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Abstract We report quantitative label-free imaging with phase and polarization (QLIPP) for

simultaneous measurement of density, anisotropy, and orientation of structures in unlabeled live

cells and tissue slices. We combine QLIPP with deep neural networks to predict fluorescence

images of diverse cell and tissue structures. QLIPP images reveal anatomical regions and axon tract

orientation in prenatal human brain tissue sections that are not visible using brightfield imaging.

We report a variant of U-Net architecture, multi-channel 2.5D U-Net, for computationally efficient

prediction of fluorescence images in three dimensions and over large fields of view. Further, we

develop data normalization methods for accurate prediction of myelin distribution over large brain

regions. We show that experimental defects in labeling the human tissue can be rescued with

quantitative label-free imaging and neural network model. We anticipate that the proposed

method will enable new studies of architectural order at spatial scales ranging from organelles to

tissue.

Introduction
The function of living systems emerges from the interaction of its components over spatial and tem-

poral scales that range many orders of magnitude. Light microscopy is uniquely useful to record

dynamic arrangement of molecules within the context of organelles, of organelles within the context

of cells, and of cells within the context of tissues. Combination of fluorescence imaging and auto-

mated analysis of image content with deep learning (Moen et al., 2019; Belthangady and Royer,

2019; Van Valen et al., 2016) has opened new avenues for understanding complex biological pro-

cesses. However, characterizing the architecture and dynamics with fluorescence remains challenging

in many important biological systems. The choice of label can introduce observation bias in the

experiment and may perturb the biological process being studied. For example, labeling cytoskele-

tal polymers often perturbs their native assembly kinetics (Belin et al., 2014). Genetic labeling of

human tissue and non-model organisms is not straightforward and the labeling efficiency is often

low. Labeling with antibodies or dyes can lead to artifacts and requires careful optimization of the

labeling protocols. The difficulty of labeling impedes biological discoveries using these systems. By

contrast, label-free imaging requires minimal sample preparation as it measures the sample’s intrin-

sic properties. Lable-free imaging is capable of visualizing many biological structures simultaneously

with minimal photo-toxicity and no photo-bleaching, making it particularly suitable for live-cell imag-

ing. Measurements made without label are often more robust since experimental errors associated

with the labeling are avoided. Multiplexed imaging with fluorescence and label-free contrasts
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enables characterization of the dynamics of labeled molecules in the context of organelles or cells.

Thus, label-free imaging provides measurements complementary to fluorescence imaging for a

broad range of biological studies, from analyzing architecture of archival human tissue to characteriz-

ing organelle dynamics in live cells.

Classical label-free microscopy techniques such as phase contrast (Zernike, 1955), differential

interference contrast (DIC) (Nomarski, 1955), and polarized light microscopy (Schmidt, 1926;

Inoue, 1953) are qualitative. They turn specimen-induced changes in phase (shape of the wavefront)

and polarization (the plane of oscillation of the electric field) of light into intensity modulations that

are detectable by a camera. These intensity modulations are related to specimens’ properties via

complex non-linear transformation, which makes it difficult to interpret. Computational imaging

turns the qualitative intensity modulations into quantitative measurements of specimens’ properties

with inverse algorithms based on models of image formation. Quantitative phase imaging

(Popescu et al., 2006; Waller et al., 2010; Tian and Waller, 2015) measures optical path length,

that is, specimen phase, which reports density of the dry mass (Barer, 1952). Quantitative polariza-

tion microscopy in transmission mode reports angular anisotropy of the optical path length, that is,

retardance, (Inoue, 1953; Oldenbourg and Mei, 1995; Mehta et al., 2013) and axis of anisotropy,

that is, orientation, without label.

Quantitative label-free imaging measures intrinsic properties of the specimen and provides

insights into biological processes that may not be obtained with fluorescence imaging. For example,

Quantitative phase microscopy (Park et al., 2018) has been used to analyze membrane mechanics,

density of organelles (Imai et al., 2017), cell migration, and recently fast propagation of action

potential (Ling et al., 2019). Similarly, quantitative polarization microscopy has enabled discovery of

the dynamic microtubule spindle (Inoue, 1953; Keefe et al., 2003), analysis of retrograde flow of

F-actin network (Oldenbourg et al., 2000), imaging of white matter in adult human brain tissue sli-

ces (Axer et al., 2011a; Axer et al., 2011b; Menzel et al., 2017; Mollink et al., 2017;

Zeineh et al., 2017; Henssen et al., 2019), and imaging of activity-dependent structural changes in

brain tissue (Koike-Tani et al., 2019). Given the complementary information provided by specimen

density and anisotropy, a joint imaging of phase and retardance has also been attempted

(Shribak et al., 2008; Ferrand et al., 2018; Baroni et al., 2020). However, current methods for joint

imaging of density and anisotropy are limited in throughput due to complexity of acquisition or can

only be used for 2D imaging due to the lack of accurate 3D image formation models. We sought to

develop a computational imaging method for joint measurements of phase and retardance of live

3D specimens with simpler light path and higher throughput.

eLife digest Microscopy is central to biological research and has enabled scientist to study the

structure and dynamics of cells and their components within. Often, fluorescent dyes or trackers are

used that can be detected under the microscope. However, this procedure can sometimes interfere

with the biological processes being studied.

Now, Guo, Yeh, Folkesson et al. have developed a new approach to examine structures within

tissues and cells without the need for a fluorescent label. The technique, called QLIPP, uses the

phase and polarization of the light passing through the sample to get information about its makeup.

A computational model was used to decode the characteristics of the light and to provide

information about the density and orientation of molecules in live cells and brain tissue samples of

mice and human. This way, Guo et al. were able to reveal details that conventional microscopy

would have missed. Then, a type of machine learning, known as ‘deep learning’, was used to

translate the density and orientation images into fluorescence images, which enabled the

researchers to predict specific structures in human brain tissue sections.

QLIPP can be added as a module to a microscope and its software is available open source. Guo

et al. hope that this approach can be used across many fields of biology, for example, to map the

connectivity of nerve cells in the human brain or to identify how cells respond to infection. However,

further work in automating other aspects, such as sample preparation and analysis, will be needed

to realize the full benefits.
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In comparison to fluorescence measurements that provide molecular specificity, label-free meas-

urements provide physical specificity. Obtaining biological insights from label-free images often

requires identifying specific molecular structures. Recently, deep learning has enabled translation of

qualitative and quantitative phase images into fluorescence images (Ounkomol et al., 2018;

Christiansen et al., 2018; Rivenson et al., 2018a; Rivenson et al., 2019; Lee et al., 2019;

Petersen et al., 2017). Among different neural network architecture, U-Net has been widely applied

to image segmentation and translation tasks (Ronneberger et al., 2015; Milletari et al., 2016;

Ounkomol et al., 2018; Lee et al., 2019). U-Net’s success arises primarily from its ability to exploit

image features at multiple spatial scales, and its use of skip connections between the encoding and

decoding blocks. The skip connections give decoding blocks access to low-complexity, high-resolu-

tion features in the encoding blocks. In image translation, images from different modalities (label-

free vs. fluorescence in our case) of the same specimen are presented to the neural network model.

The neural network model learns the complex transformation from label-free to fluorescence images

through the training process. The trained neural network model can predict fluorescence images

from label-free images to enable analysis of distribution of a specific molecule. The accuracy with

which the molecular structure can be predicted depends not just on the model, but also on the

dynamic range and the consistency of the contrast with which the structure is seen in the label-free

data. Some of the anisotropic structures are not visible in phase imaging data and therefore cannot

be learned from phase imaging data. Reported methods of image translation have not utilized

Figure 1. Measurements with QLIPP and analysis of structures with 2.5D U-Net. (A) Light path of the microscope. Volumes of polarization-resolved

images are acquired by illuminating the specimen with light of diverse polarization states. Polarization states are controlled using a liquid-crystal

universal polarizer. Isotropic material’s optical path length variations cause changes in the wavefront (i.e., phase) of light that is measurable through

defocused intensity stack. Anisotropic material not only changes the wavefront, but also changes the polarization of light depending on the degree of

optical anisotropy (retardance) and orientation of anisotropy. Intensity Z-stacks of an example specimen, mouse kidney tissue, under five illumination

polarization states (IRCP; I0; I45; I90; I135 are shown. The intensity variations that encode the reconstructed physical properties of isotropic and anisotropic

material are illustrated in the stack I135. These polarization-resolved stacks are used to reconstruct (Materials and methods) the specimen’s retardance,

slow-axis orientation, and phase. Slow-axis orientation at given voxel reports the axis in the focal plane along which the material is the densest and is

represent by a color according to the half-wheel shown in inset. (B) Multi-channel, 2.5D U-Net model is trained to predict fluorescent structures from

label-free measurements. In this example 3D distribution of F-actin and nuclei are predicted. During training, pairs of label-free images and

fluorescence images are supplied as inputs and targets, respectively, to the U-Net model. The model is optimized by minimizing the difference

between the model prediction and the target. During inference, only label-free images are used as input to the trained model to predict fluorescence

images.
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optical anisotropy, which reports important structures such as cell membrane and axon bundles. Fur-

thermore, previous work has mostly demonstrated prediction of single 2D fields of view. Volumetric

prediction using 3D U-Net has been reported, but it is computationally expensive, such that down-

sampling the data at the expense of spatial resolution is required (Ounkomol et al., 2018). We

sought to improve the accuracy of prediction of fluorescence images by using information contained

in complementary measurements of density and anisotropy.

In this work, we report a combination of quantitative label-free imaging and deep learning mod-

els to identify biological structures from their density and anisotropy. First, we introduce quantitative

label-free imaging with phase and polarization (QLIPP) that visualizes diverse structures by their

phase, retardance, and orientation. QLIPP combines quantitative polarization microscopy

(Oldenbourg and Mei, 1995; Shribak and Oldenbourg, 2003; Mehta et al., 2013) with the con-

cept of phase from defocus (Streibl, 1984; Waller et al., 2010; Streibl, 1985; Noda et al., 1990;

Claus et al., 2015; Jenkins and Gaylord, 2015a; Jenkins and Gaylord, 2015b; Soto et al., 2017),

to establish a novel method for volumetric measurement of phase, retardance, and orientation

(Figure 1A). Data generated with QLIPP can distinguish biological structures at multiple spatial and

temporal scales, making it valuable for revealing the architecture of the postmortem archival tissue

and organelle dynamics in live cells. QLIPP’s optical path is simpler relative to earlier methods

(Shribak et al., 2008), reconstruction algorithms are more accurate, and reconstruction software is

open-source. QLIPP can be implemented on existing microscopes as a module and can be easily

multiplexed with fluorescence. To translate 3D distribution of phase, retardance, and orientation to

fluorescence intensities, we implement a computationally efficient multi-channel 2.5D U-Net archi-

tecture (Figure 1B) based on a previously reported single-channel 2.5D U-Net (Han, 2017). We use

QLIPP for imaging axon tracts and myelination in archival brain tissue sections at two developmental

stages. Label-free measurement of anisotropy allowed us to visualize axon orientations across whole

sections. We demonstrate that QLIPP data increases accuracy of prediction of myelination in devel-

oping human brain as compared to brighfield data. Finally, we demonstrate robustness of the label-

free measurements to experimental variations in labeling, which leads to more consistent prediction

of myelination than possible with the experimental staining. Collectively, we propose a novel

approach for imaging architectural order across multiple biological systems and analyzing it with a

judicious combination of physics-driven and data-driven modeling approaches.

Results

QLIPP provides joint measurement of specimen density and anisotropy
The light path of QLIPP is shown in Figure 1A. It is a transmission polarization microscope based on

computer controlled liquid crystal universal polarizer (Oldenbourg and Mei, 1995; Shribak and Old-

enbourg, 2003; Mehta et al., 2013). QLIPP provides an accurate image formation model and corre-

sponding inverse algorithm for simultaneous reconstruction of specimen phase, retardance, and

slow axis orientation.

In QLIPP, specimens are illuminated with five elliptical polarization states for sensitive detection

of specimens’ retardance (Shribak and Oldenbourg, 2003; Mehta et al., 2013). For each illumina-

tion, we collect a Z-stack of intensity to capture specimens’ phase information. Variations in the den-

sity of the specimen, for example lower density of nuclei relative to the cytoplasm, cause changes in

refractive index and distort the wavefront of the incident light. The wavefront distortions lead to

detectable intensity modulations through interference in 3D space as the light propagates along the

optical axis. Intensity modulations caused by isopropic density variations (specimen phase) can be

captured by acquiring a stack of intensities along the optical (Z) axis (Streibl, 1984; Waller et al.,

2010). Anisotropic variations in the specimens’ density result from alignment of molecules along a

preferential axis, for example lipid membrane has higher anisotropy relative to the cytoplasm due to

the alignment of lipid molecules. This anisotropic density variation (specimen retardance) induces

polarization-dependent phase difference. Specimen retardance is often characterized by the axis

along which anisotropic material is the densest (slow-axis) or by the axis perpendicular to it (fast-

axis) (de Campos Vidal et al., 1980; Salamon and Tollin, 2001), and the difference in specimen

phase between these two axes. In addition, multiple scattering by the specimen can reduce degree

of polarization of light. The specimen retardance, slow-axis orientation, and degree of polarization
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can be measured by probing the specimen with light in different polarization states. We develop a

forward model of transformation using the formalism of partial polarization and phase transfer func-

tion to describe the relation between specimen physical properties and detected intensities. We

then leverage above forward model to design an inverse algorithm that reconstructs quantitative

specimen physical properties in 3D from the detected intensity modulations as illustrated in

Figure 1A.

First, we utilize Stokes vector representation of partially polarized light (Born and Wolf, 2013;

Bass et al., 2009; Azzam, 2016) to model the transformation from specimens’ optical properties to

acquired intensities (Equation 7). By inverting this transformation, we reconstruct 3D volumes of

retardance, slow-axis orientation, brightfield, and degree of polarization. Proper background correc-

tion is crucial for detection of low retardance of the biological structures in the presence of high,

non-uniform background resulting from the optics or imaging chamber. We use a two-step back-

ground correction method (Materials and methods) to correct the non-uniform background polariza-

tion (Figure 2—figure supplement 2). In addition to retardance and slow-axis orientation, our use

of Stokes formalism enables reconstruction of brightfield and degree of polarization, in contrast to

previous work that reconstructs just retardance and slow-axis orientation (Shribak and Oldenbourg,

2003; Mehta et al., 2013). The degree of polarization measures the fitness of our model with the

experiment as explained later and the brightfield images enables reconstruction of specimen phase.

Second, we utilize phase transfer function formalism (Streibl, 1985; Noda et al., 1990;

Claus et al., 2015; Jenkins and Gaylord, 2015a; Jenkins and Gaylord, 2015b; Soto et al., 2017)

to model how 3D phase information is transformed into brightfield contrast (Equation 17). Specimen

phase information is encoded in the brightfield images but in a complex fashion. In brightfield

images, optically dense structures appear in brighter contrast than the background on one side of

the focus, almost no contrast at the focus, and darker contrast than the background on the other

side of the focus. This is illustrated by 3D brightfield images of nucleoli, the dense sub-nuclear

domains inside nuclei (Figure 2—video 1). We invert our forward model to estimate specimen phase

from 3D brightfield stack (Equation 19). Phase reconstruction from the brightfield volume shows

nucleoli in positive contrast relative to background consistently as the nucleoli move through the

focus (Figure 2—video 1). We note that the two-step background correction is essential for back-

ground-free retardance and orientation images, but not for phase image (Figure 2—figure supple-

ment 2).

We illustrate wide applicability of QLIPP with images of human bone osteosarcoma epithelial

(U2OS) cells, tissue section from adult mouse braintissue section from In the dividing U2OS cell (Fig-

ure 2—video 2, Figure 2—video 3), the phase image shows three-dimensional dynamics of dense

cellular organelles, such as lipid vesicles, nucleoli, and chromosomes.The retardance and slow-axis

orientation in U2OS cells (Figure 2—video 2, Figure 2—video 3) show dynamics of membrane

boundaries, spindle, and lipid droplets. We note that the two-step background correction is essen-

tial to remove biases in the retardance and orientation images, but not for phase image (Figure 2—

figure supplement 2). Figure 2—video 3 shows that specific organelles can be discerned simply by

color-coding the measured phase and retardance, illustrating that quantitative label-free imaging

provides specificity to physical properties.

At larger spatial scale, the phase image identifies cell bodies and axon tracts in mouse and

developing human brain tissue sections because of variations in their density. These density var-

iations are more visible and interpretable in phase image as compared to the brightfield image

(Figure 2—figure supplement 3). Axon tracts appear with noticeably high contrast in retardance

and orientation images of mouse and human brain slices (Figure 2). The high retardance of the

axons arises primarily from myelin sheath that has higher density perpendicular to the axon axis

(de Campos Vidal et al., 1980; Menzel et al., 2015). Therefore, the slow axis of the axon tracts

is perpendicular to the orientation of the tracts. . Figure 2—figure supplement 4 and Figure 5

show stitched retardance and orientation images of a whole mouse brain slice, in which not only

the white matter tracts, but also orientation of axons in cortical regions is visible. Note that the

fine wavy structure in the right hemisphere of the slice is caused by sample preparation artifacts

(Figure 2—figure supplement 3).

We show degree of polarization measurements in (Figure 2—figure supplement 1). The differ-

ence between retardance and degree of polarization is that retardance measures single scattering

events within the specimen that alter the polarization of the light, but do not reduce the degree of
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Figure 2. Complementary measurements of phase, retardance, and slow-axis orientation distinguish biological structures. Brightfield (BF), phase (F),

retardance (r), and slow-axis orientation (w) images of U2OS cells, human brain tissue, and adult mouse brain tissue are shown. In orientation images,

slow axis and retardance of the specimen are represented by color (hue) and brightness, respectively. In U2OS cells, chromatin, lipid droplets,

membranous organelles, and cell boundaries are visible in phase image due to variations in density, while microtubule spindle, lipid droplets, and cell

boundaries are visible due to their anisotropy. In the adult mouse brain slices, axon tracts are more visible in phase, retardance, and orientation images

compared to brightfield images, with slow axis perpendicular to the direction of the bundles (cc: corpus callosum, CP: caudoputamen, CTX: cortex).

Similar label-free contrast variations are observed in developing human brain tissue slice, but with less ordered tracts compared to the adult mouse

brain due to the early age of the brain. The 3D stack of live U2OS cell was acquired with 63 � 1.47 NA oil objective and 0.9 NA illumination, whereas

images of mouse and human brain tissue were acquired with 10 � 0.3 NA air objective and 0.2 NA of illumination.

The online version of this article includes the following video and figure supplement(s) for figure 2:

Figure supplement 1. Degree of polarization (DOP) images for three specimens shown in Figure 2.

Figure supplement 2. Effect of background correction methods on reconstructed retardance and phase of the U2OS cell.

Figure supplement 3. Comparison of brightfield image (top) with quantitative phase image (bottom) of a mouse brain slice.

Figure supplement 4. Retardance (top) and orientation (bottom) measurements of a mouse brain slice, which report structural anisotropy and axon

orientation (in physical line orientation), respectively.

Figure 2—video 1. Z-stacks of brightfield and phase images of U2OS cells.

https://elifesciences.org/articles/55502#fig2video1

Figure 2—video 2. Time-lapse of phase, retardance, and slow axis orientation in a dividing U2OS cell shows differences in density and anisotropy of

organelles.

https://elifesciences.org/articles/55502#fig2video2

Figure 2—video 3. 3D rendering of the time-lapse showing diverse structures color coded by their retardance and phase in U2OS cells shown in

Figure 2.

https://elifesciences.org/articles/55502#fig2video3
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polarization. On the other hand, low degree of polarization indicates multiple scattering events that

reduce the polarization of light and thus mismatch of the specimen optical properties from the

model assumptions. In the future, we plan to pursue models that account for diffraction and scatter-

ing effects in polarized light microscopy that would enable more precise retrieval of specimen

properties.

Data reported above illustrate simultaneous and quantitative measurements of density, structural

anisotropy, and orientation in 3D biological specimens, for the first time to our knowledge. The

Python software for QLIPP reconstruction is available at https://github.com/mehta-lab/reconstruct-

order. In the next sections, we discuss how these complementary label-free measurements enable

prediction of fluorescence images and analysis of architecture.

2.5D U-Net allows efficient prediction of fluorescent structures from
multi-channel label-free images
In contrast to fluorescence imaging, label-free measurement of density and anisotropy visualize

several structures simultaneously but individual structures can be difficult to identify. Label-free

measurements are affected by the expression of specific molecules, but do not report the

expression directly. To obtain images of specific molecular structures from QLIPP data, we opti-

mized convolutional neural network models to translate 3D label-free stacks into 3D fluorescence

stacks.

Proper prediction of of fluorescent structures with deep learning requires joint optimization of

image content, architecture of the neural network, and the training process. The optimization

led us to a residual 2.5D U-Net that translates a small stack (5–7 slices) of label-free channels to

the central slice of fluorescent channel throughout 3D volume. We use images of the mouse kid-

ney tissue section as a test dataset for optimizing the model architecture and training strategies.

We chose the mouse kidney tissue section because it has both anisotropic and isotropic struc-

tures (F-actin and nuclei). Additionally, both structures are robustly labeled with no noticeable

artifacts. Later we demonstrate predicting the fluorescent labels in specimen where labeling is

not robust (Figure 6).

Optimization of 2.5D model for prediction of fluorescence images
Our work builds upon earlier work (Ounkomol et al., 2018) on predicting fluorescence stacks from

brightfield stacks using 3D U-Net. Ounkomol et al., 2018 showed fluorescence predicted by 3D

U-Net is superior than 2D U-Net. However, applying 3D U-Net to microscopy images poses a few

limitations. Typical microscopy stacks are bigger in their extent in the focal plane (~2000 � 2000 pix-

els) and smaller in extent along the optical axis (usually <40 Z slices). Since the input is isotropically

downsampled in the encoding path of the 3D U-Net, it requires sufficiently large number of Z slices

to propagate the data through encoding and decoding blocks. As an example, for a minimum of 3

layers in U-Net and 16 pixels at the end of the encoder path, one will need at least 64 Z slices

Table 1. Accuracy of 3D prediction of F-actin from retardance stack using different neural networks.

Above table lists median values of the Pearson correlation (r) and structural similarity index (SSIM) between prediction and target

F-actin volumes. We report accuracy metrics for Slice!Slice (2D) ,Stack!Slice (2.5D), and Stack!Stack (3D) models trained to predict

F-actin from retardance using Mean Absolute Error (MAE or L1) loss. We segmented target images with a Rosin threshold to discard

tiles that mostly contained background pixels. To dissect the differences in prediction accuracy along and perpendicular to the focal

plane, we computed (Materials and methods) test metrics separately over XY slices (rxy, SSIMxy) and XZ slices (rxy, SSIMxz) of the test

volumes, as well as over entire test volumes (rxyz, SSIMxyz). Best performing model according to each metric is displayed in bold.

Translation model Input(s) rxy rxz rxyz SSIMxy SSIMxz SSIMxyz

Slice!Slice (2D) r 0.82 0.79 0.83 0.78 0.71 0.78

Stack!Slice (2.5D, z ¼ 3) r 0.85 0.83 0.86 0.80 0.75 0.81

Stack!Slice (2.5D, z ¼ 5) r 0.86 0.84 0.87 0.81 0.76 0.82

Stack!Slice (2.5D, z ¼ 7) r 0.87 0.85 0.87 0.82 0.77 0.83

Stack!Stack (3D, z ¼ 96) r 0.86 0.84 0.86 0.82 0.76 0.85
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(Figure 3—figure supplement 1). Therefore, the use of 3D translation models often requires upsam-

pling of the data in Z, which increases data size and makes training 3D translation model computa-

tionally expensive.

To reduce the computational cost without losing accuracy of prediction, we evaluated the predic-

tion accuracy as a function of model dimensions for a highly ordered, anisotropic structure (F-actin)

and for less ordered, isotropic structure (nuclei) in mouse kidney tissue. In mouse kidney tissue, the

retardance image highlights capillaries within glomeruli, and brush borders in convoluted tubules,

among other components of the tissue. The nuclei appear in darker contrast in the retardance

image, because of the isotropic architecture of chromatin. We evaluated three model architectures

to predict fluorescence volumes: slice!slice (2D in short) models that predict 2D fluorescence slices

from corresponding 2D label-free slices, stack!slice (2.5D in short) models that predict the central

2D fluorescence slice from a stack of adjacent label-free slices, and stack!stack (3D in short) models

that predict 3D fluorescent stacks from label-free stacks. For 2.5D models, 3D translation is achieved

by predicting one 2D fluorescence plane per stack (z = 3, 5, 7) of label-free inputs. We added a

residual connection between the input and output of each block to speed up model training

(Milletari et al., 2016; Drozdzal et al., 2016).

In order to fit 3D models on the GPU, we needed to predict overlapping sub-stacks, which were

stitched together to get the whole 3D stack ( see Materials and methods and Figure 3—figure sup-

plement 1 for the description of the network architecture and training process). We used Pearson

correlation coefficient and structural similarity index (SSIM) (Wang and Bovik, 2009) between pre-

dicted fluorescent stacks and target fluorescent stacks to evaluate the performance of the models

(Materials and methods). We report these metrics on the test set (Table 1, Table 2, Table 3), which

was not used during the training.

The predictions with 2D models show discontinuity artifacts along the depth (Figure 3, Figure 3—

video 2), as also observed in prior work (Ounkomol et al., 2018). The 3D model predicts smoother

structures along the Z dimension with improved prediction in the XY plane. 2.5D model shows pre-

diction accuracy comparable to 3D model, with higher prediction accuracy as the number of z-slices

Table 2. Accuracy of prediction of F-actin in mouse kidney tissue as a function of input channels.

Median values of the Pearson correlation (r) and structural similarity index (SSIM) between predicted and target volumes of F-actin. We

evaluated combinations of brightfield (BF), phase (F), retardance (r), orientation x (wx), and orientation y (wy), as input. Model training

conditions and computation of test metrics is described in Table 1.

Translation model Input(s) rxy rxz rxyz SSIMxy SSIMxz SSIMxyz

Stack!Slice (2.5D, z ¼ 5) r 0.86 0.84 0.87 0.81 0.76 0.82

BF 0.86 0.84 0.86 0.82 0.77 0.83

F 0.87 0.85 0.88 0.83 0.78 0.84

F, r, wx, wy 0.88 0.87 0.89 0.83 0.80 0.85

BF, r, wx, wy 0.88 0.87 0.89 0.83 0.79 0.85

Table 3. Accuracy of prediction of nuclei in mouse kidney tissue.

Median values of the Pearson correlation (r) and structural similarity index (SSIM) between predicted and target volumes of nuclei. See

Table 2 for description.

Translation model Input(s) rxy rxz rxyz SSIMxy SSIMxz SSIMxyz

Stack!Slice (2.5D, z ¼ 5) r 0.84 0.85 0.85 0.81 0.76 0.82

BF 0.87 0.88 0.87 0.82 0.77 0.84

F 0.88 0.88 0.88 0.83 0.78 0.85

F, r, wx, wy 0.89 0.89 0.89 0.84 0.80 0.86

BF, r, wx, wy 0.89 0.90 0.89 0.84 0.80 0.86
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in the 2.5D model input increases. (Figure 3C and D; Table 1; Figure 3—video 2). While 2.5D

model shows similar performance to 3D model, we note that we could train the 2.5D model with

~3� more parameters than 3D model (Materials and methods) in shorter time. In our experiments,

training a 3D model with 1.5M parameters required 3.2 days, training a 2D model with 2M parame-

ters required 6 hr, and training a 2.5D model with 4.8M parameters and five input z-slices required 2

days, using ~100 training volumes. This is because the large memory usage of 3D model significantly

limits its training batch size and thus the training speed.

Figure 3. Accuracy of 3D prediction with 2D, 2.5D, and 3D U-Nets. Orthogonal sections (XY - top, XZ - bottom, YZ - right) of a glomerulus and its

surrounding tissue from the test set are shown depicting (A) retardance (input image), (B) experimental fluorescence of F-actin stain (target image), and

(C) Predictions of F-actin (output images) using the retardance image as input with different U-Net architectures. (D) Violin plots of structral-similarty

metric (SSIM) between images of predicted and target stain in XY and XZ planes. The horizontal dashed lines in the violin plots indicate 25th quartile,

median, and 75th quartile of SSIM. The yellow triangle in C highlights a tubule structure, whose prediction can be seen to improve as the model has

access to more information along Z. The same field of view is shown in Figure 3—video 1, Figure 3—video 2, and Figure 4—video 1.

The online version of this article includes the following video and figure supplement(s) for figure 3:

Figure supplement 1. Schematic illustrating U-Net architectures.

Figure 3—video 1. Z-stacks of brightfield, phase, retardance, and orientation images of mouse kidney tissue.

https://elifesciences.org/articles/55502#fig3video1

Figure 3—video 2. Through focus series showing 3D F-actin distribution in the test field of view shown in Figure 3.

https://elifesciences.org/articles/55502#fig3video2
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Figure 4. Prediction accuracy improves with multiple label-free contrasts as inputs. 3D predictions of ordered F-actin and nuclei from different

combinations of label-free contrasts using the 2.5D U-Net model. (A) Label-free measurements used as inputs for model training: retardance (r), phase

(F), and slow axis orientation (w). (B) The corresponding 3D volume showing the target fluorescent stains. Phalloidin-labeled F-actin in shown green and

Figure 4 continued on next page
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The Python code for training our variants of image translation models is available at https://

github.com/czbiohub/microDL.

Predicting structures from multiple label-free contrasts improves
accuracy
Considering the trade-off between computation speed and model performance, we adopt 2.5D

models with five input Z-slices to explore how combinations of label-free inputs affect the accuracy

of prediction of fluorescent structures.

We found that when multiple label-free measurements are jointly used as inputs, both F-actin and

nuclei are predicted with higher fidelity compared to when only a single label-free measurement is

used as the input (Table 2 and Table 3). Figure 4C–D shows representative structural differences in

the predictions of the same glomerulus as Figure 3. The continuity of prediction along Z-axis

improves as more label-free contrasts are used for prediction (Figure 4—video 1). These results

indicate that our model leverages information in complementary physical properties to predict tar-

get structures. We note that using complementary label-free contrasts boosts the performance of

2.5D models to exceed the performance of 3D single-channel models without significantly increasing

the computation cost (compare Table 1 and Table 2). Noticeably, fine F-actin bundles have been

shown challenging to predict from single label-free input. We found fine F-actin bundles can be pre-

dicted from multiple label-free inputs when the model is trained to minimize the difference between

the fluorescence target and prediction over only the foreground pixels in the image (Figure 4—fig-

ure supplement 2).

Interestingly, when only a single contrast is provided as the input, a model trained on phase

images has higher prediction accuracy than the model trained on brightfield images. This is possibly

because the phase image has consistent, quantitative contrast along z-axis, while the depth-depen-

dent contrast in brightfield images makes the translation task more challenging. This improvement

of using phase over brightfield images, however, is not observed when the retardance and orienta-

tion are also included as inputs. This is possibly because quantitative retardance and orientation

complement the qualitative brightfield input and simplify the translation task.

In conclusion, above results show that 2.5D multi-contrast models predict 3D structures with

superior accuracy than single channel 3D U-Net models, but have multiple practical advantages that

facilitate scaling of the approach. In addition, the results show that structures of varying density and

order can be learned with higher accuracy when complementary physical properties are combined

as inputs.

Imaging architecture of mouse and human brain tissue with QLIPP
Among electron microscopy, light microscopy, and magnetic resonance based imaging of brain

architecture, the resolution and throughput of light-microscopy provides the ability to image whole

brain slices at single axon resolution in a reasonable time (Kleinfeld et al., 2011; Axer et al., 2011a;

Axer et al., 2011b; Menzel et al., 2017; Mollink et al., 2017; Zeineh et al., 2017; Henssen et al.,

2019). Light-microscopy is also suitable for imaging biological processes while brain tissue is kept

Figure 4 continued

DAPI labeled nuclei is shown in magenta. (C) F-actin and nuclei predicted with single channel models trained on retardance (r) and phase (F) alone are

shown. (D) F-actin and nuclei predicted with multi-channel models trained with the combined input of retardance, orientation, and phase. The yellow

triangle and white triangle point out structures missing in predicted F-actin and nuclei distributions when only one channel is used as an input, but

predicted when all channels are used. (E) Violin plots of structral-similarty metric (SSIM) between images of predicted and experimental stain in XY and

XZ planes. The horizontal dashed lines indicate 25th quartile, median, and 75th quartile of SSIM. The 3D label-free inputs used for prediction are shown

in Figure 3—video 1.

The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure supplement 1. Pearson correlation and SSIM are insensitive to small structural differences in the images.

Figure supplement 2. Fine structural features are better predicted with foreground loss.

Figure 4—video 1. Through focus series showing 3D F-actin and nuclei distribution in the test field of view shown in Figure 4.

https://elifesciences.org/articles/55502#fig4video1
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alive (Ohki et al., 2005; Koike-Tani et al., 2019). With quantitative imaging of brain architecture

and activity at light resolution, one can envision the possibility of building probabilistic models that

relate connectivity and function. QLIPP’s high-resolution, quantitative nature, sensitivity to low

anisotropy of gray matter (Figure 2), and throughput make it attractive for imaging the architecture

and activity in brain slices. Here, we explore how QLIPP can be used to visualize the architecture of

the sections of adult mouse brain and archival sections of prenatal human brain.

Adult mouse brain tissue
We first imaged an adult mouse brain tissue section located at bregma �1.355 mm (level 68 in Allen

brain reference atlas [Lein et al., 2007]) with QLIPP and rendered retardance and slow-axis orienta-

tion in two ways as shown in Figure 5. The left panel renders the measured retardance in brightness

Figure 5. Analysis of anatomy and axon orientation of an adult mouse brain tissue with QLIPP. The retardance and orientation measurements are

rendered with two approaches in opposing hemispheres of the mouse brain, respectively. In the left panel, the slow-axis orientation is displayed with

color (hue) and the retardance is displayed with brightness as shown by the color legend in bottom-left. In the right panel, the colored lines represent

fast axis and the direction of the axon bundles in the brain. The color of the line still represents the slow-axis orientation as shown by color legend in

bottom-right. Different cortical layers and anatomical structures are visible through this measurements. This mouse brain section is a coronal section at

around bregma �1.355 mm and is labeled according to Allen brain reference atlas (level 68) (Lein et al., 2007). cc: corpus callosum, cing: cingulum

bundle, CTX: cortex, CP: caudoputamen, fi: fimbria, HPF: hippocampal formation, HY: hypothalamus, int: internal capsule, MOp: primary motor cortex,

MOs: secondary motor cortex, opt: optic tract, SSp: primary somatosensory area, SSs: supplemental somatosensory area, TH: thalamus, VL: lateral

ventricle.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The full-size mouse brain images of two rendering approaches shown in Figure 5.
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Figure 6. Label-free mapping of axon tracts in developing human brain tissue section. (A) (top) Stitched image of retardance and slow axis orientation

of a gestational week 24 (GW24) brain section from the test set. The slow axis orientation is encoded by color as shown by the legend. (Bottom) Axon

orientation indicated by the lines. (B) Zoom-ins of retardace + slow axis, axon orientation, and brightfield at brain regions indicated by the yellow and

cyan boxes in (A). (C) Zoom-ins of label-free images at brain regions indicated by the white box in (B) (D–F) Same as (A–C), but for GW20 sample. MZ:

Figure 6 continued on next page

Guo et al. eLife 2020;9:e55502. DOI: https://doi.org/10.7554/eLife.55502 13 of 33

Tools and resources Neuroscience Physics of Living Systems

https://doi.org/10.7554/eLife.55502


and slow-axis orientation in color, highlighting anatomical features of all sizes. The right panel ren-

ders the fast-axis orientation of the mouse brain section (orthogonal to the slow-axis orientation) as

colored lines. It has been shown (de Campos Vidal et al., 1980; Menzel et al., 2015) that when

axons are myelinated, the slow axis is perpendicular to the axon axis, while the fast axis is parallel to

it. The visualization in the right panel highlights meso-scale axon orientation in the mouse brain tis-

sue with spatial resolution of ~ 100 mm, that is, each line represents net orientation of the tissue over

the area of ~ 100 mm � 100 mm. The full section rendered with both approaches is shown in Fig-

ure 5—figure supplement 1.

By comparing the size and optical measurements in our label-free images against Allen brain ref-

erence atlas, we are able to recognize many anatomical landmarks. For example, the corpus cal-

losum (cc) traversing the left and right hemispheres of the brain is a highly anisotropic bundle of

axons. The cortex (CTX) is the outermost region of the brain, with axons projecting down towards

the corpus callosum and other sub-cortical structures. Within the inner periphery of the corpus cal-

losum, we can identify several more structures such as hippocampus (HPF), lateral ventricle (VL), and

caudoputamen (CP). With these evident anatomical landmarks, we are able to reference to Allen

brain reference atlas (Lein et al., 2007) and label more anatomical areas of the brain such as the sen-

sory (SSp, SSs) and motor (MOp, MOs) cortical areas.

We also found that six cortical layers are distinguishable in terms of strength of the retardance

signal and the orientational pattern. These data are consistent with reports that layer I contains axon

bundles parallel to the cortical layer (Zilles et al., 2016). Layer VI contains axon bundles that feed to

and from the corpus callosum, so the orientation of the axon is not as orthogonal to the cortical

layers as the axons in the other layers. The retardance signal arises from the collective anisotropy of

myelin sheath wrapping around axons. Layers IV and V contain higher density of cell bodies and cor-

respondingly lower density of the axons, leading to lower signal in retardance.

Tissue from developing human brain
We next imaged brain sections from developing human samples of two different ages, gestational

week 24 (GW 24) (Figure 6A–C, Figure 6—figure supplement 1A) and GW20 (Figure 6D–F, Fig-

ure 6—figure supplement 1A) which correspond to the earliest stages of oligodendrocyte matura-

tion and early myelination in the cerebral cortex (Jakovcevski et al., 2009; Miller et al., 2012;

Snaidero and Simons, 2014). Similar to the observations in the mouse brain section ( Figure 5, Fig-

ure 2—figure supplement 4), the stitched retardance and orientation images show both morphol-

ogy and orientation of the axon tracts that are not accessible with brightfield or phase imaging, with

fast axis orientation parallel to the axon axis. The retardance in subplate is higher than cortical plates

at both time points, which is consistent with the reduced myelin density in the cortical plate relative

to the white matter. Importantly, with our calibration and background correction procedures (Materi-

als and methods), our imaging approach has the sensitivity to detect axon orientation in the devel-

oping cortical plate, despite the lower retardance in developing brain compared to adult brain due

to the low myelination in early brain development (Miller et al., 2012; Snaidero and Simons, 2014).

Different cortical layers are visible in the retardance and orientation images at both time points.

With this approach, we could identify different anatomical structures in the developing human brain

without additional stains by referencing to the developing human brain atlas (Bayer and Altman,

2003, Figure 6). The individual axon tracts are also visible in phase image while with lower contrast

as the phase image measures the density variation but not the axon orientation.

To analyze the variations in the density of the human brain tissue, we reconstructed 2D phase,

unlike 3D phase reconstruction for U2OS cells (Figure 2) and kidney tissue (Figure 4). The archival

tissue was thinner (12 mm thick) than the depth of field (~16 mm) of the low magnification objective

Figure 6 continued

marginal zone; CP: cortical plate; SP: subplate; ESS: external sagittal stratum; ISS: internal sagittal stratum; CC: corpus callosum; SVZ: subventricular

zone; PcL: paracentral lobule PL: parietal lobe; OL: occipital lobe; TL: temporal lobe. Anatomical regions in (B, D, and E) are identified by referencing to

developing human brain atlas (Bayer and Altman, 2003).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Brightfield and phase images of human brain sections.
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Figure 7. Prediction of myelination in developing human brain from QLIPP data and rescue of inconsistent labeling. (A) Stitched image of

experimental FluoroMyelin stain of the same (GW24) brain section from the test set (top) and FluoroMyelin stain predicted from retardance, slow axis

orientation, brightfield by the 2.5D model (bottom). The cyan arrow head indicates large staining artifacts in the experimental FluoroMyelin stain but

rescued in model prediction. (B) Zoom-ins of experimental and predicted FluoroMyelin stain using different models at brain regions indicated by the

Figure 7 continued on next page
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(10X) we used for imaging large areas. Figure 6B,C,E and F show the retardance, slow-axis orienta-

tion, axon orientation, brightfield, and phase images. Major regions such as the subplate and cortical

plate can be identified in both samples. While density information represented by brightfield and

phase images can identify some of the anatomical structures, axon-specific structures can be better

identified with measurements of anisotropy.

To our knowledge, the above data are the first report of label-free imaging of architecture and

axon tract orientation in prenatal brain tissue. The ability to resolve axon orientation in the cortical

plate of the developing brain, which exhibits very low retardance, demonstrates the sensitivity and

resolution of our approach.

Predicting myelination in sections of developing human brain
Next, we explore how information in the phase and retardance measurements can be used to pre-

dict myelination in prenatal human brain. The human brain undergoes rapid myelination during late

development as measured with magnetic resonance imaging (MRI) (Heath et al., 2018). Interpreta-

tion of the myelination from MRI contrast requires establishing its correlation with histological meas-

urements of myelin levels (Khodanovich et al., 2019). Robust measurements of myelination in

postmortem human brains can provide new insights in myelination of human brain during develop-

ment and during degeneration. QLIPP data in Figure 6 indicate that label-free measurements are

predictive of the level of myelination but relationship among them is complex (Figure 7C and F).

We employed our multi-channel 2D and 2.5D U-Net models to learn the complex transformation

from label-free contrasts to myelination. Importantly, we developed a data normalization and train-

ing strategy that enables prediction of myelination across large slices and multiple developmental

time points. We also found that a properly trained model can rescue inconsistencies in fluorescent

labeling of myelin, which is often used as histological groundtruth.

Figure 7 continued

yellow box in (A) rotated by 90 degrees. From left to right: experimental FluoroMyelin stain; prediction from brightfield using 2D model; prediction

from retardance and phase using 2D model; prediction from retardance, phase, and orientation using 2D model; prediction from retardance,

brightfield, and orientation using 2.5D model. (C) From region shown in (B) we show scatter plot and Pearson correlation of target FluoroMyelin

intensity v.s. retardace (left), phase (middle), FluoroMyelin intensity predicted from retardance, brightfield, and orientation using 2.5D model (right).

Yellow dashed line indicates the function y = x. (D–F) Same as (A–C), but for GW20 sample. MZ: marginal zone; CP: cortical plate; SP: subplate; ESS:

external sagittal stratum; ISS: internal sagittal stratum; CC: corpus callosum; SVZ: subventricular zone; PcL: paracentral lobule PL: parietal lobe; OL:

occipital lobe; TL: temporal lobe.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Normalizing training data per dataset yields prediction with correct dynamic range of intensity.

Figure supplement 2. Model predicted FluoroMyelin intensity becomes more accurate as more label-free channels are included as input.

Table 4. Accuracy of prediction of FluoroMyelin in human brain tissue slices across two developmental points (GW20 and GW24).

Median values of the Pearson correlation (r) and structural similarity index (SSIM) between predictions of image translation models and

target fluorescence. We evaluated combinations of retardance (r), orientation x (wx), orientation y (wy), phase (F), and brightfield (BF)

as inputs. These metrics are computed over 15% of the fields of view from two GW20 datasets and two GW24 test datasets. The 2D

models take ~ 4 hours to converge, whereas 2.5D models take ~ 64 hours to converge.

Translation model Input(s) rxy SSIMxy

Slice!Slice (2D) BF 0.72 0.71

r, F 0.82 0.82

r, wx, wy, F 0.86 0.85

Stack!Slice (2.5D, z ¼ 5) BF, r, wx, wy 0.87 0.85
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Data pooling for prediction over large sections of prenatal human brain
In order to train the model, we measured the level of myelination with FluoroMyelin, a lipophilic dye

that can stain myelin without permeabilization (Monsma and Brown, 2012). We found the deter-

gents used in most permeabilization protocols remove myelin from the tissue and affect our label-

free measurements. We trained multi-contrast 2D and 2.5D models with different combinations of

label-free input contrasts and FluoroMyelin as the target to predict. To avoid overfitting and build a

model that generalizes to different developmental ages and different types of sections of the brain,

we pooled imaging datasets from GW20 and GW24 with two different brain sections for each age.

The pooled dataset was then split into training, validation, and test set. Similar to the observations

in the mouse kidney tissue, the prediction accuracy improves as more label-free contrasts are

included in training but with higher accuracy gain compared to the mouse kidney tissue. This is most

likely because the additional information provided by adding more label-free channels is more infor-

mative for the model to predict the more complex and variable of human brain structures. On the

other hand, 2.5D model with all four input channels shows similar performance as 2D model for this

dataset due to the relatively large depth of field (~16 mm) compared to the sample thickness (12 mm

thick), so additional Z-slices only provide phase information but no extra structural information along

the z dimension. (Table 4).

To test the accuracy of prediction over large human brain slices that span multiple fields of

view, we predicted FluoroMyelin using label-free images of whole sections from GW24 and

GW20 brains that were not used for model training or validation. We ran model inference on

each field of view and then stitched the predicted images together to obtain a stitched predic-

tion with 20,000 � 20,000 pixels (Figure 7A and D). To the best of our knowledge, these are

the largest predicted fluorescence image of tissue sections that have been generated. We were

able to predict myelination level in sections from both time points with a single model, with

increasing accuracy as we included more label-free channels as the input, similar to our observa-

tions from the test dataset of the mouse kidney slice (Table 4 and Figure 7B and E). The scat-

ter plots of pixel intensities show that model-predicted FluoroMyelin intensities correlate with

the target FluoroMyelin stain significantly better than the label-free contrasts alone (Figure 7C

and Figure 7F). This illustrates the value of predicting fluorescence from label-free contrasts:

while the label-free contrasts are predictive of FluoroMyelin stain, the complex relations between

them makes estimation of myelin level from label-free contrasts challenging. The neural network

can learn the complex transformation from label-free contrasts to FluoroMyelin stain and enables

reliable estimation of myelin levels.

Data normalization
In addition to architecture, it is essential to devise proper image normalization for correctly predict-

ing the intensity across different fields of view in large stitched images. We found that per-image

normalization commonly applied to image segmentation tasks did not preserve the intensity varia-

tion across images and led to artifacts in prediction. The two main issues that need to be accounted

for in image translation tasks are: (1) numbers of background pixels vary across images and can bias

the normalization parameters if not excluded from normalization (Yang et al., 2019), and (2) there

are batch variations in the staining and imaging process when pooling multiple datasets together for

training. While batch variation is less pronounced in quantitative label-free imaging, it remains quite

significant in fluorescence images of stained samples and therefore needs to be corrected. We found

that normalizing per-dataset with the median of inter-quartile range of foreground pixel intensities

gives the most accurate intensity prediction (Figure 7—figure supplement 1).

Notably, the 2D model with phase, retardance, and orientation as the input has correlation and

similarity scores close to the best 2.5D model but the training takes just 3.7 hr to converge, while

the best 2.5D model takes 64.7 hr to converge (Table 4). This is likely because the 2D phase recon-

struction captures the density variation encoded in the brightfield Z-stack that is informative for the

model to predict axon tracts accurately.

Rescue of inconsistent label
Robust fluorescent labeling usually requires optimization of labeling protocols and precise control of

labeling conditions. Sub-optimal staining protocols often lead to staining artifacts and make the
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samples unusable. Quantitative label-free imaging, on the other hand, provides more robust meas-

urements as it generates contrast in physical units and does not require labeling. Therefore, fluores-

cence images predicted from quantitative label-free inputs are more robust to experimental

variations. For example, we found FluoroMyelin stain intensity faded unevenly over time and formed

dark patches in the images (indicated by cyan arrow heads in Figure 7A and D), possibly due to

quenching of FluoroMyelin by the antifade chemical in the mounting media. However, this quench-

ing of dye does not affect the physical properties measured by the label-free channels. Therefore,

the model trained on images without artifacts predicted the expected staining pattern even with the

failure of experimental stain. This robustness is particularly valuable for precious tissue specimens

such as archival prenatal human brain tissue.

Discussion
We have reported QLIPP, a novel computational imaging method for label-free measurement of

density and anisotropy from 3D polarization-resolved acquisition. While quantitative fluorescence

imaging provides molecular specificity, quantitative label-free imaging provides physical specificity.

We show that several organelles can be identified from their density and anisotropy. We also show

that multiple regions of mouse brain tissue and archival human brain tissue can be identified without

label. We have also reported multi-channel 2.5D U-Net deep learning architecture and training strat-

egies to translate this physical description of the specimen to the molecular description. Next, we

discuss how we elected to balance the trade-offs and the future directions of research enabled by

innovations reported here.

We have designed QLIPP to be easy to adopt and multiplex with fluorescence microscopy. Using

QLIPP requires a single liquid-crystal polarization modulator and a motorized Z stage. Our open-

source Python software is free to use for non-profit research. Shribak (Shribak et al., 2008) has

reported joint imaging of 2D phase and retardance with orientation-independent differential inter-

ference contrast (OI-DIC) and orientation-independent PolScope (OI-POL), which required six polari-

zation modulators and acquisition protocol more complex than QLIPP. Ptychography-based phase

retrieval method has been extended with polarization sensitive components for joint imaging of 2D

phase and retardance (Ferrand et al., 2018; Baroni et al., 2020), albeit requiring hundreds of

images. Our method uses one polarization modulator, compared to six used by OI-DIC, and fewer

images (5 � number of Z slices), compared to hundreds in ptychography-based method, for recovery

of 3D phase, retardance and orientation. Our measurements also achieve diffraction-limited resolu-

tion and provide adequate time resolution for live-cell imaging, as demonstrated by the 3D movie of

U2OS cells (Figure 2, Figure 2—video 2, Figure 2—video 3). We anticipate that the modularity of

the optical path and the availability of reconstruction software will facilitate adoption of QLIPP.

Phase information is inherently present in polarization-resolved acquisition, but can now be recon-

structed using forward models and corresponding inverse algorithms reported here. We note that

our approach of recovering phase from propagation of light reports the local phase variation rather

than the absolute phase. Local phase variation is less sensitive to low spatial frequency or large-scale

variations in density as can be seen from phase images n Figure 2—figure supplement 3 and Fig-

ure 6—figure supplement 1. Recovering density at low spatial frequency requires a more elaborate

optical path for creating interference with a reference beam and is more difficult to implement than

QLIPP (Kim et al., 2018; Popescu et al., 2006). Nonetheless, most biological processes can be visu-

alized with the local density variation. Further, our method uses partially coherent illumination,

that is, simultaneous illumination from multiple angles, which improves spatial resolution, depth sec-

tioning, and robustness to imperfections in the light path away from the focal plane.

QLIPP belongs to the class of polarization-resolved imaging in which the specimen is illuminated

in transmission. Two other major classes of polarization-sensitive imaging are polarization sensitive

optical coherence tomography (PS-OCT) and fluorescence polarization. PS-OCT is a label-free imag-

ing method in which specimen is illuminated in reflection mode. PS-OCT has been used to measure

round-trip retardance and diattenuaton of diverse tissues, for example of brain tissue (Wang et al.,

2018). But, determination of the slow axis in the reflection mode remains challenging due to the fact

that light passes through the specimen in two directions. Fluorescence polarization imaging relies on

rotationally constrained fluorescent probes (DeMay et al., 2011; Mehta et al., 2016). Fluorescence
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polarization measurements report the rotational diffusion and angular distribution of labeled mole-

cules, which differs from QLIPP we have reported here.

We also note that, similar to other polarization-resolved imaging systems (Mehta et al., 2016),

our approach reports projection of the anisotropy onto the focal plane rather than 3D anisotropy.

Anisotropic structures such as axon bundles, appear isotropic to the imaging system when they are

aligned along the optical axis of the imaging path. Methods for imaging 3D anisotropy with various

models and systems (Oldenbourg, 2008; Spiesz et al., 2011; Axer et al., 2011c; Zilles et al.,

2016; Schmitz et al., 2018a; Schmitz et al., 2018b; Yang et al., 2018; Tran and Oldenbourg,

2018) are now in active development. Recovering 3D anisotropy along with 3D density using for-

ward models that account for diffraction effects in the propagation of polarized light would be an

important area of research for the future.

We demonstrated the potential of QLIPP for sensitive detection of orientation of axon bundles

(Figure 5 and Figure 6). Combining these measurements with tractography algorithms can facilitate

analysis of mesoscale connectivity. Tractography algorithms developed for diffusion weighted-MRI

measurements (Zhan et al., 2015) have been adapted to brain images from a lower-resolution polar-

ization microscope (~60 mm) (Axer et al., 2011c). We envision that combining tractography algo-

rithms with anisotropy measured at optical resolution, which reports the orientation of ensemble of

axons, will enable development of probabilistic models of connectivity. Although multiple methods

for tracing connectivity in the mouse brain at mesoscale (cellular level) have been developed

(Ragan et al., 2012; Oh et al., 2014; Zeng, 2018), they have not yet been extended to human

brain. The volume of fetal human brain during third trimester ð105mm3 � 4� 10
5mm3Þ is 3 orders of

magnitude larger than the volume of an adult mouse brain (~1.5 � 102 mm3). Our data show that

label-free measurement of myelination and axon tract orientation is possible with ~1.5 mm diffrac-

tion-limited resolution over the scale of whole fetal human brain sections. Further work in streamlin-

ing sample preparation, imaging, data curating, and model training would be required to apply

QLIPP to large scale organs.

Our multi-channel 2.5D deep learning models are designed for efficient analysis of multi-dimen-

sional 3D data. In contrast to earlier work on image translation that demonstrated 2D prediction

(Christiansen et al., 2018; Rivenson et al., 2018a; Rivenson et al., 2018b), our 2.5D architecture is

inspired by Han, 2017 and provides comparable prediction accuracy at a lower computational cost

than using 3D U-Net. Pearson correlation coefficient in 3D for nuclei prediction from brightfield

images is 0.87 vs. ~0.7 reported in Ounkomol et al., 2018. In comparison to Christiansen et al.’s 2D

translation model (Christiansen et al., 2018) where the image translation was formulated as a pixel-

wise classification task of 8-bit classes, our 2.5D model formulates the image translation as a regres-

sion task that allows prediction of much larger dynamic range of gray levels. While training a single

model that predicts multiple structures seems appealing, this more complex task requires increasing

the model size with the trade-off of longer model training time. Our modeling strategy to train one

model to predict only one target allowed us to use significantly smaller models that can fit into the

memory of a single GPU for faster training.

We systematically evaluated how the dimensions and input channels affect the prediction accu-

racy. Compared to previous work that predict fluorescence images from single label-free contrast

(Ounkomol et al., 2018; Christiansen et al., 2018; Rivenson et al., 2018a; Rivenson et al.,

2018b), we show that higher prediction accuracy can be achieved by combining multiple label-free

contrasts. Additionally, we report the image normalization strategy required to predict large images

stitched from smaller fields of view from multi-channel inputs.

The image quality metrics we use to evaluate the model performance depends on the accuracy of

the prediction but also the noise in the target images. A more direct comparison of model perform-

ances on the same dataset would be useful in the future. Further, the more flexible 2.5D network

allows for application to image data that has only a few Z-slices without up- or down-sampling the

data, making it useful for analysis of microscopic images that often has variable number of Z-slices.

Even though we focus on image translation in this work, the same 2.5D network can be used for 3D

segmentation. 3D segmentation using the 2.5D network bears additional advantages over 3D net-

work, because sparse annotation can be done on a subset of slices sampled from the 3D volume,

while 3D network requires all the slices in the input volume to be annotated. The flexibility of sparse

annotation allows for better sampling of structural variation in the data with the same effort on man-

ual annotation.
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A common shortfall of machine learning approaches is that they tend not to generalize well. We

have shown that our data normalization and training process leads to models of myelination that

generalize to two developmental time points. In contrast to reconstruction using physical models,

the errors or artifacts in the prediction by machine learning models are highly dependant on the

quality of training data and their similarity to the new input data. Therefore, prediction errors made

by the machine learning models are difficult to identify in the absence of ground truth. Extending

the image translation models such that they predict not just the value, but also provide estimate of

the confidence interval of output values, is an important area of research.

Conclusion
In summary, we report reconstruction of specimen density and anisotropy using quantitative label-

free imaging with phase and polarization (QLIPP) and prediction of fluorescence distribution from

label-free images using deep convolutional neural networks. Our reconstruction algorithms (https://

github.com/mehta-lab/reconstruct-order) and computationally efficient U-Net variants (https://

github.com/czbiohub/microDL) facilitate measurement and interpretation of physical properties of

the specimens. We reported joint measurement of phase, retardance, and orientation with diffrac-

tion-limited spatial resolution in 3D dividing cells and in 2D brain tissue slices. We demonstrated

visualization of diverse biological structures: axon tracts and myelination in mouse and human brain

slices, and multiple organelles in cells. We demonstrated accurate prediction of fluorescent images

from density and anisotropy with multi-contrast 2.5D U-Net model. We demonstrated strategies for

accurate prediction myelination in centimeter-scale prenatal human brain tissue slices. We showed

that inconsistent labeling of human tissue can be rescued with qualitative label-free imaging and

trained models. We anticipate that our approach will enable quantitative label-free analysis of archi-

tectural order at multiple spatial and temporal scales, particularly in live cells and clinically-relevant

tissues.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

biological sample
(M. musculus)

mouse kidney
tissue section

Thermo-Fisher Scientific Cat. # F24630

biological sample
(M. musculus)

mouse brain
tissue section

this paper mouse line maintained in
M. Han lab, see
Specimen preparation in
Materials and methods

biological sample
(H. sapiens)

developing human brain
tissue section

this paper archival tissue stored in
T. Nowakowski lab, see
Specimen preparation in
Materials and methods

chemical compound,
drug

FluoroMyelin Thermo-Fisher Scientific Cat. # F34652

software, algorithm reconstruction algorithms https://github.com/
mehta-lab/reconstruct-order

software, algorithm 2.5 U-Net https://github.com/
czbiohub/microDL

software, algorithm Micro-Manager 1.4.22 https://micro-manager.org/ RRID:SCR_016865

software, algorithm OpenPolScope https://openpolscope.org/

Model of image formation
We describe dependence of the polarization resolved images on the specimen properties using

Stokes vector representation of partially polarized light (Bass et al., 2009, Ch.15). This representa-

tion allows us to accurately measure the polarization sensitive contrast in the imaging volume. First,

we retrieve the coefficients of the specimen’s Mueller matrix that report linear retardance, slow-axis

orientation, transmission (brightfield), and degree of polarization. For brevity, we call them ‘Mueller
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coefficients’ of the specimen in this paper. Mueller coefficients are recovered from the polarization-

resolved intensities using the inverse of an instrument matrix that captures how Mueller coefficients

are related to acquired intensities. Assuming that the specimen is mostly transparent, more specifi-

cally satisfies the first Born approximation (Born and Wolf, 2013), we reconstruct specimen phase,

retardance, slow axis, and degree of polarization stacks from stacks of Mueller coefficients. The

assumption of transparency is generally valid for the structures we are interested in, but does not

necessarily hold when the specimen exhibits significant absorption or diattenuation. To ensure that

the inverse computation is robust, we need to make judicious decisions about the light path, calibra-

tion procedure, and background estimation. A key advantage of Stokes instrument matrix approach

is that it easily generalizes to other polarization diverse imaging methods - A polarized light micro-

scope is represented directly by a calibrated instrument matrix.

For sensitive detection of retardance, it is advantageous to suppress isotropic background by illu-

minating the specimen with elliptically polarized light of opposite handedness to the analyzer in the

detector side (Shribak and Oldenbourg, 2003). For experiments reported in this paper, we

acquired data by illuminating the specimen sequentially with right-handed circular and elliptical

polarized light and analyzed the transmitted left-handed circular polarized light in detection.

Forward model: specimen properties ! Mueller coefficients
We assume a weakly scattering specimen modeled by properties of linear retardance r, orientation

of the slow axis w, transmission t, and depolarization p. The Mueller matrix of the specimen can be

expressed as a product of two Mueller matrices, Mt, accounting for the effect of transmission and

depolarization from the specimen, and Mr, accounting for the effect of retardance and orientation

of the specimen. The expression of Mr is a standard Mueller matrix of a linear retarder that can be

found in Bass et al., 2009, Ch.14, and Mt is expressed as

Mt ¼

t 0 0 0

0 tp 0 0

0 0 tp 0

0 0 0 tp

2

6

6

6

4

3

7

7

7

5

: (1)

With Mt and Mr, the Mueller matrix of the specimen is then given by

Msm ¼Mt �Mr ¼

m0 0 0 0

0 � � m1

0 � � m2

0 �m1 �m2 m3

2

6

6

6

4

3

7

7

7

5

; (2)

where * signs denote irrelevant entries that cannot be retrieved under our experiment scheme.

The relevant entries that are retrievable can be expressed as a vector of Mueller coefficients, which

is

m¼

m0

m1

m2

m3

2

6

6

6

4

3

7

7

7

5

¼

t

tpsin2!sin�

�tpcos2!sin�

tpcos�

2

6

6

6

4

3

7

7

7

5

(3)

This vector is coincidentally the Stokes vector when right-handed circularly polarized light passing

through the specimen. The aim of the measurement we describe in the following paragraphs is to

accurately measure these Mueller coefficients at each point in the image plane of the microscope by

illuminating the specimen and detecting the scattered light with mutually independent polarization

states. Once a map of these Mueller coefficients has been acquired with high accuracy, the specimen

properties can be retrieved from the above set of equations.

Forward model: Mueller coefficients ! intensities
To acquire the above Mueller coefficients, we illuminate the specimen with a series of right-handed

circularly and elliptically polarized light (Shribak and Oldenbourg, 2003). The Stokes vectors of our

sequential illumination states are given by,
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Si ¼

1

0

0

1

2

6

6

6

4

3

7

7

7

5

i¼RCP

;

1
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0
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2
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i¼0

;

1

�sin�

0
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2

6

6

6

4

3

7

7

7
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i¼45

;

1

0

sin�

cos�

2

6

6

6

4

3

7

7

7

5

i¼90

;

1

0

�sin�

cos�

2

6

6

6

4

3

7

7

7

5

i¼135

(4)

where � is the compensatory retardance controlled by the LC that determines the ellipticity of

the four elliptical polarization states.

After our controlled polarized illumination has passed through the specimen, we detect the left-

handed circular polarized light by having a left-handed circular analyzer in front of our sensor. We

express the Stokes vector before the sensor as

Ssensor;i ¼MLCAMsmSi; (5)

where i¼ fRCP;0;45;90;135g depending on the illumination states, and MLCA is the Muller matrix

of a left-handed circular analyzer (Bass et al., 2009, Ch.14). The detected intensity images are the

first component of Stokes vector at the sensor under different illuminations (Ii ¼ ½Ssensor;i�0). Stacking

the measured intensity images to form a vector

I¼

IRCP

I0

I45

I90

I135

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

; (6)

we can link the relationship between the measured intensity and the specimen vector through an

‘instrument matrix’ A as

I¼Am; (7)

where

A¼

1 0 0 �1

1 sin� 0 �cos�

1 0 sin� �cos�

1 �sin� 0 �cos�

1 0 �sin� �cos�

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

: (8)

Each row of the instrument matrix is determined by the interaction between various illumination

polarization states and the specimen’s properties. Any polarization-resolved measurement scheme

can be characterized by an instrument matrix that transforms specimen’s polarization property to

the measured intensities. Calibration of the polarization imaging system is then done through cali-

brating this instrument matrix.

Computation of Mueller coefficients at image plane
Once the instrument matrix has been experimentally calibrated, the vector of Mueller coefficients

can be obtained from recorded intensities using its inverse (compare Equation 7),

m¼A
�1
I; (9)

Computation of background corrected specimen properties
We retrieved the vector of Mueller coefficients, m, by solving Equation 9. Slight strain or misalign-

ment in the optical components or the specimen chamber can lead to background that masks out

Guo et al. eLife 2020;9:e55502. DOI: https://doi.org/10.7554/eLife.55502 22 of 33

Tools and resources Neuroscience Physics of Living Systems

https://doi.org/10.7554/eLife.55502


contrast from the specimen. The background typically varies slowly across the field of view and can

introduce spurious correlations in the measurement. It is crucial to correct the vector of Mueller coef-

ficients for non-uniform background retardance that was not accounted for by the calibration pro-

cess. To correct the non-uniform background retardance, we acquired background polarization

images at the empty region of the specimen. We then transformed specimen (i ¼ sm) and back-

ground (i ¼ bg) vectors of Mueller coefficients as follows,

m1
i ¼ mi

1
=mi

3
;

m2
i ¼ mi

2
=mi

3
;

DOPi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmi
1
Þ2 þðmi

2
Þ2 þðmi

3
Þ2

q

mi
0

;

(10)

We then reconstructed the background corrected properties of the specimen: brightfield (BF),

retardance (r), slow axis (w), and degree of polarization (DOP) from the transformed specimen and

background vectors of Mueller coefficients msm and m
bg using the following equations:

m1 ¼m1
sm�m1

bg (11)

m2 ¼m2
sm�m2

bg (12)

BF¼msm
0
=mbg

0
(13)

�¼ arctan2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1
2 þm2

2

p

� �

(14)

!¼
1

2
arctan2

m1

�m2

� �

(15)

DOP¼DOPsm=DOPbg (16)

When the background cannot be completely removed using the above background correction

strategy with a single background measurement, (i.e. the specimen has spatially varying background

retardance), we applied a second round of background correction on the measurements. In this sec-

ond round, we estimated the residual transformed background Mueller coefficients by fitting a low-

order 2D polynomial surface to the transformed specimen Mueller coefficients. Specifically, we

downsampled each 2048 � 2048 image to 64 � 64 image with 32 � 32 binning. We took the median

of each 32 � 32 bin to be each pixel value in the downsampled image. We then fitted a second-

order 2D polynomial surface to the downsampled image of each transformed specimen Mueller

coefficient to estimate the residual background. With this newly estimated background, we per-

formed another background correction. The effects of two rounds of the background corrections are

shown in Figure 2—figure supplement 2.

Phase reconstruction
As seen from Equation 3, the first component in the vector of Mueller coefficients, m0, is equal to

the total transmitted intensity of electric field in the focal plane. Assuming a specimen with weak

absorption, the intensity variations in a Z-stack encode the phase information via the transport of

intensity (TIE) equation (Streibl, 1984). In the following, we leverage weak object transfer function

(WOTF) formalism (Streibl, 1985; Noda et al., 1990; Claus et al., 2015; Jenkins and Gaylord,

2015a; Jenkins and Gaylord, 2015b; Soto et al., 2017) to retrieve 2D and 3D phase from this TIE

phase contrast and describe the corresponding inverse algorithm.

Forward model for phase reconstruction
The linear relationship between the 3D phase and the through focus brightfield intensity was estab-

lished in Streibl, 1985 with Born approximation and weak object approximation. In our context, we

reformulated as (Streibl, 1985; Noda et al., 1990; Soto et al., 2017)

m0ðrÞ ¼m0;dcþfðrÞ
r hfðrÞþ�ðrÞ
r h�ðrÞ; (17)

where r¼ ðr?; zÞ ¼ ðx;y; zÞ is the 3D spatial coordinate vector, m0;dc is the constant background of

m0 component, 
r denotes convolution operation over r coordinate, F refers to phase, m refers to

absorption, hfðrÞ is the phase point spread function (PSF), and h�ðrÞ is the absorption PSF. Strictly,
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F and m are the real and imaginary part of the scattering potential scaled by Dz=2k, where Dz is the

axial pixel size of the experiment and k is the wavenumber of the incident light. When the refractive

index of the specimen and that of the environment are close, the real and imaginary scaled scatter-

ing potential reduce to two real quantity, phase and absorption.

When specimen’s thickness is larger than the depth of field of the microscope (usually in experi-

ments with high NA objective), the brightfield intensity stack contains 3D information of specimen’s

phase and absorption. Without making more assumptions or taking more data, solving 3D phase

and absorption from 3D brightfield is ill-posed because we are solving two unknowns from one mea-

surement. Assuming the absorption of the specimen is negligible (Noda et al., 1990; Jenkins and

Gaylord, 2015b; Soto et al., 2017), which generally applies to transparent biological specimens, we

turn this problem into a linear deconvolution problem, where 3D phase is retrieved.

When specimen’s thickness is smaller than the depth of field of the microscope (usually in experi-

ments with low NA objective), the whole 3D intensity stack is coming from merely one effective 2D

absorption and phase layer of specimen. We rewrite Equation 17 as (Claus et al., 2015;

Jenkins and Gaylord, 2015a)

m0ðrÞ ¼m0;dc þ fðr?Þ
r?
hfðr?; zÞ

þ �ðr?Þ
r?
h�ðr?; zÞ:

(18)

In this situation, we have multiple 2D defocused measurements to solve for one layer of 2D

absorption and phase of the specimen.

Inverse problem for phase reconstruction
With the linear relationship between the first component of the Mueller coefficients vector and the

phase, we then formulated the inverse problem to retrieve 2D and 3D phase of the specimen.

When we recognize the specimen as a 3D specimen, we then use Equation 17 and drop the

absorption term to estimate specimen’s 3D phase through the following optimization algorithm:

min
fðrÞ

X

r

m0
0
ðrÞ�fðrÞ
r hfðrÞ

�

�

�

�

2
þt fRegðfðrÞÞ; (19)

where m0
0
ðrÞ ¼m0ðrÞ�m0;dc, t f is the regularization parameter for applying different degree of

denoising effect, and the regularization term depending on the choice of either Tikhonov or aniso-

tropic total variation (TV) denoiser is expressed

RegðfðrÞÞ ¼

X

r

jfðrÞj2; Tikhonov

X

r

X

i¼x;y;z

qifðrÞj j; TV

8

>

<

>

:

When using Tikhonov regularization, this optimization problem has an analytic solution that has

previously described by Noda et al., 1990; Jenkins and Gaylord, 2015b; Soto et al., 2017. As for

TV regularization, we adopted alternating minimization algorithm that is proposed and applied to

phase imaging in Wang et al., 2008 and Chen et al., 2018, respectively, to solve the problem.

If we consider the specimen as a 2D specimen, we then turn Equation 18 into the following opti-

mization problem:

min
f;�ðr?Þ

X

r

m0
0
ðrÞ�fðr?Þ
r?

hfðr?; zÞ��ðr?Þ
r?

�

�

h�ðr?; zÞ
�

�

2
þt fRegðfðr?ÞÞþ t �Regð�ðr?ÞÞ;

(20)

where we have an extra regularization parameter t � here for the absorption. When Tikhonov reg-

ularization is selected, the analytic solution similar to the one described in Chen et al., 2016 is

adopted.

When the signal to noise ratio of the brightfield stack is high, Tikhonov regularization gives satis-

factory reconstruction in a single step with computation time proportional to the size of the image

stack. However, when the noise is high, Tikhonov regularization can lead to high- to medium-fre-

quency artifacts. Using iterative TV denoising algorithm, we can trade-off reconstruction speed with

robustness to noise.
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Specimen preparation
Mouse kidney tissue slices were purchased (Thermo-Fisher Scientific). In the mouse kidney tissue

slice, F-actin was labeled with Alexa Fluor 568 phalloidin and nuclei was labeled with DAPI. U2OS

cells were seeded and cultured in a chamber made of two strain-free coverslips that allowed for gas

exchange.

Mouse brain section
The mice were anesthetized by inhalation of isoflurane in a chemical fume hood and then perfused

with 25 ml phosphate-buffered saline (PBS) into the left cardiac ventricle and subsequently with 25

ml of 4% paraformaldehyde (PFA) in the PBS solution. Thereafter, the brains were post-fixed with

4% PFA for 12–16 hr and then transferred to 30% sucrose solution at the temperature of 4˚C for 2–3

days until the tissue sank to the bottom of the container. Then, the brains were embedded in a tis-

sue freezing medium (Tissue-Tek O.C.T compound 4583, Sakura) and kept at the temperature of

�80˚C. Cryostat-microtome (Leica CM 1850, Huston TX) was used for preparing the tissue sections

(12 and 50 mm) at the temperature of �20˚C and the slides were stored at the temperature of �20˚C

until use. In order to analyze myelination with QLIPP, the OCT on the slides were melted by keeping

the slides at 37˚C for 15–30 min. Then, the slides were washed in PBST (PBS+Tween-20 [0.1%]) for

five minutes and then washed in PBS for five minutes and coversliped by mounting media (F4680,

FluromountTM aqueousm sigma).

Prenatal human brain section
De-identified brain tissue samples were received with patient consent in accordance with a protocol

number approved by the Human Gamete, Embryo, and Stem Cell Research Committee (institutional

review board) at the University of California, San Francisco. Human prenatal brain samples were

fixed with 4% paraformaldehye in phosphate-buffered solution (PBS) overnight, then rinsed with

PBS, dehydrated in 30% sucrose/OCT compound (Agar Scientific) at 4˚C overnight, then frozen in

OCT at �80˚C. Frozen samples were sectioned at 12 mm and mounted on microscope slides. Sec-

tions were stained directly with red FluoroMyelin (Thermo-Fisher Scientific, 1:300 in PBS) for 20 min

at room temperature, rinsed three times with PBS for 10 min each, then mounted with ProLong

Gold antifade (Invitrogen) with a coverslip.

Image acquisition and registration
We implemented LC-PolScope on a Leica DMi8 inverted microscope with Andor Dragonfly confocal

for multiplexed acquisition of polarization-resolved images and fluorescence images. We automated

the acquisition using Micro-Manager v1.4.22 and OpenPolScope plugin for Micro-Manager that con-

trols liquid crystal universal polarizer (custom device from Meadowlark Optics, specifications avail-

able upon request).

We multiplexed the acquisition of label-free and fluorescence volumes. The volumes were regis-

tered using transformation matrices computed from similarly acquired multiplexed volumes of 3D

matrix of rings from the ARGO-SIM test target (Argolight).

In transmitted light microscope, the resolution increases and image contrast decreases with

increased numerical aperture of illumination. We used 63 � 1.47 NA oil immersion objective (Leica)

and 0.9 NA condenser to achieve a good balance between image contrast and resolution. The

mouse kidney tissue slice was imaged using 100 ms exposure for five polarization channels, 200 ms

exposure for 405 nm channel (nuclei) at 1.6 mW in the confocal mode, 100 ms exposure for 561 nm

channel (F-actin) at 2.8 mW in the confocal mode. The mouse brain slice were imaged using 30 ms

exposure for five polarization channels. U2OS cells were imaged using 50 ms exposure for five polar-

ization channels. For training the neural network, we acquired 160 non-overlapping

2048 � 2048 � 45 z-stacks of the mouse kidney tissue slice with Nyquist sampled voxel size 103 nm

� 103 nm �250 nm. Human brain sections were imaged with a 10 � 0.3 NA objective and 0.2 NA

condenser with a 200 ms exposure for polarization channels, 250 ms exposure for 568 channel (Fluo-

roMyelin) in the epifluorescence mode. The full brain sections were imaged, approximately 200

images depending on the size of the section, with 5 Z-slices at each location. The registered images

mouse kidney tissue slice are available in the BioImage Archive (https://www.ebi.ac.uk/biostudies/

BioImages/studies/S-BIAD25).
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Data preprocessing for model training
The images were flat-field corrected. For training 3D models, the image volumes were upsampled

along Z to match the pixel size in XY using linear interpolation. The images were tiled into

256 � 256 patches with a 50% overlap between patches for 2D and 2.5D models. The volumes were

tiled into 128 � 128 � 96 patches for 3D models with a 25% overlap along XYZ. Tiles that had suffi-

cient fluorescence foreground (2D and 2.5D: 20%, 3D: 50%) were used for training. Foreground

masks were computed by summing the binary images of nuclei and F-actin obtained from Otsu

thresholding in the case of mouse kidney tissue sections, and binary images of FluoroMyelin for the

human brain sections. Images of human brain sections were visually inspected and curated to

exclude images containing quenching artifacts as shown in Figure 7 before training.

Proper data normalization is essential for predicting the intensity correctly across different fields-

of-views. We found the common normalization scheme where each image is normalized by its mean

and standard deviation does not produce correct intensity prediction (Figure 7—figure supplement

1). We normalized the images on a per dataset basis to correct the batch variation in the staining

and imaging process across different datasets. To balance contributions from different channels dur-

ing training of multi-contrast models, each channel needs to be scaled to similar range. Specifically,

for each channel, we subtracted its median and divided by its inter-quartile range (range defined by

25% and 75% quantiles) of the foreground pixel intensities. We used inter-quartile range to normal-

ize the channel because standard deviation underestimates the spread of the distribution of highly

correlated data such as pixels in images.

Neural network architecture
We experimented with 2D, 2.5D and 3D versions of U-Net models Figure 3—figure supplement 1.

Across the three U-Net variants, each convolution block in the encoding path consists of two repeats

of three layers: a convolution layer, ReLU non-linearity activation, and a batch normalization layer.

We added a residual connection from the input of the block to the output of the block to facilitate

faster convergence of the model (Milletari et al., 2016; Drozdzal et al., 2016). 2 � 2 downsampling

is applied with 2 � 2 convolution with stride two at the end the each encoding block. On the decod-

ing path, the feature maps were passed through similar convolution blocks, followed by up-sampling

using bilinear interpolation. Feature maps output by every level of encoding path were concatenated

to feature maps in the decoding path at corresponding levels. The final output block had a convolu-

tion layer only.

The encoding path of our 2D and 2.5D U-Net consists of five layers with 16, 32, 64, 128 and 256

filters respectively, while the 3D U-Net consists of four layers with 16, 32, 64 and 128 filters each due

to its higher memory requirement. The 2D and 3D versions use convolution filters of size of 3 � 3

and 3 � 3 � 3 with a stride of 1 for feature extraction and with a stride of 2 for downsampling

between convolution blocks.

The 2.5D U-Net has the similar architecture as the 2D U-Net with following differences:

1. The 3D features maps are converted into 2D using skip connections that consist of a N � 1 �
1 valid convolution, where N = 3, 5, 7 is the number of slices in the input.

2. Convolution filters in the encoding path are N � 3 � 3.
3. In the encoding path, the feature maps are downsampled across blocks using N � 2 � 2 aver-

age pooling.
4. In the decoding path, the feature maps were upsampled using bilinear interpolation by a fac-

tor of 1 � 2 � 2 and the convolution filters in the decoding path are of shape 1 � 3 � 3.

The 2D , 2.5D, 3D network with single channel input consisted of 2.0 M, 4.8M, 1.5M learnable

parameters, respectively.

Model training and inference
We randomly split the images in groups of 70%, 15%, and 15% for training, validation and test. The

split are kept consistent across all model training to make the results comparable. All models are

trained with Adam optimizer, L1 loss function, and a cyclic learning rate scheduler with a min and

max learning rate of 5 � 10�5 and 6 � 10�3 respectively. The 2D, 2.5D, 3D network were trained on

mini-batches of size 64, 16, and four to accommodate the memory requirements of each model.

Models were trained until there was no decrease in validation loss for 20 epochs. The model with
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minimal validation loss was saved. Single channel 2D models converged in 6 hr, 2.5D model con-

verged in 47 hr and the 3D model converged in 76 hr on NVIDIA Tesla V100 GPU with 32 GB RAM.

As the models are fully convolutional, model predictions were obtained using full XY images as

input for the 2D and 2.5D versions. Due to memory requirements of the 3D model, the test volumes

were tiled along x and y while retaining the entire z extent (patch size: 512 � 512 � 96) with an over-

lap of 32 pixels along X and Y. The predictions were stitched together by linear blending of the

model predictions across the overlapping regions. Inference time for a single channel U-Net model

was 105, 3 and 18 seconds/frame for 2D, 2.5D, and 3D models respectively, with 2048 � 2048 pixels

to a frame.

Model evaluation
Pearson correlation and structural similarity index (SSIM) along the XY, XZ and XYZ dimensions of

the test volumes were used for evaluating model performance.

The Pearson correlation coefficient between a target image T and a prediction image P is defined

as

rðT ;PÞ ¼
sTP

sTsP

(21)

where sTP is the covariance of T and P, and sT and sP are the standard deviations of T and P

respectively.

SSIM compares two images using a sliding window approach, with window size N � N (N � N � N

for XYZ). Assuming a target window t and a prediction window p,

SSIMðt;pÞ ¼
2�t�p þ c1
� �

2stp þ c2
� �

�2
t þ�2

p þ c1

� �

s2
t þs2

p þ c2

� � (22)

where c1 ¼ ð0:01LÞ2 and c2 ¼ ð0:03LÞ2, and L is the dynamic range of pixel values. Mean and vari-

ance are represented by m and s2 respectively, and the covariance between t and p is denoted stp.

We use N ¼ 7. The total SSIM score is the mean score calculated across all windows, SSIM

ðT;PÞ ¼ 1

M

P

SSIMðt;pÞ for a total of M windows. For XY and XZ dimensions, we compute one test

metric per plane and for XYZ dimension, we compute one test metric per volume.

Importantly, it is essential to scale the the model prediction back to the original range before nor-

malization for correct calculation of target-prediction SSIM. This is because unlike Pearson correla-

tion coefficient, SSIM is not a scale-independent metrics.
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Appendix 1

Glossary

. QLIPP: Quantitative label-free imaging with phase and polarization.

. specimen phase: optical path length (OPL) of the specimen that is proportional to the product of
its thickness and difference in the refractive index relative to the surrounding medium.

. specimen anisotropy: angular anisotropy in OPL, which refers to retardance and slow axis orienta-
tion collectively.

. wavefront: a surface in 3D space over which the time of propagation of light from the source is
constant.

. phase of a wavefront: time delay of the wavefront, which is affected by the specimen phase.

. retardance: The difference in OPL induced by anisotropy specimen due to polarization-depen-
dent refractive index.

. slow axis orientation: the orientation along which the refractive index of an anisotropic material is
the highest. The light polarized along the slow axis experiences the highest phase delay relative
to the light polarized along the other axes.

. U-Net: A fully convolution network consisting of a contracting and an expansive path, giving the
architecture its U-shape.

. 2D (Slice!Slice) U-Net: A U-Net model, using 3� 3 convolution filters, that predicts a 2D slice
from a 2D input slice.

. 2.5D (Stack!Slice) U-Net: A U-Net model, using N � 3� 3 convolution filters in the contracting
path and 1� 3� 3 in the expansive path, that predicts a 2D slice from a small stack of N; ðN ¼
3; 5; 7Þ input slices.

. 3D (Stack!Stack) U-Net: A U-Net model, using 3� 3� 3 convolution filters, that predicts a 3D
stack from a 3D input stack.

. Normalization per tile: The data used for training neural networks are split into tiles. In this nor-
malization strategy, each time is normalized independently to have zero mean and unit variance.

. Normalization per field of view: In this normalization strategy, each field of view (which consists of
16 tiles) is normalized to have zero mean and unit variance. The variations across tiles capture var-
iations in the input and target data over the field of view.

. Normalization per dataset: In this normalization strategy, whole training set is normalized to have
zero mean and unit variance. The variations across tiles capture variations in the input and target
data over the entire dataset, for example, a large brain slice.

. SSIM: The Structural SIMilarity (SSIM) index is a method for measuring the similarity between two
images.

Guo et al. eLife 2020;9:e55502. DOI: https://doi.org/10.7554/eLife.55502 33 of 33

Tools and resources Neuroscience Physics of Living Systems

https://doi.org/10.7554/eLife.55502

