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ABSTRACT

The scaling-law era has propelled artificial intelligence (AI) from research into
a global industry, but its rapid growth raises concerns over energy demand, car-
bon emissions, and environmental sustainability. Unlike traditional sectors, AI
still lacks systematic methodologies for comprehensive carbon accounting, leav-
ing open the questions of how large the problem is today and how large it might
be in the near future. We propose a FLOPs-based framework to estimate training
emissions of open-source models on Hugging Face, introducing a tiered approach
to handle uneven disclosure quality. Compute is converted to energy using hard-
ware efficiency characteristics and then to emissions using the carbon intensity
of the relevant grid, which we summarize as an AI Training Carbon Intensity
(ATCI, emissions per compute) and for which we report an empirical reference
value to enable quick model-level estimates. Our results show that training the
most popular 5,234 models (with over 5,000 downloads) emitted approximately
5.8 × 104 tons of carbon emissions. These findings provide the comprehensive
industry-scale estimate of AI’s training footprint and a practical methodology to
guide future standards and sustainability strategies.

1 INTRODUCTION

In the scaling-law era, artificial intelligence (AI) has expanded from academic research into an in-
dustry worth hundreds of billions of dollars today, and is projected to reach several trillion dollars by
2030 (UNCTAD, 2023). Large models, spanning computer vision (CV) and large language models
(LLMs), are now deployed across critical fields such as robotics, the Internet, energy, and industrial
sectors. This rapid scaling of model size, data, and parameters is driving unprecedented demands
for energy (IEA, 2024; Strubell et al., 2020), water (Li et al., 2023; Morrison et al., 2025), and mate-
rials (Lee et al., 2025). Concerns over AI’s environmental sustainability are intensifying (Schwartz
et al., 2020; Wu et al., 2022; Bashir et al., 2024), as rising carbon emissions risk accelerating climate
change and resource strain.

However, these concerns often remain conceptual. While policymakers and researchers broadly ac-
knowledge the challenge, there is still a lack of systematic estimates to the questions of “how large
is the problem today” and “how large might it in the near future”. In contrast, traditional indus-
tries, such as manufacturing and agriculture, already follow established methodologies (Eggleston
et al., 2006; IPCC, 2014) and disclosure standards (ISO, 2018) for product-level life-cycle foot-
prints (Bhatia et al., 2011; myclimate, 2023) as well as industry-wide carbon accounting (IPCC,
2022). AI, despite its widely recognized environmental implications, still lacks consistent reporting
and scalable methodologies for estimating training emissions across a wide range of model families
and modalities. Comprehensive and long-term disclosure of the environmental costs of model de-
velopment and deployment remains highly limited, and the quality of existing disclosures is often
inadequate. This gap makes even a basic understanding of AI’s current environmental impacts a
pressing and unresolved challenge.

Here, we make a further attempt to bridge these gaps. Unlike previous studies that focused pri-
marily on the carbon footprint of individual models (Strubell et al., 2020; Morrison et al., 2025),
we aim to provide a broader, industry-scale perspective on AI’s emissions by offering a conceptual
estimate of its overall impact. As a lens for this investigation, we examine open-source models
hosted on Hugging Face (HF), the most widely used repository and distribution platform for AI
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models. The models available on Hugging Face represent a substantial share of the open-source
community’s collective efforts, making them a valuable proxy for estimating emissions in practice.
By accounting for the training emissions of these models, we seek to shed light on how much car-
bon AI model training has already emitted and how much additional emission its continued scaling
may generate. Given the limited quality and scope of existing disclosures, our goal is not to provide
fully accurate numbers but to develop an accounting framework supported by large-scale estimation
and cross-validation. We hope this framework can offer a meaningful bigger-picture view of AI’s
environmental impact, both at the model level and across the industry.

Accounting for the training carbon footprint of models hosted on Hugging Face is far from straight-
forward, requiring a practical methodology. Although open-source models provide a relatively trans-
parent basis for analysis, their disclosure quality remains uneven, with many fields requiring manual
completion or inference. Reproducing the training process for millions of models would be both
infeasible and environmentally wasteful. To address this, we introduce a FLOPs-based estimation
framework. The key idea is to first approximate the total computational cost (in FLOPs) required
to train a given model. This quantity is then converted into energy consumption based on the effi-
ciency characteristics of the hardware likely used for training, and finally into carbon emissions by
applying the carbon intensity of electricity in the relevant region. This conversion can be interpreted
as assigning an AI training carbon intensity (ATCI, training emissions per compute), which reflects
both hardware energy efficiency and regional energy mix. We further provide an empirical refer-
ence value for this intensity, offering a practical baseline for subsequent studies and enabling quick
estimation of model-level training emissions.

In practice, we begin by focusing on models with high download counts and wide adoption, as
they not only exert greater influence but are also more likely to provide at least partial transparency
regarding their training. Based on the completeness of disclosed information, we classify these
models into three tiers: Tier 1 models disclose sufficiently detailed information, allowing us to
cross-check their carbon emissions from multiple perspectives; Tier 2 models have partial gaps in
disclosure, but these can be reasonably inferred using the data accumulated from Tier 1; and Tier 3
models disclose very limited or no usable information, requiring us to rely on empirical assumptions
for rough estimation. This tiered categorization enables our framework to remain systematic and
applicable despite substantial heterogeneity in disclosure practices.

Our estimates suggest that training the 5,234 models with more than 5,000 downloads produced
approximately 58,000 tons of CO2e. As shown in Figure 1, the total footprint is comparable to
about 1.5% of the passenger-car emissions of a mid-sized European country. The number of models
on Hugging Face continues to rise annually as thousands of new popular models are released each
year, underscoring its non-negligible emission scale within the open model ecosystem.

5,234 Models

(>5,000 downloads)


about 2-4K  popular HF 

model added per year

≈58,000

 tons CO₂e

≈41,000 cars

(annual emissions)

≈1.5% of passenger-car 


 in a mid-sized EU country

≈5,800 EU homes 

(annual energy use)


≈0.2 % of households

 in a mid-sized EU country

≈3 million trees

(one year of absorption)

≈1 small cement plant

(half-year emissions)


Figure 1: Estimated training emissions from 5,234 Hugging Face models, compared with equivalent
real-world scales (cars (Tiegte et al., 2021), homes (Eurostat, 2025), cement plants (IEA, 2025), and
trees (Franklin Jr & Pindyck, 2024); tree absorption = 18 kg CO2/tree/year).

2 RELATED WORK

Sustainability of AI requires quantifying and mitigating the environmental costs of developing
and deploying AI models. Early awareness came from work on energy and policy considerations
in deep learning: Strubell et al. quantified the carbon emissions of training large neural networks
and argued that computing should be treated as a scarce resource (Strubell et al., 2019; 2020), while
Schwartz et al. (2020) proposed the “Green AI” agenda, calling for efficiency and environmental
impact to be considered alongside accuracy. Patterson et al. (2021) later estimated emissions from
models such as GPT-3, showing how data-center efficiency and energy mix strongly affect outcomes.
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Subsequent research broadened the scope beyond individual case studies. Wu et al. (2022) surveyed
the environmental impacts of AI across data, algorithms, and hardware, and Dodge et al. introduced
location- and time-specific carbon intensity metrics (Dodge et al., 2022; Sanvitto et al., 2023). Case
studies such as BLOOM incorporated embodied emissions from hardware manufacturing (Luccioni
et al., 2023), while open reports like Llama-2 (Meta AI Research, 2023) and OLMo (Groeneveld
et al., 2024) disclosed approximate training footprints, providing transparency for reproducible en-
ergy studies. In parallel, a range of tools emerged to improve accounting. The ML CO2 Impact
Calculator required manual input (Lacoste et al., 2019), CodeCarbon extended this by embedding
real-time monitoring into training workflows (Courty et al., 2024), CarbonTracker predicted emis-
sions from early profiling (Anthony et al., 2020), Eco2AI integrated monitoring with PyTorch/TF
(Kaack et al., 2022), and TracarB covered cluster-level usage (Valeye, 2021). While these tools
increased transparency, they remain limited by narrow system boundaries, incomplete hardware
coverage, and reliance on average rather than spatiotemporal grid factors.

Recent work has examined downstream deployment, including inference costs (Samsi et al., 2023;
Luccioni et al., 2024), fine-tuning trade-offs (Wang et al., 2023), and system-level accounting frame-
works such as CarbonConnect (Percy et al., 2024). Other studies evaluated optimisation strategies
(Fernandez et al., 2025a), lifecycle impacts (Morrison et al., 2025), and called for stronger disclosure
and policy integration (Luccioni et al., 2025; Fernandez et al., 2025b). While these efforts advanced
discussions on efficiency, transparency, and governance, they largely address single models or iso-
lated lifecycle stages. The broader ecosystem-level impact remains underexplored. In this paper, we
move beyond case studies to systematically estimate the training emissions of thousands of models
on Hugging Face, providing an industry-scale perspective on AI’s carbon footprint and a baseline
for tracking its future trajectory.

Carbon accounting refers to the systematic quantification and reporting of greenhouse gas (GHG)
emissions, providing reliable foundations for climate policy and sustainability research. The Inter-
governmental Panel on Climate Change (IPCC) established a comprehensive methodological frame-
work in the 2006 Guidelines for National Greenhouse Gas Inventories, which has since been adopted
by countries for sectoral inventories covering energy, industry, and agriculture (Eggleston et al.,
2006). Within this framework, carbon accounting can be differentiated into industry-level account-
ing, which estimates total emissions from entire sectors throughout production, operation, and sup-
ply chains (IPCC, 2022; United States Environmental Protection Agency, 2023), and product-level
accounting, which applies life-cycle assessment (LCA) to a single product or service across its full
cradle-to-grave stages (Wor, 2011; ISO, 2018; myclimate, 2023; Tog, 2022).

Despite mature practices in other domains, few standardized frameworks exists for carbon account-
ing of the AI sector. The Software Carbon Intensity (SCI) (Green Software Foundation, 2024)
published by the Green Software Foundation (GSF) defines a methodology for carbon accounting
of a software system. It only measures the carbon intensity of a software application per functional
unit, without using architecture-specific FLOPs or training metadata. Neither IPCC guidelines nor
LCA standards extend to AI training or inference, and disclosure is largely absent. Recent steps,
such as the EU AI Act, the Energy Efficiency Directive, California’s AB 222, and ongoing ISO/IEC
drafts (eua, 2024; EU2, 2023; AB2, 2025; ISO, 2025) – signal progress, but AI remains outside
existing carbon accounting regimes.

Emissions from AI training. Recent studies have estimated the electricity use and carbon emis-
sions of training large models, but typically focus on a few representative cases, leaving ecosystem-
level impacts unclear. They have examined training emissions but treated FLOPs as a fixed compu-
tational quantity, rather than as part of the core indicator for evaluating carbon efficiency. Strubell
et al.(Strubell et al., 2020) calculate training emissions using measured/reproduced electricity ×
regional EF for several NLP models (GPT-2, BERT,etc). Patterson et al.(Patterson et al., 2021) es-
timate FLOPs for Google models (T5, Meena,etc), but emissions are still derived from measured
electricity × regional EF, not FLOPs-based estimation. Anthony et al.(Anthony et al., 2020) and La-
coste et al.(Lacoste et al., 2019) use FLOPs as a proxy for electricity consumption, without analyzing
emissions-per-FLOP or cross-model carbon intensity. They consider hardware efficiency (FLOP/s),
but none treat FLOPs as part of the standardized or comparable metric (e.g., Emission/FLOP) for
carbon efficiency of AI models. Luccioni et al.(Luccioni et al., 2023) compute BLOOM’s emis-
sions from internal energy logs and regional EF. LLMCarbon(Faiz et al., 2023) infers energy use
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during training from flops, detailed hardware and parallelism configurations, and validates its model
on a small set of fully-specified LLMs. However, prior work either focuses on single-model or
single-architecture case studies(Strubell et al., 2020; Luccioni et al., 2023; Wang et al., 2023; Mor-
rison et al., 2025), depends on complete metadata or internal telemetry (Patterson et al., 2021), or
provides experiment-level monitoring tools (Lacoste et al., 2019). They face challenges to scale
thousands of models and enable reproducible, platform-wide carbon attribution. The key bottle-
neck, overlooked in past works, lies in estimating FLOPs, hardware, region, PUE, and runtime for
thousands of heterogeneous models with missing disclosures.

Complementary tools exist: Hugging Face introduced a co2 eq emissions field in 2022 (cov-
ering only ∼0.12% of repositories). This field relies on CodeCarbon (Courty et al., 2024), which
requires detailed runtime logging of hardware power and grid intensity. CodeTracker(Anthony et al.,
2020) similarly monitors real-time CPU/GPU power draw during model training and estimates the
resulting carbon emissions based on the local grid intensity. It requires full runtime access, hard-
ware telemetry, and controlled training environments, and therefore cannot be applied to large open-
source ecosystems such as Hugging Face. Consequently, CodeCarbon and CodeTracker both remain
limited for large-scale assessments without complete training metadata.

Taken together, these efforts underscore that AI training generates substantial emissions, but existing
evidence remains fragmented and insufficient for understanding the aggregate impact. Snapshots of
isolated models or voluntary disclosures cannot capture the scale of emissions produced across tens
of thousands of models now hosted and shared globally. Without broader and more systematic
estimates, it is difficult to assess the true magnitude of AI’s carbon footprint or to design effective
mitigation strategies. To address this gap, we turn to Hugging Face, the largest open repository of
AI models, as a vantage point for constructing model-level training emission estimates at scale.

3 ESTIMATING CARBON EMISSIONS OF HUGGING FACE MODELS

Hugging Face hosts more than two million models, of which approximately 1.7 million are pub-
licly accessible. Many entries are re-uploads, format conversions, or quantized variants that do not
involve new training, while others lack essential training information. After filtering, we retained
widely used models, resulting in 5,234 models with more than 5,000 downloads. Our primary anal-
ysis focuses on this >5,000 group.

3.1 IDEAL RUNTIME-BASED ESTIMATION MODEL

In an ideal scenario, if the computational power of the supercomputer used for training is known
(Pcomp), together with the total training time (Tcomp) and the carbon intensity of electricity in the
training region (EFregion, measured in kgCO2/kWh), the training-related emissions can be esti-
mated as

Etrain = Pcomp × Tcomp × EFregion. (1)

However, very few models disclose such information, and accurate data on the carbon footprint of
supercomputing centers is even harder to obtain. Therefore, alternative strategies are required.

Estimating Computational Power. We approximate the effective computational power of the
supercomputer through the following decomposition:

Pcomp ≈ NGPU × P eff
GPU × PUE, (2)

where NGPU denotes the number of GPUs employed during training, and P eff
GPU represents the

effective average power draw per GPU (in kW). We define P eff
GPU = PGPU × Reff , where PGPU

is the nominal or rated power consumption of the GPU (often approximated by its Thermal Design
Power, TDP), and Reff is a runtime utilization factor that accounts for the gap between theoretical
peak and actual workload efficiency. The term PUE stands for the Power Usage Effectiveness of the
data center, which accounts for the additional overhead of cooling and infrastructure and typically
ranges between 1.2 and 1.7 (CAE Lighting, 2025).
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Estimating Training Time. The training time is estimated based on the overall computational
workload required, expressed in floating-point operations (FLOPs). For a given model, the total
training FLOPs is denoted by F total

train . Assuming knowledge of GPU throughput, the base training
time can be approximated as

Tbase =
F total
train

θGPU ×NGPU ×Reff
, (3)

where θGPU is the sustained throughput per GPU in FLOPs per second (e.g., 3.12× 1014 FLOPs/s
for NVIDIA A100 SXM under TF32), NGPU is the number of GPUs, Reff is the runtime utilization
efficiency. Since training often involves restarts, debugging, and warm-up cycles, we incorporate a
time amplification factor Atime ≥ 1, yielding Tcomp = Tbase ×Atime.

Final Estimation Model. Combining Eq. 1 2 and 3, the training-related carbon emissions of
Hugging Face models can be estimated as

Etrain ≈
(
NGPU × PGPU ×Reff × PUE

)︸ ︷︷ ︸
Pcomp

×

(
F total
train

θGPU ×NGPU ×Reff
×Atime

)
︸ ︷︷ ︸

Tbase

×EFregion

=
PGPU

θGPU
× PUE× F total

train ×Atime × EFregion.

(4)

Eq. 4 represents our estimation framework for model-level training of carbon emissions on Hug-
ging Face. It is physically consistent and captures the key drivers of training-related emissions:
PGPU

θGPU
is effective energy per FLOP. F total

train reflects model size and training iterations. PUE repre-
sents data center overhead, accounting for cooling and distribution losses. Atime as time amplifica-
tion factor captures parallelization inefficiencies, communication overhead, and system-level delays.
EFregion translates consumed energy into carbon emissions based on the local electricity mix. In
short, Eq. 4 decomposes training emissions into hardware × efficiency × computation × system
amplification × infrastructure × environment.

AI Training Carbon Intensity. While the direct estimation of training emissions is informative, it
may not always be intuitive for practitioners. Eq. 4 provides a simplified framework for quantifying
training emissions, and it can be further abstracted by grouping all factors except F total

train into a single
coefficient. We define this coefficient as the AI Training Carbon Intensity (ATCI), which represents
the average carbon emission per FLOP of computation:

ATCI ≈ PGPU

θGPU
× PUE×Atime × EFregion. (5)

Similar to the regional emission factor EFregion, which translates electricity use into carbon emis-
sions based on grid composition, ATCI translates FLOPs into carbon emissions by integrating hard-
ware efficiency, data center overhead, runtime amplification, and regional carbon intensity. In other
words, ATCI can be interpreted as the effective “carbon cost per compute” for AI training.

In our work, we estimate ATCI across a large collection of HF models and report empirical values.
This offers the community a practical reference point, enabling researchers and practitioners to
approximate the training-related carbon footprint of models even in the absence of complete system-
level disclosures. To further validate and calibrate this index, we regress observed training emissions
on FLOPs, emission factors, and hardware families (Figure 2, Appendix A.8.2). This regression
provides empirical evidence that supports the ATCI formulation: the estimated FLOPs elasticity of
∼0.8 confirms a near-linear scaling of emissions with compute, while significant hardware-specific
effects highlight the role of accelerator efficiency in shaping ATCI. ATCI serves as a theoretical
abstraction of carbon cost per compute, and the regression results act as an empirical cross-check.

Carbon intensity of regional grids among models. To estimate the carbon emissions associated
with model training and deployment, we assign each model a regional electricity carbon intensity

5
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Figure 2: Scatter plot of estimated
training emissions versus expected
FLOPs, with regression fits for differ-
ent accelerator families (A: NVIDIA
A100/A800, H: H100/H800, Others).
Both axes are log-scaled. The fitted
model is log(Etrain) = −39.25 +
0.85 log(EFregion) + 0.83 log(F total

train ) −
0.83 I{H-family} + 0.63 I{Others}.
Results indicate ∼0.83 FLOPs elastic-
ity. Relative to the A-family (baseline),
the H-family shows about 56% lower
emissions. The “Others” exhibits
roughly 88% higher emissions. A
unified PUE and time amplification
factor are assumed due to missing data
center disclosures.

based on the best available geographic information: (i) When the model card specifies the training
region or provides a specific emission factor, that value is used directly. (ii) In the absence of such
disclosures, the region is inferred from the training organization’s compute infrastructure or insti-
tutional affiliations. Regional factors follow the Carbon Intensity of Electricity Generation dataset
from Our World in Data (Ritchie et al., 2025). In cases where region information is also missing or
indeterminate, we use the global average carbon intensity of 0.445 tCO2/MWh, consistent with IEA
guidelines (IEA, 2024).

3.2 TRAINING FLOPS ESTIMATION

A central quantity in our framework is the total training compute F total
train , expressed in FLOPs. For

transformer-based NLP models (e.g., BERT, GPT, LLaMA), we use the standard FLOPs approx-
imation, FLOPs ≈ c × Nparams × Ntokens, where c reflects the relative cost of attention and feed-
forward operations. Empirical studies suggest c typically falls in the range 5–8, and we adopt
c = 6 as a conservative baseline, while sensitivity analyses with an extended range (5–12) are
reported in Appendix A.3 and A.6. For computer vision (CV) and multimodal models, we ap-
ply architecture-specific heuristics. For Vision Transformers (ViTs) and CLIP models, FLOPs are
estimated from patch embeddings and Transformer blocks, with training FLOPs approximated as
six times the single-step inference cost; for CLIP, we apply a 1.1× adjustment to account for the
language branch. For diffusion models (e.g., Stable Diffusion, DiT), FLOPs are calculated by sum-
ming the convolution, self-attention, and cross-attention costs across denoising steps. For large mul-
timodal Transformers that process image-text tokens with LLM-like backbones, we approximate
compute as FLOPs ≈ 6 × Nparams × Ntokens, analogous to NLP models. Details of architecture-
specific formulas, corrections for fine-tuning and Mixture-of-Experts structures, and our imputation
strategy for missing parameters are provided in the Supplement (Appendix A.6–A.7).

3.3 HANDLING MISSING VALUES

Three-tier Strategies. Emission estimation relies on partially disclosed information, which we
cross-validate against multiple sources. We adopt a three–tier framework: 1) Tier 1 with rich disclo-
sures (hardware type, GPU hours, or FLOPs). Emissions are computed from electricity use (GPU
hours × power × grid factor) and from FLOPs–based inference, serving as calibration points (Ap-
pendix A.8.1); 2) Tier 2 with partial disclosures (e.g., FLOPs only). We impute missing values using
representative hardware efficiencies and average overheads (Appendix A.8.2). Representative cases
in Figure 2 also show how disclosure profiles map to estimation strategies and how regressions link
FLOPs to emissions across hardware generations; 3) Tier 3 with minimal information (e.g., param-
eters only). Emissions are approximated via parameter–based regressions (Appendix A.8.3).
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3.4 UNCERTAINTY PROPAGATION

Our estimation framework involves several quantities that carry measurement or imputation uncer-
tainty. Since these variables enter multiplicatively in Eqs. (3)–(6), we propagate uncertainty using
the standard first-order relative-error formulation for products:

∆E

E
≈

√√√√∑
i

(
∆xi

xi

)2

, (7)

where xi ∈ {F total
train , PGPU, θGPU, Atime,PUE, EFregion}. The expression in Eq. (7) shows that the

uncertainty in Etrain is governed by the combined relative errors of the multiplicative factors that
define the training emissions. The resulting uncertainty structure is summarized in Appendix A.2.

4 RESULTS

4.1 TRAINING EMISSION RESULTS

Reporting results follow standard significant-digit rules: aggregate emissions are given with at
most two significant digits. Thus, our estimates indicate that, as of August 2025, training 5,234
models with more than 5,000 downloads has resulted in cumulative emissions of approximately
5.8 × 104 tCO2e with an uncertainty of ±2 × 104 tCO2e, consistent with the propagated error in
Eq. 7 (See details in Appendix A.2). We compare average ATCI and model-level emissions across
modalities and training types in Table.1.

CV & multimodal exhibit higher training emission intensity than NLP. CV’s average ATCI
is 0.16 tCO2e/EFLOP versus NLP’s 0.14 tCO2e/EFLOP, indicating that per unit compute of vision
training tends to translate into more energy and carbon. This gap plausibly comes from heavier data
pipelines and lower hardware efficiency in vision workloads (e.g., large image/video batches, aug-
mentation, diffusion/decoder-only VAEs, and higher I/O/memory pressure that reduces accelerator
utilization), as well as the prevalence of multi-stage training (pretrain + alignment + SFT) for VLMs.

Emission differences between foundation models (or individual models) and finetuned mod-
els. The results highlight a clear divergence between Foundation & Individual models and Fine-
tuned models in both emission intensity and their aggregate climate footprint. Finetuned models
exhibit a higher mean ATCI (0.22 vs. 0.14 t/EFLOPs), suggesting that each unit of computation in
downstream training typically incurs greater carbon emissions. This pattern aligns with the typical
deployment environments: large foundation and standalone models are often trained on centralized,
energy-efficient clusters with optimized hardware utilization and cleaner grid mixes, whereas fine-
tuning workloads are more widely distributed across smaller-scale, less efficient, and often metadata-
poor computing environments, which inflates per-EFLOP carbon intensity. Despite their higher
ATCI, finetuned models contribute only a minor share of the total emissions, as the computational
scale of foundation-model pre-training overwhelmingly dominates. Overall, while finetuning tends
to be “dirtier per EFLOP,” the majority of AI’s training-related carbon footprint is still driven by a
relatively small number of extremely compute-intensive foundation-model runs.

Table 1: Emission indicators and repository counts.
(a) Model-level CO2e Emission Indicators

Category Mean ATCI Mean Total
(t/EFLOPs) (t) (104 t)

Foundation & Individual 0.14 12 5.5
Finetuned models 0.22 8 0.3
CV & Multi-Modal 0.16 11 2.3
NLP 0.14 11 3.5

(b) Repository Counts by Tier (downloads> 5000)

Tier NLP Repos CV/MM Repos

Tier 1 390 352
Tier 2 944 1679
Tier 3 3053 220

ATCI. We further interpret the significance of ATCI, defined as the ratio of training emissions to
floating-point operations. ATCI captures the carbon efficiency of model training pipelines, abstract-
ing away from model size or absolute compute cost, and therefore provides a normalized metric

7
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Figure 3: Annual training emissions of AI models (downloads 5,000+) in HF from 2020 to 2024
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Figure 4: Global accumulative training emissions of AI models (downloads 5,000+).

to compare across modalities and training paradigms. Overall, the results highlight that (a) modal-
ity matters: vision/multimodal training is more carbon-intensive per compute; (b) lifecycle practice
matters: finetuned variants exhibit higher per-checkpoint emissions not only because they undergo
repeated downstream training and alignment cycles, but also because they are typically run on less
energy-efficient hardware environments, whereas a small number of large foundation-model pre-
trains still dominate the aggregate carbon footprint. Model-level ATCI provides a meaningful mea-
sure for understanding the estimated environmental burden of AI training, as well as the relative
efficiency differences among model classes.

4.2 HUGGING FACE TRAINING EMISSION ACROSS REGION AND TIME

Region. As shown in Figure 4, regional aggregation reveals an uneven distribution of training
emissions. The United States dominates the landscape (2.3 × 104 tCO2e across 1,000+ reposito-
ries), followed by China (1.9× 104 tCO2e; 404 repositories). In contrast, most European countries
(e.g., the United Kingdom, France, Italy, Finland), as well as Canada and Australia, host many repos-
itories but generate comparatively small emissions per model, indicating lighter-weight workloads
or lower-compute research practices.
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Temporal evolution. As shown in Figure 3, training emissions of models (downloads 5000+) on
Hugging Face have escalated sharply over time. From 2020–2021 to 2024–2025, annual emissions
increased from only ∼4.3×102 tCO2e to more than 4.1×104 tCO2e, reflecting nearly two orders of
magnitude growth within five years. The composition of these emissions also shifted substantially.
Early periods were dominated by CV and multi-modal models, but NLP activity expanded rapidly
between 2022 and 2024, becoming the largest contributor during this interval. In the most recent
period (2024–2025), CV and multi-modal models once again surpassed NLP due to a surge in large-
scale vision and multimodal releases. Together, these trends reveal both the accelerating pace of
model training and the evolving distribution of computational demand across AI domains.
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Figure 5: Projected training emissions of HF
models at scale from 2024 to 2035.

Projected emission. According to the projected
electricity growth rate of global AI data centers
(IEA, 2024), expected to rise from about 1.3% of
global electricity demand in 2024 to nearly 2.8% by
2030 (and stabilising nearly 3.1% by 2035). Figure 5
similarly illustrates a projected increase in model
emissions. Our estimates show that models with
over 5,000 downloads will grow from ∼4.1 × 104

in 2024 to ∼9.9 × 104 tCO2e in 2035, those with
over 1000 downloads from ∼5.8 × 104 to ∼1.4 ×
105 tCO2e, and the broader set with over 100 down-
loads from ∼1.0× 105 to ∼2.5× 105 tCO2e.

4.3 CARBON DISCLOSURE QUALITY OF AI MODELS.

Among the more than two million repositories on Hugging Face, only 2,422 include a structured
co2 eq emissions field, and fewer than 200 provide any additional energy or emissions details
in their README. In total, well under 0.2% of models disclose any environmental footprint, under-
scoring a substantial transparency gap (see Appendix A.9). However, even within the disclosed set,
many entries suffer from inconsistent multi-source reporting and erroneous values, limiting their
reliability. Table 2 highlights several representative model cases. It compares disclosed values from
technical reports or Hugging Face metadata with our estimates, showing that our results are gener-
ally consistent with disclosures. Still, due to the lack of detailed disclosures for most models, we
approximate missing quantities using industry or region-level averages, which inevitably introduces
uncertainty. Nevertheless, cross-validation against the subset of disclosed models indicates that
these estimation errors remain within an acceptable range (see Appendix A.3 and A.4). This under-
scores the feasibility of our approach and the urgent need for systematic, standardized reporting of
emissions across the AI ecosystem.

Table 2: Illustrative comparison between disclosed and estimated training emissions.

Model series
Model series Our Estimation Disclosed emissions (tCO2e) Source
Llama 2 412 384 Touvron et al. (2023)
CodeLlama 72 65 HF disclosed

Single model
Model Our Estimation Disclosed emissions (tCO2e) Source
Meta Llama 2 (7B) 33 31 Touvron et al. (2023)
Meta Llama 2 (13B) 52 62 Touvron et al. (2023)
Meta Llama 2 (70B) 327 291 Touvron et al. (2023)
Meta-Llama 3 (70B) 1,010 1,900 HF disclosed
Meta Llama 3.1 405B 8,176 8,930 AI Index (2025)
Bloom 24.7 24.7 Luccioni et al. (2023)
OLMoE-1B-7B-0924 20 18 Morrison et al. (2025)
stable-diffusion-v1 13.3 11.25 HF disclosed
sam-vit-base 2.7 2.80 HF disclosed
sam2-hiera-small 4.67 3.89 HF disclosed
bioclip 0.20 0.13 HF disclosed
stable-diffusion-2 17 15 HF disclosed
stable-video-diffusion-img2vid 13 19 HF disclosed
stable-diffusion-v1-5 13.50 11.25 HF disclosed

9
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Table 3: Robust evaluation on
models with disclosed emissions.

Metric Value
MAPE 0.42
Median RE 0.32
Hit rate (×2 / ×3) 0.74 / 0.82

Error on Models With Disclosed Emissions To evaluate
the accuracy of our framework against ground-truth disclo-
sures, we analyze 292 models that publicly report their total
training emissions (see Appendix.A.3). To ensure robustness,
we exclude unreliable disclosures and numerically unstable
cases, and adopt a robust trimming procedure to mitigate the
impact of heavy-tailed outliers. Relative errors are defined as
REi = |Êi − Ei|/Ei. To obtain a stable evaluation less af-
fected by extreme outliers, we perform symmetric trimming,
retaining the central 95% of samples by excluding the lowest and highest 5% of relative-error val-
ues. The evaluation yields the results in Table.3. The results indicate that, despite a few extreme
outliers, the majority of models exhibit stable and accurate emission estimates, with approximately
74% and 82% of models falling within ×2 and ×3 of their disclosed values, respectively.

5 CONCLUSIONS

This paper presents a FLOPs-based framework to estimate training-related carbon emissions of Hug-
ging Face models at scale. Our analysis shows that even within the open-source ecosystem, cumula-
tive training emissions already reach the order of 104–105 tons of CO2e, comparable to the footprint
of a medium-sized country over several weeks. This highlights both the urgency of standardized
disclosure and the value of open repositories as anchors for industry-scale carbon accounting.

Limitation and Future Work. Our study presents the systematic accounting of training-related
carbon emissions for mainstream models hosted on Hugging Face. These results provide a use-
ful reference point for researchers, practitioners, and the public in understanding the environmental
costs of AI. At the same time, several important limitations remain, highlighting directions for fu-
ture work. First, our analysis focuses exclusively on open-source models. A large fraction of the
most influential models are proprietary, and their training processes and energy consumption remain
undisclosed. Existing reports suggest that these closed-source models may contribute substantially
to overall emissions, likely exceeding the footprint of the open-source community. Second, we focus
only on training emissions. Yet training is only one part of the picture. Research activities that do
not yield a final deployed model also consume considerable resources, and inference at deployment
scale is expected to dominate AI’s long-term energy demand. Understanding the emissions from in-
ference workloads will require complementary approaches, such as analyzing data center expansion,
hardware deployment statistics, and the size of the inference services market. Third, our study does
not attempt to capture the full lifecycle emissions of AI systems. A complete assessment would ac-
count for the embodied carbon from hardware manufacturing, research and experimentation, model
training, and deployment-scale inference, as well as the accounting and attribution of such emissions
across stakeholders. Developing standardized methodologies for lifecycle carbon accounting in AI
remains an open and urgent challenge.

Extension to inference emission estimations. While our main analysis focuses on training, the
framework can be extended to inference. The inputs can switch to inference-specific quantities: the
power and throughput of the inference hardware (often different from training GPUs), the efficiency
and batching characteristics of inference workloads, and the compute required per generated token.
Once collecting these inputs, our framework can yield inference-emission estimates and inference
emission intensity in exactly the same way as for training.

Overall, our work should be viewed as an initial step toward scalable estimation of training emis-
sions. By quantifying the training emissions of a large body of open-source models, we provide
an empirical anchor that future studies can extend toward closed-source models, inference work-
loads, and full lifecycle assessments. Such progress is essential for aligning AI development with
sustainability goals and for informing the policy frameworks that will govern AI in the years ahead.

REPRODUCIBILITY STATEMENT

We emphasize reproducibility as a key principle of this work. All reported results are based on
open-source datasets that we collected and curated. To ensure transparency, we provide detailed
descriptions of data collection, data cleaning, calculation, and estimation procedures in the Ap-
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pendix.A.5, A.6, A.7, and A.8. The methods and evaluation protocols are described in the main text,
and we will release both the datasets and the complete source code on GitHub upon publication to
further facilitate verification and future research.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, Large Language Models (LLMs) were used in two limited ways. First, we designed
an LLM-based agent to assist with filtering and analyzing parts of the Hugging Face README data,
which supported the pre-processing of model metadata. Second, LLMs were used for light editing
and polishing of the manuscript text to improve clarity and readability. No core research ideas,
experimental design, or final analysis depended on LLM output.

A.2 SOURCES OF ESTIMATION ERROR ACROSS MODELS

Our framework assigns training-emission estimates to three disclosure levels (Tier 1–3), each of
which introduces uncertainty from different sources. This section details the origin and nature of
these uncertainties, and how they propagate into the final emission estimates.

Tier-1: Fully or Partially Disclosed Training Metadata Tier-1 models provide the most reliable
information and fall into two subcategories.

(a) Direct disclosure. Some models report one or more of electricity consumption (MWh) or
CO2e emissions; GPU/TPU-hours; explicit accelerator type and count; training region or datacenter
provider. In these cases, emissions follow the standard power–time formulation

ET1 ≈ MWh× EFregion, (8)

with uncertainty dominated only by reporting granularity (rounding, coarse region labels).

(b) High-confidence FLOP-based Tier-1. For other Tier-1 models, total training FLOPs are dis-
closed or recoverable with high fidelity (e.g., from official technical reports), and emissions are
computed as

ET1 ≈ F total
train × Keff × EFregion. (9)

Here, Keff represents the effective electricity consumption per unit of compute:

Keff =
PGPU ×Atime

θGPU × peakTFLOPS
, (10)

where PGPU is the average power draw, θGPU the achieved utilization efficiency, and Atime a run-
time amplification factor capturing communication, I/O, and other overheads. Uncertainty therefore
propagates primarily through small variations in θGPU, Atime, and regional emission factors. Because
both F total

train and the hardware family are well constrained, Tier-1 FLOP-based estimates also exhibit
low uncertainty.
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Tier-2: FLOPs Known, Hardware and Runtime Partially Missing Tier-2 models disclose (or
allow reconstruction of) the total training FLOPs, but lack full hardware/runtime information. Emis-
sions are therefore computed as

ET2 ≈ F total
train Keff EFregion, (11)

where Keff groups accelerator throughput, datacenter amplification, PUE, and average power.

Tier-2 uncertainty thus arises from:

1. Imputed hardware family (A100/A800/H100/TPU/AMD),
2. Throughput/efficiency variance in θGPU across implementations and parallelism setups,
3. Datacenter amplification uncertainty (Atime),
4. Regional EF uncertainty due to missing or ambiguous geography.

Because FLOPs is known while Keff and EFregion are imputed, Tier-2 inherits moderate uncertainty.

Tier-3: Neither FLOPs Nor Runtime Disclosed Tier-3 models require the heaviest imputation.
Total FLOPs must be estimated from model parameters via a scaling-law style approximation:

F total
train ≈ cNparams, (12)

where the coefficient c implicitly absorbs typical choices of token counts, training stages (pretrain-
ing, SFT, RLHF), number of epochs, and curriculum details for a given family of models.

Emissions then follow:
ET3 ≈ (cNparams)Keff EFregion. (13)

Major sources of Tier-3 uncertainty include:

1. Scaling-law coefficient variance (the proportionality constant c is architecture- and corpus-
specific and absorbs variation in effective token counts and training stages);

2. Hardware inference as in Tier-2 (accelerator family, utilization, and datacenter amplifica-
tion folded into Keff);

3. Regional EF uncertainty when geography is missing or coarse;
4. Compounded multiplicative propagation across F total

train , Keff, and EFregion.

Since both F total
train and Keff must be imputed, and each term enters multiplicatively, Tier-3 accumulates

the largest theoretical error. Plugging representative relative uncertainties as shown in Table.4 into
Eq. 7 yields

∆E

E
≈

√(
∆F

F

)2

+

(
∆Keff

Keff

)2

+

(
∆EF

EF

)2

∼ 0.9–1.5, (14)

corresponding to an implied Tier-3 uncertainty range of ±(90–150)%, i.e., roughly 2–3× variation
for typical models.

Table 4: Typical relative-uncertainty ranges for multiplicative factors in Eqs. (3)–(6).

Quantity Symbol Typical Relative Error (∆x/x)

Total training FLOPs (Tier-1/2) ∆F/F 0.05–0.15
Total training FLOPs (Tier-3 proxy cNparams) ∆F/F 0.60–0.80
GPU average power draw ∆P/P 0.05–0.10
Utilization efficiency ∆θ/θ 0.10–0.25
Runtime amplification factor ∆Atime/Atime 0.10–0.20
Regional emission factor ∆EF/EF 0.10–0.20
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Figure 6: Distribution of Estimated Emissions of Hugging Face Models (5,000+ Downloads)

Summary of Error Sources and Expected Magnitudes

• Tier-1 (low): ±5–15% (direct or high-confidence FLOPs-based; minimal imputation).

• Tier-2 (moderate): ±40–70% (hardware, efficiency, and EF imputation; FLOPs accurate).

• Tier-3 (high): ±90–150% (both FLOPs proxy cNparams and hardware/datacenter effects
imputed; multiplicative compounding).

These theoretical ranges follow directly from the multiplicative structure in Eqs. (3)–(6) , the first-
order propagation rule (Eq. 7), and representative relative uncertainties as shown in Table.4. The
theoretical ranges are also consistent with our pseudo-missingness experiments in Appendix A.4.

Significant-digit rules. Reporting results follow standard significant-digit rules: aggregate emis-
sions are given with at most two significant digits, and uncertainty intervals with one significant
digit. For ATCI, we apply the same significant–digit principles. Because ATCI is a ratio of two
quantities with comparable relative uncertainty (emissions and FLOPs). Accordingly, ATCI values
are reported with one to two significant digits, matching the precision justified by the input factors
and the error structure in Eq. 7.

Aggregate Uncertainty. Considering the expected uncertainty of each tier (Tier 1: 10%,
Tier 2: 55%, Tier 3: 120%) by their respective emissions proportions (Tier 1: 33%, Tier 2: 60%,
Tier 3: 7%), we yield an aggregate-level uncertainty of approximately ±40%. Thus, our estimates
indicate that, as of August 2025, training 5,234 models with more than 5,000 downloads has resulted
in cumulative emissions of approximately 5.8× 104 tCO2e with an uncertainty of ±2× 104 tCO2e

A.3 UNCERTAINTY ANALYSIS OF TRAINING-EMISSIONS ESTIMATION

This section provides a comprehensive analysis of estimation uncertainty in the HUGGINGCARBON
framework. We evaluate the uncertainty from four complementary perspectives: (i) metadata disclo-
sure sparsity on Hugging Face, (ii) comparison against disclosed FLOPs, runtime, and emissions,
(iii) relative error on models with disclosed emissions, and (iv) variance-based decomposition of
uncertainty sources.

Metadata Disclosure Landscape We evaluate metadata disclosure across all 5,234 models in our
dataset. To construct this metadata repository, we systematically collected training-related informa-
tion from three classes of sources:

1. Official Hugging Face model cards, including structured fields (e.g., compute used,
hardware, carbon emissions), author-provided notes, and embedded configuration
snippets.

2. Repository configuration files, such as config.json, tokenizer/vision encoder configs,
and architecture descriptors. These files provide parameter counts, layer depths, hidden
sizes, patch sizes, and other FLOPs-relevant attributes.
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3. External authoritative sources, including official technical reports, GitHub repositories,
and arXiv papers referenced in the model cards. When multiple sources were available, we
applied a deterministic priority order (direct disclosure → config-derived → paper-derived
→ regression-estimated).

Table 5: Metadata disclosure sparsity across the Hugging Face models (5,000+ downloads).

Metadata Field Count Disclosure Rate
Training emissions (tCO2e) 292 5.58%
Electricity use (MWh) 15 0.29%
Grid emission factor 5 0.10%
Training region 54 1.03%
GPU type 955 18.25%
TPU Pod 159 3.04%
Training runtime hours 179 3.42%
Training device count 414 7.91%

Only 5–6% of models disclose energy or emission-related metadata. This structural sparsity is the
primary source of uncertainty in open-source carbon accounting. For all models with any disclosed
training information (FLOPs, electricity use, grid factors, or total emissions), we have compiled a
detailed comparison table containing disclosed quantities and our reconstructed estimates.

Summary of Models with Self-Disclosed Emissions The set of 292 models that self-disclosed
their training emissions includes series such as Bloom, CodeLlama, Stable Diffusion, SAM/SAM2,
and BioCLIP; recent Meta Llama 3/3.1/3.2 and Llama 4 variants (e.g., meta-llama/Llama-3.1-
405B, meta-llama/Llama-3.1-70B, Meta-Llama-3-70B); AllenAI’s OLMo and OLMoE models (e.g.,
allenai/OLMo-7B-hf, allenai/OLMo-2-1124-13B-Instruct); EleutherAI’s GPT-NeoX-20B; image
and video models from Stability AI (e.g., stable-diffusion-2, stable-video-diffusion-img2vid and re-
lated variants); a large cluster of biomedical language models from the OpenMed organization; and
smaller models such as ModernBERT variants, rerankers, and tiny classifiers.

Variance-Based Decomposition of Uncertainty Sources We model training emissions as:
E ≈ FLOPs × EF ×K,

where EF is the regional emission factor and K absorbs hardware efficiency, runtime, and PUE
effects. For each model, we infer Keff = E/(FLOPs×EF) and perform a variance-based sensitivity
analysis with realistic perturbations:

• FLOPs: ±30% uncertainty,
• Hardware/runtime/PUE: ±20%,
• Grid EF: ±10%.

Using 1,000 Monte Carlo samples per factor, we estimate each source’s contribution to Var(E). The
global contributions averaged across all models are:

Table 6: Variance-based uncertainty decomposition.

Uncertainty Source Variance Share
FLOPs estimation 66%
Hardware/runtime/PUE (K) 27%
Grid emission factor (EF) 7%

FLOPs estimation constitutes the dominant uncertainty driver, while EF accounts for only a small
fraction. Based on variance decomposition across estimation components, FLOPs estimation con-
tributes ∼66% of overall uncertainty, hardware assumptions ∼27%, and grid emission factors ∼7%.
These results demonstrate that uncertainty arises primarily from ecosystem-wide metadata sparsity
rather than methodological limitations.
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A.4 PSEUDO-MISSINGNESS EXPERIMENT FOR TIER 2 AND TIER 3 UNCERTAINTY

To explicitly quantify the uncertainty introduced by Tier 2 and Tier 3 estimation, we conduct a
pseudo-missingness experiment that closely aligns with real metadata disclosure patterns observed
on Hugging Face.

Ground-truth selection. We use all Tier 1 models as high-confidence ground truth, including
those with direct energy disclosure or those with complete metadata (training hardware and training
GPU hours). To avoid numerical instability in relative errors, we remove only trivial-emission cases,
eliminating numerical artifacts while preserving essentially all meaningful Tier 1 models.

Constructing pseudo Tier 2 / Tier 3 samples. We randomly sample 70% of Tier 1 models and
artificially mask metadata to simulate realistic missingness:

• Pseudo Tier 2: retain FLOPs, emission factor, and GPU family; mask hardware type,
runtime, and direct/disclosed energy.

• Pseudo Tier 3: further remove FLOPs, leaving only parameter count, emission factor, and
GPU family.

These masked models are re-evaluated using the exact Tier 2 and Tier 3 regression pipelines
described in the paper. Predicted emissions are compared with Tier 1 ground truth using absolute
error (AE) and relative error (RE). Results are shown in Table 7.

Table 7: Pseudo-missingness experiment results for Tier 2 and Tier 3 uncertainty.

Pseudo Tier n MAE (tCO2e) Median RE P90 RE
Tier 2 (FLOPs-based) 312 61.62 0.57 1.20
Tier 3 (Params-based) 123 111.42 0.99 1.92

• Tier 2 estimates remain highly stable: median RE ≈ 0.57; 90% of predictions exhibiting
∼ 1.2× relative error.

• Tier 3 remains informative despite minimal metadata: median RE ≈ 0.99; 90% within
∼ 2× relative error.

Median RE summarizes the typical multiplicative deviation introduced when metadata is partially
or severely missing. For example, a Median RE of 0.57 indicates that half of the reconstructed
emissions differ from the Tier 1 ground truth by no more than 57%, while the remaining half may
exhibit larger deviations.

In this context, Median RE captures how much accuracy can be preserved when Tier 1-quality
metadata is downsampled to the more realistic, incomplete metadata available under Tier 2 or Tier 3
conditions. A low Median RE for pseudo Tier 2 suggests that FLOPs and emission factors alone
are sufficient to retain a substantial fraction of estimation fidelity. These results show that Tier 2
and Tier 3 estimates are not exact but remain predictive at the order-of-magnitude level under
realistic missingness patterns.

Additional mitigation mechanisms. To constrain uncertainty, our framework incorporates:

• architecture-based FLOPs derivation and runtime backsolving with bounded parameter
ranges,

• GPU-family regression calibrated on Tier 1 ground-truth models,

• variant deduplication to avoid double-counting mirrors or lightweight derivatives,

Together, these mechanisms ensure that Tier 2 and Tier 3 predictions remain anchored to validated
Tier 1 models and provide stable, interpretable estimates across the open-source model ecosystem.
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A.5 DATA COLLECTION AND PROCESSING PIPELINE

Automated Crawling. We collect heterogeneous metadata from Hugging Face model repositories
and associated documentation. The crawler reads repository descriptors (README.md, model cards,
metadata CSVs, configs.json) and extracts candidate fields including hardware type, GPU/TPU
counts, training duration, and especially training FLOPs. For FLOPs disclosures, we implemented
robust parsing functions that can handle varied numeric expressions (e.g., shorthand “2k”, “1.2M”,
or scientific notation such as “5×1021”), ensuring standardized floating-point values for downstream
estimation. All extracted fields are normalized and stored in structured CSV/JSON tables, providing
a consistent basis for regression analysis and emission estimation.

Repository Deduplication. To avoid double-counting emissions from mirrored repositories, we
applied a systematic deduplication rule: when both an official repository and an unsloth/...
mirror exist, the mirror is dropped unless the discrepancy in reported values is negligible (≤ 0.1%),
in which case the unsloth version is retained as canonical. In addition, we excluded derivative
artifacts such as GGUF or quantized models (e.g., 4bit/8bit, AWQ, GPTQ/PTQ/NF4/FP8/Q4/Q5)
since they represent deployment optimizations rather than independent training runs. These filters
ensure that only unique, training model entries are preserved in the dataset.

Agent Workflow. To handle inconsistent disclosures and missing fields, we developed an LLM-
based agent workflow (GPT-4o) that performs: (i) hardware recognition, mapping noisy or aliased
strings to canonical GPU/TPU families; (ii) unit normalization, distinguishing between wall-clock
hours and GPU-hours using contextual cues; (iii) cross-file integration, employing a dedicated web
search agent to locate and retrieve corresponding technical reports or project website released by
model developers, which were then cross-validated against Hugging Face metadata and incorporated
into the final dataset. We merge all findings with regional emission factor datasets. Ambiguous
cases (e.g., extreme FLOPs values, unclear unit conventions) were flagged for manual inspection by
human annotators.

Human Verification. To ensure reliability, five independent human annotators reviewed a strat-
ified subsample of repositories. They checked accelerator mappings, parsed FLOPs statements,
and validated whether durations corresponded to GPU-hours or wall-clock hours. Annotators re-
solved edge cases such as conflicting information across README text and metadata tables. Inter-
annotator agreement was calculated to calibrate the agent’s confidence thresholds.

Data Integration. All sources (GPU/TPU metadata, FLOPs estimates, and regional emission fac-
tors) were merged into unified tables via normalized identifiers. Duplicate columns and conflict-
ing values were harmonized, and each record carries diagnostic notes (e.g., method of estimation,
source of FLOPs, reasons for imputation). This enables transparent traceability of every emission
estimate. The final dataset consists of harmonized records with accelerator type, count, training du-
ration (direct or imputed), FLOPs used, power draw, regional EF, and estimated emissions (tCO2e).
All records include provenance notes indicating whether values were obtained via direct disclosure,
agent inference, or human annotation.

A.6 NLP TRAINING FLOPS ESTIMATION: PRETRAINING VS. FINETUNING WITH
OPTIMIZATION-AWARE CORRECTIONS

OpenAI’s scaling law study (Kaplan et al., 2020) introduced the widely used approximation for
training compute of large-scale language models:

FLOPs ≈ c×Nparams ×Ntokens,

where Nparams is the number of model parameters, Ntokens the number of training tokens, and c a
constant reflecting the balance between attention and feed-forward operations. Empirical evidence
suggests c typically falls in the range 5–8, depending on architecture and training configuration.

In our framework, we refine this baseline approximation to account for model heterogeneity and
practical training regimes:
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• Architecture type. Encoder-only models (e.g., BERT), decoder-only models (e.g., GPT,
LLaMA), and encoder–decoder models (e.g., T5, BART) differ in the ratio of feed-forward
to attention compute, which shifts c within the baseline range of 5–8.

• Parameter-efficient fine-tuning (PEFT). For methods such as adapters and LoRA, only a
fraction of parameters are trainable. We therefore rescale the effective parameter count to
reflect Ntrainable, while partially accounting for frozen weights that still incur forward-pass
compute during backpropagation.

• Mixture-of-Experts (MoE). For MoE architectures, dense parameter count does not rep-
resent the actual compute cost. We instead replace Nparams with the number of active pa-
rameters per token, determined by the top-k experts selected during routing, and introduce
a routing overhead correction.

To encompass these variations, we extend the coefficient range to 5–12 based on recent empirical
studies, ensuring coverage of both standard transformer training and specialized regimes such as
PEFT and MoE. Unless otherwise specified, we adopt c = 6 as a conservative baseline for the main
analysis, while sensitivity analyses over the full range are reported in this supplement.

In practice, we estimate training compute (FLOPs) for transformer-based NLP models by combining
structural information with training configuration metadata extracted from Hugging Face model
cards, repository documentation, and associated papers. This process is automated in our analysis
pipeline and implemented in several steps:

1) Model classification and parameter extraction. Each model is classified as encoder-only
(e.g., BERT), decoder-only (e.g., GPT, LLaMA), or encoder–decoder (e.g., T5). When available,
we directly record the number of trainable parameters (Nparams). If parameters are missing, we infer
them from architecture descriptors such as hidden size, number of layers, and attention heads.

2) Effective parameter count adjustments. For pretraining we set Nparams to the full parameter
count. For others, we distinguish:

• Full-parameter Fine Tuning (FT): Nparams is the full count.
• Parameter-efficient FT (PEFT) (e.g., LoRA/adapters): we substitute Nparams by the num-

ber of active trainable parameters Ntrainable and include a forward-pass reuse factor since
frozen weights still incur inference-side compute during backprop. Concretely,

FLOPsbase,PEFT ≈ carch
(
αfrozen Nfrozen +Ntrainable

)
×Ntokens,

with αfrozen∈ [0.2, 0.5] reflecting the proportion of frozen-path compute amortized in back-
ward (empirical, task- and stack-dependent).

• Mixture-of-Experts models: we substitute the full parameter count with the number of ac-
tive parameters per token, i.e., the sum of dense parameters and the top-k experts activated
per forward pass. Here, we replace Nparams by the active parameters per token, i.e.,

NMoE
params ≈ Ndense + k ·

Nexperts

E
Nexpert︸ ︷︷ ︸

top-k experts per token

,

where k is the top-k routing, E is the number of experts per layer, and Nexpert the per-expert
parameters. We also apply a routing overhead factor αroute∈ [1.00, 1.05] and optional load-
imbalance penalty if reported (Lepikhin et al., 2020; Fedus et al., 2022).

3) Token accounting. When Ntokens is not directly reported, we infer it from dataset size and
epochs, or reconstruct it from step geometry:

Ntokens ≈ S ×G, (1)

where G = W ×A× L×B. (2)

Here S denotes the total number of training steps, W the world size (number of devices), A the
gradient accumulation steps, L the average sequence length, and B the per-device batch size.
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4) Baseline FLOPs estimate. Let Nparams denote the number of (active) trainable parameters and
Ntokens the number of training tokens effectively processed. The baseline lower-bound follows (Ka-
plan et al., 2020):

FLOPsbase ≈ carch × Nparams × Ntokens,

where carch ∈ [5, 12] accounts for architectural differences in the ratio of attention and feed-forward
compute. In our implementation we set

carch =


cenc encoder-only,
cdec decoder-only,
cencdec encoder–decoder,

with cenc, cdec, cencdec ∈ [5, 12].

We use carch ∈ [5, 12]: encoder-only and decoder-only models default to 6, while encoder–decoder
models use 7, with flexibility for further adjustments.

5) Optimization- and system-aware corrections. We multiply the baseline by factors capturing
optimizer, precision, memory-saving, and parallelism overheads/efficiencies:

FLOPs = FLOPsbase × αopt αprec αckpt αact αpipe αdp αmisc.

Default ranges (when explicit telemetry is absent) are:

• Optimizer αopt: Adam/AdamW maintain moments (extra pointwise ops), typically
1.10–1.20; Adafactor closer to 1.05; SGD 1.00.

• Numerical precision αprec: bf16/fp16 kernels often match theoretical FLOPs (≈ 1.00);
fp32 ≈ 1.10 due to bandwidth/latency effects; fp8 with scale management 0.90–1.00
(model- and kernel-dependent).

• Activation checkpointing αckpt: recomputation overhead 1.05–1.30 (depth/segment length
dependent).

• Activation sparsity / fused kernels αact: fused-attention, FlashAttention, bias-drop, etc.
can yield 0.90–0.98 effective factor (stack-sensitive).

• Parallelism αpipe, αdp: pipeline bubbles and data-parallel sync yield 1.00–1.10 each in
typical steady state.

• Misc. serving/training stack αmisc: graph capture/JIT (benefit) vs. logging, mixed dat-
aloading (overhead), default 0.98–1.05.

These factors encode the empirical observation that theoretical compute systematically underesti-
mates realized costs due to software and hardware under-utilization (Fernandez et al., 2025a).

A.7 MULTIMODAL TRAINING FLOPS ESTIMATION

For multimodal models, we employ an architecture-specific methodology to estimate training
FLOPs. Our automated analysis pipeline categorizes models into several primary architectures,
including Vision Transformers (ViT), Contrastive Language-Image Pre-Training (CLIP) models,
Convolutional Neural Networks (CNNs), Diffusion models, and Transformers. The core of this ap-
proach is extracting key architectural parameters from HuggingFace model cards and configuration
files. For CNNs, however, we directly run the model with a randomized input tensor of a unified
resolution to precisely calculate the single-step inference FLOPs.

Notably, this analysis excludes the computational cost of parameter-efficient fine-tuning (PEFT)
techniques, such as LoRA and other adapters. While increasingly prevalent for model customization,
the compute required for training these modules is typically several orders of magnitude smaller than
that of full model pre-training or fine-tuning, rendering its contribution negligible in our large-scale
carbon footprint assessment.

With E as the number of training epochs and I as the number of training images per epoch, we
apply the following tailored estimation strategies for different architectures:
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1) ViT and CLIP models. For Vision Transformer (ViT) based models, we first calculate the
FLOPs for a single forward step by summing the contributions from the patch embedding layer and
the subsequent Transformer blocks. Let H,W,P,C be the input image height, width, patch size,
and channels, respectively, and let d, L, r be the model’s hidden dimension, number of layers, and
MLP expansion ratio. The number of input tokens is N = H·W

P 2 + 1 (including the [CLS] token).

The total MACs (Multiply-Accumulate operations) for one forward pass can be broken down as:

• Patch Embedding: Membed = H ·W · C · d
• Transformer Block: The computation is dominated by the multi-head self-attention

(MHSA) and the MLP layers, where MMHSA = 4Nd2 + 2N2d and MMLP = 2rNd2.

Thus, the total MACs for one single step of a ViT model can be expressed as:

MV iT = Membed + L · (MMHSA +MMLP ) = HWCd+ L[(4 + 2r)Nd2 + 2N2d] (3)

Based on the common heuristic that training FLOPs are approximately six times the inference MACs
(accounting for a 3× factor for the training procedure and a 2× factor for converting MACs to
FLOPs), the final FLOPs are:

FV iT = 6× E · I ·MV iT (4)

For CLIP models, we approximate the computational cost of the language branch as 10% of the
vision branch. Therefore, we apply a 1.1× factor to the ViT result:

FCLIP = 1.1× FV iT (5)

2) Diffusion models. For U-Net-based models (e.g., Stable Diffusion), the MACs for a single de-
noising step are calculated by summing the compute across all layers in the U-Net’s down-sampling,
middle, and up-sampling blocks. This includes contributions from 2D convolutions (Mconv), self-
attention (MSA), and cross-attention (MCA) layers. The total FLOPs are then estimated as:

FDiffusion = 6× E · I · (Mconv +MSA +MCA) (6)

For Diffusion Transformer (DiT) models, the calculation is analogous to that of ViT. The total
FLOPs for a single step can be estimated by the sum of the patch embedding, the stack of L Trans-
former blocks. The core computation within each DiT block, which includes self-attention, optional
cross-attention, and an MLP, follows the same principles as the ViT block calculation.

FDiT = 6× E · I ·MDiT = 6× E · I · [Membed + L · (MMHSA +MMLP )] (7)

3) Transformers. For Transformer-based models such as large vision-language models, where
the architecture is predominantly a large language model processing multimodal tokens, the total
training FLOPs are approximated as:

FTransformers = 6×N ·D (8)

where N represents the number of model parameters and D is the total number of tokens in the
training data.

Data Imputation Strategy. Our automated pipeline may encounter models with incomplete con-
figurations that lack the parameters necessary for FLOPs estimation. In such cases, we implement
a prototype-based imputation strategy. Specifically, we pre-select a canonical or widely-recognized
”prototype model” for each major architectural category (e.g., google/vit-base-patch16-224-in21k
for ViTs). When a model is found to have missing parameters, the pipeline populates the missing
fields with the corresponding values from the prototype model. For models where FLOPs cannot
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Figure 7: Top 15 Authors with Highest Estimated Training Emissions of Hugging Face NLP Models
(5,000+ Downloads)
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Figure 8: Top 15 Authors with Highest Estimated Training Emissions of Hugging Face CV & Multi-
Modal Models (5,000+ Downloads)

be calculated at all (e.g., due to a missing configuration file), we impute the final FLOPs value us-
ing the mean of all other models in the same category. This approach ensures the robustness and
comprehensive coverage of our estimation process.

A.8 EMISSION ESTIMATION: CONSIDERING MISSING VALUE

To accommodate heterogeneous levels of disclosure across model repositories, we adopt a three–tier
framework for training emission estimation:

• Tier 1: Rich disclosures. Models provide sufficient information required in Appendix.
A.6 and Appendix.A.6 that is either directly disclosed or can be directly computed, such
as hardware type (GPU/TPU family), reported training GPU hours, and/or total training
FLOPs. In these cases, training duration and energy use can be established with the highest
accuracy, enabling reliable emission estimation.

• Tier 2: Partial disclosures. Models have reported information for estimating the total
FLOPs used in training, without hardware details or runtime information. Here, we esti-
mate training emissions by assuming representative hardware efficiency values and average
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system overhead factors, mapping FLOPs into energy consumption under a standardized
configuration.(see Appendix A.8.2)

• Tier 3: Minimal disclosures. Models report only the parameter count, with no FLOPs or
hardware details available. For these cases, we rely on a parameter–based regression (see
Appendix A.8.3) as a fallback, using cross–sectional elasticity estimates to approximate
emissions from model scale.

Table 8: Three–tier framework for handling missing values in training emission estimation.

Tier Available Information Estimation Method & Accuracy
1 Hardware type, GPU hours,

or total FLOPs (606 models)
Direct electricity use (GPU hours × power ×
grid factor) and FLOPs–based inference; High
(calibration set)

2 FLOPs available but no
hardware/runtime details

FLOPs mapped to energy using representative
hardware efficiency and overheads; Medium

3 Parameter counts only Parameter–based regression to approximate
FLOPs and emissions; Low

A.8.1 EMISSION ESTIMATION PIPELINE WITH TIER 1 MODELS

We implement a unified estimator that integrates accelerator recognition, multi-node topology, over-
head factors, and regional emission intensities to approximate training-related carbon emissions.
The pipeline is designed to handle heterogeneous disclosures across model repositories, including
cases with incomplete or ambiguous hardware information.

Hardware Normalization and Accelerator Imputation Procedure In the implementation, ac-
celerators are mapped to a small set of canonical families with associated peak TFLOPS, average
power, and efficiency: NVIDIA A100 / A100-80GB / A100-64GB / A800, H100 / H200 / H800,
V100, A40, A30, T4, L4, RTX 6000 ADA, AMD MI250X / MI300X, and Google TPU V2 / V3 /
V4 / V5E / V5P. Assignment proceeds as follows.

For Tier 1 (disclosed hardware), when model cards report training hardware type, these strings are
used directly. If traininghardwaretype indicates TPU, the pod name (e.g., “v4-128”, “v3-8”) is
parsed and mapped to a canonical TPU family; if the generation cannot be resolved, TPU V3 is used
as a mid-range default. Otherwise, the device is treated as a GPU and is normalized using regex
rules, matching patterns; the matched family is then used to look up peak TFLOPS, average power,
and efficiency.

For Tier 2 and Tier 3 (imputed hardware), when metadata is incomplete, models with TPU hardware
but ambiguous pod strings are assigned TPU V3 as a conservative default, and models known to use
GPUs but lacking a resolvable training gpu type fall back to an A100-class assumption (A100 peak
TFLOPS, ∼0.30–0.35 efficiency, 400 W power) as a representative datacenter GPU.

AMD and TPU jobs are therefore not collapsed into NVIDIA families: MI250X and MI300X have
their own TFLOPS/power entries, and TPUs are handled via dedicated TPU families. Only when
no reliable family can be inferred do we use an A100-class default for GPUs or TPU V3 for TPUs,
keeping assumptions conservative and internally consistent. Peak compute throughput (TFLOPs/s)
and average power consumption are tabulated for major GPU and TPU families under FP16/BF16
tensor-core settings. Custom mappings standardize diverse naming conventions (e.g., “A100 80GB”,
“TPUv4-8”), while TPU pod descriptors are canonicalized into TPU V2/V3/V4/V5E/V5P. Through-
put efficiency is set by accelerator type as shown in Table.9.

System Overheads. We include cluster-level overheads beyond accelerator power: (i) an IT over-
head factor (20% relative to GPU draw) covering CPU/RAM/NIC usage, (ii) fixed per-node power
(250 W), and (iii) per-node network overhead (100 W). A unified PUE of 1.2 accounts for datacenter
infrastructure inefficiency.
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Table 9: Canonical Accelerator Families Used in Estimation

Accelerator Family Peak TFLOPs Avg. Power (W) Efficiency

A100 3.12× 1014 400 0.35
A100 80GB 3.12× 1014 400 0.35
A100 64GB 3.12× 1014 400 0.35
A800 3.12× 1014 350 0.30
H100 9.89× 1014 600 0.45
H200 1.00× 1015 650 0.45
H800 8.00× 1014 550 0.40
V100 1.25× 1014 300 0.25
T4 6.5× 1013 70 0.20
L4 1.20× 1014 75 0.25
A40 3.00× 1014 300 0.25
A30 1.65× 1014 300 0.25
RTX 6000 ADA 1.45× 1014 300 0.25
MI250X 3.83× 1014 560 0.30
MI300X 1.20× 1015 750 0.40
TPU V2 4.5× 1013 120 0.25
TPU V3 1.23× 1014 187 0.35
TPU V4 2.75× 1014 220 0.45
TPU V5E 8.0× 1013 120 0.35
TPU V5P 2.90× 1014 280 0.45

Input Integration. The estimator merges three data sources: (a) GPU/TPU metadata (type, count,
nodes, duration), (b) expected FLOPs from scaling estimates or disclosures, and (c) regional emis-
sion factors (tCO2/MWh).

Runtime Attribution. Two pathways are implemented:

1. Direct runtime: If training hours are disclosed, emissions are computed directly from
reported wall-clock or GPU-hours multiplied by hardware power draw.

2. Imputed runtime: If training duration is not disclosed but total FLOPs are available, we
back-compute runtime as

T =
Ftrain

PeakTFLOPs ×Reff ×Nacc
,

where Ftrain is expected FLOPs, Reff is throughput efficiency, and Nacc is accelerator
count. This ensures models with only FLOPs disclosure can still be assigned a plausible
runtime estimate.

If neither hours nor FLOPs are available, the case is labeled insufficient, which is then cate-
gorized as a tier 2 or tier 3 model.

Emission Calculation. Total energy consumption is given by

MWh =
(
Pacc ·Nacc · T + IT overhead + node/network fixed

)
× PUE,

where Pacc is average power per accelerator, Nacc the accelerator count, and T the effective training
duration (hours). Multiplying by the regional emission factor yields emissions in tCO2e.

A.8.2 EMISSION ESTIMATION WITH TRAINING FLOPS FOR TIER 2 MODELS.

We establish a log–log regression between model training FLOPs, regional emission factors, and
hardware accelerator families:
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log(Ei) = β0 + β1 log(Fi) + β2 log(EFi) +
∑
k

γk 1{acci = k} + εi,

where Ei denotes the training emissions (tCO2e), Fi the expected FLOPs, EFi the grid emission
factor (tCO2/MWh) in the model training region, and 1{acci = k} an indicator for accelerator
family k. The regression yields a robust elasticity of β1 ≈ 0.83 for FLOPs, and β2 ≈ 0.85 for grid
emission factors, while hardware differences are captured by the categorical terms γk.

Thus, the approximation logic can be expressed as

Ei ≈ C · F 0.83
i · EF 0.85

i · δ(acci),

where C = exp(β0) is a constant and δ(acci) is a multiplicative adjustment depending on the
accelerator family.

Table 10: OLS regression of log-emissions on FLOPs, grid emission factors, and hardware dummies.
Robust (HC3) standard errors in parentheses.

Variable Coefficient Std. Error
Intercept −39.252∗∗∗ (1.685)
log(F ) 0.829∗∗∗ (0.034)
log(EF) 0.847∗∗ (0.362)
acc[T.H-family] −0.827∗∗ (0.331)
acc[T.Others] 0.629 (0.389)
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

A.8.3 EMISSION ESTIMATION WITH PARAMETERS FOR TIER 3 MODELS.

This parameter-based regression is used as a fallback for Tier-3 models, where no additional infor-
mation is available to support FLOPs-based estimation. We further establish a log–log regression
between model parameter counts, regional emission factors, and model subtype categories:

log(Ei) = β0 + β1 log(Pi) + β2 log(EFi) + γ 1{subtypei = finetune} + εi,

where Ei denotes the training emissions (tCO2e), Pi the parameter count of the model, EFi the grid
emission factor (tCO2/MWh), and 1{subtypei = instruct} an indicator for instruction-tuned models.

The regression indicates an elasticity of β1 ≈ 1.45 with respect to parameters, while the effect
of grid emission factors is smaller and statistically insignificant. Instruction-tuned variants show
systematically lower emissions compared to base models.

Thus, the approximation logic can be expressed as

Ei ≈ C · P 1.45
i · EF 0.34

i · δ(subtypei),

where C = exp(β0) is a constant and δ(subtypei) is a multiplicative adjustment depending on
whether the model is instruction-tuned.

Table 11: OLS regression of log-emissions on parameter counts, grid emission factors, and subtype
dummies. Standard errors in parentheses.

Variable Coefficient Std. Error
Intercept −32.127∗∗∗ (1.139)
log(P ) 1.451∗∗∗ (0.054)
log(EF) 0.343 (0.250)
subtype[T.instruct] −1.001∗∗∗ (0.297)
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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A.9 SELF-DISCLOSED EMISSION IN HUGGING FACE

Counts

All HF Repositories 2,099,013

Carbon Emission Disclosed in HF Carbon 
Emission Modules 2,422

Carbon Emission Disclosed in Readmes 126

Figure 9: Total Amount of Models with Self-Disclosed Emission in Hugging Face. Out of more
than 2.1 million repositories, only 2,422 include a structured carbon emissions field and just 126
mention energy use or emissions in their README files, highlighting a disclosure rate below 0.2%.
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