

000 XYZ-TEXT2SQL-R1: SIMPLE REWARDS, STRONG 001 REASONING IN TEXT-TO-SQL 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 009 ABSTRACT 010

011 Translating natural language into SQL (Text2SQL) is a longstanding challenge
012 at the intersection of natural language understanding and structured data access.
013 While large language models (LLMs) have significantly improved fluency in SQL
014 generation, producing correct and executable SQL, particularly for complex queries,
015 remains a bottleneck. We present **XYZ-Text2SQL-R1**, a reinforcement learning
016 (RL) framework and model family designed to generate accurate, executable SQL
017 using a lightweight reward signal based solely on execution correctness. Our
018 approach avoids brittle intermediate supervision and complex reward shaping,
019 promoting stable training and alignment with the end task. Combined with care-
020 fully curated data, strong supervised initialization, and effective training practices,
021 **XYZ-Text2SQL-R1** achieves state-of-the-art execution accuracy across six diverse
022 Text2SQL benchmarks and ranks among the leading entries on the BIRD leader-
023 board. Notably, our 7B model outperforms prior 70B-class systems, highlighting
024 the framework’s scalability and efficiency. We further demonstrate inference-time
025 robustness through simple extensions like value retrieval and majority voting. Ex-
026 tensive experiments and ablation studies offer both positive and negative insights,
027 providing practical guidance for future Text2SQL research.

028 1 INTRODUCTION 029

030 Translating natural language questions into SQL queries, commonly known as **Text2SQL**, is a core
031 challenge in natural language understanding and human-computer interaction. A robust solution
032 would enable non-technical users to query structured databases using natural language, thereby
033 democratizing access to data analytics.

034 Recent advances in large language models (LLMs) have significantly improved the fluency and
035 surface-level coverage of Text2SQL systems Ma et al. (2025); Pourreza et al. (2025); Zhai et al.
036 (2025); Papicchio et al. (2025). However, generating *correct and executable* SQL, especially for
037 complex queries involving multi-table joins, nested logic, and nuanced schema understanding, remains
038 difficult. Most existing approaches rely on supervised fine-tuning over (question, SQL) pairs Li et al.
039 (2025); Gao et al. (2024), which often fail to promote the intermediate reasoning steps essential for
040 reliable and generalizable SQL generation.

041 We introduce **XYZ-Text2SQL-R1**, a reinforcement learning (RL) framework and model family for
042 generating high-quality executable SQL from natural language. It uses a lightweight reward based
043 solely on execution correctness, avoiding brittle partial rewards while promoting stable training and
044 alignment with the end goal. Combined with best practices in data filtering, synthetic generation, and
045 model-based selection, **XYZ-Text2SQL-R1** demonstrates that high-quality data, strong supervised ini-
046 tialization, and a simple reward signal together yield accurate, scalable, and robust Text2SQL models.

047 **Our main contributions are:**

- 049 • **Simple and Scalable RL for Text2SQL:** We develop a lightweight RL formulation using execution-
050 only rewards that generalizes well across model sizes and benchmarks, enabling stable training and
051 strong performance without complex reward design.
- 052 • **Comprehensive Benchmark Leadership:** Across six diverse Text2SQL benchmarks, **XYZ-**
053 **Text2SQL-R1** consistently outperforms both SQL-specialized and general-purpose LLMs, including
GPT-4o OpenAI (2023) and DeepSeek-V3 Liu et al. (2024), demonstrating robust generalization

054 across domains. On the BIRD leaderboard, our models are positioned among the leading entries:
 055 the 32B model achieves 71.83% execution accuracy, which further improves to 73.84% when
 056 applying self-consistency. Among models with publicly available details, XYZ-Text2SQL-R1
 057 ranks first, ensuring transparency, reproducibility, and accessibility. Notably, our 7B model even
 058 surpasses prior 70B-class systems Zhai et al. (2025), highlighting the scalability and efficiency of
 059 our approach.

- 060 • **Data and Training Strategies That Matter:** We present best practices for data filtering, synthetic
 061 data generation, and model-based selection. Additionally, we demonstrate the value of *online RL*
 062 *training*, which leverages strong supervised checkpoints and well-designed prompts to further
 063 improve performance. Combined with high-quality data and a simple execution-driven reward,
 064 these practices produce accurate, scalable, and robust Text2SQL models.
- 065 • **Broad and Rigorous Evaluation:** We evaluate XYZ-Text2SQL-R1 across six Text2SQL datasets,
 066 covering a range of schema complexity and query difficulty. This provides strong evidence of
 067 generalization and guards against overfitting to any single dataset or evaluation format.
- 068 • **Inference-Time Robustness and Extensibility:** XYZ-Text2SQL-R1 supports simple inference-
 069 time techniques, such as value retrieval and majority voting, that further improve accuracy with
 070 minimal system overhead, demonstrating its practicality for real-world deployment.
- 071 • **Empirical Insights for the Community:** We report both successful and negative findings, offering
 072 transparent and actionable insights to guide future RL-based Text2SQL research/development.

073 2 RELATED WORK

074 The research presented in XYZ-Text2SQL-R1 draws inspiration from and aims to advance two
 075 key areas of investigation: the development of robust Text2SQL systems and the refinement of
 076 reinforcement learning techniques for sophisticated language model reasoning.

077 **Reinforcement Learning for LLM Reasoning.** Recent research has demonstrated the potential of
 078 RL techniques to significantly enhance the reasoning capabilities of LLMs OpenAI et al. (2025);
 079 Lambert et al. (2024); OpenAI et al. (2024); Guo et al. (2019). By providing explicit rewards for
 080 logical correctness and step-wise reasoning, RL enables models to autonomously discover effective
 081 problem-solving strategies, often mirroring structured human reasoning Xu et al. (2025); Wang et al.
 082 (2025); Yang et al. (2025b). Applications span mathematical problem solving (where RL fine-tuning
 083 on step-by-step correctness or final answer accuracy yields substantial improvements Shao et al.
 084 (2024); OpenAI et al. (2024)) and code generation, where preference optimization and RL from human
 085 feedback have led to greater code validity and efficiency Wang et al. (2025); Yang et al. (2025b).

086 Most prior methods are built on top of policy gradient algorithms such as Proximal Policy Optimization
 087 (PPO) Schulman et al. (2017) or, more recently, Group Relative Policy Optimization (GRPO) Guo
 088 et al. (2025); Yang et al. (2024b); Dang & Ngo (2025), which compares groups of generated
 089 responses rather than evaluating them in isolation. This approach is particularly powerful for reasoning
 090 tasks with multiple plausible solutions, enabling the model to build a deeper understanding of what
 091 constitutes high-quality reasoning Kumar et al. (2025). For example, GRPO has enabled models
 092 like DeepSeek-R1-Zero to develop complex reasoning skills such as multi-step chain-of-thought
 093 simply by being rewarded for correct final answers Guo et al. (2025). The effectiveness of these RL
 094 frameworks often hinges on carefully designed preference datasets and reward models that accurately
 095 reflect the subtleties of logical reasoning. Our work draws on these insights, by adapting GRPO for
 096 the Text2SQL domain and focusing the reward signal on final executable correctness, encouraging
 097 the model to reason through the full compositional structure of the query.

098 **Text-to-SQL.** The Text2SQL task has seen remarkable progress over the years Zhu et al. (2024b).
 099 Early systems were built on rule-based approaches and handcrafted grammars, but proved brittle
 100 when faced with linguistic ambiguity or complex schema variation Androutsopoulos et al. (1995); Li
 101 & Jagadish (2014). The advent of neural sequence-to-sequence models helped automate parts of the
 102 semantic parsing process, though such models often required elaborate schema encoders and strong
 103 supervision Guo et al. (2019); Wang et al. (2021).

104 More recently, the generalization power of LLMs has revolutionized the field, as demonstrated by
 105 numerous works leveraging pre-trained LLMs for template-free SQL generation Singh et al. (2025);
 106 Gao et al. (2023); Li et al. (2024). LLMs often exhibit basic SQL competence on “out-of-the-box”
 107 evaluation, but their performance on complex, multi-table queries remains limited unless explicit

108 compositional reasoning is encouraged Wei et al. (2023); Shao et al. (2024); Guo et al. (2025);
 109 OpenAI et al. (2024). This has motivated the development of techniques such as Chain-of-Thought
 110 prompting Tai et al. (2023), query decomposition Eyal et al. (2023), optimization Zhai et al. (2025), as
 111 well as dynamic schema linking and execution-based feedback Hong et al. (2024); Deng et al. (2025).
 112

113 Within this landscape, there is growing interest
 114 in RL-based approaches for Text2SQL, often
 115 building on structured, multi-component reward
 116 functions that aggregate execution feedback,
 117 syntactic validity, partial string overlap, schema
 118 conformance, and more Pourreza et al. (2025);
 119 Ma et al. (2025); Papicchio et al. (2025). How-
 120 ever, such complex reward engineering risks
 121 encouraging superficial reward hacking, as ob-
 122 served in RL for semantic parsing Skalse et al. (2022). In contrast, our work advocates for a simpler,
 123 execution-centric reward design, inspired by earlier RL-based semantic parsing approaches such as
 124 Seq2SQL Zhong et al. (2017), and demonstrates that this minimal reward scheme can be both more
 125 stable and more effective in practice.

126 Compared to most recent reasoning works Pourreza et al. (2025); Ma et al. (2025); He et al. (2025),
 127 or pairwise preference optimization Zhai et al. (2025), our method is unique in unifying a streamlined
 128 data filtering pipeline, group-based relative policy optimization, and a strictly execution-based reward
 (Table 1).

131 3 METHODOLOGY

132 Building on insights from prior RL work for language model reasoning, we design XYZ-Text2SQL-R1
 133 to pursue robust Text2SQL generation via a simple, execution-grounded RL framework.

134 **Overview of RL Approach.** We adopt GRPO Shao et al. (2024) as it has demonstrated superior
 135 efficiency and effectiveness on structured reasoning tasks, making it an ideal match for Text2SQL.
 136 Applying RL in this setting is particularly necessary. SQL correctness can be directly verified against
 137 databases, providing clear and automatic reward signals. In addition, the generation process inherently
 138 involves multi-step decision making. Finally, given the scarcity of annotated data, RL allows the
 139 model to explore and generalize to novel compositional patterns beyond the training set.

140 Formally, let π_θ denote our policy model parameterized by θ . For each input text question Q
 141 with associated database schema, the model generates N candidate SQL queries (aka rollouts),
 142 $\{o_{Q,1}, \dots, o_{Q,N}\}$. Each generated query is then evaluated to provide an explicit reward signal as
 143 described in the later of the section. These per-group rollouts allow us to compute relative advantages,
 144 stabilizing learning and promoting robust policy improvement.

145 The GRPO objective is as follows:

$$146 \mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E} \left[\frac{1}{N} \sum_{i=1}^N \min \left(r_i A_i, \text{clip}(r_i, 1 - \epsilon, 1 + \epsilon) A_i \right) \right] - \beta D_{\text{KL}}(\pi_\theta \parallel \pi_{\text{ref}}),$$

147 where $r_i = \frac{\pi_\theta(o_i|Q)}{\pi_{\theta_{\text{old}}}(o_i|Q)}$ is the likelihood ratio, A_i the advantage, and D_{KL} is a KL-divergence penalty
 148 to keep the policy close to a reference (supervised fine-tuned) model Ouyang et al. (2022). In practice,
 149 ϵ and β are tuned to balance exploration and stability.

150 **Reward Model Design.** A key differentiator of XYZ-Text2SQL-R1 is its adherence to a minimal,
 151 execution-driven reward formulation. While earlier works have often sought highly elaborate reward
 152 signals (aggregating string overlap, schema conformance, partial matching, etc. Pourreza et al. (2025);
 153 Ma et al. (2025)), we find these can encourage reward hacking and brittle behaviors Skalse et al.
 154 (2022).

162 Table 2: The datasets and their volume used in the paper. For BIRD-training, spider-training/dev,
 163 their original sample sizes are 9428, 8659/1034.

Dataset	Used for Training				Used for Evaluation					
	BIRD-training	SPIDER-training	SPIDER-dev	Gretel-Synth Filtered	BIRD-dev	SPIDER-test	Spider2.0-SQLite	Spider-DK	EHR SQL	Science Benchmark
Size	8 017	6 972	985	11 811	1534	2 147	135	535	1 008	299

169 Table 3: Learning from training data (all with GRPO optimization and Qwen2.5-Coder).

Base Model	Training Data	BIRD-dev	SPIDER-test
14B-Inst	BIRD, SPIDER	64.9	86.8
14B-Inst	BIRD, SPIDER, Gretel-Synth-NonFiltered	64.6	86.4
14B-Inst	BIRD, SPIDER, Gretel-Synth-Filtered	66.5	88.3
32B-Inst	BIRD, SPIDER, Gretel-Synth-Filtered	64.9	87.7
32B-Inst	BIRD, SPIDER, Gretel-Synth-Filtered, BIRD-aug-NonFiltered	62.5	86.1
32B-Inst	BIRD, SPIDER, Gretel-Synth-Filtered, BIRD-aug-Filtered	64.9	86.8

178 Instead, we define a reward function focused solely on (1) *final execution correctness* and (2) *basic syntax validity*:

$$R = \begin{cases} 1, & \text{if the execution results exactly align with ground truth;} \\ 0.1, & \text{if syntax is correct and SQL is executable;} \\ 0, & \text{otherwise.} \end{cases}$$

185 Here, execution alignment is determined by running the model’s SQL prediction alongside the ground-
 186 truth query and matching their results using the strictest available criteria (e.g. BIRD benchmark
 187 guidelines), ensuring meaningful progress signals. Syntax validity ensures that models are not unduly
 188 penalized for benign formatting or minor structural errors when learning to compose well-formed
 189 queries. Our design is similar to math/logic RL works Xie et al. (2025); Guo et al. (2025) with extra
 190 constraints on valid SQL execution.

191 The proposed reward design enables stable, interpretable credit assignment, removing distracting or
 192 confounding partial rewards. As empirical results (Section 5) demonstrate, our streamlined approach
 193 is sufficient and preferable for high-accuracy, generalizable Text2SQL modeling.

4 LEARNINGS

197 Our iterative exploration involved experiments with diverse training and data selection strategies,
 198 yielding a variety of empirical insights. While we recognize that some of these observations may
 199 be context-specific and not universally applicable, we document them here to inform and accelerate
 200 future research in the field.

201 **Experimental Setup.** Our primary training datasets are derived from the BIRD Li et al. (2024)
 202 training set, and the training/development splits of SPIDER Yu et al. (2018). Rather than directly
 203 adopting these sources, we apply a filtering process aimed at data quality (see Table 2 and Section 4.1
 204 for details). Initial model selection is guided by performance on the BIRD-dev and SPIDER-test
 205 sets, reported via execution accuracy. As we noticed that a sole focus on these two benchmarks risks
 206 overfitting, we later broadened our evaluation suite for a more robust assessment.

207 As base models, we rely on the Qwen2.5-Coder series Hui et al. (2024), including both base, instruct
 208 and reasoning-oriented variants. Unless noted otherwise, GRPO Shao et al. (2024) is used as our
 209 default RL algorithm. RL-specific settings include a generation temperature of 0.8, a total batch size
 210 of 256 (16 rollouts each), an update batch size of 128 per GRPO step, KL penalty $\beta = 0.001$, and
 211 clip ratio $\epsilon = 0.2$ (see Section 3 for hyperparameter details).

4.1 LEARNINGS FROM TRAINING DATA

215 **The Critical Role of Filtering.** Thorough inspection of BIRD and SPIDER training splits reveals that
 many reference SQL queries in these datasets return empty results upon execution. For RL, where

216 Table 4: Learnings from training strategy (*: limited results because of the checkpoint loss)
217

218 Base Model	219 Training Strategy	220 Optimization	221 BIRD-dev	222 SPIDER-test
219 Qwen2.5-Coder-32B-Inst	220 —	221 GRPO	222 64.9	223 87.7
219 Qwen2.5-Coder-32B-Inst	220 —	221 PPO	222 63.0	223 85.7
220 Qwen2.5-Coder-32B	221 —	222 GRPO	223 64.4	224 87.3
220 Qwen2.5-Coder-32B-Inst	221 —	222 GRPO	223 64.9	224 87.7
220 QwQ-32B	221 —	222 GRPO	223 55.2	224 79.3
223 Qwen2.5-Coder-32B-Inst	224 Batch RL	225 GRPO	226 64.9	227 87.7
223 Qwen2.5-Coder-32B-Inst *	224 Online RL	225 GRPO	226 66.6	227 —
225 Qwen2.5-Coder-32B-Inst *	226 Online RL	227 GRPO	228 66.6	229 —
225 OmniSQL-32B	226 Online RL	227 GRPO	228 67.9	229 88.2
226 OmniSQL-32B	227 Online RL + Self-defined Prompt Template	228 GRPO	229 67.9	230 88.2
227 OmniSQL-32B	228 Online RL + Modified OmniSQL Prompt	229 GRPO	230 70.5	231 88.7

228
229 reward signaling is tied to execution correctness, such examples can disrupt the learning process by
230 producing spurious or uninformative rewards. We exclude these and filter out samples with execution
231 times exceeding five seconds, markedly reducing overall training time. This straightforward filtering
232 step removed about 1,400 samples from BIRD and 1,700 from SPIDER, yielding a more reliable
233 reward signal and expediting RL convergence. Table 2 provides a summary of datasets used, including
234 derived data splits.

235 **Table Enhanced Generation with Model-based Data Filtering for Synthetic Data.** We further
236 augment training data with Gretel-Synth Meyer et al. (2024), which provides schemas without
237 populated data. We use GPT-4o to produce INSERT statements per table (details in Appendix B),
238 repeatedly sampling until the reference SQL retrieves non-empty results. Distractor tables from
239 related domains are randomly added to increase schema complexity, and only queries with SQL length
240 > 160 characters and successful execution are retained for the non-filtered pool. However, naively
241 adding Gretel-Synth-NonFiltered to training reduced performance (the first section of Table 3). To
242 remedy this, we employed a model-based filtering, using our best Qwen2.5-Coder-32B-Inst-trained
243 model, and retained only queries where at least one of the ten generations (temperature = 1.0) was
244 correct. This curated Gretel-Synth-Filtered set markedly improves results.

245 **Unsuccessful Attempts at LLM-Based Data Augmentation.** Drawing inspiration from works such
246 as Yang et al. (2024c); Hu et al. (2023), we attempted to boost diversity through data augmentation,
247 prompting LLMs to paraphrase or generate complex questions given a schema, the original question,
248 and its SQL. Nevertheless, we found that model outputs often closely mirrored the original conditions,
249 limiting diversity. We next tried prompting solely with schema descriptions and gold SQL,
250 omitting the original question, and incorporated self-correction Deng et al. (2025) to ensure all SQLs
251 were executable and returned data. Despite this, augmented data largely failed to improve model
252 generalization (the second section of Table 3), which we attribute to (1) insufficient linguistic and
253 structural diversity, and (2) oversampling schema-specific patterns, leading to overfitting.

254 **Other Data Sources.** We also experimented with model-filtered data from SynSQL-2.5M Li et al.
255 (2025), but initial attempts were inconclusive. Given the sheer volume of SynSQL-2.5M, we believe
256 more sophisticated filtering could unlock further gains, which we leave for future work.

257 4.2 LEARNINGS FROM TRAINING STRATEGY

258 Unless stated otherwise, the following rely on filtered BIRD, SPIDER, and Gretel-Synth.

259 **GRPO vs PPO.** We compare GRPO and PPO. GRPO, by design, reduces memory usage of critic
260 models and is well-suited for large-scale settings; PPO is simpler and historically popular for stable
261 RL optimization. In our experiments, GRPO outperforms PPO by a comfortable margin (see the first
262 section of Table 4), though we caution that PPO may benefit from further hyperparameter tuning.

263 **Selecting the Optimal Starting Model.** We assess Qwen-2.5-Coder in the base, instructed, and
264 the reasoning-focused QwQ-32B variant. Results show that starting from better instruction following,
265 higher-accuracy models is crucial (see the second section of Table 4). The main differences
266 between Qwen2.5-Coder-32B base and instruction are (1) the instruction following capability
267 and (2) high-quality instruction finetuning data, which leads to about 0.4 EX gap. QwQ-32B is
268 optimized for math and reasoning tasks, e.g., math, but not SQL, and its initial accuracy trailed the

270 Qwen-2.5-Coder-instructed version by over 10 points, a gap RL fine-tuning could not close. Later,
 271 we discuss how strong supervised checkpoints improve downstream RL.
 272

273 **Online RL Surpasses Batch RL.** We compare online RL, where the model continually interacts with
 274 the environment, with batch RL. Our findings show superior results with online RL, likely due to its
 275 increased adaptivity and exposure to more complex negative examples via live interaction (the third
 276 section of Table 4). This observation extends previous results primarily observed in mathematical
 277 and programming, indicating its pertinence for Text2SQL.
 278

279 **Supervised Fine-Tuning Model Quality Matters.** Stronger SFT models (e.g., OmniSQL Li et al.
 280 (2025)) consistently yield better downstream RL results (the forth section of Table 4), reinforcing
 281 the importance of strong initializations and echoing observations from other domains.
 282

283 **Prompt Format is Crucial.** We observed significant gains (the fifth section of Table 4) when switching
 284 from a generic prompt to the original OmniSQL prompt, adapted for RL training (see Figure D.1
 285 for prompt). Prompt structure, inclusion of thinking instructions, and database serialization choices
 286 all contributed to improved model performance.
 287

288 **Other Observations.** We explored variations in rollout count (16, 24, 32), human- or LLM-generated
 289 prompts, and various reward designs. None produced significant improvement, and, notably, more
 290 fine-grained reward designs induced “lazy” behaviors, where models pursued local optima for
 291 short-term rewards rather than global correctness.
 292

293 4.3 LEARNING FROM EVALUATION BENCHMARK DIVERSITY

294 Table 5: Diverse evaluation helps to identify generalization capabilities (OmniSQL-7B).
 295

296 Different setting	BIRD-dev	Spider-test	Spider2.0-SQLite	Spider-DK	EHR-SQL	Science Benchmark	Average
297 BIRD only	67.6	87.8	8.9	76.3	34.9	50.5	54.3
298 BIRD, SPIDER, Gretel-Synth	67.7	88.2	11.9	79.1	35.5	51.8	55.7

299 **Prompt Optimization Benefits OSS Model Evaluation.** Prompt selection dramatically affects open-
 300 source models (e.g., Llama Grattafiori et al. (2024) and Qwen Hui et al. (2024)) performance, with
 301 the OmniSQL prompt improving Llama-3.1-70B’s BIRD-dev accuracy from 57.4% Zhai et al. (2025)
 302 to 65.1% in our experiments. Prompt tuning is thus indispensable for the fair comparison of large,
 303 general-purpose LLMs in the Text2SQL task. However, finding the best prompt for general-purpose
 304 LLMs is beyond the scope of our work.
 305

306 **Diverse Evaluation Surfaces Generalization Gaps.** Restricting training to BIRD, we observed
 307 strong benchmark accuracy on BIRD-dev, but an average score 1.4 points lower when evaluated across
 308 a broader suite (Table 5), including BIRD-dev Li et al. (2024), SPIDER Yu et al. (2018), Spider2.0 Yu
 309 et al. (2018), Spider-DK Gan et al. (2021), EHRSQ Lee et al. (2022), and ScienceBenchmark Zhang
 310 et al. (2023). This highlights the risk of overfitting and the necessity of evaluating on multiple datasets
 311 to ensure robust generalization.
 312

313 5 MAIN RESULT

314 Our final experiments build upon all prior empirical insights: the training data includes the filtered
 315 BIRD-training and SPIDER-training/dev sets, along with the model-based filtered Gretel-Synth-
 316 Filtered synthetic examples. The reinforcement learning setup consists of (1) GRPO as the optimiza-
 317 tion algorithm, (2) online training, (3) initializing from OmniSQL supervised checkpoints, and (4)
 318 using a modified OmniSQL prompt for both training and evaluation. We report execution-based
 319 accuracy results across all six benchmarks detailed in Table 2.
 320

321 XYZ-Text2SQL-R1 shows strong performance on the BIRD benchmark (Table 7). Our largest model
 322 ranks third overall, but first among models with released research papers. XYZ-Text2SQL-R1-32B
 323 reaches 73.84% accuracy with Few-sample Self-Consistency and 71.83% under the stricter greedy
 324 decoding setting. In the leaderboard, the Self-Consistency column indicates the number of sampled
 325 candidates (e.g., Few: 1–7, Many: 8–32). Both XYZ-Text2SQL-R1-7B and XYZ-Text2SQL-R1-14B

Table 6: Comparison between XYZ-Text2SQL-R1 and other Open-Source Software (OSS) / Proprietary models. *: SQL-R1 Ma et al. (2025) uses majority voting in evaluation. **: (Pourreza et al., 2025, Table 2) might use schema linking, our number follows (Pourreza et al., 2025, Table 3/4). [†]: Spider2.0 was updated, so we re-evaluate it instead of using the OmniSQL number. For SQL-specific models, generally sensitive to prompt and database serialization, we take the number from their papers. DPSK stands for DeepSeek.

Model	OSS	BIRD (dev)	SPIDER (test)	Spider2.0 -SQLite [†]	Spider -DK	EHR SQL	Science Benchmark	Average
Models Size < 10B								
DPSK-Coder-6.7B-Instruct Guo et al. (2024)	✓	43.1	70.5	4.4	60.9	28.6	40.8	41.4
Qwen2.5-Coder-7B-Instruct Hui et al. (2024)	✓	50.9	82.2	4.4	67.5	24.3	45.2	45.8
Qwen2.5-7B-Instruct Yang et al. (2024a)	✓	46.9	76.8	5.2	63.7	20.9	38.5	42.0
SQL-R1-7B* Ma et al. (2025)	✗	66.6	—	—	—	—	—	—
OmniSQL-7B Li et al. (2025)	✓	63.9	87.9	13.3	76.1	34.9	50.2	54.4
Think2SQL-7B Papicchio et al. (2025)	✗	56.1	—	—	—	—	—	—
OpenCoder-8B-Instruct Huang et al. (2024)	✓	37.5	68.3	1.5	62.6	21.9	39.8	38.6
Meta-Llama-3.1-8B-Instruct Grattafiori et al. (2024)	✓	42.0	72.2	1.5	62.6	24.6	36.8	40.0
Granite-8B-Code-Instruct Mishra et al. (2024)	✓	27.6	64.9	1.5	50.7	16.0	29.4	31.7
Granite-3.1-8B-Instruct Mishra et al. (2024)	✓	36.0	69.8	3.7	60.0	19.6	36.8	37.7
XYZ-Text2SQL-R1-7B	✓	68.9	88.8	15.6	81.5	36.7	51.8	57.2
10B ≤ Models Size ≤ 30B								
Qwen2.5-Coder-14B-Instruct Hui et al. (2024)	✓	61.5	86.6	11.1	73.6	31.6	52.2	52.8
Qwen2.5-14B-Instruct Yang et al. (2024a)	✓	56.7	82.0	8.1	72.3	28.8	51.2	49.9
OmniSQL-14B Li et al. (2025)	✓	64.2	88.3	12.6	72.9	39.9	56.9	55.8
Reasoning-SQL-14B** Pourreza et al. (2025)	✗	64.2	81.4	—	73.0	—	—	—
Starcoder2-15B-Instruct Lopzhkov et al. (2024)	✓	38.5	73.0	1.5	66.5	16.8	25.8	37.0
DPSK-Coder-V2-Inst (16B/MoE) Zhu et al. (2024a)	✓	44.6	77.9	2.2	63.7	23.9	39.1	41.9
Granite-20B-Code-Instruct Mishra et al. (2024)	✓	34.0	74.1	1.5	62.2	23.5	37.5	38.8
Codestral-22B Mistral AI (2024)	✓	52.7	78.6	8.1	69.9	37.8	48.5	49.3
XYZ-Text2SQL-R1-14B	✓	70.1	89.4	16.3	79.4	40.7	58.2	59.0
30B < Models Size or Unknown								
Qwen2.5-Coder-32B-Instruct Hui et al. (2024)	✓	64.5	87.5	10.4	78.3	36.4	54.8	55.3
Qwen2.5-32B-Instruct Yang et al. (2024a)	✓	62.0	84.9	10.4	73.1	33.6	50.5	52.4
Xiyan-SQL-32B Gao et al. (2024)	✓	67.0	—	—	—	—	—	—
ExDPO-32B Zhai et al. (2025)	✓	68.3	85.1	—	—	—	—	—
OmniSQL-32B Li et al. (2025)	✓	64.5	87.6	14.8	76.1	42.4	57.2	57.1
DPSK-Coder-33B-Instruct Guo et al. (2024)	✓	49.2	74.3	5.2	69.0	31.4	44.5	45.6
Granite-34B-Code-Instruct Mishra et al. (2024)	✓	33.8	74.4	0.0	64.7	23.8	40.1	39.5
Mixtral-8x7B-Inst. (47B, MoE) Jiang et al. (2024)	✓	35.3	67.8	3.7	55.3	21.5	29.4	35.5
Meta-Llama-3.1-70B-Instruct Grattafiori et al. (2024)	✓	65.1	84.3	7.4	75.1	37.4	55.2	54.1
ExDPO-70B Zhai et al. (2025)	✓	68.5	86.6	—	—	—	—	—
Qwen2.5-72B-Instruct Yang et al. (2024a)	✓	60.3	84.0	11.9	76.4	35.0	52.8	53.4
Command-A-111B Team Cohere (2025)	✓	63.5	—	—	—	—	—	—
DeepSeek-V3 (671B, MoE) Liu et al. (2024)	✓	63.2	85.5	14.8	72.9	43.2	56.2	55.6
GPT-4o-mini OpenAI (2023)	✗	58.8	82.4	11.9	73.3	37.9	51.8	52.7
GPT-4-Turbo OpenAI (2023)	✗	62.0	83.4	13.3	72.3	43.1	59.2	55.6
GPT-4o OpenAI (2023)	✗	61.9	83.2	17.0	72.9	44.9	55.5	55.9
XYZ-Text2SQL-R1-32B	✓	70.5	88.7	16.3	80.6	40.1	60.9	59.5

Table 7: BIRD Single-Model Leaderboard.

Model	Self-Consistency	Dev	Test
Databricks RLVR 32B	Few	—	75.7
Sophon-Text2SQL-32B	Many	72.4	74.8
XYZ-Text2SQL-R1-32B	Few	72.2	73.8
Databricks RLVR 32B	—	70.8	73.6
Jiayin-Pangu-Text2SQL-14B	Many	71.1	73.5
XYZ-Text2SQL-R1-14B	Few	71.4	72.2
SIFT-32B	Scale	70.1	70.9
CrazyData-Text2SQL-32B	Many	—	70.7
Infly-RL-SQL-32B	Few	70.1	70.6
XYZ-Text2SQL-R1-7B	Few	70.1	70.4

exceed 70% on the BIRD test, and notably, XYZ-Text2SQL-R1-7B matches the performance of much larger systems such as ExCoT-70B Zhai et al. (2025) with an order of magnitude fewer parameters.

5.1 PERFORMANCE EVALUATION ACROSS SIX BENCHMARKS

Instead of optimizing the model for single benchmark performance, XYZ-Text2SQL-R1 achieves best-in-class average performance across six different benchmarks. Table 6 presents a comprehensive comparison between XYZ-Text2SQL-R1 and a wide range of open-source and proprietary models,

Table 8: XYZ-Text2SQL-R1 with different evaluation techniques on BIRD-dev.

Model Size	Value Retrieval	Majority Voting	BIRD-dev
14B	✗	✗	70.1
	✓	✗	70.5
	✗	✓	70.6
32B	✓	✓	70.8
	✗	✓	70.5
	✓	✗	70.9
7B	✗	✓	71.2
	✓	✓	71.5

378 including general-purpose LLMs (e.g. DeepSeek-V3, GPT-4o, GPT-4-Turbo), coding models (Qwen-
 379 Coder), and specialized Text2SQL models (XiYan-SQL, OmniSQL, ExCoT, SQL-R1, Reasoning-
 380 SQL). Except where otherwise indicated, all evaluations use single-model, single-inference (i.e.,
 381 greedy decoding with no ensembling, schema linking, or external re-ranking).

382 **State-of-the-Art Across All Scales.** XYZ-Text2SQL-R1 consistently outperforms existing state-
 383 of-the-art models across all parameter scales and benchmarks. For models under 10B parameters,
 384 XYZ-Text2SQL-R1-7B achieves an average accuracy of 57.2, outperforming open-source competitors
 385 (e.g., OmniSQL-7B at 54.4) and closely rivaling, or surpassing, closed-source models such as SQL-
 386 R1-7B. In the 10B–30B range, XYZ-Text2SQL-R1-14B attains 59.0, exceeding strong baselines like
 387 OmniSQL-14B and Reasoning-SQL-14B. In the 30B+ category, XYZ-Text2SQL-R1-32B achieves
 388 the best results overall, with an average of 59.5, outperforming the largest open-source and commercial
 389 models, including DeepSeek-V3 (55.6), GPT-4-Turbo (55.6), and even GPT-4o (55.9).

390 **Parameter Efficiency and Task Specialization.** Notably, XYZ-Text2SQL-R1-7B matches or
 391 surpasses models such as DeepSeek-V3 (671B, MoE) and OmniSQL-32B on six benchmark accuracy,
 392 despite a fraction of their parameter count. These results highlight the advantages of task-specific
 393 training and reward design for compositional SQL reasoning.

394 **Benchmark-Specific Highlights.** On challenging benchmarks such as BIRD, Spider, and EHRSQ,
 395 XYZ-Text2SQL-R1 shows marked improvements. For instance, on the BIRD-dev split, XYZ-
 396 Text2SQL-R1 7B, 14B, and 32B reach 68.9, 70.1, and 70.5, setting new records across size categories.
 397 Substantial gains are also seen on Spider-DK and the Science benchmark, underscoring XYZ-
 398 Text2SQL-R1’s robustness and domain coverage.

400 Table 9: Generalization of XYZ-Text2SQL-R1 across different model families.

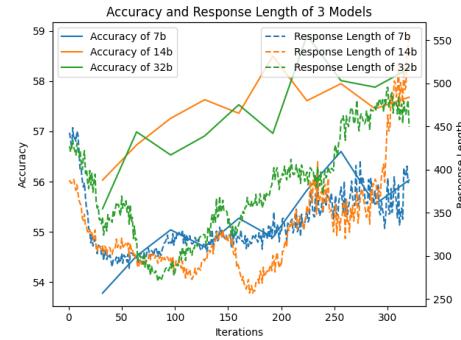
Model	BIRD-dev	Spider-test	Spider2.0-SQLite	Spider-DK	EHR SQL	Science Benchmark	Average
Qwen3-1.7B-Instruct + XYZ-Text2SQL-R1	46.6 58.7 _{+12.1}	77.4 83.8 _{+6.4}	2.2 4.4 _{+2.2}	63.2 72.3 _{+9.1}	19.9 33.9 _{+14.0}	42.1 47.8 _{+5.7}	41.9 50.2 _{+8.3}
LLaMA-3.2-3B-Instruct + XYZ-Text2SQL-R1	18.2 46.9 _{+28.7}	50.3 79.6 _{+29.3}	0.7 5.2 _{+4.5}	34.4 66.2 _{+31.8}	5.5 26.2 _{+20.7}	20.7 40.1 _{+19.4}	21.6 44.0 _{+22.4}

406 **Generalizability Across Model Families.** To demonstrate that the effectiveness of XYZ-Text2SQL-
 407 R1 is not confined to the Qwen-Coder family, we applied our training framework to two additional
 408 open-source models: Qwen3-1.7B-Instruct Yang et al. (2025a) and LLaMA-3.2-3B-Instruct Dubey
 409 et al. (2024). As shown in Table 9, we observed an average absolute improvement of 8.3% for
 410 Qwen3-1.7B and a remarkable 22.4% for LLaMA-3.2-3B. We also noted that our framework helps
 411 align models with specific output formatting instructions, which contributed to the significant gains
 412 for LLaMA-3.2-3B. These results underscore the robustness and generalizability of our training
 413 paradigm across diverse model families.

414 6 DISCUSSION

416 Beyond the benchmark achievements, the development
 417 of XYZ-Text2SQL-R1 revealed some insights
 418 into model behavior and potential for exploiting
 419 inference-time enhancements. These also motivate
 420 further examination of the model’s comparative stand-
 421 ing.

422 **Enhancing XYZ-Text2SQL-R1 with Other Tech-
 423 niques.** While XYZ-Text2SQL-R1 is designed for
 424 efficient, direct inference, it can also serve as the
 425 SQL generator in more complex agentic systems.
 426 Table 8 shows results using two inference-time en-
 427 hancements: value retrieval (from Talaei et al. (2024))
 428 and majority voting (as in Li et al. (2025); Ma et al.
 429 (2025)) with eight generations per sample. Each tech-
 430 nique yields a tangible improvement; combined, they
 431 boost XYZ-Text2SQL-R1-32B performance by up to
 one point on BIRD-dev, demonstrating complementary gains from orthogonal reasoning components.



432 Figure 1: Generation length and average accuracy
 433 across six benchmarks.

432 Table 10: The comparison between XYZ-Text2SQL-R1 and Reasoning-SQL Pourreza et al. (2025).
 433 The numbers for the latter from (Pourreza et al., 2025, Tables 4 and 5) and it might involve schema
 434 linking as mentioned in (Pourreza et al., 2025, Table 2), but we are unsure; see Table 1 for the reward
 435 design comparison.

Method	Base Model	Filtering Method	Reward Design	BIRD-dev	SPIDER-test	SPIDER-DK
Reasoning-SQL	Qwen2.5-Coder-14B-Inst	Large Models Prompt	Complex	64.21	81.43	73.03
XYZ-Text2SQL-R1	Qwen2.5-Coder-14B-Inst	Empty Golden-SQL	Simple	66.49	87.20	75.10

440 Table 11: Comparison of XYZ-Text2SQL-R1, SQL-R1 Ma et al. (2025) and Think2SQL Papicchio
 441 et al. (2025). GRE: greedy decoding, MV: Majority Voting (8 candidates). Competitors numbers
 442 according to (Ma et al., 2025, Table 2) and (Papicchio et al., 2025, Table 1 and 3); see Table 1 for the
 443 reward design comparison.

Method	Base Model	SFT (#Samples)	Reward Design	BIRD-dev GRE/MV	SPIDER-test GRE/MV
SQL-R1	Qwen2.5-Coder-7B-Inst	✗	Complex	-/63.1	-/86.1
SQL-R1	Qwen2.5-Coder-7B-Inst	✓(200K)	Complex	-/59.2	-/86.4
Think2SQL	Qwen2.5-Coder-7B-Inst	✓(9K)	Complex	56.1/-	82.4/-
XYZ-Text2SQL-R1	Qwen2.5-Coder-7B-Inst	✗	Simple	63.9/64.8	85.0/87.1
SQL-R1	OmniSQL-7B	✗	Complex	-/66.6	-/88.7
XYZ-Text2SQL-R1	OmniSQL-7B	✗	Simple	67.6/69.4	87.8/88.6

453 **Response Length vs. Accuracy.** Figure 1 plots the evolution of average response length and
 454 execution accuracy across training for all three sizes of XYZ-Text2SQL-R1. We observe a U-shaped
 455 pattern in response length—initially decreasing, then gradually increasing—as accuracy rises. This
 456 trend may reflect early-stage conservative decoding (and possible undertraining), followed by richer,
 457 more grounded outputs as training progresses, an effect also noted in some of the previous works Xie
 458 et al. (2025).

459 **Why RL is Effective in Text2SQL.** Unlike supervised fine-tuning, which relies solely on positive
 460 examples, RL enables the model to learn from failures through trial and error with negative feedback.
 461 This allows the model to overcome inherent ambiguities in the training data and better capture user
 462 intent. Appendix F provides qualitative examples.

463 **Reasoning-SQL.** To enable a fair comparison with Reasoning-SQL Pourreza et al. (2025), we
 464 retrain XYZ-Text2SQL-R1 from the Qwen-2.5-14B-Instruct base, use BIRD-training data alone,
 465 and run 3 epochs. Under these controlled settings, the two methods differ primarily in training data
 466 filtering (XYZ-Text2SQL-R1 uses simple empty-return-based removal, Reasoning-SQL uses LLM
 467 filtering) and reward design (our simple execution/syntax signal vs. a complex mixture). As shown
 468 in Table 10, XYZ-Text2SQL-R1 outperforms Reasoning-SQL by clear margins on BIRD-dev (+2.28),
 469 Spider-test (+5.77), and Spider-DK (+2.07). This underscores the power of direct, execution-guided
 470 reinforcement learning and streamlined filtering.

471 **SQL-R1 and Think2SQL.** We further compare XYZ-Text2SQL-R1 with recently published
 472 SQL-R1 Ma et al. (2025) and Think2SQL Papicchio et al. (2025), restricting RL fine-tuning to BIRD-
 473 training and evaluating under both greedy and majority voting regimes. As summarized in Table 11,
 474 XYZ-Text2SQL-R1 delivers the best or near-best performance in all configurations and consistently
 475 outperforms prior approaches, even without extensive pre-training or complex reward engineering.

477 7 CONCLUSIONS

479 We presented XYZ-Text2SQL-R1, a novel RL framework for Text2SQL that uses GRPO and a simple
 480 execution-based reward. It achieves 71.83% execution accuracy (73.84% with self-consistency)
 481 on BIRD-test as a single 32B model, ranking among the top leaderboard entries while surpassing
 482 substantially larger LLMs. Across six challenging benchmarks, XYZ-Text2SQL-R1 yields up to
 483 4 points improvement over strong baselines, with notable parameter efficiency (e.g., the 7B version
 484 matches or outperforms prior ExCoT-70B models and GPT4o). Our results highlight that minimal
 485 reward signals, principled data filtering, and carefully curated training strategies are key for robust
 SQL generation. We release models to support future research in this area.

486 ETHICS STATEMENT
487488 This work complies with the ICLR Code of Ethics. We use only publicly available datasets (BIRD,
489 Spider, EHRSQL, ScienceBenchmark), with no collection of private or personally identifiable
490 information. No human subjects or sensitive data were involved. Potential ethical concerns relate to
491 biases in benchmark datasets. This research is for academic purposes only, and all experiments were
492 conducted in accordance with standard practices of research integrity.493
494 REPRODUCIBILITY STATEMENT
495496 We provide detailed descriptions of datasets, filtering procedures, model training, and evaluation
497 benchmarks in the main text (Sections 3, 4, 5). Appendices include prompt templates, data aug-
498mentation pipelines, and qualitative case studies. LLMs were used only for language polishing, not
499 for research design or data generation. The code, datasets, and models will be released after paper
500 acceptance under the supervision of institutional policies, to support independent verification and
501 future research.502
503 REFERENCES
504505 I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural language interfaces to databases — an
506 introduction, 1995. URL <https://arxiv.org/abs/cmp-1g/9503016>.507 Quy-Anh Dang and Chris Ngo. Reinforcement Learning for reasoning in small LLMs: What works
508 and what doesn't. *ArXiv*, abs/2503.16219, 2025. URL <https://api.semanticscholar.org/CorpusID:277150647>.511 Minghang Deng, Ashwin Ramachandran, Canwen Xu, Lanxiang Hu, Zhewei Yao, Anupam Datta,
512 and Hao Zhang. ReFORCE: A text-to-SQL agent with self-refinement, format restriction, and
513 column exploration, 2025. URL <https://arxiv.org/abs/2502.00675>.514 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
515 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
516 *arXiv e-prints*, pp. arXiv–2407, 2024.518 Ben Eyal, Moran Mahabi, Ophir Haroche, Amir Bachar, and Michael Elhadad. Semantic decomposi-
519 tion of question and SQL for text-to-SQL parsing. In Houda Bouamor, Juan Pino, and Kalika Bali
520 (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 13629–13645,
521 Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.fin-
522 dings-emnlp.910. URL <https://aclanthology.org/2023.findings-emnlp.910/>.523 Yujian Gan, Xinyun Chen, and Matthew Purver. Exploring underexplored limitations of cross-domain
524 text-to-SQL generalization, 2021.526 Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
527 Text-to-SQL empowered by Large Language Models: A benchmark evaluation, 2023. URL
528 <https://arxiv.org/abs/2308.15363>.530 Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao
531 Hong, Zhiling Luo, Jinyang Gao, Liyu Mou, and Yu Li. A preview of XiYan-SQL: A multi-
532 generator ensemble framework for text-to-SQL. *arXiv preprint arXiv:2411.08599*, 2024. URL
533 <https://arxiv.org/abs/2411.08599>.534 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
535 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 herd of
536 models. *arXiv preprint arXiv:2407.21783*, 2024.538 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
539 Yu Wu, YK Li, et al. DeepSeek-Coder: When the large language model meets programming—the
rise of code intelligence. *arXiv preprint arXiv:2401.14196*, 2024.

540 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 541 Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing reasoning capability in llms
 542 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

543

544 Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
 545 Towards complex text-to-SQL in cross-domain database with intermediate representation. In Anna
 546 Korhonen, David Traum, and Lluís Márquez (eds.), *Proceedings of the 57th Annual Meeting of the
 547 Association for Computational Linguistics*, pp. 4524–4535, Florence, Italy, July 2019. Association
 548 for Computational Linguistics. doi: 10.18653/v1/P19-1444. URL <https://aclanthology.org/P19-1444/>.

549

550 Mingqian He, Yongliang Shen, Wenqi Zhang, Qiuying Peng, Jun Wang, and Weiming Lu. STaR-SQL:
 551 Self-taught reasoner for text-to-SQL, 2025. URL <https://arxiv.org/abs/2502.13550>.

552 Zijin Hong, Zheng Yuan, Hao Chen, Qinggang Zhang, Feiran Huang, and Xiao Huang. Knowledge-
 553 to-SQL: Enhancing SQL generation with data expert LLM, 2024. URL <https://arxiv.org/abs/2402.11517>.

555

556 Yiqun Hu, Yiyun Zhao, Jiarong Jiang, Wuwei Lan, Henghui Zhu, Anuj Chauhan, Alexander Hanbo
 557 Li, Lin Pan, Jun Wang, Chung-Wei Hang, Sheng Zhang, Jiang Guo, Mingwen Dong, Joseph Lilien,
 558 Patrick Ng, Zhiguo Wang, Vittorio Castelli, and Bing Xiang. Importance of synthesizing high-
 559 quality data for text-to-SQL parsing. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
 560 (eds.), *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 1327–1343,
 561 Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.f
 562 indings-acl.86. URL [https://aclanthology.org/2023.findings-acl.86/](https://aclanthology.org/2023.findings-acl.86).

563

564 Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J Yang,
 565 JH Liu, Chenchen Zhang, Linzheng Chai, et al. OpenCoder: The open cookbook for top-tier code
 566 large language models. *arXiv preprint arXiv:2411.04905*, 2024.

567

568 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 569 Bowen Yu, Keming Lu, et al. Qwen2.5-Coder technical report. *arXiv preprint arXiv:2409.12186*,
 570 2024.

571

572 Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
 573 Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
 574 Mixtral of Experts. *arXiv preprint arXiv:2401.04088*, 2024.

575

576 Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal,
 577 Mubarak Shah, Ming-Hsuan Yang, Phillip H. S. Torr, Fahad Shahbaz Khan, and Salman Khan.
 578 LLM post-training: A deep dive into reasoning large language models, 2025. URL <https://arxiv.org/abs/2502.21321>.

579

580 Nathan Lambert, Jacob Daniel Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
 581 Brahman, Lester James Validad Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya
 582 Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
 583 Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hanna Hajishirzi.
 584 Tulu 3: Pushing frontiers in open language model post-training. *ArXiv*, abs/2411.15124, 2024.
 585 URL <https://api.semanticscholar.org/CorpusID:274192505>.

586

587 Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu Kwon, Woncheol Shin, Seongjun Yang, Minjoon
 588 Seo, Jong-Yeup Kim, and Edward Choi. EHRSQ: A practical text-to-SQL benchmark for
 589 electronic health records. *Advances in Neural Information Processing Systems*, 35:15589–15601,
 590 2022.

591

592 Fei Li and H. V. Jagadish. Constructing an interactive natural language interface for relational
 593 databases. *Proc. VLDB Endow.*, 8(1):73–84, September 2014. ISSN 2150-8097. doi: 10.14778/2
 735461.2735468. URL <https://doi.org/10.14778/2735461.2735468>.

594

595 Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei Huang, Jing Zhang, Fuxin Jiang, Shuai Wang,
 596 Tieying Zhang, Jianjun Chen, Rui Shi, Hong Chen, and Cuiping Li. OmniSQL: Synthesizing
 597 high-quality text-to-SQL data at scale. *arXiv preprint arXiv:2503.02240*, 2025. URL <https://arxiv.org/abs/2503.02240>.

594 Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
 595 Geng, Nan Huo, et al. Can LLM already serve as a database interface? a big bench for large-scale
 596 database grounded text-to-SQLs. *Advances in Neural Information Processing Systems*, 36, 2024.
 597

598 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 599 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. DeepSeek-v3 technical report. *arXiv preprint*
 600 *arXiv:2412.19437*, 2024.

601 Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
 602 Tazi, Ao Tang, Dmytro Pykhtiar, Jiawei Liu, Yuxiang Wei, et al. StarCoder 2 and The Stack v2:
 603 The next generation. *arXiv preprint arXiv:2402.19173*, 2024.

604

605 Peixian Ma, Xialie Zhuang, Chengjin Xu, Xuhui Jiang, Ran Chen, and Jian Guo. SQL-R1:
 606 Training natural language to SQL reasoning model by reinforcement learning. *arXiv preprint*
 607 *arXiv:2504.08600*, 2025.

608 Yev Meyer, Marjan Emadi, Dhruv Nathawani, Lipika Ramaswamy, Kendrick Boyd, Maarten Van Seg-
 609 broeck, Matthew Grossman, Piotr Mlocek, and Drew Newberry. Synthetic-Text-To-SQL: A syn-
 610 synthetic dataset for training language models to generate sql queries from natural language prompts,
 611 April 2024. URL <https://huggingface.co/datasets/gretelai/synthetic-text-to-sql>.

612

613 Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adriana Meza So-
 614 ria, Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep Singh, et al. Gran-
 615 ite code models: A family of open foundation models for code intelligence. *arXiv preprint*
 616 *arXiv:2405.04324*, 2024.

617 Mistral AI. Codestral: Mistral AI's first code generation model. <https://mistral.ai/news/code>
 618 stral, 2024. Accessed: May 1, 2025.

619

620 OpenAI. GPT-4 technical report, 2023. URL <https://openai.com/research/gpt-4>. Accessed:
 621 May 1, 2025.

622 OpenAI et al. OpenAI o1 system card, 2024. URL <https://arxiv.org/abs/2412.16720>.

623

624 OpenAI et al. Competitive programming with Large Reasoning Models, 2025. URL <https://arxiv.org/abs/2502.06807>.

625

626 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 627 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 628 instructions with human feedback. *Advances in neural information processing systems*, 35:27730-
 629 27744, 2022.

630

631 Simone Papicchio, Simone Rossi, Luca Cagliero, and Paolo Papotti. Think2SQL: Reinforce LLM
 632 reasoning capabilities for Text2SQL, 2025. URL <https://arxiv.org/abs/2504.15077>.

633

634 Mohammadreza Pourreza, Shayan Talaei, Ruoxi Sun, Xingchen Wan, Hailong Li, Azalia Mirhoseini,
 635 Amin Saberi, Sercan Arik, et al. Reasoning-SQL: Reinforcement learning with SQL tailored
 636 partial rewards for reasoning-enhanced text-to-SQL. *arXiv preprint arXiv:2503.23157*, 2025.

637

638 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 639 optimization algorithms, 2017. URL <https://arxiv.org/abs/1707.06347>.

640

641 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 642 Mingchuan Zhang, Y.K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the limits of
 643 mathematical reasoning in open language models, 2024.

644

645 Aditi Singh, Akash Shetty, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei. A survey of large
 646 language model-based generative ai for text-to-SQL: Benchmarks, applications, use cases, and
 647 challenges, 2025. URL <https://arxiv.org/abs/2412.05208>.

648

649 Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing
 650 reward gaming. *Advances in Neural Information Processing Systems*, 35:9460-9471, 2022.

648 Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang Deng, and Huan Sun. Exploring chain-of-thought
 649 style prompting for text-to-SQL, 2023. URL <https://arxiv.org/abs/2305.14215>.
 650

651 Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
 652 CHESS: Contextual harnessing for efficient SQL synthesis, 2024. URL <https://arxiv.org/abs/2405.16755>. arXiv preprint arXiv:2405.16755.
 653

654 Team Cohere. Command A: An enterprise-ready large language model, April 2025. URL <https://arxiv.org/abs/2504.00698>. Accessed: 2025-05-04.
 655

656

657 Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. RAT-
 658 SQL: Relation-aware schema encoding and linking for text-to-SQL parsers, 2021. URL <https://arxiv.org/abs/1911.04942>.
 659

660 Junqiao Wang, Zeng Zhang, Yangfan He, Yuyang Song, Tianyu Shi, Yuchen Li, Hengyuan Xu, Kunyu
 661 Wu, Guangwu Qian, Qiuwu Chen, and Lewei He. Enhancing code LLMs with reinforcement
 662 learning in code generation: A survey, 2025. URL <https://arxiv.org/abs/2412.20367>.
 663

664 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
 665 and Denny Zhou. Chain-of-thought prompting elicits reasoning in Large Language Models, 2023.
 666 URL <https://arxiv.org/abs/2201.11903>.

667 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai
 668 Qiu, Zhirong Wu, and Chong Luo. Logic-RL: Unleashing LLM reasoning with rule-based
 669 Reinforcement Learning, 2025. URL <https://arxiv.org/abs/2502.14768>.
 670

671 Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong
 672 Lan, Jiahui Gong, Tianjian Ouyang, Fanjin Meng, Chenyang Shao, Yuwei Yan, Qinglong Yang,
 673 Yiwen Song, Sijian Ren, Xinyuan Hu, Yu Li, Jie Feng, Chen Gao, and Yong Li. Towards large
 674 reasoning models: A survey of reinforced reasoning with Large Language Models, 2025. URL
 675 <https://arxiv.org/abs/2501.09686>.

676 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 677 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024a.
 678

679 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
 680 Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
 681 Xingzhang Ren, and Zhenru Zhang. Qwen2.5-Math technical report: Toward mathematical expert
 682 model via self-improvement. *ArXiv*, abs/2409.12122, 2024b. URL <https://api.semanticscholar.org/CorpusID:272707652>.
 683

684 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 685 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 686 2025a.

687 Dayu Yang, Tianyang Liu, Daoan Zhang, Antoine Simoulin, Xiaoyi Liu, Yuwei Cao, Zhaopu Teng,
 688 Xin Qian, Grey Yang, Jiebo Luo, and Julian McAuley. Code to think, think to code: A survey
 689 on code-enhanced reasoning and reasoning-driven code intelligence in LLMs, 2025b. URL
 690 <https://arxiv.org/abs/2502.19411>.
 691

692 Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang Zhou. Synthesizing text-
 693 to-SQL data from weak and strong LLMs, 2024c. URL <https://arxiv.org/abs/2408.03256>.
 694 Accessed: 2025-04-16.

695 Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
 696 Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
 697 and cross-domain semantic parsing and text-to-SQL task. *arXiv preprint arXiv:1809.08887*, 2018.
 698

699 Bohan Zhai, Canwen Xu, Yuxiong He, and Zhewei Yao. ExCoT: Optimizing reasoning for text-to-
 700 SQL with execution feedback. *arXiv preprint arXiv:2503.19988*, 2025. URL <https://arxiv.org/abs/2503.19988>.
 701

702 Yi Zhang, Jan Deriu, George Katsogiannis-Meimarakis, Catherine Kosten, Georgia Koutrika, and
703 Kurt Stockinger. ScienceBenchmark: A complex real-world benchmark for evaluating natural
704 language to SQL systems. *arXiv preprint arXiv:2306.04743*, 2023.

705
706 Victor Zhong, Caiming Xiong, and Richard Socher. Seq2SQL: Generating structured queries from
707 natural language using reinforcement learning, 2017. URL <https://arxiv.org/abs/1709.00103>.

708
709 Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
710 Huazuo Gao, Shirong Ma, et al. DeepSeek-Coder-v2: Breaking the barrier of closed-source models
711 in code intelligence. *arXiv preprint arXiv:2406.11931*, 2024a.

712
713 Xiaohu Zhu, Qian Li, Lizhen Cui, and Yongkang Liu. Large language model enhanced text-to-SQL
714 generation: A survey, 2024b. URL <https://arxiv.org/abs/2410.06011>.

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A LLM USAGE STATEMENT**
757758 In preparing this manuscript, we employed LLMs solely for language polishing. Specifically, we used
759 commercial LLMs as writing assistants to improve sentence structure, check grammar and spelling,
760 and enhance overall readability and clarity of the text. No LLMs were used for research ideation,
761 methodological design, data analysis, or code generation. All scientific contributions, including
762 theoretical development, experimental design, implementation, and analysis, were solely conducted
763 by the authors.764 All text outputs from LLMs were carefully reviewed and revised by the authors, who take full
765 responsibility for the accuracy, originality, and integrity of the manuscript. LLMs are not considered
766 authors and bear no responsibility for this work.
767768 **B CONSTRUCTION PIPELINE FROM GRETEL-SYNTH TO**
769 **GRETEL-SYNTH-NONFILTERED**
770772 To enable SQL execution and ensure meaningful query results, we use a carefully designed prompt to
773 guide an LLM in generating realistic table data. Appendix B.1 illustrates this prompt, which produces
774 valid INSERT statements aligned with both the SQL context and query.775 These synthetic data inserts serve as the foundation for the construction pipeline outlined in Algo-
776 rithm 1, which augments each sample with distractive tables and applies filtering to retain executable,
777 informative SQL examples.
778779 **C DATA AUGMENTATION**
780781 We perform data augmentation on the BIRD dataset following the prompt template shown in Fig-
782 ure C.1. Note that the *task* component is optional. To encourage diversity in the generated data, we
783 omit the *task* and *answer* fields when necessary.
784785 After obtaining a set of SQL queries, we apply a self-correction workflow as described in Algorithm 2
786 to ensure the SQLs are executable and yield non-empty results. The prompts used for *self_correct*
787 and *similar_error_refine* are provided in Figure C.2.
788789 **D PROMPT USED FOR TRAINING/EVALUATION**
790791 We present the prompt used for our training and evaluation in Figure D.1.
792793 **E EXAMPLES FROM XYZ-TEXT2SQL-R1-32B**
794795 We provide several examples here to illustrate the thinking process of XYZ-Text2SQL-R1-32B
796 in Figure E.1, E.2, and E.3. Note that we did not cherry-pick the answer so the generated SQL might
797 be wrong.
798799 **F QUALITATIVE CASE STUDIES OF RL TRAINING EFFECTS**
800802 To better illustrate how RL with simple reward signals improves the reasoning capabilities of our
803 model, we present two detailed case studies. These examples highlight the unique advantages of
804 our framework in correcting subtle but critical reasoning errors that are difficult to address through
805 supervised fine-tuning alone.806 **Case Study 1: Resolving Ambiguity Between Aggregation and Enumeration.** Consider the
807 following question: *“How many female patients born in 1964 were admitted to the hospital? List*
808 *them by ID.”* This query is inherently ambiguous because it mixes two operations: counting patients
809 (COUNT(ID)) and enumerating their identifiers (SELECT ID). A model without RL training, such as
OmniSQL-32B Li et al. (2025), often attempts to reconcile these conflicting intents by generating a

Prompt for Adding Synthetic Data

Adding Synthetic Data Prompt

You are an expert in SQL data modeling. Your task is to analyze the given SQL schema and, if necessary, generate realistic and logically consistent sample data to ensure:

For a given <SQL Prompt>, both <SQL Query> and <SQL Context> can meet its requirements, and <SQL Query> can query the corresponding data from the TABLE created by <SQL Context>.

Given a - **<SQL Prompt>**:

{question}

I have generated the <SQL Query> and <SQL Context>:

- **<SQL Query>**:

{sql_query}

- **<SQL Context>**:

{sql_context}

{error_infomations}

I need data samples to validate the correctness of the <SQL Query>.

Therefore, please help me add one INSERT statement for each table in the <SQL Context>, with 5 sample rows per table.

The inserted data should ensure that the <SQL Query> can retrieve results from the tables.

Please ensure that it does not cause errors when using sqlite3.

Please do not include any additional explanations or instructions.

Please help me fix this **<SQL Context>** and ensure that it contains at most five records.

Please also help me modify **<SQL Query>** to ensure that it does not cause errors when using sqlite3.

Please give your expanded **<SQL Context>** in: \\sql_context

your fixed **<SQL Query>** in: \\sql_query

and the **INSERT statements** in: \\sql_insert

Figure B.1: Prompt for Generating Executable SQL Context and Synthetic Data Inserts in the Gretel-Synth Pipeline

UNION query that merges an aggregate value (a single count) with a multi-row column (a list of IDs), as shown in Example F.1. Such an output is either syntactically invalid or semantically incoherent, rendering it useless. In contrast, our RL-trained model learns to avoid these pitfalls and instead produces a correct and executable query, as demonstrated in Example F.2. During training, erroneous attempts of this kind consistently fail to execute and thus receive negative rewards. Over time, this feedback teaches the model both the grammatical constraints of SQL and, more importantly, the need to prioritize the user’s actual intent (in this case, “List them”).

Case Study 2: Filtering Out Contextual Noise. A second source of errors arises from semantic misinterpretation. In the BIRD Li et al. (2024) dataset, natural language questions sometimes include contextual metadata such as the database name (e.g., *student_club*). Non-RL models frequently misinterpret this metadata as a core entity, leading to reasoning errors such as searching for a literal club named “*student_club*,” as illustrated in Example F.3. Our RL framework penalizes such misinterpretations whenever they produce incorrect execution results. Through repeated negative feedback, the model learns to differentiate between background context and the true semantic target of the query. Consequently, the RL-trained model is able to maintain focus on the actual user request, as shown in Example F.4, rather than being misled by irrelevant contextual tokens.

864
 865 **Algorithm 1:** Construction of Gretel-Synth-NonFiltered: Inserting Synthetic Data, Adding
 866 Distractive Tables, and Filtering Executable SQL Samples

867 **Input:** Full dataset Gretel-Synth
 868 **Output:** Gretel-Synth-NonFiltered after adding synthetic data and distractive tables

869 **1. Insert Data Using LLM**

870 Initialize Gretel-Synth-NonFiltered as empty list;

871 **foreach** sample *in* Gretel-Synth **do**

872 Initialize Gretel-Synth-ForNextRound \leftarrow [sample];

873 **for** $i \leftarrow 1$ **to** 8 **do**

874 Initialize next_round as empty list;

875 **foreach** sample *in* Gretel-Synth-ForNextRound **do**

876 */* We use GPT-4o to generate insert statements; prompt is provided in Appendix B.1 */*

877 insert_stmts \leftarrow GPT_generate_inserts(sample);

878 Execute sql_context to create tables;

879 Execute insert_stmts to populate data;

880 results \leftarrow execute_sql_query(sample.sql_query);

881 **if** results *not empty* **then**

882 | Append sample to Gretel-Synth-NonFiltered;

883 **else**

884 | Append sample to next_round;

885 Gretel-Synth-ForNextRound \leftarrow next_round;

886 **2. Add Distractive Tables**

887 **foreach** sample *in* Gretel-Synth-NonFiltered **do**

888 schema \leftarrow sample.sql_context;

889 domain \leftarrow sample.domain;

890 existing_tables \leftarrow extract_table_names(schema);

891 **if** existing_tables *is None* **then**

892 | **continue**;

893 */* Sample table count from BIRD/Spider distribution with added uniform noise */*

894 n \leftarrow sample_with_noise_from_table_distribution(table_counts);

895 */* Select non-conflicting table schemas from the same domain */*

896 distractive_schemas \leftarrow select_nonconflicting_schemas(domain,

897 existing_tables, n - 1);

898 */* Create distractive tables first, then target tables which may overwrite on name conflict */*

899 create_database(distractive_schemas + schema);

900 **3. Final Selection**

901 **foreach** sample *in* Gretel-Synth-NonFiltered **do**

902 **if** length of sample.sql_query > 160 **and** sample.sql_query returns results **then**

903 | Keep sample in Gretel-Synth-NonFiltered;

904 **else**

905 | Discard sample from Gretel-Synth-NonFiltered;

906 **return** Gretel-Synth-NonFiltered;

907 **Broader Implications.** These case studies illustrate that while non-RL models can perform chain-of-thought reasoning, their reasoning traces are often fragile and prone to subtle errors. SFT exposes the model only to correct examples, showing it “what to do.” RL, by contrast, exposes the model to both success and failure, teaching it “what works” and “what does not.” The simple binary signals from our GRPO training, reward for success, penalty for failure, are sufficient to correct a wide spectrum of reasoning errors, ranging from technical syntax issues to deeper semantic misinterpretations.

913

914

915 **G COMPUTE RESOURCE**

916

917

All experiments were conducted on 8 H100-80GB nodes (a total of 64 H100-80GB GPUs). Training time ranged from a few hours for the 7B model to up to 2.5 days for the final 32B model experiments.

```

918 Prompt for BIRD Data Augmentation
919
920 Table information:
921 Table name: {table name}
922 Column name: {column name}
923 Column description: {column desc}
924 Sample rows: {samples}
925
926 Optional(Task: {task}). The answer to the task is: {answer}.)
927
928 Based on this, write 10 more complex nested SQLite SQL queries or SQLs with
929 CTEs in sql code block format. You can use any information in the database information
930 provided. Each query should be different. You can write SELECT query only. For each query,
931 just write one sentence to describe the task. Format like:
932
933 /*Task: {task description in one sentence}*/
934 SELECT ...
935
936 Don't output other contents.

```

Figure C.1: Prompt for BIRD Data Augmentation

Algorithm 2: Self-Correction Workflow: Execution of multiple SQLs with self-correction and refinement based on invalid result feedback to ensure augmented SQLs with valid results.

```

Input: List of SQL statements sqls
Output: List of successful results result_dic_list
Initialize result_dic_list as empty list;
Initialize error_rec as empty list;
while sqls not empty do
    sql = sqls[0];
    results = execute_sql_sqlite(sql);
    if results is valid (i.e., string and not empty) then
        | Append sql and results to result_dic_list;
        | Continue to next SQL;
    Initialize max_try;
    while results is not valid do
        if max_try == 0 then
            | break;
        corrected_sql  $\leftarrow$  self_correct(sql, results);
        if corrected_sql is not valid then
            | continue;
        Execute corrected SQL; results = execute_sql_sqlite(sql);
        Decrease max_try by 1;
    if results is valid then
        if sqls not empty then
            | sqls  $\leftarrow$  similar_error_refine(sqls);
        if corrected_sql exists then
            | Append corrected_sql and results to result_dic_list;
    return result_dic_list;

```

H LIMITATIONS

It is important for each study—especially in the LLM domain—to clearly state its limitations. In our work, as noted in Section 4.2, we did not exhaustively explore PPO hyperparameters, which may limit the strength of our conclusions. Similarly, we only partially examined data augmentation

```

972
973 Prompt for Self-Correction Workflow
974
975 Self-Correction Prompt
976 Input SQL: {sql}
977 The error information is: {error}
978 Please correct the SQL based on the previous context. Output your reasoning process
979 followed by only one corrected SQL query in the following format:
980 – Description: ...
981 <Corrected SQL here>
982 Do not output multiple SQLs or only an analysis without a final SQL.
983
984 Similar Error Refinement Prompt
985 The following SQL has been corrected:
986 Original SQL: {sql}
987 Corrected SQL: {corrected_sql}
988 Please correct the remaining SQL statements if they contain similar errors. The list of SQLs
989 to be refined is: {sqls}
990 For each corrected SQL, respond in the following format:
991 – Description: ...
992 <Corrected SQL here>
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

```

Figure C.2: Prompt for Self-Correction Workflow

strategies Section 4.1. In addition, while general-purpose LLMs are known to be prompt-sensitive, we did not systematically explore prompt variations Section 4.3. Finally, we have conducted only limited evaluations of XYZ-Text2SQL-R1 across different model families, without covering broader types and scales of models.

1026
 1027
 1028
 1029 **Prompt Template for Training/Evaluation**
 1030
 1031 **System:**
 1032 You are a data science expert. Below, you are provided with a database schema and a natural
 1033 language question. Your task is to understand the schema and generate a valid SQL query to
 1034 answer the question.
 1035
 1036 **User:**
 1037 Database Engine:
 1038 SQLite
 1039
 1040 Database Schema: {Database Schema}
 1041 This schema describes the database's structure, including tables, columns, primary keys,
 1042 foreign keys, and any relevant relationships or constraints.
 1043
 1044 Question:
 1045 {evidence + question}
 1046
 1047 Instructions:
 1048 - Make sure you only output the information that is asked in the question. If the question asks
 1049 for a specific column, make sure to only include that column in the SELECT clause, nothing
 1050 more.
 1051 - The generated query should return all of the information asked in the question without any
 1052 missing or extra information.
 1053 - Before generating the final SQL query, please think through the steps of how to write the
 1054 query.
 1055
 1056 Output Format:
 1057 Please provide a detailed chain-of-thought reasoning process and include your thought
 1058 process within '`<think>`' tags. Your final answer should be enclosed within '`<answer>`' tags.
 1059
 1060 Ensure that your SQL query follows the correct syntax and is formatted as follows:
 1061
 1062 ````sql`
 1063 - Your SQL query here
 1064 `````
 1065
 1066 Example format:
 1067 `<think>` Step-by-step reasoning, including self-reflection and corrections if necessary.
 1068 [Limited by 4K tokens] `</think>`
 1069 `<answer>` Summary of the thought process leading to the final SQL query. [Limited by 1K
 1070 tokens]
 1071
 1072 ````sql`
 1073 Correct SQL query here
 1074 `````
 1075 `</answer>`
 1076
 1077 **Assistant:**
 1078 Let me solve this step by step.
 1079 `<think>`

Figure D.1: Prompt Template for Training and Evaluation

1080
1081
1082**Example I of response from XYZ-Text2SQL-R1-32B**1083
1084**Question:** Eligible free rate for K-12 = ‘Free Meal Count (K-12)‘ / ‘Enrollment (K-12)‘
What is the highest eligible free rate for K-12 students in the schools in Alameda County?1085
1086**Assistant:**

Let me solve this step by step.

<think>

1087
10881. **Identify the goal**: We need to find the highest eligible free rate for K-12 students in the schools located in Alameda County. The rate is calculated as ‘Free Meal Count (K-12)‘ divided by ‘Enrollment (K-12)‘.1089
10902. **Determine the relevant table and columns**:

- The relevant table is ‘frpm‘ because it contains the columns ‘Free Meal Count (K-12)‘ and ‘Enrollment (K-12)‘.

1091
1092
1093

- However, we need to filter by County, which is in the ‘schools‘ table. Thus, we will need to join the ‘frpm‘ table with the ‘schools‘ table on the ‘CDSCode‘ column to filter by the county name.

1094
10953. **Formulate the query**:

- We will calculate the eligible free rate by taking the ratio of ‘Free Meal Count (K-12)‘ and ‘Enrollment (K-12)‘.

1096
1097
1098
1099

- The ‘schools‘ table will be used to filter for schools in Alameda County.

- The ‘MAX‘ function will be used to find the highest eligible free rate.

1100

4. **Join tables**:

- Use an ‘INNER JOIN‘ between the ‘schools‘ table and the ‘frpm‘ table on the ‘CDSCode‘ column to link them correctly.

</think>

1101
1102
1103
1104
1105
1106
1107
1108
1109

<answer>

Here is the correct SQL query:

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

```
```sql
SELECT MAX(f.'Free Meal Count (K-12)‘ / f.'Enrollment (K-12)‘) AS HighestEligible-
FreeRate
FROM frpm AS f
JOIN schools AS s ON f.CDSCode = s.CDSCode
WHERE s.County = 'Alameda';
```
```

***Explanation**:

- The ‘JOIN‘ is used to connect the ‘frpm‘ and ‘schools‘ tables on the ‘CDSCode‘ column.

- The ‘WHERE‘ clause filters the records to only include those from Alameda County.

- The ‘MAX‘ function is used to find the highest value of the eligible free rate, which is calculated as ‘Free Meal Count (K-12)‘ divided by ‘Enrollment (K-12)‘.

The resulting query is efficient and meets the requirements of the natural language question.

</answer>

Figure E.1: Example I of response from XYZ-Text2SQL-R1-32B

1134
 1135 **Example II of response from XYZ-Text2SQL-R1-32B**
 1136
 1137 **Question:** Valid charter number means the number is not null. Rank schools by their average
 1138 score in Writing where the score is greater than 499, showing their charter numbers.
 1139
 1140 **Assistant:**
 1141 Let me solve this step by step.
 1142 <think>
 1143 1. **Understanding the Question**:
 1144 - We need to rank schools based on their average score in writing ('AvgScrWrite') for scores
 1145 greater than 499.
 1146 - We should display the 'CharterNum' of the school.
 1147 - A valid charter number means the number is not null.
 1148
 1149 2. **Identifying the Necessary Tables**:
 1150 - The 'satscores' table contains the average scores for writing ('AvgScrWrite') and the 'cds'
 1151 code which can be used to join with the 'schools' table.
 1152 - The 'schools' table contains the 'CharterNum' field which holds the charter number of the
 1153 schools.
 1154 - We need a join between the 'satscores' and 'schools' tables on the 'cds' (from 'satscores')
 1155 and 'CDSCode' (from 'schools') fields.
 1156
 1157 3. **Filter Conditions**:
 1158 - We need to filter out schools with 'AvgScrWrite' greater than 499.
 1159 - The 'CharterNum' should not be null.
 1160
 1161 4. **Sorting**:
 1162 - The result needs to be sorted by the average score in writing ('AvgScrWrite'), in descending
 1163 order.
 1164
 1165 5. **Selecting Columns**:
 1166 - We are only interested in the 'CharterNum' field from the 'schools' table.
 1167
 1168 </think>
 1169
 1170 <answer>
 1171 ```sql
 1172 SELECT T2.CharterNum
 1173 FROM satscores AS T1
 1174 INNER JOIN schools AS T2
 1175 ON T1.cds = T2.CDSCode
 1176 WHERE T1.AvgScrWrite > 499 AND T2.CharterNum IS NOT NULL
 1177 ORDER BY T1.AvgScrWrite DESC;
 1178
 1179 </answer>
 1180
 1181 This query will:
 1182 - Join the 'satscores' and 'schools' tables based on the 'cds' and 'CDSCode' fields.
 1183 - Filter out schools with an average writing score ('AvgScrWrite') greater than 499 and where
 1184 'CharterNum' is not null.
 1185 - Sort the results by 'AvgScrWrite' in descending order.
 1186 - Return only the 'CharterNum' field.
 1187

Figure E.2: Example II of response from XYZ-Text2SQL-R1-32B

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195

1196 Example III of response from XYZ-Text2SQL-R1-32B

1197

1198 **Question:** Eligible free rates for students aged 5-17 = ‘Free Meal Count (Ages 5-17)‘ /
 1199 ‘Enrollment (Ages 5-17)‘

1200 What is the free rate for students between the ages of 5 and 17 at the school run by Kacey
 1201 Gibson?

1202

Assistant:

1203 Let me solve this step by step.

1204 <think>

1205 1. The question asks for the rate of students between the ages of 5 and 17 who are eligible for
 1206 free meals. The formula provided for this rate is ‘Free Meal Count (Ages 5-17) / Enrollment
 1207 (Ages 5-17)‘.

1208 2. From the database schema provided, the relevant data can be found in the ‘frpm‘ table,
 1209 which contains the columns ‘Free Meal Count (Ages 5-17)‘ and ‘Enrollment (Ages 5-17)‘.

1210 3. The condition for the school is based on an administrator’s name, Kacey Gibson. This
 1211 information is stored in the ‘schools‘ table in the columns ‘AdmFName1‘ and ‘AdmLName1‘.

1212 4. To link the ‘frpm‘ table to the ‘schools‘ table, we use the ‘CDSCode‘ column, which is the
 1213 primary key in both tables.

1214 5. The final query needs to join the ‘frpm‘ and ‘schools‘ tables on their common ‘CDSCode‘
 1215 key, filter the rows for the specific administrator, and then compute and return the eligible
 1216 free rate for students aged 5-17.

1217 </think>

1218 <answer>

1219 ``sql

1220 SELECT

1221 (T1.‘Free Meal Count (Ages 5-17)‘ / T1.‘Enrollment (Ages 5-17)‘) AS free_rate

1222 FROM

1223 frpm AS T1

1224 JOIN

1225 schools AS T2

1226 ON

1227 T1.CDSCode = T2.CDSCode

1228 WHERE

1229 T2.AdmFName1 = ‘Kacey’ AND T2.AdmLName1 = ‘Gibson’;

1230 ```

1231 This SQL query is correct and directly answers the question with the necessary steps and
 1232 logic based on the provided schema.

1233 </answer>

1234

1235

1236

1237

1238

1239

1240

1241

Figure E.3: Example III of response from XYZ-Text2SQL-R1-32B

1242
1243**Example IV (Incorrect Response) from OmniSQL-32B in Case Study 1**1244
1245
1246

Question: Female refers to SEX = 'F'; born in 1964 refers to YEAR(Birthday) = 1964; admitted to the hospital refers to Admission = '+'. How many female patients born in 1964 were admitted to the hospital? List them by ID.

1247

1248

Golden SQL Query:

1249

```
```sql
SELECT ID FROM Patient WHERE STRFTIME('%Y', Birthday) = '1964' AND SEX = 'F'
AND Admission = '+'
```

```

1252

1253

Assistant:

1254

Let me solve this step by step.

<think>

1256

1. **Identify the goal**: Count how many patients satisfy all conditions and list their IDs. Conditions: 'SEX = 'F'', birth year = 1964, and 'Admission = '+'.

1258

1259

2. **Relevant table and columns**: Use the 'Patient' table with columns 'ID', 'SEX', 'Birthday', and 'Admission'. Extract year via SQLite's 'STRFTIME('%Y', Birthday)'.

1260

1261

3. **Formulate filters**: Apply a 'WHERE' clause combining the three predicates with 'AND'.

1262

1263

4. **Output**: Listing IDs answers the "List them by ID". A separate count (or a window count) answers "How many".

</think>

1264

<answer>

1265

Here is a correct SQL query matching the requirement to list IDs (Golden SQL):

1266

1267

```
```sql
SELECT ID
FROM Patient
WHERE STRFTIME('%Y', Birthday) = '1964'
AND SEX = 'F'
AND Admission = '+';
```

```

1268

If you also want the total count together with each ID in one result set (SQLite):

1269

1270

```
```sql
SELECT
ID,
COUNT(*) OVER() AS FemalePatientCount
FROM Patient
WHERE STRFTIME('%Y', Birthday) = '1964'
AND SEX = 'F'
AND Admission = '+';
```

```

1271

Explanation:

1272

- 'STRFTIME('%Y', Birthday) = '1964'' extracts year-of-birth.

1273

- 'SEX = 'F'' restricts to female patients.

1274

- 'Admission = '+' keeps only admitted patients.

1275

- The first query lists all matching IDs; the windowed variant also returns the total number.

1276

</answer>

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Figure F.1: Example IV (Incorrect Response) from OmniSQL-32B in Case Study 1

1296
1297**Example V (Correct Response) from XYZ-Text2SQL-R1-32B in Case Study 1**1298
1299
1300

Question: Female refers to SEX = 'F'; born in 1964 refers to YEAR(Birthday) = 1964; admitted to the hospital refers to Admission = '+'. How many female patients born in 1964 were admitted to the hospital? List them by ID.

1301
1302
1303**Golden SQL Query:**

```
```sql
SELECT ID FROM Patient WHERE strftime('%Y', Birthday) = '1964' AND SEX = 'F'
AND Admission = '+'
```
```

1304
1305
1306**Assistant:**

<think>

1. **Understand the Question**:** The question asks for the number of female patients ('SEX = 'F') who were born in 1964 ('YEAR(Birthday) = 1964') and were admitted to the hospital ('Admission = '+''). The result should list these patients by their 'ID'.
2. **Identify the Table**:** The 'Patient' table contains all the necessary information to answer the question, including 'SEX', 'Birthday', and 'Admission'.
3. **Filter Conditions**:**
 - 'SEX = 'F': This filters for female patients.
 - 'YEAR(Birthday) = 1964': This filters for patients born in 1964. SQLite does not have a 'YEAR()' function, but we can use 'strftime('%Y', Birthday)' to extract the year.
 - 'Admission = '+'': This filters for patients who were admitted to the hospital.
4. **Select the Required Columns**:** The question asks for the 'ID' of the patients.
5. **Count the Patients**:** The question also asks for the number of such patients, so we need to use the 'COUNT()' function.
6. **Order by ID**:** The result should be listed by 'ID'.
7. **Construct the Query**:** Based on the above analysis, we can construct the query.

</think>

1324
1325
1326

<answer>
Here is the correct SQL query:

```
```sql
SELECT COUNT(ID) AS Total_Female_Patients, ID FROM Patient WHERE SEX = 'F'
AND strftime('%Y', Birthday) = '1964' AND Admission = '+' ORDER BY ID;
```
```

1331
1332
1333
1334
1335

However, the above query will not work as intended because 'COUNT(ID)' and 'ID' cannot be selected together without using 'GROUP BY'. Since the question asks for both the count and the list of IDs, we need to separate these two requirements. The correct query to list the IDs is:

1336
1337
1338
1339
1340

```
```sql
SELECT ID FROM Patient WHERE SEX = 'F'
AND strftime('%Y', Birthday) = '1964' AND Admission = '+' ORDER BY ID;
```
```

1341
1342

To get the count of such patients, run separately:

1343
1344
1345
1346
1347
1348
1349

```
```sql
SELECT COUNT(*) AS Total_Female_Patients FROM Patient
WHERE SEX = 'F' AND strftime('%Y', Birthday) = '1964' AND Admission = '+';
```
```

Thus, the final query to satisfy the "list by ID" requirement is the second one.

</answer>

Figure F.2: Example V (Correct Response) from XYZ-Text2SQL-R1-32B in Case Study 1

1350
1351
1352
1353
1354
1355

Example VI (Incorrect Response) from OmniSQL-32B in Case Study 2

Question: Full name of member refers to first_name, last_name. List the full name of the Student_Club members that grew up in Illinois state.

Golden SQL Query:

```
```sql
SELECT T1.first_name, T1.last_name
FROM member AS T1
INNER JOIN zip_code AS T2 ON T1.zip = T2.zip_code
WHERE T2.state = 'Illinois';
```

```

Assistant:

<think>

1. **Understand the Question**: We need the full names ('first_name', 'last_name') of Student_Club members whose zip code corresponds to Illinois.

2. **Identify Relevant Tables**:

- 'member': contains 'first_name', 'last_name', and 'zip'.
- 'zip_code': contains 'zip_code' and 'state'.
- 'major': contains 'major_id' and 'major_name'.

3. **Determine Join Conditions**:

- 'member.zip = zip_code.zip_code'.
- 'member.link_to_major = major.major_id'.

4. **Filter Conditions**:

- 'zip_code.state = 'Illinois''.
- 'major.major_name = 'Student_Club''.

5. **Select Columns**: Output 'first_name' and 'last_name' from the 'member' table.

</think>

<answer>

Here is the correct SQL query:

```
```sql
SELECT member.first_name, member.last_name
FROM member m
JOIN major mj ON m.link_to_major = mj.major_id
JOIN zip_code z ON m.zip = z.zip_code
WHERE z.state = 'Illinois' AND mj.major_name = 'Student_Club';
```

```

Explanation:

- The 'INNER JOIN' ensures we match members with both their associated major and their zip code.
- The 'WHERE' clause restricts results to members who are in the state of Illinois and belong to the Student_Club.
- Selecting 'first_name' and 'last_name' outputs each qualifying member's full name.

</answer>

1400
1401
1402
1403

Figure F.3: Example VI (Incorrect Response) from OmniSQL-32B in Case Study 2

1404
1405
1406
1407
1408

1409 Example VII (Correct Response) from XYZ-Text2SQL-R1-32B in Case Study 2

1410
1411
1412

Question: Full name of member refers to first_name, last_name. List the full name of the Student_Club members that grew up in Illinois state.

1413
1414
1415
1416
1417
1418
1419
1420

Golden SQL Query:

```
```sql
SELECT T1.first_name, T1.last_name
FROM member AS T1
INNER JOIN zip_code AS T2 ON T1.zip = T2.zip_code
WHERE T2.state = 'Illinois';
```

```

1421
1422
1423
1424
1425

Assistant:

<think>

1. **Understand the Question**: The question asks for the full name ('first_name', 'last_name') of members who are associated with the Student_Club and who grew up in Illinois.

1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452

2. **Identify Relevant Tables**:

- 'member': contains 'first_name', 'last_name', and 'zip'.
- 'zip_code': contains 'zip_code' and 'state'.

3. **Join Tables**: Use 'member.zip = zip_code.zip_code' to connect the two tables.

4. **Filter Conditions**: Restrict to 'zip_code.state = 'Illinois''.

5. **Select Fields**: Output 'first_name' and 'last_name' from 'member'.

</think>

<answer>

Here is the correct SQL query:

```
```sql
SELECT DISTINCT m.first_name, m.last_name
FROM member m
JOIN zip_code z ON m.zip = z.zip_code
WHERE z.state = 'Illinois';
```

```

Explanation:

- The 'JOIN' links each member to their state via the 'zip' code.
- The 'WHERE' clause restricts results to Illinois residents.
- 'DISTINCT' ensures duplicate names are not repeated.

</answer>

1453
1454
1455
1456
1457

Figure F.4: Example VII (Correct Response) from XYZ-Text2SQL-R1-32B in Case Study 2