
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

XYZ-TEXT2SQL-R1: SIMPLE REWARDS, STRONG
REASONING IN TEXT-TO-SQL

Anonymous authors
Paper under double-blind review

ABSTRACT

Translating natural language into SQL (Text2SQL) is a longstanding challenge
at the intersection of natural language understanding and structured data access.
While large language models (LLMs) have significantly improved fluency in SQL
generation, producing correct and executable SQL, particularly for complex queries,
remains a bottleneck. We present XYZ-Text2SQL-R1, a reinforcement learning
(RL) framework and model family designed to generate accurate, executable SQL
using a lightweight reward signal based solely on execution correctness. Our
approach avoids brittle intermediate supervision and complex reward shaping,
promoting stable training and alignment with the end task. Combined with care-
fully curated data, strong supervised initialization, and effective training practices,
XYZ-Text2SQL-R1 achieves state-of-the-art execution accuracy across six diverse
Text2SQL benchmarks and ranks among the leading entries on the BIRD leader-
board. Notably, our 7B model outperforms prior 70B-class systems, highlighting
the framework’s scalability and efficiency. We further demonstrate inference-time
robustness through simple extensions like value retrieval and majority voting. Ex-
tensive experiments and ablation studies offer both positive and negative insights,
providing practical guidance for future Text2SQL research.

1 INTRODUCTION

Translating natural language questions into SQL queries, commonly known as Text2SQL, is a core
challenge in natural language understanding and human-computer interaction. A robust solution
would enable non-technical users to query structured databases using natural language, thereby
democratizing access to data analytics.

Recent advances in large language models (LLMs) have significantly improved the fluency and
surface-level coverage of Text2SQL systems Ma et al. (2025); Pourreza et al. (2025); Zhai et al.
(2025); Papicchio et al. (2025). However, generating correct and executable SQL, especially for
complex queries involving multi-table joins, nested logic, and nuanced schema understanding, remains
difficult. Most existing approaches rely on supervised fine-tuning over (question, SQL) pairs Li et al.
(2025); Gao et al. (2024), which often fail to promote the intermediate reasoning steps essential for
reliable and generalizable SQL generation.

We introduce XYZ-Text2SQL-R1, a reinforcement learning (RL) framework and model family for
generating high-quality executable SQL from natural language. It uses a lightweight reward based
solely on execution correctness, avoiding brittle partial rewards while promoting stable training and
alignment with the end goal. Combined with best practices in data filtering, synthetic generation, and
model-based selection, XYZ-Text2SQL-R1 demonstrates that high-quality data, strong supervised ini-
tialization, and a simple reward signal together yield accurate, scalable, and robust Text2SQL models.

Our main contributions are:

• Simple and Scalable RL for Text2SQL: We develop a lightweight RL formulation using execution-
only rewards that generalizes well across model sizes and benchmarks, enabling stable training and
strong performance without complex reward design.

• Comprehensive Benchmark Leadership: Across six diverse Text2SQL benchmarks, XYZ-
Text2SQL-R1 consistently outperforms both SQL-specialized and general-purpose LLMs, including
GPT-4o OpenAI (2023) and DeepSeek-V3 Liu et al. (2024), demonstrating robust generalization

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

across domains. On the BIRD leaderboard, our models are positioned among the leading entries:
the 32B model achieves 71.83% execution accuracy, which further improves to 73.84% when
applying self-consistency. Among models with publicly available details, XYZ-Text2SQL-R1
ranks first, ensuring transparency, reproducibility, and accessibility. Notably, our 7B model even
surpasses prior 70B-class systems Zhai et al. (2025), highlighting the scalability and efficiency of
our approach.

• Data and Training Strategies That Matter: We present best practices for data filtering, synthetic
data generation, and model-based selection. Additionally, we demonstrate the value of online RL
training, which leverages strong supervised checkpoints and well-designed prompts to further
improve performance. Combined with high-quality data and a simple execution-driven reward,
these practices produce accurate, scalable, and robust Text2SQL models.

• Broad and Rigorous Evaluation: We evaluate XYZ-Text2SQL-R1 across six Text2SQL datasets,
covering a range of schema complexity and query difficulty. This provides strong evidence of
generalization and guards against overfitting to any single dataset or evaluation format.

• Inference-Time Robustness and Extensibility: XYZ-Text2SQL-R1 supports simple inference-
time techniques, such as value retrieval and majority voting, that further improve accuracy with
minimal system overhead, demonstrating its practicality for real-world deployment.

• Empirical Insights for the Community: We report both successful and negative findings, offering
transparent and actionable insights to guide future RL-based Text2SQL research/development.

2 RELATED WORK

The research presented in XYZ-Text2SQL-R1 draws inspiration from and aims to advance two
key areas of investigation: the development of robust Text2SQL systems and the refinement of
reinforcement learning techniques for sophisticated language model reasoning.

Reinforcement Learning for LLM Reasoning. Recent research has demonstrated the potential of
RL techniques to significantly enhance the reasoning capabilities of LLMs OpenAI et al. (2025);
Lambert et al. (2024); OpenAI et al. (2024); Guo et al. (2019). By providing explicit rewards for
logical correctness and step-wise reasoning, RL enables models to autonomously discover effective
problem-solving strategies, often mirroring structured human reasoning Xu et al. (2025); Wang et al.
(2025); Yang et al. (2025b). Applications span mathematical problem solving (where RL fine-tuning
on step-by-step correctness or final answer accuracy yields substantial improvements Shao et al.
(2024); OpenAI et al. (2024)) and code generation, where preference optimization and RL from human
feedback have led to greater code validity and efficiency Wang et al. (2025); Yang et al. (2025b).

Most prior methods are built on top of policy gradient algorithms such as Proximal Policy Optimiza-
tion (PPO) Schulman et al. (2017) or, more recently, Group Relative Policy Optimization (GRPO) Guo
et al. (2025); Yang et al. (2024b); Dang & Ngo (2025), which compares groups of generated re-
sponses rather than evaluating them in isolation. This approach is particularly powerful for reasoning
tasks with multiple plausible solutions, enabling the model to build a deeper understanding of what
constitutes high-quality reasoning Kumar et al. (2025). For example, GRPO has enabled models
like DeepSeek-R1-Zero to develop complex reasoning skills such as multi-step chain-of-thought
simply by being rewarded for correct final answers Guo et al. (2025). The effectiveness of these RL
frameworks often hinges on carefully designed preference datasets and reward models that accurately
reflect the subtleties of logical reasoning. Our work draws on these insights, by adapting GRPO for
the Text2SQL domain and focusing the reward signal on final executable correctness, encouraging
the model to reason through the full compositional structure of the query.

Text-to-SQL. The Text2SQL task has seen remarkable progress over the years Zhu et al. (2024b).
Early systems were built on rule-based approaches and handcrafted grammars, but proved brittle
when faced with linguistic ambiguity or complex schema variation Androutsopoulos et al. (1995); Li
& Jagadish (2014). The advent of neural sequence-to-sequence models helped automate parts of the
semantic parsing process, though such models often required elaborate schema encoders and strong
supervision Guo et al. (2019); Wang et al. (2021).

More recently, the generalization power of LLMs has revolutionized the field, as demonstrated by
numerous works leveraging pre-trained LLMs for template-free SQL generation Singh et al. (2025);
Gao et al. (2023); Li et al. (2024). LLMs often exhibit basic SQL competence on “out-of-the-box”
evaluation, but their performance on complex, multi-table queries remains limited unless explicit

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

compositional reasoning is encouraged Wei et al. (2023); Shao et al. (2024); Guo et al. (2025);
OpenAI et al. (2024). This has motivated the development of techniques such as Chain-of-Thought
prompting Tai et al. (2023), query decomposition Eyal et al. (2023), optimization Zhai et al. (2025), as
well as dynamic schema linking and execution-based feedback Hong et al. (2024); Deng et al. (2025).

Table 1: The reward design comparison of XYZ-
Text2SQL-R1 to existing reasoning models.

Framework Optimization (Reward)

Reasoning-SQL Pourreza et al. (2025) GRPO (EX, syntax, n-gram, LLM, schema, format)
SQL-R1 Ma et al. (2025) GRPO (EX, length, syntax, format)
Think2SQL Papicchio et al. (2025) GRPO (precision, recall, cardinality, 2×format)
ExCoT Zhai et al. (2025) DPO (EX)

XYZ-Text2SQL-R1 GRPO (EX, syntax)

Within this landscape, there is growing interest
in RL-based approaches for Text2SQL, often
building on structured, multi-component reward
functions that aggregate execution feedback,
syntactic validity, partial string overlap, schema
conformance, and more Pourreza et al. (2025);
Ma et al. (2025); Papicchio et al. (2025). How-
ever, such complex reward engineering risks
encouraging superficial reward hacking, as ob-
served in RL for semantic parsing Skalse et al. (2022). In contrast, our work advocates for a simpler,
execution-centric reward design, inspired by earlier RL-based semantic parsing approaches such as
Seq2SQL Zhong et al. (2017), and demonstrates that this minimal reward scheme can be both more
stable and more effective in practice.

Compared to most recent reasoning works Pourreza et al. (2025); Ma et al. (2025); He et al. (2025),
or pairwise preference optimization Zhai et al. (2025), our method is unique in unifying a streamlined
data filtering pipeline, group-based relative policy optimization, and a strictly execution-based reward
(Table 1).

3 METHODOLOGY

Building on insights from prior RL work for language model reasoning, we design XYZ-Text2SQL-R1
to pursue robust Text2SQL generation via a simple, execution-grounded RL framework.

Overview of RL Approach. We adopt GRPO Shao et al. (2024) as it has demonstrated superior
efficiency and effectiveness on structured reasoning tasks, making it an ideal match for Text2SQL.
Applying RL in this setting is particularly necessary. SQL correctness can be directly verified against
databases, providing clear and automatic reward signals. In addition, the generation process inherently
involves multi-step decision making. Finally, given the scarcity of annotated data, RL allows the
model to explore and generalize to novel compositional patterns beyond the training set.

Formally, let πθ denote our policy model parameterized by θ. For each input text question Q
with associated database schema, the model generates N candidate SQL queries (aka rollouts),
{oQ,1, ..., oQ,N}. Each generated query is then evaluated to provide an explicit reward signal as
described in the later of the section. These per-group rollouts allow us to compute relative advantages,
stabilizing learning and promoting robust policy improvement.

The GRPO objective is as follows:

JGRPO(θ) = E
[
1

N

N∑
i=1

min (riAi, clip(ri, 1− ϵ, 1 + ϵ)Ai)

]
− βDKL(πθ∥πref),

where ri =
πθ(oi|Q)
πθold (oi|Q) is the likelihood ratio, Ai the advantage, and DKL is a KL-divergence penalty

to keep the policy close to a reference (supervised fine-tuned) model Ouyang et al. (2022). In practice,
ϵ and β are tuned to balance exploration and stability.

Reward Model Design. A key differentiator of XYZ-Text2SQL-R1 is its adherence to a minimal,
execution-driven reward formulation. While earlier works have often sought highly elaborate reward
signals (aggregating string overlap, schema conformance, partial matching, etc. Pourreza et al. (2025);
Ma et al. (2025)), we find these can encourage reward hacking and brittle behaviors Skalse et al.
(2022).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 2: The datasets and their volume used in the paper. For BIRD-training, spider-training/dev,
their original sample sizes are 9428, 8659/1034.

Used for Training Used for Evaluation

Dataset BIRD SPIDER- SPIDER- Gretel-Synth BIRD- SPIDER- Spider2.0- Spider- EHR Science
training training dev Filtered dev test SQLite DK SQL Benchmark

Size 8 017 6 972 985 11 811 1534 2 147 135 535 1 008 299

Table 3: Learning from training data (all with GRPO optimization and Qwen2.5-Coder).

Base Model Training Data BIRD-dev SPIDER-test

14B-Inst BIRD, SPIDER 64.9 86.8
14B-Inst BIRD, SPIDER, Gretel-Synth-NonFiltered 64.6 86.4
14B-Inst BIRD, SPIDER, Gretel-Synth-Filtered 66.5 88.3
32B-Inst BIRD, SPIDER, Gretel-Synth-Filtered 64.9 87.7
32B-Inst BIRD, SPIDER, Gretel-Synth-Filtered, BIRD-aug-NonFiltered 62.5 86.1
32B-Inst BIRD, SPIDER, Gretel-Synth-Filtered, BIRD-aug-Filtered 64.9 86.8

Instead, we define a reward function focused solely on (1) final execution correctness and (2) basic
syntax validity:

R =


1, if the execution results exactly align with ground truth;
0.1, if syntax is correct and SQL is executable;
0, otherwise.

Here, execution alignment is determined by running the model’s SQL prediction alongside the ground-
truth query and matching their results using the strictest available criteria (e.g. BIRD benchmark
guidelines), ensuring meaningful progress signals. Syntax validity ensures that models are not unduly
penalized for benign formatting or minor structural errors when learning to compose well-formed
queries. Our design is similar to math/logic RL works Xie et al. (2025); Guo et al. (2025) with extra
constraints on valid SQL execution.

The proposed reward design enables stable, interpretable credit assignment, removing distracting or
confounding partial rewards. As empirical results (Section 5) demonstrate, our streamlined approach
is sufficient and preferable for high-accuracy, generalizable Text2SQL modeling.

4 LEARNINGS

Our iterative exploration involved experiments with diverse training and data selection strategies,
yielding a variety of empirical insights. While we recognize that some of these observations may
be context-specific and not universally applicable, we document them here to inform and accelerate
future research in the field.

Experimental Setup. Our primary training datasets are derived from the BIRD Li et al. (2024)
training set, and the training/development splits of SPIDER Yu et al. (2018). Rather than directly
adopting these sources, we apply a filtering process aimed at data quality (see Table 2 and Section 4.1
for details). Initial model selection is guided by performance on the BIRD-dev and SPIDER-test
sets, reported via execution accuracy. As we noticed that a sole focus on these two benchmarks risks
overfitting, we later broadened our evaluation suite for a more robust assessment.

As base models, we rely on the Qwen2.5-Coder series Hui et al. (2024), including both base, instruct
and reasoning-oriented variants. Unless noted otherwise, GRPO Shao et al. (2024) is used as our
default RL algorithm. RL-specific settings include a generation temperature of 0.8, a total batch size
of 256 (16 rollouts each), an update batch size of 128 per GRPO step, KL penalty β = 0.001, and
clip ratio ϵ = 0.2 (see Section 3 for hyperparameter details).

4.1 LEARNINGS FROM TRAINING DATA

The Critical Role of Filtering. Thorough inspection of BIRD and SPIDER training splits reveals that
many reference SQL queries in these datasets return empty results upon execution. For RL, where

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 4: Learnings from training strategy (*: limited results because of the checkpoint loss)

Base Model Training Strategy Optimization BIRD-dev SPIDER-test

Qwen2.5-Coder-32B-Inst — GRPO 64.9 87.7
Qwen2.5-Coder-32B-Inst — PPO 63.0 85.7

Qwen2.5-Coder-32B — GRPO 64.4 87.3
Qwen2.5-Coder-32B-Inst — GRPO 64.9 87.7
QwQ-32B — GRPO 55.2 79.3

Qwen2.5-Coder-32B-Inst Batch RL GRPO 64.9 87.7
Qwen2.5-Coder-32B-Inst * Online RL GRPO 66.6 –

Qwen2.5-Coder-32B-Inst * Online RL GRPO 66.6 –
OmniSQL-32B Online RL GRPO 67.9 88.2

OmniSQL-32B Online RL + Self-defined Prompt Template GRPO 67.9 88.2
OmniSQL-32B Online RL + Modified OmniSQL Prompt GRPO 70.5 88.7

reward signaling is tied to execution correctness, such examples can disrupt the learning process by
producing spurious or uninformative rewards. We exclude these and filter out samples with execution
times exceeding five seconds, markedly reducing overall training time. This straightforward filtering
step removed about 1,400 samples from BIRD and 1,700 from SPIDER, yielding a more reliable
reward signal and expediting RL convergence. Table 2 provides a summary of datasets used, including
derived data splits.

Table Enhanced Generation with Model-based Data Filtering for Synthetic Data. We further
augment training data with Gretel-Synth Meyer et al. (2024), which provides schemas without
populated data. We use GPT-4o to produce INSERT statements per table (details in Appendix B),
repeatedly sampling until the reference SQL retrieves non-empty results. Distractor tables from
related domains are randomly added to increase schema complexity, and only queries with SQL length
> 160 characters and successful execution are retained for the non-filtered pool. However, naively
adding Gretel-Synth-NonFiltered to training reduced performance (the first section of Table 3). To
remedy this, we employed a model-based filtering, using our best Qwen2.5-Coder-32B-Inst-trained
model, and retained only queries where at least one of the ten generations (temperature = 1.0) was
correct. This curated Gretel-Synth-Filtered set markedly improves results.

Unsuccessful Attempts at LLM-Based Data Augmentation. Drawing inspiration from works such
as Yang et al. (2024c); Hu et al. (2023), we attempted to boost diversity through data augmentation,
prompting LLMs to paraphrase or generate complex questions given a schema, the original question,
and its SQL. Nevertheless, we found that model outputs often closely mirrored the original condi-
tions, limiting diversity. We next tried prompting solely with schema descriptions and gold SQL,
omitting the original question, and incorporated self-correction Deng et al. (2025) to ensure all SQLs
were executable and returned data. Despite this, augmented data largely failed to improve model
generalization (the second section of Table 3), which we attribute to (1) insufficient linguistic and
structural diversity, and (2) oversampling schema-specific patterns, leading to overfitting.

Other Data Sources.We also experimented with model-filtered data from SynSQL-2.5M Li et al.
(2025), but initial attempts were inconclusive. Given the sheer volume of SynSQL-2.5M, we believe
more sophisticated filtering could unlock further gains, which we leave for future work.

4.2 LEARNINGS FROM TRAINING STRATEGY

Unless stated otherwise, the following rely on filtered BIRD, SPIDER, and Gretel-Synth.

GRPO vs PPO. We compare GRPO and PPO. GRPO, by design, reduces memory usage of critic
models and is well-suited for large-scale settings; PPO is simpler and historically popular for stable
RL optimization. In our experiments, GRPO outperforms PPO by a comfortable margin (see the first
section of Table 4), though we caution that PPO may benefit from further hyperparameter tuning.

Selecting the Optimal Starting Model. We assess Qwen-2.5-Coder in the base, instructed, and
the reasoning-focused QwQ-32B variant. Results show that starting from better instruction following,
higher-accuracy models is crucial (see the second section of Table 4). The main differences
between Qwen2.5-Coder-32B base and instruction are (1) the instruction following capability
and (2) high-quality instruction finetuning data, which leads to about 0.4 EX gap. QwQ-32B is
optimized for math and reasoning tasks, e.g., math, but not SQL, and its initial accuracy trailed the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Qwen-2.5-Coder-instructed version by over 10 points, a gap RL fine-tuning could not close. Later,
we discuss how strong supervised checkpoints improve downstream RL.

Online RL Surpasses Batch RL. We compare online RL, where the model continually interacts with
the environment, with batch RL. Our findings show superior results with online RL, likely due to its
increased adaptivity and exposure to more complex negative examples via live interaction (the third
section of Table 4). This observation extends previous results primarily observed in mathematical
and programming, indicating its pertinence for Text2SQL.

Supervised Fine-Tuning Model Quality Matters. Stronger SFT models (e.g., OmniSQL Li et al.
(2025)) consistently yield better downstream RL results (the forth section of Table 4), reinforcing
the importance of strong initializations and echoing observations from other domains.

Prompt Format is Crucial. We observed significant gains (the fifth section of Table 4) when switch-
ing from a generic prompt to the original OmniSQL prompt, adapted for RL training (see Figure D.1
for prompt). Prompt structure, inclusion of thinking instructions, and database serialization choices
all contributed to improved model performance.

Other Observations. We explored variations in rollout count (16, 24, 32), human- or LLM-generated
prompts, and various reward designs. None produced significant improvement, and, notably, more
fine-grained reward designs induced “lazy” behaviors, where models pursued local optima for
short-term rewards rather than global correctness.

4.3 LEARNING FROM EVALUATION BENCHMARK DIVERSITY

Table 5: Diverse evaluation helps to identify generalization capabilities (OmniSQL-7B).

Different setting BIRD- Spider- Spider2.0- Spider- EHR Science Averagedev test SQLite DK SQL Benchmark

BIRD only 67.6 87.8 8.9 76.3 34.9 50.5 54.3
BIRD, SPIDER, Gretel-Synth 67.7 88.2 11.9 79.1 35.5 51.8 55.7

Prompt Optimization Benefits OSS Model Evaluation. Prompt selection dramatically affects open-
source models (e.g., Llama Grattafiori et al. (2024) and Qwen Hui et al. (2024)) performance, with
the OmniSQL prompt improving Llama-3.1-70B’s BIRD-dev accuracy from 57.4% Zhai et al. (2025)
to 65.1% in our experiments. Prompt tuning is thus indispensable for the fair comparison of large,
general-purpose LLMs in the Text2SQL task. However, finding the best prompt for general-purpose
LLMs is beyond the scope of our work.

Diverse Evaluation Surfaces Generalization Gaps. Restricting training to BIRD, we observed
strong benchmark accuracy on BIRD-dev, but an average score 1.4 points lower when evaluated across
a broader suite (Table 5), including BIRD-dev Li et al. (2024), SPIDER Yu et al. (2018), Spider2.0 Yu
et al. (2018), Spider-DK Gan et al. (2021), EHRSQL Lee et al. (2022), and ScienceBenchmark Zhang
et al. (2023). This highlights the risk of overfitting and the necessity of evaluating on multiple datasets
to ensure robust generalization.

5 MAIN RESULT

Our final experiments build upon all prior empirical insights: the training data includes the filtered
BIRD-training and SPIDER-training/dev sets, along with the model-based filtered Gretel-Synth-
Filtered synthetic examples. The reinforcement learning setup consists of (1) GRPO as the optimiza-
tion algorithm, (2) online training, (3) initializing from OmniSQL supervised checkpoints, and (4)
using a modified OmniSQL prompt for both training and evaluation. We report execution-based
accuracy results across all six benchmarks detailed in Table 2.

XYZ-Text2SQL-R1 shows strong performance on the BIRD benchmark (Table 7). Our largest model
ranks third overall, but first among models with released research papers. XYZ-Text2SQL-R1-32B
reaches 73.84% accuracy with Few-sample Self-Consistency and 71.83% under the stricter greedy
decoding setting. In the leaderboard, the Self-Consistency column indicates the number of sampled
candidates (e.g., Few: 1–7, Many: 8–32). Both XYZ-Text2SQL-R1-7B and XYZ-Text2SQL-R1-14B

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 6: Comparison between XYZ-Text2SQL-R1 and other Open-Source Software (OSS) / Propri-
etary models. *: SQL-R1 Ma et al. (2025) uses majority voting in evaluation. **: (Pourreza et al.,
2025, Table 2) might use schema linking, our number follows (Pourreza et al., 2025, Table 3/4). †:
Spider2.0 was updated, so we re-evaluate it instead of using the OmniSQL number. For SQL-specific
models, generally sensitive to prompt and database serialization, we take the number from their
papers. DPSK stands for DeepSeek.

Model OSS BIRD SPIDER Spider2.0 Spider EHR Science Average
(dev) (test) -SQLite† -DK SQL Benchmark

Models Size < 10B

DPSK-Coder-6.7B-Instruct Guo et al. (2024) ✓ 43.1 70.5 4.4 60.9 28.6 40.8 41.4
Qwen2.5-Coder-7B-Instruct Hui et al. (2024) ✓ 50.9 82.2 4.4 67.5 24.3 45.2 45.8
Qwen2.5-7B-Instruct Yang et al. (2024a) ✓ 46.9 76.8 5.2 63.7 20.9 38.5 42.0
SQL-R1-7B* Ma et al. (2025) ✗ 66.6 – – – – – –
OmniSQL-7B Li et al. (2025) ✓ 63.9 87.9 13.3 76.1 34.9 50.2 54.4
Think2SQL-7B Papicchio et al. (2025) ✗ 56.1 – – – – – –
OpenCoder-8B-Instruct Huang et al. (2024) ✓ 37.5 68.3 1.5 62.6 21.9 39.8 38.6
Meta-Llama-3.1-8B-Instruct Grattafiori et al. (2024) ✓ 42.0 72.2 1.5 62.6 24.6 36.8 40.0
Granite-8B-Code-Instruct Mishra et al. (2024) ✓ 27.6 64.9 1.5 50.7 16.0 29.4 31.7
Granite-3.1-8B-Instruct Mishra et al. (2024) ✓ 36.0 69.8 3.7 60.0 19.6 36.8 37.7

XYZ-Text2SQL-R1-7B ✓ 68.9 88.8 15.6 81.5 36.7 51.8 57.2
10B ≤Models Size ≤ 30B

Qwen2.5-Coder-14B-Instruct Hui et al. (2024) ✓ 61.5 86.6 11.1 73.6 31.6 52.2 52.8
Qwen2.5-14B-Instruct Yang et al. (2024a) ✓ 56.7 82.0 8.1 72.3 28.8 51.2 49.9
OmniSQL-14B Li et al. (2025) ✓ 64.2 88.3 12.6 72.9 39.9 56.9 55.8
Reasoning-SQL-14B** Pourreza et al. (2025) ✗ 64.2 81.4 – 73.0 – – –
Starcoder2-15B-Instruct Lozhkov et al. (2024) ✓ 38.5 73.0 1.5 66.5 16.8 25.8 37.0
DPSK-Coder-V2-Inst (16B/MoE) Zhu et al. (2024a) ✓ 44.6 77.9 2.2 63.7 23.9 39.1 41.9
Granite-20B-Code-Instruct Mishra et al. (2024) ✓ 34.0 74.1 1.5 62.2 23.5 37.5 38.8
Codestral-22B Mistral AI (2024) ✓ 52.7 78.6 8.1 69.9 37.8 48.5 49.3

XYZ-Text2SQL-R1-14B ✓ 70.1 89.4 16.3 79.4 40.7 58.2 59.0
30B < Models Size or Unknown

Qwen2.5-Coder-32B-Instruct Hui et al. (2024) ✓ 64.5 87.5 10.4 78.3 36.4 54.8 55.3
Qwen2.5-32B-Instruct Yang et al. (2024a) ✓ 62.0 84.9 10.4 73.1 33.6 50.5 52.4
Xiyan-SQL-32B Gao et al. (2024) ✓ 67.0 – – – – – –
ExDPO-32B Zhai et al. (2025) ✓ 68.3 85.1 – – – – –
OmniSQL-32B Li et al. (2025) ✓ 64.5 87.6 14.8 76.1 42.4 57.2 57.1
DPSK-Coder-33B-Instruct Guo et al. (2024) ✓ 49.2 74.3 5.2 69.0 31.4 44.5 45.6
Granite-34B-Code-Instruct Mishra et al. (2024) ✓ 33.8 74.4 0.0 64.7 23.8 40.1 39.5
Mixtral-8x7B-Inst. (47B, MoE) Jiang et al. (2024) ✓ 35.3 67.8 3.7 55.3 21.5 29.4 35.5
Meta-Llama-3.1-70B-Instruct Grattafiori et al. (2024) ✓ 65.1 84.3 7.4 75.1 37.4 55.2 54.1
ExDPO-70B Zhai et al. (2025) ✓ 68.5 86.6 – – – – –
Qwen2.5-72B-Instruct Yang et al. (2024a) ✓ 60.3 84.0 11.9 76.4 35.0 52.8 53.4
Command-A-111B Team Cohere (2025) ✓ 63.5 – – – – – –
DeepSeek-V3 (671B, MoE) Liu et al. (2024) ✓ 63.2 85.5 14.8 72.9 43.2 56.2 55.6
GPT-4o-mini OpenAI (2023) ✗ 58.8 82.4 11.9 73.3 37.9 51.8 52.7
GPT-4-Turbo OpenAI (2023) ✗ 62.0 83.4 13.3 72.3 43.1 59.2 55.6
GPT-4o OpenAI (2023) ✗ 61.9 83.2 17.0 72.9 44.9 55.5 55.9

XYZ-Text2SQL-R1-32B ✓ 70.5 88.7 16.3 80.6 40.1 60.9 59.5

Table 7: BIRD Single-Model Leaderboard.

Model Self-Consistency Dev Test

Databricks RLVR 32B Few – 75.7
Sophon-Text2SQL-32B Many 72.4 74.8
XYZ-Text2SQL-R1-32B Few 72.2 73.8
Databricks RLVR 32B – 70.8 73.6
Jiayin-Pangu-Text2SQL-14B Many 71.1 73.5
XYZ-Text2SQL-R1-14B Few 71.4 72.2
SIFT-32B Scale 70.1 70.9
CrazyData-Text2SQL-32B Many – 70.7
Infly-RL-SQL-32B Few 70.1 70.6
XYZ-Text2SQL-R1-7B Few 70.1 70.4

Table 8: XYZ-Text2SQL-R1 with differ-
ent evaluation techniques on BIRD-dev.

Model Value Majority BIRD-dev
Size Retrieval Voting

14B

✗ ✗ 70.1
✓ ✗ 70.5
✗ ✓ 70.6
✓ ✓ 70.8

32B

✗ ✗ 70.5
✓ ✗ 70.9
✗ ✓ 71.2
✓ ✓ 71.5

exceed 70% on the BIRD test, and notably, XYZ-Text2SQL-R1-7B matches the performance of much
larger systems such as ExCoT-70B Zhai et al. (2025) with an order of magnitude fewer parameters.

5.1 PERFORMANCE EVALUATION ACROSS SIX BENCHMARKS

Instead of optimizing the model for single benchmark performance, XYZ-Text2SQL-R1 achieves
best-in-class average performance across six different benchmarks. Table 6 presents a comprehensive
comparison between XYZ-Text2SQL-R1 and a wide range of open-source and proprietary models,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

including general-purpose LLMs (e.g. DeepSeek-V3, GPT-4o, GPT-4-Turbo), coding models (Qwen-
Coder), and specialized Text2SQL models (XiYan-SQL, OmniSQL, ExCoT, SQL-R1, Reasoning-
SQL). Except where otherwise indicated, all evaluations use single-model, single-inference (i.e.,
greedy decoding with no ensembling, schema linking, or external re-ranking).

State-of-the-Art Across All Scales. XYZ-Text2SQL-R1 consistently outperforms existing state-
of-the-art models across all parameter scales and benchmarks. For models under 10B parameters,
XYZ-Text2SQL-R1-7B achieves an average accuracy of 57.2, outperforming open-source competitors
(e.g., OmniSQL-7B at 54.4) and closely rivaling, or surpassing, closed-source models such as SQL-
R1-7B. In the 10B–30B range, XYZ-Text2SQL-R1-14B attains 59.0, exceeding strong baselines like
OmniSQL-14B and Reasoning-SQL-14B. In the 30B+ category, XYZ-Text2SQL-R1-32B achieves
the best results overall, with an average of 59.5, outperforming the largest open-source and commercial
models, including DeepSeek-V3 (55.6), GPT-4-Turbo (55.6), and even GPT-4o (55.9).

Parameter Efficiency and Task Specialization. Notably, XYZ-Text2SQL-R1-7B matches or
surpasses models such as DeepSeek-V3 (671B, MoE) and OmniSQL-32B on six benchmark accuracy,
despite a fraction of their parameter count. These results highlight the advantages of task-specific
training and reward design for compositional SQL reasoning.

Benchmark-Specific Highlights. On challenging benchmarks such as BIRD, Spider, and EHRSQL,
XYZ-Text2SQL-R1 shows marked improvements. For instance, on the BIRD-dev split, XYZ-
Text2SQL-R1 7B, 14B, and 32B reach 68.9, 70.1, and 70.5, setting new records across size categories.
Substantial gains are also seen on Spider-DK and the Science benchmark, underscoring XYZ-
Text2SQL-R1’s robustness and domain coverage.

Table 9: Generalization of XYZ-Text2SQL-R1 across different model families.

Model BIRD-dev Spider-test Spider2.0-SQLite Spider-DK EHR SQL Science Benchmark Average

Qwen3-1.7B-Instruct 46.6 77.4 2.2 63.2 19.9 42.1 41.9
+ XYZ-Text2SQL-R1 58.7+12.1 83.8+6.4 4.4+2.2 72.3+9.1 33.9+14.0 47.8+5.7 50.2+8.3

LLaMA-3.2-3B-Instruct 18.2 50.3 0.7 34.4 5.5 20.7 21.6
+ XYZ-Text2SQL-R1 46.9+28.7 79.6+29.3 5.2+4.5 66.2+31.8 26.2+20.7 40.1+19.4 44.0+22.4

Generalizability Across Model Families. To demonstrate that the effectiveness of XYZ-Text2SQL-
R1 is not confined to the Qwen-Coder family, we applied our training framework to two additional
open-source models: Qwen3-1.7B-Instruct Yang et al. (2025a) and LLaMA-3.2-3B-Instruct Dubey
et al. (2024). As shown in Table 9, we observed an average absolute improvement of 8.3% for
Qwen3-1.7B and a remarkable 22.4% for LLaMA-3.2-3B. We also noted that our framework helps
align models with specific output formatting instructions, which contributed to the significant gains
for LLaMA-3.2-3B. These results underscore the robustness and generalizability of our training
paradigm across diverse model families.

6 DISCUSSION

Figure 1: Generation length and average accuracy
across six benchmarks.

Beyond the benchmark achievements, the develop-
ment of XYZ-Text2SQL-R1 revealed some insights
into model behavior and potential for exploiting
inference-time enhancements. These also motivate
further examination of the model’s comparative stand-
ing.

Enhancing XYZ-Text2SQL-R1 with Other Tech-
niques. While XYZ-Text2SQL-R1 is designed for
efficient, direct inference, it can also serve as the
SQL generator in more complex agentic systems.
Table 8 shows results using two inference-time en-
hancements: value retrieval (from Talaei et al. (2024))
and majority voting (as in Li et al. (2025); Ma et al.
(2025)) with eight generations per sample. Each tech-
nique yields a tangible improvement; combined, they
boost XYZ-Text2SQL-R1-32B performance by up to
one point on BIRD-dev, demonstrating complementary gains from orthogonal reasoning components.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 10: The comparison between XYZ-Text2SQL-R1 and Reasoning-SQL Pourreza et al. (2025).
The numbers for the latter from (Pourreza et al., 2025, Tables 4 and 5) and it might involve schema
linking as mentioned in (Pourreza et al., 2025, Table 2), but we are unsure; see Table 1 for the reward
design comparison.

Method Base Model Filtering Method Reward BIRD SPIDER SPIDER
Design -dev -test -DK

Reasoning-SQL Qwen2.5-Coder-14B-Inst Large Models Prompt Complex 64.21 81.43 73.03
XYZ-Text2SQL-R1 Qwen2.5-Coder-14B-Inst Empty Golden-SQL Simple 66.49 87.20 75.10

Table 11: Comparison of XYZ-Text2SQL-R1, SQL-R1 Ma et al. (2025) and Think2SQL Papicchio
et al. (2025). GRE: greedy decoding, MV: Majority Voting (8 candidates). Competitors numbers
according to (Ma et al., 2025, Table 2) and (Papicchio et al., 2025, Table 1 and 3); see Table 1 for the
reward design comparison.

Method Base Model SFT Reward BIRD-dev SPIDER-test
(#Samples) Design GRE/MV GRE/MV

SQL-R1 Qwen2.5-Coder-7B-Inst ✗ Complex –/63.1 –/86.1
SQL-R1 Qwen2.5-Coder-7B-Inst ✓(200K) Complex –/59.2 –/86.4
Think2SQL Qwen2.5-Coder-7B-Inst ✓(9K) Complex 56.1/– 82.4/–
XYZ-Text2SQL-R1 Qwen2.5-Coder-7B-Inst ✗ Simple 63.9/64.8 85.0/87.1
SQL-R1 OmniSQL-7B ✗ Complex –/66.6 –/88.7
XYZ-Text2SQL-R1 OmniSQL-7B ✗ Simple 67.6/69.4 87.8/88.6

Response Length vs. Accuracy. Figure 1 plots the evolution of average response length and
execution accuracy across training for all three sizes of XYZ-Text2SQL-R1. We observe a U-shaped
pattern in response length—initially decreasing, then gradually increasing—as accuracy rises. This
trend may reflect early-stage conservative decoding (and possible undertraining), followed by richer,
more grounded outputs as training progresses, an effect also noted in some of the previous works Xie
et al. (2025).

Why RL is Effective in Text2SQL. Unlike supervised fine-tuning, which relies solely on positive
examples, RL enables the model to learn from failures through trial and error with negative feedback.
This allows the model to overcome inherent ambiguities in the training data and better capture user
intent. Appendix F provides qualitative examples.

Reasoning-SQL. To enable a fair comparison with Reasoning-SQL Pourreza et al. (2025), we
retrain XYZ-Text2SQL-R1 from the Qwen-2.5-14B-Instruct base, use BIRD-training data alone,
and run 3 epochs. Under these controlled settings, the two methods differ primarily in training data
filtering (XYZ-Text2SQL-R1 uses simple empty-return-based removal, Reasoning-SQL uses LLM
filtering) and reward design (our simple execution/syntax signal vs. a complex mixture). As shown
in Table 10, XYZ-Text2SQL-R1 outperforms Reasoning-SQL by clear margins on BIRD-dev (+2.28),
Spider-test (+5.77), and Spider-DK (+2.07). This underscores the power of direct, execution-guided
reinforcement learning and streamlined filtering.

SQL-R1 and Think2SQL. We further compare XYZ-Text2SQL-R1 with recently published
SQL-R1 Ma et al. (2025) and Think2SQL Papicchio et al. (2025), restricting RL fine-tuning to BIRD-
training and evaluating under both greedy and majority voting regimes. As summarized in Table 11,
XYZ-Text2SQL-R1 delivers the best or near-best performance in all configurations and consistently
outperforms prior approaches, even without extensive pre-training or complex reward engineering.

7 CONCLUSIONS

We presented XYZ-Text2SQL-R1, a novel RL framework for Text2SQL that uses GRPO and a simple
execution-based reward. It achieves 71.83% execution accuracy (73.84% with self-consistency)
on BIRD-test as a single 32B model, ranking among the top leaderboard entries while surpassing
substantially larger LLMs. Across six challenging benchmarks, XYZ-Text2SQL-R1 yields up to
4 points improvement over strong baselines, with notable parameter efficiency (e.g., the 7B version
matches or outperforms prior ExCoT-70B models and GPT4o). Our results highlight that minimal
reward signals, principled data filtering, and carefully curated training strategies are key for robust
SQL generation. We release models to support future research in this area.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. We use only publicly available datasets (BIRD,
Spider, EHRSQL, ScienceBenchmark), with no collection of private or personally identifiable
information. No human subjects or sensitive data were involved. Potential ethical concerns relate to
biases in benchmark datasets. This research is for academic purposes only, and all experiments were
conducted in accordance with standard practices of research integrity.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of datasets, filtering procedures, model training, and evaluation
benchmarks in the main text (Sections 3, 4, 5). Appendices include prompt templates, data aug-
mentation pipelines, and qualitative case studies. LLMs were used only for language polishing, not
for research design or data generation. The code, datasets, and models will be released after paper
acceptance under the supervision of institutional policies, to support independent verification and
future research.

REFERENCES

I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural language interfaces to databases — an
introduction, 1995. URL https://arxiv.org/abs/cmp-lg/9503016.

Quy-Anh Dang and Chris Ngo. Reinforcement Learning for reasoning in small LLMs: What works
and what doesn’t. ArXiv, abs/2503.16219, 2025. URL https://api.semanticscholar.org/Co
rpusID:277150647.

Minghang Deng, Ashwin Ramachandran, Canwen Xu, Lanxiang Hu, Zhewei Yao, Anupam Datta,
and Hao Zhang. ReFoRCE: A text-to-SQL agent with self-refinement, format restriction, and
column exploration, 2025. URL https://arxiv.org/abs/2502.00675.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Ben Eyal, Moran Mahabi, Ophir Haroche, Amir Bachar, and Michael Elhadad. Semantic decomposi-
tion of question and SQL for text-to-SQL parsing. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 13629–13645,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.fin
dings-emnlp.910. URL https://aclanthology.org/2023.findings-emnlp.910/.

Yujian Gan, Xinyun Chen, and Matthew Purver. Exploring underexplored limitations of cross-domain
text-to-SQL generalization, 2021.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-SQL empowered by Large Language Models: A benchmark evaluation, 2023. URL
https://arxiv.org/abs/2308.15363.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao
Hong, Zhiling Luo, Jinyang Gao, Liyu Mou, and Yu Li. A preview of XiYan-SQL: A multi-
generator ensemble framework for text-to-SQL. arXiv preprint arXiv:2411.08599, 2024. URL
https://arxiv.org/abs/2411.08599.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. DeepSeek-Coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

10

https://arxiv.org/abs/cmp-lg/9503016
https://api.semanticscholar.org/CorpusID:277150647
https://api.semanticscholar.org/CorpusID:277150647
https://arxiv.org/abs/2502.00675
https://aclanthology.org/2023.findings-emnlp.910/
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2411.08599

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
Towards complex text-to-SQL in cross-domain database with intermediate representation. In Anna
Korhonen, David Traum, and Lluís Màrquez (eds.), Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 4524–4535, Florence, Italy, July 2019. Association
for Computational Linguistics. doi: 10.18653/v1/P19-1444. URL https://aclanthology.org
/P19-1444/.

Mingqian He, Yongliang Shen, Wenqi Zhang, Qiuying Peng, Jun Wang, and Weiming Lu. STaR-SQL:
Self-taught reasoner for text-to-SQL, 2025. URL https://arxiv.org/abs/2502.13550.

Zijin Hong, Zheng Yuan, Hao Chen, Qinggang Zhang, Feiran Huang, and Xiao Huang. Knowledge-
to-SQL: Enhancing SQL generation with data expert LLM, 2024. URL https://arxiv.org/ab
s/2402.11517.

Yiqun Hu, Yiyun Zhao, Jiarong Jiang, Wuwei Lan, Henghui Zhu, Anuj Chauhan, Alexander Hanbo
Li, Lin Pan, Jun Wang, Chung-Wei Hang, Sheng Zhang, Jiang Guo, Mingwen Dong, Joseph Lilien,
Patrick Ng, Zhiguo Wang, Vittorio Castelli, and Bing Xiang. Importance of synthesizing high-
quality data for text-to-SQL parsing. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(eds.), Findings of the Association for Computational Linguistics: ACL 2023, pp. 1327–1343,
Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.f
indings-acl.86. URL https://aclanthology.org/2023.findings-acl.86/.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J Yang,
JH Liu, Chenchen Zhang, Linzheng Chai, et al. OpenCoder: The open cookbook for top-tier code
large language models. arXiv preprint arXiv:2411.04905, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2.5-Coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of Experts. arXiv preprint arXiv:2401.04088, 2024.

Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal,
Mubarak Shah, Ming-Hsuan Yang, Phillip H. S. Torr, Fahad Shahbaz Khan, and Salman Khan.
LLM post-training: A deep dive into reasoning large language models, 2025. URL https:
//arxiv.org/abs/2502.21321.

Nathan Lambert, Jacob Daniel Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James Validad Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya
Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hanna Hajishirzi.
Tülu 3: Pushing frontiers in open language model post-training. ArXiv, abs/2411.15124, 2024.
URL https://api.semanticscholar.org/CorpusID:274192505.

Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu Kwon, Woncheol Shin, Seongjun Yang, Minjoon
Seo, Jong-Yeup Kim, and Edward Choi. EHRSQL: A practical text-to-SQL benchmark for
electronic health records. Advances in Neural Information Processing Systems, 35:15589–15601,
2022.

Fei Li and H. V. Jagadish. Constructing an interactive natural language interface for relational
databases. Proc. VLDB Endow., 8(1):73–84, September 2014. ISSN 2150-8097. doi: 10.14778/2
735461.2735468. URL https://doi.org/10.14778/2735461.2735468.

Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei Huang, Jing Zhang, Fuxin Jiang, Shuai Wang,
Tieying Zhang, Jianjun Chen, Rui Shi, Hong Chen, and Cuiping Li. OmniSQL: Synthesizing
high-quality text-to-SQL data at scale. arXiv preprint arXiv:2503.02240, 2025. URL https:
//arxiv.org/abs/2503.02240.

11

https://aclanthology.org/P19-1444/
https://aclanthology.org/P19-1444/
https://arxiv.org/abs/2502.13550
https://arxiv.org/abs/2402.11517
https://arxiv.org/abs/2402.11517
https://aclanthology.org/2023.findings-acl.86/
https://arxiv.org/abs/2502.21321
https://arxiv.org/abs/2502.21321
https://api.semanticscholar.org/CorpusID:274192505
https://doi.org/10.14778/2735461.2735468
https://arxiv.org/abs/2503.02240
https://arxiv.org/abs/2503.02240

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. Can LLM already serve as a database interface? a big bench for large-scale
database grounded text-to-SQLs. Advances in Neural Information Processing Systems, 36, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. DeepSeek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. StarCoder 2 and The Stack v2:
The next generation. arXiv preprint arXiv:2402.19173, 2024.

Peixian Ma, Xialie Zhuang, Chengjin Xu, Xuhui Jiang, Ran Chen, and Jian Guo. SQL-R1:
Training natural language to SQL reasoning model by reinforcement learning. arXiv preprint
arXiv:2504.08600, 2025.

Yev Meyer, Marjan Emadi, Dhruv Nathawani, Lipika Ramaswamy, Kendrick Boyd, Maarten Van Seg-
broeck, Matthew Grossman, Piotr Mlocek, and Drew Newberry. Synthetic-Text-To-SQL: A syn-
thetic dataset for training language models to generate sql queries from natural language prompts,
April 2024. URL https://huggingface.co/datasets/gretelai/synthetic-text-to-sql.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adriana Meza So-
ria, Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep Singh, et al. Gran-
ite code models: A family of open foundation models for code intelligence. arXiv preprint
arXiv:2405.04324, 2024.

Mistral AI. Codestral: Mistral AI’s first code generation model. https://mistral.ai/news/code
stral, 2024. Accessed: May 1, 2025.

OpenAI. GPT-4 technical report, 2023. URL https://openai.com/research/gpt-4. Accessed:
May 1, 2025.

OpenAI et al. OpenAI o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

OpenAI et al. Competitive programming with Large Reasoning Models, 2025. URL https:
//arxiv.org/abs/2502.06807.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Simone Papicchio, Simone Rossi, Luca Cagliero, and Paolo Papotti. Think2SQL: Reinforce LLM
reasoning capabilities for Text2SQL, 2025. URL https://arxiv.org/abs/2504.15077.

Mohammadreza Pourreza, Shayan Talaei, Ruoxi Sun, Xingchen Wan, Hailong Li, Azalia Mirhoseini,
Amin Saberi, Sercan Arik, et al. Reasoning-SQL: Reinforcement learning with SQL tailored
partial rewards for reasoning-enhanced text-to-SQL. arXiv preprint arXiv:2503.23157, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y.K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the limits of
mathematical reasoning in open language models, 2024.

Aditi Singh, Akash Shetty, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei. A survey of large
language model-based generative ai for text-to-SQL: Benchmarks, applications, use cases, and
challenges, 2025. URL https://arxiv.org/abs/2412.05208.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing
reward gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.

12

https://huggingface.co/datasets/gretelai/synthetic-text-to-sql
https://mistral.ai/news/codestral
https://mistral.ai/news/codestral
https://openai.com/research/gpt-4
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2502.06807
https://arxiv.org/abs/2502.06807
https://arxiv.org/abs/2504.15077
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2412.05208

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang Deng, and Huan Sun. Exploring chain-of-thought
style prompting for text-to-SQL, 2023. URL https://arxiv.org/abs/2305.14215.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
CHESS: Contextual harnessing for efficient SQL synthesis, 2024. URL https://arxiv.org/ab
s/2405.16755. arXiv preprint arXiv:2405.16755.

Team Cohere. Command A: An enterprise-ready large language model, April 2025. URL https:
//arxiv.org/abs/2504.00698. Accessed: 2025-05-04.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. RAT-
SQL: Relation-aware schema encoding and linking for text-to-SQL parsers, 2021. URL https:
//arxiv.org/abs/1911.04942.

Junqiao Wang, Zeng Zhang, Yangfan He, Yuyang Song, Tianyu Shi, Yuchen Li, Hengyuan Xu, Kunyu
Wu, Guangwu Qian, Qiuwu Chen, and Lewei He. Enhancing code LLMs with reinforcement
learning in code generation: A survey, 2025. URL https://arxiv.org/abs/2412.20367.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in Large Language Models, 2023.
URL https://arxiv.org/abs/2201.11903.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai
Qiu, Zhirong Wu, and Chong Luo. Logic-RL: Unleashing LLM reasoning with rule-based
Reinforcement Learning, 2025. URL https://arxiv.org/abs/2502.14768.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong
Lan, Jiahui Gong, Tianjian Ouyang, Fanjin Meng, Chenyang Shao, Yuwei Yan, Qinglong Yang,
Yiwen Song, Sijian Ren, Xinyuan Hu, Yu Li, Jie Feng, Chen Gao, and Yong Li. Towards large
reasoning models: A survey of reinforced reasoning with Large Language Models, 2025. URL
https://arxiv.org/abs/2501.09686.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-Math technical report: Toward mathematical expert
model via self-improvement. ArXiv, abs/2409.12122, 2024b. URL https://api.semanticscho
lar.org/CorpusID:272707652.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025a.

Dayu Yang, Tianyang Liu, Daoan Zhang, Antoine Simoulin, Xiaoyi Liu, Yuwei Cao, Zhaopu Teng,
Xin Qian, Grey Yang, Jiebo Luo, and Julian McAuley. Code to think, think to code: A survey
on code-enhanced reasoning and reasoning-driven code intelligence in LLMs, 2025b. URL
https://arxiv.org/abs/2502.19411.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang Zhou. Synthesizing text-
to-SQL data from weak and strong LLMs, 2024c. URL https://arxiv.org/abs/2408.03256.
Accessed: 2025-04-16.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-SQL task. arXiv preprint arXiv:1809.08887, 2018.

Bohan Zhai, Canwen Xu, Yuxiong He, and Zhewei Yao. ExCoT: Optimizing reasoning for text-to-
SQL with execution feedback. arXiv preprint arXiv:2503.19988, 2025. URL https://arxiv.or
g/abs/2503.19988.

13

https://arxiv.org/abs/2305.14215
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2504.00698
https://arxiv.org/abs/2504.00698
https://arxiv.org/abs/1911.04942
https://arxiv.org/abs/1911.04942
https://arxiv.org/abs/2412.20367
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2501.09686
https://api.semanticscholar.org/CorpusID:272707652
https://api.semanticscholar.org/CorpusID:272707652
https://arxiv.org/abs/2502.19411
https://arxiv.org/abs/2408.03256
https://arxiv.org/abs/2503.19988
https://arxiv.org/abs/2503.19988

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yi Zhang, Jan Deriu, George Katsogiannis-Meimarakis, Catherine Kosten, Georgia Koutrika, and
Kurt Stockinger. ScienceBenchmark: A complex real-world benchmark for evaluating natural
language to SQL systems. arXiv preprint arXiv:2306.04743, 2023.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2SQL: Generating structured queries from
natural language using reinforcement learning, 2017. URL https://arxiv.org/abs/1709.001
03.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. DeepSeek-Coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024a.

Xiaohu Zhu, Qian Li, Lizhen Cui, and Yongkang Liu. Large language model enhanced text-to-SQL
generation: A survey, 2024b. URL https://arxiv.org/abs/2410.06011.

14

https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/2410.06011

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

In preparing this manuscript, we employed LLMs solely for language polishing. Specifically, we used
commercial LLMs as writing assistants to improve sentence structure, check grammar and spelling,
and enhance overall readability and clarity of the text. No LLMs were used for research ideation,
methodological design, data analysis, or code generation. All scientific contributions, including
theoretical development, experimental design, implementation, and analysis, were solely conducted
by the authors.

All text outputs from LLMs were carefully reviewed and revised by the authors, who take full
responsibility for the accuracy, originality, and integrity of the manuscript. LLMs are not considered
authors and bear no responsibility for this work.

B CONSTRUCTION PIPELINE FROM GRETEL-SYNTH TO
GRETEL-SYNTH-NONFILTERED

To enable SQL execution and ensure meaningful query results, we use a carefully designed prompt to
guide an LLM in generating realistic table data. Appendix B.1 illustrates this prompt, which produces
valid INSERT statements aligned with both the SQL context and query.

These synthetic data inserts serve as the foundation for the construction pipeline outlined in Algo-
rithm 1, which augments each sample with distractive tables and applies filtering to retain executable,
informative SQL examples.

C DATA AUGMENTATION

We perform data augmentation on the BIRD dataset following the prompt template shown in Fig-
ure C.1. Note that the task component is optional. To encourage diversity in the generated data, we
omit the task and answer fields when necessary.

After obtaining a set of SQL queries, we apply a self-correction workflow as described in Algorithm 2
to ensure the SQLs are executable and yield non-empty results. The prompts used for self_correct
and similar_error_refine are provided in Figure C.2.

D PROMPT USED FOR TRAINING/EVALUATION

We present the prompt used for our training and evaluation in Figure D.1.

E EXAMPLES FROM XYZ-TEXT2SQL-R1-32B

We provide several examples here to illustrate the thinking process of XYZ-Text2SQL-R1-32B
in Figure E.1, E.2, and E.3. Note that we did not cherry-pick the answer so the generated SQL might
be wrong.

F QUALITATIVE CASE STUDIES OF RL TRAINING EFFECTS

To better illustrate how RL with simple reward signals improves the reasoning capabilities of our
model, we present two detailed case studies. These examples highlight the unique advantages of
our framework in correcting subtle but critical reasoning errors that are difficult to address through
supervised fine-tuning alone.

Case Study 1: Resolving Ambiguity Between Aggregation and Enumeration. Consider the
following question: “How many female patients born in 1964 were admitted to the hospital? List
them by ID.” This query is inherently ambiguous because it mixes two operations: counting patients
(COUNT(ID)) and enumerating their identifiers (SELECT ID). A model without RL training, such as
OmniSQL-32B Li et al. (2025), often attempts to reconcile these conflicting intents by generating a

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Prompt for Adding Synthetic Data

Adding Synthetic Data Prompt
You are an expert in SQL data modeling. Your task is to analyze the given SQL schema and,
if necessary, generate realistic and logically consistent sample data to ensure:
For a given <SQL Prompt>, both <SQL Query> and <SQL Context> can meet its
requirements, and <SQL Query> can query the corresponding data from the TABLE created
by <SQL Context>.

Given a – **<SQL Prompt>**:
{question}

I have generated the <SQL Query> and <SQL Context>:
– **<SQL Query>**:
{sql_query}

– **<SQL Context>**:
{sql_context}

{error_infomations}

I need data samples to validate the correctness of the <SQL Query>.
Therefore, please help me add one INSERT statement for each table in the <SQL Context>,
with 5 sample rows per table.
The inserted data should ensure that the <SQL Query> can retrieve results from the tables.
Please ensure that it does not cause errors when using sqlite3.
Please do not include any additional explanations or instructions.

Please help me fix this **<SQL Context>** and ensure that it contains at most five records.
Please also help me modify **<SQL Query>** to ensure that it does not cause errors when
using sqlite3.

Please give your expanded **<SQL Context>** in: \\sql_context
your fixed **<SQL Query>** in: \\sql_query
and the **INSERT statements** in: \\sql_insert

Figure B.1: Prompt for Generating Executable SQL Context and Synthetic Data Inserts in the
Gretel-Synth Pipeline

UNION query that merges an aggregate value (a single count) with a multi-row column (a list of IDs),
as shown in Example F.1. Such an output is either syntactically invalid or semantically incoherent,
rendering it useless. In contrast, our RL-trained model learns to avoid these pitfalls and instead
produces a correct and executable query, as demonstrated in Example F.2. During training, erroneous
attempts of this kind consistently fail to execute and thus receive negative rewards. Over time, this
feedback teaches the model both the grammatical constraints of SQL and, more importantly, the need
to prioritize the user’s actual intent (in this case, “List them”).

Case Study 2: Filtering Out Contextual Noise. A second source of errors arises from semantic
misinterpretation. In the BIRD Li et al. (2024) dataset, natural language questions sometimes include
contextual metadata such as the database name (e.g., student_club). Non-RL models frequently
misinterpret this metadata as a core entity, leading to reasoning errors such as searching for a
literal club named “student_club,” as illustrated in Example F.3. Our RL framework penalizes such
misinterpretations whenever they produce incorrect execution results. Through repeated negative
feedback, the model learns to differentiate between background context and the true semantic target
of the query. Consequently, the RL-trained model is able to maintain focus on the actual user request,
as shown in Example F.4, rather than being misled by irrelevant contextual tokens.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1: Construction of Gretel-Synth-NonFiltered: Inserting Synthetic Data, Adding
Distractive Tables, and Filtering Executable SQL Samples
Input: Full dataset Gretel-Synth
Output: Gretel-Synth-NonFiltered after adding synthetic data and distractive tables
1. Insert Data Using LLM
Initialize Gretel-Synth-NonFiltered as empty list;
foreach sample in Gretel-Synth do

Initialize Gretel-Synth-ForNextRound← [sample];
for i← 1 to 8 do

Initialize next_round as empty list;
foreach sample in Gretel-Synth-ForNextRound do

/* We use GPT-4o to generate insert statements; prompt is provided in Appendix B.1 */

insert_stmts← GPT_generate_inserts(sample);
Execute sql_context to create tables;
Execute insert_stmts to populate data;
results← execute_sql_query(sample.sql_query);
if results not empty then

Append sample to Gretel-Synth-NonFiltered;
else

Append sample to next_round;
Gretel-Synth-ForNextRound← next_round;

2. Add Distractive Tables
foreach sample in Gretel-Synth-NonFiltered do

schema← sample.sql_context;
domain← sample.domain;
existing_tables← extract_table_names(schema);
if existing_tables is None then

continue;
/* Sample table count from BIRD/Spider distribution with added uniform noise */

n← sample_with_noise_from_table_distribution(table_counts);
/* Select non-conflicting table schemas from the same domain */

distractive_schemas← select_nonconflicting_schemas(domain,
existing_tables, n - 1);

/* Create distractive tables first, then target tables which may overwrite on name conflict */

create_database(distractive_schemas + schema);

3. Final Selection
foreach sample in Gretel-Synth-NonFiltered do

if length of sample.sql_query > 160 and sample.sql_query returns results then
Keep sample in Gretel-Synth-NonFiltered;

else
Discard sample from Gretel-Synth-NonFiltered;

return Gretel-Synth-NonFiltered;

Broader Implications. These case studies illustrate that while non-RL models can perform chain-of-
thought reasoning, their reasoning traces are often fragile and prone to subtle errors. SFT exposes the
model only to correct examples, showing it “what to do.” RL, by contrast, exposes the model to both
success and failure, teaching it “what works” and “what does not.” The simple binary signals from
our GRPO training, reward for success, penalty for failure, are sufficient to correct a wide spectrum
of reasoning errors, ranging from technical syntax issues to deeper semantic misinterpretations.

G COMPUTE RESOURCE

All experiments were conducted on 8 H100-80GB nodes (a total of 64 H100-80GB GPUs). Training
time ranged from a few hours for the 7B model to up to 2.5 days for the final 32B model experiments.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Prompt for BIRD Data Augmentation

Table information:
Table name: {table name}
Column name: {column name}
Column description: {column desc}
Sample rows: {samples}

Optional(Task: {task}. The answer to the task is: {answer}.)

Based on this, write 10 more complex nested SQLite SQL queries or SQLs with
CTEs in sql code block format. You can use any information in the database information
provided. Each query should be different. You can write SELECT query only. For each query,
just write one sentence to describe the task. Format like:

/*Task: {task description in one sentence}*/
SELECT ...

Don’t output other contents.

Figure C.1: Prompt for BIRD Data Augmentation

Algorithm 2: Self-Correction Workflow: Execution of multiple SQLs with self-correction and
refinement based on invalid result feedback to ensure augmented SQLs with valid results.
Input: List of SQL statements sqls
Output: List of successful results result_dic_list
Initialize result_dic_list as empty list;
Initialize error_rec as empty list;
while sqls not empty do

sql = sqls[0];
results = execute_sql_sqlite(sql);
if results is valid (i.e., string and not empty) then

Append sql and results to result_dic_list;
Continue to next SQL;

Initialize max_try;
while results is not valid do

if max_try == 0 then
break;

corrected_sql← self_correct(sql, results);
if corrected_sql is not valid then

continue;
Execute corrected SQL; results = execute_sql_sqlite(sql);
Decrease max_try by 1;

if results is valid then
if sqls not empty then

sqls← similar_error_refine(sqls);
if corrected_sql exists then

Append corrected_sql and results to result_dic_list;
return result_dic_list;

H LIMITATIONS

It is important for each study—especially in the LLM domain—to clearly state its limitations. In
our work, as noted in Section 4.2, we did not exhaustively explore PPO hyperparameters, which
may limit the strength of our conclusions. Similarly, we only partially examined data augmentation

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Prompt for Self-Correction Workflow

Self-Correction Prompt
Input SQL: {sql}
The error information is: {error}
Please correct the SQL based on the previous context. Output your reasoning process
followed by only one corrected SQL query in the following format:
– Description: ...
<Corrected SQL here>
Do not output multiple SQLs or only an analysis without a final SQL.

Similar Error Refinement Prompt
The following SQL has been corrected:
Original SQL: {sql}
Corrected SQL: {corrected_sql}
Please correct the remaining SQL statements if they contain similar errors. The list of SQLs
to be refined is: {sqls}
For each corrected SQL, respond in the following format:
– Description: ...
<Corrected SQL here>

Figure C.2: Prompt for Self-Correction Workflow

strategies Section 4.1. In addition, while general-purpose LLMs are known to be prompt-sensitive,
we did not systematically explore prompt variations Section 4.3. Finally, we have conducted only
limited evaluations of XYZ-Text2SQL-R1 across different model families, without covering broader
types and scales of models.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Prompt Template for Training/Evaluation

System:
You are a data science expert. Below, you are provided with a database schema and a natural
language question. Your task is to understand the schema and generate a valid SQL query to
answer the question.

User:
Database Engine:
SQLite

Database Schema: {Database Schema}
This schema describes the database’s structure, including tables, columns, primary keys,
foreign keys, and any relevant relationships or constraints.

Question:
{evidence + question}

Instructions:
- Make sure you only output the information that is asked in the question. If the question asks
for a specific column, make sure to only include that column in the SELECT clause, nothing
more.
- The generated query should return all of the information asked in the question without any
missing or extra information.
- Before generating the final SQL query, please think through the steps of how to write the
query.

Output Format:
Please provide a detailed chain-of-thought reasoning process and include your thought
process within ‘<think>‘ tags. Your final answer should be enclosed within ‘<answer>‘ tags.

Ensure that your SQL query follows the correct syntax and is formatted as follows:

```sql
– Your SQL query here
```

Example format:
<think> Step-by-step reasoning, including self-reflection and corrections if necessary.
[Limited by 4K tokens] </think>
<answer> Summary of the thought process leading to the final SQL query. [Limited by 1K
tokens]

```sql
Correct SQL query here
```
</answer>

Assistant:
Let me solve this step by step.
<think>

Figure D.1: Prompt Template for Training and Evaluation

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Example I of response from XYZ-Text2SQL-R1-32B

Question: Eligible free rate for K-12 = ‘Free Meal Count (K-12)‘ / ‘Enrollment (K-12)‘
What is the highest eligible free rate for K-12 students in the schools in Alameda County?

Assistant:
Let me solve this step by step.
<think>
1. **Identify the goal**: We need to find the highest eligible free rate for K-12 students in
the schools located in Alameda County. The rate is calculated as ‘Free Meal Count (K-12)‘
divided by ‘Enrollment (K-12)‘.

2. **Determine the relevant table and columns**:
- The relevant table is ‘frpm‘ because it contains the columns ‘Free Meal Count (K-12)‘ and
‘Enrollment (K-12)‘.
- However, we need to filter by County, which is in the ‘schools‘ table. Thus, we will need to
join the ‘frpm‘ table with the ‘schools‘ table on the ‘CDSCode‘ column to filter by the county
name.

3. **Formulate the query**:
- We will calculate the eligible free rate by taking the ratio of ‘Free Meal Count (K-12)‘ and
‘Enrollment (K-12)‘.
- The ‘schools‘ table will be used to filter for schools in Alameda County.
- The ‘MAX‘ function will be used to find the highest eligible free rate.

4. **Join tables**:
- Use an ‘INNER JOIN‘ between the ‘schools‘ table and the ‘frpm‘ table on the ‘CDSCode‘
column to link them correctly.
</think>

<answer>
Here is the correct SQL query:

```sql
SELECT MAX(f.‘Free Meal Count (K-12)‘ / f.‘Enrollment (K-12)‘) AS HighestEligible-
FreeRate
FROM frpm AS f
JOIN schools AS s ON f.CDSCode = s.CDSCode
WHERE s.County = ’Alameda’;
```

*Explanation**:
- The ‘JOIN‘ is used to connect the ‘frpm‘ and ‘schools‘ tables on the ‘CDSCode‘ column.
- The ‘WHERE‘ clause filters the records to only include those from Alameda County.
- The ‘MAX‘ function is used to find the highest value of the eligible free rate, which is
calculated as ‘Free Meal Count (K-12)‘ divided by ‘Enrollment (K-12)‘.

The resulting query is efficient and meets the requirements of the natural language
question.
</answer>

Figure E.1: Example I of response from XYZ-Text2SQL-R1-32B

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Example II of response from XYZ-Text2SQL-R1-32B

Question: Valid charter number means the number is not null. Rank schools by their average
score in Writing where the score is greater than 499, showing their charter numbers.

Assistant:
Let me solve this step by step.
<think>
1. **Understanding the Question**:
- We need to rank schools based on their average score in writing (‘AvgScrWrite‘) for scores
greater than 499.
- We should display the ‘CharterNum‘ of the school.
- A valid charter number means the number is not null.

2. **Identifying the Necessary Tables**:
- The ‘satscores‘ table contains the average scores for writing (‘AvgScrWrite‘) and the ‘cds‘
code which can be used to join with the ‘schools‘ table.
- The ‘schools‘ table contains the ‘CharterNum‘ field which holds the charter number of the
schools.
- We need a join between the ‘satscores‘ and ‘schools‘ tables on the ‘cds‘ (from ‘satscores‘)
and ‘CDSCode‘ (from ‘schools‘) fields.

3. **Filter Conditions**:
- We need to filter out schools with ‘AvgScrWrite‘ greater than 499.
- The ‘CharterNum‘ should not be null.

4. **Sorting**:
- The result needs to be sorted by the average score in writing (‘AvgScrWrite‘), in descending
order.

5. **Selecting Columns**:
- We are only interested in the ‘CharterNum‘ field from the ‘schools‘ table.

</think>

<answer>

```sql
SELECT T2.CharterNum
FROM satscores AS T1
INNER JOIN schools AS T2
ON T1.cds = T2.CDSCode
WHERE T1.AvgScrWrite > 499 AND T2.CharterNum IS NOT NULL
ORDER BY T1.AvgScrWrite DESC;
```

</answer>

This query will:
- Join the ‘satscores‘ and ‘schools‘ tables based on the ‘cds‘ and ‘CDSCode‘ fields.
- Filter out schools with an average writing score (‘AvgScrWrite‘) greater than 499 and where
‘CharterNum‘ is not null.
- Sort the results by ‘AvgScrWrite‘ in descending order.
- Return only the ‘CharterNum‘ field.

Figure E.2: Example II of response from XYZ-Text2SQL-R1-32B

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Example III of response from XYZ-Text2SQL-R1-32B

Question: Eligible free rates for students aged 5-17 = ‘Free Meal Count (Ages 5-17)‘ /
‘Enrollment (Ages 5-17)‘
What is the free rate for students between the ages of 5 and 17 at the school run by Kacey
Gibson?

Assistant:
Let me solve this step by step.
<think>
1. The question asks for the rate of students between the ages of 5 and 17 who are eligible for
free meals. The formula provided for this rate is ‘Free Meal Count (Ages 5-17) / Enrollment
(Ages 5-17)‘.
2. From the database schema provided, the relevant data can be found in the ‘frpm‘ table,
which contains the columns ‘Free Meal Count (Ages 5-17)‘ and ‘Enrollment (Ages 5-17)‘.
3. The condition for the school is based on an administrator’s name, Kacey Gibson. This
information is stored in the ‘schools‘ table in the columns ‘AdmFName1‘ and ‘AdmLName1‘.
4. To link the ‘frpm‘ table to the ‘schools‘ table, we use the ‘CDSCode‘ column, which is the
primary key in both tables.
5. The final query needs to join the ‘frpm‘ and ‘schools‘ tables on their common ‘CDSCode‘
key, filter the rows for the specific administrator, and then compute and return the eligible
free rate for students aged 5-17.
</think>
<answer>
```sql
SELECT
(T1.‘Free Meal Count (Ages 5-17)‘ / T1.‘Enrollment (Ages 5-17)‘) AS free_rate
FROM
frpm AS T1
JOIN
schools AS T2
ON
T1.CDSCode = T2.CDSCode
WHERE
T2.AdmFName1 = ’Kacey’ AND T2.AdmLName1 = ’Gibson’;
```
This SQL query is correct and directly answers the question with the necessary steps and
logic based on the provided schema.
</answer>

Figure E.3: Example III of response from XYZ-Text2SQL-R1-32B

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Example IV (Incorrect Response) from OmniSQL-32B in Case Study 1

Question: Female refers to SEX = ’F’; born in 1964 refers to YEAR(Birthday) = 1964;
admitted to the hospital refers to Admission = ’+’. How many female patients born in 1964
were admitted to the hospital? List them by ID.

Golden SQL Query:
```sql
SELECT ID FROM Patient WHERE STRFTIME(’%Y’, Birthday) = ’1964’ AND SEX = ’F’
AND Admission = ’+’
```

Assistant:
Let me solve this step by step.
<think>
1. **Identify the goal**: Count how many patients satisfy all conditions and list their IDs.
Conditions: ‘SEX = ’F’‘, birth year = 1964, and ‘Admission = ’+’‘.

2. **Relevant table and columns**: Use the ‘Patient‘ table with columns ‘ID‘,
‘SEX‘, ‘Birthday‘, and ‘Admission‘. Extract year via SQLite’s ‘STRFTIME(’%Y’,
Birthday)‘.

3. **Formulate filters**: Apply a ‘WHERE‘ clause combining the three predicates
with ‘AND‘.

4. **Output**: Listing IDs answers the "List them by ID". A separate count (or a
window count) answers "How many".
</think>

<answer>
Here is a correct SQL query matching the requirement to list IDs (Golden SQL):

```sql
SELECT ID
FROM Patient
WHERE STRFTIME(’%Y’, Birthday) = ’1964’
AND SEX = ’F’
AND Admission = ’+’;
```

If you also want the total count together with each ID in one result set (SQLite):

```sql
SELECT
ID,
COUNT(*) OVER() AS FemalePatientCount
FROM Patient
WHERE STRFTIME(’%Y’, Birthday) = ’1964’
AND SEX = ’F’
AND Admission = ’+’;
```

Explanation:
- ‘STRFTIME(’%Y’, Birthday) = ’1964’‘ extracts year-of-birth.
- ‘SEX = ’F’‘ restricts to female patients.
- ‘Admission = ’+’‘ keeps only admitted patients.
- The first query lists all matching IDs; the windowed variant also returns the total number.
</answer>

Figure F.1: Example IV (Incorrect Response) from OmniSQL-32B in Case Study 1
24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Example V (Correct Response) from XYZ-Text2SQL-R1-32B in Case Study 1

Question: Female refers to SEX = ’F’; born in 1964 refers to YEAR(Birthday) = 1964;
admitted to the hospital refers to Admission = ’+’. How many female patients born in 1964
were admitted to the hospital? List them by ID.

Golden SQL Query:
```sql
SELECT ID FROM Patient WHERE STRFTIME(’%Y’, Birthday) = ’1964’ AND SEX = ’F’
AND Admission = ’+’
```

Assistant:
<think>
1. **Understand the Question**: The question asks for the number of female patients (‘SEX
= ’F’‘) who were born in 1964 (‘YEAR(Birthday) = 1964‘) and were admitted to the hospital
(‘Admission = ’+’‘). The result should list these patients by their ‘ID‘.
2. **Identify the Table**: The ‘Patient‘ table contains all the necessary information to
answer the question, including ‘SEX‘, ‘Birthday‘, and ‘Admission‘.
3. **Filter Conditions**:
- ‘SEX = ’F’‘: This filters for female patients.
- ‘YEAR(Birthday) = 1964‘: This filters for patients born in 1964. SQLite does not have a
‘YEAR()‘ function, but we can use ‘strftime(’%Y’, Birthday)‘ to extract the year.
- ‘Admission = ’+’‘: This filters for patients who were admitted to the hospital.
4. **Select the Required Columns**: The question asks for the ‘ID‘ of the patients.
5. **Count the Patients**: The question also asks for the number of such patients, so we
need to use the ‘COUNT()‘ function.
6. **Order by ID**: The result should be listed by ‘ID‘.
7. **Construct the Query**: Based on the above analysis, we can construct the query.
</think>

<answer>
Here is the correct SQL query:

```sql
SELECT COUNT(ID) AS Total_Female_Patients, ID FROM Patient WHERE SEX = ’F’
AND strftime(’%Y’, Birthday) = ’1964’ AND Admission = ’+’ ORDER BY ID;
```

However, the above query will not work as intended because ‘COUNT(ID)‘ and
‘ID‘ cannot be selected together without using ‘GROUP BY‘. Since the question asks for
both the count and the list of IDs, we need to separate these two requirements. The correct
query to list the IDs is:

```sql
SELECT ID FROM Patient WHERE SEX = ’F’
AND strftime(’%Y’, Birthday) = ’1964’ AND Admission = ’+’ ORDER BY ID;
```

To get the count of such patients, run separately:

```sql
SELECT COUNT(*) AS Total_Female_Patients FROM Patient
WHERE SEX = ’F’ AND strftime(’%Y’, Birthday) = ’1964’ AND Admission = ’+’;
```

Thus, the final query to satisfy the "list by ID" requirement is the second one.
</answer>

Figure F.2: Example V (Correct Response) from XYZ-Text2SQL-R1-32B in Case Study 1
25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Example VI (Incorrect Response) from OmniSQL-32B in Case Study 2

Question: Full name of member refers to first_name, last_name. List the full name of the
Student_Club members that grew up in Illinois state.

Golden SQL Query:
```sql
SELECT T1.first_name, T1.last_name
FROM member AS T1
INNER JOIN zip_code AS T2 ON T1.zip = T2.zip_code
WHERE T2.state = ’Illinois’;
```

Assistant:
<think>
1. **Understand the Question**: We need the full names (‘first_name‘, ‘last_name‘) of
Student_Club members whose zip code corresponds to Illinois.

2. **Identify Relevant Tables**:
- ‘member‘: contains ‘first_name‘, ‘last_name‘, and ‘zip‘.
- ‘zip_code‘: contains ‘zip_code‘ and ‘state‘.
- ‘major‘: contains ‘major_id‘ and ‘major_name‘.

3. **Determine Join Conditions**:
- ‘member.zip = zip_code.zip_code‘.
- ‘member.link_to_major = major.major_id‘.

4. **Filter Conditions**:
- ‘zip_code.state = ’Illinois’‘.
- ‘major.major_name = ’Student_Club’‘.

5. **Select Columns**: Output ‘first_name‘ and ‘last_name‘ from the ‘member‘ ta-
ble.
</think>

<answer>
Here is the correct SQL query:

```sql
SELECT member.first_name, member.last_name
FROM member m
JOIN major mj ON m.link_to_major = mj.major_id
JOIN zip_code z ON m.zip = z.zip_code
WHERE z.state = ’Illinois’ AND mj.major_name = ’Student_Club’;
```

Explanation:
- The ‘INNER JOIN‘ ensures we match members with both their associated major and their
zip code.
- The ‘WHERE‘ clause restricts results to members who are in the state of Illinois and belong
to the Student_Club.
- Selecting ‘first_name‘ and ‘last_name‘ outputs each qualifying member’s full name.
</answer>

Figure F.3: Example VI (Incorrect Response) from OmniSQL-32B in Case Study 2

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Example VII (Correct Response) from XYZ-Text2SQL-R1-32B in Case Study 2

Question: Full name of member refers to first_name, last_name. List the full name of the
Student_Club members that grew up in Illinois state.

Golden SQL Query:
```sql
SELECT T1.first_name, T1.last_name
FROM member AS T1
INNER JOIN zip_code AS T2 ON T1.zip = T2.zip_code
WHERE T2.state = ’Illinois’;
```

Assistant:
<think>
1. **Understand the Question**: The question asks for the full name (‘first_name‘,
‘last_name‘) of members who are associated with the Student_Club and who grew up in
Illinois.

2. **Identify Relevant Tables**:
- ‘member‘: contains ‘first_name‘, ‘last_name‘, and ‘zip‘.
- ‘zip_code‘: contains ‘zip_code‘ and ‘state‘.

3. **Join Tables**: Use ‘member.zip = zip_code.zip_code‘ to connect the two ta-
bles.

4. **Filter Conditions**: Restrict to ‘zip_code.state = ’Illinois’‘.

5. **Select Fields**: Output ‘first_name‘ and ‘last_name‘ from ‘member‘.
</think>

<answer>
Here is the correct SQL query:

```sql
SELECT DISTINCT m.first_name, m.last_name
FROM member m
JOIN zip_code z ON m.zip = z.zip_code
WHERE z.state = ’Illinois’;
```

Explanation:
- The ‘JOIN‘ links each member to their state via the ‘zip‘ code.
- The ‘WHERE‘ clause restricts results to Illinois residents.
- ‘DISTINCT‘ ensures duplicate names are not repeated.
</answer>

Figure F.4: Example VII (Correct Response) from XYZ-Text2SQL-R1-32B in Case Study 2

27

	Introduction
	Related Work
	Methodology
	Learnings
	Learnings from Training Data
	Learnings from Training Strategy
	Learning from Evaluation Benchmark Diversity

	Main Result
	Performance Evaluation across Six Benchmarks

	Discussion
	Conclusions
	LLM Usage Statement
	Construction Pipeline from Gretel-Synth to Gretel-Synth-NonFiltered
	Data Augmentation
	Prompt Used For Training/Evaluation
	Examples from XYZ-Text2SQL-R1-32B
	Qualitative Case Studies of RL Training Effects
	Compute Resource
	Limitations

