state which ones are omitted from the script and why.561

• At submission time, to preserve anonymity, the authors should release anonymized562

versions (if applicable).563

• Providing as much information as possible in supplemental material (appended to the564

paper) is recommended, but including URLs to data and code is permitted.565

6. Experimental setting/details566

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-567

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the568

results?569

Answer: [Yes]570

Justification: Yes, these details are provided in Appendix B.571

Guidelines:572

• The answer NA means that the paper does not include experiments.573

• The experimental setting should be presented in the core of the paper to a level of detail574

that is necessary to appreciate the results and make sense of them.575

• The full details can be provided either with the code, in appendix, or as supplemental576

material.577

7. Experiment statistical significance578

Question: Does the paper report error bars suitably and correctly defined or other appropriate579

information about the statistical significance of the experiments?580

Answer: [Yes]581

Justification: Yes, in all our figures and tables, the captions provide exact details about the582

error bars.583

Guidelines:584

• The answer NA means that the paper does not include experiments.585
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-586

dence intervals, or statistical significance tests, at least for the experiments that support587

the main claims of the paper.588

• The factors of variability that the error bars are capturing should be clearly stated (for589

example, train/test split, initialization, random drawing of some parameter, or overall590

run with given experimental conditions).591

• The method for calculating the error bars should be explained (closed form formula,592

call to a library function, bootstrap, etc.)593

• The assumptions made should be given (e.g., Normally distributed errors).594

• It should be clear whether the error bar is the standard deviation or the standard error595

of the mean.596

• It is OK to report 1-sigma error bars, but one should state it. The authors should597

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis598

of Normality of errors is not verified.599

• For asymmetric distributions, the authors should be careful not to show in tables or600

figures symmetric error bars that would yield results that are out of range (e.g. negative601

error rates).602

• If error bars are reported in tables or plots, The authors should explain in the text how603

they were calculated and reference the corresponding figures or tables in the text.604

8. Experiments compute resources605

Question: For each experiment, does the paper provide sufficient information on the com-606

puter resources (type of compute workers, memory, time of execution) needed to reproduce607

the experiments?608

Answer: [Yes]609

Justification: Yes, these details are provided in Appendix B.2.610

Guidelines:611

• The answer NA means that the paper does not include experiments.612

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,613

or cloud provider, including relevant memory and storage.614

• The paper should provide the amount of compute required for each of the individual615

experimental runs as well as estimate the total compute.616

• The paper should disclose whether the full research project required more compute617

than the experiments reported in the paper (e.g., preliminary or failed experiments that618

didn’t make it into the paper).619

9. Code of ethics620

Question: Does the research conducted in the paper conform, in every respect, with the621

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?622

Answer: [Yes]623

Justification: Yes, the research conducted in the paper conforms in every respect with the624

NeurIPS Code of Ethics625
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Answer: [Yes]635
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• Datasets that have been scraped from the Internet could pose safety risks. The authors674
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faith effort.678

12. Licenses for existing assets679

Question: Are the creators or original owners of assets (e.g., code, data, models), used in680
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• For scraped data from a particular source (e.g., website), the copyright and terms of691
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Answer: [Yes]704
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A Additional Details on Cond-FiP797

A.1 DAG-Attention Mechanism798

In FiP [Scetbon et al., 2024] the authors propose to leverage the transformer architecture to learn799

SCMs from observations. By reparameterizing an SCM according to a topological ordering induced800

by its graph, the authors show that any SCM can be reformulated as a fixed-point problem of the801

form X = H(X,N) where H admits a simple triangular structure:802

[JacxH(x,n)]i,j = 0, if j ≥ i

[JacnH(x,n)]i,j = 0, if i ̸= j,

where JacxH , JacnH denote the Jacobian of H w.r.t the first and second variables respectively.803

Motivated by this fixed-point reformulation, FiP considers a transformer-based architecture to model804

the functional relationships of SCMs and propose a new attention mechanism to represent DAGs in a805

differentiable manner. Recall that the standard attention matrix is defined as:806

AM (Q,K) =
exp((QKT −M)/

√
dh)

exp((QKT −M)/
√
dh) 1d

(6)

where Q,K ∈ Rd×dh denote the keys and queries for a single attention head, and M ∈ {0,+∞}d×d807

is a (potential) mask. When M is chosen to be a triangular mask, the attention mechanism (6) enables808

to parameterize the effects of previous nodes on the current one However, the normalization inherent809

to the softmax operator in standard attention mechanisms prevents effective modeling of root nodes,810

which should not be influenced by any other node in the graph. To alleviate this issue, FiP proposes811

to consider the following formulation instead:812

DAM (Q,K) =
exp((QKT −M)/

√
dh)

V
(
exp((QKT −M)/

√
dh) 1d

) (7)

where Vi(v) = vi if vi ≥ 1, else Vi(v) = 1 for any v ∈ Rd. While softmax forces the coefficients813

along each row of the attention matrix to sum to one, the attention mechanism described in (7) allows814

the rows to sum in [0, 1], thus enabling to model root nodes in attention.815

A.2 Details on Encoder Training816

Additive Noise Model Assumption. Our method relies on the ANM assumption only for the817

training the encoder. This is because we require the encoder to predict the noise from data in order to818

obtain embeddings, and under the ANM assumption, the mapping from data to noise can be easily819

expressed as x → x− F (x) where F is the generative functional mechanism of the generative ANM.820

However, if we were to consider general SCMs, i.e. of the form X = F (X,N), we would need821

access to the mapping x → F−1(x, ·)(x) (assuming this function is invertible), which for general822

functions is not tractable. Also, note that the ANM assumption by default ensures invertibility since823

the jacobian w.r.t noise is a triangular matrix with nonzero diagonal elements. An interesting future824

work would be to consider a more general dataset encoding (using self-supervised techniques) that825

do not require the ANM assumption, but we believe this is out of the scope of this work.826

We now provide further details on training the encoder and show how recovering the noise is equivalent827

to learn the inverse causal generative process. Recall that an SCM is an implicit generative model828

that, given a noise sample N, generates the corresponding observation according to the following829

fixed-point equation in X830

X = F (X,N)

More precisely, to generate the associated observation, one must solve the above fixed-point equation831

in X given the noise N. Let us now introduce the following notation that will be instrumental for the832

subsequent discussion: we denote FN(z) : z → F (z,N).833

Due to the specific structure of F (determined by the DAG G associated with the SCM), the fixed-834

point equation mentioned above can be efficiently solved by iteratively applying the function FN835



to the noise (see Eq. (5) in the manuscript). As a direct consequence, the observation X can be836

expressed as a function of the noise:837

X = Fgen(N)

where Fgen(N) := (FN)
◦d(N), d is the number of nodes, and ◦ denotes the composition operation. In838

the following we refer to Fgen as the explicit generative model induced by the SCM.839

Conversely, assuming that the mapping z → Fgen(z) is invertible, then one can express the noise as a840

function of the data:841

N = F−1
gen (X)

Therefore, learning to recover the noise from observation is equivalent to learn the function F−1
gen ,842

which is exactly the inverse of the explicit generative model Fgen. It is also worth noting that under843

the ANM assumption (i.e. F (X,N) = f(X) + N), Fgen is in fact always invertible and its inverse844

admits a simple expression which is845

F−1
gen (z) = z − f(z)

Therefore, in this specific case, learning the inverse generative model F−1
gen is exactly equivalent to846

learning the causal mechanism function f .847

A.3 Inference with Cond-FiP848

Sample Generation. Given a dataset DX and its causal graph G, we denote z → T (z,DX ,G)849

the function infered by Cond-FiP. This function defines the predicted SCM obtained by our model,850

and we can directly use it to generate new points. More precisely, given a noise sample n, we can851

generate the associated observational sample by solving the following equation in x:852

x = T (x, DX ,G) + n

To solve this fixed-point equation, we rely on the fact that G is a DAG, which enables to solve853

the fixed-point problem using the following simple iterative procedure. Starting with z0 = n, we854

compute for ℓ = 1, . . . , d where d is the number of nodes855

zℓ = T (zℓ−1, DX ,G) + n

After d iterations we obtain the following,856

zd = T (zd, DX ,G) + n

Therefore, zd is the solution of the fixed-point problem above, which corresponds to the observational857

sample associated to n according to our predicted SCM z → T (z,DX ,G).858

Interventional Prediction. Recall that given a dataset DX and its causal graph G, z ∈859

Rd → T (z,DX ,G) ∈ Rd denotes the SCM infered by Cond-FiP. Let us also denote860

the coordinate-wise formulation of our SCM defined for any z ∈ Rd as T (z,DX ,G) =861

[[T (z,DX ,G)]1, . . . , [T (z,DX ,G)]d], where for all i ∈ {1, . . . , d}, z ∈ Rd → [T (z,DX ,G)]i ∈862

R is a real-valued function.863

In order to intervene on this predicted SCM, we simply have to modify in place the predicted function.864

For example, assume that we want to perform the following intervention do(Xi) = a. Then, to obtain865

the intervened SCM, we define a new function z → T do(Xi)=a(z,DX ,G) defined for any z ∈ Rd as:866

[T do(Xi)=a(z,DX ,G)]j := [T (z,DX ,G)]j if j ̸= i and [T do(Xi)=a(z,DX ,G)]i := a.867

Now, using this intervened SCM z → T do(Xi)=a(z,DX ,G), we can apply the exact same generation868

procedure as the one introduced above to generate intervened samples according to our intervened869

SCM.870
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B Details on Experiment Setup with AVICI Benchmark871

B.1 AVICI Benchmark872

We use the synthetic data generation procedure proposed by Lorch et al. [2022] to generate SCMs873

in our empirical study. It provides access to a wide variety of SCMs, hence making it an excellent874

setting for amortized training.875

• Graphs: We have the option to sample graphs as per the following schemes: Erods-876

Renyi [Erdos and Renyi, 1959], scale-free models [Barabási and Albert, 1999], Watts-877

Strogatz [Watts and Strogatz, 1998], and stochastic block models [Holland et al., 1983].878

• Noise Variables: To sample noise variables, we can choose from either the gaussian or879

laplace distribution where variances are sampled randomly.880

• Functional Mechanisms: We can control the complexity of causal relationships: either881

we set them to be linear (LIN) functions randomly sampled, or use random fourier features882

(RFF) for generating random non-linear causal relationships.883

We construct two distribution of SCMs PIN, and POUT, which vary based on the choice for sampling884

causal graphs, noise variables, and causal relationships. The classification aids in understanding the885

creation of train and test datasets.886

• In-Distribution (PIN): We sample causal graphs using the Erods-Renyi and scale-free887

models schemes. Noise variables are sampled from the gaussian distribution, and we allow888

for both LIN and RFF causal relationships.889

• Out-of-Distribution (POUT): Causal graphs are drawn from Watts-Strogatz and stochastic890

block models schemes. Noise variables follow the laplace distribution, and both the LIN891

and RFF cases are used to sample functions. However, the parameters of these distributions892

are sampled from a different range as compared to PIN to create a distribution shift.893

We provide further details on the shift in the support of parameters for functional mechanisms below.894

For complete details please refer to Table 3, Appendix in Lorch et al. [2022].895

• Linear Functional Mechanism.896

– In-Distribution (PIN)897

* Weights: ∼ U±(1, 3), Bias ∼ U(−3, 3).898

– Out-of-Distribution (POUT)899

* Weights: ∼ U±(0.5, 2) ∪ U±(2, 4), Bias ∼ U(−3, 3).900

• RFF Functional Mechanism.901

– In-Distribution (PIN)902

* Length Scale: ∼ U(7, 10), Output Scale: ∼ U(5, 8)∪U(8, 12), Bias ∼ U±(−3, 3).903

– Out-of-Distribution (POUT):904

* Length Scale: ∼ U(10, 20), Output Scale: ∼ U(8, 12) ∪ U(18, 22), Bias ∼905

U±(−3, 3).906

Test Datasets.907

• LIN IN: SCMs sampled from PIN with linear causal mechanisms. We have 3 different908

options for sampling graphs in this case, and we randomly sample 3 different SCMs for909

each scenario, leading to a total of 9 instances.910

• RFF IN: SCMs sampled from PIN with non-linear causal mechanisms. We have 3 different911

options for sampling graphs in this case, and we randomly sample 3 different SCMs for912

each scenario, leading to a total of 9 instances.913

• LIN OUT: SCMs sampled from POUT with linear causal mechanisms. We have 2 different914

options for sampling graphs in this case, and we randomly sample 3 different SCMs for915

each scenario, leading to a total of 6 instances.916

• RFF OUT: SCMs sampled from POUT with non-linear causal mechanisms. We have 2917

different options for sampling graphs in this case, and we randomly sample 3 different918

SCMs for each scenario, leading to a total of 6 instances.919
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B.2 Model Architecture and Training Details920

For both the dataset encoder and cond-FiP, we set the embedding dimension to dh = 256 and the921

hidden dimension of MLP blocks to 512. Both of our transformer-based models contains 4 attention922

layers and each attention consists of 8 attention heads. The models were trained for a total of 10k923

epochs with the Adam optimizer [Paszke et al., 2017], where we used a learning rate of 1e − 4924

and a weight decay of 5e − 9. Each epoch contains ≃ 400 randomly generated datasets from the925

distribution PIN. We also use the EMA implementation of [Karras et al., 2023] to train our models.926

Memory Requirements. We trained Cond-FiP on a single L40 GPU with 48GB of memory, using927

an effective batch size of 8 with gradient accumulation. We outline the detailed memory computation928

as follows:929

• Each batch consists of n = 400 samples with dimension d = 20 requiring less than 1 MiB930

of data in FP32 precision.931

• Storing the model on the GPU requires under 100 MiB.932

• Our transformer architecture has 4 attention layers, a 256-dimensional embedding space,933

and a 512-dimensional feedforward network. Using a standard (non-flash) attention imple-934

mentation, a forward pass consumes approximately 30 GiB of GPU memory.935

Compared to the baselines, Cond-FiP has similar memory requirements to DECI [Geffner et al.,936

2022] and FiP [Scetbon et al., 2024], as all three train neural networks of comparable size. The937

main exception is DoWhy [Blöbaum et al., 2022], which fits simpler models for each node, but this938

approach does not scale well as the graph size increases.939

Computational Cost. Like other amortized approaches, Cond-FiP has a higher training cost than940

the baselines, as it is trained across multiple datasets. While the cost of each forward-pass is941

comparable to FiP, we trained Cond-FiP over approximately 4M datasets in an amortized manner.942

However, Cond-FiP offers a significant advantage at inference time since it requires only a single943

forward pass to generate predictions, whereas the baselines must be retrained from scratch for each944

new dataset. Thus, while Cond-FiP incurs a higher one-time training cost, its substantially faster at945

inference.946

B.3 Code Repository947

We plan to open-source the code along with comprehensive documentation to facilitate reproducibility948

of our experiments. For the submission, we have prepared an anonymized version of the codebase,949

which can be accessed via this link: https://anonymous.4open.science/r/neurips_2025_950

condfip-1277/ .951

Please note that while the codebase is not directly executable, it provides full access to the implemen-952

tation of all components of our framework:953

• cond-fip/models contains the implementation of the transformer-based encoder and the954

Cond-FIP architecture.955

• cond-fip/tasks includes the training and inference methods associated with our framework.956
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C Complete Results for Cond-FiP on AVICI Benchmark957

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.03 (0.0) 0.13 (0.02) 0.04 (0.01) 0.11 (0.01)
DECI 10 0.09 (0.01) 0.23 (0.03) 0.12 (0.01) 0.23 (0.03)
FiP 10 0.04 (0.0) 0.09 (0.01) 0.06 (0.01) 0.08 (0.01)
Cond-FiP 10 0.06 (0.01) 0.10 (0.01) 0.07 (0.01) 0.10 (0.01)

DoWhy 20 0.03 (0.01) 0.15 (0.02) 0.03 (0.0) 0.23 (0.01)
DECI 20 0.10 (0.02) 0.21 (0.03) 0.08 (0.02) 0.23 (0.02)
FiP 20 0.04 (0.0) 0.12 (0.02) 0.05 (0.0) 0.15 (0.02)
Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.07 (0.0) 0.12 (0.0)

DoWhy 50 0.03 (0.0) 0.18 (0.03) 0.03 (0.0) 0.29 (0.03)
DECI 50 0.09 (0.01) 0.24 (0.02) 0.07 (0.01) 0.29 (0.02)
FiP 50 0.04 (0.0) 0.14 (0.03) 0.04 (0.0) 0.23 (0.04)
Cond-FiP 50 0.06 (0.01) 0.10 (0.01) 0.07 (0.01) 0.14 (0.01)

DoWhy 100 0.03 (0.0) 0.20 (0.03) 0.03 (0.0) 0.31 (0.02)
DECI 100 0.08 (0.02) 0.26 (0.03) 0.07 (0.01) 0.30 (0.02)
FiP 100 0.04 (0.0) 0.16 (0.03) 0.04 (0.0) 0.24 (0.02)
Cond-FiP 100 0.05 (0.0) 0.10 (0.01) 0.07 (0.01) 0.16 (0.01)

Table 1: Results for Noise Prediction. We compare Cond-FiP against the baselines for the task of
predicting noise variables from the input observations. Each cell reports the mean (standard error)
RMSE over the multiple test datasets for each scenario. Shaded rows denote the case where the
graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that Cond-FiP
generalizes to both in-distribution and OOD instances.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.05 (0.0) 0.18 (0.03) 0.06 (0.01) 0.12 (0.02)
DECI 10 0.15 (0.02) 0.33 (0.04) 0.16 (0.02) 0.27 (0.03)
FiP 10 0.07 (0.0) 0.13 (0.02) 0.08 (0.01) 0.11 (0.02)
Cond-FiP 10 0.06 (0.01) 0.14 (0.02) 0.05 (0.01) 0.08 (0.01)

DoWhy 20 0.06 (0.01) 0.27 (0.05) 0.05 (0.0) 0.39 (0.04)
DECI 20 0.16 (0.02) 0.39 (0.05) 0.13 (0.02) 0.44 (0.04)
FiP 20 0.08 (0.01) 0.23 (0.05) 0.08 (0.01) 0.27 (0.04)
Cond-FiP 20 0.05 (0.01) 0.24 (0.06) 0.07 (0.01) 0.30 (0.03)

DoWhy 50 0.08 (0.01) 0.35 (0.09) 0.06 (0.01) 0.54 (0.06)
DECI 50 0.15 (0.01) 0.46 (0.06) 0.13 (0.02) 0.67 (0.06)
FiP 50 0.09 (0.01) 0.26 (0.05) 0.08 (0.01) 0.48 (0.06)
Cond-FiP 50 0.08 (0.01) 0.25 (0.05) 0.07 (0.0) 0.48 (0.07)

DoWhy 100 0.06 (0.0) 0.33 (0.07) 0.06 (0.01) 0.63 (0.07)
DECI 100 0.14 (0.02) 0.50 (0.09) 0.14 (0.02) 0.71 (0.08)
FiP 100 0.08 (0.01) 0.3 (0.06) 0.09 (0.01) 0.55 (0.08)
Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 2: Results for Sample Generation. We compare Cond-FiP against the baselines for the task of
generating samples from the input noise variables. Each cell reports the mean (standard error) RMSE
over the multiple test datasets for each scenario. Shaded rows denote the case where the graph size is
larger than the train graph sizes (d = 20) for Cond-FiP. Results show that Cond-FiP generalizes to
both in-distribution and OOD instances.
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.08 (0.03) 0.19 (0.04) 0.05 (0.01) 0.12 (0.02)
DECI 10 0.17 (0.02) 0.34 (0.04) 0.13 (0.02) 0.25 (0.03)
FiP 10 0.08 (0.01) 0.15 (0.02) 0.07 (0.01) 0.09 (0.01)
Cond-FiP 10 0.10 (0.03) 0.21 (0.03) 0.07 (0.01) 0.11 (0.01)

DoWhy 20 0.06 (0.01) 0.27 (0.06) 0.05 (0.0) 0.36 (0.03)
DECI 20 0.16 (0.02) 0.38 (0.05) 0.15 (0.04) 0.42 (0.03)
FiP 20 0.09 (0.01) 0.23 (0.05) 0.12 (0.04) 0.25 (0.03)
Cond-FiP 20 0.09 (0.01) 0.24 (0.05) 0.14 (0.03) 0.31 (0.03)

DoWhy 50 0.08 (0.01) 0.29 (0.05) 0.06 (0.01) 0.53 (0.06)
DECI 50 0.17 (0.02) 0.44 (0.06) 0.13 (0.02) 0.64 (0.06)
FiP 50 0.11 (0.02) 0.25 (0.05) 0.09 (0.01) 0.46 (0.06)
Cond-FiP 50 0.13 (0.02) 0.27 (0.04) 0.12 (0.02) 0.48 (0.07)

DoWhy 100 0.05 (0.0) 0.33 (0.07) 0.06 (0.01) 0.60 (0.07)
DECI 100 0.14 (0.02) 0.49 (0.08) 0.15 (0.02) 0.70 (0.08)
FiP 100 0.08 (0.01) 0.29 (0.07) 0.10 (0.01) 0.54 (0.08)
Cond-FiP 100 0.10 (0.01) 0.30 (0.06) 0.14 (0.02) 0.56 (0.07)

Table 3: Results for Interventional Generation. We compare Cond-FiP against the baselines for
the task of generating interventional data from the input noise variables. Each cell reports the mean
(standard error) RMSE over the multiple test datasets for each scenario. Shaded rows denote the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that
Cond-FiP generalizes to both in-distribution and OOD instances.
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D Experiments on Sensitivity to Distribution Shifts on AVICI benchmark958

In Appendix C (Table 1, Table 2, Table 3), we tested OOD genrealization with datasets sampled from959

SCM following a different distribution (LIN OUT, RFF OUT) than the datasets used for training960

Cond-FiP (LIN IN, RFF IN). We now analyze how sensitive is Cond-FiP to distribution shifts by961

comparing its performance across scenarios as the severity of the distribution shift is increased.962

To illustrate how we control the magnitude of distribution shift, we discuss the difference in the963

distribution of causal mechanisms across PIN and POUT. The distribution shift arises because the964

support of the parameters of causal mechanisms changes from PIN to POUT. For example, for linear965

causal mechanism case, the weights in PIN are sampled uniformly from (−3,−1) ∪ (1, 3); while966

in POUT they are sampled from uniformly from (0.5, 4). We now change the support set of the967

parameters in POUT to (0.5α, 4α), so that by increasing α we make the distribution shift more968

severe. We follow this procedure for the support set of all the parameters associated with functional969

mechanisms and generate distributions (POUT(α)) with varying shift w.r.t PIN by changing α. Note970

that α = 1 corresponds to the same POUT as the one used for sampling datasets in our main results.971

We conduct two experiments for evaluating the robustness of Cond-FiP to distribution shifts, described972

ahead.973

• Controlling Shift in Causal Mechanisms. We start with the parameter configuration of974

POUT from the setup in main results; and then control the magnitude of shift by changing975

the support set of parameters of causal mechanisms.976

• Controlling Shift in Noise Variables. We start with the parameter configuration of POUT977

from the setup in main results; and then control the magnitude of shift by changing the978

support set of parameters of noise distribution.979

Tables 4, 5, and 6 provide results for the case of controlling shift via causal mechanisms, for the task980

of noise prediction, sample generation, and interventional generation respectively. We find that the981

performance of Cond-FiP does not change much as we increase α, indicating that Cond-FiP is robust982

to the varying levels of distribution shits in causal mechanisms.983

However, for the case of controlling shift via noise variables (Table 7, 8, and 9) we find that Cond-FiP984

is quite sensitive to the varying levels of distribution shift in noise variables. The performance of985

Cond-FiP degrades with increasing magnitude of the shift (α) for all the tasks.986
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Total Nodes Shift Level (α) LIN OUT RFF OUT
10 1 0.07 (0.01) 0.10 (0.01)
10 2 0.06 (0.01) 0.10 (0.01)
10 5 0.05 (0.01) 0.10 (0.01)
10 10 0.05 (0.01) 0.10 (0.01)

20 1 0.07 (0.0) 0.12 (0.0)
20 2 0.06 (0.0) 0.13 (0.01)
20 5 0.05 (0.0) 0.11 (0.01)
20 10 0.05 (0.0) 0.10 (0.01)

50 1 0.07 (0.01) 0.14 (0.01)
50 2 0.05 (0.01) 0.17 (0.01)
50 5 0.05 (0.01) 0.14 (0.01)
50 10 0.04 (0.0) 0.14 (0.01)

100 1 0.07 (0.01) 0.16 (0.01)
100 2 0.05 (0.01) 0.18 (0.0)
100 5 0.05 (0.0) 0.17 (0.01)
100 10 0.05 (0.0) 0.16 (0.01)

Table 4: Results for Noise Prediction under Distribution Shifts in Causal Mechanisms. We
evaluate the robustness of Cond-FiP to distribution shifts in the parametrization of causal mechanisms.
We vary the distribution shift controlled by α, where α = 1 corresponds to the results in Table 1.
Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
We find that Cond-FiP is robust to varying levels of distribution shift in causal mechanisms.

Total Nodes Shift Level (α) LIN OUT RFF OUT
10 1 0.05 (0.01) 0.08 (0.01)
10 2 0.05 (0.0) 0.07 (0.01)
10 5 0.05 (0.0) 0.07 (0.01)
10 10 0.06 (0.0) 0.06 (0.01)

20 1 0.07 (0.01) 0.30 (0.03)
20 2 0.06 (0.01) 0.34 (0.05)
20 5 0.06 (0.01) 0.35 (0.05)
20 10 0.06 (0.01) 0.29 (0.07)

50 1 0.07 (0.0) 0.48 (0.07)
50 2 0.07 (0.0) 0.47 (0.07)
50 5 0.07 (0.01) 0.38 (0.06)
50 10 0.07 (0.01) 0.32 (0.06)

100 1 0.09 (0.01) 0.57 (0.07)
100 2 0.09 (0.01) 0.60 (0.05)
100 5 0.09 (0.01) 0.58 (0.05)
100 10 0.12 (0.02) 0.56 (0.06)

Table 5: Results for Sample Generation under Distribution Shifts in Causal Mechanisms. We
evaluate the robustness of Cond-FiP to distribution shifts in the parametrization of causal mechanisms.
We vary the distribution shift controlled by α, where α = 1 corresponds to the results in Table 2.
Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
We find that Cond-FiP is robust to varying levels of distribution shift in causal mechanisms.
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Total Nodes Shift Level (α) LIN OUT RFF OUT
10 1 0.07 (0.01) 0.11 (0.01)
10 2 0.07 (0.01) 0.11 (0.01)
10 5 0.07 (0.01) 0.10 (0.01)
10 10 0.06 (0.01) 0.10 (0.01)

20 1 0.14 (0.03) 0.31 (0.03)
20 2 0.10 (0.02) 0.33 (0.04)
20 5 0.17 (0.1) 0.34 (0.04)
20 10 0.10 (0.03) 0.28 (0.05)

50 1 0.12 (0.02) 0.48 (0.07)
50 2 0.12 (0.03) 0.47 (0.07)
50 5 0.11 (0.01) 0.39 (0.06)
50 10 0.11 (0.02) 0.32 (0.06)

100 1 0.14 (0.02) 0.58 (0.07)
100 2 0.13 (0.02) 0.60 (0.06)
100 5 0.14 (0.03) 0.58 (0.05)
100 10 0.18 (0.04) 0.55 (0.06)

Table 6: Results for Interventional Generation under Distribution Shifts in Causal Mechanisms.
We evaluate the robustness of Cond-FiP to distribution shifts in the parametrization of causal mech-
anisms. We vary the distribution shift controlled by α, where α = 1 corresponds to the results
in Table 3. Each cell reports the mean (standard error) RMSE over the multiple test datasets for each
scenario. We find that Cond-FiP is robust to varying levels of distribution shift in causal mechanisms.

Total Nodes Shift Level (α) LIN OUT RFF OUT
10 1 0.07 (0.01) 0.10 (0.01)
10 2 0.07 (0.01) 0.11 (0.01)
10 5 0.07 (0.01) 0.18 (0.02)
10 10 0.08 (0.01) 0.26 (0.04)

20 1 0.07 (0.0) 0.12 (0.0)
20 2 0.07 (0.0) 0.16 (0.01)
20 5 0.07 (0.0) 0.30 (0.01)
20 10 0.07 (0.0) 0.41 (0.02)

50 1 0.07 (0.01) 0.14 (0.01)
50 2 0.07 (0.01) 0.19 (0.01)
50 5 0.07 (0.01) 0.33 (0.02)
50 10 0.07 (0.01) 0.44 (0.02)

100 1 0.07 (0.01) 0.16 (0.01)
100 2 0.07 (0.01) 0.22 (0.0)
100 5 0.07 (0.01) 0.35 (0.01)
100 10 0.07 (0.01) 0.44 (0.01)

Table 7: Results for Noise Prediction under Distribution Shifts in Noise Variables. We evaluate
the robustness of Cond-FiP to distribution shifts in the parametrization of noise distribution. We vary
the distribution shift controlled by α, where α = 1 corresponds to the results in Table 1. Each cell
reports the mean (standard error) RMSE over the multiple test datasets for each scenario. We find
that Cond-FiP is sensitive to varying levels of distribution shift in noise variables, its performance
decreases with increasing magnitude of the shift.

29



Total Nodes Shift Level (α) LIN OUT RFF OUT
10 1 0.05 (0.01) 0.08 (0.01)
10 2 0.05 (0.0) 0.13 (0.03)
10 5 0.05 (0.01) 0.28 (0.06)
10 10 0.05 (0.01) 0.36 (0.08)

20 1 0.07 (0.01) 0.30 (0.03)
20 2 0.07 (0.01) 0.45 (0.04)
20 5 0.07 (0.01) 0.59 (0.03)
20 10 0.07 (0.01) 0.58 (0.02)

50 1 0.07 (0.0) 0.48 (0.07)
50 2 0.07 (0.0) 0.59 (0.06)
50 5 0.07 (0.0) 0.64 (0.03)
50 10 0.07 (0.0) 0.58 (0.02)

100 1 0.09 (0.01) 0.57 (0.07)
100 2 0.09 (0.01) 0.63 (0.05)
100 5 0.09 (0.01) 0.65 (0.03)
100 10 0.09 (0.01) 0.59 (0.02)

Table 8: Results for Sample Generation under Distribution Shifts in Noise Variables. We evaluate
the robustness of Cond-FiP to distribution shifts in the parametrization of noise distribution. We vary
the distribution shift controlled by α, where α = 1 corresponds to the results in Table 2. Each cell
reports the mean (standard error) RMSE over the multiple test datasets for each scenario. We find
that Cond-FiP is sensitive to varying levels of distribution shift in noise variables, its performance
decreases with increasing magnitude of the shift.

Total Nodes Shift Level (α) LIN OUT RFF OUT
10 1 0.07 (0.01) 0.11 (0.01)
10 2 0.07 (0.01) 0.14 (0.02)
10 5 0.07 (0.01) 0.25 (0.05)
10 10 0.07 (0.01) 0.32 (0.06)

20 1 0.14 (0.03) 0.31 (0.03)
20 2 0.14 (0.03) 0.42 (0.03)
20 5 0.14 (0.03) 0.57 (0.03)
20 10 0.14 (0.03) 0.56 (0.02)

50 1 0.12 (0.02) 0.48 (0.07)
50 2 0.12 (0.01) 0.58 (0.06)
50 5 0.12 (0.01) 0.65 (0.04)
50 10 0.12 (0.01) 0.59 (0.02)

100 1 0.14 (0.02) 0.58 (0.07)
100 2 0.14 (0.02) 0.65 (0.06)
100 5 0.14 (0.02) 0.67 (0.04)
100 10 0.14 (0.02) 0.60 (0.03)

Table 9: Results for Interventional Generation under Distribution Shifts in Noise Variables. We
evaluate the robustness of Cond-FiP to distribution shifts in the parametrization of noise distribution.
We vary the distribution shift controlled by α, where α = 1 corresponds to the results in Table 3. Each
cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. We find
that Cond-FiP is sensitive to varying levels of distribution shift in noise variables, its performance
decreases with increasing magnitude of the shift.
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E Experiment on Generalization in Scarce Data Regime on AVICI987

benchmark988

E.1 Experiments with nDtest = 100989

In this section we benchmark Cond-FiP against the baselines for the scenario when test datasets990

in the input context have smaller sample size (nDtest = 100) as compared to the train datasets991

(nDtest
= 400) in Appendix C.992

We report the results for the task of noise prediction, sample generation, and interventional generation993

in Table 10, Table 11, and Table 12 respectively. We find that Cond-FiP exhibits superior generaliza-994

tion as compared to baselines. For example, in the case of RFF IN, Cond-FiP is even better than FiP995

for all the tasks! This can be attributed to the advantage of amortized inference; as the sample size996

in test dataset decreases, the generalization of baselines would be affected a lot since they require997

training from scratch on these datasets. However, amortized inference methods would be impacted998

less as they do not have to trained from scratch, and the inductive bias learned by them can help them999

generalize even with smaller input context.1000

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.06 (0.01) 0.22 (0.03) 0.09 (0.01) 0.16 (0.03)
DECI 10 0.15 (0.01) 0.3 (0.02) 0.22 (0.01) 0.3 (0.03)
FiP 10 0.07 (0.01) 0.18 (0.01) 0.12 (0.01) 0.11 (0.01)
Cond-FiP 10 0.07 (0.01) 0.14 (0.01) 0.09 (0.01) 0.14 (0.01)

DoWhy 20 0.06 (0.01) 0.27 (0.05) 0.07 (0.01) 0.37 (0.01)
DECI 20 0.15 (0.02) 0.33 (0.02) 0.17 (0.02) 0.35 (0.03)
FiP 20 0.09 (0.01) 0.21 (0.03) 0.1 (0.01) 0.27 (0.03)
Cond-FiP 20 0.08 (0.01) 0.12 (0.01) 0.1 (0.01) 0.15 (0.01)

DoWhy 50 0.06 (0.01) 0.29 (0.04) 0.05 (0.01) 0.47 (0.04)
DECI 50 0.14 (0.01) 0.33 (0.02) 0.14 (0.02) 0.4 (0.03)
FiP 50 0.08 (0.01) 0.23 (0.03) 0.08 (0.01) 0.37 (0.04)
Cond-FiP 50 0.08 (0.0) 0.12 (0.01) 0.08 (0.01) 0.15 (0.01)

DoWhy 100 0.06 (0.01) 0.31 (0.04) 0.06 (0.01) 0.5 (0.03)
DECI 100 0.13 (0.01) 0.36 (0.03) 0.12 (0.02) 0.44 (0.02)
FiP 100 0.08 (0.01) 0.25 (0.04) 0.1 (0.01) 0.39 (0.03)
Cond-FiP 100 0.07 (0.0) 0.13 (0.01) 0.08 (0.01) 0.17 (0.01)

Table 10: Results for Noise Prediction with Smaller Sample Size (nDtest = 100). We compare
Cond-FiP against the baselines for the task of predicting noise variable from input observations. Each
test dataset contains 100 samples, as opposed to 400 samples in Table 1. Each cell reports the mean
(standard error) RMSE over the multiple test datasets for each scenario. Shaded rows deonte the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that
Cond-FiP generalizes much better than the baselines in this low-data regime.
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.1 (0.01) 0.3 (0.06) 0.12 (0.02) 0.19 (0.03)
DECI 10 0.23 (0.01) 0.45 (0.04) 0.31 (0.02) 0.38 (0.04)
FiP 10 0.13 (0.01) 0.29 (0.04) 0.18 (0.02) 0.15 (0.03)
Cond-FiP 10 0.09 (0.01) 0.2 (0.03) 0.09 (0.02) 0.14 (0.02)

DoWhy 20 0.11 (0.01) 0.47 (0.15) 0.11 (0.02) 0.5 (0.03)
DECI 20 0.26 (0.02) 0.53 (0.05) 0.26 (0.03) 0.57 (0.04)
FiP 20 0.17 (0.02) 0.34 (0.06) 0.17 (0.02) 0.39 (0.03)
Cond-FiP 20 0.08 (0.0) 0.31 (0.06) 0.13 (0.01) 0.37 (0.02)

DoWhy 50 0.11 (0.01) 0.42 (0.08) 0.09 (0.01) 0.66 (0.06)
DECI 50 0.23 (0.02) 0.59 (0.08) 0.27 (0.04) 0.73 (0.06)
FiP 50 0.13 (0.01) 0.38 (0.07) 0.14 (0.01) 0.58 (0.06)
Cond-FiP 50 0.1 (0.01) 0.32 (0.05) 0.12 (0.01) 0.54 (0.05)

DoWhy 100 0.11 (0.01) 0.44 (0.08) 0.11 (0.01) 0.74 (0.05)
DECI 100 0.25 (0.02) 0.62 (0.08) 0.25 (0.01) 0.78 (0.07)
FiP 100 0.15 (0.01) 0.4 (0.07) 0.19 (0.02) 0.67 (0.07)
Cond-FiP 100 0.11 (0.01) 0.35 (0.07) 0.14 (0.02) 0.63 (0.07)

Table 11: Results for Sample Generation with Smaller Sample Size (nDtest
= 100). We compare

Cond-FiP against the baselines for the task of generating samples from the input noise variable. Each
test dataset contains 100 samples, as opposed to 400 samples in Table 2. Each cell reports the mean
(standard error) RMSE over the multiple test datasets for each scenario. Shaded rows deonte the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that
Cond-FiP generalizes much better than the baselines in this low-data regime.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.09 (0.01) 0.34 (0.08) 0.11 (0.01) 0.2 (0.04)
DECI 10 0.24 (0.02) 0.43 (0.04) 0.26 (0.03) 0.35 (0.04)
FiP 10 0.13 (0.01) 0.29 (0.04) 0.14 (0.02) 0.14 (0.03)
Cond-FiP 10 0.09 (0.02) 0.21 (0.03) 0.09 (0.01) 0.12 (0.02)

DoWhy 20 0.1 (0.01) 0.37 (0.08) 0.11 (0.02) 0.49 (0.04)
DECI 20 0.25 (0.03) 0.5 (0.05) 0.28 (0.03) 0.54 (0.04)
FiP 20 0.16 (0.01) 0.33 (0.06) 0.2 (0.03) 0.38 (0.03)
Cond-FiP 20 0.1 (0.01) 0.27 (0.05) 0.15 (0.02) 0.29 (0.03)

DoWhy 50 0.12 (0.02) 0.49 (0.14) 0.09 (0.01) 0.64 (0.07)
DECI 50 0.26 (0.03) 0.56 (0.07) 0.26 (0.03) 0.72 (0.06)
FiP 50 0.16 (0.02) 0.36 (0.06) 0.15 (0.01) 0.57 (0.06)
Cond-FiP 50 0.13 (0.02) 0.29 (0.04) 0.12 (0.01) 0.49 (0.07)

DoWhy 100 0.11 (0.01) 0.46 (0.07) 0.11 (0.01) 1.16 (0.38)
DECI 100 0.24 (0.02) 0.62 (0.08) 0.26 (0.01) 0.78 (0.07)
FiP 100 0.16 (0.02) 0.39 (0.07) 0.2 (0.02) 0.66 (0.07)
Cond-FiP 100 0.12 (0.02) 0.32 (0.07) 0.13 (0.01) 0.58 (0.07)

Table 12: Results for Interventional Generation with Smaller Sample Size (nDtest
= 100). We

compare Cond-FiP against the baselines for the task of generating interventional data from the input
noise variable. Each test dataset contains 100 samples, as opposed to 400 samples in Table 3. Each
cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded
rows deonte the case where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.
Results show that Cond-FiP generalizes much better than the baselines in this low-data regime.
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E.2 Experiments with nDtest = 501001

We conduct more experiments for the smaller sample size scenarios, where decrease the sample size1002

even further to nDtest = 50 samples. We report the results for the task of noise prediction, sample1003

generation, and interventional generation in Table 13, Table 14, and Table 15 respectively. We find1004

that baselines perform much worse than Cond-FiP for the all different SCM distributions, highlighting1005

the efficacy of Cond-FiP for inferring causal mechanisms when the input context has smaller sample1006

size. Note that there were issues with training DoWhy for such a small dataset, hence we do not1007

consider them for this scenario.1008

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DECI 10 0.19 (0.02) 0.41 (0.03) 0.2 (0.02) 0.42 (0.04)
FiP 10 0.13 (0.03) 0.27 (0.03) 0.15 (0.02) 0.21 (0.03)
Cond-FiP 10 0.09 (0.01) 0.17 (0.01) 0.11 (0.01) 0.16 (0.01)

DECI 20 0.2 (0.01) 0.42 (0.03) 0.25 (0.04) 0.45 (0.05)
FiP 20 0.12 (0.01) 0.33 (0.04) 0.15 (0.02) 0.35 (0.04)
Cond-FiP 20 0.1 (0.01) 0.16 (0.01) 0.11 (0.01) 0.17 (0.01)

DECI 50 0.2 (0.02) 0.43 (0.02) 0.2 (0.03) 0.5 (0.05)
FiP 50 0.13 (0.01) 0.32 (0.03) 0.13 (0.01) 0.49 (0.05)
Cond-FiP 50 0.1 (0.01) 0.16 (0.0) 0.1 (0.01) 0.17 (0.01)

DECI 100 0.19 (0.02) 0.43 (0.03) 0.21 (0.01) 0.53 (0.02)
FiP 100 0.11 (0.01) 0.32 (0.04) 0.13 (0.01) 0.48 (0.02)
Cond-FiP 100 0.09 (0.01) 0.16 (0.01) 0.09 (0.01) 0.18 (0.01)

Table 13: Results for Noise Prediction with Smaller Sample Size (nDtest
= 50). We compare

Cond-FiP against the baselines for the task of predicting noise variable from input observations. Each
test dataset contains 50 samples, as opposed to 400 samples in Table 1. Each cell reports the mean
(standard error) RMSE over the multiple test datasets for each scenario. Shaded rows denote the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that
Cond-FiP generalizes much better than the baselines in this low-data regime.
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DECI 10 0.31 (0.02) 0.58 (0.05) 0.27 (0.04) 0.49 (0.07)
FiP 10 0.2 (0.03) 0.4 (0.05) 0.21 (0.03) 0.25 (0.04)
Cond-FiP 10 0.12 (0.02) 0.28 (0.03) 0.12 (0.01) 0.18 (0.03)

DECI 20 0.34 (0.02) 0.66 (0.08) 0.39 (0.07) 0.68 (0.05)
FiP 20 0.2 (0.01) 0.51 (0.08) 0.25 (0.04) 0.51 (0.02)
Cond-FiP 20 0.13 (0.01) 0.4 (0.06) 0.19 (0.02) 0.43 (0.02)

DECI 50 0.32 (0.02) 0.66 (0.06) 0.36 (0.02) 0.8 (0.06)
FiP 50 0.2 (0.01) 0.48 (0.07) 0.22 (0.02) 0.69 (0.06)
Cond-FiP 50 0.15 (0.02) 0.4 (0.05) 0.16 (0.01) 0.59 (0.06)

DECI 100 0.36 (0.04) 0.68 (0.08) 0.39 (0.03) 0.84 (0.06)
FiP 100 0.2 (0.02) 0.49 (0.09) 0.28 (0.03) 0.73 (0.07)
Cond-FiP 100 0.16 (0.01) 0.42 (0.07) 0.22 (0.01) 0.65 (0.06)

Table 14: Results for Sample Generation with Smaller Sample Size (nDtest
= 50). We compare

Cond-FiP against the baselines for the task of generating samples from the input noise variable. Each
test dataset contains 50 samples, as opposed to 400 samples in Table 2. Each cell reports the mean
(standard error) RMSE over the multiple test datasets for each scenario. Shaded rows denote the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that
Cond-FiP generalizes much better than the baselines in this low-data regime.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DECI 10 0.3 (0.03) 0.53 (0.05) 0.26 (0.04) 0.42 (0.05)
FiP 10 0.21 (0.04) 0.35 (0.04) 0.2 (0.03) 0.22 (0.03)
Cond-FiP 10 0.12 (0.01) 0.19 (0.03) 0.07 (0.01) 0.14 (0.02)

DECI 20 0.33 (0.02) 0.6 (0.06) 0.43 (0.07) 0.63 (0.04)
FiP 20 0.21 (0.02) 0.46 (0.07) 0.29 (0.04) 0.49 (0.02)
Cond-FiP 20 0.11 (0.01) 0.29 (0.06) 0.15 (0.02) 0.32 (0.03)

DECI 50 0.34 (0.02) 0.66 (0.07) 0.34 (0.02) 0.78 (0.06)
FiP 50 0.21 (0.02) 0.46 (0.07) 0.23 (0.02) 0.68 (0.06)
Cond-FiP 50 0.13 (0.02) 0.31 (0.05) 0.12 (0.02) 0.51 (0.07)

DECI 100 0.37 (0.04) 0.67 (0.08) 0.4 (0.04) 0.84 (0.06)
FiP 100 0.21 (0.02) 0.49 (0.08) 0.28 (0.03) 0.73 (0.07)
Cond-FiP 100 0.12 (0.01) 0.33 (0.07) 0.14 (0.01) 0.58 (0.07)

Table 15: Results for Interventional Generation with Smaller Sample Size (nDtest
= 50). We

compare Cond-FiP against the baselines for the task of generating interventional data from the input
noise variable. Each test dataset contains 50 samples, as opposed to 400 samples in Table 3. Each
cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded
rows deonte the case where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.
Results show that Cond-FiP generalizes much better than the baselines in this low-data regime.
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F Experiments without True Causal Graph on AVICI Benchmark1009

Results in Appendix C (Table 1, Table 2, Table 3) require the knowledge of true graph (G) as part1010

of the input context to Cond-FiP. In this section we conduct where we don’t provide the true graph1011

in the input context, rather we infer the graph Ĝ using an amortized causal discovery approach1012

(AVICI [Lorch et al., 2022]) from the observational data DX . We chose AVICI for this task since it1013

can enable to amortized inference of causal graphs, hence allowing the combined pipeline of AVICI +1014

Cond-FiP can perform amortized inference of SCMs. More precisely, AVICI infers the graph from1015

a novel instance G from input context DX without updating any parameters, and we pass (Ĝ, DX)1016

as the input context for Cond-FiP. Therefore, for any z ∈ Rd, Cond-FiP ( T (z, DX , Ĝ)) aims to1017

replicate the functional mechanism F (z) of the underlying SCM.1018

The results for benchmarking Cond-FiP with inferred graphs using AVICI for the task of noise1019

prediction, sample generation, and interventional generation are provided in Table 16, Table 17,1020

and Table 18 respectively. For a fair comparison, the baselines FiP, DECI, and DoWhy also use1021

the inferred graph (Ĝ) by AVICI instead of the true graph (G). We find that Cond-FiP remains1022

competitive to baselines even for the scenario of unknown true causal graph. Hence, our training1023

procedure can be extended for amortized inference of both causal graphs and causal mechanisms of1024

the SCM.1025

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.16 (0.05) 0.24 (0.04) 0.12 (0.03) 0.12 (0.02)
DECI 10 0.21 (0.05) 0.29 (0.04) 0.16 (0.03) 0.19 (0.04)
FiP 10 0.16 (0.05) 0.2 (0.04) 0.13 (0.03) 0.09 (0.01)
Cond-FiP 10 0.15 (0.05) 0.2 (0.04) 0.13 (0.03) 0.11 (0.01)

DoWhy 20 0.19 (0.05) 0.22 (0.03) 0.2 (0.03) 0.26 (0.01)
DECI 20 0.23 (0.05) 0.28 (0.03) 0.24 (0.04) 0.28 (0.02)
FiP 20 0.2 (0.05) 0.2 (0.03) 0.21 (0.03) 0.21 (0.02)
Cond-FiP 20 0.18 (0.05) 0.17 (0.02) 0.21 (0.03) 0.16 (0.02)

DoWhy 50 0.44 (0.05) 0.3 (0.03) 0.51 (0.03) 0.38 (0.04)
DECI 50 0.46 (0.05) 0.33 (0.04) 0.52 (0.03) 0.42 (0.05)
FiP 50 0.44 (0.05) 0.28 (0.04) 0.51 (0.03) 0.35 (0.05)
Cond-FiP 50 0.43 (0.05) 0.24 (0.03) 0.53 (0.03) 0.29 (0.04)

DoWhy 100 0.49 (0.06) 0.38 (0.03) 0.64 (0.03) 0.53 (0.04)
DECI 100 0.5 (0.06) 0.41 (0.03) 0.64 (0.03) 0.55 (0.03)
FiP 100 0.49 (0.06) 0.37 (0.03) 0.64 (0.03) 0.51 (0.04)
Cond-FiP 100 0.48 (0.06) 0.34 (0.03) 0.64 (0.03) 0.49 (0.04)

Table 16: Results for Noise Prediction without True Graph. We compare Cond-FiP against the
baselines for the task of predicting noise variable from input observations. Unlike experiments
in Table 1, the true graph G is not present in input context, rather its inferred via AVICI [Lorch
et al., 2022]. Each cell reports the mean (standard error) RMSE over the multiple test datasets for
each scenario. Shaded rows deonte the case where the graph size is larger than the train graph sizes
(d = 20) for Cond-FiP. Results indicate Cond-FiP can generalize to novel instances even in the
absence of true graph.
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.22 (0.07) 0.29 (0.05) 0.13 (0.04) 0.14 (0.02)
DECI 10 0.29 (0.06) 0.39 (0.05) 0.18 (0.04) 0.22 (0.05)
FiP 10 0.23 (0.06) 0.26 (0.05) 0.15 (0.04) 0.12 (0.02)
Cond-FiP 10 0.22 (0.07) 0.26 (0.05) 0.13 (0.04) 0.11 (0.02)

DoWhy 20 0.25 (0.05) 0.38 (0.06) 0.29 (0.06) 0.42 (0.03)
DECI 20 0.3 (0.06) 0.52 (0.07) 0.34 (0.06) 0.47 (0.04)
FiP 20 0.26 (0.05) 0.37 (0.07) 0.3 (0.06) 0.33 (0.04)
Cond-FiP 20 0.24 (0.05) 0.36 (0.06) 0.29 (0.06) 0.35 (0.03)

DoWhy 50 0.53 (0.07) 0.46 (0.06) 0.58 (0.03) 0.59 (0.07)
DECI 50 0.55 (0.07) 0.54 (0.07) 0.59 (0.02) 0.66 (0.06)
FiP 50 0.53 (0.07) 0.44 (0.05) 0.58 (0.02) 0.53 (0.07)
Cond-FiP 50 0.52 (0.07) 0.43 (0.05) 0.58 (0.02) 0.53 (0.07)

DoWhy 100 0.67 (0.07) 0.52 (0.06) 0.69 (0.02) 0.68 (0.04)
DECI 100 0.69 (0.08) 0.57 (0.08) 0.69 (0.02) 0.71 (0.04)
FiP 100 0.66 (0.07) 0.5 (0.07) 0.68 (0.02) 0.64 (0.05)
Cond-FiP 100 0.64 (0.06) 0.49 (0.06) 0.68 (0.02) 0.63 (0.05)

Table 17: Results for Sample Generation without True Graph. We compare Cond-FiP against
the baselines for the task of generating samples from the input noise variable. Unlike experiments
in Table 2, the true graph G is not present in input context, rather its inferred via AVICI [Lorch
et al., 2022].. Each cell reports the mean (standard error) RMSE over the multiple test datasets for
each scenario. Shaded rows deonte the case where the graph size is larger than the train graph sizes
(d = 20) for Cond-FiP. Results indicate Cond-FiP can generalize to novel instances even in the
absence of true graph.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.32 (0.09) 0.3 (0.05) 0.13 (0.04) 0.13 (0.02)
DECI 10 0.37 (0.08) 0.39 (0.05) 0.17 (0.03) 0.21 (0.04)
FiP 10 0.32 (0.08) 0.27 (0.05) 0.14 (0.04) 0.1 (0.02)
Cond-FiP 10 0.31 (0.08) 0.3 (0.05) 0.14 (0.04) 0.13 (0.02)

DoWhy 20 0.29 (0.06) 0.38 (0.07) 0.37 (0.05) 0.4 (0.03)
DECI 20 0.34 (0.06) 0.51 (0.07) 0.41 (0.05) 0.43 (0.03)
FiP 20 0.3 (0.06) 0.37 (0.07) 0.38 (0.05) 0.31 (0.03)
Cond-FiP 20 0.29 (0.06) 0.37 (0.06) 0.37 (0.05) 0.33 (0.03)

DoWhy 50 0.54 (0.08) 0.45 (0.06) 0.62 (0.04) 0.57 (0.06)
DECI 50 0.57 (0.08) 0.52 (0.07) 0.63 (0.03) 0.64 (0.06)
FiP 50 0.55 (0.08) 0.43 (0.05) 0.62 (0.03) 0.51 (0.07)
Cond-FiP 50 0.54 (0.08) 0.43 (0.05) 0.62 (0.03) 0.51 (0.06)

DoWhy 100 0.66 (0.06) 0.52 (0.07) 0.71 (0.05) 0.65 (0.05)
DECI 100 0.68 (0.07) 0.58 (0.09) 0.71 (0.05) 0.7 (0.04)
FiP 100 0.65 (0.06) 0.51 (0.07) 0.71 (0.05) 0.62 (0.05)
Cond-FiP 100 0.64 (0.06) 0.49 (0.06) 0.7 (0.04) 0.62 (0.05)

Table 18: Results for Interventional Generation without True Graph. We compare Cond-FiP
against the baselines for the task of interventional data from the input noise variable. Unlike
experiments in Table 3, the true graph G is not present in input context, rather its inferred via
AVICI [Lorch et al., 2022]. Each cell reports the mean (standard error) RMSE over the multiple test
datasets for each scenario. Shaded rows deonte the case where the graph size is larger than the train
graph sizes (d = 20) for Cond-FiP. Results indicate Cond-FiP can generalize to novel instances even
in the absence of true graph.
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G Ablation Study on AVICI benchmark1026

G.1 Ablation Study of Encoder1027

We conduct an ablation study where we train two variants of the encoder in Cond-FiP described as1028

follows:1029

• Cond-FiP (LIN): We sample SCMs with linear causal mechanisms during training of the1030

encoder.1031

• Cond-FiP (RFF): We sample SCMs with non-linear causal mechanisms during training of1032

the encoder.1033

Note that for the training the subsequent decoder, we sample SCMs with both linear and rff causal1034

mechanisms as in the main results ( Table 1, Table 2, and Table 3). Note that in the main results,1035

the encoder was trained by sampling SCMs with both linear and rff functional relationships. Hence,1036

this ablation helps us to understand whether the strategy of training encoder on mixed functional1037

relationships can bring more generalization to the amortization process, or if we should have trained1038

encoders specialized for linear and non-linear functional relationships.1039

We present our results of the ablation study for the task of noise prediction, sample generation, and1040

interventional generation in Table 19, Table 20, Table 21 respectively. Our findings indicate that1041

Cond-FiP is robust to the choice of encoder training strategy! Even though the encoder for Cond-FiP1042

(RFF) was only trained on data from non-linear SCMs, its generalization performance is similar to1043

Cond-FiP where the encoder was trained on data from both linear and non-linear SCMs.1044

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
Cond-FiP(LIN) 10 0.07 (0.01) 0.21 (0.02) 0.08 (0.01) 0.2 (0.03)
Cond-FiP(RFF) 10 0.06 (0.01) 0.11 (0.01) 0.07 (0.01) 0.09 (0.01)
Cond-FiP 10 0.06 (0.01) 0.1 (0.01) 0.07 (0.01) 0.1 (0.01)

Cond-FiP(LIN) 20 0.07 (0.01) 0.19 (0.02) 0.09 (0.01) 0.21 (0.01)
Cond-FiP(RFF) 20 0.06 (0.01) 0.09 (0.01) 0.1 (0.02) 0.11 (0.01)
Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.07 (0.0) 0.12 (0.0)

Cond-FiP(LIN) 50 0.07 (0.01) 0.21 (0.02) 0.07 (0.01) 0.24 (0.01)
Cond-FiP(RFF) 50 0.07 (0.01) 0.09 (0.01) 0.07 (0.0) 0.14 (0.01)
Cond-FiP 50 0.06 (0.01) 0.1 (0.01) 0.07 (0.01) 0.14 (0.01)

Cond-FiP(LIN) 100 0.06 (0.0) 0.22 (0.02) 0.07 (0.01) 0.26 (0.01)
Cond-FiP(RFF) 100 0.06 (0.01) 0.09 (0.01) 0.07 (0.01) 0.14 (0.01)
Cond-FiP 100 0.05 (0.0) 0.1 (0.01) 0.07 (0.01) 0.16 (0.01)

Table 19: Encoder Ablation for Noise Prediction. We compare Cond-FiP against the baselines
for the task of predicting noise variable from input observations against two variants. One variant
corresponds to the encoder trained on SCMs with only linear functional relationships, Cond-FiP(LIN).
Similarly, we have another variant where the decoder was trained on SCMs with only rff functional
relationships, Cond-FiP(RFF). Each cell reports the mean (standard error) RMSE over the multiple
test datasets for each scenario. Results show that training on only non-linear SCMs (Cond-FiP(RFF))
gives similar performance as training on both linear and non-linear SCMs (Cond-FiP).
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
Cond-FiP(LIN) 10 0.05 (0.01) 0.14 (0.02) 0.06 (0.0) 0.08 (0.01)
Cond-FiP(RFF) 10 0.08 (0.01) 0.18 (0.06) 0.06 (0.0) 0.07 (0.01)
Cond-FiP 10 0.06 (0.01) 0.14 (0.02) 0.05 (0.01) 0.08 (0.01)

Cond-FiP(LIN) 20 0.05 (0.01) 0.25 (0.06) 0.07 (0.01) 0.3 (0.03)
Cond-FiP(RFF) 20 0.08 (0.01) 0.22 (0.05) 0.11 (0.01) 0.29 (0.03)
Cond-FiP 20 0.05 (0.01) 0.24 (0.06) 0.07 (0.01) 0.3 (0.03)

Cond-FiP(LIN) 50 0.08 (0.01) 0.26 (0.05) 0.11 (0.04) 0.52 (0.08)
Cond-FiP(RFF) 50 0.11 (0.01) 0.26 (0.05) 0.15 (0.02) 0.48 (0.07)
Cond-FiP 50 0.08 (0.01) 0.25 (0.05) 0.07 (0.0) 0.48 (0.07)

Cond-FiP(LIN) 100 0.07 (0.01) 0.27 (0.06) 0.08 (0.0) 0.57 (0.07)
Cond-FiP(RFF) 100 0.11 (0.01) 0.29 (0.08) 0.18 (0.03) 0.61 (0.08)
Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 20: Encoder Ablation for Sample Generation. We compare Cond-FiP against the baselines
for the task of generating samples from input noise variables against two variants. One variant
corresponds to the encoder trained on SCMs with only linear functional relationships, Cond-FiP(LIN).
Similarly, we have another variant where the decoder was trained on SCMs with only rff functional
relationships, Cond-FiP(RFF). Each cell reports the mean (standard error) RMSE over the multiple
test datasets for each scenario. Results show that training on only non-linear SCMs (Cond-FiP(RFF))
gives similar performance as training on both linear and non-linear SCMs (Cond-FiP).

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
Cond-FiP(LIN) 10 0.09 (0.02) 0.2 (0.03) 0.06 (0.01) 0.1 (0.01)
Cond-FiP(RFF) 10 0.13 (0.04) 0.23 (0.08) 0.08 (0.01) 0.1 (0.01)
Cond-FiP 10 0.1 (0.03) 0.21 (0.03) 0.07 (0.01) 0.11 (0.01)

Cond-FiP(LIN) 20 0.08 (0.01) 0.24 (0.05) 0.12 (0.04) 0.3 (0.03)
Cond-FiP(RFF) 20 0.13 (0.02) 0.23 (0.05) 0.13 (0.03) 0.31 (0.02)
Cond-FiP 20 0.09 (0.01) 0.24 (0.05) 0.14 (0.03) 0.31 (0.03)

Cond-FiP(LIN) 50 0.12 (0.02) 0.29 (0.05) 0.1 (0.01) 0.51 (0.07)
Cond-FiP(RFF) 50 0.14 (0.02) 0.29 (0.05) 0.18 (0.03) 0.47 (0.06)
Cond-FiP 50 0.13 (0.02) 0.27 (0.04) 0.12 (0.02) 0.48 (0.07)

Cond-FiP(LIN) 100 0.1 (0.01) 0.3 (0.06) 0.12 (0.01) 0.56 (0.07)
Cond-FiP(RFF) 100 0.12 (0.01) 0.31 (0.07) 0.2 (0.04) 0.6 (0.09)
Cond-FiP 100 0.1 (0.01) 0.3 (0.06) 0.14 (0.02) 0.58 (0.07)

Table 21: Encoder Ablation for Interventional Generation. We compare Cond-FiP against the
baselines for the task of generating interventional data from input noise variables against two variants.
One variant corresponds to the encoder trained on SCMs with only linear functional relationships,
Cond-FiP(LIN). Similarly, we have another variant where the decoder was trained on SCMs with
only rff functional relationships, Cond-FiP(RFF). Each cell reports the mean (standard error) RMSE
over the multiple test datasets for each scenario. Results show that training on only non-linear
SCMs (Cond-FiP(RFF)) gives similar performance as training on both linear and non-linear SCMs
(Cond-FiP).
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G.2 Ablation Study of Decoder1045

We conduct an ablation study where we train two variants of the decoder Cond-FiP described as1046

follows:1047

• Cond-FiP (LIN): We sample SCMs with linear functional relationships during training.1048

• Cond-FiP (RFF): We sample SCMs with non-linear functional relationships for training.1049

Note that in the main results (Table 2, Table 3) we show the performances of Cond-FiP trained by1050

sampling SCMs with both linear and non-linear causal mechanisms. Hence, this ablations helps1051

us to understand whether the strategy of training on mixed causal mechanisms can bring more1052

generalization to the amortization process, or if we should have trained decoders specialized for linear1053

and non-linear functional relationships.1054

We present the results of our ablation study in Table 22 and Table 23, for the task of sample generation1055

and interventional generation respectively. Our findings indicate that Cond-FiP decoder trained1056

for both linear and non-linear functional relationships is able to specialize for both the scenarios.1057

While Cond-FiP (LIN) is only able to perform well for linear benchmarks, and similarly Cond-FiP1058

(RFF) can only achieve decent predictions for non-linear benchmarks, Cond-FiP is achieve the best1059

performances on both the linear and non-linear benchmarks.1060

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
Cond-FiP(LIN) 10 0.07 (0.02) 0.4 (0.06) 0.07 (0.01) 0.25 (0.06)
Cond-FiP(RFF) 10 0.1 (0.02) 0.15 (0.02) 0.08 (0.01) 0.09 (0.01)
Cond-FiP 10 0.06 (0.01) 0.14 (0.02) 0.05 (0.01) 0.08 (0.01)

Cond-FiP(LIN) 20 0.07 (0.01) 0.44 (0.07) 0.10 (0.01) 0.58 (0.02)
Cond-FiP(RFF) 20 0.11 (0.01) 0.26 (0.06) 0.14 (0.01) 0.31 (0.03)
Cond-FiP 20 0.05 (0.01) 0.24 (0.06) 0.07 (0.01) 0.3 (0.03)

Cond-FiP(LIN) 50 0.10 (0.01) 0.5 (0.07) 0.14 (0.02) 0.69 (0.04)
Cond-FiP(RFF) 50 0.15 (0.02) 0.27 (0.05) 0.19 (0.02) 0.5 (0.07)
Cond-FiP 50 0.08 (0.01) 0.25 (0.05) 0.07 (0.0) 0.48 (0.07)

Cond-FiP(LIN) 100 0.1 (0.01) 0.51 (0.07) 0.15 (0.02) 0.72 (0.04)
Cond-FiP(RFF) 100 0.16 (0.03) 0.29 (0.07) 0.27 (0.04) 0.59 (0.06)
Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 22: Decoder Ablation for Sample Generation. We compare Cond-FiP for the task of
generating samples from input noise variables against two variants. One variant corresponds to a
decoder trained on SCMs with only linear functional relationships, Cond-FiP(LIN). Similarly, we
have another variant where the decoder was trained on SCMs with only rff functional relationships,
Cond-FiP(RFF). Each cell reports the mean (standard error) RMSE over the multiple test datasets
for each scenario. Results indicate that training on both linear and non-linear SCMs is crucial to
generalize effectively in all scenarios.
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
Cond-FiP(LIN) 10 0.09 (0.02) 0.40 (0.07) 0.06 (0.01) 0.22 (0.04)
Cond-FiP(RFF) 10 0.16 (0.05) 0.22 (0.03) 0.08 (0.01) 0.11 (0.01)
Cond-FiP 10 0.10 (0.03) 0.21 (0.03) 0.07 (0.01) 0.11 (0.01)

Cond-FiP(LIN) 20 0.10 (0.01) 0.45 (0.07) 0.16 (0.03) 0.57 (0.02)
Cond-FiP(RFF) 20 0.14 (0.02) 0.26 (0.05) 0.21 (0.03) 0.32 (0.02)
Cond-FiP 20 0.09 (0.01) 0.24 (0.05) 0.14 (0.03) 0.31 (0.03)

Cond-FiP(LIN) 50 0.14 (0.02) 0.49 (0.07) 0.14 (0.02) 0.68 (0.04)
Cond-FiP(RFF) 50 0.19 (0.03) 0.28 (0.05) 0.21 (0.03) 0.49 (0.06)
Cond-FiP 50 0.13 (0.02) 0.27 (0.04) 0.12 (0.02) 0.48 (0.07)

Cond-FiP(LIN) 100 0.12 (0.02) 0.52 (0.07) 0.18 (0.03) 0.71 (0.04)
Cond-FiP(RFF) 100 0.18 (0.03) 0.32 (0.07) 0.24 (0.04) 0.59 (0.07)
Cond-FiP 100 0.10 (0.01) 0.30 (0.06) 0.14 (0.02) 0.58 (0.07)

Table 23: Decoder Ablation for Interventional Generation. We compare Cond-FiP against two
variants for the task of interventional data from input noise variables. One variant corresponds to a
decoder trained on SCMs with only linear functional relationships, Cond-FiP(LIN). Similarly, we
have another variant where the decoder was trained on SCMs with only rff functional relationships,
Cond-FiP(RFF). Each cell reports the mean (standard error) RMSE over the multiple test datasets
for each scenario. Results indicate that training on both linear and non-linear SCMs is crucial to
generalize effectively in all scenarios.
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H Experiments on CSuite with Complex Noise Distributions1061
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Figure 7: We compare Cond-FiP against the baselines for the different evaluation tasks on the Large
Backdoor and Weak Arrow datasets from the CSuite benchmark, where the noise distribution
is modified to be a multi-modal gaussian mixture model. We experiment with 6 different cases of
the noise distribution for each dataset. The y-axis denotes the RMSE for the respective tasks across
the 12 scenarios (datasets & noise distribution). Results indicate that Cond-FiP can generalize to
instances with more complex noise distributions like gaussian mixture models.

To conduct more OOD evaluations, we modify the noise distribution of the Large Backdoor and Weak1062

Arrow datasets from the Csuite benchmark such that the noise variables are sampled from a guassian1063

mixture model (GMM). We considered the following cases for the GMM noise distribution.1064

• Noise is sampled with equal probability from either N(−2, 1) and N(2, 1).1065

• Noise is sampled with equal probability from either N(−2, 2) and N(2, 2).1066

• Noise is sampled with equal probability from either N(−2, 1) and N(2, 2).1067

• Noise is sampled with equal probability from either N(−5, 1) and N(5, 1).1068

• Noise is sampled with equal probability from either N(−5, 2) and N(5, 2).1069

• Noise is sampled with equal probability from either N(−5, 1) and N(5, 2).1070

This leads to a total of 12 experimental setting with 6 different GMM noise distribution for both1071

the Large Backdoor and Weak Arrow datasets from the CSuite benchmark. Results in Figure 71072

demonstrate that Cond-FiP remains competitive with baselines across all tasks. Importantly, while1073

baselines were trained from scratch for each specific gaussian mixture noise distribution, Cond-1074

FiP was pretrained only on gaussian noise and generalizes effectively to settings with GMM noise1075

distribtion.1076
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I Experiments on Real World Benchmark1077

Method MMD(D̂query
X , Dquery

X ) MMD(D̂context
X , Dquery

X ) MMD(Dcontext
X , Dquery

X )

DoWhy 0.015 0.014 0.005
DECI 0.014 0.005 0.005
FiP 0.015 0.005 0.005
Cond-FiP 0.013 0.005 0.005

Table 24: Results for Sachs dataset. We benchmark Cond-FiP against the baselines for the task of
generating observational data on the real world Sachs benchmark. Each cell reports the MMD, and
we also report the reconstruction error for all of the methods. Results indicate that Cond-FiP matches
the performance of baselines trained from scratch.

We use the real world flow cytometry dataset [Sachs et al., 2005] to benchmark Cond-FiP againts the1078

baselines. This dataset contains n ≃ 800 observational samples expressed in a d = 11 dimensional1079

space, and the reference (true) causal graph. We split this into context Dcontext
X ∈ Rncontext×d and1080

queries Dquery
X ∈ Rnquery×d, each of size ncontext = nquery = 400. Note that the context dataset is to1081

used to train the baselines and obtain dataset embedding for Cond-FiP, while the query dataset is used1082

for evaluation of all the methods.1083

Since we don’t have access to the true causal mechanisms, we cannot compute RMSE for noise1084

prediction or sample generation like we did in our experiments with synthetic benchmarks. Instead1085

for each method, we obtain the noise predictions D̂context
N on the context, and use it to fit a gaussian1086

distribution for each component (node). Then we use the learned gaussian distribution to sample new1087

noise variables, D̂query
N , which are mapped to the observations as per the causal mechanisms learned1088

by each method, D̂query
X . Finally, we compute the maximum mean discrepancy (MMD) distance1089

between D̂query
X and Dquery

X as metric to determine whether the method has captured the true causal1090

mechanisms. For consistency, we also evaluate the reconstruction performances of the models by1091

using directly the inferred noise from context D̂context
N from the models, and then compute MMD1092

between their reconstructed data (D̂context
X ) and the query data (Dquery

X ).1093

Table 24 presents our results, where for reference we also report the MMD distance between samples1094

from the context and query split, which should serve as the gold standard since both the datasets are1095

sampled from the same distribution. We find that Cond-FiP is competitive with the baselines that1096

were trained from scratch. Except DoWhy, the MMD distance with reconstructed samples from the1097

methods are close to oracle performance.1098

No Interventional Generation Results. Note that Cond-FiP (and the other baselines considered1099

in this work) only supports hard interventions while the interventional data available for Sachs are1100

soft interventions (i.e. the interventional operations applied are unknown). Hence, we are unable to1101

provide a comprehensive evaluation of Cond-FiP (as well as the other baselines) for interventional1102

predictions on Sachs.1103
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J Comparing Cond-FiP with CausalNF1104

We also compare Cond-FiP with CausalNF [Javaloy et al., 2023] for the task of noise prediction1105

(Table 25) and sample generation (Table 26). The test datasets consist of ntest = 400 samples, exact1106

same setup as in our main results (Table 1, Table 2, and Table 3). To ensure a fair comparison, we1107

provided CausalNF with the true causal graph.1108

Our analysis reveals that CausalNF underperforms compared to Cond-FiP in both tasks, and it is1109

also a weaker baseline relative to FiP. Note also the authors did not experiment with large graphs1110

for CausalNF; the largest graph they used contained approximately 10 nodes. Also, they trained1111

CausalNF on much larger datasets with a sample size of 20k, while our setup has datasets with 4001112

samples only.1113

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
CausalNF 10 0.16 (0.02) 0.41 (0.09) 0.38 (0.04) 0.35 (0.02)
Cond-FiP 10 0.06 (0.01) 0.10 (0.01) 0.07 (0.01) 0.10 (0.01)

CausalNF 20 0.18 (0.03) 0.45 (0.12) 0.29 (0.05) 0.36 (0.03)
Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.07 (0.00) 0.12 (0.00)

CausalNF 50 0.25 (0.03) 0.56 (0.09) 0.45 (0.06) 0.38 (0.04)
Cond-FiP 50 0.06 (0.01) 0.10 (0.01) 0.07 (0.01) 0.14 (0.01)

CausalNF 100 0.24 (0.02) 0.80 (0.1) 0.37 (0.06) 0.49 (0.05)
Cond-FiP 100 0.05 (0.0) 0.10 (0.01) 0.07 (0.01) 0.16 (0.01)

Table 25: Results for Noise Prediction with CausalNF. We compare Cond-FiP against CausalNF for
the task of predicting noise variables from input observations. We find that CausalNF underperforms
compared to Cond-FiP by a significant margin.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
CausalNF 10 0.27 (0.07) 0.29 (0.04) 0.20 (0.03) 0.20 (0.03)
Cond-FiP 10 0.06 (0.01) 0.14 (0.02) 0.05 (0.01) 0.08 (0.01)

CausalNF 20 0.23 (0.02) 0.36 (0.05) 0.22 (0.02) 0.45 (0.02)
Cond-FiP 20 0.05 (0.01) 0.24 (0.06) 0.07 (0.01) 0.30 (0.03)

CausalNF 50 1.5 (0.26) 0.93 (0.13) 3.09 (0.55) 0.95 (0.04)
Cond-FiP 50 0.08 (0.01) 0.25 (0.05) 0.07 (0.00) 0.48 (0.07)

CausalNF 100 1.23 (0.13) 0.85 (0.08) 1.67 (0.13) 0.96 (0.04)
Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 26: Results for Sample Generation with CausalNF. We compare Cond-FiP against CausalNF
for the task of generating samples from input noise variables. We find that CausalNF underperforms
compared to Cond-FiP by a significant margin.
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K Limitations of Cond-FiP1114

K.1 Evaluating Generalization of Cond-Fip to Larger Sample Size1115

In the main results (Table 1, Table 2, and Table 3), we evaluated Cond-FiP’s generalization capabilities1116

to larger graphs (d = 50, d = 100) than those used for training (d = 20). In this section, we carry1117

a similar experiment where instead of increasing the total nodes in the graph, we test Cond-FiP on1118

datasets with more samples nDtest
= 1000, while Cond-FiP was only trained for datasets with sample1119

size nD = 400.1120

The results for the experiments are presented in Table 27, Table 28, and Table 29 for the task of noise1121

prediction, sample generation, and interventional generation respectively. Our findings indicate that1122

Cond-FiP is still able to compete with other baseline in this regime. However, we observe that the1123

performances of Cond-FiP did not improve by increasing the sample size compared to the results1124

obtained for the 400 samples case, meaning that the performance of our models depends exclusively1125

on the setting used at training time. We leave for future works the learning of a larger instance of1126

Cond-FiP trained on larger sample size problems.1127

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.02 (0.0) 0.10 (0.01) 0.21 (0.04) 0.23 (0.02)
DECI 10 0.05 (0.01) 0.12 (0.01) 0.21 (0.04) 0.27 (0.03)
FiP 10 0.03 (0.0) 0.06 (0.0) 0.21 (0.04) 0.23 (0.02)
Cond-FiP 10 0.05 (0.01) 0.11 (0.01) 0.21 (0.04) 0.25 (0.02)

DoWhy 20 0.02 (0.0) 0.11 (0.02) 0.16 (0.01) 0.3 (0.02)
DECI 20 0.04 (0.01) 0.11 (0.02) 0.16 (0.01) 0.29 (0.02)
FiP 20 0.03 (0.0) 0.08 (0.02) 0.16 (0.01) 0.26 (0.02)
Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.18 (0.01) 0.26 (0.01)

Table 27: Results for Noise Prediction with Larger Sample Size (nDtest = 1000). We compare
Cond-FiP against the baselines for the task of predicting noise variables from the input observations.
Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
Results indicate that Cond-FiP does not yet benefit from larger context sizes at inference, suggesting
the need to scale both the model and training data for richer contexts.
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.04 (0.0) 0.14 (0.02) 0.29 (0.04) 0.3 (0.03)
DECI 10 0.07 (0.01) 0.17 (0.02) 0.29 (0.04) 0.33 (0.04)
FiP 10 0.05 (0.0) 0.09 (0.01) 0.29 (0.04) 0.29 (0.03)
Cond-FiP 10 0.05 (0.01) 0.14 (0.02) 0.29 (0.04) 0.29 (0.03)

DoWhy 20 0.04 (0.01) 0.21 (0.05) 0.28 (0.01) 0.55 (0.06)
DECI 20 0.07 (0.01) 0.21 (0.04) 0.29 (0.01) 0.59 (0.06)
FiP 20 0.05 (0.0) 0.17 (0.04) 0.28 (0.01) 0.53 (0.06)
Cond-FiP 20 0.05 (0.0) 0.24 (0.05) 0.28 (0.01) 0.53 (0.06)

Table 28: Results for Sample Generation with Larger Sample Size (nDtest
= 1000). We compare

Cond-FiP against the baselines for the task of generating samples from the input noise variables.
Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
Results indicate that Cond-FiP does not yet benefit from larger context sizes at inference, suggesting
the need to scale both the model and training data for richer contexts.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.04 (0.01) 0.16 (0.03) 0.26 (0.03) 0.27 (0.03)
DECI 10 0.09 (0.01) 0.19 (0.02) 0.26 (0.03) 0.31 (0.04)
FiP 10 0.05 (0.01) 0.12 (0.02) 0.26 (0.03) 0.27 (0.03)
Cond-FiP 10 0.09 (0.02) 0.19 (0.03) 0.27 (0.03) 0.3 (0.03)

DoWhy 20 0.04 (0.0) 0.20 (0.04) 0.26 (0.01) 0.53 (0.06)
DECI 20 0.08 (0.01) 0.20 (0.03) 0.29 (0.02) 0.54 (0.05)
FiP 20 0.06 (0.01) 0.16 (0.04) 0.28 (0.02) 0.48 (0.06)
Cond-FiP 20 0.07 (0.01) 0.27 (0.05) 0.30 (0.02) 0.51 (0.06)

Table 29: Results for Interventional Generation with Larger Sample Size (nDtest
= 1000). We

compare Cond-FiP against the baselines for the task of generating interventional data from the input
noise variables. Each cell reports the mean (standard error) RMSE over the multiple test datasets
for each scenario.Results indicate that Cond-FiP does not yet benefit from larger context sizes at
inference, suggesting the need to scale both the model and training data for richer contexts.
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K.2 Counterfactual Generation with Cond-FiP1128

We provide results (Table 30) for bechmarking Cond-FiP against baselines for the task of counter-1129

factual generation. We operate in the same setup as the one in our main results (nDtest = 400) Ap-1130

pendix C and all the methods are provided with the true casual graph. We observe that Unlike the1131

tasks of noise prediction, sample & interventional generation, we find that Cond-FiP is worse than the1132

baselines for the task of counterfactual generation. This can be explained as the training of Cond-FiP1133

decoder relies on the true noise variables, and the model struggles to generalize the learned functional1134

mechanisms when provided with inferred noise variables. We leave the improvement of Cond-FiP1135

for counterfactual generation as future work.1136

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.03 (0.03) 0.13 (0.03) 0.0 (0.0) 0.04 (0.01)
DECI 10 0.1 (0.02) 0.2 (0.03) 0.04 (0.01) 0.11 (0.02)
FiP 10 0.03 (0.01) 0.09 (0.02) 0.02 (0.0) 0.03 (0.01)
Cond-FiP 10 0.09 (0.03) 0.21 (0.03) 0.05 (0.01) 0.11 (0.01)

DoWhy 20 0.01 (0.0) 0.12 (0.03) 0.0 (0.0) 0.13 (0.02)
DECI 20 0.06 (0.01) 0.15 (0.03) 0.07 (0.03) 0.15 (0.02)
FiP 20 0.03 (0.01) 0.1 (0.03) 0.06 (0.04) 0.09 (0.02)
Cond-FiP 20 0.09 (0.02) 0.26 (0.05) 0.13 (0.02) 0.3 (0.03)

DoWhy 50 0.0 (0.0) 0.09 (0.02) 0.0 (0.0) 0.17 (0.04)
DECI 50 0.04 (0.01) 0.11 (0.02) 0.03 (0.01) 0.18 (0.04)
FiP 50 0.03 (0.01) 0.08 (0.02) 0.03 (0.01) 0.14 (0.04)
Cond-FiP 50 0.1 (0.02) 0.26 (0.04) 0.1 (0.01) 0.46 (0.06)

DoWhy 100 0.0 (0.0) 0.08 (0.02) 0.0 (0.0) 0.2 (0.05)
DECI 100 0.02 (0.01) 0.1 (0.02) 0.02 (0.01) 0.22 (0.05)
FiP 100 0.01 (0.01) 0.07 (0.02) 0.02 (0.01) 0.19 (0.05)
Cond-FiP 100 0.09 (0.02) 0.29 (0.06) 0.13 (0.02) 0.56 (0.08)

Table 30: Results for Counterfactual Generation. We compare Cond-FiP against the baselines for
the task of generating counterfactual data from the input noise variables. Each cell reports the mean
(standard error) RMSE over the multiple test datasets for each scenario. Shaded rows denote the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results indicate that
Cond-FiP struggles with counterfactual generation and cannot always match the performance of
baselines trained from scratch.

L Broader Impact1137

We propose novel methodology for amortized inference of causal mechanisms in structural causal1138

models, representing an initial step toward the development of causal foundational models. Integrating1139

causal principles into machine learning has been widely suggested to improve robustness and1140

reliability, an important property for high-stakes domains such as healthcare, policy, and scientific1141

discovery. By advancing core methodology in causal inference, our work may indirectly support1142

the creation of machine learning systems that are more transparent and trustworthy. However, our1143

research currently does not target any societal application, and does not pose foreseeable risks or1144

negative consequences.1145
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