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Abstract

Language model (LM) post-training (or alignment) involves maximizing a1

reward function that is derived from preference annotations. Direct Preference2

Optimization (DPO) is a popular offline alignment method that trains a policy3

directly on preference data without the need to train a reward model or apply4

reinforcement learning. However, typical preference datasets have only a single, or5

at most a few, annotation per preference pair, which causes DPO to overconfidently6

assign rewards that trend towards infinite magnitude. This frequently leads to7

degenerate policies, sometimes causing even the probabilities of the preferred8

generations to go to zero. In this work, we analyze this phenomenon and propose9

distillation to get a better proxy for the true preference distribution over generation10

pairs: we train the LM to produce probabilities that match the distribution induced11

by a reward model trained on the preference data. Moreover, to account for12

uncertainty in the reward model we are distilling from, we optimize against a13

family of reward models that, as a whole, is likely to include at least one reasonable14

proxy for the preference distribution. Our results show that distilling from such15

a family of reward models leads to improved robustness to distribution shift in16

preference annotations, while preserving the simple supervised nature of DPO.17

1 Introduction18

Language model (LM) post-training (or alignment) aims to steer language model policies towards19

responses that agree with human preferences. Early state-of-the-art approaches have focused on20

reward learning from human feedback. In this paradigm, preference annotations are used to train21

reward models, which then guide the optimization of the language model policy through online22

reinforcement learning (an approach broadly referred to as RLHF). Recent research on offline “Direct23

Preference Optimization” [DPO; 23] and extensions thereof [3; 31], however, has demonstrated that24

it is also possible to directly optimize policies on the preference data, which bypasses the need for a25

separate reward model—and its offline nature also leads to faster, and simpler, training frameworks.26

While this direct approach to preference optimization is attractive in terms of its simplicity and27

efficiency, it also raises important questions about the effectiveness and robustness of the resulting28

policies—as well as the broader utility of using an explicit reward model. In this paper, we argue that29

explicit reward modeling can, in fact, offer substantial practical advantages that are not captured by30

DPO’s formulation. In particular, we theoretically show that relying solely on the preference data31

can be a precarious strategy, with few natural brakes in place to prevent policies trained under the32

DPO objective from careening off towards degenerate policies when the preference data exhibits33

certain idiosyncratic properties. On the other hand, explicit reward models can easily be regularized34

and understood—regardless of whether they are Bradley-Terry models [4], margin-based ranking35

models [40], or simply any other kind of function that correlates well with human preferences [31; 17].36
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Taking a step back from pure direct preference optimization, we propose a method that merges the37

best of both worlds: an efficient reward model distillation algorithm that (i) operates effectively in the38

offline setting, (ii) makes minimal assumptions about the true, optimal reward we aim to maximize,39

and (iii) demonstrates greater robustness to the specific distribution of prompt/response data used for40

policy alignment. Drawing inspiration from prior knowledge distillation techniques [14; 26; 35; 10],41

we leverage the same change of variables trick employed in DPO to express the language model42

policy in terms of its implicit reward model [23]. We then train the policy to match our desired,43

explicit reward via an L2 loss that directly regresses the pairwise differences in target rewards for44

any two generation pairs (x, y1) and (x, y2). We theoretically establish the equivalence between45

optimizing this distillation loss over a sufficiently diverse offline dataset of unlabeled examples and46

optimizing the traditional online RLHF objective.47

Our reward model distillation approach, however, is not immune to some of the same challenges48

facing DPO-style learning of policies. In particular, reward model distillation requires having a49

reliable reward model—but having a reliable reward requires having a reliable method for extracting50

a reward model from a potentially noisy preference dataset. To address the uncertainty surrounding51

the “right” reward model, we introduce a pessimistic extension to our approach. This extension aims52

to maximize the worst-case improvement of our model across a plausible family of reward models53

(e.g., those sufficiently consistent with annotated preference data). This strategy aligns with that of54

existing work in conservative offline reinforcement learning [5; 16]. Interestingly, we derive that55

this pessimistic objective can be equivalently expressed and optimized by adding a simple additional56

KL-divergence regularization to the original distillation objective.57

Empirically, we find that reward model distillation, particularly pessimistic reward model distillation,58

leads to similar performance to prior direct preference optimization methods in settings where the59

preference datasets used are unbiased, but significantly better performance in settings where the60

preference datasets are biased, when compared to DPO and the Identity Preference Optimization61

(IPO) framework of [3], which was introduced as a more robust alternative to DPO. To further support62

these empirical observations, we provide an extensive theoretical analysis that both (i) sheds more63

light on the degenerative tendencies of DPO and issues inherent to its objective, and (ii) highlights64

relative advantages of our explicitly regularized approaches.65

2 Preliminaries66

We begin with a brief review of Direct Preference Optimization (DPO) [23] and its analysis. Proofs67

of all theoretical results provided here, and in the rest of the paper, are deferred to Appendix A.68

2.1 The preference alignment problem69

Let x be an input prompt, and let y ∼ πθ(· | x) be the language model policy πθ’s response to x.70

Given some reward function r∗(x, y) and another reference policy πref(y | x), the goal of alignment71

is to solve for the “aligned” policy πθ∗(y | x) that maximizes the following RLHF objective, i.e.,72

πθ∗(y | x) = argmax
πθ

Eµ(x)

[
Eπθ(y|x)[r

∗(x, y)]− βDKL[πθ(· | x)‖πref(· | x)]
]
, (1)

where µ(x) is a fixed distribution over prompts, and the KL-divergence term prevents the aligned73

policy from being dramatically different from the anchoring reference policy, πref(y | x). Here,74

the reward function r∗ is typically not known in advance, but rather inferred from collected human75

preference data in the form of (x, yw, y`), where x is the prompt, yw is the “winning”, or preferred,76

response, and y` is the “losing”, or dispreferred, response. A common approach is to assume that77

pairs (y1, y2) follow a Bradley-Terry model [4], under which the probability that y1 is preferred to y278

given the reward function r∗ and prompt x is p∗(y1 � y2 | x) = σ(r∗(x, y1) − r∗(x, y2)), where79

σ(·) is the sigmoid function and � denotes preference. Under this model, we can use the preference80

data (x, yw, y`) ∼ Dpref to estimate r∗ via maximum likelihood estimation, i.e.,81

r̂ ∈ argmin
r

E(yw,y`,x)∼Dpref

[
− log σ(r(x, yw)− rφ(x, y`))

]
. (2)

With r̂ in hand, Eq. (1) can be optimized using standard reinforcement learning algorithms [27; 29; 6].82
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2.2 Direct preference optimization83

DPO is a simple approach for offline policy optimization that uses preferences to directly align the84

language model policy, without training an intermediate reward model. Specifically, DPO leverages85

the fact that the optimal solution to the KL-constrained objective in (1) takes the form [15]86

πθ∗(y | x) =
1

Z(x)
πref(y | x) exp

(
1

β
r∗(x, y)

)
, (3)

where Z(x) =
∑
y πref(y | x) exp( 1

β r
∗(x, y)) is the partition function. DPO reparameterizes the87

true reward function r∗ in terms of the optimal policy πθ∗ that it induces, i.e.,88

r∗(x, y) = β log

(
πθ∗(y | x)

πref(y | x)

)
+ β logZ(x). (4)

Under the Bradley-Terry model, the likelihood that y1 � y2 can then be written as89

p∗(y1 � y2 | x) = σ

(
β log

πθ∗(y1)πref(y2)

πθ∗(y2)πref(y1)

)
, (5)

where now πθ∗ can be directly estimated on Dpref following the objective in (2), in place of the90

intermediate reward model r̂, i.e., πθ̂(y | x) ∈ argminπθ Ldpo(πθ;Dpref) where91

Ldpo(πθ;Dpref) = E(yw,y`,x)∼Dpref

[
− log σ

(
β log

πθ∗(y
w)πref(y

`)

πθ∗(y`)πref(yw)

)]
. (6)

2.3 Pitfalls of direct preference optimization92

As argued in [3], the Bradley-Terry assumption that DPO strongly relies on for maximum likelihood93

estimation is sensitive to the underlying preference data. Specifically, if we have any two responses y194

and y2 where p∗(y1 � y2 | x) = 1, then the Bradley-Terry model dictates that r∗(y1)−r∗(y2) = +∞,95

and therefore πθ∗(y2 | x) = 0 for any finite KL-regularization strength β.96

We can illustrate this phenomenon on a broader level with the following example.97

Assumption 1. Suppose we are given a preference dataset of (context-free) pairs Dpref =98

{(ywi , y`i )}ni=1, the pairs (ywi , y
`
i ) are mutually disjoint in both the elements. Further suppose99

that we optimize the DPO objective on Dpref with a single parameter θy for each y.100

Proposition 1. Under Assumption 1, for any (y, y′) such that y = ywi and y′ = y`i for some i, we101

have πθ∗ (y)πref (y
′)

πθ∗ (y′)πref (y) →∞, for all global minimizers πθ∗ of the DPO objective in (6), for any β > 0.102

Corollary 1. Under Assumption 1, further assume that 0 < πref(y) < 1 for all y. Then πθ∗ is a103

global minimizer of the DPO objective in (6) iff πθ∗(C(y`)c)→ 1 with πθ∗(ywi ) > 0 ∀i ∈ [n], where104

C(y`)c is the complement of the set of all responses y that appear as a dispreferred y`i for any i ∈ [n].105

Additional analysis of the training dynamics of DPO is also provided in §5. A significant, and non-106

obvious, implication of Corollary 1 is that the set of global optima of the DPO loss also includes poli-107

cies that can shift nearly all probability mass to responses that never even appear in the training set—108

and even assign near zero probability to all of the training data responses that do in fact correspond to109

winning generations, yw, a phenomenon that has been observed empirically [e.g., 20]. Stated differ-110

ently, Corollary 1 implies that any θ∗ merely satisfying πθ∗(y`i ) = 0 with πθ∗(ywi ) > 0 ∀i ∈ [n] is a111

global minimizer of the DPO objective in this setting. Though simplistic, the scenario in Assumption 1112

is closer to reality than might first be appreciated: in many practical situations we can almost always113

expect the finite-sample preference data to contain one (or at most a few) preference annotations per114

example (x, y1, y2), while the policies πθ can have billions of parameters (� n). Of course, this issue115

can also be viewed as a classic instance of overfitting—with the additional caveat that as opposed to116

overpredicting responses within the training set, we might overfit to almost never producing anything117

like the “good” responses that do appear within the training set. Furthermore, without additional regu-118

larization (beyond β), we can expect this degeneration to easily happen in typical preference datasets.119
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3 Uncertainty-aware reward model distillation120

As discussed in the previous section, a core issue in preference optimization is that the true preference121

distribution p∗(y1 � y2 | x) is not known. Attempting to infer it from finite-sample preference data122

(that may further be biased or out-of-distribution with respect to the target domain) can then result123

in a failure to learn reasonable policies. In this section, we now propose an inherently regularized124

approach to direct preference optimization that uses uncertainty-aware reward model distillation.125

3.1 Reward model distillation126

Suppose for the moment that the reward function r∗ was in fact known, and did not have to be127

inferred from sampled preference data. Under this setting, we can then define an efficient offline128

optimization procedure that is similar in spirit to DPO, but no longer relies directly on a preference129

dataset. Concretely, given unlabeled samples (x, y1, y2) ∼ ρ (where the number of samples can be130

potentially unlimited), we can define a simple “distillation” loss, Ldistill(r
∗, πθ), as follows:131

Ldistill(r
∗, πθ; ρ) = Eρ(x,y1,y2)

[(
r∗(x, y1)− r∗(x, y2)− β log

πθ(y1 | x)πref(y2 | x)

πθ(y2 | x)πref(y1 | x)

)2
]
. (7)

Intuitively, the distillation loss seeks to exactly match differences in reward model scores across132

all generation pairs (x, y1, y2). It is then easy to see that under the Bradley-Terry model, this is133

equivalent to matching the strength of the preference relationship, y1 � y2. Furthermore, by only134

matching differences, we can still conveniently ignore the log partition term, logZ(x), in the implicit135

reward formulation for πθ as shown in (4), as it is constant across different y for any given x. Finally,136

similar to the motivation in DPO, we can show that minimizing Ldistill(r
∗, πθ; ρ) indeed results in an137

optimally aligned policy πθ∗ , as long as the data distribution ρ has sufficient support.138

Theorem 1. Let Y denote the set of all possible responses for any model πθ. Assume that139

supp(πref(y | x)) = Y , i.e., the reference policy may generate any outcome with non-zero probability.140

Further, let supp(ρ(x, y1, y2)) = supp(µ(x))×Y×Y . Let πθ∗(y | x) ∈ argminπθ Ldistill(r
∗, πθ; ρ)141

be a minimizer over all possible policies, of the implicit reward distillation loss in (7), for which142

r∗(x, y) is assumed to be deterministic, and finite everywhere. Then for any β > 0, πθ∗ also143

maximizes the alignment objective in (1).144

The above result holds for a broad class of data distributions ρ(x, y1, y2), and makes no assumptions145

on r∗ (e.g., it is no longer necessary for it to be defined using a Bradley-Terry model). In fact, this146

result can also be seen as strict generalization of the IPO framework of [3] when taking r∗(x, y) ,147

1{y = yw}, if labeled pairs (x, yw, yl) are provided instead of the unlabeled pairs (x, y1, y2).148

Of course, the true reward r∗ is usually not known in practice. Still, as in standard RLHF, we can149

go about constructing good proxies by using the preference data to identify plausible target reward150

models rtgt—further guided by any amount of regularization and inductive bias that we desire. A151

natural choice is to first learn rtgt on the preference dataDpref using standard methods, and then reuse152

Dpref to distill πθ, which is similar to classical settings in teacher-based model distillation [14; 26].153

Furthermore, as rtgt is a real-valued model, at a bare minimum it is guaranteed to induce a regularized154

Bradley-Terry preference distribution ptgt(y1 � y2 | x) > 0, ∀x, y1, y2 ∈ X ×Y , and thereby avoid155

some of the degeneracies identified in §2.3 for the maximum likelihood estimate under DPO.156

3.2 Pessimistic reward model distillation157

Choosing a single reward model rtgt for anchoring the LM policy can naturally still lead to degenerate158

behavior if rtgt is a poor approximation of the true r∗ that accurately reflects human preferences.159

However, we can easily extend our framework to handle uncertainty in the right target reward function160

by defining a confidence set of k ≥ 1 plausible target reward models, S =
{
r1
tgt, . . . , r

k
tgt

}
, and161

training πθ∗(y | x) to maximize the following “pessimistic” form of the objective in (1):162

max
πθ

min
ritgt∈S

Eµ(x)

[
Eπθ(y|x)[r

i
tgt(x, y)]− Eπref (y|x)[r

i
tgt(x, y)]︸ ︷︷ ︸

advantage over baseline policy

−βDKL(πθ(· | x)‖πref(· | x))
]
. (8)
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Pβ(S)

•
π1

•
π2 •

π3 = π∗θ

•πSFT

•
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KL(πSFT||π3)

πSFT(y
w ) = 0.3

πSFT(y
`) = 0.3

πMLE(y
w ) = 1.0

πMLE(y
`) = 0.0

π3(y
w ) = 0.5

π3(y
`) = 0.05

Figure 1: A toy illustration of Theorem 2, which
states that the optimal πθ∗ for (8) is the policy
in Pβ(S) with the lowest forward-KL from πSFT.
The set Pβ(S) contains a (potentially infinite) set
of policies π1, π2, . . . corresponding to target re-
ward models. Here, πSFT assigns equal mass to yw
and y`, πMLE is the MLE solution for the DPO ob-
jective, which puts all probability mass on yw, and
π3 is the policy in Pβ(S) with lowest forward-KL.

In this pessimistic objective we are no longer op-163

timizing πθ for a single reward, but optimizing164

πθ to produce generations that are scored favor-165

ably on average, even by the worst-case reward166

model in the set S , relative to the generations of167

the baseline policy πref .When the set S = {r∗}168

consists of only the ground-truth reward, the ob-169

jective (8) is equivalent to standard RLHF (1),170

up to a constant offset independent of θ. More171

generally, whenever S includes a good proxy172

r̃ for r∗, the pessimistic advantage evaluation173

ensures that the the policy π∗θ that maximizes174

eq. (8) still has a large advantage over πref under175

all r ∈ S, including r̃. This use of pessimism176

to handle uncertainty in the knowledge of the177

true reward is related to similar techniques in178

the offline RL literature [16; 5].179

For the objective to be meaningful, the set S has to be chosen carefully. When S is small, it might180

not include any good proxy for r∗. Conversely, if S is too rich, it forces πθ∗ to be nearly identical to181

πref , since any deviations from πref might be penalized by some reward model in S. Consequently,182

we want to design S to be the smallest possible set which contains a reasonable approximation to r∗.183

To optimize (8), it turns out that we can formulate it as an equivalent constrained offline optimization184

problem, that we will show to conveniently admit a similar loss form as (7).185

Theorem 2 (Pessimistic distillation). Define the constrained minimizer186

πθ∗(y | x) ∈ argmin
πθ∈Pβ(S)

βEµ(x)DKL(πref(· | x)‖πθ(· | x)), (9)

where Pβ(S) is the set of all possible policies with implicit reward models that are consistent with187

any target reward model ritgt ∈ S, i.e., Pβ(S) , {πθi}|S|i=1 where πθi ∝ πref(y | x) exp 1
β r

i
tgt(x, y).188

Then for any β > 0, πθ∗ also maximizes the pessimistic alignment objective in (8).189

To unpack this result, Theorem 2 stipulates that the πθ that maximizes the pessimistic objective in (8)190

is the policy in Pβ(S) that is closest in forward KL-divergence to πref (see Figure 1).1 In addition,191

this policy also maximizes the expected reward of one of the ritgt ∈ S (minus the additional weighted192

reverse KL-divergence penalty term). Intuitively, the forward KL-divergence term serves the role of193

biasing the model towards optimizing for reward models that are similar to the implicit reward that194

πref already maximizes. Otherwise, there might exist a target reward model ritgt ∈ S for which the195

advantage of πθ relative to πref will be low, or even negative (a solution that we would like to avoid).196

3.2.1 Optimization197

The constraint in (9) can then be relaxed and approximately optimized by introducing an objective198

with a Lagrangian-style penalty with strength α > 0 on a form of distillation loss as (7), i.e.,199

min
πθ

βEµ(x)DKL(πref(y | x)‖πθ(y | x)) + α min
ritgt∈S

Ldistill(r
i
tgt, πθ; ρ), (10)

where in practice we divide by α and instead optimize2200

Lpdistill(S, πθ; ρ) = min
ritgt∈S

Ldistill(r
i
tgt, πθ; ρ) + γEµ(x)DKL(πref(· | x)‖πθ(· | x)), (11)

where γ = βα−1. In reality, minimizing (11) for γ > 0 is equivalent to solving the constrained201

optimization problem in (9) with an implicitly larger set of possible reward models Sγ ⊇ S indexed202

by γ. More specifically, Sγ also contains all reward models r̃ that are approximately consistent with203

the anchoring reward models ritgt contained in S, as the following result states.204

1Note that the objective in (9) minimizes the forward KL-divergence DKL(πref(· | x)‖πθ(· | x)) even
though the pessimistic objective in (8) is regularized with reverse KL-divergence DKL(πθ(· | x)‖πref(· | x)).

2In practice, we compute and optimize the min over reward models per each mini-batch of examples.
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Proposition 2 (Soft pessimistic distillation). Assume the same conditions as Theorem 1. Then for205

any 0 < γ <∞, there exists a λ ≥ 0 such that πθ∗(y | x) ∈ argminπθ Lpdistill(S, πθ; ρ), where πθ∗206

is a minimizer over all possible policies, is a solution to (9) for the effective reward model set207

Sγ =
⋃

ritgt∈S

{
r̃ : Eρ(x,y1,y2)

[
(ritgt(x, y1)− ritgt(x, y2)− r̃(x, y1) + r̃(x, y2))2

]
≤ λ

}
. (12)

As a result, optimizing (11) even when using the singleton S = {rtgt} yields an implicitly pessimistic208

objective, in which the pessimism is over all reward models r̃ that are consistent up to λ with rtgt.209

3.3 Pessimistic DPO210

We can also observe that Proposition 2 can be leveraged to obtain an alternative, implicitly pessimistic,211

objective that uses DPO directly instead of distillation. Consider the following regularized DPO loss:212

Lpdpo(πθ;Dpref) = Ldpo(πθ;Dpref) + γEµ(x)DKL(πref(y | x)‖πθ(y | x)). (13)

Following a similar analysis as in Proposition 2, we can derive that this implicitly corresponds to213

maximizing the pessimistic objective in (8) for the reward model set214

Sγ =
{
rπθ : Ldpo(πθ;Dpref) ≤ min

π′θ

Ldpo(π′θ;Dpref) + λ
}
, (14)

where rπθ (x, y) , β log πθ(y | x)/πref(y | x) + β logZ(x) is the implicit reward model defined by215

πθ. Sγ then corresponds to the set of reward models rπθ that are all approximate minimizers of the216

DPO loss. This not only includes the MLE, but also all other estimators that obtain nearly the same217

loss. In principle, this can be expected to help ameliorate some of the issues of §2.3: since driving the218

reward to±∞ only marginally decreases the Ldpo loss past a certain point, the set S will also include219

finite reward functions |rπθ (x, y)| <∞ for any γ > 0. These rewards would then be preferred if they220

induce a policy with a smaller (forward) KL-divergence to πref than the degenerate, infinite rewards.221

4 Experimental results222

The main motivation for reward distillation and pessimism is to increase alignment robustness223

in challenging settings where it is difficult to learn good policies directly from the preference224

data. To demonstrate the effectiveness of our approach, we run experiments on the popular TL;DR225

summarization task [29; 32], in which we simulate a scenario where the preference data has a spurious226

correlation between the length of a summary and whether or not it is preferred.3227

4.1 Experimental setup228

We first train an “oracle” reward model on the TL;DR preference data training set [29] and relabel229

all preference pairs with this oracle. This enables us to use the oracle reward model for evaluation,230

without worrying about the gap to true human preferences. After relabeling, longer responses (where231

longer is defined as y1 having at least 10% more tokens than y2) are preferred in 61% of the examples.232

To test the effect of a spurious correlation on preference-based policy optimization, we select as a233

training set 30K examples from the relabeled data such that the longer output is preferred in ρ fraction234

of examples, with ρ ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. Each such training set is denoted Dρ. At235

eachDρ, we compare our approach to DPO [23] and IPO [3], which are currently the most commonly236

used offline alignment methods. We test the following variants of distillation and pessimism:237

• Distilled DPO (d-DPO): Trains a reward model rρ on Dρ, and then optimizes Ldistill(rρ, πθ; ρ).238

• Pessimistic DPO (p-DPO): A pessimistic version of DPO as described in §3.3, trained on Dρ.239

• Pessimistic Distilled DPO (pd-DPO): Combines the above two by training a reward model rρ on240

Dρ and optimizing the pessimistic distillation objective (Eq. (11)) with confidence set S = {rtgt}.241

• Pessimistic Ensemble DPO (e-DPO): To create ensembles of reward models, we subsample from242

each Dρ five preference datasets, Dρ,b, at b ∈ B = {0.2, 0.4, 0.5, 0.6, 0.8}, such that the fraction243

3Length has been repeatedly shown in the past to correlate with reward [28; 21].
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Figure 2: Main results, showing the advantage in oracle reward compared to the initial finetuned
policy. Errorbars correspond to bootstrap 95% confidence intervals for finite sample variance.
Ensemble DPO (e-DPO) is significantly better than DPO and IPO in the challenging setup where
shorter responses are preferred (ρ ≤ 0.5), and is generally the best-performing method overall in this
regime. Distilled DPO (d-DPO) performs best when longer responses are preferred (ρ > 0.6).

of pairs where the longer response is preferred is b, and train reward models rρ,b on those subsets.244

Consequently, sensitivity to length should vary across ensemble members. We then apply the245

same procedure as pd-DPO above, with a confidence set Sρ = {rρ,b}Bb=1.246

All reward models and policies are initialized from Palm-2-XS [2]. Policies also go through a247

supervised finetuning step on human-written summaries from the original TL;DR training set [32]248

prior to alignment, and we term this policy πSFT. We evaluate performance by sampling summaries249

for test set prompts, evaluating the average reward according to the oracle reward model, and250

computing the advantage in average reward compared to πSFT (before alignment). We train policies251

for 104 steps with batch size 16 and learning rate 10−6, and reward models for 3k steps with252

batch size 64 and learning rate 4 × 10−6. We use the validation set for model selection during253

policy training and to choose the following hyperparameters. For all DPO variants, we sweep over254

β ∈ {.01, .1, 1, 3, 10, 30, 100}. For IPO, we sweep over τ ∈ {0.01, 0.1, 1, 3, 5, 10, 25}. For all255

pessimistic methods we anneal γ = α/β from 10−4 to 10−2 linearly during the 10k training steps.256

4.2 Results257

We present the results of our experiment in Figure 2. As can be seen in the plot, the more challenging258

setting is when ρ < 0.5, which corresponds to a sample of preference annotations in which shorter259

outputs are generally preferred. This distribution shift is more difficult because as mentioned the oracle260

reward model (trained on human annotations) has a bias in favor of longer outputs [28]. Nevertheless261

we get sizable improvements compared to the reference policy πSFT for all length bias values.262

All approaches that invoke distillation (d-DPO, e-DPO, dp-DPO) outperform IPO and DPO (p < .01263

by a Wald test) for ρ ≤ 0.5, where shorter responses are preferred. Pessimistic ensemble DPO264

(e-DPO) performs particularly well in these settings, generally outperforming all methods that use265

a single reward model. When longer responses are preferred (ρ > 0.6), single reward distillation266

(d-DPO) leads to the highest performance, significantly outperforming both DPO and IPO (p < .01267

by a Wald test). Interestingly, p-DPO does not provide empirical benefits relative to the distillation268

based methods, indicating that the distillation loss itself is quite important. For the effect of269

hyper-parameter selection, see Figure D.1. In DPO-based methods, the optimal value of β is inversely270

correlated with the bias; in IPO the same holds for the τ hyperparameter.271

To better understand the utility of reward ensembles in e-DPO, in particular when ρ < 0.5, we272

examine the role of each reward model in the ensemble across different biases. Specifically, given273

the final e-DPO policy per length bias, for each example we identify the reward model rρ,b that274

best matches the implicit reward of this policy, i.e., for which reward model is Ldistill minimized on275

that example (see Eq. (7) and (11)). We find that when the policy is trained on data where shorter276

preference are preferred (ρ < .5), the reward model that best matches the policy often has the opposite277

bias (b is high), and vice versa. Thus, the success of e-DPO may be explained by its ability to distill278

from reward models that do not suffer from the bias in the policy training data, which is particularly279
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helpful when ρ ≤ .5 as this bias is also not shared by the oracle RM. We provide the full distribution280

over reward models for all ρ and β in App. C. Overall, these results demonstrate the efficacy of281

training a policy by distilling from a reward model in the presence of distribution shifts, and that a282

careful design of an ensemble to mitigate spurious correlations can lead to further performance gains.4283

5 Theoretical analysis284

This section characterizes problems with the DPO objective and solutions offered by pessimistic DPO285

and distillation, focusing on the simplified scenario in which we optimize with respect to a single286

preference pairs (yw, y`). Once again, all proofs are deferred to Appendix A.287

In its Lagrangian formulation, pessimistic DPO adds a forward KL term to the DPO objective (§3.3).288

For the sake of analysis, we assume that the preference annotations are sampled from the reference289

distribution, µ(x) × πref(y | x) × πref(y | x). Then a finite-sample approximation of the forward290

KL term is Ω̂(Θ) :=
∑

(yw,y`)∈DPref
−(log πθ(y

`) + log πθ(y
w)). By applying this finite-sample291

approximation, p-DPO has a finite optimum, unlike DPO, as shown in Proposition 1. Note that this292

analysis is limited in two ways: (1) as mentioned, we compute the KL term over the completions293

in the preference data; (2) we directly optimize the probability ratios ψw = πθ(y
w)/πref(y

w) and294

ψ` = πθ(y
`)/πref(y

`), rather than optimizing them jointly through the parameters. For sufficiently ex-295

pressive πθ, however, this approximation captures the behavior of the two algorithms reasonably well.296

Proposition 3. Let L̂pdpo represent a finite-sample approximation to Lpdpo with the empir-297

ical forward KL term Ω̂(Θ). For a fixed π̂θ(y
w
i ) and α > 1, the argminπθ(y`) L̂pdpo is298

min
(
1− π̂θ(ywi ), π̂θ(y

`
i )
)
, with log π̂θ(y

`
i ) = − 1

β log (α− 1) + log π̂θ(y
w
i ) + log

πref (y
`
i )

πref (ywi ) .299

The optimum in Proposition 3 corresponds to logψw/ψ` = β−1 log(α− 1). Recall that IPO seeks300

to assign a constant value to this ratio by minimizing (log ψw
ψ`
− τ−1)2; the (unconstrained) optima301

are identical for τ−1 := β−1 log(α− 1), but the loss surfaces are different (see Appendix B). DPO302

sets πθ(y`i )→ 0, as shown in Corollary 1; this is due not only to competition from πθ(y
w
i ) but from303

DPO penalizing positive probability on y`i . Analysis of the distilled loss gives a similar result:304

Proposition 4. For any fixed π̂θ(ywi ) and β > 0, the argmin of the distilled DPO objective (eq. (7))305

is min(1− π̂θ(ywi ), π̂θ(y
`
i ), with log π̂θ(y

`
i ) = 1

β (rt(x, y
`
i )− rt(x, ywi )) + log π̂θ(y

w
i ) + log

πref (y
`
i )

πref (ywi ) .306

While the setting is simplistic, the results are comforting: here the additional regularization effects of307

both distillation and pessimism (in the case of p-DPO) clearly help to avoid degenerate optima.308

Why DPO can drive π(yw) to zero. In §2.3 we pointed out a peculiarity of the DPO global optima:309

in certain cases, it can include policies where π(yw) may be nearly 0 for all yw in the training set. This310

undesirable behavior has also been observed in practice [20; 22; 30]. For intuition on why this may311

happen, consider the simplified case where the policy is a bag-of-words model, πθ(y) ∝ exp (c(y) · θ)312

for c(y) representing a vector of counts in y and θi representing the unnormalized log-probability of313

token i. Then we can formally show that DPO optimization monotonically decreases an upper bound314

on the probability of the preferred completion, π̃θ(t−1)(yw) ≥ π̃θ(t)(yw) ≥ πθ(t)(yw).315

Proposition 5. Let yw, y` ∈ Vn be preferred vs. dispreferred outputs of length n, with316

πref(y
w), πref(y

`) > 0 and corresponding count vectors c(yw), c(y`). Let log πθ(y) = c(y) · θ −317

nZ(θ) for Z(θ) = log
∑V
i e

θi , with upper bound log π̃θ(y) = c(y)·θ−nmaxj θj . Let θ(t) represent318

the parameters of π after t steps of gradient descent on Ldpo({y`, yw, x}), with θ(0) = 0. Then319

πθ(t)(y
w) ≤ π̃θ(t)(yw) ≤ π̃θ(t−1)(yw) for all t.320

Where does the probability mass go? If πθ(t)(yw) decreases in t, what other strings become321

more probable? In the following proposition, we show that under the bag-of-words model, DPO322

optimization moves probability mass away from yw to sequences that contain only the tokens that323

maximize the difference between yw and y`. This is a concrete example of the type of undesirable324

optima described in §2.3, now shown here to be realizable.325

4We also experimented with an ensemble where members are different checkpoints across training of a
reward model on the preference data and did not observe any empirical gains from this form of ensemble.
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Proposition 6. Let yw and y` be preferred / dispreferred outputs of length n. Let ∆ = c(yw)− c(y`)326

be the difference in unigram counts. Let ŷ = [i, i, . . . , i], for i ∈ arg max ∆, with ||c(ŷ)||1 = n.327

Then πθ(t)(yw)− πθ(t)(ŷ) = τ(t)k for some k ≤ 0 and some non-decreasing τ : Z+ → R+.328

We have k = 0 when c(yw) = c(ŷ), and k � 0 when ||c(yw)||2 � ||c(ŷ)||2 = n (dense c(yw)) and329

||∆||2 = ||∆||∞ (sparse ∆). This implies that when yw and y` are similar, πθ(yw) will degrade more330

rapidly. Early stopping will therefore tradeoff between reaching the degenerate solution on such331

cases, and underfitting other cases in which yw and y` are more distinct.332

6 Related work333

Recent work in offline alignment has focused on DPO [23] as a simpler alternative for aligning334

language models from preference data. Subsequent work has identified issues with DPO, including335

weak regularization [3] and a tendency to decrease the probability of winning generations during336

training [20]. Other methods have explored various avenues for improvement. These include337

analyzing the impact of noise on DPO alignment [11], proposing to update the reference policy338

during training [12], and suggesting a variant of IPO with a per-context margin [1]. Additional339

research has focused on token-level alignment methods [38; 22] and on developing a unified view of340

various offline alignment methods [31]. This work builds upon several these findings, and provides341

further analysis, as well as a solution based on pessimism and reward distillation.342

While offline alignment methods are popular, recent evidence suggests that online alignment methods343

such as RLHF [6; 29], may lead to more favorable outcomes [13; 30; 8; 34]. Notably, Zhu et al. [41]344

proposed iterative data smoothing, which uses a trained model to softly label data during RLHF.345

Whether online or offline, however, policies are still succeptible to overfitting to certain degenerate346

phenomena. To this end, reward ensembles have been widely investigated recently as a mechanism347

for tackling reward hacking in RLHF [9; 7; 39; 25], and in the context of multi-objective optimization348

[19; 24]. We use an ensemble of rewards to represent the uncertainty with respect to reward models349

that are suitable given preference data. Moskovitz et al. [19] focus on “composite” rewards, with the350

goal of achieving high task reward while ensuring that every individual component is above some351

threshold—also by applying a Lagrangian relaxation. In this work, we also consider multiple reward352

models, but we only focus on cases where there is no known, obvious reward decomposition.353

Finally, the question of using a small amount of offline data to learn high-quality policies, instead354

of online access to reward feedback, has been widely studied in the offline reinforcement learning355

(RL) literature. The predominant approach here is to use pessimism, that is, to learn a policy with356

the highest reward under all plausible environment models consistent with the data, with an extensive357

theoretical [18; 37; 33] and empirical [16; 5; 36] body of supporting work. The key insight in this358

literature is that without pessimism, the RL algorithm learns undesirable behaviors which are not359

explicitly ruled out in the training data, and pessimism provides a robust way of preventing such360

undesirable extrapolations, while still preserving generalization within the support of the data.361

7 Conclusion362

LM alignment is crucial for deploying safe and helpful assistants, but is difficult due to lack of363

access to perfect preference oracles. We presented a thorough theoretical analysis of some of364

the degeneracies that DPO is susceptible to when learning from sampled human preference data.365

Furthermore, our findings suggest that explicit reward modeling remains a powerful vehicle for366

introducing regularization into post-training. By distilling the reward assigned by a single, explicit367

reward model—or a family of explicit reward models—directly into the implicit reward maximized368

by our policies using offline data, we demonstrated that we can achieve improved robustness to369

variations in preference dataset quality, while maintaining the simplicity of the DPO framework.370

Limitations. The empirical results in the paper are based on one dataset and form of distribution shift.371

For deeper understanding of pessimism and ensembling, additional settings should be explored. The372

theoretical aspects of the paper are sometimes based on restrictive assumptions and simplifications.373

Nonetheless, they provide potential explanations for phenomena observed in real-world settings.374

Broader impact. We introduce new ideas to the active field of research on preference-based post-375

training, which we hope will help facilitate the alignment of large models, and improve understanding376

of current approaches—ultimately supporting the development of capable and reliable AI systems.377
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A Proofs518

A.1 Proof of Proposition 1519

Proof. Since all the preference pairs (y, y′) are mutually disjoint, and θy is specific to each y, the520

DPO objective over Dpref is convex in ∆ = {∆1, . . . ,∆n}, where521

∆i = β log
πθ(y

w
i )πref(y

`
i )

πθ(y`i )πref(ywi )
. (15)

Furthermore, the different ∆i are completely independent from each other due to the preference pairs522

being disjoint, so they can be optimized over separately.523

In particular, for every i we have that524

lim
∆i→∞

− log (σ (∆i)) = 0, (16)

which implies that ∆∗ = {∞}n is the unique global minimizer of the DPO loss over Dpref in the525

space of ∆’s, and any θ∗ that is a global minimizer must therefore satisfy526

log
πθ(y

w
i )πref(y

`
i )

πθ(y`i )πref(ywi )
=∞. (17)

527

A.2 Proof of Corollary 1528

Proof. Following the same argument of the proof of Proposition 1, we have that all global minimizers529

θ∗ of the DPO satisfy ∆∗i =∞, which in turn implies that530

πθ∗(y
w
i )πref(y

`
i )

πθ∗(y`i )πref(ywi )
=∞. (18)

Since πref(y) is assumed to satisfy 0 < πref(y) < 1 for all y, this implies that all θ∗ satisfy531

πθ∗(y
w
i )

πθ∗(y`i )
=∞, (19)

which further implies that πθ∗(y`i ) = 0 and πθ∗(ywi ) > 0 for all i ∈ [n], as πθ∗(ywi ) ≤ 1 for any ywi .532

Aggregating533

C(y`) = {y : ∃i ∈ [n] s.t y`i = y} (20)
then gives that534

πθ∗(C(y`)) =
∑

y∈C(y`)

πθ∗(y) = 0 =⇒ πθ∗(C(y`)c) = 1. (21)

535

To prove the converse, let πθ′ be a policy that satisfies πθ′(C(y`)c) = 1, with πθ′(ywi ) > 0, ∀i ∈ [n],.536

As πθ′(y) ≥ 0 for all y, this implies that πθ′(y`i ) = 0 ∀i ∈ [n]. Then, we have537

πθ′(y
w
i )

πθ′(y`i )
=∞, (22)

which by Proposition 1 implies that πθ′ is a global optimum.538

A.3 Proof of Theorem 1539

Proof. We know that the optimal policy for the RLHF objective (1) is given by πθ∗(y|x) ∝540

πref(y|x) exp(r∗(x, y)/β). Plugging this policy into the distillation objective (7), we see that541

Ldistill(r
∗, πθ∗ , ρ) = 0 for all ρ. In fact, the loss is equal to 0 pointwise, meaning that πθ∗ is542
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a global minimizer of the distillation objective (7). Further, let π be some other minimizer of543

Ldistill(r
∗, ·, ρ). Then π also has to attain a loss of 0 at all (x, y, y′) in the support of ρ, meaning544

that log π(y|x) − log π(y′|x) = log πθ∗(y|x) − log πθ∗(y|x) for all (x, y, y′) in the support of ρ.545

Consequently, the two policies coincide in the support of ρ (due to the normalization constraint, there546

is no additional offset term allowed as the support of ρ covers all of Y). Finally, noting that the547

support of the chosen ρ is such that πθ∗ puts no mass outside its support due to the KL constraint548

in (1), we complete the proof.549

A.4 Proof of Theorem 2550

Proof. Consider the pessimistic objective:551

max
πθ

min
rtgt∈S

Eµ(x)

[
Eπθ(y|x)[rtgt(x, y)]− Eπref (y|x)[rtgt(x, y)]

]
− βDKL(πθ‖πref). (23)

As it is linear in rtgt and convex in π, we can switch the order of min and max:552

min
rtgt∈S

[
max
π∈Π

Eµ(x)

[
Eπ(y|x)[rtgt(x, y)]− Eπref (y|x)[rtgt(x, y)]

]
− βDKL(π‖πref)

]
. (24)

Note that every rtgt ∈ S can be written in terms of the KL-constrained policy π∗rtgt it induces, i.e.,553

rtgt(x, y) = β log
π∗rtgt(y | x)

πref(y | x)
+ β logZ(x, rtgt), (25)

where554

π∗rtgt = argmax
πθ

Eµ(x)Eπθ(y|x)[rtgt(x, y)]− βDKL(πθ‖πref) (26)

which has the form555

π∗rtgt(y | x) =
1

Z(x, rtgt)
πref(y | x) exp

(
1

β
rtgt(x, y)

)
(27)

where Z(x, rtgt) is the partition function:556

Z(x, rtgt) =
∑
y∈Y

πref(y | x) exp

(
1

β
rtgt(x, y)

)
. (28)

Substituting π∗rtgt in for maxπ and writing rtgt in terms of π∗rtgt , we get the simplified objective557

min
rtgt∈S

[
max
π∈Π

Eµ(x)

[
Eπ(y|x)[rtgt(x, y)]− Eπref (y|x)[rtgt(x, y)]

]
− βDKL(π‖πref)

]
= min
rtgt∈S

[
Eµ(x)

[
Eπ∗rtgt (y|x)

[
β log

π∗rtgt(y | x)

πref(y | x)
+ β logZ(x, rtgt)

]
− Eπref (y|x)

[
β log

π∗rtgt(y | x)

πref(y | x)
+ β logZ(x, rtgt)

]
(29)

− βDKL(π∗rtgt‖πref | x)

]]
= min
rtgt∈S

β

[
Eµ(x)

[
DKL(π∗rtgt‖πref | x) + DKL(πref‖π∗rtgt | x)− DKL(π∗rtgt‖πref | x)

]]
= min
rtgt∈S

βEµ(x)

[
DKL(πref‖π∗rtgt | x)

]
.

558
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A.5 Proof of Proposition 2559

Proof. The proof is a standard Lagrangian duality argument, which we reproduce here for complete-560

ness. For two functions f(z) and g(z), let us define561

z∗ = argmin
z
f(z) + αg(z). (30)

Let us also consider the constrained problem562

z′ = argmin
z
f(z) s.t. g(z) ≤ g(z∗). (31)

Suppose by contradiction that z∗ is not a minimizer of (31). Since z∗ is feasible for the constraint by563

construction, we get that f(z′) < f(z∗). Consequently, we further have564

f(z′) + αg(z′) < f(z∗) + αg(z∗),

where the inequality follows from the feasibility of z′ in (31). This contradicts the optimality565

of z∗ in (30), meaning that z∗ must be a minimizer of (31). Applying this general result with566

f = βEµ(x)DKL(πref(y | x)‖πθ(y | x)), g = minritgt∈S Ldistill(r
i
tgt, πθ; ρ), and z = πθ completes567

the proof, since we recognize the set Sγ in (12) to be equivalent to
⋃
ritgt∈S

Ldistill(r
i
tgt, πθ; ρ) ≤ λ.568

569

A.6 Proof of Proposition 3570

Proof. We differentiate Lpdpo with respect to ψ` = πθ(y
`)/πref(y

`) with i implicit, obtaining,571

∂Lpdpo

∂ψ`
=β

ψβ`
ψβw + ψβ`

ψ−1
` −

β

α
ψ−1
` = βψ−1

`

(
ψβ`

ψβw + ψβ`
− α−1

)
(32)

which is zero when,572

αψβ` =ψβw + ψβ` (33)

ψ` =

(
1

α− 1

)1/β

ψw (34)

logψ` =− 1

β
log(α− 1) + logψw (35)

log πθ̂(y
`) = log πref(y

`)− 1

β
log (α− 1) + log πθ(y

w)− log πref(y
w). (36)

By the second-order condition, the critical point is a minimum. The objective Lpdpo is the sum of two573

components: the negative log sigmoid term for Li and the negative log probability for Ω̂. Because574

each component is a convex function of ψi, so is Lpdpo. As a result, the local minimum log π̂θ(y
`) is575

also a global minimum.576

A.7 Proof of Proposition 4577

Proof. This follows directly from differentiating eq. (7) with respect to πθ(y2).578

A.8 Proof of Proposition 5579

Proof. Let ∆ = [c(yw) − c(y`)] and ρ = πref(y
w)/πref(y

`). The theorem assumes |yw| = |y`|.580

Then Ldpo = − log σ (β(∆ · θ) + β log ρ) . The derivative with respect to θ is,581

∂Lβ(θ)

∂θ
=− (1− σ(β(∆ · θ) + β log ρ))β∆ = −Pr(y` � yw; θ)β∆ ≺ 0. (37)
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Let δt = β Pr(y` � yw; θ(t)). Then,582

π̃θ(t) =θ(t) · c(yw)− nmax
j
θ

(t)
j (38)

=(θ(t−1) + δt∆) · c(yw)− nmax
j

(θ
(t−1)
j + δt∆j) (39)

=θ(t−1) · c(yw)− nmax
j
θ

(t−1)
j + δt∆ · c(yw)− nδt max

j
∆j (40)

=π̃θ(t−1) + δt

(
∆ · c(yw)− nmax

j
∆j

)
(41)

=π̃θ(t−1) + δt

V∑
j

cj(y
w)(∆j −max

j′
∆j′) ≤ π̃θ(t−1) . (42)

We obtain maxj

(
θ

(t−1)
j + δt∆j

)
= maxj θ

(t−1)
j + maxj δt∆j from the fact that θ(0) = 0 and583

therefore j ∈ arg max ∆ implies j ∈ arg max θ(t′) for all t′ > 0. The second-to-last step uses584

n =
∑V
j cj(y

w) and the final step uses ∆j ≤ max′j ∆j′ . Finally, we have πθ(t)(y) ≤ π̃θ(t)(y
w)585

because Z(θ) = log
∑
j exp θj ≥ log maxj exp θj = maxj θj .586

A.9 Proof of Proposition 6587

Proof. Applying gradient descent with learning rate η to the gradient from Equation (37), at each588

step t the parameters are,589

θ(t) =θ(t−1) + ηβ Pr(y` � yw; θ(t−1))∆ =

(
t∑

t′=1

ηβ Pr(y` � yw; θ(t′))

)
∆ = τ(t)∆. (43)

Plugging these parameters into the likelihoods,590

`θ(t)(c(y
w))− `θ(t)(ŷ) = c(yw) · θ(t) − nZ(θ(t))− c(ŷ) · θ(t) + nZ(θ(t)) (44)

= (c(yw)− c(ŷ)) · θ(t) = (c(yw)− c(ŷ)) · (τ(t)∆) (45)
= τ(t)(c(yw) ·∆− nmax ∆) = τ(t)k, (46)

with k ≤ 0 by c(yw) ·∆ ≤ ||c(yw)||1 × ||∆||∞ = nmax ∆.591

B Transitive closure592

Both p-DPO and IPO target a constant ratio for logψw/ψl. However, the loss surfaces are different.593

To see this, we consider a simplified setting with three possible outputs, y1, y2, y3. We observe either594

D = {(y1 ≺ y2), (y2 ≺ y3)} or D = D ∪ {(y1 ≺ y3)}. If we treat this problem as a multi-arm595

bandit, the goal is to assign a weight to each arm, which we denote ψi = log πθ(yi|x) +Zx, with Zx596

an underdetermined log-partition function.597

Proposition 7. LetD = {(i, i+1) : i ∈ 1, 2, . . . , n} for n > 2. LetD be the dataset arising from the598

transitive closure ofD. Assume πref is indifferent to all (yi, yj). Let ψ(D)
∞ = maxi ψ

(D)
i −mini ψ

(D)
i .599

Then ψ(D)
∞ = (n− 1)τ−1 > ψ

(D)
∞ = 2n−1

n τ−1.600

Proof. For D, the IPO objective can be minimized at zero, so that ψ(D)
∞ = (n − 1)τ−1. For D,601

each adjacent pair of completions is separated by γ, and the objective is
∑n−1
i=1 (n− i)(iγ − τ−1)2.602

The minimum is γ = n(n+1)(n−1)/6
n2(n+1)(n−1)/12τ

−1 = 2
nτ
−1, so that ψ(D)

∞ = (n − 1)γ = 2n−1
n τ−1 <603

(n− 1)τ−1 = ψ
(D)
∞ for n > 2.604

Intuitively, the observation of (y1 ≺ y3) should increase confidence that y3 is superior to y1, but605

in IPO it has the opposite effect, drawing their scores closer together. While pessimistic DPO also606

has a target ratio between each preference pair, its loss surface is different: in particular, it does not607
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Figure B.1: Effect of transitive closure on p-DPO and IPO solutions to preference learning in a
multi-arm bandit. Each column shows the learned policy probability for a given arm, based on the
preferences y1 ≺ y2 ≺ y3. The top row shows that in p-DPO, the probabilities are not materially
affected by the transitive closure y1 ≺ y3. The bottom row shows that in IPO, transitive closure
causes the probabilities to be compressed. In each subfigure, we sweep a range of effective values of
τ−1, shown on the x-axis.

increase quadratically as we move away from the target. We find empirically that pessimistic DPO is608

robust to the transitive closure of preference annotations in the multi-arm bandit setting, as shown in609

Figure B.1. As discussed above, DPO will set ψ1 → −∞ because y1 is never preferred.610

In our empirical experiments we solve the p-DPO and IPO objectives for both D =611

{(y1, y2), (y2, y3)} and D = D ∪ {(y1, y3)}, solving with respect to {πθ(yi)}. IPO is solved analyti-612

cally as a quadratic program; for pessimistic DPO we used projected gradient descent. We consider613

β ∈ (1, 3, 10, 30) and α ∈ (5, 10, 20, 50, 100, 1000). As shown in Figure B.1, there are significant614

differences in the IPO solutions with and without transitive closure, while for p-DPO these differences615

are imperceptible.616

C Distribution over reward models for e-DPO617

Figure C.1 investigates the reason for the success of e-DPO, especially when ρ < .5. For every length618

bias, we show across all training examples the fraction of cases where a certain reward model, rρ,b,619

best matched the implicit reward of the final e-DPO policy. The policy matches different reward620

models in different examples. Moreover, there is inverse correlation between the data bias for policy621

training (ρ) and the data bias for training the reward models (b). This suggests that the ensemble622

in e-DPO helps as the policy is distilling from reward models that do not share the data bias of the623

policy training set.624
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Figure C.1: We show for every length bias, ρ, the distribution over reward models that best match
the final policy trained by e-DPO across all training examples. We observe that the e-DPO policy
matches different reward models across examples. Moreover, when the policy is trained with data
biased towards preferring short responses, the reward model that was trained on longer responses is
often preferred and vice versa.

D Hyperparameters625

Validation set performance across the range of hyperparameter settings is shown in Figure D.1. In626

pilot studies we found that these results were relatively robust to variation in the random seed, but did627

not conduct extensive investigation of this effect across all methods and hyperparameters due to cost.628

E Compute resources629

We train policies on 32 TPU v3 chips and reward models on 16 TPU v3 chips. We obtain roughly 0.1630

steps per second when training, for both the policy and reward models.631
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Figure D.1: Validation set results across hyperparameters for each method. For all methods, different
values of ρ induce different optimal hyperparameters β and τ−1.
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NeurIPS Paper Checklist632

The checklist is designed to encourage best practices for responsible machine learning research,633

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove634

the checklist: The papers not including the checklist will be desk rejected. The checklist should635

follow the references and precede the (optional) supplemental material. The checklist does NOT636

count towards the page limit.637

Please read the checklist guidelines carefully for information on how to answer these questions. For638

each question in the checklist:639

• You should answer [Yes] , [No] , or [NA] .640

• [NA] means either that the question is Not Applicable for that particular paper or the641

relevant information is Not Available.642

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).643

The checklist answers are an integral part of your paper submission. They are visible to the644

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it645

(after eventual revisions) with the final version of your paper, and its final version will be published646

with the paper.647

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.648

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a649

proper justification is given (e.g., "error bars are not reported because it would be too computationally650

expensive" or "we were unable to find the license for the dataset we used"). In general, answering651

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we652

acknowledge that the true answer is often more nuanced, so please just use your best judgment and653

write a justification to elaborate. All supporting evidence can appear either in the main paper or the654

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification655

please point to the section(s) where related material for the question can be found.656

IMPORTANT, please:657

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",658

• Keep the checklist subsection headings, questions/answers and guidelines below.659

• Do not modify the questions and only use the provided macros for your answers.660

1. Claims661

Question: Do the main claims made in the abstract and introduction accurately reflect the662

paper’s contributions and scope?663

Answer: [Yes]664

Justification: In our view, the abstract and introduction accurately summarize the contribu-665

tions of the paper.666

Guidelines:667

• The answer NA means that the abstract and introduction do not include the claims668

made in the paper.669

• The abstract and/or introduction should clearly state the claims made, including the670

contributions made in the paper and important assumptions and limitations. A No or671

NA answer to this question will not be perceived well by the reviewers.672

• The claims made should match theoretical and experimental results, and reflect how673

much the results can be expected to generalize to other settings.674

• It is fine to include aspirational goals as motivation as long as it is clear that these goals675

are not attained by the paper.676

2. Limitations677

Question: Does the paper discuss the limitations of the work performed by the authors?678

Answer: [Yes]679
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Justification: See Section 7680

Guidelines:681

• The answer NA means that the paper has no limitation while the answer No means that682

the paper has limitations, but those are not discussed in the paper.683

• The authors are encouraged to create a separate "Limitations" section in their paper.684

• The paper should point out any strong assumptions and how robust the results are to685

violations of these assumptions (e.g., independence assumptions, noiseless settings,686

model well-specification, asymptotic approximations only holding locally). The authors687

should reflect on how these assumptions might be violated in practice and what the688

implications would be.689

• The authors should reflect on the scope of the claims made, e.g., if the approach was690

only tested on a few datasets or with a few runs. In general, empirical results often691

depend on implicit assumptions, which should be articulated.692

• The authors should reflect on the factors that influence the performance of the approach.693

For example, a facial recognition algorithm may perform poorly when image resolution694

is low or images are taken in low lighting. Or a speech-to-text system might not be695

used reliably to provide closed captions for online lectures because it fails to handle696

technical jargon.697

• The authors should discuss the computational efficiency of the proposed algorithms698

and how they scale with dataset size.699

• If applicable, the authors should discuss possible limitations of their approach to700

address problems of privacy and fairness.701

• While the authors might fear that complete honesty about limitations might be used by702

reviewers as grounds for rejection, a worse outcome might be that reviewers discover703

limitations that aren’t acknowledged in the paper. The authors should use their best704

judgment and recognize that individual actions in favor of transparency play an impor-705

tant role in developing norms that preserve the integrity of the community. Reviewers706

will be specifically instructed to not penalize honesty concerning limitations.707

3. Theory Assumptions and Proofs708

Question: For each theoretical result, does the paper provide the full set of assumptions and709

a complete (and correct) proof?710

Answer: [Yes]711

Justification: See Appendix A712

Guidelines:713

• The answer NA means that the paper does not include theoretical results.714

• All the theorems, formulas, and proofs in the paper should be numbered and cross-715

referenced.716

• All assumptions should be clearly stated or referenced in the statement of any theorems.717

• The proofs can either appear in the main paper or the supplemental material, but if718

they appear in the supplemental material, the authors are encouraged to provide a short719

proof sketch to provide intuition.720

• Inversely, any informal proof provided in the core of the paper should be complemented721

by formal proofs provided in appendix or supplemental material.722

• Theorems and Lemmas that the proof relies upon should be properly referenced.723

4. Experimental Result Reproducibility724

Question: Does the paper fully disclose all the information needed to reproduce the main ex-725

perimental results of the paper to the extent that it affects the main claims and/or conclusions726

of the paper (regardless of whether the code and data are provided or not)?727

Answer: [Yes]728

Justification: Details are provided in Section 4.1 and Appendix D.729

Guidelines:730

• The answer NA means that the paper does not include experiments.731
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• If the paper includes experiments, a No answer to this question will not be perceived732

well by the reviewers: Making the paper reproducible is important, regardless of733

whether the code and data are provided or not.734

• If the contribution is a dataset and/or model, the authors should describe the steps taken735

to make their results reproducible or verifiable.736

• Depending on the contribution, reproducibility can be accomplished in various ways.737

For example, if the contribution is a novel architecture, describing the architecture fully738

might suffice, or if the contribution is a specific model and empirical evaluation, it may739

be necessary to either make it possible for others to replicate the model with the same740

dataset, or provide access to the model. In general. releasing code and data is often741

one good way to accomplish this, but reproducibility can also be provided via detailed742

instructions for how to replicate the results, access to a hosted model (e.g., in the case743

of a large language model), releasing of a model checkpoint, or other means that are744

appropriate to the research performed.745

• While NeurIPS does not require releasing code, the conference does require all submis-746

sions to provide some reasonable avenue for reproducibility, which may depend on the747

nature of the contribution. For example748

(a) If the contribution is primarily a new algorithm, the paper should make it clear how749

to reproduce that algorithm.750

(b) If the contribution is primarily a new model architecture, the paper should describe751

the architecture clearly and fully.752

(c) If the contribution is a new model (e.g., a large language model), then there should753

either be a way to access this model for reproducing the results or a way to reproduce754

the model (e.g., with an open-source dataset or instructions for how to construct755

the dataset).756

(d) We recognize that reproducibility may be tricky in some cases, in which case757

authors are welcome to describe the particular way they provide for reproducibility.758

In the case of closed-source models, it may be that access to the model is limited in759

some way (e.g., to registered users), but it should be possible for other researchers760

to have some path to reproducing or verifying the results.761

5. Open access to data and code762

Question: Does the paper provide open access to the data and code, with sufficient instruc-763

tions to faithfully reproduce the main experimental results, as described in supplemental764

material?765

Answer: [No]766

Justification: Experiments are on publicly-available data, but it is not possible for us to share767

code. We believe that the implementation should be relatively straightforward, given the768

mathematical descriptions presented here.769

Guidelines:770

• The answer NA means that paper does not include experiments requiring code.771

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/772

public/guides/CodeSubmissionPolicy) for more details.773

• While we encourage the release of code and data, we understand that this might not be774

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not775

including code, unless this is central to the contribution (e.g., for a new open-source776

benchmark).777

• The instructions should contain the exact command and environment needed to run to778

reproduce the results. See the NeurIPS code and data submission guidelines (https:779

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.780

• The authors should provide instructions on data access and preparation, including how781

to access the raw data, preprocessed data, intermediate data, and generated data, etc.782

• The authors should provide scripts to reproduce all experimental results for the new783

proposed method and baselines. If only a subset of experiments are reproducible, they784

should state which ones are omitted from the script and why.785

• At submission time, to preserve anonymity, the authors should release anonymized786

versions (if applicable).787
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• Providing as much information as possible in supplemental material (appended to the788

paper) is recommended, but including URLs to data and code is permitted.789

6. Experimental Setting/Details790

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-791

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the792

results?793

Answer: [Yes]794

Justification: These details are provided in Section 4.1.795

Guidelines:796

• The answer NA means that the paper does not include experiments.797

• The experimental setting should be presented in the core of the paper to a level of detail798

that is necessary to appreciate the results and make sense of them.799

• The full details can be provided either with the code, in appendix, or as supplemental800

material.801

7. Experiment Statistical Significance802

Question: Does the paper report error bars suitably and correctly defined or other appropriate803

information about the statistical significance of the experiments?804

Answer: [Yes]805

Justification: Section 4.2 includes bootstrap 95% confidence intervals on the main figure806

and hypothesis tests for specific comparisons between methods.807

Guidelines:808

• The answer NA means that the paper does not include experiments.809

• The authors should answer "Yes" if the results are accompanied by error bars, confi-810

dence intervals, or statistical significance tests, at least for the experiments that support811

the main claims of the paper.812

• The factors of variability that the error bars are capturing should be clearly stated (for813

example, train/test split, initialization, random drawing of some parameter, or overall814

run with given experimental conditions).815

• The method for calculating the error bars should be explained (closed form formula,816

call to a library function, bootstrap, etc.)817

• The assumptions made should be given (e.g., Normally distributed errors).818

• It should be clear whether the error bar is the standard deviation or the standard error819

of the mean.820

• It is OK to report 1-sigma error bars, but one should state it. The authors should821
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