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ABSTRACT

State Space Models (SSMs) such as Mamba have recently emerged as efficient
alternatives to Transformers for sequential modeling. However, existing SSM
architectures remain dense and modality-agnostic, limiting their efficiency in multi-
modal pretraining. We introduce Mixture-of-Mamba (MoM), a simple yet power-
ful approach that brings modality-aware sparsity directly into the core state-space
projections of the Mamba block. MoM is the first architecture to integrate struc-
tured, modality-specific specialization inside the state-space dynamics themselves,
enabling conditional computation within sequence modeling operations rather than
only around them. We systematically evaluate MoM across three multi-modal
pretraining frameworks—Transfusion (interleaved text–image with diffusion loss),
Chameleon (text–image with discrete tokens), and an extended three-modality
setting with speech. Across all settings, MoM achieves equivalent or better
loss with 35–65% fewer FLOPs, scales to 1.5B parameters, and delivers up
to 3–4× efficiency gains on non-text modalities, while maintaining competitive
text performance. Our ablations further show that joint decoupling of input, inter-
mediate, and output projections yields super-additive improvements, highlighting
the architectural insights of modality-aware sparsity in SSMs. Taken together,
our results establish Mixture-of-Mamba as the first method to extend sparse,
modality-specific design principles into the SSM family. This not only broadens
the architectural toolkit for efficient multi-modal pretraining beyond Transformers,
but also demonstrates that sparsity inside SSM dynamics is a promising direction
for scalable foundation models.

1 INTRODUCTION

Figure 1: Multi-modal pretrain-
ing on interleaved text and image
data (Transfusion setting). Validation
loss on the image modality for 1.4B-
parameter models. Mixture-of-Mamba
not only converges faster than dense
Mamba, but also outperforms the Flex-
Attention Transformer baseline by a
clear margin, reaching the same loss
with 2.5× fewer training steps. This
highlights the efficiency and competi-
tiveness of integrating modality-aware
sparsity directly into SSMs under a
state-of-the-art multi-modal pretraining
framework.

Large-scale multi-modal pretraining has been dominated by
Transformer-based architectures, where sparsity and modality-
aware parameterization have proven essential for efficiency
and scalability. From early dual-stream models such as ViL-
BERT (Lu et al., 2019) to more recent Mixture-of-Experts
(MoE) designs (Fedus et al., 2022; Liang et al., 2024), a cen-
tral idea has been to allocate modality-specific parameters that
activate only when needed, reducing compute while enhanc-
ing specialization. However, these advances remain tied to
Transformers, which rely on global attention and offer natural
insertion points for expert routing.

By contrast, State Space Models (SSMs) such as Mamba (Gu
and Dao, 2023) have recently emerged as a compelling alterna-
tive, offering linear-time complexity and strong performance in
language and vision tasks. Yet, existing SSM architectures are
dense and modality-agnostic, providing no mechanism to lever-
age sparsity or modality-specific specialization. Prior attempts
at combining MoE with SSMs—such as MoE-Mamba (Pióro
et al., 2024) and BlackMamba (Anthony et al., 2024)—do so
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only peripherally, interleaving dense Mamba blocks with sparsified MLPs. These designs are fun-
damentally orthogonal to ours: they modify auxiliary components, while leaving the recurrent
state-space dynamics untouched.

Algorithm 1 Mixture-of-Mamba block
input Fin: Input sequence — [b, l, f ]

A: State transition matrix — [d, n]
Win_proj : Input projection — [f, 2d]
Wx_proj : Intermediate projection — [d, r + 2n]
Wdt_proj : Intermediate projection — [r, d]
Wout_proj : Output projection — [d, f ]
b: Bias term — [d]
M : Modality tag, one of {text, image, speech}

output Fout

1: x, z ←M(Fin,Win_proj ;M)

2: u← SiLU(Conv1D(x)) ▷ [b,ℓ,d]
3: δ, B,C ←M(u,Wx_proj ;M) ▷ [b,ℓ,(r,n,n)]
4: ∆← log(1 + exp((M(δ,Wdt_proj , b;M))))

5: A← exp(∆ ∗ A) ▷ [b,ℓ,d,n]
6: B ← ∆ ∗ (u× B) ▷ [b,ℓ,d,n]
7: h = 0 ▷ [b,d,n]
8: for i = 0...ℓ− 1 do
9: h = h ∗ Ai + Bi ▷ [b,d,n]
10: yi = h · Ci ▷ [b,d]
11: end for
12: o← (y + u) ∗ SiLU(z)
13: Fout ←M(o,Wout_proj ;M)

14:
15: functionM(X,W, b = None;M)
16: for each modality m ∈M do
17: Im ← {i : mi = m}
18: Xm ← {xi : i ∈ Im}
19: Ym ← XmWm + bm
20: end for
21: return Y ← ∪m∈MYm

22: end function=0

In this work, we present Mixture-of-Mamba, a new archi-
tecture that extends structured sparsity to the State Space
Model (SSM) family. While modality-specific parameter-
ization has been studied in Transformer-based architec-
tures, applying these ideas within SSMs poses distinct chal-
lenges: Mamba is a recurrent, linear-time sequence model
without attention, leaving no obvious routing mechanism.
Our key contribution is to introduce modality-aware spar-
sity directly inside the Mamba block by decoupling its
core projection components according to modality. This
design contrasts with prior MoE-SSM hybrids such as
MoE-Mamba (Pióro et al., 2024) and BlackMamba (An-
thony et al., 2024), which apply sparsity only to surround-
ing MLP layers while leaving the Mamba dynamics dense.
Importantly, their approaches are orthogonal to ours: one
can still apply peripheral MoE augmentation on top of
Mixture-of-Mamba, but our method is the first to integrate
structured sparsity within the state-space dynamics them-
selves. This enables specialization in the sequence mod-
eling operations rather than only around them. Beyond
architectural novelty, we provide the first systematic study
of modality-aware sparsity in SSMs, evaluating across di-
verse multi-modal pretraining setups (e.g., Transfusion,
Chameleon, three-modality) and demonstrating scalability
up to 1.5B parameters.

We evaluate Mixture-of-Mamba across three challenging
multi-modal pretraining settings: Transfusion (interleaved text and image with diffusion loss),
Chameleon (interleaved text and discrete image tokens), and a new three-modality extension incorpo-
rating speech. Across all settings, MoM achieves equivalent or better validation loss with significantly
fewer FLOPs, scaling efficiently up to 1.5B parameters. In the Transfusion setting, MoM matches
dense Mamba’s performance while requiring only 34.8% of the FLOPs at the 1.4B scale. In the
three-modality setting, MoM reduces FLOPs by up to 75% while preserving competitive speech, text,
and image performance. Our ablations further reveal that jointly decoupling multiple projections
yields super-additive improvements, offering new insights into the design space of sparse SSMs.

Contributions. This work makes the following contributions:

• Architectural novelty. We present the first method to integrate modality-aware sparsity directly
into the state-space dynamics of Mamba, complementing and orthogonal to prior MoE-SSM
approaches that only sparsify peripheral MLP layers.

• Empirical validation. We provide the first comprehensive evaluation of modality-aware sparsity
in SSMs, spanning Transfusion, Chameleon, and a three-modality pretraining setup. Our results
demonstrate substantial efficiency gains and scalability to 1.5B parameters.

• Ablation insights. We show that jointly decoupling input, intermediate, and output projections
yields super-additive improvements, highlighting new principles for designing sparse SSMs.

Taken together, our findings establish Mixture-of-Mamba as a simple, effective, and general design
principle for efficient multi-modal pretraining. By extending sparsity from Transformers to SSMs, we
open up new opportunities for scalable foundation models that combine the efficiency of state-space
architectures with the specialization benefits of sparse computation.

2 MIXTURE-OF-MAMBA FOR EFFICIENT MULTI-MODAL LLM PRETRAINING

2.1 MODALITY-AWARE SPARSITY IN MAMBA

2
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Figure 2: Comparison of (a) the
original Mamba block and (b) the
proposed Mixture-of-Mamba block.
Mixture-of-Mamba applies modality-
specific parameterization to all pro-
jection layers that directly process
modality-dependent inputs: input pro-
jection (➊ Win_proj), intermediate pro-
jections (➋ Wx_proj, ➌ Wdt_proj), and
output projection (➍ Wout_proj). This
design enables modality-aware sparsity
within the state-space dynamics while
preserving computational efficiency.

The key novelty of Mixture-of-Mamba lies in integrating
modality-aware sparsity directly into the Mamba block. By dy-
namically selecting modality-specific parameters for each input
token based on its modality, our approach enables Mamba to
efficiently process interleaved multi-modal sequences (e.g., text
and image tokens) while preserving computational efficiency.

For interleaved multi-modal tokens {x1, x2, . . . , xT } from mul-
tiple modalities, such as text and image, modality-specific pa-
rameterization dynamically selects the appropriate parameters
for each token during processing. This general approach can
apply to a wide range of transformations, such as linear, convo-
lution, and activation-based transformations. In Mamba, which
primarily relies on linear transformations, the approach takes
the form:

f = Wx becomes f =

{
Wimagex if x is an image token
Wtextx if x is a text token
Wspeechx if x is a speech token

(1)

Here, Wimage,Wtext, and Wspeech are the modality-specific pa-
rameter matrices dynamically selected based on the modality
of each token. The selection is driven by a modal mask, which
is applied at the first embedding layer. Thus, no manual inter-
vention is required during training or inference. This design
preserves model flexibility while enabling efficient specializa-
tion. We note that while Mamba focuses on linear projections,
the general technique of modality-aware sparsity can extend to
other types of parameterized layers as well.

2.1.1 THE MIXTURE-OF-MAMBA BLOCK

The Mixture-of-Mamba block (Algorithm 1) builds on Mamba by dynamically applying modality-
specific parameterization to key projections during input processing. This technique allows the block
to handle interleaved multi-modal tokens more efficiently by leveraging modality-aware sparsity.

Each Mixture-of-Mamba block consists of input projection Win_proj, intermediate projections Wx_proj
and Wdt_proj, and output projection Wout_proj, all parameterized by the token’s modality using the
general parameterization function M(X,W, b;M). The general form of the parameterization is:

M(X,W, b;M) =
⋃

m∈M
{XmWm + bm} (2)

where Xm denotes the subset of tokens belonging to modality m, and Wm and bm are the modality-
specific parameters for that subset. This dynamic selection is applied at every stage of processing.

In Mixture-of-Mamba, projections explicitly processing input features belonging to a single modal-
ity—such as Win_proj, Wx_proj, and Wout_proj—are decoupled using modality-specific parameters.
However, components like Conv1D and state transitions A remain shared, as they operate across
aggregated multi-modal features or RNN-like states, where the notion of modality is less well-
defined. Specifically, A governs the state-space dynamics across modalities and acts over shared
latent representations that are both temporally and spatially entangled. It is also used inside the
selective_scan CUDA kernel, which is optimized and non-trivial to modify without affecting
runtime stability or efficiency. Moreover, Conv1D captures local temporal structure, where modality
alignment is inherently ambiguous and spatial locality dominates. Sparsifying this layer based on
modality could introduce discontinuities in local context modeling. Overall, our design ensures
computational efficiency while retaining modality-specific specialization.

2.2 MULTI-OBJECTIVE TRAINING WITH DIFFUSION

Following Transfusion (Zhou et al., 2024), Mixture-of-Mamba is trained on interleaved multi-
modal sequences of discrete text tokens and continuous image tokens using a combined objective

3
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that incorporates both language modeling and diffusion-based image generation. Each image is
encoded as a sequence of latent patches using a Variational Autoencoder (VAE), where each patch
is represented as a continuous vector. The patches are sequenced left-to-right, top-to-bottom, and
inserted into the discrete text sequence. The image latents are enclosed with the special tokens
<Begin of Image> and <End of Image> to distinguish them from the text tokens.

The diffusion process follows the Denoising Diffusion Probabilistic Models (DDPM) (Ho et al.,
2020), where Gaussian noise is progressively added to the latent image patches during the forward
process. Given a clean latent patch x0, a noised version xt at timestep t is created as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (3)

where ᾱt is determined by a cosine noise schedule (Nichol and Dhariwal, 2021), approximated
as

√
ᾱt ≈ cos( t

T · π
2 ) with adjustments. During training, noise is added to the latent patches at a

randomly selected timestep t. The model is given the interleaved multi-modal sequence, where xt

replaces x0, and the objective is to predict the added noise ϵ. The overall training objective combines
the autoregressive language modeling loss LLM, applied to the discrete text tokens, with the diffusion
loss LDDPM, applied to the latent image patches, where λ balances the contributions of the two losses:

L = LLM + λ · LDDPM. (4)

Importantly, the conditioning for image generation is naturally embedded within the interleaved se-
quence. When denoising image patches during inference, the text prompt and the current image latent
xt serve as context to predict the noise for that step. This unified approach enables Mixture-of-Mamba
to leverage the modality-aware sparsity to efficiently model both local intra-image dependencies and
long-range inter-modal relationships across the sequence.

2.3 TRAINING WITH UNIFORM REPRESENTATIONS

As an alternative to the multi-objective training paradigm, we explore a unified representation strategy
in which both text and image modalities are represented as discrete tokens. Following the Chameleon
framework (Chameleon Team, 2024), we treat the image data as sequences of discrete tokens obtained
through a pre-trained VQ-VAE (Gafni et al., 2022). Specifically, each image is encoded into a fixed
number of tokens (e.g., 1,024) by quantizing its latent features into a learned codebook. These tokens
are then arranged sequentially, similar to text tokens, resulting in a uniform discrete representation
across both modalities.

During training, both text and image tokens are processed using the same autoregressive objective,
where the model learns to predict the next token in the sequence given all previous tokens. Formally:

Luniform = Ex1:T
[− logP (xt | x1:t−1)] , (5)

where x1:T represents the interleaved sequence of text and image tokens. This objective allows the
model to treat text and image data equivalently, unifying the training process across modalities while
relying solely on an autoregressive loss. The use of discrete tokens for images simplifies the training
procedure by removing the need for separate loss formulations, as in the diffusion-based approach. It
also aligns with the inherent sequence-to-sequence nature of Mixture-of-Mamba, where the same
modality-aware sparsity design can be applied seamlessly across the discrete text and image tokens.

Motivation and Robustness Testing. We include this alternative strategy to evaluate the robust-
ness of our Mixture-of-Mamba architecture under different choices of training objectives and data
representations. By experimenting with uniform discrete representations, we demonstrate that
Mixture-of-Mamba consistently outperforms Mamba Dense models across various settings, including
both continuous (multi-objective) and discrete (uniform) representations. This highlights the versatil-
ity of Mixture-of-Mamba and its ability to deliver performance gains regardless of the underlying
choice of modality representations or training objectives.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) 1.4B Image Training Loss (b) 1.4B Image Loss Matching
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(c) 1.4B Text Training Loss
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(d) 1.4B Text Loss Matching

0 250000
Training Steps

0.21

0.22

0.23

0.24

Tr
ai

ni
ng

 L
os

s

Mamba Dense
Mixture-of-Mamba (ours)
Flex-Attention Transformer

(e) 760M Image Training Loss

0 250000
Training Step for Dense

0

50000

100000

150000

200000

250000

S
te

ps
 to

 M
at

ch
 D

en
se Flex-Attention Transformer (s = 0.905)

Mixture-of-Mamba (ours) (s = 0.378)

(f) 760M Image Loss Matching
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(g) 760M Text Training Loss
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(h) 760M Text Loss Matching
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(i) 163M Image Training Loss
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(k) 163M Text Training Loss
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Figure 3: Multi-modal pretraining in the Transfusion setting on interleaved text and image data across
different model scales. (a, e, i) Image training loss shows significant improvements for Mixture-of-Mamba
(orange) over Mamba Dense (cyan) and Flex-Attention Transformer (dark gray) across all scales. (b, f, j)
Image loss matching compares the training dynamics and shows that Mixture-of-Mamba and Flex-Attention
Transformer reach the same loss at earlier training steps. (c, g, k) Text loss shows Mixture-of-Mamba is better
than Mamba Dense and on par with the Flex-Attention Transformer. (d, h, l) Text loss matching shows that
Mixture-of-Mamba are more efficient training than Mamba Dense, using fewer steps to achieve comparable loss.

3 RESULTS

3.1 RESULTS IN MULTI-OBJECTIVE TRAINING (TRANSFUSION)

We first evaluate Mixture-of-Mamba (MoM) against Mamba Dense and Flex-Attention Trans-
former1in the Transfusion setting, where pretraining is performed on interleaved text and image
data across three model scales: 163M, 760M, and 1.4B. See our training configuration in Appendix
Table 7.

For clarity, we report performance gain as the relative reduction in final validation loss com-
pared to the dense Mamba baseline. We chose not to include large-scale transformer models (e.g.,
Flamingo (Alayrac et al., 2022), Chameleon (Chameleon Team, 2024)) in our pretraining results due
to significant differences in model scale and training setup, which would make direct comparisons
less informative for our targeted architectural study. Our goal is to isolate and demonstrate the value
of modality-aware sparsity in SSMs, and the current setup with Mamba Dense and Flex-Attention
Transformer being the baselines achieves this fairly and effectively.

The detailed results are summarized in Table 1 and Figure 3, with further visualizations provided in
Appendix Figures 4, 5, and 6. Relative training FLOPs reflect the computational cost required for
MoM to match the training dynamics (similar loss) of Mamba Dense.

Image Modality. MoM consistently demonstrates superior performance in image modality training
loss across all model scales. At the 1.4B scale, MoM achieves a training loss of 0.2138, outperforming
Mamba Dense by 2.20% while requiring only 34.76% of the training FLOPs. Similar trends are
observed at smaller scales: at the 760M scale, MoM achieves a training loss of 0.2172, a 2.37%
improvement over Mamba Dense, while reducing training FLOPs to 37.76%.

The validation loss curves on the CC12M dataset (Table 1, Appendix Figure 5) further illustrate
these trends. MoM consistently achieves lower image validation loss compared to Mamba Dense
and Flex-Attention Transformer, with the improvements becoming more pronounced as model size

1Flex-Attention Transformer (i.e., Transfusion (Zhou et al., 2024)) combines both attention patterns by
applying causal attention to every element in the sequence and bidirectional attention to images. This makes
Flex-Attention Transformer an overestimated baseline for transformers because both Mamba and Mixture-of-
Mamba are strictly causal across all elements, while Flex-Attention Transformer benefits from bidirectional
attention within images.
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Table 1: Training and validation metrics across model scales in the Transfusion setting. Mixture-of-
Mamba consistently achieves competitive or superior performance in image metrics and maintains strong text
performance compared to the baselines. The table also reports relative training FLOPs required for Mixture-of-
Mamba and Flex-Attention Transformer to match Mamba’s training dynamics, highlighting improved training
efficiency. Best loss values in each row are shown in gray.

Model
Scale

Metric
Category Metric Name Mamba

Loss (↓)

Flex-Attention
Transformer

Loss (↓)

Mixture-of-
Mamba
Loss (↓)

Performance
Gain over

Mamba (%) (↑)

Relative Training
FLOPs to Match
Mamba (%) (↓)

163M

Image Metrics Training Loss 0.2262 0.2250 0.2199 2.80% 49.21%
CC12M Val. Loss 0.2295 0.2293 0.2255 1.74% 50.61%

Text Metrics
Avg Training Loss 2.4702 2.4424 2.4690 0.05% 98.80%

C4 Val. Loss 2.6917 2.6862 2.6912 0.02% 99.88%
Wikipedia Val. Loss 2.1884 2.1715 2.1870 0.06% 99.81%

Overall Train Avg Loss 3.6014 3.5674 3.5685 0.91% 86.11%

760M

Image Metrics Training Loss 0.2225 0.2213 0.2172 2.37% 37.76%
CC12M Val. Loss 0.2272 0.2253 0.2201 3.13% 35.27%

Text Metrics
Avg Training Loss 2.1394 2.1253 2.1353 0.19% 96.82%

C4 Val. Loss 2.3593 2.3559 2.3555 0.16% 99.01%
Wikipedia Val. Loss 1.8191 1.8143 1.8149 0.23% 99.11%

Overall Train Avg Loss 3.2519 3.2318 3.2214 0.94% 82.94%

1.4B

Image Metrics Training Loss 0.2186 0.2221 0.2138 2.20% 34.76%
CC12M Val. Loss 0.2264 0.2247 0.2190 3.29% 36.15%

Text Metrics
Avg Training Loss 2.0761 2.0673 2.0737 0.12% 98.27%

C4 Val. Loss 2.2726 2.2728 2.2695 0.13% 99.34%
Wikipedia Val. Loss 1.7205 1.7218 1.7164 0.24% 99.30%

Overall Train Avg Loss 3.1693 3.1777 3.1429 0.84% 83.10%

increases. Additionally, loss matching curves demonstrate that MoM reaches equivalent loss values
at earlier training steps, highlighting its improved training efficiency.

Text Modality. In the text modality, MoM consistently outperforms Mamba Dense across both
training and validation metrics. At the 1.4B scale, MoM achieves lower validation losses on both
the C4 (2.2695) and Wikipedia (1.7164) datasets compared to Mamba Dense, despite their similar
training losses. This indicates better generalization to unseen text data. Importantly, MoM also
performs comparably to or better than Flex-Attention Transformer, particularly on validation losses, as
shown in Appendix Figure 4. Similar trends are observed at smaller scales (760M and 163M), where
MoM reduces validation losses while maintaining high training efficiency. Loss matching results in
Appendix Figure 4 (b, f, j) confirm that Mixture-of-Mamba aligns closely with or surpasses Mamba
Dense, reaching comparable loss values earlier during training. These improvements highlight MoM’s
strong performance in text tasks while maintaining its computational efficiency.

Overall Performance and Efficiency. Across both image and text modalities, MoM consistently
outperforms Mamba Dense in terms of loss reduction while requiring significantly fewer training
FLOPs to achieve similar learning dynamics. At the 1.4B scale, MoM improves the overall training
loss by 0.84% while requiring only 83.10% of the training FLOPs. At smaller scales, such as 760M
and 163M, MoM reduces the overall training loss by up to 0.94%, while requiring just 82.94% and
86.11% of the FLOPs, respectively (Table 1, Appendix Figure 6). These results, summarized in
Table 1 and Figure 3, and further supported by Appendix Figures 4, 5, and 6, underscoring MoM’s
effectiveness, scalability, and efficiency in the Transfusion setting.

3.2 RESULTS IN TRAINING WITH UNIFORM REPRESENTATIONS (CHAMELEON)

Next, we evaluate MoM in the Chameleon setting, where both image and text modalities are
represented as discrete tokens. See our training configuration in Appendix Table 8. Results are
summarized in Table 2, with full results across all five scales (37M, 94M, 443M, 880M, and 1.5B)
provided in Appendix Table 9. Training dynamics and validation loss trends are visualized in
Appendix Figures 7, 8, and 9.

Image Modality. MoM consistently demonstrates better performance in image modality training
loss across all model scales, achieving substantial efficiency gains over Mamba Dense. At the
443M scale, MoM achieves a training loss of 5.1703, a 3.46% improvement over Mamba Dense,
while requiring only 33.40% of the training FLOPs. Similar trends are observed at other scales: at
the largest 1.5B scale, MoM achieves a training loss of 5.0591, a 2.51% improvement, with only
42.50% of the training FLOPs. At the smallest 37M scale, MoM reduces training loss to 5.9561,
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Table 2: Training and validation metrics across model scales in the Chameleon setting, where both
image and text modalities are represented as discrete tokens. MoM achieves substantial performance gain over
Mamba Dense, with the image modality showing the largest gains. The text modality also exhibits significant
improvements, in contrast to the Transfusion setting where text gains were more modest. The current table
shows results for three model scales: 443M, 880M, and 1.5B, due to space constraints. See Appendix Table 9
for the full results across all five model scales: 37M, 94M, 443M, 880M, and 1.5B, which further highlight that
MoM consistently achieves strong performance with reduced relative training FLOPs.

Model
Scale Metric Category Metric Name Mamba

Loss (↓)
Mixture-of-

Mamba Loss (↓)
Performance
Gain (%) (↑)

Relative Training FLOPs
to Match Mamba (%) (↓)

443M

Image Metrics
Training Loss 5.3558 5.1703 3.46% 33.40%

Obelisc Val. Loss 4.5258 4.3546 3.78% 35.10%
SSTK Val. Loss 5.9179 5.7471 2.89% 35.30%

Text Metrics
Training Loss 2.4637 2.3864 3.14% 62.00%

Obelisc Val. Loss 3.0544 2.9820 2.37% 66.70%
SSTK Val. Loss 2.7569 2.6250 4.78% 54.70%

Overall Avg Training Loss 3.6584 3.5364 3.33% 47.90%

880M

Image Metrics
Training Loss 5.2260 5.1201 2.03% 48.40%

Obelisc Val. Loss 4.4127 4.3105 2.32% 49.30%
SSTK Val. Loss 5.7987 5.6986 1.73% 50.50%

Text Metrics
Training Loss 2.3073 2.2438 2.75% 65.60%

Obelisc Val. Loss 2.8886 2.8313 1.99% 72.80%
SSTK Val. Loss 2.5483 2.4548 3.67% 67.90%

Overall Avg Training Loss 3.5130 3.4320 2.31% 58.30%

1.5B

Image Metrics
Training Loss 5.1892 5.0591 2.51% 42.50%

Obelisc Val. Loss 4.3692 4.2510 2.71% 44.50%
SSTK Val. Loss 5.7546 5.6335 2.10% 44.60%

Text Metrics
Training Loss 2.2284 2.1614 3.01% 65.40%

Obelisc Val. Loss 2.8020 2.7393 2.24% 71.60%
SSTK Val. Loss 2.4614 2.3455 4.71% 62.10%

Overall Avg Training Loss 3.4602 3.3670 2.69% 54.70%

outperforming Mamba Dense by 2.85% while requiring just 25.90% of the FLOPs (Appendix
Table 9). These results highlight MoM’s ability to achieve improved performance and convergence
efficiency consistently in the image modality across all model scales.

Text Modality. MoM demonstrates consistent improvements in text modality training loss across
all model scales. At the largest 1.5B scale, MoM reduces training loss to 2.1614, a 3.01% improve-
ment over Mamba Dense, while requiring only 65.40% of the training FLOPs. Validation loss on
Obelisc and a proprietary version of the Shutterstock datasets (SSTK) exhibits similar trends, with
MoM achieving notable improvements in loss values while maintaining significant efficiency gains
(Appendix Figures 8 and 9). These results further highlight MoM’s ability to deliver strong text
performance with improved convergence efficiency.

3.3 RESULTS IN TRAINING WITH THREE MODALITIES (CHAMELEON + SPEECH)

Finally, to evaluate the robustness and scalability of MoM, we extend the Chameleon framework
to include a third modality: speech, alongside image and text, with all modalities represented as
discrete tokens. Speech data is tokenized using an in-house tokenizer, a variant of DinoSR (Liu et al.,
2024a), which extracts semantic tokens with a vocabulary size of 500, where each token corresponds
to 40ms of audio content. Results are summarized in Table 3, with additional training dynamics and
evaluation loss trends visualized in Appendix Figures 11, 12, 13, and 14.

Speech Modality. MoM achieves substantial improvements in speech modality training loss across
all model scales. At the 443M scale, MoM improves speech training loss by 7.14% compared to
Mamba Dense. To match the training loss achieved by Mamba Dense, MoM requires only 19.20%
of the training FLOPs, demonstrating significant efficiency gains. Similar trends hold at the largest
1.5B scale, where MoM achieves a 5.75% improvement in speech training loss and matches Mamba
Dense’s loss with just 24.80% of the training FLOPs.

Overall training loss is consistently reduced across scales. At the 1.5B scale, MoM lowers the
overall training loss by 3.05%. When targeting the same loss as Mamba Dense, MoM achieves
this with a 56.20% reduction in relative training FLOPs, highlighting its improved computational
efficiency. Performance in the image and text modalities similarly shows consistent improvements
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Table 3: Training and validation metrics across model scales with three modalities: image, text, and
speech. This setting extends the Chameleon framework by incorporating speech beyond image and text, with all
modalities represented as discrete tokens. MoM achieves consistent improvements over Mamba Dense across
all scales, particularly in the speech modality, where performance gains reach up to 9.18%. These gains are
achieved with substantial reductions in training FLOPs, ranging from 10.30% to 56.20% relative to Mamba
Dense. The results demonstrate that MoM generalizes effectively to a multi-modal setting with three modalities
while delivering significant computational efficiency.

Model
Scale Metric Category Metric Name Mamba Loss (↓) Mixture-of-

Mamba Loss (↓)
Performance
Gain (%) (↑)

Relative Training FLOPs
to Match Mamba (%) (↓)

37M Speech Metrics
Training Loss 1.8159 1.6909 6.88% 10.30%

LL60K Val. Loss 1.6756 1.5217 9.18% 13.60%
PPL30K Val. Loss 1.8147 1.6845 7.17% 13.60%

Overall Metrics Avg Training Loss 4.2299 4.0759 3.64% 45.00%

94M Speech Metrics
Training Loss 1.6911 1.5662 7.38% 11.90%

LL60K Val. Loss 1.5235 1.3747 9.76% 14.80%
PPL30K Val. Loss 1.6951 1.6152 4.71% 12.60%

Overall Metrics Avg Training Loss 3.7756 3.6371 3.67% 43.10%

443M Speech Metrics
Training Loss 1.5414 1.4313 7.14% 19.20%

LL60K Val. Loss 1.3466 1.2113 10.05% 24.70%
PPL30K Val. Loss 1.5634 1.4790 5.40% 22.00%

Overall Metrics Avg Training Loss 3.3317 3.2096 3.66% 44.00%

880M Speech Metrics
Training Loss 1.4902 1.4054 5.69% 22.40%

LL60K Val. Loss 1.2939 1.1757 9.13% 30.10%
PPL30K Val. Loss 1.5400 1.4619 5.07% 24.30%

Overall Metrics Avg Training Loss 3.2289 3.1571 2.22% 54.30%

1.5B Speech Metrics
Training Loss 1.4790 1.3940 5.75% 24.80%

LL60K Val. Loss 1.2592 1.1552 8.26% 32.10%
PPL30K Val. Loss 1.5200 1.4387 5.35% 27.60%

Overall Metrics Avg Training Loss 3.1507 3.0545 3.05% 56.20%

in training and validation losses relative to Mamba Dense. Full results are presented in Appendix
Figures 13 and 14, where MoM’s robust performance across all three modalities is further validated.

3.4 ABLATION STUDY ON DECOUPLING COMPONENTS

To better understand the design choices underpinning Mixture-of-Mamba, we conduct an ablation
study on the Chameleon + Speech setting at the 443M scale. We evaluate the impact of decoupling
four key components—Win-proj (➊), Wx-proj (➋), Wdt-proj (➌), and Wout-proj (➍)—individually and in
various combinations. This analysis enables us to test both individual and combined contributions to
the model’s overall performance.

The results show that decoupling components individually yields varying degrees of improvement,
with performance gains ranging from 0.63% (Wout-proj) to 1.22% (Win-proj). Interestingly, some
components (Wx-proj and Wdt-proj) exhibit minimal or even slightly negative impact when decoupled
alone. However, decoupling multiple components in combination leads to significantly larger
gains. For example, decoupling Win-proj and Wout-proj (➊+➍) achieves a 2.20% improvement, while
decoupling three components (➊+➋+➍) further increases the gain to 3.11%.

Most importantly, decoupling all four components simultaneously (➊+➋+➌+➍, Mixture-of-Mamba)
achieves the largest improvement, with a performance gain of 3.80% over the Mamba baseline. This
result highlights a key observation: the gain from decoupling all components together exceeds the sum
of individual gains, demonstrating a synergistic effect. The combination of all decoupled projections
enables better parameter allocation across modalities, leading to more efficient and effective learning.
In summary, the ablation study confirms that the design of Mixture-of-Mamba is both effective
and interdependent. Decoupling all key components simultaneously is important to achieving the
observed substantial performance gains.

3.5 DOWNSTREAM PERFORMANCE

To strengthen our results, we evaluated Mixture-of-Mamba on MS-COCO image generation (Lin
et al., 2014), following the Transfusion setup. Specifically, we generate 256×256 images in a zero-
shot fashion on 30k randomly sampled prompts from the validation set. We use 250 diffusion steps
with a CFG coefficient of 1. As shown in Table 5, Mixture-of-Mamba consistently achieves lower
FID than other models of similar scale, outperforming Dense Mamba across all sizes. Notably, our
1B variant surpasses the 7B Chameleon model, highlighting the effectiveness of our architecture
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Table 4: Ablation study on the Chameleon + Speech to
evaluate the impact of decoupling individual components (1,
2, 3, 4) vs. their combinations. Decoupling all components
(1+2+3+4, MoM) achieves the best performance with a 3.80%
gain over the Mamba baseline. Notably, the performance gain
achieved by decoupling all components exceeds the sum of
gains from decoupling each component individually, high-
lighting the synergistic effect of combined decoupling.

Ablation Study Avg Training
Loss (↓)

Performance
Gain (%) (↑)

443M Mamba (without ➊➋➌➍) 3.3317 0% (baseline)
➊ (decouple Win_proj) 3.2916 1.22%
➋ (decouple Wx_proj) 3.3580 -0.79%
➌ (decouple Wdt_proj) 3.3525 -0.62%
➍ (decouple Wout_proj) 3.3109 0.63%
➊+➋ (decouple Win_proj ,Wx_proj) 3.2780 1.64%
➊+➌ (decouple Win_proj ,Wdt_proj) 3.2687 1.93%
➊+➍ (decouple Win_proj ,Wout_proj) 3.2599 2.20%
➋+➌ (decouple Wx_proj ,Wdt_proj) 3.3214 0.31%
➋+➍ (decouple Wx_proj ,Wout_proj) 3.2829 1.49%
➌+➍ (decouple Wdt_proj ,Wout_proj) 3.2509 2.48%
➊+➋+➌ (not decoupling Wout_proj) 3.2593 2.22%
➊+➋+➍ (not decoupling Wdt_proj) 3.2312 3.11%
➊+➌+➍ (not decoupling Wx_proj) 3.2342 3.01%
➋+➌+➍ (not decoupling Win_proj) 3.2773 1.66%
➊+➋+➌+➍ (Mixture-of-Mamba) 3.2096 3.80%

Table 5: To strengthen our results, we evalu-
ated Mixture-of-Mamba on MS-COCO image
generation, following the Transfusion setup. Be-
low, we report FID scores (↓, lower is better),
grouped by model size.

Model # Params FID (↓)
> 1B
DALL·E (Ramesh et al., 2021) 12B 27.50
Transfusion 7.3B 16.80
Chameleon 7B 29.60
CogView (Ding et al., 2021) 4B 27.10
Mixture-of-Mamba 1B 22.68
Dense Mamba 1B 26.81
Flex-Attn Transformer 1B 27.75

500M – 1B
Mixture-of-Mamba 760M 23.92
Dense Mamba 760M 28.76
Flex-Attn Transformer 760M 28.19
MaskMamba-XL (Chen et al., 2025) 741M 25.93

< 500M
LAFITE (Zhou et al., 2022) 226M 26.94
Mixture-of-Mamba 163M 26.60
Dense Mamba 163M 37.07
Flex-Attn Transformer 163M 35.81

for efficient generation. To further demonstrate image quality, we include qualitative samples of
Mixture-of-Mamba 1B generated images at Appendix 15.

4 RELATED WORK

Large-scale multi-modal pretraining has been advanced by Transformer-based architectures such
as ViLBERT (Lu et al., 2019), Flamingo (Alayrac et al., 2022), Kosmos (Peng et al., 2023), and
Chameleon (Chameleon Team, 2024), where modality-specific parameterization and sparse Mixture-
of-Experts (MoE) routing have become central design principles (Fedus et al., 2022; Liang et al.,
2024; Shen et al., 2023). These approaches demonstrate the importance of sparsity and conditional
computation for efficiency and scalability, but remain confined to attention-based architectures.
Recent work has extended SSMs to multi-modal tasks (Qiao et al., 2024; Zhao et al., 2024; Zhu et al.,
2024; Liu et al., 2024b; Yan et al., 2024; Hu et al., 2024), showing their adaptability but preserving
dense state-space dynamics. The most relevant MoE-SSM variants, MoE-Mamba (Pióro et al., 2024)
and BlackMamba (Anthony et al., 2024), interleave dense Mamba blocks with sparsified MLP layers.
In contrast, our work is the first to introduce structured, modality-aware sparsity directly inside the
Mamba block, enabling specialization within the state-space dynamics themselves rather than only
around them. This distinction makes Mixture-of-Mamba complementary and orthogonal to prior
MoE-SSM designs, and extends sparse modeling principles to a fundamentally different family of
sequence models. A more detailed discussion of related work is provided in Appendix B.

5 CONCLUSION

We presented Mixture-of-Mamba, the first architecture to integrate modality-aware sparsity directly
into the state-space dynamics of Mamba. Unlike prior MoE-SSM approaches that sparsify only
peripheral MLP layers, our design enables specialization within the core projections of SSMs, offering
a simple yet general principle for efficient multi-modal pretraining. Empirically, Mixture-of-Mamba
achieves substantial FLOP reductions while matching or surpassing dense Mamba across text, image,
and speech settings, scaling effectively up to 1.5B parameters. Ablation studies further show that
joint decoupling of multiple projections yields super-additive gains, providing new insights into
sparse SSM design. Taken together, our results establish Mixture-of-Mamba as a complementary
and orthogonal direction to existing MoE methods, broadening the architectural toolkit for scalable
foundation models beyond Transformers.
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A IMPACT STATEMENT

This work introduces efficiency improvements in multi-modal machine learning systems through
modality-aware sparsity techniques. The primary impact is computational efficiency - Mixture-of-
Mamba reduces computational costs by up to 65% while maintaining or improving performance. This
has positive environmental implications through reduced energy consumption and democratizes access
to multi-modal AI systems by lowering computational resource requirements. While these advances
could enable beneficial applications in education, accessibility, and human-computer interaction, we
acknowledge they could also facilitate potentially concerning applications. We encourage the research
community to consider appropriate guidelines for responsible deployment of such technologies.

B RELATED WORK

B.1 STATE-SPACE MODELS AND MULTI-MODAL EXTENSIONS

State-space models (SSMs) (Gu et al., 2021; Gu and Dao, 2023; Lieber et al., 2024) have recently
gained traction as computationally efficient alternatives to Transformers for sequential modeling.
Mamba (Gu and Dao, 2023), in particular, demonstrates strong performance on single-modality
tasks by leveraging linear time complexity and advanced gating mechanisms. Extending Mamba to
multi-modal tasks remains an active research area.

In vision-language modeling, VLMamba (Qiao et al., 2024) and Cobra (Zhao et al., 2024) augment
Mamba by incorporating LLaVA-style projection modules, enabling image features to be mapped
into the token space of the Mamba model for sequence modeling. In the vision domain, Vision
Mamba (Zhu et al., 2024) introduces bidirectional scanning by chaining forward and backward
SSM blocks, while VMamba (Liu et al., 2024b) further enhances image patch processing with a 2D
Selective Scan (SS2D) module that traverses patches across multiple scanning paths.

For diffusion-based models, works such as DiffuSSM (Yan et al., 2024) and Zigma (Hu et al., 2024)
replace attention mechanisms with SSMs for image and video generation. Zigma introduces a zigzag
scanning scheme to improve efficiency for sequential diffusion tasks, while other approaches (Mo and
Tian, 2024; Fei et al., 2024) explore bi-directional SSM architectures. While these works highlight
the flexibility of Mamba in generative tasks, they focus primarily on architectural modifications for
specific domains rather than general multi-modal pretraining.

The most related work to ours is MoE-Mamba (Pióro et al., 2024) and Blackmamba (Anthony
et al., 2024), which interleave Mamba blocks with MoE-augmented MLPs to introduce sparsity.
However, these hybrid designs apply sparsity only to the MLP layers, leaving the dense Mamba block
unmodified. In contrast, our proposed Mixture-of-Mamba integrates modality-aware sparsity directly
into the Mamba block by decoupling its projection components, enabling specialized computations for
different modalities. This general design complements existing methods and offers new opportunities
for computationally efficient multi-modal pretraining.

B.2 SPARSE ARCHITECTURES FOR MULTI-MODAL PRETRAINING

Model sparsity, particularly Mixture-of-Experts (MoE), has been extensively explored in Transformers
to reduce computational cost (Jacobs et al., 1991; Eigen et al., 2013; Shazeer et al., 2017; Lepikhin
et al., 2020; Fedus et al., 2022; Jiang et al., 2024). MoE selectively activates subsets of parameters for
each input token, allowing the model to specialize in different aspects of the data. However, challenges
such as expert imbalance, bi-level optimization, and load balancing remain prevalent (Shazeer et al.,
2017; Lepikhin et al., 2020; Tu et al., 2022).

In multi-modal tasks, modality-aware sparsity has emerged as an effective strategy. Works such as
VLMo (Shen et al., 2023), MoMA (Lin et al., 2024), and related approaches (Wang et al., 2022;
Shen et al., 2022; Bao et al., 2022; Long et al., 2023; Shen et al., 2025) assign modality-specific
experts to handle the unique statistical properties of text, images, and other data types. This improves
specialization while avoiding the complexities of learned routing mechanisms (Liang et al., 2022).

Transformer-based architectures have further extended sparsity into attention mechanisms (Wang
et al., 2023; Shen et al., 2024a;b; Liu et al., 2024c; Shen et al., 2024c). CogVLM (Wang et al.,
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2023) applies sparse techniques on top of a pre-trained Vicuna-7B model but remains limited to
generating text outputs. Concurrently, Playground v3 (PGv3) (Liu et al., 2024c) integrates DiT-style
image transformers with a frozen LLaMA-3 backbone to achieve state-of-the-art performance in
text-to-image generation.

Our work differs fundamentally in two key aspects. First, Mixture-of-Mamba introduces modality-
aware sparsity into the Mamba block itself, generalizing sparse architectures beyond Transformers
to SSMs. Unlike prior works that sparsify only the MLP or attention components, we decouple
projection components of the Mamba block, enabling efficient and specialized computations across
modalities. Second, Mixture-of-Mamba is trained from scratch for multi-modal generation tasks,
unlike approaches like CogVLM and PGv3 that fine-tune pre-trained backbones.

Furthermore, our design is complementary to existing MoE techniques. Prior work (Liang et al.,
2024) has demonstrated that MoE-based sparsification can be combined with sparse architectures
like Mixture-of-Transformers to achieve additional gains. Similarly, Mixture-of-Mamba can serve as
a versatile and computationally efficient solution, offering new pathways for scalable multi-modal
pretraining.

C TRAINING DETAILS

We provide detailed information on datasets, preprocessing, optimization, and hardware to ensure
reproducibility. Unless otherwise noted, hyperparameters largely follow prior work on Transfusion,
Mamba, and Chameleon, and were not extensively tuned due to compute constraints.

C.1 DATASETS

• Text. We use C4, Wikipedia, and proprietary in-house corpora.
• Images. We use CC12M and a filtered subset of LAION-400M.
• Speech. We pretrain on large-scale open-source speech datasets, summarized in Table 6.

Dataset Modality Hours #Speech Tokens† #Text Tokens

People’s Speech (Galvez et al., 2021) Speech-only 16,404 1.2B –
Voxpopuli (En) (Wang et al., 2021) Speech-only 23,166 1.6B –
LibriLight (Kahn et al., 2020) Speech-only 55,308 4.0B –
Multilingual LibriSpeech (En) (Pratap et al., 2020) Speech+Text 44,585 3.2B 0.5B
Spotify (Clifton et al., 2020) Speech+Text 57,290 4.2B 0.7B

Table 6: Speech pretraining datasets. †Speech tokens obtained by converting audio to 500 semantic
tokens at 25Hz (40ms/token).

C.2 PREPROCESSING

Images are resized to 256× 256 and encoded into 32× 32 latent patches using a pretrained VAE. In
the Chameleon setting, both text and images are tokenized with a VQ-VAE (vocab size 8192; 1024
tokens/image).

C.3 OPTIMIZATION AND HYPERPARAMETERS

We use AdamW with (β1, β2) = (0.9, 0.95) and weight decay 0.1. The learning rate follows a cosine
schedule with 2000 warmup steps. Peak learning rates are scale-dependent: 1.0 × 10−3 (163M),
5.0×10−4 (760M), and 3.0×10−4 (1.4B). We apply gradient clipping of 1.0 and train in bfloat16
with automatic loss scaling.

C.4 HARDWARE AND BATCH SIZES

Models are trained on NVIDIA H100 GPUs. Scale-specific batch sizes are provided in Appendix Ta-
bles 7–8. All experiments use data parallelism with gradient accumulation to fit large batch sizes.
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Model Size Hidden Dim. Layers Heads Seq. Length Batch Size/GPU GPUs Tokens/Batch Steps
163M 768 16 12 4,096 4 56 1,048,576 250,000
760M 1,536 24 24 4,096 4 56 1,048,576 250,000
1.4B 2,048 24 16 4,096 2 128 1,048,576 250,000

Table 7: Architectural specifications and training configurations of models across different
parameter scales (Transfusion setting).

Model Size Hidden Dim. Layers Heads Seq. Length Batch Size/GPU GPUs Tokens/Batch Steps
37M 256 4 8 4,096 2 64 524,288 160,000
94M 512 8 8 4,096 2 64 524,288 160,000
443M 1,024 24 16 4,096 2 64 524,288 160,000
880M 1,536 24 24 4,096 2 64 524,288 120,000
1.5B 2,048 24 16 4,096 1 128 524,288 120,000

Table 8: Architectural specifications and training configurations of models across different
parameter scales (Chameleon setting and Chameleon+Speech setting).

Model
Scale Metric Category Metric Name Mamba

Loss (↓)
Mixture-of-

Mamba Loss (↓)
Performance
Gain (%) (↑)

Relative Training FLOPs
to Match Mamba (%) (↓)

37M

Image Metrics
Training Loss 6.1308 5.9561 2.85% 25.90%

Obelisc Val. Loss 5.2866 5.1124 3.29% 26.60%
SSTK Val. Loss 6.6694 6.5023 2.51% 27.50%

Text Metrics
Training Loss 3.6262 3.5175 3.00% 60.90%

Obelisc Val. Loss 4.1244 4.0469 1.88% 64.80%
SSTK Val. Loss 4.0417 3.9533 2.19% 57.50%

Overall Avg Training Loss 4.6607 4.5247 2.92% 50.70%

94M

Image Metrics
Training Loss 5.7609 5.6057 2.69% 35.70%

Obelisc Val. Loss 4.9231 4.7683 3.14% 35.30%
SSTK Val. Loss 6.3130 6.1652 2.34% 37.00%

Text Metrics
Training Loss 3.0294 2.9414 2.90% 58.40%

Obelisc Val. Loss 3.6016 3.5270 2.07% 62.60%
SSTK Val. Loss 3.4109 3.2901 3.54% 61.40%

Overall Avg Training Loss 4.1577 4.0419 2.78% 49.80%

443M

Image Metrics
Training Loss 5.3558 5.1703 3.46% 33.40%

Obelisc Val. Loss 4.5258 4.3546 3.78% 35.10%
SSTK Val. Loss 5.9179 5.7471 2.89% 35.30%

Text Metrics
Training Loss 2.4637 2.3864 3.14% 62.00%

Obelisc Val. Loss 3.0544 2.9820 2.37% 66.70%
SSTK Val. Loss 2.7569 2.6250 4.78% 54.70%

Overall Avg Training Loss 3.6584 3.5364 3.33% 47.90%

880M

Image Metrics
Training Loss 5.2260 5.1201 2.03% 48.40%

Obelisc Val. Loss 4.4127 4.3105 2.32% 49.30%
SSTK Val. Loss 5.7987 5.6986 1.73% 50.50%

Text Metrics
Training Loss 2.3073 2.2438 2.75% 65.60%

Obelisc Val. Loss 2.8886 2.8313 1.99% 72.80%
SSTK Val. Loss 2.5483 2.4548 3.67% 67.90%

Overall Avg Training Loss 3.5130 3.4320 2.31% 58.30%

1.5B

Image Metrics
Training Loss 5.1892 5.0591 2.51% 42.50%

Obelisc Val. Loss 4.3692 4.2510 2.71% 44.50%
SSTK Val. Loss 5.7546 5.6335 2.10% 44.60%

Text Metrics
Training Loss 2.2284 2.1614 3.01% 65.40%

Obelisc Val. Loss 2.8020 2.7393 2.24% 71.60%
SSTK Val. Loss 2.4614 2.3455 4.71% 62.10%

Overall Avg Training Loss 3.4602 3.3670 2.69% 54.70%

Table 9: Training and validation metrics across model scales in the Chameleon setting. In
this setting, both image and text modalities are represented as discrete tokens. Mixture-of-Mamba
achieves substantial performance improvements over Mamba Dense, with the image modality
showing the largest gains across all five model scales: 37M, 94M, 443M, 880M, and 1.5B. Notably,
the text modality also exhibits significant improvements, in contrast to the Transfusion setting where
text gains were more modest. These results further highlight the effectiveness and efficiency of
Mixture-of-Mamba, which consistently achieves strong performance with reduced relative training
FLOPs.
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Figure 4: Validation loss and loss matching for text modality across model scales (C4 and Wikipedia
datasets) during multi-modal pretraining in the Transfusion setting. Results are shown for Mixture-
of-Mamba, Mamba Dense, and Flex-Attention Transformer at three model scales: 163M, 760M, and
1.4B. (a, e, i) Validation loss on the C4 dataset shows that Mixture-of-Mamba achieves compara-
ble performance at 163M and performs marginally better than Mamba Dense and Flex-Attention
Transformer at the 760M and 1.4B scales. (b, f, j) Loss matching for C4 demonstrates that Mixture-
of-Mamba reaches similar or slightly lower loss values at earlier training steps compared to Mamba
Dense. (c, g, k) Validation loss on the Wikipedia dataset follows a similar trend, with Mixture-
of-Mamba showing marginal improvements at the 760M and 1.4B scales. (d, h, l) Loss matching
for Wikipedia illustrates efficient training dynamics, with Mixture-of-Mamba aligning closely with
Flex-Attention Transformer while reaching comparable or slightly lower loss values than Mamba
Dense. Overall, Mixture-of-Mamba demonstrates moderate improvements over both baselines at the
larger scales (760M and 1.4B).
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Figure 5: Image validation loss and loss matching on the CC12M dataset across three model scales:
163M, 760M, and 1.4B during multi-modal pretraining in the Transfusion setting. (a, c, e) Validation
loss curves show that Mixture-of-Mamba achieves substantially lower image validation loss compared
to Mamba Dense and Flex-Attention Transformer across all scales, with the improvement becoming
more pronounced as model size increases. (b, d, f) Loss matching curves demonstrate that Mixture-of-
Mamba reaches the same loss values at earlier training steps compared to Mamba Dense, highlighting
improved training efficiency. Overall, Mixture-of-Mamba achieves large improvements in image
validation loss on the CC12M dataset, showcasing its effectiveness in the image modality.
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Figure 6: Overall training loss and loss matching during multi-modal pretraining in the Transfusion
setting. Results are shown for Mixture-of-Mamba, Mamba Dense, and Flex-Attention Transformer
at three model scales: 163M, 760M, and 1.4B. (a, c, e) Training loss averaged across the image and
text modalities demonstrates that Mixture-of-Mamba achieves substantial improvements over Mamba
Dense, with a notable reduction in training loss across all scales. (b, d, f) Loss matching results show
that Mixture-of-Mamba and Flex-Attention Transformer reach the same loss values at earlier training
steps compared to Mamba Dense, highlighting improved training efficiency. Note: The image loss in
the Transfusion setting corresponds to the diffusion loss, which is of smaller magnitude compared
to the cross-entropy loss in the text modality. Overall, Mixture-of-Mamba demonstrates significant
gains in training loss and efficiency across multi-modal pretraining.
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Figure 7: Modality-specific pre-training loss and step matching plots across model scales
(Chameleon setting). Training loss and loss matching are reported for image and text modalities
across five model scales: 37M, 94M, 443M, 880M, and 1.5B. (a, e, i, m, q) Image training loss
shows significant improvements for Mixture-of-Mamba (orange), which consistently achieves lower
loss compared to Mamba Dense (cyan) across all scales. (b, f, j, n, r) Image loss matching compares
the training dynamics and shows that Mixture-of-Mamba reaches the same loss values at earlier
training steps compared to Mamba Dense, highlighting its improved efficiency. (c, g, k, o, s) Text
training loss demonstrates competitive performance, with Mixture-of-Mamba achieving slightly
lower loss values compared to Mamba Dense. (d, h, l, p, t) Text loss matching illustrates that
Mixture-of-Mamba reaches the same loss values at earlier training steps compared to Mamba Dense,
reflecting its efficient training dynamics. Overall, in the Chameleon setting, Mixture-of-Mamba
achieves consistent improvements in the image modality, with substantial computational savings,
while also demonstrating meaningful gains in the text modality.
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Figure 8: Training and evaluation losses for image and text modalities across model scales in the
Chameleon setting on the Obelisc dataset. Results are shown for Mixture-of-Mamba and Mamba
Dense across five model scales: 37M, 94M, 443M, 880M, and 1.5B. (a, e, i, m, q) Image evaluation
loss demonstrates consistent improvements for Mixture-of-Mamba (orange), achieving lower loss
compared to Mamba Dense (cyan) across all scales. (b, f, j, n, r) Image loss matching shows that
Mixture-of-Mamba reaches the same loss values at earlier training steps compared to Mamba Dense,
reflecting its improved training efficiency. (c, g, k, o, s) Text evaluation loss indicates competitive
results for Mixture-of-Mamba, achieving lower losses relative to Mamba Dense. (d, h, l, p, t) Text
loss matching highlights that Mixture-of-Mamba reaches the same loss values at earlier training
steps, further demonstrating its efficiency in the text modality. Overall, Mixture-of-Mamba achieves
strong and consistent improvements in both image and text modalities across all model scales in the
Chameleon setting evaluated on the Obelisc dataset.
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Figure 9: Training and evaluation losses for image and text modalities across model scales in the
Chameleon setting on the Shutterstock dataset. Results are shown for Mixture-of-Mamba and
Mamba Dense across five model scales: 37M, 94M, 443M, 880M, and 1.5B. (a, e, i, m, q) Image
evaluation loss demonstrates consistent improvements for Mixture-of-Mamba (orange), achieving
lower loss compared to Mamba Dense (cyan) across all scales. (b, f, j, n, r) Image loss matching
shows that Mixture-of-Mamba reaches the same loss values at earlier training steps compared to
Mamba Dense, reflecting its improved training efficiency. (c, g, k, o, s) Text evaluation loss indicates
competitive results for Mixture-of-Mamba, achieving lower losses relative to Mamba Dense. (d, h, l,
p, t) Text loss matching highlights that Mixture-of-Mamba reaches the same loss values at earlier
training steps, further demonstrating its efficiency in the text modality. Overall, Mixture-of-Mamba
achieves strong and consistent improvements in both image and text modalities across all model
scales in the Chameleon setting evaluated on the Shutterstock dataset.
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Figure 10: Average training loss and step matching plots across model scales in the Chameleon
setting. Results are shown for Mixture-of-Mamba and Mamba Dense across five model scales: 37M,
94M, 443M, 880M, and 1.5B. (a, c, e, g, i) Average training loss (across image and text modalities)
demonstrates consistent reductions for Mixture-of-Mamba (orange), achieving lower loss values
compared to Mamba Dense (cyan) at all model scales. (b, d, f, h, j) Average loss matching plots
highlight that Mixture-of-Mamba reaches the same loss values at earlier training steps compared
to Mamba Dense, reflecting improved training efficiency. Overall, Mixture-of-Mamba consistently
reduces average training loss and achieves more efficient convergence across all model scales in the
Chameleon setting.
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Figure 11: Training and evaluation losses for image, text, and speech modalities (37M and
94M scales) in the Chameleon+Speech setting. Results are reported for Mixture-of-Mamba and
Mamba Dense. (a, e, i) Image training loss demonstrates that Mixture-of-Mamba (orange) achieves
consistently lower loss compared to Mamba Dense (cyan). (b, f, j) Image loss matching highlights
Mixture-of-Mamba’s ability to reach the same loss values at earlier training steps, showing improved
training efficiency. (c, g, k) Text training loss shows competitive results for Mixture-of-Mamba,
improving over Mamba Dense. (d, h, l) Text loss matching confirms Mixture-of-Mamba’s ability
to reach the same loss values at earlier training steps, showing improved training efficiency. (e,
m) Speech training loss highlights significant improvements in speech modality performance. (f,
n) Speech loss matching shows efficient learning dynamics for Mixture-of-Mamba. (g, o) Speech
evaluation loss on LL60K confirms notable performance gains, and (h, p) Speech evaluation loss on
PPL30K further highlights the efficiency of Mixture-of-Mamba.
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Figure 12: Training and evaluation losses for image, text, and speech modalities (443M, 880M,
and 1.5B scales) in the Chameleon+Speech setting. Results are reported for Mixture-of-Mamba
and Mamba Dense. (a, i, q) Image training loss demonstrates that Mixture-of-Mamba (orange)
consistently outperforms Mamba Dense (cyan) across larger scales. (b, j, r) Image loss matching
highlights improved training efficiency for Mixture-of-Mamba, reaching the same loss values at earlier
training steps. (c, k, s) Text training loss shows Mixture-of-Mamba achieving better performance. (d,
l, t) Text loss matching further demonstrates efficient learning dynamics. (e, m, u) Speech training
loss confirms substantial gains for Mixture-of-Mamba in the speech modality, consistent across model
scales. (f, n, v) Speech loss matching illustrates the improved efficiency of Mixture-of-Mamba across
scales. (g, o, w) Speech evaluation loss on LL60K highlights consistent improvements, while (h, p,
x) Speech evaluation loss on PPL30K demonstrates notable gains and efficient performance across
scales.
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Figure 13: Training and validation losses for image and text modalities across model scales in
the Chameleon+Speech setting evaluated on the Obelisc dataset. Results are shown for Mixture-
of-Mamba and Mamba Dense across five model scales: 37M, 94M, 443M, 880M, and 1.5B. (a,
e, i, m, q) Image evaluation loss demonstrates consistent gains for Mixture-of-Mamba (orange)
over Mamba Dense (cyan), even with the inclusion of the speech modality. (b, f, j, n, r) Image
loss matching shows that Mixture-of-Mamba reaches the same loss values at earlier training steps
compared to Mamba Dense, highlighting improved efficiency. (c, g, k, o, s) Text evaluation loss
indicates consistent reductions for Mixture-of-Mamba relative to Mamba Dense across all scales.
(d, h, l, p, t) Text loss matching illustrates that Mixture-of-Mamba reaches the same loss values
at earlier training steps compared to Mamba Dense, maintaining its efficiency in the text modality.
Overall, Mixture-of-Mamba achieves consistent improvements in both image and text modalities
while maintaining its efficiency, even with the addition of the speech modality. These results confirm
the robustness of Mixture-of-Mamba in multi-modal settings.
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Figure 14: Training and validation losses for image and text modalities across model scales in
the Chameleon+Speech setting evaluated on the Shutterstock dataset. Results are shown for
Mixture-of-Mamba and Mamba Dense across five model scales: 37M, 94M, 443M, 880M, and 1.5B.
(a, e, i, m, q) Image evaluation loss demonstrates consistent gains for Mixture-of-Mamba (orange)
over Mamba Dense (cyan), even with the inclusion of the speech modality. (b, f, j, n, r) Image
loss matching shows that Mixture-of-Mamba reaches the same loss values at earlier training steps
compared to Mamba Dense, highlighting improved efficiency. (c, g, k, o, s) Text evaluation loss
indicates consistent reductions for Mixture-of-Mamba relative to Mamba Dense across all scales.
(d, h, l, p, t) Text loss matching illustrates that Mixture-of-Mamba reaches the same loss values
at earlier training steps compared to Mamba Dense, maintaining its efficiency in the text modality.
Overall, Mixture-of-Mamba achieves consistent improvements in both image and text modalities
while maintaining its efficiency, even with the addition of the speech modality. These results confirm
the robustness of Mixture-of-Mamba in multi-modal settings.
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Figure 15: To demonstrate image quality, we include qualitative samples of Mixture-of-Mamba 1B
generated images on COCO 2014.
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