

000 001 HUGGING CARBON: QUANTIFYING THE TRAINING 002 CARBON EMISSIONS OF AI MODELS AT SCALE 003 004

005 **Anonymous authors**
006 Paper under double-blind review
007
008
009

010 ABSTRACT

011 The scaling-law era has propelled artificial intelligence (AI) from research into
012 a global industry, but its rapid growth raises concerns over energy demand, car-
013 bon emissions, and environmental sustainability. Unlike traditional sectors, AI
014 still lacks systematic methodologies for comprehensive carbon accounting, leav-
015 ing open the questions of how large the problem is today and how large it might
016 be in the near future. We propose a FLOPs-based framework to estimate training
017 emissions of open-source models on Hugging Face, introducing a tiered approach
018 to handle uneven disclosure quality. Compute is converted to energy using hard-
019 ware efficiency characteristics and then to emissions using the carbon intensity
020 of the relevant grid, which we summarize as an **AI Training Carbon Intensity**
021 (**ATCI**, **emissions per compute**) and for which we report an empirical reference
022 value to enable quick model-level estimates. Our results show that training the
023 most popular 5,234 models (with over 5,000 downloads) emitted approximately
024 5.8×10^4 tons of carbon emissions. These findings provide the comprehensive
025 industry-scale estimate of AI's training footprint and a practical methodology to
026 guide future standards and sustainability strategies.
027

028 1 INTRODUCTION

029 In the scaling-law era, artificial intelligence (AI) has expanded from academic research into an in-
030 dustry worth hundreds of billions of dollars today, and is projected to reach several trillion dollars by
031 2030 (UNCTAD, 2023). Large models, spanning computer vision (CV) and large language models
032 (LLMs), are now deployed across critical fields such as robotics, the Internet, energy, and industrial
033 sectors. This rapid scaling of model size, data, and parameters is driving unprecedented demands
034 for energy (IEA, 2024; Strubell et al., 2020), water (Li et al., 2023; Morrison et al., 2025), and mate-
035 rials (Lee et al., 2025). Concerns over AI's environmental sustainability are intensifying (Schwartz
036 et al., 2020; Wu et al., 2022; Bashir et al., 2024), as rising carbon emissions risk accelerating climate
037 change and resource strain.

038 However, these concerns often remain conceptual. While policymakers and researchers broadly ac-
039 knowledge the challenge, there is still a lack of systematic estimates to the questions of “**how large**
040 **is the problem today**” and “**how large might it in the near future**”. In contrast, traditional indus-
041 tries, such as manufacturing and agriculture, already follow established methodologies (Eggleston
042 et al., 2006; IPCC, 2014) and disclosure standards (ISO, 2018) for product-level life-cycle foot-
043 prints (Bhatia et al., 2011; myclimate, 2023) as well as industry-wide carbon accounting (IPCC,
044 2022). **AI, despite its widely recognized environmental implications, still lacks consistent reporting**
045 **and scalable methodologies for estimating training emissions across a wide range of model families**
046 **and modalities.** Comprehensive and long-term disclosure of the environmental costs of model de-
047 velopment and deployment remains highly limited, and the quality of existing disclosures is often
048 inadequate. This gap makes even a basic understanding of AI's current environmental impacts a
049 pressing and unresolved challenge.

050 Here, we make a further attempt to bridge these gaps. Unlike previous studies that focused pri-
051 marily on the carbon footprint of individual models (Strubell et al., 2020; Morrison et al., 2025),
052 we aim to provide a broader, industry-scale perspective on AI's emissions by offering a conceptual
053 estimate of its overall impact. As a lens for this investigation, we examine open-source models
hosted on Hugging Face (HF), the most widely used repository and distribution platform for AI

models. The models available on Hugging Face represent a substantial share of the open-source community’s collective efforts, making them a valuable proxy for estimating emissions in practice. By accounting for the training emissions of these models, we seek to shed light on how much carbon AI model training has already emitted and how much additional emission its continued scaling may generate. Given the limited quality and scope of existing disclosures, our goal is not to provide fully accurate numbers but to develop an accounting framework supported by large-scale estimation and cross-validation. We hope this framework can offer a meaningful bigger-picture view of AI’s environmental impact, both at the model level and across the industry.

Accounting for the training carbon footprint of models hosted on Hugging Face is far from straightforward, requiring a practical methodology. Although open-source models provide a relatively transparent basis for analysis, their disclosure quality remains uneven, with many fields requiring manual completion or inference. Reproducing the training process for millions of models would be both infeasible and environmentally wasteful. To address this, we introduce a FLOPs-based estimation framework. The key idea is to first approximate the total computational cost (in FLOPs) required to train a given model. This quantity is then converted into energy consumption based on the efficiency characteristics of the hardware likely used for training, and finally into carbon emissions by applying the carbon intensity of electricity in the relevant region. This conversion can be interpreted as assigning an AI training carbon intensity (ATCI, training emissions per compute), which reflects both hardware energy efficiency and regional energy mix. We further provide an empirical reference value for this intensity, offering a practical baseline for subsequent studies and enabling quick estimation of model-level training emissions.

In practice, we begin by focusing on models with high download counts and wide adoption, as they not only exert greater influence but are also more likely to provide at least partial transparency regarding their training. Based on the completeness of disclosed information, we classify these models into three tiers: Tier 1 models disclose sufficiently detailed information, allowing us to cross-check their carbon emissions from multiple perspectives; Tier 2 models have partial gaps in disclosure, but these can be reasonably inferred using the data accumulated from Tier 1; and Tier 3 models disclose very limited or no usable information, requiring us to rely on empirical assumptions for rough estimation. This tiered categorization enables our framework to remain systematic and applicable despite substantial heterogeneity in disclosure practices.

Our estimates suggest that training the 5,234 models with more than 5,000 downloads produced approximately **58,000 tons of CO₂e**. As shown in Figure 1, the total footprint is comparable to about 1.5% of the passenger-car emissions of a mid-sized European country. The number of models on Hugging Face continues to rise annually as thousands of new popular models are released each year, underscoring its non-negligible emission scale within the open model ecosystem.

Figure 1: Estimated training emissions from 5,234 Hugging Face models, compared with equivalent real-world scales (cars (Tiegle et al., 2021), homes (Eurostat, 2025), cement plants (IEA, 2025), and trees (Franklin Jr & Pindyck, 2024); tree absorption = 18 kg CO₂/tree/year).

2 RELATED WORK

Sustainability of AI requires quantifying and mitigating the environmental costs of developing and deploying AI models. Early awareness came from work on energy and policy considerations in deep learning: Strubell et al. quantified the carbon emissions of training large neural networks and argued that computing should be treated as a scarce resource (Strubell et al., 2019; 2020), while Schwartz et al. (2020) proposed the “Green AI” agenda, calling for efficiency and environmental impact to be considered alongside accuracy. Patterson et al. (2021) later estimated emissions from models such as GPT-3, showing how data-center efficiency and energy mix strongly affect outcomes.

108 Subsequent research broadened the scope beyond individual case studies. Wu et al. (2022) surveyed
 109 the environmental impacts of AI across data, algorithms, and hardware, and Dodge et al. introduced
 110 location- and time-specific carbon intensity metrics (Dodge et al., 2022; Sanvitto et al., 2023). Case
 111 studies such as BLOOM incorporated embodied emissions from hardware manufacturing (Luccioni
 112 et al., 2023), while open reports like Llama-2 (Meta AI Research, 2023) and OLMo (Groeneveld
 113 et al., 2024) disclosed approximate training footprints, providing transparency for reproducible
 114 energy studies. In parallel, a range of tools emerged to improve accounting. The ML CO₂ Impact
 115 Calculator required manual input (Lacoste et al., 2019), CodeCarbon extended this by embedding
 116 real-time monitoring into training workflows (Courty et al., 2024), CarbonTracker predicted emis-
 117 sions from early profiling (Anthony et al., 2020), Eco2AI integrated monitoring with PyTorch/TF
 118 (Kaack et al., 2022), and TracarB covered cluster-level usage (Valeye, 2021). While these tools
 119 increased transparency, they remain limited by narrow system boundaries, incomplete hardware
 120 coverage, and reliance on average rather than spatiotemporal grid factors.
 121

122 Recent work has examined downstream deployment, including inference costs (Samsi et al., 2023;
 123 Luccioni et al., 2024), fine-tuning trade-offs (Wang et al., 2023), and system-level accounting frame-
 124 works such as CarbonConnect (Percy et al., 2024). Other studies evaluated optimisation strategies
 125 (Fernandez et al., 2025a), lifecycle impacts (Morrison et al., 2025), and called for stronger disclosure
 126 and policy integration (Luccioni et al., 2025; Fernandez et al., 2025b). While these efforts advanced
 127 discussions on efficiency, transparency, and governance, they largely address single models or iso-
 128 lated lifecycle stages. The broader ecosystem-level impact remains underexplored. In this paper, we
 129 move beyond case studies to systematically estimate the training emissions of thousands of models
 130 on Hugging Face, providing an industry-scale perspective on AI’s carbon footprint and a baseline
 131 for tracking its future trajectory.
 132

133 **Carbon accounting** refers to the systematic quantification and reporting of greenhouse gas (GHG)
 134 emissions, providing reliable foundations for climate policy and sustainability research. The Inter-
 135 governmental Panel on Climate Change (IPCC) established a comprehensive methodological frame-
 136 work in the 2006 Guidelines for National Greenhouse Gas Inventories, which has since been adopted
 137 by countries for sectoral inventories covering energy, industry, and agriculture (Eggleston et al.,
 138 2006). Within this framework, carbon accounting can be differentiated into industry-level account-
 139 ing, which estimates total emissions from entire sectors throughout production, operation, and sup-
 140 ply chains (IPCC, 2022; United States Environmental Protection Agency, 2023), and product-level
 141 accounting, which applies life-cycle assessment (LCA) to a single product or service across its full
 142 cradle-to-grave stages (Wor, 2011; ISO, 2018; myclimate, 2023; Tog, 2022).
 143

144 Despite mature practices in other domains, few standardized frameworks exists for carbon account-
 145 ing of the AI sector. The Software Carbon Intensity (SCI) (Green Software Foundation, 2024)
 146 published by the Green Software Foundation (GSF) defines a methodology for carbon accounting
 147 of a software system. It only measures the carbon intensity of a software application per functional
 148 unit, without using architecture-specific FLOPs or training metadata. Neither IPCC guidelines nor
 149 LCA standards extend to AI training or inference, and disclosure is largely absent. Recent steps,
 150 such as the EU AI Act, the Energy Efficiency Directive, California’s AB 222, and ongoing ISO/IEC
 151 drafts (eua, 2024; EU2, 2023; AB2, 2025; ISO, 2025) – signal progress, but AI remains outside
 152 existing carbon accounting regimes.
 153

154 **Emissions from AI training.** Recent studies have estimated the electricity use and carbon emis-
 155 sions of training large models, but typically focus on a few representative cases, leaving ecosystem-
 156 level impacts unclear. They have examined training emissions but treated FLOPs as a fixed computa-
 157 tional quantity, rather than as part of the core indicator for evaluating carbon efficiency. Strubell
 158 et al.(Strubell et al., 2020) calculate training emissions using measured/reproduced electricity \times
 159 regional EF for several NLP models (GPT-2, BERT,etc). Patterson et al.(Patterson et al., 2021) es-
 160 timate FLOPs for Google models (T5, Meena,etc), but emissions are still derived from measured
 161 electricity \times regional EF, not FLOPs-based estimation. Anthony et al.(Anthony et al., 2020) and La-
 162 coste et al.(Lacoste et al., 2019) use FLOPs as a proxy for electricity consumption, without analyzing
 163 emissions-per-FLOP or cross-model carbon intensity. They consider hardware efficiency (FLOP/s),
 164 but none treat FLOPs as part of the standardized or comparable metric (e.g., Emission/FLOP) for
 165 carbon efficiency of AI models. Luccioni et al.(Luccioni et al., 2023) compute BLOOM’s emis-
 166 sions from internal energy logs and regional EF. LLMCarbon(Faiz et al., 2023) infers energy use
 167

162 during training from flops, detailed hardware and parallelism configurations, and validates its model
 163 on a small set of fully-specified LLMs. However, prior work either focuses on single-model or
 164 single-architecture case studies(Strubell et al., 2020; Luccioni et al., 2023; Wang et al., 2023; Mor-
 165 rison et al., 2025), depends on complete metadata or internal telemetry (Patterson et al., 2021), or
 166 provides experiment-level monitoring tools (Lacoste et al., 2019). They face challenges to scale
 167 thousands of models and enable reproducible, platform-wide carbon attribution. The key bottle-
 168 neck, overlooked in past works, lies in estimating FLOPs, hardware, region, PUE, and runtime for
 169 thousands of heterogeneous models with missing disclosures.

170 Complementary tools exist: Hugging Face introduced a `co2_eq_emissions` field in 2022 (cov-
 171 ering only $\sim 0.12\%$ of repositories). This field relies on CodeCarbon (Courty et al., 2024), which
 172 requires detailed runtime logging of hardware power and grid intensity. CodeTracker(Anthony et al.,
 173 2020) similarly monitors real-time CPU/GPU power draw during model training and estimates the
 174 resulting carbon emissions based on the local grid intensity. It requires full runtime access, hard-
 175 ware telemetry, and controlled training environments, and therefore cannot be applied to large open-
 176 source ecosystems such as Hugging Face. Consequently, CodeCarbon and CodeTracker both remain
 177 limited for large-scale assessments without complete training metadata.

178 Taken together, these efforts underscore that AI training generates substantial emissions, but existing
 179 evidence remains fragmented and insufficient for understanding the aggregate impact. Snapshots of
 180 isolated models or voluntary disclosures cannot capture the scale of emissions produced across tens
 181 of thousands of models now hosted and shared globally. Without broader and more systematic
 182 estimates, it is difficult to assess the true magnitude of AI’s carbon footprint or to design effective
 183 mitigation strategies. To address this gap, we turn to Hugging Face, the largest open repository of
 184 AI models, as a vantage point for constructing model-level training emission estimates at scale.

186 3 ESTIMATING CARBON EMISSIONS OF HUGGING FACE MODELS

188 Hugging Face hosts more than two million models, of which approximately 1.7 million are pub-
 189 licly accessible. Many entries are re-uploads, format conversions, or quantized variants that do not
 190 involve new training, while others lack essential training information. After filtering, we retained
 191 widely used models, resulting in 5,234 models with more than 5,000 downloads. Our primary anal-
 192 ysis focuses on this $>5,000$ group.

194 3.1 IDEAL RUNTIME-BASED ESTIMATION MODEL

196 In an ideal scenario, if the computational power of the supercomputer used for training is known
 197 (P_{comp}), together with the total training time (T_{comp}) and the carbon intensity of electricity in the
 198 training region (EF_{region} , measured in kgCO_2/kWh), the training-related emissions can be esti-
 199 mated as

$$200 \quad E_{\text{train}} = P_{\text{comp}} \times T_{\text{comp}} \times EF_{\text{region}}. \quad (1)$$

203 However, very few models disclose such information, and accurate data on the carbon footprint of
 204 supercomputing centers is even harder to obtain. Therefore, alternative strategies are required.

206 **Estimating Computational Power.** We approximate the effective computational power of the
 207 supercomputer through the following decomposition:

$$208 \quad P_{\text{comp}} \approx N_{\text{GPU}} \times P_{\text{GPU}}^{\text{eff}} \times \text{PUE}, \quad (2)$$

210 where N_{GPU} denotes the number of GPUs employed during training, and $P_{\text{GPU}}^{\text{eff}}$ represents the
 211 effective average power draw per GPU (in kW). We define $P_{\text{GPU}}^{\text{eff}} = P_{\text{GPU}} \times R_{\text{eff}}$, where P_{GPU}
 212 is the nominal or rated power consumption of the GPU (often approximated by its Thermal Design
 213 Power, TDP), and R_{eff} is a runtime utilization factor that accounts for the gap between theoretical
 214 peak and actual workload efficiency. The term PUE stands for the Power Usage Effectiveness of the
 215 data center, which accounts for the additional overhead of cooling and infrastructure and typically
 ranges between 1.2 and 1.7 (CAE Lighting, 2025).

216 **Estimating Training Time.** The training time is estimated based on the overall computational
 217 workload required, expressed in floating-point operations (FLOPs). For a given model, the total
 218 training FLOPs is denoted by $F_{\text{train}}^{\text{total}}$. Assuming knowledge of GPU throughput, the base training
 219 time can be approximated as

$$221 \quad T_{\text{base}} = \frac{F_{\text{train}}^{\text{total}}}{\theta_{\text{GPU}} \times N_{\text{GPU}} \times R_{\text{eff}}}, \quad (3)$$

223 where θ_{GPU} is the sustained throughput per GPU in FLOPs per second (e.g., 3.12×10^{14} FLOPs/s
 224 for NVIDIA A100 SXM under TF32), N_{GPU} is the number of GPUs, R_{eff} is the runtime utilization
 225 efficiency. Since training often involves restarts, debugging, and warm-up cycles, we incorporate a
 226 time amplification factor $A_{\text{time}} \geq 1$, yielding $T_{\text{comp}} = T_{\text{base}} \times A_{\text{time}}$.

228 **Final Estimation Model.** Combining Eq. 1 2 and 3, the training-related carbon emissions of
 229 Hugging Face models can be estimated as

$$231 \quad E_{\text{train}} \approx \underbrace{(N_{\text{GPU}} \times P_{\text{GPU}} \times R_{\text{eff}} \times \text{PUE})}_{P_{\text{comp}}} \times \underbrace{\left(\frac{F_{\text{train}}^{\text{total}}}{\theta_{\text{GPU}} \times N_{\text{GPU}} \times R_{\text{eff}}} \times A_{\text{time}} \right)}_{T_{\text{base}}} \times EF_{\text{region}} \quad (4)$$

$$236 \quad = \frac{P_{\text{GPU}}}{\theta_{\text{GPU}}} \times \text{PUE} \times F_{\text{train}}^{\text{total}} \times A_{\text{time}} \times EF_{\text{region}}.$$

239 Eq. 4 represents our estimation framework for model-level training of carbon emissions on Hug-
 240 ging Face. It is physically consistent and captures the key drivers of training-related emissions:
 $\frac{P_{\text{GPU}}}{\theta_{\text{GPU}}}$ is effective energy per FLOP. $F_{\text{train}}^{\text{total}}$ reflects model size and training iterations. PUE repre-
 241 sents data center overhead, accounting for cooling and distribution losses. A_{time} as time amplifica-
 242 tion factor captures parallelization inefficiencies, communication overhead, and system-level delays.
 243 EF_{region} translates consumed energy into carbon emissions based on the local electricity mix. In
 244 short, Eq. 4 decomposes training emissions into *hardware* \times *efficiency* \times *computation* \times *system*
 245 *amplification* \times *infrastructure* \times *environment*.

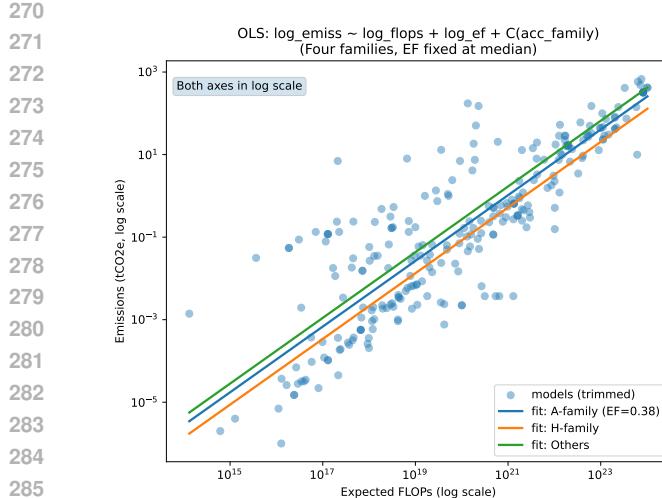
247 **AI Training Carbon Intensity.** While the direct estimation of training emissions is informative, it
 248 may not always be intuitive for practitioners. Eq. 4 provides a simplified framework for quantifying
 249 training emissions, and it can be further abstracted by grouping all factors except $F_{\text{train}}^{\text{total}}$ into a single
 250 coefficient. We define this coefficient as the *AI Training Carbon Intensity (ATCI)*, which represents
 251 the average carbon emission per FLOP of computation:

$$253 \quad ATCI \approx \frac{P_{\text{GPU}}}{\theta_{\text{GPU}}} \times \text{PUE} \times A_{\text{time}} \times EF_{\text{region}}. \quad (5)$$

255 Similar to the regional emission factor EF_{region} , which translates electricity use into carbon emis-
 256 sions based on grid composition, ATCI translates FLOPs into carbon emissions by integrating hard-
 257 ware efficiency, data center overhead, runtime amplification, and regional carbon intensity. In other
 258 words, ATCI can be interpreted as the effective “carbon cost per compute” for AI training.

259 In our work, we estimate ATCI across a large collection of HF models and report empirical values.
 260 This offers the community a practical reference point, enabling researchers and practitioners to
 261 approximate the training-related carbon footprint of models even in the absence of complete system-
 262 level disclosures. To further validate and calibrate this index, we regress observed training emissions
 263 on FLOPs, emission factors, and hardware families (Figure 2, Appendix A.8.2). This regression
 264 provides empirical evidence that supports the ATCI formulation: the estimated FLOPs elasticity of
 265 ~ 0.8 confirms a near-linear scaling of emissions with compute, while significant hardware-specific
 266 effects highlight the role of accelerator efficiency in shaping ATCI. ATCI serves as a theoretical
 267 abstraction of carbon cost per compute, and the regression results act as an empirical cross-check.

268 **Carbon intensity of regional grids among models.** To estimate the carbon emissions associated
 269 with model training and deployment, we assign each model a regional electricity carbon intensity



3.2 TRAINING FLOPS ESTIMATION

297 A central quantity in our framework is the total training compute $F_{\text{train}}^{\text{total}}$, expressed in FLOPs. For
298 transformer-based NLP models (e.g., BERT, GPT, LLaMA), we use the standard FLOPs approxi-
299 mation, $\text{FLOPs} \approx c \times N_{\text{params}} \times N_{\text{tokens}}$, where c reflects the relative cost of attention and feed-
300 forward operations. Empirical studies suggest c typically falls in the range 5–8, and we adopt
301 $c = 6$ as a conservative baseline, while sensitivity analyses with an extended range (5–12) are
302 reported in Appendix A.3 and A.6. For computer vision (CV) and multimodal models, we apply
303 architecture-specific heuristics. For Vision Transformers (ViTs) and CLIP models, FLOPs are
304 estimated from patch embeddings and Transformer blocks, with training FLOPs approximated as
305 six times the single-step inference cost; for CLIP, we apply a 1.1 \times adjustment to account for the
306 language branch. For diffusion models (e.g., Stable Diffusion, DiT), FLOPs are calculated by sum-
307 ming the convolution, self-attention, and cross-attention costs across denoising steps. For large mul-
308 timodal Transformers that process image-text tokens with LLM-like backbones, we approximate
309 compute as $\text{FLOPs} \approx 6 \times N_{\text{params}} \times N_{\text{tokens}}$, analogous to NLP models. Details of architecture-
310 specific formulas, corrections for fine-tuning and Mixture-of-Experts structures, and our imputation
311 strategy for missing parameters are provided in the Supplement (Appendix A.6–A.7).

3.3 HANDLING MISSING VALUES

312
313 **Three-tier Strategies.** Emission estimation relies on partially disclosed information, which we
314 cross-validate against multiple sources. We adopt a three-tier framework: 1) Tier 1 with rich dis-
315 closures (hardware type, GPU hours, or FLOPs). Emissions are computed from electricity use (GPU
316 hours \times power \times grid factor) and from FLOPs-based inference, serving as calibration points (Ap-
317 pendix A.8.1); 2) Tier 2 with partial disclosures (e.g., FLOPs only). We impute missing values using
318 representative hardware efficiencies and average overheads (Appendix A.8.2). Representative cases
319 in Figure 2 also show how disclosure profiles map to estimation strategies and how regressions link
320 FLOPs to emissions across hardware generations; 3) Tier 3 with minimal information (e.g., par-
321 meters only). Emissions are approximated via parameter-based regressions (Appendix A.8.3).

Figure 2: Scatter plot of estimated training emissions versus expected FLOPs, with regression fits for different accelerator families (A: NVIDIA A100/A800, H: H100/H800, Others). Both axes are log-scaled. The fitted model is $\log(E_{\text{train}}) = -39.25 + 0.85 \log(\text{EF}_{\text{region}}) + 0.83 \log(F_{\text{train}}^{\text{total}}) - 0.83 I\{\text{H-family}\} + 0.63 I\{\text{Others}\}$. Results indicate ~ 0.83 FLOPs elasticity. Relative to the A-family (baseline), the H-family shows about 56% lower emissions. The “Others” exhibits roughly 88% higher emissions. A unified PUE and time amplification factor are assumed due to missing data center disclosures.

324 3.4 UNCERTAINTY PROPAGATION
325326 Our estimation framework involves several quantities that carry measurement or imputation uncer-
327 tainty. Since these variables enter multiplicatively in Eqs. (3)–(6), we propagate uncertainty using
328 the standard first-order relative-error formulation for products:

329
$$\frac{\Delta E}{E} \approx \sqrt{\sum_i \left(\frac{\Delta x_i}{x_i} \right)^2}, \quad (7)$$

330
331
332

333 where $x_i \in \{F_{\text{train}}^{\text{total}}, P_{\text{GPU}}, \theta_{\text{GPU}}, A_{\text{time}}, \text{PUE}, EF_{\text{region}}\}$. The expression in Eq. (7) shows that the
334 uncertainty in E_{train} is governed by the combined relative errors of the multiplicative factors that
335 define the training emissions. The resulting uncertainty structure is summarized in Appendix A.2.
336337 4 RESULTS
338339 4.1 TRAINING EMISSION RESULTS
340341 Reporting results follow standard significant-digit rules: aggregate emissions are given with at
342 most two significant digits. Thus, our estimates indicate that, as of August 2025, training 5,234
343 models with more than 5,000 downloads has resulted in cumulative emissions of approximately
344 5.8×10^4 tCO₂e with an uncertainty of $\pm 2 \times 10^4$ tCO₂e, consistent with the propagated error in
345 Eq. 7 (See details in Appendix A.2). We compare average ATCI and model-level emissions across
346 modalities and training types in Table.1.
347348 **CV & multimodal exhibit higher training emission intensity than NLP.** CV’s average ATCI
349 is 0.16 tCO₂e/EFLOP versus NLP’s 0.14 tCO₂e/EFLOP, indicating that per unit compute of vision
350 training tends to translate into more energy and carbon. This gap plausibly comes from heavier data
351 pipelines and lower hardware efficiency in vision workloads (e.g., large image/video batches, aug-
352mentation, diffusion/decoder-only VAEs, and higher I/O/memory pressure that reduces accelerator
353 utilization), as well as the prevalence of multi-stage training (pretrain + alignment + SFT) for VLMs.
354355 **Emission differences between foundation models (or individual models) and finetuned mod-
356 els.** The results highlight a clear divergence between Foundation & Individual models and Fine-
357 tuned models in both emission intensity and their aggregate climate footprint. Finetuned models
358 exhibit a higher mean ATCI (0.22 vs. 0.14 t/EFLOPs), suggesting that each unit of computation in
359 downstream training typically incurs greater carbon emissions. This pattern aligns with the typical
360 deployment environments: large foundation and standalone models are often trained on centralized,
361 energy-efficient clusters with optimized hardware utilization and cleaner grid mixes, whereas fine-
362 tuning workloads are more widely distributed across smaller-scale, less efficient, and often metadata-
363 poor computing environments, which inflates per-EFLOP carbon intensity. Despite their higher
364 ATCI, finetuned models contribute only a minor share of the total emissions, as the computational
365 scale of foundation-model pre-training overwhelmingly dominates. Overall, while finetuning tends
366 to be “dirtier per EFLOP,” the majority of AI’s training-related carbon footprint is still driven by a
367 relatively small number of extremely compute-intensive foundation-model runs.
368369 Table 1: Emission indicators and repository counts.
370

(a) Model-level CO ₂ e Emission Indicators				(b) Repository Counts by Tier (downloads > 5000)		
Category	Mean ATCI (t/EFLOPs)	Mean (t)	Total (10 ⁴ t)	Tier	NLP Repos	CV/MM Repos
Foundation & Individual	0.14	12	5.5	Tier 1	390	352
Finetuned models	0.22	8	0.3	Tier 2	944	1679
CV & Multi-Modal	0.16	11	2.3	Tier 3	3053	220
NLP	0.14	11	3.5			

371 **ATCI.** We further interpret the significance of ATCI, defined as the ratio of training emissions to
372 floating-point operations. ATCI captures the carbon efficiency of model training pipelines, abstract-
373 ing away from model size or absolute compute cost, and therefore provides a normalized metric
374

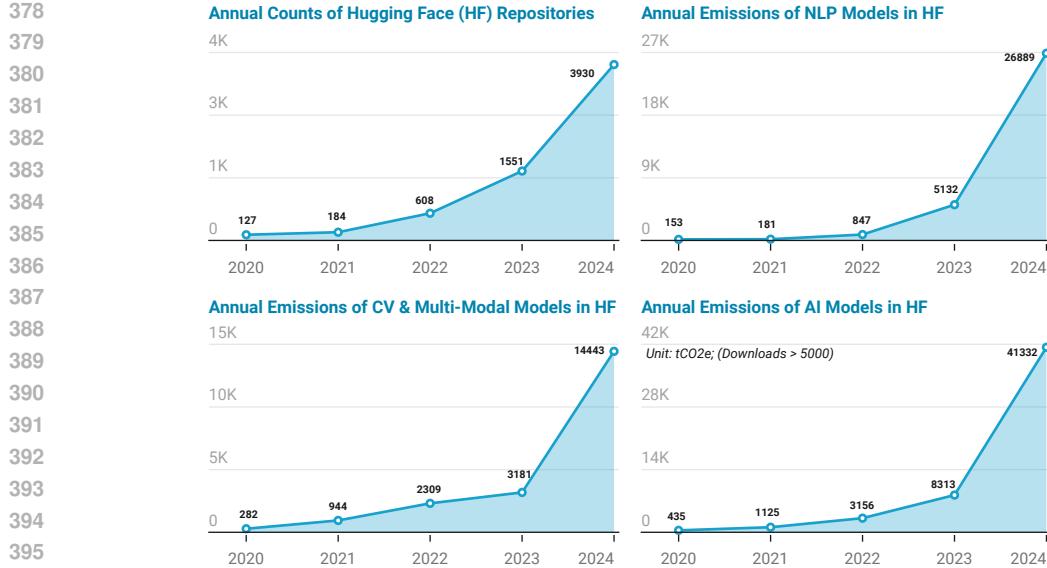


Figure 3: Annual training emissions of AI models (downloads 5,000+) in HF from 2020 to 2024

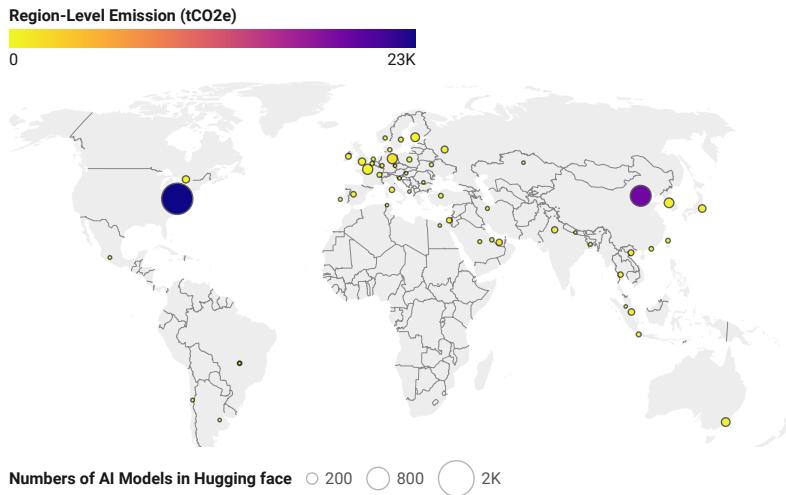


Figure 4: Global accumulative training emissions of AI models (downloads 5,000+).

to compare across modalities and training paradigms. Overall, the results highlight that (a) modality matters: vision/multimodal training is more carbon-intensive per compute; (b) lifecycle practice matters: finetuned variants exhibit higher per-checkpoint emissions not only because they undergo repeated downstream training and alignment cycles, but also because they are typically run on less energy-efficient hardware environments, whereas a small number of large foundation-model pre-trains still dominate the aggregate carbon footprint. **Model-level ATCI provides a meaningful measure for understanding the estimated environmental burden of AI training, as well as the relative efficiency differences among model classes.**

4.2 HUGGING FACE TRAINING EMISSION ACROSS REGION AND TIME

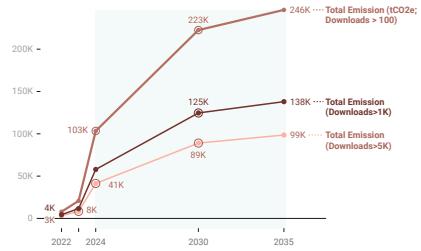
Region. As shown in Figure 4, regional aggregation reveals an uneven distribution of training emissions. **The United States dominates the landscape (2.3×10^4 tCO₂e across 1,000+ repositories), followed by China (1.9×10^4 tCO₂e; 404 repositories).** In contrast, most European countries (e.g., the United Kingdom, France, Italy, Finland), as well as Canada and Australia, host many repositories but generate comparatively small emissions per model, indicating lighter-weight workloads or lower-compute research practices.

432 **Temporal evolution.** As shown in Figure 3, training emissions of models (downloads 5000+) on
 433 Hugging Face have escalated sharply over time. From 2020–2021 to 2024–2025, annual emissions
 434 increased from only $\sim 4.3 \times 10^2$ tCO₂e to more than 4.1×10^4 tCO₂e, reflecting nearly two orders of
 435 magnitude growth within five years. The composition of these emissions also shifted substantially.
 436 Early periods were dominated by CV and multi-modal models, but NLP activity expanded rapidly
 437 between 2022 and 2024, becoming the largest contributor during this interval. In the most recent
 438 period (2024–2025), CV and multi-modal models once again surpassed NLP due to a surge in large-
 439 scale vision and multimodal releases. Together, these trends reveal both the accelerating pace of
 440 model training and the evolving distribution of computational demand across AI domains.

441 **Projected emission.** According to the projected
 442 electricity growth rate of global AI data centers
 443 (IEA, 2024), expected to rise from about 1.3% of
 444 global electricity demand in 2024 to nearly 2.8% by
 445 2030 (and stabilising nearly 3.1% by 2035). Figure 5
 446 similarly illustrates a projected increase in model
 447 emissions. Our estimates show that models with
 448 over 5,000 downloads will grow from $\sim 4.1 \times 10^4$
 449 in 2024 to $\sim 9.9 \times 10^4$ tCO₂e in 2035, those with
 450 over 1000 downloads from $\sim 5.8 \times 10^4$ to $\sim 1.4 \times$
 451 10^5 tCO₂e, and the broader set with over 100 down-
 452 loads from $\sim 1.0 \times 10^5$ to $\sim 2.5 \times 10^5$ tCO₂e.

453 4.3 CARBON DISCLOSURE QUALITY OF AI MODELS.

454 Among the more than two million repositories on Hugging Face, only 2,422 include a structured
 455 co₂_eq_emissions field, and fewer than 200 provide any additional energy or emissions details
 456 in their README. In total, well under 0.2% of models disclose any environmental footprint, under-
 457 scorning a substantial transparency gap (see Appendix A.9). However, even within the disclosed set,
 458 many entries suffer from inconsistent multi-source reporting and erroneous values, limiting their
 459 reliability. Table 2 highlights several representative model cases. It compares disclosed values from
 460 technical reports or Hugging Face metadata with our estimates, showing that our results are gener-
 461 ally consistent with disclosures. Still, due to the lack of detailed disclosures for most models, we
 462 approximate missing quantities using industry or region-level averages, which inevitably introduces
 463 uncertainty. Nevertheless, cross-validation against the subset of disclosed models indicates that
 464 these estimation errors remain within an acceptable range (see Appendix A.3 and A.4). This under-
 465 scores the feasibility of our approach and the urgent need for systematic, standardized reporting of
 466 emissions across the AI ecosystem.



458 Figure 5: Projected training emissions of HF
 459 models at scale from 2024 to 2035.

460 Table 2: Illustrative comparison between disclosed and estimated training emissions.

Model series			
Model series	Our Estimation	Disclosed emissions (tCO ₂ e)	Source
Llama 2	412	384	Touvron et al. (2023)
CodeLlama	72	65	HF disclosed
Single model			
Model	Our Estimation	Disclosed emissions (tCO ₂ e)	Source
Meta Llama 2 (7B)	33	31	Touvron et al. (2023)
Meta Llama 2 (13B)	52	62	Touvron et al. (2023)
Meta Llama 2 (70B)	327	291	Touvron et al. (2023)
Meta-Llama 3 (70B)	1,010	1,900	HF disclosed
Meta Llama 3.1 405B	8,176	8,930	AI Index (2025)
Bloom	24.7	24.7	Luccioni et al. (2023)
OLMoE-1B-7B-0924	20	18	Morrison et al. (2025)
stable-diffusion-v1	13.3	11.25	HF disclosed
sam-vit-base	2.7	2.80	HF disclosed
sam2-hiera-small	4.67	3.89	HF disclosed
bioclip	0.20	0.13	HF disclosed
stable-diffusion-2	17	15	HF disclosed
stable-video-diffusion-img2vid	13	19	HF disclosed
stable-diffusion-v1-5	13.50	11.25	HF disclosed

486
 487 **Error on Models With Disclosed Emissions** To evaluate
 488 the accuracy of our framework against ground-truth disclo-
 489 sures, we analyze 292 models that publicly report their total
 490 training emissions (see Appendix.A.3). To ensure robustness,
 491 we exclude unreliable disclosures and numerically unstable
 492 cases, and adopt a robust trimming procedure to mitigate the
 493 impact of heavy-tailed outliers. Relative errors are defined as

$$494 \text{RE}_i = |\hat{E}_i - E_i|/E_i.$$
 To obtain a stable evaluation less af-
 495 fected by extreme outliers, we perform symmetric trimming,
 496 retaining the central 95% of samples by excluding the lowest and highest 5% of relative-error val-
 497 ues. The evaluation yields the results in Table.3. The results indicate that, despite a few extreme
 498 outliers, the majority of models exhibit stable and accurate emission estimates, with approximately
 499 74% and 82% of models falling within $\times 2$ and $\times 3$ of their disclosed values, respectively.
 500

5 CONCLUSIONS

501 This paper presents a FLOPs-based framework to estimate training-related carbon emissions of Hug-
 502 ging Face models at scale. Our analysis shows that even within the open-source ecosystem, cumula-
 503 tive training emissions already reach the order of 10^4 – 10^5 tons of CO₂e, comparable to the footprint
 504 of a medium-sized country over several weeks. This highlights both the urgency of standardized
 505 disclosure and the value of open repositories as anchors for industry-scale carbon accounting.
 506

507 **Limitation and Future Work.** Our study presents the systematic accounting of training-related
 508 carbon emissions for mainstream models hosted on Hugging Face. These results provide a use-
 509 ful reference point for researchers, practitioners, and the public in understanding the environmental
 510 costs of AI. At the same time, several important limitations remain, highlighting directions for fu-
 511 ture work. First, our analysis focuses exclusively on open-source models. A large fraction of the
 512 most influential models are proprietary, and their training processes and energy consumption remain
 513 undisclosed. Existing reports suggest that these closed-source models may contribute substantially
 514 to overall emissions, likely exceeding the footprint of the open-source community. Second, we focus
 515 only on training emissions. Yet training is only one part of the picture. Research activities that do
 516 not yield a final deployed model also consume considerable resources, and inference at deployment
 517 scale is expected to dominate AI’s long-term energy demand. Understanding the emissions from in-
 518 ference workloads will require complementary approaches, such as analyzing data center expansion,
 519 hardware deployment statistics, and the size of the inference services market. Third, our study does
 520 not attempt to capture the full lifecycle emissions of AI systems. A complete assessment would ac-
 521 count for the embodied carbon from hardware manufacturing, research and experimentation, model
 522 training, and deployment-scale inference, as well as the accounting and attribution of such emissions
 523 across stakeholders. Developing standardized methodologies for lifecycle carbon accounting in AI
 524 remains an open and urgent challenge.

525 **Extension to inference emission estimations.** While our main analysis focuses on training, the
 526 framework can be extended to inference. The inputs can switch to inference-specific quantities: the
 527 power and throughput of the inference hardware (often different from training GPUs), the efficiency
 528 and batching characteristics of inference workloads, and the compute required per generated token.
 529 Once collecting these inputs, our framework can yield inference-emission estimates and inference
 530 emission intensity in exactly the same way as for training.

531 **Overall, our work should be viewed as an initial step toward scalable estimation of training emis-
 532 sions.** By quantifying the training emissions of a large body of open-source models, we provide
 533 an empirical anchor that future studies can extend toward closed-source models, inference work-
 534 loads, and full lifecycle assessments. Such progress is essential for aligning AI development with
 535 sustainability goals and for informing the policy frameworks that will govern AI in the years ahead.

536 REPRODUCIBILITY STATEMENT

537 We emphasize reproducibility as a key principle of this work. All reported results are based on
 538 open-source datasets that we collected and curated. To ensure transparency, we provide detailed
 539 descriptions of data collection, data cleaning, calculation, and estimation procedures in the Ap-

Table 3: Robust evaluation on
 models with disclosed emissions.

Metric	Value
MAPE	0.42
Median RE	0.32
Hit rate ($\times 2$ / $\times 3$)	0.74 / 0.82

540
 541 pendix.A.5, A.6, A.7, and A.8. The methods and evaluation protocols are described in the main text,
 542 and we will release both the datasets and the complete source code on GitHub upon publication to
 543 further facilitate verification and future research.

544 REFERENCES
 545

546 Iso 14067:2018 greenhouse gases - carbon footprint of products - requirements and guidelines for
 547 quantification, 2018. URL <https://www.iso.org/standard/71206.html>.

548 Directive (eu) 2023/1791 on energy efficiency, 2023. URL <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32023L1791>.

551 Regulation (eu) 2024/1689 of the european parliament and of the council laying down harmonised rules on artificial intelligence (ai act), 2024. URL <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32024R1689>.

554 California assembly bill 222 (ab 222): Data center energy usage reporting and ai model training disclosure, 2025. URL <https://aut1.assembly.ca.gov/system/files/2025-04/ab-222-bauer-kahan.pdf>.

557 Iso/iec draft standards on environmental sustainability of artificial intelligence, 2025.

559 AI Index. Ai index report 2025, 2025. URL <https://aiindex.stanford.edu/>.

560 Lasse F. Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. Carbontracker: Tracking and
 561 predicting the carbon footprint of training deep learning models. In *ICML Workshop on Tackling
 562 Climate Change with Machine Learning*, 2020.

564 Noman Bashir, Priya Donti, James Cuff, Sydney Sroka, Marija Ilic, Vivienne Sze, Christina Delimitrou, and Elsa Olivetti. The climate and sustainability implications of generative ai. 2024.

566 Pankaj Bhatia, Cynthia Cummis, Laura Draucker, David Rich, Holly Lahd, and Andrea Brown. Ghg
 567 protocol product life cycle accounting and reporting standard. 2011.

569 CAE Lighting. Power usage effectiveness (pue) in data centers: Real-
 570 world impacts, metrics, and lighting strategies for lowering overhead.
 571 <https://www.caeled.com/blog/data-center-lighting/power-usage-effectiveness-pue-in-data-centers-real-world-impacts-metrics-and-light>
 572 2025. Accessed: Sep. 25, 2025.

574 Benoit Courty, Victor Schmidt, Goyal-Kamal, et al. mlco2/codecarbon: Track emissions from
 575 compute and quantify environmental impact, 2024. URL <https://doi.org/10.5281/zenodo.14212766>.

577 Jesse Dodge, Taylor Prewitt, Rémi Tachet Des Combes, Erika Odmark, Roy Schwartz, Emma
 578 Strubell, Alexandra Sasha Luccioni, Noah A. Smith, Nicole DeCarlo, and Will Buchanan. Measuring
 579 the carbon intensity of ai in cloud instances. *arXiv preprint arXiv:2206.05229*, 2022.

581 Simon Eggleston, Leandro Buendia, Kyoko Miwa, Todd Ngara, and Kiyoto Tanabe (eds.). 2006
 582 *IPCC Guidelines for National Greenhouse Gas Inventories*. Institute for Global Environmental
 583 Strategies (IGES), Hayama, Japan, 2006. URL <https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/>.

585 Eurostat. Eu greenhouse gas footprint: 10.7 tonnes per capita, February 2025. URL <https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20250219-1>.
 586 Accessed: 2025-11-23.

588 Ahmad Faiz, Sotaro Kaneda, Ruhan Wang, Rita Osi, Prateek Sharma, Fan Chen, and Lei Jiang.
 589 Llmcarbon: Modeling the end-to-end carbon footprint of large language models. *arXiv preprint
 590 arXiv:2309.14393*, 2023.

592 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
 593 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
 2022.

594 Jared Fernandez, Clara Na, Vashisth Tiwari, Yonatan Bisk, Sasha Luccioni, and Emma Strubell.
 595 Energy considerations of large language model inference and efficiency optimizations. *arXiv*
 596 *preprint arXiv:2504.17674*, 2025a.

597 Jared Fernandez et al. Bridging the gap: Integrating ethics and environmental sustainability in ai
 598 research and practice. In *arXiv preprint arXiv:2504.00797*, 2025b.

600 Sergio L Franklin Jr and Robert S Pindyck. A supply curve for forest-based co removal. Technical
 601 report, National Bureau of Economic Research, 2024.

602 Green Software Foundation. Software carbon intensity (sci) specification. [https://sci.
 603 greensoftware.foundation/](https://sci.greensoftware.foundation/), April 2024.

604 Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, et al. Olmo: Accelerating
 605 the science of language models. *arXiv preprint arXiv:2402.00838*, 2024.

606 IEA. Energy and ai: World energy outlook special report, 2024. URL <https://www.iea.org/reports/energy-and-ai>. Accessed: 2025-09-10.

607 IEA. Cement, 2025. URL <https://www.iea.org/energy-system/industry/cement>. Accessed: 2025-11-23.

608 IPCC. Annex ii: Metrics and methodology. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona,
 609 E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, P. Brunner, B. Eickemeier, B. Kriemann,
 610 J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, and J. C. Minx (eds.), *Climate Change
 611 2014: Mitigation of Climate Change*, pp. 1453–1492. Cambridge University Press, Cambridge,
 612 United Kingdom and New York, NY, USA, 2014. URL <https://www.ipcc.ch/report/ar5/wg3/annex-ii/>.

613 IPCC. *Chapter 11: Industry*. Cambridge University Press, Cambridge, United Kingdom and New
 614 York, NY, USA, 2022. URL https://report.ipcc.ch/ar6wg3/pdf/IPCC_AR6_WGIII_Chapter_11.pdf.

615 Lynn H. Kaack et al. Eco2ai: Energy and carbon emissions tracker for ai. <https://github.com/sb-ai-lab/Eco2AI>, 2022.

616 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 617 Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei. Scaling laws for neural language models.
 618 *arXiv preprint arXiv:2001.08361*, 2020.

619 Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
 620 carbon emissions of machine learning. *arXiv preprint arXiv:1910.09700*, 2019.

621 Benjamin C. Lee, David Brooks, Arthur van Benthem, Mariam Elgamal, Udit Gupta, Gage Hills,
 622 Vincent Liu, Linh Thi Xuan Phan, Benjamin Pierce, Christopher Stewart, Emma Strubell, Gu-
 623 Yeon Wei, Adam Wierman, Yuan Yao, and Minlan Yu. A view of the sustainable computing
 624 landscape. *Patterns*, 6(7):101296, 2025. doi: 10.1016/j.patter.2025.101296. URL <https://doi.org/10.1016/j.patter.2025.101296>.

625 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
 626 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
 627 computation and automatic sharding. In *ICML 2020*, 2020.

628 Pengfei Li, Shaoxiong Deng, Siyuan Liu, and Xiang Ren. Making ai less "thirsty": Uncovering and
 629 addressing the secret water footprint of ai models. In *Proceedings of the 2023 ACM Conference
 630 on Fairness, Accountability, and Transparency (FAccT)*, pp. 95–106. ACM, 2023. doi: 10.1145/
 631 3593013.3593982.

632 Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. Estimating the carbon foot-
 633 print of bloom, a 176 billion parameter language model. *Journal of Machine Learning Research*,
 634 24:1–31, 2023.

635 Alexandra Sasha Luccioni, Clara Na, Nils Reimers, et al. Misinformation by omission: The need
 636 for more environmental transparency in ai. In *arXiv preprint arXiv:2506.15572*, 2025.

648 Sasha Luccioni, Yacine Jernite, and Emma Strubell. Power hungry processing: Watts driving the
 649 cost of ai deployment? In *Proceedings of the 2024 ACM conference on fairness, accountability,*
 650 *and transparency*, pp. 85–99, 2024.

651

652 Meta AI Research. Llama 2: Open foundation and fine-tuned chat models. Technical report,
 653 Meta Platforms, Inc., 2023. URL <https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/>.

654

655 Jacob Morrison, Clara Na, Jared Fernandez, Tim Dettmers, Emma Strubell, and Jesse Dodge. Holis-
 656 tically evaluating the environmental impact of creating language models. In *Proceedings of the*
 657 *International Conference on Learning Representations*, 2025.

658

659 myclimate. Life cycle assessments (lca) and product carbon footprints (pcf). Web article, 2023.
 660 URL <https://www.myclimate.org/en/get-active/corporate-clients/product-carbon-footprints-pcf-and-life-cycle-assessments-lca-myclimate/>.

661

662 David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
 663 David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. *arXiv*
 664 *preprint arXiv:2104.10350*, 2021.

665

666 Michael Percy, Alison Kennedy, et al. Carbon connect: An ecosystem for sustainable computing.
 667 *arXiv preprint arXiv:2405.13858*, 2024.

668

669 Hannah Ritchie, Pablo Rosado, and Max Roser. Carbon intensity of electricity generation. <https://ourworldindata.org/grapher/carbon-intensity-electricity>, 2025. Ac-
 670 cessed: 2025-09-25.

671

672 Siddharth Samsi, Saurabh Deshmukh, Vijay Thangaraj, et al. From words to watts: Benchmarking
 673 the energy cost of large language model inference. *arXiv preprint arXiv:2310.03003*, 2023.

674

675 Ginevra Sanvitto et al. Carbon footprint estimation for computational research. *Nature Reviews*
 676 *Methods Primers*, 3:30, 2023.

677

678 Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. *Communications of the*
 679 *ACM*, 63(12):54–63, 2020.

680

681 Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
 682 deep learning in natural language processing. In *Proceedings of the 57th Annual Meeting of*
 683 *the Association for Computational Linguistics*, pp. 3645–3650. Association for Computational
 684 Linguistics, 2019.

685

686 Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
 687 modern deep learning research. In *Proceedings of the AAAI conference on artificial intelligence*,
 688 volume 34, pp. 13693–13696, 2020.

689

690 U Tiege, P Mock, S Díaz, and J Dornoff. Co2 emissions from new passenger cars in europe: Car
 691 manufacturers' performance in 2020. *International Council on Clean Transportation (ICCT):*
 692 *Washington, DC, USA*, 2021.

693

694 *Product Carbon Footprint Guideline for the Chemical Industry*. Together for Sustainability
 695 (TfS) Initiative, 2022. URL <https://www.tfs-initiative.com/how-we-do-it/scope/product-carbon-footprint-guideline/>.

696

697 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 698 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 699 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

700

701 UNCTAD. Ai market projected to hit \$4.8 trillion by 2033, emerging as
 702 dominant frontier technology, 2023. URL <https://unctad.org/news/ai-market-projected-hit-48-trillion-2033-emerging-dominant-frontier-technology>.
 Accessed: 2025-09-10.

702 United States Environmental Protection Agency. Sources of greenhouse
 703 gas emissions, 2023. URL [https://www.epa.gov/ghgemissions/
 704 sources-greenhouse-gas-emissions](https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions).

705 Florian Valeye. Tracarb: A framework for tracking carbon emissions in computing clusters.
 706 <https://github.com/fvaley/TracarB>, 2021.

708 Xiaorong Wang, Clara Na, Emma Strubell, Sorelle Friedler, and Sasha Luccioni. Energy and carbon
 709 considerations of fine-tuning bert. *arXiv preprint arXiv:2311.10267*, 2023.

710 *Product Life Cycle Accounting and Reporting Standard*. World Resources Institute and World
 711 Business Council for Sustainable Development, Washington, DC, 2011. URL <https://ghgprotocol.org/product-standard>.

712 Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
 713 Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable ai: Environmental impli-
 714 cations, challenges and opportunities. *Proceedings of machine learning and systems*, 4:795–813,
 715 2022.

716

719 A APPENDIX

721 A.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)

723 In this work, Large Language Models (LLMs) were used in two limited ways. First, we designed
 724 an LLM-based agent to assist with filtering and analyzing parts of the Hugging Face README data,
 725 which supported the pre-processing of model metadata. Second, LLMs were used for light editing
 726 and polishing of the manuscript text to improve clarity and readability. No core research ideas,
 727 experimental design, or final analysis depended on LLM output.

729 A.2 SOURCES OF ESTIMATION ERROR ACROSS MODELS

731 Our framework assigns training-emission estimates to three disclosure levels (Tier 1–3), each of
 732 which introduces uncertainty from different sources. This section details the origin and nature of
 733 these uncertainties, and how they propagate into the final emission estimates.

734 **Tier-1: Fully or Partially Disclosed Training Metadata** Tier-1 models provide the most reliable
 735 information and fall into two subcategories.

737 **(a) Direct disclosure.** Some models report one or more of electricity consumption (MWh) or
 738 CO₂e emissions; GPU/TPU-hours; explicit accelerator type and count; training region or datacenter
 739 provider. In these cases, emissions follow the standard power–time formulation

$$740 E_{T1} \approx \text{MWh} \times EF_{\text{region}}, \quad (8)$$

742 with uncertainty dominated only by reporting granularity (rounding, coarse region labels).

744 **(b) High-confidence FLOP-based Tier-1.** For other Tier-1 models, total training FLOPs are dis-
 745 closed or recoverable with high fidelity (e.g., from official technical reports), and emissions are
 746 computed as

$$747 E_{T1} \approx F_{\text{train}}^{\text{total}} \times K_{\text{eff}} \times EF_{\text{region}}. \quad (9)$$

748 Here, K_{eff} represents the effective electricity consumption per unit of compute:

$$749 K_{\text{eff}} = \frac{P_{\text{GPU}} \times A_{\text{time}}}{\theta_{\text{GPU}} \times \text{peakTFLOPS}}, \quad (10)$$

752 where P_{GPU} is the average power draw, θ_{GPU} the achieved utilization efficiency, and A_{time} a run-
 753 time amplification factor capturing communication, I/O, and other overheads. Uncertainty therefore
 754 propagates primarily through small variations in θ_{GPU} , A_{time} , and regional emission factors. Because
 755 both $F_{\text{train}}^{\text{total}}$ and the hardware family are well constrained, Tier-1 FLOP-based estimates also exhibit
 low uncertainty.

756 **Tier-2: FLOPs Known, Hardware and Runtime Partially Missing** Tier-2 models disclose (or
 757 allow reconstruction of) the total training FLOPs, but lack full hardware/runtime information. Emis-
 758 sions are therefore computed as

$$759 \quad 760 \quad E_{T2} \approx F_{\text{train}}^{\text{total}} K_{\text{eff}} EF_{\text{region}}, \quad (11)$$

761 where K_{eff} groups accelerator throughput, datacenter amplification, PUE, and average power.

762 Tier-2 uncertainty thus arises from:

763

- 764 1. Imputed hardware family (A100/A800/H100/TPU/AMD),
- 765 2. Throughput/efficiency variance in θ_{GPU} across implementations and parallelism setups,
- 766 3. Datacenter amplification uncertainty (A_{time}),
- 767 4. Regional EF uncertainty due to missing or ambiguous geography.

768 Because FLOPs is known while K_{eff} and EF_{region} are imputed, Tier-2 inherits moderate uncertainty.

769 **Tier-3: Neither FLOPs Nor Runtime Disclosed** Tier-3 models require the heaviest imputation.
 770 Total FLOPs must be estimated from model parameters via a scaling-law style approximation:

$$771 \quad 772 \quad F_{\text{train}}^{\text{total}} \approx c N_{\text{params}}, \quad (12)$$

773 where the coefficient c implicitly absorbs typical choices of token counts, training stages (pretrain-
 774 ing, SFT, RLHF), number of epochs, and curriculum details for a given family of models.

775 Emissions then follow:

$$776 \quad 777 \quad E_{T3} \approx (c N_{\text{params}}) K_{\text{eff}} EF_{\text{region}}. \quad (13)$$

778 Major sources of Tier-3 uncertainty include:

779

- 780 1. Scaling-law coefficient variance (the proportionality constant c is architecture- and corpus-
 781 specific and absorbs variation in effective token counts and training stages);
- 782 2. Hardware inference as in Tier-2 (accelerator family, utilization, and datacenter amplifica-
 783 tion folded into K_{eff});
- 784 3. Regional EF uncertainty when geography is missing or coarse;
- 785 4. Compounded multiplicative propagation across $F_{\text{train}}^{\text{total}}$, K_{eff} , and EF_{region} .

786 Since both $F_{\text{train}}^{\text{total}}$ and K_{eff} must be imputed, and each term enters multiplicatively, Tier-3 accumulates
 787 the largest theoretical error. Plugging representative relative uncertainties as shown in Table.4 into
 788 Eq. 7 yields

$$789 \quad 790 \quad \frac{\Delta E}{E} \approx \sqrt{\left(\frac{\Delta F}{F}\right)^2 + \left(\frac{\Delta K_{\text{eff}}}{K_{\text{eff}}}\right)^2 + \left(\frac{\Delta EF}{EF}\right)^2} \sim 0.9\text{--}1.5, \quad (14)$$

791 corresponding to an implied Tier-3 uncertainty range of $\pm(90\text{--}150)\%$, i.e., roughly $2\text{--}3\times$ variation
 792 for typical models.

793
 800 Table 4: Typical relative-uncertainty ranges for multiplicative factors in Eqs. (3)–(6).

801 802 Quantity	803 Symbol	804 Typical Relative Error ($\Delta x/x$)
805 Total training FLOPs (Tier-1/2)	$\Delta F/F$	0.05–0.15
806 Total training FLOPs (Tier-3 proxy cN_{params})	$\Delta F/F$	0.60–0.80
807 GPU average power draw	$\Delta P/P$	0.05–0.10
808 Utilization efficiency	$\Delta \theta/\theta$	0.10–0.25
809 Runtime amplification factor	$\Delta A_{\text{time}}/A_{\text{time}}$	0.10–0.20
Regional emission factor	$\Delta EF/EF$	0.10–0.20

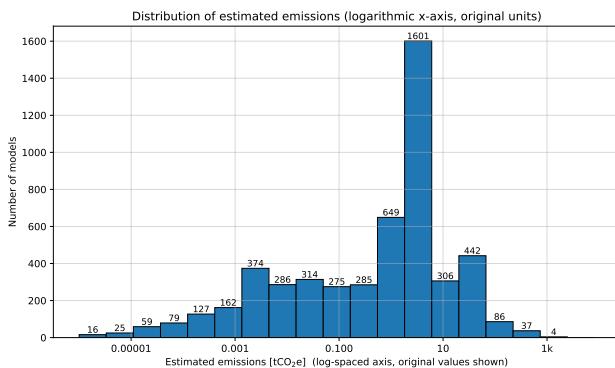


Figure 6: Distribution of Estimated Emissions of Hugging Face Models (5,000+ Downloads)

Summary of Error Sources and Expected Magnitudes

- **Tier-1 (low):** $\pm 5\text{--}15\%$ (direct or high-confidence FLOPs-based; minimal imputation).
- **Tier-2 (moderate):** $\pm 40\text{--}70\%$ (hardware, efficiency, and EF imputation; FLOPs accurate).
- **Tier-3 (high):** $\pm 90\text{--}150\%$ (both FLOPs proxy cN_{params} and hardware/datacenter effects imputed; multiplicative compounding).

These theoretical ranges follow directly from the multiplicative structure in Eqs. (3)–(6), the first-order propagation rule (Eq. 7), and representative relative uncertainties as shown in Table 4. The theoretical ranges are also consistent with our pseudo-missingness experiments in Appendix A.4.

Significant-digit rules. Reporting results follow standard significant-digit rules: aggregate emissions are given with at most two significant digits, and uncertainty intervals with one significant digit. For ATCI, we apply the same significant-digit principles. Because ATCI is a ratio of two quantities with comparable relative uncertainty (emissions and FLOPs). Accordingly, ATCI values are reported with one to two significant digits, matching the precision justified by the input factors and the error structure in Eq. 7.

Aggregate Uncertainty. Considering the expected uncertainty of each tier (Tier 1: 10%, Tier 2: 55%, Tier 3: 120%) by their respective emissions proportions (Tier 1: 33%, Tier 2: 60%, Tier 3: 7%), we yield an aggregate-level uncertainty of approximately $\pm 40\%$. Thus, our estimates indicate that, as of August 2025, training 5,234 models with more than 5,000 downloads has resulted in cumulative emissions of approximately 5.8×10^4 tCO₂e with an uncertainty of $\pm 2 \times 10^4$ tCO₂e

A.3 UNCERTAINTY ANALYSIS OF TRAINING-EMISSIONS ESTIMATION

This section provides a comprehensive analysis of estimation uncertainty in the HUGGINGCARBON framework. We evaluate the uncertainty from four complementary perspectives: (i) metadata disclosure sparsity on Hugging Face, (ii) comparison against disclosed FLOPs, runtime, and emissions, (iii) relative error on models with disclosed emissions, and (iv) variance-based decomposition of uncertainty sources.

Metadata Disclosure Landscape We evaluate metadata disclosure across all 5,234 models in our dataset. To construct this metadata repository, we systematically collected training-related information from three classes of sources:

1. **Official Hugging Face model cards**, including structured fields (e.g., `compute_used`, `hardware`, `carbon_emissions`), author-provided notes, and embedded configuration snippets.
2. **Repository configuration files**, such as `config.json`, tokenizer/vision encoder configs, and architecture descriptors. These files provide parameter counts, layer depths, hidden sizes, patch sizes, and other FLOPs-relevant attributes.

864
 865 3. **External authoritative sources**, including official technical reports, GitHub repositories,
 866 and arXiv papers referenced in the model cards. When multiple sources were available, we
 867 applied a deterministic priority order (direct disclosure → config-derived → paper-derived
 868 → regression-estimated).

869 Table 5: Metadata disclosure sparsity across the Hugging Face models (5,000+ downloads).
 870

871 Metadata Field	872 Count	873 Disclosure Rate
874 Training emissions (tCO ₂ e)	875 292	876 5.58%
877 Electricity use (MWh)	878 15	879 0.29%
880 Grid emission factor	881 5	882 0.10%
883 Training region	884 54	885 1.03%
886 GPU type	887 955	888 18.25%
889 TPU Pod	890 159	891 3.04%
892 Training runtime hours	893 179	894 3.42%
895 Training device count	896 414	897 7.91%

Only 5–6% of models disclose energy or emission-related metadata. This structural sparsity is the primary source of uncertainty in open-source carbon accounting. For all models with any disclosed training information (FLOPs, electricity use, grid factors, or total emissions), we have compiled a detailed comparison table containing disclosed quantities and our reconstructed estimates.

Summary of Models with Self-Disclosed Emissions The set of 292 models that self-disclosed their training emissions includes series such as *Bloom*, *CodeLlama*, *Stable Diffusion*, *SAM/SAM2*, and *BioCLIP*; recent Meta Llama 3/3.1/3.2 and Llama 4 variants (e.g., *meta-llama/Llama-3.1-405B*, *meta-llama/Llama-3.1-70B*, *Meta-Llama-3-70B*); AllenAI’s *OLMo* and *OLMoE* models (e.g., *allenai/OLMo-7B-hf*, *allenai/OLMo-2-1124-13B-Instruct*); EleutherAI’s *GPT-NeoX-20B*; image and video models from Stability AI (e.g., *stable-diffusion-2*, *stable-video-diffusion-img2vid* and related variants); a large cluster of biomedical language models from the *OpenMed* organization; and smaller models such as *ModernBERT* variants, rerankers, and tiny classifiers.

Variance-Based Decomposition of Uncertainty Sources We model training emissions as:

$$E \approx \text{FLOPs} \times \text{EF} \times K,$$

where EF is the regional emission factor and K absorbs hardware efficiency, runtime, and PUE effects. For each model, we infer $K_{\text{eff}} = E / (\text{FLOPs} \times \text{EF})$ and perform a variance-based sensitivity analysis with realistic perturbations:

- 900 • FLOPs: $\pm 30\%$ uncertainty,
- 901 • Hardware/runtime/PUE: $\pm 20\%$,
- 902 • Grid EF: $\pm 10\%$.

903 Using 1,000 Monte Carlo samples per factor, we estimate each source’s contribution to $\text{Var}(E)$. The
 904 global contributions averaged across all models are:

905 Table 6: Variance-based uncertainty decomposition.

906 Uncertainty Source	907 Variance Share
908 FLOPs estimation	909 66%
910 Hardware/runtime/PUE (K)	911 27%
912 Grid emission factor (EF)	913 7%

914 FLOPs estimation constitutes the dominant uncertainty driver, while EF accounts for only a small
 915 fraction. Based on variance decomposition across estimation components, FLOPs estimation con-
 916 tributes $\sim 66\%$ of overall uncertainty, hardware assumptions $\sim 27\%$, and grid emission factors $\sim 7\%$.
 917 These results demonstrate that uncertainty arises primarily from ecosystem-wide metadata sparsity
 918 rather than methodological limitations.

918 A.4 PSEUDO-MISSINGNESS EXPERIMENT FOR TIER 2 AND TIER 3 UNCERTAINTY
919920 To explicitly quantify the uncertainty introduced by Tier 2 and Tier 3 estimation, we conduct a
921 **pseudo-missingness experiment** that closely aligns with real metadata disclosure patterns observed
922 on Hugging Face.923 **Ground-truth selection.** We use **all Tier 1 models** as high-confidence ground truth, including
924 those with direct energy disclosure or those with complete metadata (training hardware and training
925 GPU hours). To avoid numerical instability in relative errors, we remove only trivial-emission cases,
926 eliminating numerical artifacts while preserving essentially all meaningful Tier 1 models.927
928 **Constructing pseudo Tier 2 / Tier 3 samples.** We randomly sample 70% of Tier 1 models and
929 artificially mask metadata to simulate realistic missingness:930
931

- **Pseudo Tier 2:** retain FLOPs, emission factor, and GPU family; mask hardware type,
932 runtime, and direct/disclosed energy.
- **Pseudo Tier 3:** further remove FLOPs, leaving only parameter count, emission factor, and
933 GPU family.

934 These masked models are re-evaluated using the **exact Tier 2 and Tier 3 regression pipelines**
935 described in the paper. Predicted emissions are compared with Tier 1 ground truth using absolute
936 error (AE) and relative error (RE). Results are shown in Table 7.940
941 Table 7: Pseudo-missingness experiment results for Tier 2 and Tier 3 uncertainty.942
943
944
945

Pseudo Tier	n	MAE (tCO ₂ e)	Median RE	P90 RE
Tier 2 (FLOPs-based)	312	61.62	0.57	1.20
Tier 3 (Params-based)	123	111.42	0.99	1.92

946
947
948

- **Tier 2 estimates remain highly stable:** median RE ≈ 0.57 ; 90% of predictions exhibiting
949 $\sim 1.2 \times$ relative error.
- **Tier 3 remains informative despite minimal metadata:** median RE ≈ 0.99 ; 90% within
950 $\sim 2 \times$ relative error.

951
952 Median RE summarizes the **typical multiplicative deviation** introduced when metadata is partially
953 or severely missing. For example, a Median RE of 0.57 indicates that half of the reconstructed
954 emissions differ from the Tier 1 ground truth by no more than 57%, while the remaining half may
955 exhibit larger deviations.956 In this context, Median RE captures how much accuracy can be preserved when Tier 1-quality
957 metadata is downsampled to the more realistic, incomplete metadata available under Tier 2 or Tier 3
958 conditions. A low Median RE for pseudo Tier 2 suggests that FLOPs and emission factors alone
959 are sufficient to retain a substantial fraction of estimation fidelity. These results show that Tier 2
960 and Tier 3 estimates are not exact but remain **predictive at the order-of-magnitude level under**
961 **realistic missingness patterns.**962
963 **Additional mitigation mechanisms.** To constrain uncertainty, our framework incorporates:964
965
966

- architecture-based FLOPs derivation and runtime backsolving with bounded parameter
967 ranges,
- GPU-family regression calibrated on Tier 1 ground-truth models,
- variant deduplication to avoid double-counting mirrors or lightweight derivatives,

968
969 Together, these mechanisms ensure that Tier 2 and Tier 3 predictions remain anchored to validated
970 Tier 1 models and provide stable, interpretable estimates across the open-source model ecosystem.

972 A.5 DATA COLLECTION AND PROCESSING PIPELINE
973

974 **Automated Crawling.** We collect heterogeneous metadata from Hugging Face model repositories
975 and associated documentation. The crawler reads repository descriptors (`README.md`, model cards,
976 metadata CSVs, `configs.json`) and extracts candidate fields including *hardware type*, *GPU/TPU*
977 *counts*, *training duration*, and especially *training FLOPs*. For FLOPs disclosures, we implemented
978 robust parsing functions that can handle varied numeric expressions (e.g., shorthand “2k”, “1.2M”,
979 or scientific notation such as “ 5×10^{21} ”), ensuring standardized floating-point values for downstream
980 estimation. All extracted fields are normalized and stored in structured CSV/JSON tables, providing
981 a consistent basis for regression analysis and emission estimation.

982 **Repository Deduplication.** To avoid double-counting emissions from mirrored repositories, we
983 applied a systematic deduplication rule: when both an official repository and an `unslloth/...`
984 mirror exist, the mirror is dropped unless the discrepancy in reported values is negligible ($\leq 0.1\%$),
985 in which case the `unslloth` version is retained as canonical. In addition, we excluded derivative
986 artifacts such as GGUF or quantized models (e.g., 4bit/8bit, AWQ, GPTQ/PTQ/NF4/FP8/Q4/Q5)
987 since they represent deployment optimizations rather than independent training runs. These filters
988 ensure that only unique, training model entries are preserved in the dataset.
989

990 **Agent Workflow.** To handle inconsistent disclosures and missing fields, we developed an LLM-
991 based agent workflow (GPT-4o) that performs: (i) **hardware recognition**, mapping noisy or aliased
992 strings to canonical GPU/TPU families; (ii) **unit normalization**, distinguishing between wall-clock
993 hours and GPU-hours using contextual cues; (iii) **cross-file integration**, employing a dedicated **web**
994 **search agent** to locate and retrieve corresponding technical reports or project website released by
995 model developers, which were then cross-validated against Hugging Face metadata and incorporated
996 into the final dataset. We merge all findings with regional emission factor datasets. Ambiguous
997 cases (e.g., extreme FLOPs values, unclear unit conventions) were flagged for manual inspection by
998 human annotators.
999

1000 **Human Verification.** To ensure reliability, five independent human annotators reviewed a strat-
1001 ified subsample of repositories. They checked accelerator mappings, parsed FLOPs statements,
1002 and validated whether durations corresponded to GPU-hours or wall-clock hours. Annotators re-
1003 solved edge cases such as conflicting information across `README` text and metadata tables. Inter-
1004 annotator agreement was calculated to calibrate the agent’s confidence thresholds.
1005

1006 **Data Integration.** All sources (GPU/TPU metadata, FLOPs estimates, and regional emission fac-
1007 tors) were merged into unified tables via normalized identifiers. Duplicate columns and conflict-
1008 ing values were harmonized, and each record carries diagnostic notes (e.g., method of estimation,
1009 source of FLOPs, reasons for imputation). This enables transparent traceability of every emission
1010 estimate. The final dataset consists of harmonized records with accelerator type, count, training du-
1011 ration (direct or imputed), FLOPs used, power draw, regional EF, and estimated emissions (tCO₂e).
1012 All records include provenance notes indicating whether values were obtained via direct disclosure,
1013 agent inference, or human annotation.
1014

1015 A.6 NLP TRAINING FLOPS ESTIMATION: PRETRAINING VS. FINETUNING WITH
1016 OPTIMIZATION-AWARE CORRECTIONS
1017

1018 OpenAI’s scaling law study (Kaplan et al., 2020) introduced the widely used approximation for
1019 training compute of large-scale language models:
1020

$$1021 \text{FLOPs} \approx c \times N_{\text{params}} \times N_{\text{tokens}},$$

1022 where N_{params} is the number of model parameters, N_{tokens} the number of training tokens, and c a
1023 constant reflecting the balance between attention and feed-forward operations. Empirical evidence
1024 suggests c typically falls in the range 5–8, depending on architecture and training configuration.

1025 In our framework, we refine this baseline approximation to account for model heterogeneity and
1026 practical training regimes:

- **Architecture type.** Encoder-only models (e.g., BERT), decoder-only models (e.g., GPT, LLaMA), and encoder–decoder models (e.g., T5, BART) differ in the ratio of feed-forward to attention compute, which shifts c within the baseline range of 5–8.
- **Parameter-efficient fine-tuning (PEFT).** For methods such as adapters and LoRA, only a fraction of parameters are trainable. We therefore rescale the effective parameter count to reflect $N_{\text{trainable}}$, while partially accounting for frozen weights that still incur forward-pass compute during backpropagation.
- **Mixture-of-Experts (MoE).** For MoE architectures, dense parameter count does not represent the actual compute cost. We instead replace N_{params} with the number of *active* parameters per token, determined by the top- k experts selected during routing, and introduce a routing overhead correction.

To encompass these variations, we extend the coefficient range to 5–12 based on recent empirical studies, ensuring coverage of both standard transformer training and specialized regimes such as PEFT and MoE. Unless otherwise specified, we adopt $c = 6$ as a conservative baseline for the main analysis, while sensitivity analyses over the full range are reported in this supplement.

In practice, we estimate training compute (FLOPs) for transformer-based NLP models by combining structural information with training configuration metadata extracted from Hugging Face model cards, repository documentation, and associated papers. This process is automated in our analysis pipeline and implemented in several steps:

1) Model classification and parameter extraction. Each model is classified as encoder-only (e.g., BERT), decoder-only (e.g., GPT, LLaMA), or encoder–decoder (e.g., T5). When available, we directly record the number of trainable parameters (N_{params}). If parameters are missing, we infer them from architecture descriptors such as hidden size, number of layers, and attention heads.

2) Effective parameter count adjustments. For pretraining we set N_{params} to the full parameter count. For others, we distinguish:

- **Full-parameter Fine Tuning (FT):** N_{params} is the full count.
- **Parameter-efficient FT (PEFT)** (e.g., LoRA/adapters): we substitute N_{params} by the number of *active trainable* parameters $N_{\text{trainable}}$ and include a forward-pass reuse factor since frozen weights still incur inference-side compute during backprop. Concretely,

$$\text{FLOPs}_{\text{base,PEFT}} \approx c_{\text{arch}} (\alpha_{\text{frozen}} N_{\text{frozen}} + N_{\text{trainable}}) \times N_{\text{tokens}},$$

with $\alpha_{\text{frozen}} \in [0.2, 0.5]$ reflecting the proportion of frozen-path compute amortized in backward (empirical, task- and stack-dependent).

- **Mixture-of-Experts models:** we substitute the full parameter count with the number of active parameters per token, i.e., the sum of dense parameters and the top- k experts activated per forward pass. Here, we replace N_{params} by the *active* parameters per token, i.e.,

$$N_{\text{params}}^{\text{MoE}} \approx N_{\text{dense}} + k \cdot \underbrace{\frac{N_{\text{experts}}}{E}}_{\text{top-}k \text{ experts per token}} N_{\text{expert}},$$

where k is the top- k routing, E is the number of experts per layer, and N_{expert} the per-expert parameters. We also apply a routing overhead factor $\alpha_{\text{route}} \in [1.00, 1.05]$ and optional load-imbalance penalty if reported (Lepikhin et al., 2020; Fedus et al., 2022).

3) Token accounting. When N_{tokens} is not directly reported, we infer it from dataset size and epochs, or reconstruct it from step geometry:

$$N_{\text{tokens}} \approx S \times G, \quad (1)$$

$$\text{where } G = W \times A \times L \times B. \quad (2)$$

Here S denotes the total number of training steps, W the world size (number of devices), A the gradient accumulation steps, L the average sequence length, and B the per-device batch size.

1080
 1081 **4) Baseline FLOPs estimate.** Let N_{params} denote the number of (active) trainable parameters and
 1082 N_{tokens} the number of training tokens effectively processed. The baseline lower-bound follows (Kap-
 1083 plan et al., 2020):

$$\text{FLOPs}_{\text{base}} \approx c_{\text{arch}} \times N_{\text{params}} \times N_{\text{tokens}},$$

1084 where $c_{\text{arch}} \in [5, 12]$ accounts for architectural differences in the ratio of attention and feed-forward
 1085 compute. In our implementation we set

$$c_{\text{arch}} = \begin{cases} c_{\text{enc}} & \text{encoder-only,} \\ c_{\text{dec}} & \text{decoder-only,} \\ c_{\text{encdec}} & \text{encoder-decoder,} \end{cases} \quad \text{with } c_{\text{enc}}, c_{\text{dec}}, c_{\text{encdec}} \in [5, 12].$$

1091 We use $c_{\text{arch}} \in [5, 12]$: encoder-only and decoder-only models default to 6, while encoder-decoder
 1092 models use 7, with flexibility for further adjustments.

1093
 1094 **5) Optimization- and system-aware corrections.** We multiply the baseline by factors capturing
 1095 optimizer, precision, memory-saving, and parallelism overheads/efficiencies:

$$\text{FLOPs} = \text{FLOPs}_{\text{base}} \times \alpha_{\text{opt}} \alpha_{\text{prec}} \alpha_{\text{ckpt}} \alpha_{\text{act}} \alpha_{\text{pipe}} \alpha_{\text{dp}} \alpha_{\text{misc}}.$$

1096 Default ranges (when explicit telemetry is absent) are:

- 1097 • **Optimizer** α_{opt} : Adam/AdamW maintain moments (extra pointwise ops), typically
 1098 1.10–1.20; Adafactor closer to 1.05; SGD 1.00.
- 1099 • **Numerical precision** α_{prec} : bf16/fp16 kernels often match theoretical FLOPs (≈ 1.00);
 1100 fp32 ≈ 1.10 due to bandwidth/latency effects; fp8 with scale management 0.90–1.00
 1101 (model- and kernel-dependent).
- 1102 • **Activation checkpointing** α_{ckpt} : recomputation overhead 1.05–1.30 (depth/segment length
 1103 dependent).
- 1104 • **Activation sparsity / fused kernels** α_{act} : fused-attention, FlashAttention, bias-drop, etc.
 1105 can yield 0.90–0.98 effective factor (stack-sensitive).
- 1106 • **Parallelism** $\alpha_{\text{pipe}}, \alpha_{\text{dp}}$: pipeline bubbles and data-parallel sync yield 1.00–1.10 each in
 1107 typical steady state.
- 1108 • **Misc. serving/training stack** α_{misc} : graph capture/JIT (benefit) vs. logging, mixed dat-
 1109 aloading (overhead), default 0.98–1.05.

1110 These factors encode the empirical observation that theoretical compute systematically underesti-
 1111 mates realized costs due to software and hardware under-utilization (Fernandez et al., 2025a).

1112 A.7 MULTIMODAL TRAINING FLOPs ESTIMATION

1113 For multimodal models, we employ an architecture-specific methodology to estimate training
 1114 FLOPs. Our automated analysis pipeline categorizes models into several primary architectures,
 1115 including Vision Transformers (ViT), Contrastive Language-Image Pre-Training (CLIP) models,
 1116 Convolutional Neural Networks (CNNs), Diffusion models, and Transformers. The core of this ap-
 1117 proach is extracting key architectural parameters from HuggingFace model cards and configuration
 1118 files. For CNNs, however, we directly run the model with a randomized input tensor of a unified
 1119 resolution to precisely calculate the single-step inference FLOPs.

1120 Notably, this analysis excludes the computational cost of parameter-efficient fine-tuning (PEFT)
 1121 techniques, such as LoRA and other adapters. While increasingly prevalent for model customization,
 1122 the compute required for training these modules is typically several orders of magnitude smaller than
 1123 that of full model pre-training or fine-tuning, rendering its contribution negligible in our large-scale
 1124 carbon footprint assessment.

1125 With E as the number of training epochs and I as the number of training images per epoch, we
 1126 apply the following tailored estimation strategies for different architectures:

1134
 1135 **1) ViT and CLIP models.** For Vision Transformer (ViT) based models, we first calculate the
 1136 FLOPs for a single forward step by summing the contributions from the patch embedding layer and
 1137 the subsequent Transformer blocks. Let H, W, P, C be the input image height, width, patch size,
 1138 and channels, respectively, and let d, L, r be the model's hidden dimension, number of layers, and
 1139 MLP expansion ratio. The number of input tokens is $N = \frac{H \cdot W}{P^2} + 1$ (including the [CLS] token).

1140 The total MACs (Multiply-Accumulate operations) for one forward pass can be broken down as:

1141

- 1142 • **Patch Embedding:** $M_{embed} = H \cdot W \cdot C \cdot d$
- 1143 • **Transformer Block:** The computation is dominated by the multi-head self-attention
 1144 (MHSA) and the MLP layers, where $M_{MHSA} = 4Nd^2 + 2N^2d$ and $M_{MLP} = 2rNd^2$.

1145 Thus, the total MACs for one single step of a ViT model can be expressed as:

1146

$$M_{ViT} = M_{embed} + L \cdot (M_{MHSA} + M_{MLP}) = HWCd + L[(4 + 2r)Nd^2 + 2N^2d] \quad (3)$$

1147 Based on the common heuristic that training FLOPs are approximately six times the inference MACs
 1148 (accounting for a $3\times$ factor for the training procedure and a $2\times$ factor for converting MACs to
 1149 FLOPs), the final FLOPs are:

1150

$$F_{ViT} = 6 \times E \cdot I \cdot M_{ViT} \quad (4)$$

1151 For CLIP models, we approximate the computational cost of the language branch as 10% of the
 1152 vision branch. Therefore, we apply a $1.1\times$ factor to the ViT result:

1153

$$F_{CLIP} = 1.1 \times F_{ViT} \quad (5)$$

1154 **2) Diffusion models.** For U-Net-based models (e.g., Stable Diffusion), the MACs for a single de-
 1155 noising step are calculated by summing the compute across all layers in the U-Net's down-sampling,
 1156 middle, and up-sampling blocks. This includes contributions from 2D convolutions (M_{conv}), self-
 1157 attention (M_{SA}), and cross-attention (M_{CA}) layers. The total FLOPs are then estimated as:

1158

$$F_{Diffusion} = 6 \times E \cdot I \cdot (M_{conv} + M_{SA} + M_{CA}) \quad (6)$$

1159 For Diffusion Transformer (DiT) models, the calculation is analogous to that of ViT. The total
 1160 FLOPs for a single step can be estimated by the sum of the patch embedding, the stack of L Trans-
 1161 former blocks. The core computation within each DiT block, which includes self-attention, optional
 1162 cross-attention, and an MLP, follows the same principles as the ViT block calculation.

1163

$$F_{DiT} = 6 \times E \cdot I \cdot M_{DiT} = 6 \times E \cdot I \cdot [M_{embed} + L \cdot (M_{MHSA} + M_{MLP})] \quad (7)$$

1164 **3) Transformers.** For Transformer-based models such as large vision-language models, where
 1165 the architecture is predominantly a large language model processing multimodal tokens, the total
 1166 training FLOPs are approximated as:

1167

$$F_{Transformers} = 6 \times N \cdot D \quad (8)$$

1168 where N represents the number of model parameters and D is the total number of tokens in the
 1169 training data.

1170 **Data Imputation Strategy.** Our automated pipeline may encounter models with incomplete con-
 1171 figurations that lack the parameters necessary for FLOPs estimation. In such cases, we implement
 1172 a prototype-based imputation strategy. Specifically, we pre-select a canonical or widely-recognized
 1173 "prototype model" for each major architectural category (e.g., google/vit-base-patch16-224-in21k
 1174 for ViTs). When a model is found to have missing parameters, the pipeline populates the missing
 1175 fields with the corresponding values from the prototype model. For models where FLOPs cannot

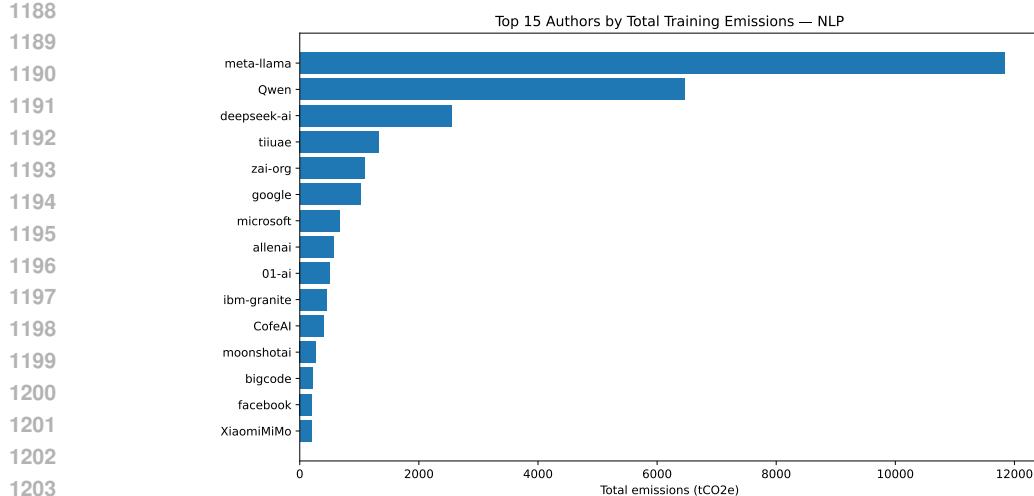


Figure 7: Top 15 Authors with Highest Estimated Training Emissions of Hugging Face NLP Models (5,000+ Downloads)

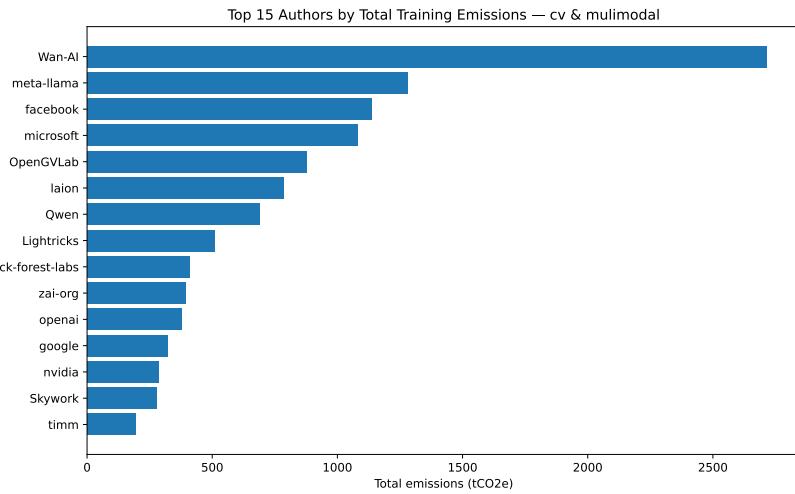


Figure 8: Top 15 Authors with Highest Estimated Training Emissions of Hugging Face CV & Multi-Modal Models (5,000+ Downloads)

be calculated at all (e.g., due to a missing configuration file), we impute the final FLOPs value using the mean of all other models in the same category. This approach ensures the robustness and comprehensive coverage of our estimation process.

A.8 EMISSION ESTIMATION: CONSIDERING MISSING VALUE

To accommodate heterogeneous levels of disclosure across model repositories, we adopt a three-tier framework for training emission estimation:

- **Tier 1: Rich disclosures.** Models provide sufficient information required in Appendix A.6 and Appendix A.6 that is either directly disclosed or can be directly computed, such as *hardware type* (GPU/TPU family), reported *training GPU hours*, and/or total training FLOPs. In these cases, training duration and energy use can be established with the highest accuracy, enabling reliable emission estimation.
- **Tier 2: Partial disclosures.** Models have reported information for estimating the total FLOPs used in training, without hardware details or runtime information. Here, we estimate training emissions by assuming representative hardware efficiency values and average

1242 system overhead factors, mapping FLOPs into energy consumption under a standardized
 1243 configuration.(see Appendix A.8.2)

1244

- 1245 • **Tier 3: Minimal disclosures.** Models report only the parameter count, with no FLOPs or
 1246 hardware details available. For these cases, we rely on a parameter-based regression (see
 1247 Appendix A.8.3) as a fallback, using cross-sectional elasticity estimates to approximate
 1248 emissions from model scale.

1249
 1250 Table 8: Three-tier framework for handling missing values in training emission estimation.
 1251

Tier	Available Information	Estimation Method & Accuracy
1	Hardware type, GPU hours, or total FLOPs (606 models)	Direct electricity use (GPU hours \times power \times grid factor) and FLOPs-based inference; <i>High</i> (calibration set)
2	FLOPs available but no hardware/runtime details	FLOPs mapped to energy using representative hardware efficiency and overheads; <i>Medium</i>
3	Parameter counts only	Parameter-based regression to approximate FLOPs and emissions; <i>Low</i>

1262 A.8.1 EMISSION ESTIMATION PIPELINE WITH TIER 1 MODELS

1263 We implement a unified estimator that integrates accelerator recognition, multi-node topology, overhead factors, and regional emission intensities to approximate training-related carbon emissions. The pipeline is designed to handle heterogeneous disclosures across model repositories, including cases with incomplete or ambiguous hardware information.

1264 **Hardware Normalization and Accelerator Imputation Procedure** In the implementation, accelerators are mapped to a small set of *canonical families* with associated peak TFLOPS, average power, and efficiency: NVIDIA A100 / A100-80GB / A100-64GB / A800, H100 / H200 / H800, V100, A40, A30, T4, L4, RTX 6000 ADA, AMD MI250X / MI300X, and Google TPU V2 / V3 / V4 / V5E / V5P. Assignment proceeds as follows.

1265 For Tier 1 (disclosed hardware), when model cards report training hardware type, these strings are used directly. If traininghardwaretype indicates TPU, the pod name (e.g., “v4-128”, “v3-8”) is parsed and mapped to a canonical TPU family; if the generation cannot be resolved, TPU V3 is used as a mid-range default. Otherwise, the device is treated as a GPU and is normalized using regex rules, matching patterns; the matched family is then used to look up peak TFLOPS, average power, and efficiency.

1266 For Tier 2 and Tier 3 (imputed hardware), when metadata is incomplete, models with TPU hardware but ambiguous pod strings are assigned TPU V3 as a conservative default, and models known to use GPUs but lacking a resolvable training gpu type fall back to an A100-class assumption (A100 peak TFLOPS, \sim 0.30–0.35 efficiency, 400 W power) as a representative datacenter GPU.

1267 AMD and TPU jobs are therefore not collapsed into NVIDIA families: MI250X and MI300X have their own TFLOPS/power entries, and TPUs are handled via dedicated TPU families. Only when no reliable family can be inferred do we use an A100-class default for GPUs or TPU V3 for TPUs, keeping assumptions conservative and internally consistent. Peak compute throughput (TFLOPs/s) and average power consumption are tabulated for major GPU and TPU families under FP16/BF16 tensor-core settings. Custom mappings standardize diverse naming conventions (e.g., “A100 80GB”, “TPUv4-8”), while TPU pod descriptors are canonicalized into TPU V2/V3/V4/V5E/V5P. Throughput efficiency is set by accelerator type as shown in Table 9.

1268 **System Overheads.** We include cluster-level overheads beyond accelerator power: (i) an IT overhead factor (20% relative to GPU draw) covering CPU/RAM/NIC usage, (ii) fixed per-node power (250 W), and (iii) per-node network overhead (100 W). A unified PUE of 1.2 accounts for datacenter infrastructure inefficiency.

Table 9: Canonical Accelerator Families Used in Estimation

Accelerator Family	Peak TFLOPs	Avg. Power (W)	Efficiency
A100	3.12×10^{14}	400	0.35
A100 80GB	3.12×10^{14}	400	0.35
A100 64GB	3.12×10^{14}	400	0.35
A800	3.12×10^{14}	350	0.30
H100	9.89×10^{14}	600	0.45
H200	1.00×10^{15}	650	0.45
H800	8.00×10^{14}	550	0.40
V100	1.25×10^{14}	300	0.25
T4	6.5×10^{13}	70	0.20
L4	1.20×10^{14}	75	0.25
A40	3.00×10^{14}	300	0.25
A30	1.65×10^{14}	300	0.25
RTX 6000 ADA	1.45×10^{14}	300	0.25
MI250X	3.83×10^{14}	560	0.30
MI300X	1.20×10^{15}	750	0.40
TPU V2	4.5×10^{13}	120	0.25
TPU V3	1.23×10^{14}	187	0.35
TPU V4	2.75×10^{14}	220	0.45
TPU V5E	8.0×10^{13}	120	0.35
TPU V5P	2.90×10^{14}	280	0.45

Input Integration. The estimator merges three data sources: (a) GPU/TPU metadata (type, count, nodes, duration), (b) expected FLOPs from scaling estimates or disclosures, and (c) regional emission factors (tCO₂/MWh).

Runtime Attribution. Two pathways are implemented:

1. **Direct runtime:** If *training hours* are disclosed, emissions are computed directly from reported wall-clock or GPU-hours multiplied by hardware power draw.
2. **Imputed runtime:** If training duration is *not* disclosed but total FLOPs are available, we back-compute runtime as

$$T = \frac{F_{\text{train}}}{\text{PeakTFLOPs} \times R_{\text{eff}} \times N_{\text{acc}}},$$

where F_{train} is expected FLOPs, R_{eff} is throughput efficiency, and N_{acc} is accelerator count. This ensures models with only FLOPs disclosure can still be assigned a plausible runtime estimate.

If neither hours nor FLOPs are available, the case is labeled `insufficient`, which is then categorized as a tier 2 or tier 3 model.

Emission Calculation. Total energy consumption is given by

$$MWh = (P_{\text{acc}} \cdot N_{\text{acc}} \cdot T + \text{IT overhead} + \text{node/network fixed}) \times \text{PUE},$$

where P_{acc} is average power per accelerator, N_{acc} the accelerator count, and T the effective training duration (hours). Multiplying by the regional emission factor yields emissions in tCO₂e.

A.8.2 EMISSION ESTIMATION WITH TRAINING FLOPS FOR TIER 2 MODELS.

We establish a log–log regression between model training FLOPs, regional emission factors, and hardware accelerator families:

1350

$$1351 \quad \log(E_i) = \beta_0 + \beta_1 \log(F_i) + \beta_2 \log(\text{EF}_i) + \sum_k \gamma_k \mathbf{1}\{\text{acc}_i = k\} + \varepsilon_i,$$

1352

1353

1354 where E_i denotes the training emissions (tCO₂e), F_i the expected FLOPs, EF_i the grid emission
 1355 factor (tCO₂/MWh) in the model training region, and $\mathbf{1}\{\text{acc}_i = k\}$ an indicator for accelerator
 1356 family k . The regression yields a robust elasticity of $\beta_1 \approx 0.83$ for FLOPs, and $\beta_2 \approx 0.85$ for grid
 1357 emission factors, while hardware differences are captured by the categorical terms γ_k .

1358 Thus, the approximation logic can be expressed as

1359

$$1360 \quad E_i \approx C \cdot F_i^{0.83} \cdot \text{EF}_i^{0.85} \cdot \delta(\text{acc}_i),$$

1361

1362 where $C = \exp(\beta_0)$ is a constant and $\delta(\text{acc}_i)$ is a multiplicative adjustment depending on the
 1363 accelerator family.

1364

1365 Table 10: OLS regression of log-emissions on FLOPs, grid emission factors, and hardware dummies.
 1366 Robust (HC3) standard errors in parentheses.

1367

Variable	Coefficient	Std. Error
Intercept	-39.252***	(1.685)
$\log(F)$	0.829***	(0.034)
$\log(\text{EF})$	0.847**	(0.362)
$\text{acc}[\text{T.H-family}]$	-0.827**	(0.331)
$\text{acc}[\text{T.Others}]$	0.629	(0.389)

1373 *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$

1374

1375

1376 A.8.3 EMISSION ESTIMATION WITH PARAMETERS FOR TIER 3 MODELS.

1377

1378 This parameter-based regression is used as a fallback for Tier-3 models, where no additional information
 1379 is available to support FLOPs-based estimation. We further establish a log–log regression
 1380 between model parameter counts, regional emission factors, and model subtype categories:

1381

1382

$$\log(E_i) = \beta_0 + \beta_1 \log(P_i) + \beta_2 \log(\text{EF}_i) + \gamma \mathbf{1}\{\text{subtype}_i = \text{finetune}\} + \varepsilon_i,$$

1383

1384

1385 where E_i denotes the training emissions (tCO₂e), P_i the parameter count of the model, EF_i the grid
 1386 emission factor (tCO₂/MWh), and $\mathbf{1}\{\text{subtype}_i = \text{instruct}\}$ an indicator for instruction-tuned models.

1387

1388

1389 The regression indicates an elasticity of $\beta_1 \approx 1.45$ with respect to parameters, while the effect
 1390 of grid emission factors is smaller and statistically insignificant. Instruction-tuned variants show
 1391 systematically lower emissions compared to base models.

1392

1393 Thus, the approximation logic can be expressed as

1394

1395

$$1396 \quad E_i \approx C \cdot P_i^{1.45} \cdot \text{EF}_i^{0.34} \cdot \delta(\text{subtype}_i),$$

1397

1398

1399 where $C = \exp(\beta_0)$ is a constant and $\delta(\text{subtype}_i)$ is a multiplicative adjustment depending on
 1400 whether the model is instruction-tuned.

1401

1402

1403 Table 11: OLS regression of log-emissions on parameter counts, grid emission factors, and subtype
 1404 dummies. Standard errors in parentheses.

1405

1406

1407

Variable	Coefficient	Std. Error
Intercept	-32.127***	(1.139)
$\log(P)$	1.451***	(0.054)
$\log(\text{EF})$	0.343	(0.250)
$\text{subtype}[\text{T.instruct}]$	-1.001***	(0.297)

1408 *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$

1404 A.9 SELF-DISCLOSED EMISSION IN HUGGING FACE
1405

	Counts
All HF Repositories	2,099,013
Carbon Emission Disclosed in HF Carbon Emission Modules	2,422
Carbon Emission Disclosed in Readmes	126

1413 **Figure 9: Total Amount of Models with Self-Disclosed Emission in Hugging Face.** Out of more
1414 than 2.1 million repositories, only 2,422 include a structured carbon emissions field and just 126
1415 mention energy use or emissions in their README files, highlighting a disclosure rate below 0.2%.

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457