

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

UNIFIED IN-CONTEXT VIDEO EDITING

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in text-to-video generation have sparked interest in generative video editing tasks. Previous methods often rely on task-specific architectures (e.g., additional adapter modules) or dedicated customizations (e.g., DDIM inversion), which limit the integration of versatile editing conditions and the unification of various editing tasks. In this paper, we introduce UNified In-Context Video Editing (UNIC), a simple yet effective framework that unifies diverse video editing tasks within a single model in an in-context manner. To achieve this unification, we represent the inputs of various video editing tasks as three types of tokens: the source video tokens, the noisy video latent, and the multi-modal conditioning tokens that vary according to the specific editing task. Based on this formulation, our key insight is to integrate these three types into a single consecutive token sequence and jointly model them using the native attention operations of DiT, thereby eliminating the need for task-specific adapter designs. Nevertheless, direct task unification under this framework is challenging, leading to severe token collisions and task confusion due to the varying video lengths and diverse condition modalities across tasks. To address these, we introduce task-aware RoPE to facilitate consistent temporal positional encoding, and condition bias that enables the model to clearly differentiate different editing tasks. This allows our approach to adaptively perform different video editing tasks by referring the source video and varying condition tokens "in context", and support flexible task composition. To validate our method, we construct a unified video editing benchmark containing six representative video editing tasks. Results demonstrate that our unified approach achieves comparable performance with task specialists and exhibits emergent task composition abilities.

1 INTRODUCTION

Recent years have witnessed significant advancements in text-to-video foundation models based on diffusion (Chen et al., 2023; Wang et al., 2025a; Hong et al., 2022; Yang et al., 2024b; HaCohen et al., 2024; kli, 2025), establishing powerful tools for creating video content. Beyond the generation, video editing emerges as a natural extension, which aims to re-generate a reference video under multi-modal conditions, often incorporating fine-grained control signals like subject ID (He et al., 2024; Zhang et al., 2025; Yuan et al., 2024) and artistic style (Liu et al., 2023) along with textual prompts. Video editing spans diverse tasks, including global editing like style transfer (Liu et al., 2023; Ye et al., 2024), video propagation (Liu et al., 2024a; Ku et al., 2024), and local editing like object insertion, removal, swap (Tu et al., 2025; Zi et al., 2025; Lee et al., 2025), as well as video re-rendering like re-camera control (Bai et al., 2025a). These tasks hold vast potential for applications in film production, virtual reality, and automated content creation.

Current video editing methods primarily follow two strategies to inject reference video and control signals. As depicted in Fig. 2, one stream of methods, represented by Video-P2P (Liu et al., 2024b), AnyV2V (Ku et al., 2024), and FLATTEN (Cong et al., 2023), utilizes DDIM inversion for noise initialization to preserve the main structure of the reference video. However, these methods often fail to achieve ideal results and will inevitably introduce an additional stage, doubling the inference steps and cost. Another stream generally employs adapter-based designs (Ku et al., 2024; Kong et al., 2025b; Jiang et al., 2025; Wang et al., 2024b; Zhang et al., 2023b; Mou et al., 2024) to inject different conditions, including reference video and multiple control signals. Despite promising progress, these methods suffer from two main challenges: 1) the adapter-based designs require modification to the model architectures and introduce parameter redundancy; and 2) these methods are generally

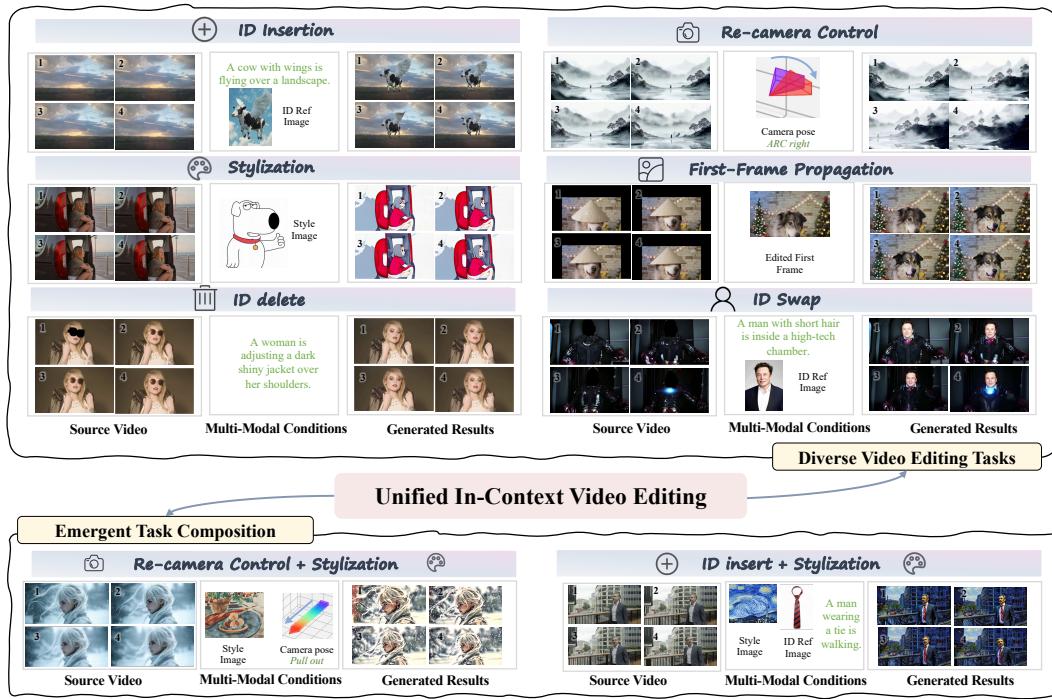


Figure 1: **Unified In-Context Video Editing** enables **unified video editing** and **emergent task composition**. Here we show the unification of six representative tasks, including ID Insert/Delete/Swap, Re-Camera Control, Stylization, and Propagation. More videos can be found in [anonymous page](#).

task-specific, requiring training separate modules for each condition signal, raising difficulty for task extendability and unification. Very recently, VACE (Jiang et al., 2025) tries to categorize condition signals into frames and masks for unified video editing, yet still requires heavy adapter designs and is limited to process only visual conditions.

Based on these problems, this paper presents a unified and efficient framework for video editing tasks from multi-modal signals, named UNified In-Context Video Editing (UNIC). Inspired by the recent advancements in large language models and visual content generation (Yang et al., 2024a; Bai et al., 2024b; 2025b; Wang et al., 2025c; Chen et al., 2024c; Song et al., 2025; Tan et al., 2024; Xiao et al., 2024b), our key insight is to integrate diverse input signals from various editing tasks as a combined token sequence along the frame dimension, which are jointly modeled using the native transformer attentions to learn editing tasks from diverse context conditions. As shown in Fig. 2, to achieve unified video editing, UNIC formulates the inputs of different video editing tasks as three kinds of tokens, i.e., 1) the VAE tokens from reference video, 2) the multi-modal condition signals that vary upon the editing tasks, as well as 3) the noisy video latent. By jointly concatenating these tokens and dynamically varying the condition token “in context”, UNIC can flexibly perform diverse editing tasks without any architectural changes.

Crucially, directly concatenating these diverse input tokens presents unavoidable challenges for unified video editing. Firstly, the multi-modal conditions from different task types present inconsistent lengths, raising difficulty in achieving correct alignment with the video. For example, camera poses usually have a direct frame-to-frame correspondence to each video frame, while the style images directly affect the entire video. Such inconsistency makes it challenging to deal with varying-length video editing and leads to inevitable index collisions. Therefore, we propose Task-aware RoPE, which dynamically assigns unique Rotary Positional Embedding (RoPE) indices based on different task types, ensuring coherent temporal understanding regardless of varying condition length. Furthermore, different editing tasks may share the same modality of conditions (e.g., an image may represent an object identity in object editing or style in video stylization), leading to task confusion. To this end, we introduce a learnable condition bias for multi-modal condition signals, which enables the model to adaptively learn the target task type and resolve task ambiguity.

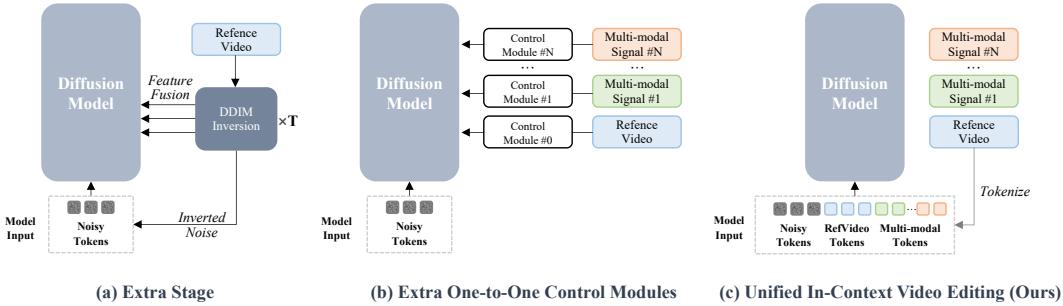


Figure 2: **Architectural comparison for incorporating conditioning signals.** (a) **Extra Stage:** Utilizes DDIM inversion on a reference video to derive inverted noise. (b) **Extra One-to-One Control Modules:** Employs dedicated, separate modules to process each control signal (e.g., reference video, multi-modal signals) and inject guidance into the diffusion model. (c) **In-Context Video Editing (Ours):** Our proposed method directly integrates guidance by tokenizing all conditioning signals (reference video, multi-modal signals) and concatenating them with the noisy input tokens, allowing the diffusion model to process all information jointly within its input sequence.

To validate the performance of our proposed framework, we construct a unified video editing benchmark incorporating six representative video editing tasks with distinct editing area ratio and conditioning modalities, including: local editing tasks of ID Swap/Delete/Insert (Jiang et al., 2025; Bian et al., 2025); global editing tasks of stylization (Ye et al., 2024) and propagation (Liu et al., 2024a); and the re-rendering task of re-camera control (Bai et al., 2025a). These tasks exhibit significant variation in their input modalities (including text, images, and camera poses). Experimental results indicate that, despite the wide range of differences among these tasks, our framework not only successfully unifies them but also delivers superior performance across all. As shown in Fig. 1, our method offers two distinct advantages: 1) supporting a variety of editing tasks within a single framework without necessitating architectural changes, showcasing high flexibility; and 2) emergent capability to combine various editing tasks, highlighting its potential to unlock more complex and creative editing possibilities. We also provide in-depth analysis for unified video generation, respectively about the advantages of unified training over single task training as well as the training order of different tasks.

2 RELATED WORK

2.1 VIDEO EDITING AND RE-RENDERING

Based on current excellent T2V base models like Wan (Wang et al., 2025a), LongCat(Team et al., 2025), the editing capability of these models is being actively explored and has attracted significant attention. Video editing encompasses diverse tasks, ranging from local adjustments to global transformations of a reference video. Achieving these modifications often requires injecting multi-modal signals, such as motion (Tu et al., 2025; Wang et al., 2024c; 2025b; Xiao et al., 2024a; Wei et al., 2024), style (Liu et al., 2023; Ye et al., 2024), object attributes (Tu et al., 2025; Huang et al., 2025; He et al., 2024; Zhang et al., 2025), audio (Kong et al., 2025b; Yang et al., 2025), or camera pose (Bai et al., 2025a; 2024a; Wang et al., 2024c; Luo et al., 2025), into generation process.

To preserve information from the reference video during editing, several methods employ DDIM inversion. This technique initializes generation noise based on the reference video and injects features extracted during inversion into the denoising steps. For instance, VideoP2P (Liu et al., 2024b) copies inversion features and replaces specific cross-attention maps to align with editing requirements. FLATTEN (Cong et al., 2023) utilizes optical flow to identify keypoints and inject their features to maintain motion fidelity. AnyV2V (Ku et al., 2024) leverages spatial, temporal, and CNN features gathered during inversion. While these approaches excel at retaining reference video information, they require an **additional inversion stage**, increasing inference cost and computational overhead. To reduce computational cost, image editing works like FlowEdit (Kulikov et al., 2025) and InfEdit (Xu et al., 2024) explore inversion-free methods. Similarly, video editing methods like FlowDirector (Cai et al., 2025; Zhang & Han; Li et al., 2025) follow this insight and apply it to video editing. However,

162 they can only perform limited video editing scenarios like text-based attribute editing, while IF-
 163 V2V (Kong et al., 2025a) can only perform I2V propagation, which is not sufficient to cover and
 164 address various video editing tasks.

165 Instead of additional processing stages, another strategy focuses on injecting control directly into the
 166 denoising network using auxiliary modules. Some works adopt an extra model to process diverse
 167 conditions, for example VEGGIE (Yu et al., 2025) uses a grounding model for processing, while
 168 UniVideo (Wei et al., 2025) adopts an LLM as text encoder to enhance the generation performance.
 169 Another stream of work assigns a control module for each condition. For example, to maintain
 170 structural or layout information of reference videos, Follow-your-Canvas (Chen et al., 2024a) extracts
 171 window details with a layout encoder, while MagicEdit (Liew et al., 2023) leverages the depth video
 172 of the reference video via a depth ControlNet (Zhang et al., 2023a). For finer-grained preservation
 173 of content and motion details, VideoAnyDoor (Tu et al., 2025) and Revideo (Mou et al., 2024) use
 174 separate encoders to obtain the feature and inject them through ControlNet. To incorporate additional
 175 multi-modal conditions, VideoAnyDoor employs an extra ID encoder, infusing identity information
 176 via cross-attention. Likewise, StyleMaster (Ye et al., 2024) introduces a dedicated style encoder,
 177 injecting style features through cross-attention. A common choice of these methods is the reliance
 178 on specialized control modules for each condition type. This design choice, requiring **additional**
 179 **control modules for different conditions**, inevitably increases overall model complexity and limits
 180 the extensibility to diverse or novel video editing tasks.

181 2.2 UNIVERSAL GENERATIVE MODELS

182 Developing unified “omni” solutions capable of handling diverse generative tasks within a single
 183 model is a challenging but highly valuable goal. The field of image editing and generation has
 184 witnessed a clear trend towards such unification. Early works like Instruct-imagen (Hu et al., 2024)
 185 integrated multi-modal instructions using cross-attention. OmniGen (Xiao et al., 2024b) further
 186 advances this by tokenizing all conditions as direct inputs to the transformer, creating a flexible
 187 “any-purpose” generation model without external plugins. This powerful approach of handling
 188 conditions directly within the core architecture has been validated and extended by subsequent
 189 research, including OminiControl (Tan et al., 2024), ACE (Han et al., 2024), UniReal (Chen et al.,
 190 2024b), and other unified models (Le et al., 2024; Song et al., 2025; Mou et al., 2025).

191 In contrast, unified video generation approaches often depend on task-specific control mechanisms.
 192 VideoComposer (Wang et al., 2024b) employs different ControlNets for various inputs,
 193 and VACE (Jiang et al., 2025) uses specialized control blocks. Drawing inspiration from image edit-
 194 ing paradigms that leverage full-attention mechanisms to replace dedicated modules like ControlNet,
 195 we propose extending this strategy to video editing. Although FullDiT (Ju et al., 2025) demonstrated
 196 3D full-attention potential for multi-control video generation, the leap to more difficult video editing
 197 remains an open challenge. Our work aims to fill this gap by **developing a more unified and flexible**
 198 **method for general video editing purposes**, eliminating the need for separate control modules.

200 3 METHOD

201 Towards general video editing, we first review the diverse video editing tasks, and systematically
 202 define all inputs across different tasks into three basic types. Building on this, we introduce an in-
 203 context video editing framework, offering a parameter-efficient and highly flexible approach adaptable
 204 to various editing purposes. We further elaborate on the specific design within our architecture for
 205 task differentiation and flexibility.

206 3.1 MULTI-MODAL DRIVEN VIDEO EDITING TASKS

207 Multi-modal conditions driven video editing tasks, as illustrated in Fig. 3, incorporating various
 208 inputs. For example, stylization requires a reference video and a style image, while object insertion
 209 needs a reference video, text, and an object image. Fundamentally, these tasks are driven by unique
 210 combinations of multi-modal inputs. We generalize these inputs into three basic types: **1) Noisy**
 211 **tokens** represent the initial latent state of the target video, typically from random noise or a noise-
 212 added input video latent. **2) Reference video tokens** represent the VAE tokens of a reference video,
 213 providing crucial temporal context, motion, and visual content. Their influence varies with the

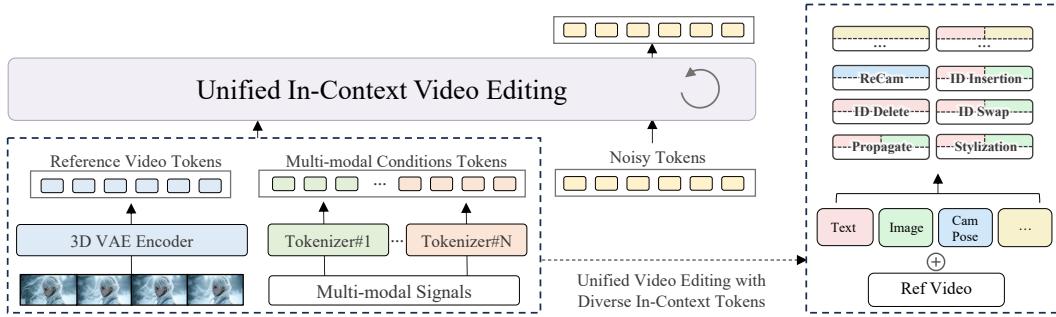


Figure 3: **Overall Pipeline of Unified In-Context Video Editing.** Our framework utilizes a unified transformer architecture for video editing. The model input is created by concatenating noisy tokens, reference video tokens, and multi-modal condition tokens (task-specific controls like images), these combined tokens form a single input sequence along the frame dimension. By simply modifying the multi-modal condition tokens, this framework can handle any video editing task.

task’s alignment requirements. For strict-alignment tasks like ID deletion or stylization, these tokens enforce strong frame-by-frame correspondence, ensuring the output precisely follows the motion and unedited content. In soft-reference scenarios such as re-camera control, these tokens provide more abstract guidance, following the overall content or motion style without demanding strict pixel-level matching, which allows for significant deviations. **3) Multi-modal condition tokens** include all other forms of guidance signals. This versatile category includes image tokens and auxiliary control tokens. For example, image tokens encode reference images, guiding structural edits (like the edited first frame in video propagation) or serving as a style reference (in stylization) and ID reference (in ID insertion). Besides, auxiliary control tokens can contain diverse signals like camera poses, depth maps, segmentation masks, human pose skeletons, edge maps, sparse trajectories for motion guidance, and audio signals for lip-syncing, providing fine-grained control.

This classification allows any video editing task to be represented within our structured approach, the specific combination can leads to different tasks, making it easier to uniformly process these tasks within a unified framework.

3.2 UNIFIED IN-CONTEXT VIDEO EDITING

We introduce Unified In-Context Video Editing (UNIC), a simple yet effective paradigm for diverse video editing tasks. The core idea is to represent all inputs, including the noisy tokens, the reference video, and all other multi-modal conditioning signals (images, cameras, etc.), as a single, unified token sequence. This contrasts with approaches that inject conditions via additional control modules. By processing all information jointly within the full-attention layers, the model can flexibly learn the **contextual relationships** for different editing tasks from the conditions provided “in context”.

Preliminary. Our method inherits the video diffusion transformers trained using flow matching. Specifically, the training objective is given by:

$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{t, \mathbf{x}_0, \mathbf{x}_1} \|\mathbf{v}_\theta(\mathbf{x}_t, t) - (\mathbf{x}_1 - \mathbf{x}_0)\|_2^2, \quad (1)$$

where $\mathbf{x}_1 \sim p(\mathbf{x}_1)$ represents the video sample, $\mathbf{x}_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ is a Gaussian sample, and t is randomly distributed in $[0, 1]$. The function \mathbf{v}_θ is the neural network that takes the noised version $\mathbf{x}_t = t\mathbf{x}_1 + (1-t)\mathbf{x}_0$ as input.

Training with this loss function leads to the following ordinary differential equation (ODE):

$$\frac{d\mathbf{x}_t}{dt} = \mathbf{v}_\theta(\mathbf{x}_t, t), \quad (2)$$

which allows us to sample a synthesized video \mathbf{x}_1 from a random Gaussian noise \mathbf{x}_0 .

Our transformer consists of several DiT blocks, where each block contains 2D self-attention to learn spatial information and 3D self-attention to fuse spatio-temporal information.

270 3.2.1 IN-CONTEXT VIDEO EDITING
271

272 For video editing and re-rendering tasks, given a reference video $V_{ref} \in \mathbb{R}^{f \times c \times h \times w}$ and a set of
273 conditions $\{C_i \mid i = 1 \dots n\}$, our goal is to generate a target video $V_{tar} \in \mathbb{R}^{f \times c \times h \times w}$ that aligns
274 with these conditions while preserving required content of V_{ref} .

275 Instead of using DDIM inversion or adding additional control modules like previous work, we
276 propose a unified and parameter-efficient approach, concatenating all the inputs along the frame
277 dimension to perform self-attention. First, we encode the reference video V_{ref} using a 3D VAE
278 encoder to obtain its latent representation z_{ref} . Similarly, other conditions C_i are converted into
279 token sequences z_i using modality-specific tokenizers (e.g., the same 3D VAE for image conditions,
280 a T5 tokenizer for text, an MLP for camera pose, etc.).

281 As shown in Fig. 3, during generation, the model operates on a noisy latent z_{tar} . By concatenating
282 multi-modal tokens as: $z_{cond} = [z_1; \dots; z_N]$, which is then combined with noisy token z_{tar} , reference
283 video tokens z_{ref} in frame dimension into a single sequence as the model input $z = [z_{tar}; z_{ref}; z_{cond}]$,
284 we can simply perform full 3D attention to enable the interaction of the tokens. Without requiring an
285 intricate inversion process or task-specific architectural modifications, the only requirements for this
286 framework are the modality-specific tokenizers, which are also needed in other methods.

287 3.2.2 EFFECTIVE AND FLEXIBLE TASK UNIFICATION
288

289 Based on in-context editing framework, theoretically we can unify all the video editing tasks. However,
290 directly concatenating them introduces specific challenges: **1) Task Ambiguity:** When different
291 editing tasks rely on conditions from the same modality (an image can refer to style reference or ID),
292 simple concatenation can make it difficult for the model to distinguish the target task of the conditional
293 tokens. **2) Positional Encoding Conflicts & Inflexibility:** The 3D RoPE used in video generation
294 base models, often assigns sequential indices in the frame dimension, which will raise problems when
295 handling different conditions. For example, style reference does not have a direct correspondence
296 with video frames, whereas camera pose requires frame-to-frame correspondence, making it difficult
297 to maintain appropriate alignments under sequential indices. The situation becomes more problematic
298 in variable-length editing, where it even struggles to clearly distinguish boundaries between reference
299 videos and conditions. To address these difficulties, we introduce two key components: Condition
300 Bias and Task-Aware RoPE Index.

301 **Condition Bias** As mentioned above, to address the task ambiguity, we propose *Condition Bias*,
302 the task-specific learnable embedding that is directly added to tokens before attention computation.
303 To be specific, for each condition in the context, including the multi-modal signals and reference
304 video, i.e., $z_i \in \{z_{ref}, z_1, \dots, z_N\}$, we inject a learnable bias $b_i \in \mathbb{R}^d$ corresponding to its task type:
305

$$\tilde{z}_i = z_i + b_i. \quad (3)$$

306 These task-aware tokens $\{\tilde{z}_i\}$ then undergo standard full self-attention. The biases implicitly guide
307 attention by structuring token representations: tokens from the same task share similar bias-induced
308 feature offsets, promoting intra-task alignment while maintaining cross-task distinction. The learnable
309 embeddings are zero-initialized to preserve original token semantics, and their dimension-preserving
310 addition enables simple integration with existing architectures.

311 **Task-aware RoPE Index** Standard 3D Rotary Position Embedding (RoPE) assigns sequential
312 indices to frames. For instance, in a re-camera control task with N frames, noisy tokens might occupy
313 indices 0 to $N - 1$, reference video tokens N to $2N - 1$, and camera poses $2N$ to $3N - 1$. When the
314 video frame length N varies, it will be hard to find the boundaries between the conditions, causing
315 poor frame alignment.

316 To address this, we introduce a task-aware RoPE indexing scheme: 1) For tasks where conditional
317 inputs have a direct frame-to-frame correspondence with the video (e.g., reference videos, camera
318 poses, audio), we reuse the indices of the noisy latent video frames (0 to $N - 1$), which can help
319 maintain the alignment. 2) For tasks that do not have such direct frame-to-frame correspondence (e.g.,
320 ID images, style references), we assign indices based on a base offset and task-specific offset. The
321 base offset, m , is determined by the video length (i.e., $m = N$). Beyond this, each task t is assigned
322 with a pre-defined, fixed task offset, O_t , and a slot count (or length), L_t . The value O_t dictates the
323

324 Table 1: Quantitative comparison on six video editing tasks: ID Insert/Swap/Delete, Re-Camera
 325 control, Stylization, and Propagation. Best results are highlighted in **bold**.

ID Insert						
Method	Identity		Alignment	Video Quality		
	CLIP-I↑	DINO-I↑	CLIP-score↑	Smoothness↑	Dynamic↑	Aesthetic↑
VACE (Jiang et al., 2025)	0.522	0.110	0.100	0.933	44.568	5.407
Pika (pik, 2025)	0.689	0.387	0.253	0.934	20.65	5.393
Ours	0.598	0.245	0.216	0.961	11.07	5.627
ID Swap						
VACE (Jiang et al., 2025)	0.712	0.423	0.230	0.964	29.306	6.015
Pika (pik, 2025)	0.700	0.393	0.209	0.948	20.09	5.210
AnyV2V(Prop) (Ku et al., 2024)	0.605	0.229	0.218	0.917	7.596	4.842
Ours(Prop)	0.693	0.414	0.236	0.980	5.153	5.801
Ours	0.725	0.429	0.242	0.971	7.500	6.056
ID Delete						
Method	Video Reconstruction		Alignment	Video Quality		
	PSNR↑	RefVideo-CLIP↑	CLIP-score↑	Smoothness↑	Dynamic↑	Aesthetic↑
AnyV2V(Prop) (Ku et al., 2024)	19.504	0.869	0.205	0.964	4.980	5.325
VACE (Jiang et al., 2025)	20.947	0.883	0.211	0.966	15.441	5.332
VideoPainter (Bian et al., 2025)	22.987	0.920	0.212	0.957	13.759	5.403
Ours(Prop)	20.378	0.906	0.209	0.968	9.017	5.408
Ours	19.171	0.900	0.217	0.970	10.934	5.493
Propagation						
Method	Frame Alignment		Alignment	Video Quality		
	RefVideo-CLIP↑		CLIP-score↑	Smoothness↑	Dynamic↑	Aesthetic↑
AnyV2V (Ku et al., 2024)	0.812		0.229	0.935	13.462	5.136
VACE(I2V) (Jiang et al., 2025)	0.574		0.234	0.932	36.783	5.425
Ours	0.840		0.226	0.966	12.762	5.565
Stylization						
Method	Style & Content		Alignment	Video Quality		
	CSD-Score↑	ArtFID↓	CLIP-score↑	Smoothness↑	Dynamic↑	Aesthetic↑
AnyV2V(Prop) (Ku et al., 2024)	0.207	43.299	0.195	0.937	9.227	4.640
StyleMaster (Ye et al., 2024)	0.306	38.213	0.188	0.952	9.758	5.121
Ours(Prop)	0.197	36.198	0.215	0.932	11.569	5.045
Ours	0.259	37.619	0.171	0.945	9.370	5.276
Re-Camera Control						
Method	Camera Control		Alignment	Video Quality		
	RotErr↓	TransErr↓	CLIP-score↑	Smoothness↑	Dynamic↑	Aesthetic↑
ReCamMaster-Wan (Bai et al., 2025a)	1.454	5.695	0.219	0.917	31.751	4.738
Ours	1.275	5.667	0.220	0.933	24.21	4.826

356
 357 starting point of task t ’s allocation relative to m , and L_t defines how many consecutive indices the
 358 task occupies. The index range for such a task t is calculated as:

$$\text{Index}(t) = (m + O_t) + [0, \dots, L_t - 1] \quad (4)$$

363 These task offsets O_t and lengths L_t are chosen to ensure non-overlapping task slots and maintain
 364 clear task distinction. For example, if ID images (task 1) are defined with a task offset $O_1 = 100$
 365 and require $L_1 = 3$ slots (supporting up to 3 IDs), they will use indices from $N + 100$ to $N + 102$.
 366 If a style reference (task 2) is defined with a task offset $O_2 = 200$ and requires $L_2 = 1$ slot, it will
 367 occupy the index $N + 200$. This adaptive approach ensures that task slots automatically scale with
 368 the video length N , while preserving their relative positional relationships and avoiding overlap.

370 **Training Strategy** In this work, we unify six tasks into this framework, including ID insert, ID swap,
 371 ID delete, re-camera control, video style transfer, video propagation. These tasks were chosen due to
 372 their diverse condition modalities and varying editing degree. However, joint training performance is
 373 affected by training order due to differences in task complexity and convergence rates. For example,
 374 re-camera control requires 600k iterations to converge, while simpler tasks like ID-swapping achieve
 375 good results in only 80k iterations. During joint training, if we start with easier tasks, they dominate
 376 the optimization with faster loss reduction, failing to allocate sufficient capacity to more difficult
 377 tasks. Therefore, we choose a hard-to-easy training strategy, i.e., progressively training tasks from
 higher to lower difficulty for convergence.

378

4 EXPERIMENTS

380 **Dataset and Benchmark** UNIC is trained on multiple datasets to support multi-task video editing.
 381 For ID swap/insert/delete and stylization tasks, we use self-constructed datasets (see Appendix for
 382 details). These are also adapted for the propagation task by using the first frame of the target video as
 383 the edited input. For re-camera control, we use the Multi-Cam Video Dataset from ReCamMaster (Bai
 384 et al., 2025a). To comprehensively evaluate the method, we construct **a unified video editing**
 385 **benchmark** incorporating six representative video editing tasks with distinct editing area ratio and
 386 conditioning modalities. The details of the benchmark can be found in Appendix.

388 **Evaluation Metrics** The evaluation of these tasks is conducted across two dimensions: task-specific
 389 performance and overall video quality. To assess task-specific performance, for ID tasks, we employ
 390 the DINO-score (Caron et al., 2021) and CLIP-score (Radford et al., 2021) to evaluate identity
 391 similarity with the reference image. For the style task, style similarity with the reference style
 392 image is validated using the CSD-score (Somepalli et al., 2024), while ArtFID and CFSD (Chung
 393 et al., 2024) are used to consider content preservation. Furthermore, for re-camera control, we use
 394 RotErr, TransErr, and CamMC following CamI2V (Zheng et al., 2024) to evaluate the alignment with
 395 the given camera pose. Besides, the overall quality of the generated videos is assessed by motion
 396 smoothness, dynamic degree, and aesthetic score, subject consistency, background consistency,
 397 temporal flickering and imaging quality (Huang et al., 2024).

398

4.1 EDITING PERFORMANCE COMPARISON

400 We compare our approach with the state-of-the-art unified video editing methods like VACE (Jiang
 401 et al., 2025) and task-specific methods from different video editing methods, like ReCamMaster (Bai
 402 et al., 2025a). We provide an evaluation of overall video performance, including text alignment
 403 and overall quality, as well as task-specific metrics such as DINO-score in ID-related tasks. Since
 404 the propagation version (indicated by a (prop) suffix) for Swap/Delete/Stylization tasks requires the
 405 edited first frame, we specifically use Insert-Anything (Song et al., 2025), FLUX (Labs, 2024), and
 406 the first frame of StyleMaster (Ye et al., 2024) to obtain the edited first frame.

407 As presented in Table 1, our six-in-one framework demonstrates consistent and strong performance
 408 across all evaluated video editing tasks. Notably, our model achieves leading results in ID Insert and
 409 Re-Camera Control, outperforming existing methods on most metrics. For Stylization, we achieve
 410 comparable performance to specialized models like StyleMaster (Ye et al., 2024). While for ID
 411 Delete, specialized models like VideoPainter (Bian et al., 2025) show better video reconstruction with
 412 PSNR, our approach still surpasses it in alignment with CLIP-score and some video quality aspects
 413 such as Smoothness and Aesthetic score. Furthermore, a significant advantage of our method is its
 414 flexibility, supporting arbitrary resolutions and lengths, a capability not present in many fixed-length
 415 video editing models.

416

4.2 VIDEO QUALITY COMPARISON ON DIFFERENT EDITING TASKS

418 Here we give a more comprehensive report on the generated video quality compared with the
 419 baseline methods, as shown in Table 2. Our method demonstrates consistently stable video quality
 420 across all editing tasks. The results show that our approach maintains reliable performance metrics
 421 across different scenarios, including identity swap, style transfer, and camera control tasks. The
 422 temporal quality remains stable with competitive motion smoothness and minimal flickering artifacts.
 423 Additionally, our method exhibits robust consistency in both subject and background preservation
 424 while delivering satisfactory imaging quality.

426

4.3 COMPARISON WITH OTHER CONDITION INJECTION METHODS

428 To further demonstrate the difference with other conditioning and tuning methods, we implement
 429 both LoRA and adapter-based versions, with the latter following the design of VideoAnyDoor (Tu
 430 et al., 2025) for ID insert and ID swap tasks. The computational cost and performance are shown in
 431 Table 3 and Table 4. Our method demonstrates superior performance compared to other approaches,
 consistently outperforming both LoRA and Adapter-based methods across all metrics in both ID

432 Table 2: Video Quality Comparison on different editing tasks. Best results are highlighted in **bold**.
433

	Motion Smoothness	Dynamic Degree	Aesthetic Score	Subject Consistency	Background Consistency	Temporal Flickering	Imaging Quality
ID Swap							
VACE (Jiang et al., 2025)	0.990	0.350	0.613	0.966	0.957	0.982	0.697
Pika (pik, 2025)	0.994	0.250	0.517	0.973	0.960	0.990	0.708
AnyV2V(Prop) (Ku et al., 2024)	0.966	0.150	0.499	0.873	0.909	0.957	0.552
Ours	0.993	0.100	0.605	0.975	0.970	0.988	0.690
Re-Camera Control							
AnyV2V(Prop) (Ku et al., 2024)	0.960	0.350	0.433	0.858	0.924	0.949	0.375
StyleMaster (Ye et al., 2024)	0.988	0.400	0.490	0.941	0.956	0.978	0.499
Ours	0.989	0.300	0.551	0.929	0.948	0.974	0.604
ReCamMaster-Wan (Bai et al., 2025a)	0.994	0.500	0.459	0.930	0.921	0.983	0.576
Ours	0.994	0.600	0.449	0.925	0.942	0.986	0.604

440 Table 3: Computational cost comparison with LoRA and
441 adapter-based methods on ID Insert task.
442

Method	FLOPs	Params	CLIP-I↑	DINO-I↑	CLIP-Score↑
Adapter-based	51.73T	1.65B	0.505	0.190	0.158
LoRA	69.29T	1.20B	0.537	0.222	0.193
Full Finetuning	69.29T	1.20B	0.528	0.242	0.203
Ours	69.29T	1.20B	0.568	0.254	0.227
Ours + step cache	39.28T	1.20B	0.558	0.249	0.232

443 Table 4: Quantitative comparison
444 with LoRA and adapter methods.
445

ID Insert	CLIP-I↑	DINO-I↑	CLIP-Score↑
Adapter-based	0.505	0.190	0.158
LoRA	0.537	0.222	0.193
Ours	0.568	0.254	0.227
ID Swap	CLIP-I↑	DINO-I↑	CLIP-Score↑
Adapter-based	0.694	0.417	0.221
LoRA	0.713	0.433	0.230
Ours	0.732	0.449	0.238

450 Table 5: **Ablation study on the training order of different tasks.** We employ three settings: hard to
451 easy, easy to hard, and joint training. Best results are highlighted in **bold**.
452

Training Order	Identities		ReCam			Style ArtFID↓	CFSD↓
	CLIP-I↑	DINO-I↑	RotErr↓	TransErr↓	CamMC↓		
-> camera							
-> camera+id	0.725	0.429	1.275	5.667	6.154	0.259	37.619
-> camera+id+style+propagation							
-> id							
-> id+style+propagation	0.726	0.427	1.398	5.681	6.275	0.247	37.748
-> camera+id+style+propagation							
-> camera+id+style+propagation	0.713	0.421	2.287	9.694	10.377	0.298	38.953
							0.170

466 Insert and ID Swap tasks. Moreover, with a simple step cache optimization, our approach shows
467 significant efficiency potential while maintaining competitive performance.
468470 4.4 ANALYSIS FOR OUR IN-CONTEXT VIDEO EDITING
471472 We provide a set of experiments to demonstrate the training choice of in-context video editing
473 for different tasks. Based on our experimental results, we summarize several key findings that
474 highlight how specific training strategies enable robust multi-task unification and enhance the overall
475 performance of our in-context framework.
476477 **Should we train tasks sequentially or jointly?** To determine the optimal training strategy for our
478 unified tasks, which possess varying levels of difficulty, we investigate whether sequential training or
479 joint training yields superior performance. As shown in Table 5, we report results under different
480 training strategies. Among our selected six tasks, re-camera control is the most difficult, since
481 the modality is far away from the visual content, while the ID-related task is relatively easy to
482 learn. We experiment with three approaches: (1) sequential training from hard to easy tasks, (2)
483 sequential training from easy to hard tasks, and (3) joint training of all tasks from scratch. Our
484 findings indicate that the sequential training approaches (hard-to-easy and easy-to-hard) can help the
485 multi-task learning. In contrast, joint training from scratch, while capable of learning easier tasks,
struggles significantly with harder ones, resulting in poor performance on the re-camera control task.
486

486
 487 **Table 6: Performance Comparison between task-specific model and unified model.** We evaluate
 488 our unified model (B4) against task-specific models trained for ID (B1), style (B2), and re-camera
 489 control (B3) on relevant metrics for each task. Best results are highlighted in **bold**.

490	Task	Identities		Style ArtFID \downarrow	CFSD \downarrow	RotErr \downarrow	ReCam		
		DINO-I \uparrow	CLIP-I \uparrow				TransErr \downarrow	CamMC \downarrow	
492	B1 id	0.449	0.723	-	-	-	-	-	-
493	B2 style	-	-	0.234	37.674	0.096	-	-	-
494	B3 camera	-	-	-	-	-	1.472	5.836	6.434
	B4 id+style+camera	0.429	0.725	0.259	37.619	0.107	1.275	5.667	6.154

495
 496 **Table 7: Ablation Study on Condition Bias and Task-aware RoPE.** We compare our full model
 497 (D4) with their variants. Best results are highlighted in **bold**. \uparrow indicates higher is better; \downarrow indicates
 498 lower is better.

500	Condition Bias	RoPE		Identities		Style ArtFID \downarrow	CFSD \downarrow	ReCam			
		Sequential	Task-aware	DINO-I \uparrow	CLIP-I \uparrow			TransErr \downarrow	CamMC \downarrow		
501	D1			0.433	0.710	0.242	34.194	0.081	2.501	8.972	13.119
502	D2	✓	✓	0.434	0.723	0.274	35.548	0.091	1.428	6.039	6.566
503	D3			0.422	0.710	0.258	32.768	0.072	1.304	6.038	6.498
	D4	✓		0.429	0.725	0.259	37.619	0.107	1.275	5.667	6.154

504
 505 **Will the task unification affect single-task performance?** There is a natural concern about whether
 506 multi-task learning affects single-task performance. To explore this, we conduct a comparative study
 507 between task-specific models and the unified model. We train separate models for stylization, ID-
 508 related editing, and re-camera control, and compare their performance with the unified model. As
 509 shown in Table 6, the unified model does not impair task performance and even offers advantages
 510 in camera control and style similarity in stylization. However, it slightly compromises content
 511 preservation in stylization. This trade-off is due to the training mechanism: during ID-related tasks,
 512 the model is trained to fully preserve content. As a result, in stylization tasks, the unified model retains
 513 more information than just style, leading to higher style similarity but reduced content preservation.
 514 Overall, unifying diverse tasks within this framework does not significantly degrade individual task
 515 performance and can even enhance it in some cases.

516
 517 **Do condition bias and task-aware RoPE Matter?** To validate our proposed Condition Bias and
 518 Task-Aware RoPE, we conduct an ablation study, with results presented in Table 7. Comparing our
 519 full model against variants clearly demonstrates their benefits. The baseline model (D1), lacking both
 520 components, performs adequately on simple tasks but struggles with complex temporal tasks like
 521 re-camera control, showing high TransErr and CamMC. Adding Condition Bias alone (D2) improves
 522 CLIP-I in ID swap and reduces TransErr in re-camera control, while implementing only Task-aware
 523 RoPE (D3) significantly reduces CamMC in re-camera control. The full model (D4), combining
 524 both components, achieves superior performance across all tasks. These results demonstrate how
 525 Condition Bias enables effective task disambiguation while Task-aware RoPE enhances temporal
 526 modeling, together creating a robust unified video editing framework.

5 CONCLUSION

527
 528 In this paper, we introduce UNified In-Context Video Editing (UNIC), a simple yet effective frame-
 529 work that unifies diverse video editing tasks within a single model in an in-context manner. To this
 530 end, we formulate the input of different video editing tasks as three types of tokens, integrating them
 531 as a single unified token sequence jointly modeled with the original full-attention of diffusion trans-
 532 formers. With the devised task-aware RoPE and conditional bias, our method can flexibly perform
 533 different editing tasks and support their combination. To facilitate the evaluation, we also construct a
 534 unified video editing benchmark. Extensive experiments on six representative video editing tasks
 535 demonstrate that our unified model shows superior performance on each task and exhibits emergent
 536 task composition abilities.

540 **Ethics Statement** This work has been conducted in accordance with the ICLR Code of Ethics. We
 541 have carefully considered the ethical implications of our research and can confirm several key points.
 542 The training data used in this study was legally obtained through legitimate commercial sources.
 543 Prior to model training, we implemented a comprehensive data filtering and screening process to
 544 remove potentially harmful, biased, or problematic content. This ensures our model adheres to ethical
 545 AI principles.

546
 547 **Reproducibility Statement** To ensure the reproducibility of our work, we will ensure the following
 548 points. **Code:** Our code and model will be made publicly available, including necessary scripts. **Data:**
 549 Detailed descriptions of our data processing pipeline and preprocessing steps are provided in Appendix
 550 C. **Experimental Setup:** We have stated all experimental configurations, including hyperparameters,
 551 hardware specifications in the Training Details of the main paper. **Model Architecture:** The
 552 architecture details are described in method part, with additional details provided in the appendix.

553
 554 **REFERENCES**

555 Artgrid. Artgrid:<https://artgrid.io>, 2025.

556
 557 Kling ai. <https://klingai.com/>, 2025.

558
 559 Pika. <https://pika.art/>, 2025.

560
 561 Jianhong Bai, Menghan Xia, Xintao Wang, Ziyang Yuan, Xiao Fu, Zuozhu Liu, Haoji Hu, Pengfei
 562 Wan, and Di Zhang. Syncammaster: Synchronizing multi-camera video generation from diverse
 563 viewpoints. *arXiv preprint arXiv:2412.07760*, 2024a.

564 Jianhong Bai, Menghan Xia, Xiao Fu, Xintao Wang, Lianrui Mu, Jinwen Cao, Zuozhu Liu, Haoji
 565 Hu, Xiang Bai, Pengfei Wan, et al. Recammaster: Camera-controlled generative rendering from a
 566 single video. *arXiv preprint arXiv:2503.11647*, 2025a.

567
 568 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 569 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 570 2025b.

571 Yushu Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
 572 Lei Hou, Yuxiao Dong, et al. Longbench v2: Towards deeper understanding and reasoning on
 573 realistic long-context multitasks. *arXiv preprint arXiv:2412.15204*, 2024b.

574
 575 Yuxuan Bian, Zhaoyang Zhang, Xuan Ju, Mingdeng Cao, Liangbin Xie, Ying Shan, and Qiang Xu.
 576 Videopainter: Any-length video inpainting and editing with plug-and-play context control. *arXiv
 577 preprint arXiv:2503.05639*, 2025.

578 Lingling Cai, Kang Zhao, Hangjie Yuan, Xiang Wang, Yingya Zhang, and Kejie Huang. Dfvedit:
 579 Conditional delta flow vector for zero-shot video editing. *arXiv preprint arXiv:2506.20967*, 2025.

580
 581 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
 582 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the
 583 IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

584
 585 Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing,
 586 Yaofang Liu, Qifeng Chen, Xintao Wang, Chao Weng, and Ying Shan. Videocrafter1: Open
 587 diffusion models for high-quality video generation, 2023.

588
 589 Qihua Chen, Yue Ma, Hongfa Wang, Junkun Yuan, Wenzhe Zhao, Qi Tian, Hongmei Wang, Shaobo
 590 Min, Qifeng Chen, and Wei Liu. Follow-your-canvas: Higher-resolution video outpainting with
 591 extensive content generation. *arXiv preprint arXiv:2409.01055*, 2024a.

592 Xi Chen, Zhifei Zhang, He Zhang, Yuqian Zhou, Soo Ye Kim, Qing Liu, Yijun Li, Jianming Zhang,
 593 Nanxuan Zhao, Yilin Wang, et al. Unireal: Universal image generation and editing via learning
 594 real-world dynamics. *arXiv preprint arXiv:2412.07774*, 2024b.

594 Yukang Chen, Fuzhao Xue, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian
 595 Tang, Shang Yang, Zhijian Liu, et al. Longvila: Scaling long-context visual language models for
 596 long videos. *arXiv preprint arXiv:2408.10188*, 2024c.

597

598 Jiwoo Chung, Sangeek Hyun, and Jae-Pil Heo. Style injection in diffusion: A training-free approach
 599 for adapting large-scale diffusion models for style transfer. In *Proceedings of the IEEE/CVF
 600 Conference on Computer Vision and Pattern Recognition*, pp. 8795–8805, 2024.

601 Yuren Cong, Mengmeng Xu, Christian Simon, Shoufa Chen, Jiawei Ren, Yanping Xie, Juan-Manuel
 602 Perez-Rua, Bodo Rosenhahn, Tao Xiang, and Sen He. Flatten: optical flow-guided attention for
 603 consistent text-to-video editing. *arXiv preprint arXiv:2310.05922*, 2023.

604 Yoav HaCohen, Nisan Chiprut, Benny Brazowski, Daniel Shalem, Dudu Moshe, Eitan Richardson,
 605 Eran Levin, Guy Shiran, Nir Zabari, Ori Gordon, et al. Ltx-video: Realtime video latent diffusion.
 606 *arXiv preprint arXiv:2501.00103*, 2024.

607

608 Zhen Han, Zeyinzi Jiang, Yulin Pan, Jingfeng Zhang, Chaojie Mao, Chenwei Xie, Yu Liu, and Jingren
 609 Zhou. Ace: All-round creator and editor following instructions via diffusion transformer. *arXiv
 610 preprint arXiv:2410.00086*, 2024.

611 Xuanhua He, Quande Liu, Shengju Qian, Xin Wang, Tao Hu, Ke Cao, Keyu Yan, and Jie Zhang. Id-
 612 animator: Zero-shot identity-preserving human video generation. *arXiv preprint arXiv:2404.15275*,
 613 2024.

614

615 Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale
 616 pretraining for text-to-video generation via transformers. *arXiv preprint arXiv:2205.15868*, 2022.

617 Hexiang Hu, Kelvin CK Chan, Yu-Chuan Su, Wenhui Chen, Yandong Li, Kihyuk Sohn, Yang Zhao,
 618 Xue Ben, Boqing Gong, William Cohen, et al. Instruct-imagen: Image generation with multi-
 619 modal instruction. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 620 recognition*, pp. 4754–4763, 2024.

621

622 Yuzhou Huang, Ziyang Yuan, Quande Liu, Qiulin Wang, Xintao Wang, Ruimao Zhang, Pengfei
 623 Wan, Di Zhang, and Kun Gai. Conceptmaster: Multi-concept video customization on diffusion
 624 transformer models without test-time tuning. *arXiv preprint arXiv:2501.04698*, 2025.

625

626 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
 627 Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video
 628 generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 Recognition*, pp. 21807–21818, 2024.

629

630 Zeyinzi Jiang, Zhen Han, Chaojie Mao, Jingfeng Zhang, Yulin Pan, and Yu Liu. Vace: All-in-one
 631 video creation and editing. *arXiv preprint arXiv:2503.07598*, 2025.

632

633 Xuan Ju, Weicai Ye, Quande Liu, Qiulin Wang, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai,
 634 and Qiang Xu. Fulldit: Multi-task video generative foundation model with full attention. *arXiv
 635 preprint arXiv:2503.19907*, 2025.

636

637 Xianghao Kong, Hansheng Chen, Yuwei Guo, Lvmin Zhang, Gordon Wetzstein, Maneesh Agrawala,
 638 and Anyi Rao. Taming flow-based i2v models for creative video editing. *arXiv preprint
 639 arXiv:2509.21917*, 2025a.

640

641 Zhe Kong, Feng Gao, Yong Zhang, Zhuoliang Kang, Xiaoming Wei, Xunliang Cai, Guanying Chen,
 642 and Wenhan Luo. Let them talk: Audio-driven multi-person conversational video generation. *arXiv
 643 preprint arXiv:2505.22647*, 2025b.

644

645 Max Ku, Cong Wei, Weiming Ren, Huan Yang, and Wenhui Chen. Anyv2v: A plug-and-play
 646 framework for any video-to-video editing tasks. *arXiv preprint arXiv:2403.14468*, 2024.

647

648 Vladimir Kulikov, Matan Kleiner, Inbar Huberman-Spiegelglas, and Tomer Michaeli. Flowedit:
 649 Inversion-free text-based editing using pre-trained flow models. In *Proceedings of the IEEE/CVF
 650 International Conference on Computer Vision*, pp. 19721–19730, 2025.

651

652 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

648 Duong H Le, Tuan Pham, Sangho Lee, Christopher Clark, Aniruddha Kembhavi, Stephan Mandt, Ran-
 649 jay Krishna, and Jiasen Lu. One diffusion to generate them all. *arXiv preprint arXiv:2411.16318*,
 650 2024.

651

652 Minhyeok Lee, Suhwan Cho, Chajin Shin, Jungho Lee, Sunghun Yang, and Sangyoun Lee. Video
 653 diffusion models are strong video inpainter. In *Proceedings of the AAAI Conference on Artificial*
 654 *Intelligence*, volume 39, pp. 4526–4533, 2025.

655

656 Guangzhao Li, Yanming Yang, Chenxi Song, and Chi Zhang. Flowdirector: Training-free flow
 657 steering for precise text-to-video editing. *arXiv preprint arXiv:2506.05046*, 2025.

658

Jun Hao Liew, Hanshu Yan, Jianfeng Zhang, Zhongcong Xu, and Jiashi Feng. Magicedit: High-
 659 fidelity and temporally coherent video editing. *arXiv preprint arXiv:2308.14749*, 2023.

660

Gongye Liu, Menghan Xia, Yong Zhang, Haoxin Chen, Jinbo Xing, Yibo Wang, Xintao Wang, Yujiu
 661 Yang, and Ying Shan. Stylecrafter: Enhancing stylized text-to-video generation with style adapter.
 662 *arXiv preprint arXiv:2312.00330*, 2023.

663

Shaoteng Liu, Tianyu Wang, Jui-Hsien Wang, Qing Liu, Zhifei Zhang, Joon-Young Lee, Yijun Li, Bei
 664 Yu, Zhe Lin, Soo Ye Kim, et al. Generative video propagation. *arXiv preprint arXiv:2412.19761*,
 665 2024a.

666

Shaoteng Liu, Yuechen Zhang, Wenbo Li, Zhe Lin, and Jiaya Jia. Video-p2p: Video editing with
 667 cross-attention control. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 668 *Pattern Recognition*, pp. 8599–8608, 2024b.

669

670 Yawen Luo, Jianhong Bai, Xiaoyu Shi, Menghan Xia, Xintao Wang, Pengfei Wan, Di Zhang, Kun
 671 Gai, and Tianfan Xue. Camclonemaster: Enabling reference-based camera control for video
 672 generation. *arXiv preprint arXiv:2506.03140*, 2025.

673

Chong Mou, Mingdeng Cao, Xintao Wang, Zhaoyang Zhang, Ying Shan, and Jian Zhang. Revideo:
 674 Remake a video with motion and content control. *Advances in Neural Information Processing*
 675 *Systems*, 37:18481–18505, 2024.

676

677 Chong Mou, Yanze Wu, Wenxu Wu, Zinan Guo, Pengze Zhang, Yufeng Cheng, Yiming Luo, Fei
 678 Ding, Shiwen Zhang, Xinghui Li, et al. Dreamo: A unified framework for image customization.
 679 *arXiv preprint arXiv:2504.16915*, 2025.

680

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 681 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 682 models from natural language supervision. In *International conference on machine learning*, pp.
 683 8748–8763. PMLR, 2021.

684

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 685 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev
 686 Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer.
 687 Sam 2: Segment anything in images and videos. *arXiv preprint arXiv:2408.00714*, 2024. URL
 688 <https://arxiv.org/abs/2408.00714>.

689

Gowthami Somepalli, Anubhav Gupta, Kamal Gupta, Shramay Palta, Micah Goldblum, Jonas
 690 Geiping, Abhinav Shrivastava, and Tom Goldstein. Measuring style similarity in diffusion models.
 691 *arXiv preprint arXiv:2404.01292*, 2024.

692

Wensong Song, Hong Jiang, Zongxing Yang, Ruijie Quan, and Yi Yang. Insert anything: Image
 693 insertion via in-context editing in dit. *arXiv preprint arXiv:2504.15009*, 2025.

694

Zhenxiong Tan, Songhua Liu, Xingyi Yang, Qiaochu Xue, and Xinchao Wang. Ominicontrol:
 695 Minimal and universal control for diffusion transformer. *arXiv preprint arXiv:2411.15098*, 2024.

696

Meituan LongCat Team, Xunliang Cai, Qilong Huang, Zhuoliang Kang, Hongyu Li, Shijun Liang,
 697 Liya Ma, Siyu Ren, Xiaoming Wei, Rixu Xie, et al. Longcat-video technical report. *arXiv preprint*
 698 *arXiv:2510.22200*, 2025.

699

702 Yuanpeng Tu, Hao Luo, Xi Chen, Sihui Ji, Xiang Bai, and Hengshuang Zhao. Videoanydoor:
 703 High-fidelity video object insertion with precise motion control. *arXiv preprint arXiv:2501.01427*,
 704 2025.

705 Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
 706 Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan
 707 Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi Zhang, Pandeng
 708 Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing Wang,
 709 Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou, Wente
 710 Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou, Yangyu
 711 Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu, Yu Liu,
 712 Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han, Zhi-Fan
 713 Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models. *arXiv preprint*
 714 *arXiv:2503.20314*, 2025a.

715 Qinghe Wang, Yawen Luo, Xiaoyu Shi, Xu Jia, Huchuan Lu, Tianfan Xue, Xintao Wang, Pengfei
 716 Wan, Di Zhang, and Kun Gai. Cinemaster: A 3d-aware and controllable framework for cinematic
 717 text-to-video generation. *arXiv preprint arXiv:2502.08639*, 2025b.

718 Qiuuheng Wang, Yukai Shi, Jiarong Ou, Rui Chen, Ke Lin, Jiahao Wang, Boyuan Jiang, Haotian Yang,
 719 Mingwu Zheng, Xin Tao, et al. Koala-36m: A large-scale video dataset improving consistency
 720 between fine-grained conditions and video content. *arXiv preprint arXiv:2410.08260*, 2024a.

721 Xiang Wang, Hangjie Yuan, Shiwei Zhang, Dayou Chen, Jiuniu Wang, Yingya Zhang, Yujun Shen,
 722 Deli Zhao, and Jingren Zhou. Videocomposer: Compositional video synthesis with motion
 723 controllability. *Advances in Neural Information Processing Systems*, 36, 2024b.

724 Yi Wang, Xinhao Li, Ziang Yan, Yinan He, Jiashuo Yu, Xiangyu Zeng, Chenting Wang, Changlian
 725 Ma, Haian Huang, Jianfei Gao, et al. Internvideo2. 5: Empowering video mllms with long and rich
 726 context modeling. *arXiv preprint arXiv:2501.12386*, 2025c.

727 Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo, and
 728 Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In *ACM*
 729 *SIGGRAPH 2024 Conference Papers*, pp. 1–11, 2024c.

730 Cong Wei, Quande Liu, Zixuan Ye, Qiulin Wang, Xintao Wang, Pengfei Wan, Kun Gai, and Wenhui
 731 Chen. Univideo: Unified understanding, generation, and editing for videos. *arXiv preprint*
 732 *arXiv:2510.08377*, 2025.

733 Yujie Wei, Shiwei Zhang, Hangjie Yuan, Xiang Wang, Haonan Qiu, Rui Zhao, Yutong Feng, Feng Liu,
 734 Zhizhong Huang, Jiaxin Ye, et al. Dreamvideo-2: Zero-shot subject-driven video customization
 735 with precise motion control. *arXiv preprint arXiv:2410.13830*, 2024.

736 FU Xiao, Xian Liu, Xintao Wang, Sida Peng, Menghan Xia, Xiaoyu Shi, Ziyang Yuan, Pengfei Wan,
 737 Di Zhang, and Dahu Lin. 3dtrajmaster: Mastering 3d trajectory for multi-entity motion in video
 738 generation. In *The Thirteenth International Conference on Learning Representations*, 2024a.

739 Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li,
 740 Shuting Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. *arXiv preprint*
 741 *arXiv:2409.11340*, 2024b.

742 Sihan Xu, Yidong Huang, Jiayi Pan, Ziqiao Ma, and Joyce Chai. Inversion-free image editing with
 743 language-guided diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer*
 744 *Vision and Pattern Recognition*, pp. 9452–9461, 2024.

745 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 746 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 747 *arXiv:2412.15115*, 2024a.

748 Shaoshu Yang, Zhe Kong, Feng Gao, Meng Cheng, Xiangyu Liu, Yong Zhang, Zhuoliang Kang,
 749 Wenhan Luo, Xunliang Cai, Ran He, et al. Infinitetalk: Audio-driven video generation for
 750 sparse-frame video dubbing. *arXiv preprint arXiv:2508.14033*, 2025.

756 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 757 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 758 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024b.

759

760 Zixuan Ye, Huijuan Huang, Xintao Wang, Pengfei Wan, Di Zhang, and Wenhan Luo. Stylemaster:
 761 Stylize your video with artistic generation and translation. *arXiv preprint arXiv:2412.07744*, 2024.

762

763 Shoubin Yu, Difan Liu, Ziqiao Ma, Yicong Hong, Yang Zhou, Hao Tan, Joyce Chai, and Mohit
 764 Bansal. Veggie: Instructional editing and reasoning video concepts with grounded generation. In
 765 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 15147–15158,
 766 2025.

767

768 Shanghai Yuan, Jinfa Huang, Xianyi He, Yunyuan Ge, Yujun Shi, Liuhan Chen, Jiebo Luo, and
 769 Li Yuan. Identity-preserving text-to-video generation by frequency decomposition. *arXiv preprint
 770 arXiv:2411.17440*, 2024.

771

772 Jiacheng Zhang and Kai Han. Veflow: Training-free text to video editing via inversion-free video
 773 editing flow.

774

775 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 776 diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 777 pp. 3836–3847, 2023a.

778

779 Yabo Zhang, Yuxiang Wei, Dongsheng Jiang, Xiaopeng Zhang, Wangmeng Zuo, and Qi Tian. Con-
 780 trolvideo: Training-free controllable text-to-video generation. *arXiv preprint arXiv:2305.13077*,
 781 2023b.

782

783 Yuechen Zhang, Yaoyang Liu, Bin Xia, Bohao Peng, Zexin Yan, Eric Lo, and Jiaya Jia. Magic mirror:
 784 Id-preserved video generation in video diffusion transformers. *arXiv preprint arXiv:2501.03931*,
 785 2025.

786

787 Guangcong Zheng, Teng Li, Rui Jiang, Yehao Lu, Tao Wu, and Xi Li. Cami2v: Camera-controlled
 788 image-to-video diffusion model. *arXiv preprint arXiv:2410.15957*, 2024.

789

790 Bojia Zi, Shihao Zhao, Xianbiao Qi, Jianan Wang, Yukai Shi, Qianyu Chen, Bin Liang, Rong
 791 Xiao, Kam-Fai Wong, and Lei Zhang. Cococo: Improving text-guided video inpainting for better
 792 consistency, controllability and compatibility. In *Proceedings of the AAAI Conference on Artificial
 793 Intelligence*, volume 39, pp. 11067–11076, 2025.

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811

A APPENDIX

812
813 The Appendix of this paper contains the following main sections:814
815

- 816 Additional Experiment and Analysis - providing supplementary experimental results and
817 detailed analysis
- 818 UNIC Benchmark - describing the benchmark details
- 819 Training Dataset Construction - the construction of training datasets
- 820 Training Schemes - explaining the specific training strategies and protocols
- 821 Limitation and Future Work - discussing current limitations and future research directions
- 822 Statement for Large Language Models - clarifying the usage of large language models

823824
825

B ADDITIONAL EXPERIMENT AND ANALYSIS

826827

B.1 ADAPTION TO OTHER BASE MODEL

828829
830 We also adapt our method to another base model Wan-1.3B Wang et al. (2025a), which has a similar
831 model size and comparable T2V performance to our base model. The experimental results are shown
832 in Table 8. We evaluate our method on three different tasks: ID insertion, stylization, and camera
833 control (ReCam). The results demonstrate that our approach achieves comparable performance across
834 both base models. While the Wan 1.3B model shows slightly lower performance in some metrics, this
835 is likely due to the fact that **we did not further adjust the training parameters specifically for this**
836 **model**. Nevertheless, these results demonstrate that our method is model-agnostic and successfully
837 unifies these diverse video generation tasks across different base models.838
839 Table 8: Performance comparison on different base models.
840841
842
843
844
845
846
847

Task	Type	CLIP-I↑	DINO-I↑	CLIP-Score↑
ID Insert	Internal 1B	0.598	0.245	0.216
ID Insert	Wan 1.3B	0.528	0.210	0.193
Task	Type	CSD-score↑	ArtFID↓	CLIP-Score↑
Stylization	Internal 1B	0.259	37.619	0.171
Stylization	Wan 1.3B	0.236	35.318	0.181
Task	Type	RotErr↓	TransErr↓	CLIP-Score↑
ReCam	Internal 1B	1.275	5.667	0.220
ReCam	Wan 1.3B	1.272	5.674	0.218

848
849

B.2 BENEFITS OF UNIFICATION

850851 Our approach demonstrates significant advantages over task-specific adapters or task-specific tuning
852 like LoRA or adapters. We analyze these benefits from three key perspectives:853
854 **Parameter Efficiency** Our method achieves remarkable parameter efficiency by adding only
855 thousands of trainable parameters to support six distinct tasks. In contrast, using separate LoRA
856 modules would require training and storing multiple task-specific modules, each containing millions
857 of parameters, resulting in substantially higher storage and computational demands.858
859 **Multi-task Synergy** The shared architecture enables positive interactions between tasks through
860 cross-task information sharing. This is particularly evident in addressing domain-specific limitations.
861 For example, in re-camera control tasks, multi-task joint training significantly improves human
862 representation quality compared to single-task training, as shown in Table 9. The multi-task approach
863 achieves better scores in human-anatomy (0.903 vs 0.889), human-identity (0.887 vs 0.844), and
864 human-clothes (0.921 vs 0.891), demonstrating how shared knowledge across tasks helps mitigate
865 domain-specific constraints.

864 Table 9: Comparison of human-centered metrics between ReCam-only training and multi-task joint
 865 training.

Task	Training Strategy	Human-Anatomy↑	Human-Identity↑	Human-Clothes↑
ReCam	ReCam Only Training	0.889	0.844	0.891
ReCam	Multi-Task Joint Training	0.903	0.887	0.921

871 **Efficient Fine-tuning** The unified architecture facilitates rapid adaptation to new tasks through
 872 shared representations. Our experiments demonstrate the efficiency of knowledge transfer, as shown
 873 in Table 10. When fine-tuning for propagation tasks based on ID swap knowledge, we achieve
 874 superior performance (RefVideo-CLIP: 0.820) with just 0.4k training steps, compared to 2k steps
 875 required by propagation-only training (RefVideo-CLIP: 0.792). This 5 \times reduction in training steps,
 876 along with consistent improvements across multiple metrics, validates the effectiveness of our unified
 877 framework.

878 Table 10: Comparison of fine-tuning efficiency and performance metrics between different training
 879 strategies.

Strategy	Training Steps	RefVideo-CLIP↑	CLIP-score↑	Smoothness↑	Dynamic↑	Aesthetic↑
propagation only	1k	0.765	0.205	0.948	12.956	5.028
propagation only	2k	0.792	0.219	0.952	13.262	4.912
based on ID swap	0.2k	0.789	0.217	0.951	13.245	5.036
based on ID swap	0.4k	0.820	0.226	0.956	13.562	5.265

886 These benefits enable not only more efficient model deployment but also better task performance and
 887 easier extension to new video editing tasks. Moreover, unlike methods requiring multiple LoRAs, our
 888 unified approach allows for seamless task composition without the risk of conflicting behaviors when
 889 combining different editing operations.

890 891 Table 11: Comparison with different conditioning and tuning methods.

	Lightweight	Efficient Finetuning	Task Composition
LoRA	✓	✗	✗
Adapter	✗	✗	✗
Ours	✓	✓	✓

893 B.3 SCALING UP MODEL SIZE

900 We conduct comprehensive experiments to investigate the impact of model scaling on various video
 901 editing tasks. Our analysis compares the performance between 1B and 10B parameter models across
 902 different tasks and evaluation metrics, as shown in Table 12.

903 The results demonstrate significant improvements when scaling up to larger models. For the ID
 904 Insert task, scaling to 10B parameters yields substantial enhancements across all metrics, with CLIP-I
 905 improving by 5.7% and DINO-I increasing by 17.1%. Similar improvements are observed in ID
 906 Swap tasks, while ID Delete shows remarkable enhancement in reconstruction quality with PSNR
 907 increasing from 19.171 to 47.850. These results provide strong quantitative evidence that scaling up
 908 model size leads to better performance across various video editing tasks.

910 B.4 COMPUTATION COST ANALYSIS

912 We provide a detailed breakdown of the computational requirements for different video editing tasks
 913 in our unified framework, as shown in Table 13.

915 B.5 ANALYSIS OF JOINT TRAINING PERFORMANCE

917 We investigate the performance degradation observed in joint training and propose potential solutions.
 918 Our analysis reveals that the degradation primarily stems from the varying complexity and

918
919

Table 12: Performance comparison between 1B and 10B parameter models across ID tasks.

Task	Type	CLIP-I \uparrow	DINO-I \uparrow	CLIP-Score \uparrow
ID Insert	1B	0.598	0.245	0.216
ID Insert	10B	0.632	0.287	0.246
ID Swap	1B	0.725	0.429	0.242
ID Swap	10B	0.731	0.447	0.238

Task	Type	PSNR \uparrow	RefVideo-CLIP \uparrow	CLIP-Score \uparrow
ID Delete	1B	19.171	0.900	0.217
ID Delete	10B	47.850	0.888	0.208

925
926
927
928

Table 13: Detailed computational requirements for different video editing tasks.

Task	Memory Consumption	Inference Time/Iter	Number of Tokens	Denoising Steps	Video Resolution
ID Insert	24.45G	2.45s	(43, 1008, 1152)=49932288	30	672x384x77
ID Swap	24.45G	2.45s	(43, 1008, 1152)=49932288	30	672x384x77
ID Delete	24.45G	2.45s	(43, 1008, 1152)=49932288	30	672x384x77
Propagation	22.23G	2.31s	(41, 1008, 1152)=47609856	30	672x384x77
Stylization	22.23G	2.31s	(41, 1008, 1152)=47609856	30	672x384x77
Re-Camera Control	22.16G	3.66s	(60, 1008, 1152)=69672960	30	672x384x77

931
932
933
934
935

convergence rates across different tasks. Specifically, re-camera control requires approximately 600k iterations to converge in single-task training, while simpler tasks like ID-swapping and stylization achieve satisfactory results within 80k iterations.

941
942
943

Table 14: Performance comparison between balanced (0.25 each) and imbalanced (ReCam: 0.7, others: 0.1) sampling strategies in joint training.

Train Strategy	ID Swap		ReCam			Style	
	CLIP-I \uparrow	DINO-I \uparrow	RotErr \downarrow	TransErr \downarrow	CamMC \downarrow	CSD-Score \uparrow	ArtFID \downarrow
balanced	0.713	0.421	2.287	9.694	10.377	0.298	38.953
imbalanced	0.712	0.409	2.010	7.279	8.040	0.192	39.453

948
949
950
951
952
953

To address this issue, we experiment with an imbalanced sampling strategy that allocates more training resources to the complex re-camera control task (0.7) while reducing the sampling probability for simpler tasks (0.1 each). The results show that while this approach improves re-camera control performance, it leads to degraded performance in simpler tasks, suggesting that achieving optimal performance across tasks of varying complexity remains challenging in joint training scenarios.

954
955

B.6 ANALYSIS OF TASK INDICATION METHODS

956
957
958
959
960
961

We investigate different approaches for indicating tasks in the model input, comparing text-based task indication with our task-aware rope design. Specifically, we explore three settings: (1) pure text indication where we prepend task type to the caption (e.g., "[stylization] A woman is..."), (2) our original design with task-aware rope and condition bias, and (3) a combined approach incorporating both mechanisms.

962
963
964
965
966
967

While text-based task indication (A1) shows improved condition image similarity metrics (DINO-I and CSD-Score), it compromises video consistency (lower Refvideo-CLIP) and ReCam task performance. The combined approach (A3) also underperforms compared to our original design (A2), suggesting that explicit text indication may interfere with the model’s ability to balance instruction understanding and content preservation. This limitation might be addressed through large-scale pre-training.

968
969
970
971

C UNIC BENCHMARK
To comprehensively evaluate performance, we create a unified benchmark of six tasks, each containing 20 to 50 carefully designed evaluation cases.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 15: Performance comparison of different task indication methods. Text Indication refers to indicating task type to caption. Ours means using task-aware RoPE and condition bias. Combined refers to indicating both through text and our design.

Method	Text Indication	Task-aware Rope	Condition Bias	ID Swap DINO-I↑	Refvideo-CLIP↑	Stylization CSD-Score↑	ArtFID↓	ReCam RotErr↓	TransErr↓
A1 (Text Only)	✓			0.432	0.723	0.294	42.090	1.622	6.613
A2 (Ours)		✓	✓	0.429	0.776	0.259	37.619	1.275	5.667
A3 (Combined)	✓	✓	✓	0.441	0.733	0.304	40.771	1.653	6.416

C.1 ID INSERT

We collect 20 videos from Artgrid (art, 2025) as source video, and we carefully select a suitable ID for each video to insert, also ensuring that the semantic is reasonable. As shown in Fig.S 4, our selected ID includes both clean object without background and complete picture with background.

Figure 4: ID Pool and example of ID insert evaluation cases.

C.2 ID SWAP

For this task, we utilize 14 videos from VPBench (Bian et al., 2025) and 6 videos online as the source videos. With the source videos, the objects to be swapped were segmented using SAM2 (Ravi et al., 2024). Then, we carefully design and choose the object to place in. As shown in Fig.S5, an appropriate ID was then selected from our ID pool to replace the segmented object, and a caption was generated to describe the final target video.

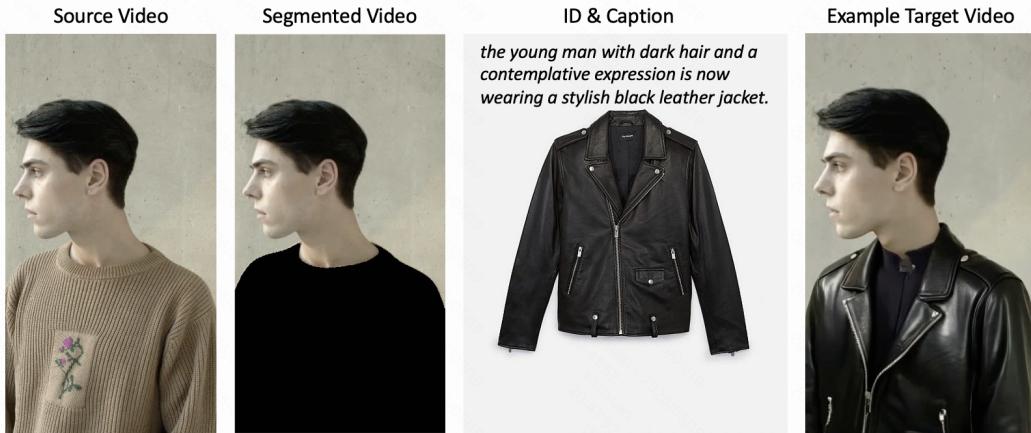


Figure 5: Example of ID swap evaluation cases.

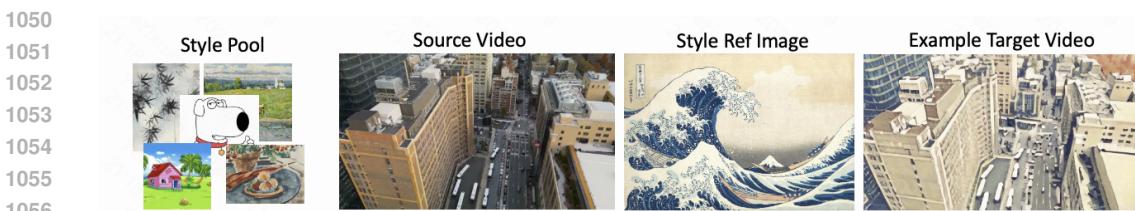
1026 C.3 ID DELETE
1027

1028 For ID delete, we expand the 10 videos in VPBench (Bian et al., 2025) to 20 by additionally collecting
1029 10 videos. Also, SAM2 (Ravi et al., 2024) is used to segment the object to be deleted. Then we
1030 generate caption for the target video. The example is shown in Fig.S6.

1031

1040
1041 Figure 6: Example of ID Delete evaluation cases.
1042
10431044 C.4 STYLIZATION
1045

1046 For the stylization task, we collected 12 representative styles to serve as references. These include
1047 diverse artistic expressions such as pixel art, oil painting, Chinese painting, and line art, among
1048 others. Examples of these styles are illustrated in Fig.S7. Then we randomly select 50 videos from
1049 Artgrid (art, 2025) as the source videos.

1057
1058 Figure 7: Example of Stylization evaluation cases.
10591060 C.5 PROPAGATION
1061

1062 For the propagation task, we expand the 38 example of GenProp (Liu et al., 2024a) to 50 examples
1063 by adding 12 stylization propagation test cases. Example is shown in Fig.S8.

1073
1074 Figure 8: Example of propagation evaluation cases.
10751076 C.6 RE-CAMERA CONTROL
1077

1078 To evaluate the re-camera control task, we utilized 10 basic camera trajectories and 50 randomly
1079 selected videos from Koala (Wang et al., 2024a). Each of the 10 trajectories was then applied to 5
distinct videos from this set (totaling 50 trajectory-video pairs).

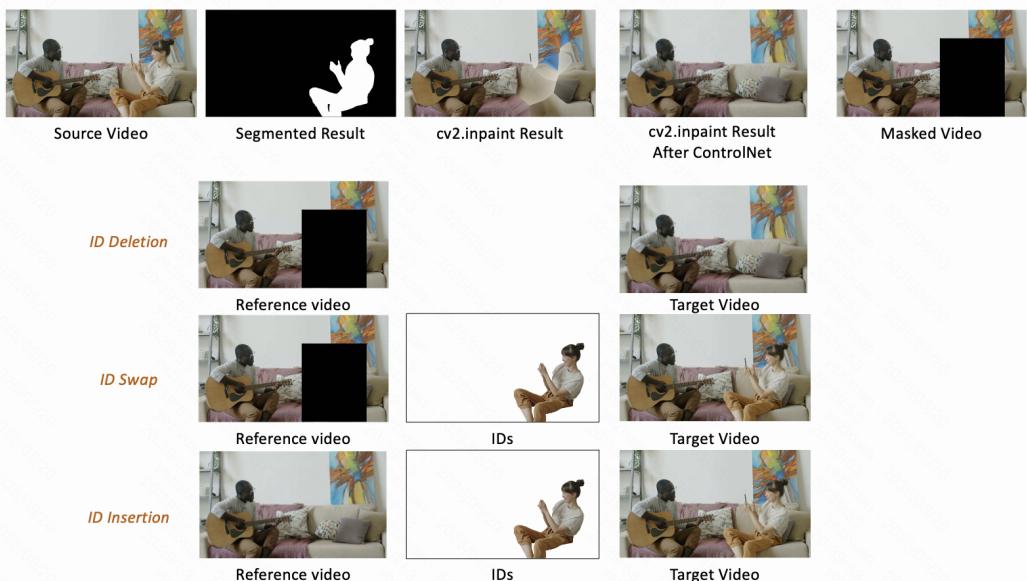
1080 **D TRAINING DATASET CONSTRUCTION**
10811082 This section details the construction of our datasets for the six tasks.
10831084 **D.1 ID-RELATED TASK**
10851086 To generate training data for ID-related tasks such as deletion, swap, and insertion (as illustrated
1087 in Fig. S9), we first use SAM2 (Ravi et al., 2024) to obtain an object’s segmentation mask from
1088 the source video. This mask is then applied with `cv2.inpaint` to produce an inpainted video.
1089 However, this simple inpainting method often introduces visual artifacts in the inpainted regions. To
1090 address this, we train a ControlNet conditioned on the original video, which effectively eliminates
1091 these artifacts. The resulting artifact-free video serves as the reference video for the insertion task,
1092 with the original source video as the target. Additionally, a masked video, created by applying the
1093 segmentation mask to the source video, serves as the reference video for both deletion and swap tasks.
1094 **Using this method, we create 3000 videos for each task.**1115 **Figure 9: ID-related task data construction.**
11161117 **D.2 STYLIZATION**
11181119 When considering how to construct the paired style video dataset, a straightforward idea is to use
1120 a video-to-video stylization model to convert real-world videos into stylized ones. However, our
1121 experiments revealed that this approach frequently results in temporal inconsistencies, flickering
1122 artifacts, and lower visual quality.1123 We then noted that Text-to-Video (T2V) models are capable of generating stylized videos that exhibit
1124 superior quality and maintain higher fidelity to a given reference style image. This observation led us
1125 to an alternative strategy: rather than stylizing an existing real video, we first generate a high-quality
1126 stylized video using a T2V model. Subsequently, we transform this stylized video into a realistic
1127 counterpart using a tile-based video ControlNet. As illustrated in Fig.S10, the results confirm that
1128 this is a feasible method. Using this method, we create 10,000 paired videos.1129 **D.3 PROPAGATION TASK DATASET**
11301132 To construct a dataset for the propagation task, we leverage existing paired data from our ID-related
1133 and Stylization task training sets. Each pair in these datasets contains a source video and a target
video.

Figure 10: Stylization pair data construction.

The propagation task requires input triplets consisting of a source video, a target video, and the first frame of that target video. We can generate these triplets from our existing paired data in two distinct configurations. In one configuration, the original source video serves as the propagation source, the original target video serves as the propagation target, and we use the first frame of this original target video. Alternatively, the roles can be reversed: the original target video can serve as the propagation source, with the original source video becoming the propagation target, and we would then use the first frame of this (now) target video. This strategy effectively allows us to derive a greater volume of propagation training data from our existing resources. **Specifically, we combine 9,000 samples from ID-related tasks and 10,000 samples to form a 19,000-sample dataset.**

D.4 RE-CAMERA CONTROL TASK DATASET

For the Re-Camera control task, we employ the Multi-Cam Video dataset from the ReCamMaster (Bai et al., 2025a). This established training dataset provides 136,000 videos.

E TRAINING SCHEMES

E.1 MODEL DETAILS FOR SIX TASKS

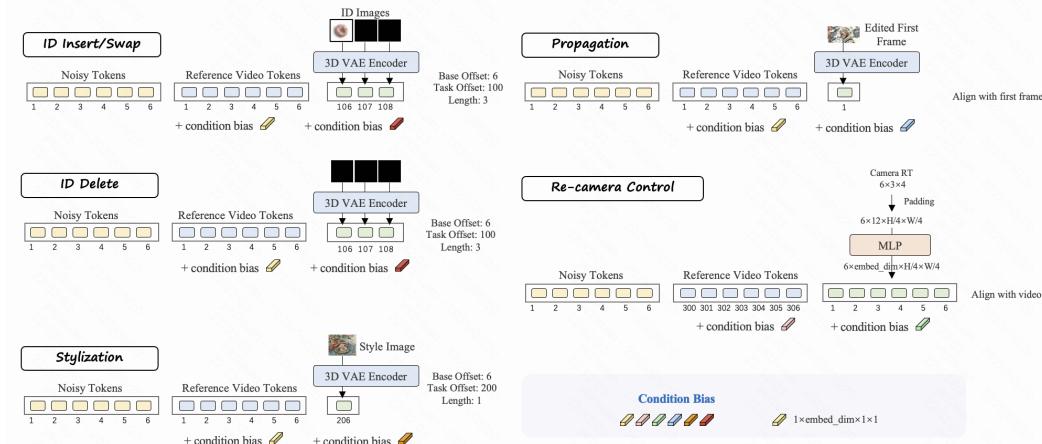


Figure 11: Detailed Input and RoPE index for the six tasks.

Figure S11 illustrates the model architecture details for handling the six distinct tasks. The configuration for each task, particularly concerning input encoding and Rotary Positional Encoding (RoPE) indices, is as follows:

- **ID Insertion and Swapping:** For these tasks, the injected ID image(s) are encoded using the same 3D VAE Encoder employed for the reference video. Their RoPE indices commence from a base offset of 6, with an additional task-specific offset of 100. This allocation has a length of 3, accommodating up to three ID images. If fewer than three ID images are provided for a given instance, the embedding slots for the remaining IDs are filled with representations corresponding to black images.

- **ID Deletion:** In the ID deletion task, all input ID image slots are effectively treated as black images (i.e., their embeddings correspond to black images), signaling the removal operation. The RoPE indexing follows the same base offset of 6 and task offset of 100 as ID insertion/swapping.
- **Stylization:** For the stylization task, the style reference image is also embedded using the 3D VAE Encoder. It utilizes the same base RoPE offset of 6, but with a different task-specific offset of 200. Therefore, the RoPE indices for style tokens begin at 206 (i.e., 6 + 200).
- **Propagation:** The propagation task leverages the direct correspondence with the first frame of the target video. Consequently, the tokens representing this first frame (used as the propagation source/reference) are assigned RoPE index 1.
- **Re-camera Control:** Camera parameters for re-camera control, initially provided as a tensor of size $F \times 3 \times 4$ (where F is the number of frames), undergo a specific tokenization process. First, the last two dimensions (3×4) are flattened, resulting in $F \times 12$. These features are then spatially padded to match the VAE token dimensions of $H/4 \times W/4$ to obtain $F \times 12 \times H/4 \times W/4$. Subsequently, an MLP embeds these processed parameters into a tensor of shape $F \times \text{emb_dim} \times H/4 \times W/4$, aligning them with the dimensionality of tokens encoded by the 3D VAE. Crucially, since this task regards the reference video primarily as soft guidance rather than requiring strict pixel-to-pixel alignment, the RoPE indices for the reference video tokens are shifted by +300 from their original positions (e.g., original index i becomes $i + 300$).

E.2 TRAINING PROGRESS

As shown in Fig.S12, we present two training progression strategies for our method: one starting with tasks deemed “hard” and progressing to “easy” ones, and the converse strategy, from “easy” to “hard”. The classification of tasks as “hard” or “easy” is based on our empirical observations during training within this in-context framework. For instance, we found that the re-camera control task typically requires training on approximately 100k data volume to reach satisfactory performance, whereas ID-related tasks (such as ID insertion or swapping) achieve comparable results with only about 20k volume. Consequently, we categorize re-camera control as a “harder” task in this context.

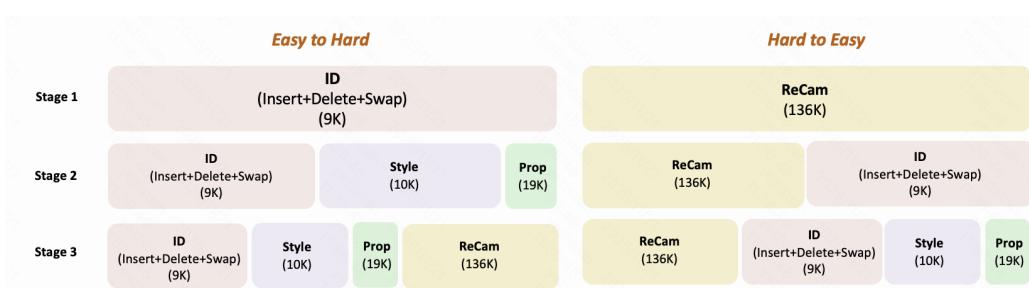


Figure 12: **Training progress with different settings.** We demonstrate two settings of the progress and the data volume of each task.

E.3 TRAINING DETAILS

UNIC is trained on multiple datasets to support multi-task video editing. All finetuning experiments start from an internal pre-trained model with 1B parameters and 28 sequential standard Diffusion Transformer (DiT) blocks. Each block contains 2D self-attention, 3D self-attention, cross attention and FFN layers. The model is finetuned for 16k iterations on 32 H800 GPUs with a batch size of 64. We only finetune the transformer module and the new tokenizers (like the MLP for the camera pose), while freezing the 3D VAE, Text T5 Tokenizer.

1242 **F LIMITATION AND FUTURE WORK**
12431244 Our current unification efforts are limited to the six tasks discussed. The incorporation of additional
1245 modalities, such as lip-syncing with audio, remains unexplored in this work. In future research, we
1246 intend to integrate a wider array of tasks to investigate whether there is an upper limit to the number
1247 of tasks that can be successfully unified. Furthermore, recognizing that a high token count during
1248 self-attention can significantly increase computational overhead, we plan to explore architectural
1249 designs or alternative mechanisms to improve efficiency.1250 While we acknowledge that a better unification solution might exist, particularly from the ultimate
1251 perspective of video editing tasks, our work represents meaningful progress from traditional task-
1252 specific models that require heavy task-specific adapters, even though we still utilize task-specific
1253 embeddings and tokenizers. We have explored prompt-driven approaches to replace them, but
1254 our experiments revealed significant challenges: current video generation models tend to focus on
1255 rendering text rather than understanding and executing instructions effectively. Even with fine-tuning,
1256 the performance falls behind our current design. Implementing a truly prompt-driven video editing
1257 system would require large-scale pre-training, which is currently beyond our computational resources.
1258 Our current model design represents the maximum level of unification we could achieve while
1259 maintaining strong performance across tasks. We remain committed to advancing toward a fully
1260 unified, prompt-driven approach in future work.1261 **G STATEMENT FOR LARGE LANGUAGE MODELS**
12621263 We utilize large language models (LLMs) in this paper only for the purpose of grammar correction
1264 and text refinement. The LLMs are not employed for generating original content or contributing to
1265 the conceptual development of the ideas presented.1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295