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ABSTRACT

Translating natural language into SQL (Text2SQL) is a longstanding challenge
at the intersection of natural language understanding and structured data access.
While large language models (LLMs) have significantly improved fluency in SQL
generation, producing correct and executable SQL, particularly for complex queries,
remains a bottleneck. We present XYZ-Text2SQL-R1, a reinforcement learning
(RL) framework and model family designed to generate accurate, executable SQL
using a lightweight reward signal based solely on execution correctness. Our
approach avoids brittle intermediate supervision and complex reward shaping,
promoting stable training and alignment with the end task. Combined with care-
fully curated data, strong supervised initialization, and effective training practices,
XYZ-Text2SQL-R1 achieves state-of-the-art execution accuracy across six diverse
Text2SQL benchmarks and ranks among the leading entries on the BIRD leader-
board. Notably, our 7B model outperforms prior 70B-class systems, highlighting
the framework’s scalability and efficiency. We further demonstrate inference-time
robustness through simple extensions like value retrieval and majority voting. Ex-
tensive experiments and ablation studies offer both positive and negative insights,
providing practical guidance for future Text2SQL research.

1 INTRODUCTION

Translating natural language questions into SQL queries, commonly known as Text2SQL, is a core
challenge in natural language understanding and human-computer interaction. A robust solution
would enable non-technical users to query structured databases using natural language, thereby
democratizing access to data analytics.

Recent advances in large language models (LLMs) have significantly improved the fluency and
surface-level coverage of Text2SQL systems Ma et al. (2025); Pourreza et al. (2025); Zhai et al.
(2025); Papicchio et al. (2025). However, generating correct and executable SQL, especially for
complex queries involving multi-table joins, nested logic, and nuanced schema understanding, remains
difficult. Most existing approaches rely on supervised fine-tuning over (question, SQL) pairs Li et al.
(2025); Gao et al. (2024), which often fail to promote the intermediate reasoning steps essential for
reliable and generalizable SQL generation.

We introduce XYZ-Text2SQL-R1, a reinforcement learning (RL) framework and model family for
generating high-quality executable SQL from natural language. It uses a lightweight reward based
solely on execution correctness, avoiding brittle partial rewards while promoting stable training and
alignment with the end goal. Combined with best practices in data filtering, synthetic generation, and
model-based selection, XYZ-Text2SQL-R1 demonstrates that high-quality data, strong supervised ini-
tialization, and a simple reward signal together yield accurate, scalable, and robust Text2SQL models.

Our main contributions are:

• Simple and Scalable RL for Text2SQL: We develop a lightweight RL formulation using execution-
only rewards that generalizes well across model sizes and benchmarks, enabling stable training and
strong performance without complex reward design.

• Comprehensive Benchmark Leadership: Across six diverse Text2SQL benchmarks, XYZ-
Text2SQL-R1 consistently outperforms both SQL-specialized and general-purpose LLMs, including
GPT-4o OpenAI (2023) and DeepSeek-V3 Liu et al. (2024), demonstrating robust generalization

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

across domains. On the BIRD leaderboard, our models are positioned among the leading entries:
the 32B model achieves 71.83% execution accuracy, which further improves to 73.84% when
applying self-consistency. Among models with publicly available details, XYZ-Text2SQL-R1
ranks first, ensuring transparency, reproducibility, and accessibility. Notably, our 7B model even
surpasses prior 70B-class systems Zhai et al. (2025), highlighting the scalability and efficiency of
our approach.

• Data and Training Strategies That Matter: We present best practices for data filtering, synthetic
data generation, and model-based selection. Additionally, we demonstrate the value of online RL
training, which leverages strong supervised checkpoints and well-designed prompts to further
improve performance. Combined with high-quality data and a simple execution-driven reward,
these practices produce accurate, scalable, and robust Text2SQL models.

• Broad and Rigorous Evaluation: We evaluate XYZ-Text2SQL-R1 across six Text2SQL datasets,
covering a range of schema complexity and query difficulty. This provides strong evidence of
generalization and guards against overfitting to any single dataset or evaluation format.

• Inference-Time Robustness and Extensibility: XYZ-Text2SQL-R1 supports simple inference-
time techniques, such as value retrieval and majority voting, that further improve accuracy with
minimal system overhead, demonstrating its practicality for real-world deployment.

• Empirical Insights for the Community: We report both successful and negative findings, offering
transparent and actionable insights to guide future RL-based Text2SQL research/development.

2 RELATED WORK

The research presented in XYZ-Text2SQL-R1 draws inspiration from and aims to advance two
key areas of investigation: the development of robust Text2SQL systems and the refinement of
reinforcement learning techniques for sophisticated language model reasoning.

Reinforcement Learning for LLM Reasoning. Recent research has demonstrated the potential of
RL techniques to significantly enhance the reasoning capabilities of LLMs OpenAI et al. (2025);
Lambert et al. (2024); OpenAI et al. (2024); Guo et al. (2019). By providing explicit rewards for
logical correctness and step-wise reasoning, RL enables models to autonomously discover effective
problem-solving strategies, often mirroring structured human reasoning Xu et al. (2025); Wang et al.
(2025); Yang et al. (2025b). Applications span mathematical problem solving (where RL fine-tuning
on step-by-step correctness or final answer accuracy yields substantial improvements Shao et al.
(2024); OpenAI et al. (2024)) and code generation, where preference optimization and RL from human
feedback have led to greater code validity and efficiency Wang et al. (2025); Yang et al. (2025b).

Most prior methods are built on top of policy gradient algorithms such as Proximal Policy Optimiza-
tion (PPO) Schulman et al. (2017) or, more recently, Group Relative Policy Optimization (GRPO) Guo
et al. (2025); Yang et al. (2024b); Dang & Ngo (2025), which compares groups of generated re-
sponses rather than evaluating them in isolation. This approach is particularly powerful for reasoning
tasks with multiple plausible solutions, enabling the model to build a deeper understanding of what
constitutes high-quality reasoning Kumar et al. (2025). For example, GRPO has enabled models
like DeepSeek-R1-Zero to develop complex reasoning skills such as multi-step chain-of-thought
simply by being rewarded for correct final answers Guo et al. (2025). The effectiveness of these RL
frameworks often hinges on carefully designed preference datasets and reward models that accurately
reflect the subtleties of logical reasoning. Our work draws on these insights, by adapting GRPO for
the Text2SQL domain and focusing the reward signal on final executable correctness, encouraging
the model to reason through the full compositional structure of the query.

Text-to-SQL. The Text2SQL task has seen remarkable progress over the years Zhu et al. (2024b).
Early systems were built on rule-based approaches and handcrafted grammars, but proved brittle
when faced with linguistic ambiguity or complex schema variation Androutsopoulos et al. (1995); Li
& Jagadish (2014). The advent of neural sequence-to-sequence models helped automate parts of the
semantic parsing process, though such models often required elaborate schema encoders and strong
supervision Guo et al. (2019); Wang et al. (2021).

More recently, the generalization power of LLMs has revolutionized the field, as demonstrated by
numerous works leveraging pre-trained LLMs for template-free SQL generation Singh et al. (2025);
Gao et al. (2023); Li et al. (2024). LLMs often exhibit basic SQL competence on “out-of-the-box”
evaluation, but their performance on complex, multi-table queries remains limited unless explicit
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compositional reasoning is encouraged Wei et al. (2023); Shao et al. (2024); Guo et al. (2025);
OpenAI et al. (2024). This has motivated the development of techniques such as Chain-of-Thought
prompting Tai et al. (2023), query decomposition Eyal et al. (2023), optimization Zhai et al. (2025), as
well as dynamic schema linking and execution-based feedback Hong et al. (2024); Deng et al. (2025).

Table 1: The reward design comparison of XYZ-
Text2SQL-R1 to existing reasoning models.

Framework Optimization (Reward)

Reasoning-SQL Pourreza et al. (2025) GRPO (EX, syntax, n-gram, LLM, schema, format)
SQL-R1 Ma et al. (2025) GRPO (EX, length, syntax, format)
Think2SQL Papicchio et al. (2025) GRPO (precision, recall, cardinality, 2×format)
ExCoT Zhai et al. (2025) DPO (EX)

XYZ-Text2SQL-R1 GRPO (EX, syntax)

Within this landscape, there is growing interest
in RL-based approaches for Text2SQL, often
building on structured, multi-component reward
functions that aggregate execution feedback,
syntactic validity, partial string overlap, schema
conformance, and more Pourreza et al. (2025);
Ma et al. (2025); Papicchio et al. (2025). How-
ever, such complex reward engineering risks
encouraging superficial reward hacking, as ob-
served in RL for semantic parsing Skalse et al. (2022). In contrast, our work advocates for a simpler,
execution-centric reward design, inspired by earlier RL-based semantic parsing approaches such as
Seq2SQL Zhong et al. (2017), and demonstrates that this minimal reward scheme can be both more
stable and more effective in practice.

Compared to most recent reasoning works Pourreza et al. (2025); Ma et al. (2025); He et al. (2025),
or pairwise preference optimization Zhai et al. (2025), our method is unique in unifying a streamlined
data filtering pipeline, group-based relative policy optimization, and a strictly execution-based reward
(Table 1).

3 METHODOLOGY

Building on insights from prior RL work for language model reasoning, we design XYZ-Text2SQL-R1
to pursue robust Text2SQL generation via a simple, execution-grounded RL framework.

Overview of RL Approach. We adopt GRPO Shao et al. (2024) as it has demonstrated superior
efficiency and effectiveness on structured reasoning tasks, making it an ideal match for Text2SQL.
Applying RL in this setting is particularly necessary. SQL correctness can be directly verified against
databases, providing clear and automatic reward signals. In addition, the generation process inherently
involves multi-step decision making. Finally, given the scarcity of annotated data, RL allows the
model to explore and generalize to novel compositional patterns beyond the training set.

Formally, let πθ denote our policy model parameterized by θ. For each input text question Q
with associated database schema, the model generates N candidate SQL queries (aka rollouts),
{oQ,1, ..., oQ,N}. Each generated query is then evaluated to provide an explicit reward signal as
described in the later of the section. These per-group rollouts allow us to compute relative advantages,
stabilizing learning and promoting robust policy improvement.

The GRPO objective is as follows:

JGRPO(θ) = E
[
1

N

N∑
i=1

min (riAi, clip(ri, 1− ϵ, 1 + ϵ)Ai)

]
− βDKL(πθ∥πref ),

where ri =
πθ(oi|Q)
πθold (oi|Q) is the likelihood ratio, Ai the advantage, and DKL is a KL-divergence penalty

to keep the policy close to a reference (supervised fine-tuned) model Ouyang et al. (2022). In practice,
ϵ and β are tuned to balance exploration and stability.

Reward Model Design. A key differentiator of XYZ-Text2SQL-R1 is its adherence to a minimal,
execution-driven reward formulation. While earlier works have often sought highly elaborate reward
signals (aggregating string overlap, schema conformance, partial matching, etc. Pourreza et al. (2025);
Ma et al. (2025)), we find these can encourage reward hacking and brittle behaviors Skalse et al.
(2022).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 2: The datasets and their volume used in the paper. For BIRD-training, spider-training/dev,
their original sample sizes are 9428, 8659/1034.

Used for Training Used for Evaluation

Dataset BIRD SPIDER- SPIDER- Gretel-Synth BIRD- SPIDER- Spider2.0- Spider- EHR Science
training training dev Filtered dev test SQLite DK SQL Benchmark

Size 8 017 6 972 985 11 811 1534 2 147 135 535 1 008 299

Table 3: Learning from training data (all with GRPO optimization and Qwen2.5-Coder).

Base Model Training Data BIRD-dev SPIDER-test

14B-Inst BIRD, SPIDER 64.9 86.8
14B-Inst BIRD, SPIDER, Gretel-Synth-NonFiltered 64.6 86.4
14B-Inst BIRD, SPIDER, Gretel-Synth-Filtered 66.5 88.3
32B-Inst BIRD, SPIDER, Gretel-Synth-Filtered 64.9 87.7
32B-Inst BIRD, SPIDER, Gretel-Synth-Filtered, BIRD-aug-NonFiltered 62.5 86.1
32B-Inst BIRD, SPIDER, Gretel-Synth-Filtered, BIRD-aug-Filtered 64.9 86.8

Instead, we define a reward function focused solely on (1) final execution correctness and (2) basic
syntax validity:

R =


1, if the execution results exactly align with ground truth;
0.1, if syntax is correct and SQL is executable;
0, otherwise.

Here, execution alignment is determined by running the model’s SQL prediction alongside the ground-
truth query and matching their results using the strictest available criteria (e.g. BIRD benchmark
guidelines), ensuring meaningful progress signals. Syntax validity ensures that models are not unduly
penalized for benign formatting or minor structural errors when learning to compose well-formed
queries. Our design is similar to math/logic RL works Xie et al. (2025); Guo et al. (2025) with extra
constraints on valid SQL execution.

The proposed reward design enables stable, interpretable credit assignment, removing distracting or
confounding partial rewards. As empirical results (Section 5) demonstrate, our streamlined approach
is sufficient and preferable for high-accuracy, generalizable Text2SQL modeling.

4 LEARNINGS

Our iterative exploration involved experiments with diverse training and data selection strategies,
yielding a variety of empirical insights. While we recognize that some of these observations may
be context-specific and not universally applicable, we document them here to inform and accelerate
future research in the field.

Experimental Setup. Our primary training datasets are derived from the BIRD Li et al. (2024)
training set, and the training/development splits of SPIDER Yu et al. (2018). Rather than directly
adopting these sources, we apply a filtering process aimed at data quality (see Table 2 and Section 4.1
for details). Initial model selection is guided by performance on the BIRD-dev and SPIDER-test
sets, reported via execution accuracy. As we noticed that a sole focus on these two benchmarks risks
overfitting, we later broadened our evaluation suite for a more robust assessment.

As base models, we rely on the Qwen2.5-Coder series Hui et al. (2024), including both base, instruct
and reasoning-oriented variants. Unless noted otherwise, GRPO Shao et al. (2024) is used as our
default RL algorithm. RL-specific settings include a generation temperature of 0.8, a total batch size
of 256 (16 rollouts each), an update batch size of 128 per GRPO step, KL penalty β = 0.001, and
clip ratio ϵ = 0.2 (see Section 3 for hyperparameter details).

4.1 LEARNINGS FROM TRAINING DATA

The Critical Role of Filtering. Thorough inspection of BIRD and SPIDER training splits reveals that
many reference SQL queries in these datasets return empty results upon execution. For RL, where
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Table 4: Learnings from training strategy (*: limited results because of the checkpoint loss)

Base Model Training Strategy Optimization BIRD-dev SPIDER-test

Qwen2.5-Coder-32B-Inst — GRPO 64.9 87.7
Qwen2.5-Coder-32B-Inst — PPO 63.0 85.7

Qwen2.5-Coder-32B — GRPO 64.4 87.3
Qwen2.5-Coder-32B-Inst — GRPO 64.9 87.7
QwQ-32B — GRPO 55.2 79.3

Qwen2.5-Coder-32B-Inst Batch RL GRPO 64.9 87.7
Qwen2.5-Coder-32B-Inst * Online RL GRPO 66.6 –

Qwen2.5-Coder-32B-Inst * Online RL GRPO 66.6 –
OmniSQL-32B Online RL GRPO 67.9 88.2

OmniSQL-32B Online RL + Self-defined Prompt Template GRPO 67.9 88.2
OmniSQL-32B Online RL + Modified OmniSQL Prompt GRPO 70.5 88.7

reward signaling is tied to execution correctness, such examples can disrupt the learning process by
producing spurious or uninformative rewards. We exclude these and filter out samples with execution
times exceeding five seconds, markedly reducing overall training time. This straightforward filtering
step removed about 1,400 samples from BIRD and 1,700 from SPIDER, yielding a more reliable
reward signal and expediting RL convergence. Table 2 provides a summary of datasets used, including
derived data splits.

Table Enhanced Generation with Model-based Data Filtering for Synthetic Data. We further
augment training data with Gretel-Synth Meyer et al. (2024), which provides schemas without
populated data. We use GPT-4o to produce INSERT statements per table (details in Appendix B),
repeatedly sampling until the reference SQL retrieves non-empty results. Distractor tables from
related domains are randomly added to increase schema complexity, and only queries with SQL length
> 160 characters and successful execution are retained for the non-filtered pool. However, naively
adding Gretel-Synth-NonFiltered to training reduced performance (the first section of Table 3). To
remedy this, we employed a model-based filtering, using our best Qwen2.5-Coder-32B-Inst-trained
model, and retained only queries where at least one of the ten generations (temperature = 1.0) was
correct. This curated Gretel-Synth-Filtered set markedly improves results.

Unsuccessful Attempts at LLM-Based Data Augmentation. Drawing inspiration from works such
as Yang et al. (2024c); Hu et al. (2023), we attempted to boost diversity through data augmentation,
prompting LLMs to paraphrase or generate complex questions given a schema, the original question,
and its SQL. Nevertheless, we found that model outputs often closely mirrored the original condi-
tions, limiting diversity. We next tried prompting solely with schema descriptions and gold SQL,
omitting the original question, and incorporated self-correction Deng et al. (2025) to ensure all SQLs
were executable and returned data. Despite this, augmented data largely failed to improve model
generalization (the second section of Table 3), which we attribute to (1) insufficient linguistic and
structural diversity, and (2) oversampling schema-specific patterns, leading to overfitting.

Other Data Sources.We also experimented with model-filtered data from SynSQL-2.5M Li et al.
(2025), but initial attempts were inconclusive. Given the sheer volume of SynSQL-2.5M, we believe
more sophisticated filtering could unlock further gains, which we leave for future work.

4.2 LEARNINGS FROM TRAINING STRATEGY

Unless stated otherwise, the following rely on filtered BIRD, SPIDER, and Gretel-Synth.

GRPO vs PPO. We compare GRPO and PPO. GRPO, by design, reduces memory usage of critic
models and is well-suited for large-scale settings; PPO is simpler and historically popular for stable
RL optimization. In our experiments, GRPO outperforms PPO by a comfortable margin (see the first
section of Table 4), though we caution that PPO may benefit from further hyperparameter tuning.

Selecting the Optimal Starting Model. We assess Qwen-2.5-Coder in the base, instructed, and
the reasoning-focused QwQ-32B variant. Results show that starting from better instruction following,
higher-accuracy models is crucial (see the second section of Table 4). The main differences
between Qwen2.5-Coder-32B base and instruction are (1) the instruction following capability
and (2) high-quality instruction finetuning data, which leads to about 0.4 EX gap. QwQ-32B is
optimized for math and reasoning tasks, e.g., math, but not SQL, and its initial accuracy trailed the
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Qwen-2.5-Coder-instructed version by over 10 points, a gap RL fine-tuning could not close. Later,
we discuss how strong supervised checkpoints improve downstream RL.

Online RL Surpasses Batch RL. We compare online RL, where the model continually interacts with
the environment, with batch RL. Our findings show superior results with online RL, likely due to its
increased adaptivity and exposure to more complex negative examples via live interaction (the third
section of Table 4). This observation extends previous results primarily observed in mathematical
and programming, indicating its pertinence for Text2SQL.

Supervised Fine-Tuning Model Quality Matters. Stronger SFT models (e.g., OmniSQL Li et al.
(2025)) consistently yield better downstream RL results (the forth section of Table 4), reinforcing
the importance of strong initializations and echoing observations from other domains.

Prompt Format is Crucial. We observed significant gains (the fifth section of Table 4) when switch-
ing from a generic prompt to the original OmniSQL prompt, adapted for RL training (see Figure D.1
for prompt). Prompt structure, inclusion of thinking instructions, and database serialization choices
all contributed to improved model performance.

Other Observations. We explored variations in rollout count (16, 24, 32), human- or LLM-generated
prompts, and various reward designs. None produced significant improvement, and, notably, more
fine-grained reward designs induced “lazy” behaviors, where models pursued local optima for
short-term rewards rather than global correctness.

4.3 LEARNING FROM EVALUATION BENCHMARK DIVERSITY

Table 5: Diverse evaluation helps to identify generalization capabilities (OmniSQL-7B).

Different setting BIRD- Spider- Spider2.0- Spider- EHR Science Averagedev test SQLite DK SQL Benchmark

BIRD only 67.6 87.8 8.9 76.3 34.9 50.5 54.3
BIRD, SPIDER, Gretel-Synth 67.7 88.2 11.9 79.1 35.5 51.8 55.7

Prompt Optimization Benefits OSS Model Evaluation. Prompt selection dramatically affects open-
source models (e.g., Llama Grattafiori et al. (2024) and Qwen Hui et al. (2024)) performance, with
the OmniSQL prompt improving Llama-3.1-70B’s BIRD-dev accuracy from 57.4% Zhai et al. (2025)
to 65.1% in our experiments. Prompt tuning is thus indispensable for the fair comparison of large,
general-purpose LLMs in the Text2SQL task. However, finding the best prompt for general-purpose
LLMs is beyond the scope of our work.

Diverse Evaluation Surfaces Generalization Gaps. Restricting training to BIRD, we observed
strong benchmark accuracy on BIRD-dev, but an average score 1.4 points lower when evaluated across
a broader suite (Table 5), including BIRD-dev Li et al. (2024), SPIDER Yu et al. (2018), Spider2.0 Yu
et al. (2018), Spider-DK Gan et al. (2021), EHRSQL Lee et al. (2022), and ScienceBenchmark Zhang
et al. (2023). This highlights the risk of overfitting and the necessity of evaluating on multiple datasets
to ensure robust generalization.

5 MAIN RESULT

Our final experiments build upon all prior empirical insights: the training data includes the filtered
BIRD-training and SPIDER-training/dev sets, along with the model-based filtered Gretel-Synth-
Filtered synthetic examples. The reinforcement learning setup consists of (1) GRPO as the optimiza-
tion algorithm, (2) online training, (3) initializing from OmniSQL supervised checkpoints, and (4)
using a modified OmniSQL prompt for both training and evaluation. We report execution-based
accuracy results across all six benchmarks detailed in Table 2.

XYZ-Text2SQL-R1 shows strong performance on the BIRD benchmark (Table 7). Our largest model
ranks third overall, but first among models with released research papers. XYZ-Text2SQL-R1-32B
reaches 73.84% accuracy with Few-sample Self-Consistency and 71.83% under the stricter greedy
decoding setting. In the leaderboard, the Self-Consistency column indicates the number of sampled
candidates (e.g., Few: 1–7, Many: 8–32). Both XYZ-Text2SQL-R1-7B and XYZ-Text2SQL-R1-14B
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Table 6: Comparison between XYZ-Text2SQL-R1 and other Open-Source Software (OSS) / Propri-
etary models. *: SQL-R1 Ma et al. (2025) uses majority voting in evaluation. **: (Pourreza et al.,
2025, Table 2) might use schema linking, our number follows (Pourreza et al., 2025, Table 3/4). †:
Spider2.0 was updated, so we re-evaluate it instead of using the OmniSQL number. For SQL-specific
models, generally sensitive to prompt and database serialization, we take the number from their
papers. DPSK stands for DeepSeek.

Model OSS BIRD SPIDER Spider2.0 Spider EHR Science Average
(dev) (test) -SQLite† -DK SQL Benchmark

Models Size < 10B

DPSK-Coder-6.7B-Instruct Guo et al. (2024) ✓ 43.1 70.5 4.4 60.9 28.6 40.8 41.4
Qwen2.5-Coder-7B-Instruct Hui et al. (2024) ✓ 50.9 82.2 4.4 67.5 24.3 45.2 45.8
Qwen2.5-7B-Instruct Yang et al. (2024a) ✓ 46.9 76.8 5.2 63.7 20.9 38.5 42.0
SQL-R1-7B* Ma et al. (2025) ✗ 66.6 – – – – – –
OmniSQL-7B Li et al. (2025) ✓ 63.9 87.9 13.3 76.1 34.9 50.2 54.4
Think2SQL-7B Papicchio et al. (2025) ✗ 56.1 – – – – – –
OpenCoder-8B-Instruct Huang et al. (2024) ✓ 37.5 68.3 1.5 62.6 21.9 39.8 38.6
Meta-Llama-3.1-8B-Instruct Grattafiori et al. (2024) ✓ 42.0 72.2 1.5 62.6 24.6 36.8 40.0
Granite-8B-Code-Instruct Mishra et al. (2024) ✓ 27.6 64.9 1.5 50.7 16.0 29.4 31.7
Granite-3.1-8B-Instruct Mishra et al. (2024) ✓ 36.0 69.8 3.7 60.0 19.6 36.8 37.7

XYZ-Text2SQL-R1-7B ✓ 68.9 88.8 15.6 81.5 36.7 51.8 57.2
10B ≤Models Size ≤ 30B

Qwen2.5-Coder-14B-Instruct Hui et al. (2024) ✓ 61.5 86.6 11.1 73.6 31.6 52.2 52.8
Qwen2.5-14B-Instruct Yang et al. (2024a) ✓ 56.7 82.0 8.1 72.3 28.8 51.2 49.9
OmniSQL-14B Li et al. (2025) ✓ 64.2 88.3 12.6 72.9 39.9 56.9 55.8
Reasoning-SQL-14B** Pourreza et al. (2025) ✗ 64.2 81.4 – 73.0 – – –
Starcoder2-15B-Instruct Lozhkov et al. (2024) ✓ 38.5 73.0 1.5 66.5 16.8 25.8 37.0
DPSK-Coder-V2-Inst (16B/MoE) Zhu et al. (2024a) ✓ 44.6 77.9 2.2 63.7 23.9 39.1 41.9
Granite-20B-Code-Instruct Mishra et al. (2024) ✓ 34.0 74.1 1.5 62.2 23.5 37.5 38.8
Codestral-22B Mistral AI (2024) ✓ 52.7 78.6 8.1 69.9 37.8 48.5 49.3

XYZ-Text2SQL-R1-14B ✓ 70.1 89.4 16.3 79.4 40.7 58.2 59.0
30B < Models Size or Unknown

Qwen2.5-Coder-32B-Instruct Hui et al. (2024) ✓ 64.5 87.5 10.4 78.3 36.4 54.8 55.3
Qwen2.5-32B-Instruct Yang et al. (2024a) ✓ 62.0 84.9 10.4 73.1 33.6 50.5 52.4
Xiyan-SQL-32B Gao et al. (2024) ✓ 67.0 – – – – – –
ExDPO-32B Zhai et al. (2025) ✓ 68.3 85.1 – – – – –
OmniSQL-32B Li et al. (2025) ✓ 64.5 87.6 14.8 76.1 42.4 57.2 57.1
DPSK-Coder-33B-Instruct Guo et al. (2024) ✓ 49.2 74.3 5.2 69.0 31.4 44.5 45.6
Granite-34B-Code-Instruct Mishra et al. (2024) ✓ 33.8 74.4 0.0 64.7 23.8 40.1 39.5
Mixtral-8x7B-Inst. (47B, MoE) Jiang et al. (2024) ✓ 35.3 67.8 3.7 55.3 21.5 29.4 35.5
Meta-Llama-3.1-70B-Instruct Grattafiori et al. (2024) ✓ 65.1 84.3 7.4 75.1 37.4 55.2 54.1
ExDPO-70B Zhai et al. (2025) ✓ 68.5 86.6 – – – – –
Qwen2.5-72B-Instruct Yang et al. (2024a) ✓ 60.3 84.0 11.9 76.4 35.0 52.8 53.4
Command-A-111B Team Cohere (2025) ✓ 63.5 – – – – – –
DeepSeek-V3 (671B, MoE) Liu et al. (2024) ✓ 63.2 85.5 14.8 72.9 43.2 56.2 55.6
GPT-4o-mini OpenAI (2023) ✗ 58.8 82.4 11.9 73.3 37.9 51.8 52.7
GPT-4-Turbo OpenAI (2023) ✗ 62.0 83.4 13.3 72.3 43.1 59.2 55.6
GPT-4o OpenAI (2023) ✗ 61.9 83.2 17.0 72.9 44.9 55.5 55.9

XYZ-Text2SQL-R1-32B ✓ 70.5 88.7 16.3 80.6 40.1 60.9 59.5

Table 7: BIRD Single-Model Leaderboard.

Model Self-Consistency Dev Test

Databricks RLVR 32B Few – 75.7
Sophon-Text2SQL-32B Many 72.4 74.8
XYZ-Text2SQL-R1-32B Few 72.2 73.8
Databricks RLVR 32B – 70.8 73.6
Jiayin-Pangu-Text2SQL-14B Many 71.1 73.5
XYZ-Text2SQL-R1-14B Few 71.4 72.2
SIFT-32B Scale 70.1 70.9
CrazyData-Text2SQL-32B Many – 70.7
Infly-RL-SQL-32B Few 70.1 70.6
XYZ-Text2SQL-R1-7B Few 70.1 70.4

Table 8: XYZ-Text2SQL-R1 with differ-
ent evaluation techniques on BIRD-dev.

Model Value Majority BIRD-dev
Size Retrieval Voting

14B

✗ ✗ 70.1
✓ ✗ 70.5
✗ ✓ 70.6
✓ ✓ 70.8

32B

✗ ✗ 70.5
✓ ✗ 70.9
✗ ✓ 71.2
✓ ✓ 71.5

exceed 70% on the BIRD test, and notably, XYZ-Text2SQL-R1-7B matches the performance of much
larger systems such as ExCoT-70B Zhai et al. (2025) with an order of magnitude fewer parameters.

5.1 PERFORMANCE EVALUATION ACROSS SIX BENCHMARKS

Instead of optimizing the model for single benchmark performance, XYZ-Text2SQL-R1 achieves
best-in-class average performance across six different benchmarks. Table 6 presents a comprehensive
comparison between XYZ-Text2SQL-R1 and a wide range of open-source and proprietary models,
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including general-purpose LLMs (e.g. DeepSeek-V3, GPT-4o, GPT-4-Turbo), coding models (Qwen-
Coder), and specialized Text2SQL models (XiYan-SQL, OmniSQL, ExCoT, SQL-R1, Reasoning-
SQL). Except where otherwise indicated, all evaluations use single-model, single-inference (i.e.,
greedy decoding with no ensembling, schema linking, or external re-ranking).

State-of-the-Art Across All Scales. XYZ-Text2SQL-R1 consistently outperforms existing state-
of-the-art models across all parameter scales and benchmarks. For models under 10B parameters,
XYZ-Text2SQL-R1-7B achieves an average accuracy of 57.2, outperforming open-source competitors
(e.g., OmniSQL-7B at 54.4) and closely rivaling, or surpassing, closed-source models such as SQL-
R1-7B. In the 10B–30B range, XYZ-Text2SQL-R1-14B attains 59.0, exceeding strong baselines like
OmniSQL-14B and Reasoning-SQL-14B. In the 30B+ category, XYZ-Text2SQL-R1-32B achieves
the best results overall, with an average of 59.5, outperforming the largest open-source and commercial
models, including DeepSeek-V3 (55.6), GPT-4-Turbo (55.6), and even GPT-4o (55.9).

Parameter Efficiency and Task Specialization. Notably, XYZ-Text2SQL-R1-7B matches or
surpasses models such as DeepSeek-V3 (671B, MoE) and OmniSQL-32B on six benchmark accuracy,
despite a fraction of their parameter count. These results highlight the advantages of task-specific
training and reward design for compositional SQL reasoning.

Benchmark-Specific Highlights. On challenging benchmarks such as BIRD, Spider, and EHRSQL,
XYZ-Text2SQL-R1 shows marked improvements. For instance, on the BIRD-dev split, XYZ-
Text2SQL-R1 7B, 14B, and 32B reach 68.9, 70.1, and 70.5, setting new records across size categories.
Substantial gains are also seen on Spider-DK and the Science benchmark, underscoring XYZ-
Text2SQL-R1’s robustness and domain coverage.

Table 9: Generalization of XYZ-Text2SQL-R1 across different model families.

Model BIRD-dev Spider-test Spider2.0-SQLite Spider-DK EHR SQL Science Benchmark Average

Qwen3-1.7B-Instruct 46.6 77.4 2.2 63.2 19.9 42.1 41.9
+ XYZ-Text2SQL-R1 58.7+12.1 83.8+6.4 4.4+2.2 72.3+9.1 33.9+14.0 47.8+5.7 50.2+8.3

LLaMA-3.2-3B-Instruct 18.2 50.3 0.7 34.4 5.5 20.7 21.6
+ XYZ-Text2SQL-R1 46.9+28.7 79.6+29.3 5.2+4.5 66.2+31.8 26.2+20.7 40.1+19.4 44.0+22.4

Generalizability Across Model Families. To demonstrate that the effectiveness of XYZ-Text2SQL-
R1 is not confined to the Qwen-Coder family, we applied our training framework to two additional
open-source models: Qwen3-1.7B-Instruct Yang et al. (2025a) and LLaMA-3.2-3B-Instruct Dubey
et al. (2024). As shown in Table 9, we observed an average absolute improvement of 8.3% for
Qwen3-1.7B and a remarkable 22.4% for LLaMA-3.2-3B. We also noted that our framework helps
align models with specific output formatting instructions, which contributed to the significant gains
for LLaMA-3.2-3B. These results underscore the robustness and generalizability of our training
paradigm across diverse model families.

6 DISCUSSION

Figure 1: Generation length and average accuracy
across six benchmarks.

Beyond the benchmark achievements, the develop-
ment of XYZ-Text2SQL-R1 revealed some insights
into model behavior and potential for exploiting
inference-time enhancements. These also motivate
further examination of the model’s comparative stand-
ing.

Enhancing XYZ-Text2SQL-R1 with Other Tech-
niques. While XYZ-Text2SQL-R1 is designed for
efficient, direct inference, it can also serve as the
SQL generator in more complex agentic systems.
Table 8 shows results using two inference-time en-
hancements: value retrieval (from Talaei et al. (2024))
and majority voting (as in Li et al. (2025); Ma et al.
(2025)) with eight generations per sample. Each tech-
nique yields a tangible improvement; combined, they
boost XYZ-Text2SQL-R1-32B performance by up to
one point on BIRD-dev, demonstrating complementary gains from orthogonal reasoning components.
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Table 10: The comparison between XYZ-Text2SQL-R1 and Reasoning-SQL Pourreza et al. (2025).
The numbers for the latter from (Pourreza et al., 2025, Tables 4 and 5) and it might involve schema
linking as mentioned in (Pourreza et al., 2025, Table 2), but we are unsure; see Table 1 for the reward
design comparison.

Method Base Model Filtering Method Reward BIRD SPIDER SPIDER
Design -dev -test -DK

Reasoning-SQL Qwen2.5-Coder-14B-Inst Large Models Prompt Complex 64.21 81.43 73.03
XYZ-Text2SQL-R1 Qwen2.5-Coder-14B-Inst Empty Golden-SQL Simple 66.49 87.20 75.10

Table 11: Comparison of XYZ-Text2SQL-R1, SQL-R1 Ma et al. (2025) and Think2SQL Papicchio
et al. (2025). GRE: greedy decoding, MV: Majority Voting (8 candidates). Competitors numbers
according to (Ma et al., 2025, Table 2) and (Papicchio et al., 2025, Table 1 and 3); see Table 1 for the
reward design comparison.

Method Base Model SFT Reward BIRD-dev SPIDER-test
(#Samples) Design GRE/MV GRE/MV

SQL-R1 Qwen2.5-Coder-7B-Inst ✗ Complex –/63.1 –/86.1
SQL-R1 Qwen2.5-Coder-7B-Inst ✓(200K) Complex –/59.2 –/86.4
Think2SQL Qwen2.5-Coder-7B-Inst ✓(9K) Complex 56.1/– 82.4/–
XYZ-Text2SQL-R1 Qwen2.5-Coder-7B-Inst ✗ Simple 63.9/64.8 85.0/87.1
SQL-R1 OmniSQL-7B ✗ Complex –/66.6 –/88.7
XYZ-Text2SQL-R1 OmniSQL-7B ✗ Simple 67.6/69.4 87.8/88.6

Response Length vs. Accuracy. Figure 1 plots the evolution of average response length and
execution accuracy across training for all three sizes of XYZ-Text2SQL-R1. We observe a U-shaped
pattern in response length—initially decreasing, then gradually increasing—as accuracy rises. This
trend may reflect early-stage conservative decoding (and possible undertraining), followed by richer,
more grounded outputs as training progresses, an effect also noted in some of the previous works Xie
et al. (2025).

Why RL is Effective in Text2SQL. Unlike supervised fine-tuning, which relies solely on positive
examples, RL enables the model to learn from failures through trial and error with negative feedback.
This allows the model to overcome inherent ambiguities in the training data and better capture user
intent. Appendix F provides qualitative examples.

Reasoning-SQL. To enable a fair comparison with Reasoning-SQL Pourreza et al. (2025), we
retrain XYZ-Text2SQL-R1 from the Qwen-2.5-14B-Instruct base, use BIRD-training data alone,
and run 3 epochs. Under these controlled settings, the two methods differ primarily in training data
filtering (XYZ-Text2SQL-R1 uses simple empty-return-based removal, Reasoning-SQL uses LLM
filtering) and reward design (our simple execution/syntax signal vs. a complex mixture). As shown
in Table 10, XYZ-Text2SQL-R1 outperforms Reasoning-SQL by clear margins on BIRD-dev (+2.28),
Spider-test (+5.77), and Spider-DK (+2.07). This underscores the power of direct, execution-guided
reinforcement learning and streamlined filtering.

SQL-R1 and Think2SQL. We further compare XYZ-Text2SQL-R1 with recently published
SQL-R1 Ma et al. (2025) and Think2SQL Papicchio et al. (2025), restricting RL fine-tuning to BIRD-
training and evaluating under both greedy and majority voting regimes. As summarized in Table 11,
XYZ-Text2SQL-R1 delivers the best or near-best performance in all configurations and consistently
outperforms prior approaches, even without extensive pre-training or complex reward engineering.

7 CONCLUSIONS

We presented XYZ-Text2SQL-R1, a novel RL framework for Text2SQL that uses GRPO and a simple
execution-based reward. It achieves 71.83% execution accuracy (73.84% with self-consistency)
on BIRD-test as a single 32B model, ranking among the top leaderboard entries while surpassing
substantially larger LLMs. Across six challenging benchmarks, XYZ-Text2SQL-R1 yields up to
4 points improvement over strong baselines, with notable parameter efficiency (e.g., the 7B version
matches or outperforms prior ExCoT-70B models and GPT4o). Our results highlight that minimal
reward signals, principled data filtering, and carefully curated training strategies are key for robust
SQL generation. We release models to support future research in this area.
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ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. We use only publicly available datasets (BIRD,
Spider, EHRSQL, ScienceBenchmark), with no collection of private or personally identifiable
information. No human subjects or sensitive data were involved. Potential ethical concerns relate to
biases in benchmark datasets. This research is for academic purposes only, and all experiments were
conducted in accordance with standard practices of research integrity.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of datasets, filtering procedures, model training, and evaluation
benchmarks in the main text (Sections 3, 4, 5). Appendices include prompt templates, data aug-
mentation pipelines, and qualitative case studies. LLMs were used only for language polishing, not
for research design or data generation. The code, datasets, and models will be released after paper
acceptance under the supervision of institutional policies, to support independent verification and
future research.
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A LLM USAGE STATEMENT

In preparing this manuscript, we employed LLMs solely for language polishing. Specifically, we used
commercial LLMs as writing assistants to improve sentence structure, check grammar and spelling,
and enhance overall readability and clarity of the text. No LLMs were used for research ideation,
methodological design, data analysis, or code generation. All scientific contributions, including
theoretical development, experimental design, implementation, and analysis, were solely conducted
by the authors.

All text outputs from LLMs were carefully reviewed and revised by the authors, who take full
responsibility for the accuracy, originality, and integrity of the manuscript. LLMs are not considered
authors and bear no responsibility for this work.

B CONSTRUCTION PIPELINE FROM GRETEL-SYNTH TO
GRETEL-SYNTH-NONFILTERED

To enable SQL execution and ensure meaningful query results, we use a carefully designed prompt to
guide an LLM in generating realistic table data. Appendix B.1 illustrates this prompt, which produces
valid INSERT statements aligned with both the SQL context and query.

These synthetic data inserts serve as the foundation for the construction pipeline outlined in Algo-
rithm 1, which augments each sample with distractive tables and applies filtering to retain executable,
informative SQL examples.

C DATA AUGMENTATION

We perform data augmentation on the BIRD dataset following the prompt template shown in Fig-
ure C.1. Note that the task component is optional. To encourage diversity in the generated data, we
omit the task and answer fields when necessary.

After obtaining a set of SQL queries, we apply a self-correction workflow as described in Algorithm 2
to ensure the SQLs are executable and yield non-empty results. The prompts used for self_correct
and similar_error_refine are provided in Figure C.2.

D PROMPT USED FOR TRAINING/EVALUATION

We present the prompt used for our training and evaluation in Figure D.1.

E EXAMPLES FROM XYZ-TEXT2SQL-R1-32B

We provide several examples here to illustrate the thinking process of XYZ-Text2SQL-R1-32B
in Figure E.1, E.2, and E.3. Note that we did not cherry-pick the answer so the generated SQL might
be wrong.

F QUALITATIVE CASE STUDIES OF RL TRAINING EFFECTS

To better illustrate how RL with simple reward signals improves the reasoning capabilities of our
model, we present two detailed case studies. These examples highlight the unique advantages of
our framework in correcting subtle but critical reasoning errors that are difficult to address through
supervised fine-tuning alone.

Case Study 1: Resolving Ambiguity Between Aggregation and Enumeration. Consider the
following question: “How many female patients born in 1964 were admitted to the hospital? List
them by ID.” This query is inherently ambiguous because it mixes two operations: counting patients
(COUNT(ID)) and enumerating their identifiers (SELECT ID). A model without RL training, such as
OmniSQL-32B Li et al. (2025), often attempts to reconcile these conflicting intents by generating a
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Prompt for Adding Synthetic Data

Adding Synthetic Data Prompt
You are an expert in SQL data modeling. Your task is to analyze the given SQL schema and,
if necessary, generate realistic and logically consistent sample data to ensure:
For a given <SQL Prompt>, both <SQL Query> and <SQL Context> can meet its
requirements, and <SQL Query> can query the corresponding data from the TABLE created
by <SQL Context>.

Given a – **<SQL Prompt>**:
{question}

I have generated the <SQL Query> and <SQL Context>:
– **<SQL Query>**:
{sql_query}

– **<SQL Context>**:
{sql_context}

{error_infomations}

I need data samples to validate the correctness of the <SQL Query>.
Therefore, please help me add one INSERT statement for each table in the <SQL Context>,
with 5 sample rows per table.
The inserted data should ensure that the <SQL Query> can retrieve results from the tables.
Please ensure that it does not cause errors when using sqlite3.
Please do not include any additional explanations or instructions.

Please help me fix this **<SQL Context>** and ensure that it contains at most five records.
Please also help me modify **<SQL Query>** to ensure that it does not cause errors when
using sqlite3.

Please give your expanded **<SQL Context>** in: \\sql_context
your fixed **<SQL Query>** in: \\sql_query
and the **INSERT statements** in: \\sql_insert

Figure B.1: Prompt for Generating Executable SQL Context and Synthetic Data Inserts in the
Gretel-Synth Pipeline

UNION query that merges an aggregate value (a single count) with a multi-row column (a list of IDs),
as shown in Example F.1. Such an output is either syntactically invalid or semantically incoherent,
rendering it useless. In contrast, our RL-trained model learns to avoid these pitfalls and instead
produces a correct and executable query, as demonstrated in Example F.2. During training, erroneous
attempts of this kind consistently fail to execute and thus receive negative rewards. Over time, this
feedback teaches the model both the grammatical constraints of SQL and, more importantly, the need
to prioritize the user’s actual intent (in this case, “List them”).

Case Study 2: Filtering Out Contextual Noise. A second source of errors arises from semantic
misinterpretation. In the BIRD Li et al. (2024) dataset, natural language questions sometimes include
contextual metadata such as the database name (e.g., student_club). Non-RL models frequently
misinterpret this metadata as a core entity, leading to reasoning errors such as searching for a
literal club named “student_club,” as illustrated in Example F.3. Our RL framework penalizes such
misinterpretations whenever they produce incorrect execution results. Through repeated negative
feedback, the model learns to differentiate between background context and the true semantic target
of the query. Consequently, the RL-trained model is able to maintain focus on the actual user request,
as shown in Example F.4, rather than being misled by irrelevant contextual tokens.
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Algorithm 1: Construction of Gretel-Synth-NonFiltered: Inserting Synthetic Data, Adding
Distractive Tables, and Filtering Executable SQL Samples
Input: Full dataset Gretel-Synth
Output: Gretel-Synth-NonFiltered after adding synthetic data and distractive tables
1. Insert Data Using LLM
Initialize Gretel-Synth-NonFiltered as empty list;
foreach sample in Gretel-Synth do

Initialize Gretel-Synth-ForNextRound← [sample];
for i← 1 to 8 do

Initialize next_round as empty list;
foreach sample in Gretel-Synth-ForNextRound do

/* We use GPT-4o to generate insert statements; prompt is provided in Appendix B.1 */

insert_stmts← GPT_generate_inserts(sample);
Execute sql_context to create tables;
Execute insert_stmts to populate data;
results← execute_sql_query(sample.sql_query);
if results not empty then

Append sample to Gretel-Synth-NonFiltered;
else

Append sample to next_round;
Gretel-Synth-ForNextRound← next_round;

2. Add Distractive Tables
foreach sample in Gretel-Synth-NonFiltered do

schema← sample.sql_context;
domain← sample.domain;
existing_tables← extract_table_names(schema);
if existing_tables is None then

continue;
/* Sample table count from BIRD/Spider distribution with added uniform noise */

n← sample_with_noise_from_table_distribution(table_counts);
/* Select non-conflicting table schemas from the same domain */

distractive_schemas← select_nonconflicting_schemas(domain,
existing_tables, n - 1);

/* Create distractive tables first, then target tables which may overwrite on name conflict */

create_database(distractive_schemas + schema);

3. Final Selection
foreach sample in Gretel-Synth-NonFiltered do

if length of sample.sql_query > 160 and sample.sql_query returns results then
Keep sample in Gretel-Synth-NonFiltered;

else
Discard sample from Gretel-Synth-NonFiltered;

return Gretel-Synth-NonFiltered;

Broader Implications. These case studies illustrate that while non-RL models can perform chain-of-
thought reasoning, their reasoning traces are often fragile and prone to subtle errors. SFT exposes the
model only to correct examples, showing it “what to do.” RL, by contrast, exposes the model to both
success and failure, teaching it “what works” and “what does not.” The simple binary signals from
our GRPO training, reward for success, penalty for failure, are sufficient to correct a wide spectrum
of reasoning errors, ranging from technical syntax issues to deeper semantic misinterpretations.

G COMPUTE RESOURCE

All experiments were conducted on 8 H100-80GB nodes (a total of 64 H100-80GB GPUs). Training
time ranged from a few hours for the 7B model to up to 2.5 days for the final 32B model experiments.
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Prompt for BIRD Data Augmentation

Table information:
Table name: {table name}
Column name: {column name}
Column description: {column desc}
Sample rows: {samples}

Optional(Task: {task}. The answer to the task is: {answer}.)

Based on this, write 10 more complex nested SQLite SQL queries or SQLs with
CTEs in sql code block format. You can use any information in the database information
provided. Each query should be different. You can write SELECT query only. For each query,
just write one sentence to describe the task. Format like:

/*Task: {task description in one sentence}*/
SELECT ...

Don’t output other contents.

Figure C.1: Prompt for BIRD Data Augmentation

Algorithm 2: Self-Correction Workflow: Execution of multiple SQLs with self-correction and
refinement based on invalid result feedback to ensure augmented SQLs with valid results.
Input: List of SQL statements sqls
Output: List of successful results result_dic_list
Initialize result_dic_list as empty list;
Initialize error_rec as empty list;
while sqls not empty do

sql = sqls[0];
results = execute_sql_sqlite(sql);
if results is valid (i.e., string and not empty) then

Append sql and results to result_dic_list;
Continue to next SQL;

Initialize max_try;
while results is not valid do

if max_try == 0 then
break;

corrected_sql← self_correct(sql, results);
if corrected_sql is not valid then

continue;
Execute corrected SQL; results = execute_sql_sqlite(sql);
Decrease max_try by 1;

if results is valid then
if sqls not empty then

sqls← similar_error_refine(sqls);
if corrected_sql exists then

Append corrected_sql and results to result_dic_list;
return result_dic_list;

H LIMITATIONS

It is important for each study—especially in the LLM domain—to clearly state its limitations. In
our work, as noted in Section 4.2, we did not exhaustively explore PPO hyperparameters, which
may limit the strength of our conclusions. Similarly, we only partially examined data augmentation
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Prompt for Self-Correction Workflow

Self-Correction Prompt
Input SQL: {sql}
The error information is: {error}
Please correct the SQL based on the previous context. Output your reasoning process
followed by only one corrected SQL query in the following format:
– Description: ...
<Corrected SQL here>
Do not output multiple SQLs or only an analysis without a final SQL.

Similar Error Refinement Prompt
The following SQL has been corrected:
Original SQL: {sql}
Corrected SQL: {corrected_sql}
Please correct the remaining SQL statements if they contain similar errors. The list of SQLs
to be refined is: {sqls}
For each corrected SQL, respond in the following format:
– Description: ...
<Corrected SQL here>

Figure C.2: Prompt for Self-Correction Workflow

strategies Section 4.1. In addition, while general-purpose LLMs are known to be prompt-sensitive,
we did not systematically explore prompt variations Section 4.3. Finally, we have conducted only
limited evaluations of XYZ-Text2SQL-R1 across different model families, without covering broader
types and scales of models.
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Prompt Template for Training/Evaluation

System:
You are a data science expert. Below, you are provided with a database schema and a natural
language question. Your task is to understand the schema and generate a valid SQL query to
answer the question.

User:
Database Engine:
SQLite

Database Schema: {Database Schema}
This schema describes the database’s structure, including tables, columns, primary keys,
foreign keys, and any relevant relationships or constraints.

Question:
{evidence + question}

Instructions:
- Make sure you only output the information that is asked in the question. If the question asks
for a specific column, make sure to only include that column in the SELECT clause, nothing
more.
- The generated query should return all of the information asked in the question without any
missing or extra information.
- Before generating the final SQL query, please think through the steps of how to write the
query.

Output Format:
Please provide a detailed chain-of-thought reasoning process and include your thought
process within ‘<think>‘ tags. Your final answer should be enclosed within ‘<answer>‘ tags.

Ensure that your SQL query follows the correct syntax and is formatted as follows:

```sql
– Your SQL query here
```

Example format:
<think> Step-by-step reasoning, including self-reflection and corrections if necessary.
[Limited by 4K tokens] </think>
<answer> Summary of the thought process leading to the final SQL query. [Limited by 1K
tokens]

```sql
Correct SQL query here
```
</answer>

Assistant:
Let me solve this step by step.
<think>

Figure D.1: Prompt Template for Training and Evaluation
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Example I of response from XYZ-Text2SQL-R1-32B

Question: Eligible free rate for K-12 = ‘Free Meal Count (K-12)‘ / ‘Enrollment (K-12)‘
What is the highest eligible free rate for K-12 students in the schools in Alameda County?

Assistant:
Let me solve this step by step.
<think>
1. **Identify the goal**: We need to find the highest eligible free rate for K-12 students in
the schools located in Alameda County. The rate is calculated as ‘Free Meal Count (K-12)‘
divided by ‘Enrollment (K-12)‘.

2. **Determine the relevant table and columns**:
- The relevant table is ‘frpm‘ because it contains the columns ‘Free Meal Count (K-12)‘ and
‘Enrollment (K-12)‘.
- However, we need to filter by County, which is in the ‘schools‘ table. Thus, we will need to
join the ‘frpm‘ table with the ‘schools‘ table on the ‘CDSCode‘ column to filter by the county
name.

3. **Formulate the query**:
- We will calculate the eligible free rate by taking the ratio of ‘Free Meal Count (K-12)‘ and
‘Enrollment (K-12)‘.
- The ‘schools‘ table will be used to filter for schools in Alameda County.
- The ‘MAX‘ function will be used to find the highest eligible free rate.

4. **Join tables**:
- Use an ‘INNER JOIN‘ between the ‘schools‘ table and the ‘frpm‘ table on the ‘CDSCode‘
column to link them correctly.
</think>

<answer>
Here is the correct SQL query:

```sql
SELECT MAX(f.‘Free Meal Count (K-12)‘ / f.‘Enrollment (K-12)‘) AS HighestEligible-
FreeRate
FROM frpm AS f
JOIN schools AS s ON f.CDSCode = s.CDSCode
WHERE s.County = ’Alameda’;
```

*Explanation**:
- The ‘JOIN‘ is used to connect the ‘frpm‘ and ‘schools‘ tables on the ‘CDSCode‘ column.
- The ‘WHERE‘ clause filters the records to only include those from Alameda County.
- The ‘MAX‘ function is used to find the highest value of the eligible free rate, which is
calculated as ‘Free Meal Count (K-12)‘ divided by ‘Enrollment (K-12)‘.

The resulting query is efficient and meets the requirements of the natural language
question.
</answer>

Figure E.1: Example I of response from XYZ-Text2SQL-R1-32B
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Example II of response from XYZ-Text2SQL-R1-32B

Question: Valid charter number means the number is not null. Rank schools by their average
score in Writing where the score is greater than 499, showing their charter numbers.

Assistant:
Let me solve this step by step.
<think>
1. **Understanding the Question**:
- We need to rank schools based on their average score in writing (‘AvgScrWrite‘) for scores
greater than 499.
- We should display the ‘CharterNum‘ of the school.
- A valid charter number means the number is not null.

2. **Identifying the Necessary Tables**:
- The ‘satscores‘ table contains the average scores for writing (‘AvgScrWrite‘) and the ‘cds‘
code which can be used to join with the ‘schools‘ table.
- The ‘schools‘ table contains the ‘CharterNum‘ field which holds the charter number of the
schools.
- We need a join between the ‘satscores‘ and ‘schools‘ tables on the ‘cds‘ (from ‘satscores‘)
and ‘CDSCode‘ (from ‘schools‘) fields.

3. **Filter Conditions**:
- We need to filter out schools with ‘AvgScrWrite‘ greater than 499.
- The ‘CharterNum‘ should not be null.

4. **Sorting**:
- The result needs to be sorted by the average score in writing (‘AvgScrWrite‘), in descending
order.

5. **Selecting Columns**:
- We are only interested in the ‘CharterNum‘ field from the ‘schools‘ table.

</think>

<answer>

```sql
SELECT T2.CharterNum
FROM satscores AS T1
INNER JOIN schools AS T2
ON T1.cds = T2.CDSCode
WHERE T1.AvgScrWrite > 499 AND T2.CharterNum IS NOT NULL
ORDER BY T1.AvgScrWrite DESC;
```

</answer>

This query will:
- Join the ‘satscores‘ and ‘schools‘ tables based on the ‘cds‘ and ‘CDSCode‘ fields.
- Filter out schools with an average writing score (‘AvgScrWrite‘) greater than 499 and where
‘CharterNum‘ is not null.
- Sort the results by ‘AvgScrWrite‘ in descending order.
- Return only the ‘CharterNum‘ field.

Figure E.2: Example II of response from XYZ-Text2SQL-R1-32B
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Example III of response from XYZ-Text2SQL-R1-32B

Question: Eligible free rates for students aged 5-17 = ‘Free Meal Count (Ages 5-17)‘ /
‘Enrollment (Ages 5-17)‘
What is the free rate for students between the ages of 5 and 17 at the school run by Kacey
Gibson?

Assistant:
Let me solve this step by step.
<think>
1. The question asks for the rate of students between the ages of 5 and 17 who are eligible for
free meals. The formula provided for this rate is ‘Free Meal Count (Ages 5-17) / Enrollment
(Ages 5-17)‘.
2. From the database schema provided, the relevant data can be found in the ‘frpm‘ table,
which contains the columns ‘Free Meal Count (Ages 5-17)‘ and ‘Enrollment (Ages 5-17)‘.
3. The condition for the school is based on an administrator’s name, Kacey Gibson. This
information is stored in the ‘schools‘ table in the columns ‘AdmFName1‘ and ‘AdmLName1‘.
4. To link the ‘frpm‘ table to the ‘schools‘ table, we use the ‘CDSCode‘ column, which is the
primary key in both tables.
5. The final query needs to join the ‘frpm‘ and ‘schools‘ tables on their common ‘CDSCode‘
key, filter the rows for the specific administrator, and then compute and return the eligible
free rate for students aged 5-17.
</think>
<answer>
```sql
SELECT
(T1.‘Free Meal Count (Ages 5-17)‘ / T1.‘Enrollment (Ages 5-17)‘) AS free_rate
FROM
frpm AS T1
JOIN
schools AS T2
ON
T1.CDSCode = T2.CDSCode
WHERE
T2.AdmFName1 = ’Kacey’ AND T2.AdmLName1 = ’Gibson’;
```
This SQL query is correct and directly answers the question with the necessary steps and
logic based on the provided schema.
</answer>

Figure E.3: Example III of response from XYZ-Text2SQL-R1-32B
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Example IV (Incorrect Response) from OmniSQL-32B in Case Study 1

Question: Female refers to SEX = ’F’; born in 1964 refers to YEAR(Birthday) = 1964;
admitted to the hospital refers to Admission = ’+’. How many female patients born in 1964
were admitted to the hospital? List them by ID.

Golden SQL Query:
```sql
SELECT ID FROM Patient WHERE STRFTIME(’%Y’, Birthday) = ’1964’ AND SEX = ’F’
AND Admission = ’+’
```

Assistant:
Let me solve this step by step.
<think>
1. **Identify the goal**: Count how many patients satisfy all conditions and list their IDs.
Conditions: ‘SEX = ’F’‘, birth year = 1964, and ‘Admission = ’+’‘.

2. **Relevant table and columns**: Use the ‘Patient‘ table with columns ‘ID‘,
‘SEX‘, ‘Birthday‘, and ‘Admission‘. Extract year via SQLite’s ‘STRFTIME(’%Y’,
Birthday)‘.

3. **Formulate filters**: Apply a ‘WHERE‘ clause combining the three predicates
with ‘AND‘.

4. **Output**: Listing IDs answers the "List them by ID". A separate count (or a
window count) answers "How many".
</think>

<answer>
Here is a correct SQL query matching the requirement to list IDs (Golden SQL):

```sql
SELECT ID
FROM Patient
WHERE STRFTIME(’%Y’, Birthday) = ’1964’
AND SEX = ’F’
AND Admission = ’+’;
```

If you also want the total count together with each ID in one result set (SQLite):

```sql
SELECT
ID,
COUNT(*) OVER() AS FemalePatientCount
FROM Patient
WHERE STRFTIME(’%Y’, Birthday) = ’1964’
AND SEX = ’F’
AND Admission = ’+’;
```

**Explanation**:
- ‘STRFTIME(’%Y’, Birthday) = ’1964’‘ extracts year-of-birth.
- ‘SEX = ’F’‘ restricts to female patients.
- ‘Admission = ’+’‘ keeps only admitted patients.
- The first query lists all matching IDs; the windowed variant also returns the total number.
</answer>

Figure F.1: Example IV (Incorrect Response) from OmniSQL-32B in Case Study 1
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Example V (Correct Response) from XYZ-Text2SQL-R1-32B in Case Study 1

Question: Female refers to SEX = ’F’; born in 1964 refers to YEAR(Birthday) = 1964;
admitted to the hospital refers to Admission = ’+’. How many female patients born in 1964
were admitted to the hospital? List them by ID.

Golden SQL Query:
```sql
SELECT ID FROM Patient WHERE STRFTIME(’%Y’, Birthday) = ’1964’ AND SEX = ’F’
AND Admission = ’+’
```

Assistant:
<think>
1. **Understand the Question**: The question asks for the number of female patients (‘SEX
= ’F’‘) who were born in 1964 (‘YEAR(Birthday) = 1964‘) and were admitted to the hospital
(‘Admission = ’+’‘). The result should list these patients by their ‘ID‘.
2. **Identify the Table**: The ‘Patient‘ table contains all the necessary information to
answer the question, including ‘SEX‘, ‘Birthday‘, and ‘Admission‘.
3. **Filter Conditions**:
- ‘SEX = ’F’‘: This filters for female patients.
- ‘YEAR(Birthday) = 1964‘: This filters for patients born in 1964. SQLite does not have a
‘YEAR()‘ function, but we can use ‘strftime(’%Y’, Birthday)‘ to extract the year.
- ‘Admission = ’+’‘: This filters for patients who were admitted to the hospital.
4. **Select the Required Columns**: The question asks for the ‘ID‘ of the patients.
5. **Count the Patients**: The question also asks for the number of such patients, so we
need to use the ‘COUNT()‘ function.
6. **Order by ID**: The result should be listed by ‘ID‘.
7. **Construct the Query**: Based on the above analysis, we can construct the query.
</think>

<answer>
Here is the correct SQL query:

```sql
SELECT COUNT(ID) AS Total_Female_Patients, ID FROM Patient WHERE SEX = ’F’
AND strftime(’%Y’, Birthday) = ’1964’ AND Admission = ’+’ ORDER BY ID;
```

However, the above query will not work as intended because ‘COUNT(ID)‘ and
‘ID‘ cannot be selected together without using ‘GROUP BY‘. Since the question asks for
both the count and the list of IDs, we need to separate these two requirements. The correct
query to list the IDs is:

```sql
SELECT ID FROM Patient WHERE SEX = ’F’
AND strftime(’%Y’, Birthday) = ’1964’ AND Admission = ’+’ ORDER BY ID;
```

To get the count of such patients, run separately:

```sql
SELECT COUNT(*) AS Total_Female_Patients FROM Patient
WHERE SEX = ’F’ AND strftime(’%Y’, Birthday) = ’1964’ AND Admission = ’+’;
```

Thus, the final query to satisfy the "list by ID" requirement is the second one.
</answer>

Figure F.2: Example V (Correct Response) from XYZ-Text2SQL-R1-32B in Case Study 1
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Example VI (Incorrect Response) from OmniSQL-32B in Case Study 2

Question: Full name of member refers to first_name, last_name. List the full name of the
Student_Club members that grew up in Illinois state.

Golden SQL Query:
```sql
SELECT T1.first_name, T1.last_name
FROM member AS T1
INNER JOIN zip_code AS T2 ON T1.zip = T2.zip_code
WHERE T2.state = ’Illinois’;
```

Assistant:
<think>
1. **Understand the Question**: We need the full names (‘first_name‘, ‘last_name‘) of
Student_Club members whose zip code corresponds to Illinois.

2. **Identify Relevant Tables**:
- ‘member‘: contains ‘first_name‘, ‘last_name‘, and ‘zip‘.
- ‘zip_code‘: contains ‘zip_code‘ and ‘state‘.
- ‘major‘: contains ‘major_id‘ and ‘major_name‘.

3. **Determine Join Conditions**:
- ‘member.zip = zip_code.zip_code‘.
- ‘member.link_to_major = major.major_id‘.

4. **Filter Conditions**:
- ‘zip_code.state = ’Illinois’‘.
- ‘major.major_name = ’Student_Club’‘.

5. **Select Columns**: Output ‘first_name‘ and ‘last_name‘ from the ‘member‘ ta-
ble.
</think>

<answer>
Here is the correct SQL query:

```sql
SELECT member.first_name, member.last_name
FROM member m
JOIN major mj ON m.link_to_major = mj.major_id
JOIN zip_code z ON m.zip = z.zip_code
WHERE z.state = ’Illinois’ AND mj.major_name = ’Student_Club’;
```

**Explanation**:
- The ‘INNER JOIN‘ ensures we match members with both their associated major and their
zip code.
- The ‘WHERE‘ clause restricts results to members who are in the state of Illinois and belong
to the Student_Club.
- Selecting ‘first_name‘ and ‘last_name‘ outputs each qualifying member’s full name.
</answer>

Figure F.3: Example VI (Incorrect Response) from OmniSQL-32B in Case Study 2
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Example VII (Correct Response) from XYZ-Text2SQL-R1-32B in Case Study 2

Question: Full name of member refers to first_name, last_name. List the full name of the
Student_Club members that grew up in Illinois state.

Golden SQL Query:
```sql
SELECT T1.first_name, T1.last_name
FROM member AS T1
INNER JOIN zip_code AS T2 ON T1.zip = T2.zip_code
WHERE T2.state = ’Illinois’;
```

Assistant:
<think>
1. **Understand the Question**: The question asks for the full name (‘first_name‘,
‘last_name‘) of members who are associated with the Student_Club and who grew up in
Illinois.

2. **Identify Relevant Tables**:
- ‘member‘: contains ‘first_name‘, ‘last_name‘, and ‘zip‘.
- ‘zip_code‘: contains ‘zip_code‘ and ‘state‘.

3. **Join Tables**: Use ‘member.zip = zip_code.zip_code‘ to connect the two ta-
bles.

4. **Filter Conditions**: Restrict to ‘zip_code.state = ’Illinois’‘.

5. **Select Fields**: Output ‘first_name‘ and ‘last_name‘ from ‘member‘.
</think>

<answer>
Here is the correct SQL query:

```sql
SELECT DISTINCT m.first_name, m.last_name
FROM member m
JOIN zip_code z ON m.zip = z.zip_code
WHERE z.state = ’Illinois’;
```

**Explanation**:
- The ‘JOIN‘ links each member to their state via the ‘zip‘ code.
- The ‘WHERE‘ clause restricts results to Illinois residents.
- ‘DISTINCT‘ ensures duplicate names are not repeated.
</answer>

Figure F.4: Example VII (Correct Response) from XYZ-Text2SQL-R1-32B in Case Study 2
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