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ABSTRACT

Recent advances in text-to-video generation have sparked interest in generative
video editing tasks. Previous methods often rely on task-specific architectures (e.g.,
additional adapter modules) or dedicated customizations (e.g., DDIM inversion),
which limit the integration of versatile editing conditions and the unification of
various editing tasks. In this paper, we introduce UNified In-Context Video Editing
(UNIC), a simple yet effective framework that unifies diverse video editing tasks
within a single model in an in-context manner. To achieve this unification, we
represent the inputs of various video editing tasks as three types of tokens: the
source video tokens, the noisy video latent, and the multi-modal conditioning tokens
that vary according to the specific editing task. Based on this formulation, our key
insight is to integrate these three types into a single consecutive token sequence and
jointly model them using the native attention operations of DiT, thereby eliminating
the need for task-specific adapter designs. Nevertheless, direct task unification
under this framework is challenging, leading to severe token collisions and task
confusion due to the varying video lengths and diverse condition modalities across
tasks. To address these, we introduce task-aware RoPE to facilitate consistent
temporal positional encoding, and condition bias that enables the model to clearly
differentiate different editing tasks. This allows our approach to adaptively perform
different video editing tasks by referring the source video and varying condition
tokens "in context", and support flexible task composition. To validate our method,
we construct a unified video editing benchmark containing six representative video
editing tasks. Results demonstrate that our unified approach achieves comparable
performance with task specialists and exhibits emergent task composition abilities.

1 INTRODUCTION

Recent years have witnessed significant advancements in text-to-video foundation models based on
diffusion (Chen et al., 2023; Wang et al., 2025a; Hong et al., 2022; Yang et al., 2024b; HaCohen
et al., 2024; kli, 2025), establishing powerful tools for creating video content. Beyond the generation,
video editing emerges as a natural extension, which aims to re-generate a reference video under
multi-modal conditions, often incorporating fine-grained control signals like subject ID (He et al.,
2024; Zhang et al., 2025; Yuan et al., 2024) and artistic style (Liu et al., 2023) along with textual
prompts. Video editing spans diverse tasks, including global editing like style transfer (Liu et al.,
2023; Ye et al., 2024), video propagation (Liu et al., 2024a; Ku et al., 2024), and local editing like
object insertion, removal, swap (Tu et al., 2025; Zi et al., 2025; Lee et al., 2025), as well as video
re-rendering like re-camera control (Bai et al., 2025a). These tasks hold vast potential for applications
in film production, virtual reality, and automated content creation.

Current video editing methods primarily follow two strategies to inject reference video and control
signals. As depicted in Fig. 2, one stream of methods, represented by Video-P2P (Liu et al., 2024b),
AnyV2V (Ku et al., 2024), and FLATTEN (Cong et al., 2023), utilizes DDIM inversion for noise
initialization to preserve the main structure of the reference video. However, these methods often
fail to achieve ideal results and will inevitably introduce an additional stage, doubling the inference
steps and cost. Another stream generally employs adapter-based designs (Ku et al., 2024; Kong et al.,
2025b; Jiang et al., 2025; Wang et al., 2024b; Zhang et al., 2023b; Mou et al., 2024) to inject different
conditions, including reference video and multiple control signals. Despite promising progress, these
methods suffer from two main challenges: 1) the adapter-based designs require modification to
the model architectures and introduce parameter redundancy; and 2) these methods are generally
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Figure 1: Unified In-Context Video Editing enables unified video editing and emergent task com-
position. Here we show the unification of six representative tasks, including ID Insert/Delete/Swap,
Re-Camera Control, Stylization, and Propagation. More videos can be found in anonymous page.

task-specific, requiring training separate modules for each condition signal, raising difficulty for task
extendability and unification. Very recently, VACE (Jiang et al., 2025) tries to categorize condition
signals into frames and masks for unified video editing, yet still requires heavy adapter designs and is
limited to process only visual conditions.

Based on these problems, this paper presents a unified and efficient framework for video editing
tasks from multi-modal signals, named UNified In-Context Video Editing (UNIC). Inspired by the
recent advancements in large language models and visual content generation (Yang et al., 2024a;
Bai et al., 2024b; 2025b; Wang et al., 2025c; Chen et al., 2024c; Song et al., 2025; Tan et al., 2024;
Xiao et al., 2024b), our key insight is to integrate diverse input signals from various editing tasks as a
combined token sequence along the frame dimension, which are jointly modeled using the native
transformer attentions to learn editing tasks from diverse context conditions. As shown in Fig. 2, to
achieve unified video editing, UNIC formulates the inputs of different video editing tasks as three
kinds of tokens, i.e., 1) the VAE tokens from reference video, 2) the multi-modal condition signals
that vary upon the editing tasks, as well as 3) the noisy video latent. By jointly concatenating these
tokens and dynamically varying the condition token “in context", UNIC can flexibly perform diverse
editing tasks without any architectural changes.

Crucially, directly concatenating these diverse input tokens presents unavoidable challenges for
unified video editing. Firstly, the multi-modal conditions from different task types present inconsistent
lengths, raising difficulty in achieving correct alignment with the video. For example, camera poses
usually have a direct frame-to-frame correspondence to each video frame, while the style images
directly affect the entire video. Such inconsistency makes it challenging to deal with varying-length
video editing and leads to inevitable index collisions. Therefore, we propose Task-aware RoPE, which
dynamically assigns unique Rotary Positional Embedding (RoPE) indices based on different task
types, ensuring coherent temporal understanding regardless of varying condition length. Furthermore,
different editing tasks may share the same modality of conditions (e.g., an image may represent an
object identity in object editing or style in video stylization), leading to task confusion. To this end,
we introduce a learnable condition bias for multi-modal condition signals, which enables the model
to adaptively learn the target task type and resolve task ambiguity.
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Figure 2: Architectural comparison for incorporating conditioning signals. (a) Extra Stage:
Utilizes DDIM inversion on a reference video to derive inverted noise. (b) Extra One-to-One Control
Modules: Employs dedicated, separate modules to process each control signal (e.g., reference video,
multi-modal signals) and inject guidance into the diffusion model. (c) In-Context Video Editing
(Ours): Our proposed method directly integrates guidance by tokenizing all conditioning signals
(reference video, multi-modal signals) and concatenating them with the noisy input tokens, allowing
the diffusion model to process all information jointly within its input sequence.

To validate the performance of our proposed framework, we construct a unified video editing
benchmark incorporating six representative video editing tasks with distinct editing area ratio and
conditioning modalities, including: local editing tasks of ID Swap/Delete/Insert (Jiang et al., 2025;
Bian et al., 2025); global editing tasks of stylization (Ye et al., 2024) and propagation (Liu et al.,
2024a); and the re-rendering task of re-camera control (Bai et al., 2025a). These tasks exhibit
significant variation in their input modalities (including text, images, and camera poses). Experimental
results indicate that, despite the wide range of differences among these tasks, our framework not
only successfully unifies them but also delivers superior performance across all. As shown in Fig. 1,
our method offers two distinct advantages: 1) supporting a variety of editing tasks within a single
framework without necessitating architectural changes, showcasing high flexibility; and 2) emergent
capability to combine various editing tasks, highlighting its potential to unlock more complex
and creative editing possibilities. We also provide in-depth analysis for unified video generation,
respectively about the advantages of unified training over single task training as well as the training
order of different tasks.

2 RELATED WORK

2.1 VIDEO EDITING AND RE-RENDERING

Based on current excellent T2V base models like Wan (Wang et al., 2025a), LongCat(Team et al.,
2025), the editing capability of these models is being actively explored and has attracted significant
attention. Video editing encompasses diverse tasks, ranging from local adjustments to global transfor-
mations of a reference video. Achieving these modifications often requires injecting multi-modal
signals, such as motion (Tu et al., 2025; Wang et al., 2024c; 2025b; Xiao et al., 2024a; Wei et al.,
2024), style (Liu et al., 2023; Ye et al., 2024), object attributes (Tu et al., 2025; Huang et al., 2025;
He et al., 2024; Zhang et al., 2025), audio (Kong et al., 2025b; Yang et al., 2025), or camera pose (Bai
et al., 2025a; 2024a; Wang et al., 2024c; Luo et al., 2025), into generation process.

To preserve information from the reference video during editing, several methods employ DDIM
inversion. This technique initializes generation noise based on the reference video and injects features
extracted during inversion into the denoising steps. For instance, VideoP2P (Liu et al., 2024b) copies
inversion features and replaces specific cross-attention maps to align with editing requirements.
FLATTEN (Cong et al., 2023) utilizes optical flow to identify keypoints and inject their features to
maintain motion fidelity. AnyV2V (Ku et al., 2024) leverages spatial, temporal, and CNN features
gathered during inversion. While these approaches excel at retaining reference video information,
they require an additional inversion stage, increasing inference cost and computational overhead. To
reduce computational cost, image editing works like FlowEdit (Kulikov et al., 2025) and InfEdit (Xu
et al., 2024) explore inversion-free methods. Similarly, video editing methods like FlowDirector (Cai
et al., 2025; Zhang & Han; Li et al., 2025) follow this insight and apply it to video editing. However,
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they can only perform limited video editing scenarios like text-based attribute editing, while IF-
V2V (Kong et al., 2025a) can only perform I2V propagation, which is not sufficient to cover and
address various video editing tasks.

Instead of additional processing stages, another strategy focuses on injecting control directly into the
denoising network using auxiliary modules. Some works adopt an extra model to process diverse
conditions, for example VEGGIE (Yu et al., 2025) uses a grounding model for processing, while
UniVideo (Wei et al., 2025) adopts an LLM as text encoder to enhance the generation performance.
Another stream of work assigns a control module for each condition. For example, to maintain
structural or layout information of reference videos, Follow-your-Canvas (Chen et al., 2024a) extracts
window details with a layout encoder, while MagicEdit (Liew et al., 2023) leverages the depth video
of the reference video via a depth ControlNet (Zhang et al., 2023a). For finer-grained preservation
of content and motion details, VideoAnyDoor (Tu et al., 2025) and Revideo (Mou et al., 2024) use
separate encoders to obtain the feature and inject them through ControlNet. To incorporate additional
multi-modal conditions, VideoAnyDoor employs an extra ID encoder, infusing identity information
via cross-attention. Likewise, StyleMaster (Ye et al., 2024) introduces a dedicated style encoder,
injecting style features through cross-attention. A common choice of these methods is the reliance
on specialized control modules for each condition type. This design choice, requiring additional
control modules for different conditions, inevitably increases overall model complexity and limits
the extensibility to diverse or novel video editing tasks.

2.2 UNIVERSAL GENERATIVE MODELS

Developing unified “omni” solutions capable of handling diverse generative tasks within a single
model is a challenging but highly valuable goal. The field of image editing and generation has
witnessed a clear trend towards such unification. Early works like Instruct-imagen (Hu et al., 2024)
integrated multi-modal instructions using cross-attention. OmniGen (Xiao et al., 2024b) further
advances this by tokenizing all conditions as direct inputs to the transformer, creating a flexible
"any-purpose" generation model without external plugins. This powerful approach of handling
conditions directly within the core architecture has been validated and extended by subsequent
research, including OminiControl (Tan et al., 2024), ACE (Han et al., 2024), UniReal (Chen et al.,
2024b), and other unified models (Le et al., 2024; Song et al., 2025; Mou et al., 2025).

In contrast, unified video generation approaches often depend on task-specific control mecha-
nisms. VideoComposer (Wang et al., 2024b) employs different ControlNets for various inputs,
and VACE (Jiang et al., 2025) uses specialized control blocks. Drawing inspiration from image edit-
ing paradigms that leverage full-attention mechanisms to replace dedicated modules like ControlNet,
we propose extending this strategy to video editing. Although FullDiT (Ju et al., 2025) demonstrated
3D full-attention potential for multi-control video generation, the leap to more difficult video editing
remains an open challenge. Our work aims to fill this gap by developing a more unified and flexible
method for general video editing purposes, eliminating the need for separate control modules.

3 METHOD

Towards general video editing, we first review the diverse video editing tasks, and systematically
define all inputs across different tasks into three basic types. Building on this, we introduce an in-
context video editing framework, offering a parameter-efficient and highly flexible approach adaptable
to various editing purposes. We further elaborate on the specific design within our architecture for
task differentiation and flexibility.

3.1 MULTI-MODAL DRIVEN VIDEO EDITING TASKS

Multi-modal conditions driven video editing tasks, as illustrated in Fig. 3, incorporating various
inputs. For example, stylization requires a reference video and a style image, while object insertion
needs a reference video, text, and an object image. Fundamentally, these tasks are driven by unique
combinations of multi-modal inputs. We generalize these inputs into three basic types: 1) Noisy
tokens represent the initial latent state of the target video, typically from random noise or a noise-
added input video latent. 2) Reference video tokens represent the VAE tokens of a reference video,
providing crucial temporal context, motion, and visual content. Their influence varies with the
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Figure 3: Overall Pipeline of Unified In-Context Video Editing. Our framework utilizes a unified
transformer architecture for video editing. The model input is created by concatenating noisy tokens,
reference video tokens, and multi-modal condition tokens (task-specific controls like images), these
combined tokens form a single input sequence along the frame dimension. By simply modifying the
multi-modal condition tokens, this framework can handle any video editing task.

task’s alignment requirements. For strict-alignment tasks like ID deletion or stylization, these tokens
enforce strong frame-by-frame correspondence, ensuring the output precisely follows the motion and
unedited content. In soft-reference scenarios such as re-camera control, these tokens provide more
abstract guidance, following the overall content or motion style without demanding strict pixel-level
matching, which allows for significant deviations. 3) Multi-modal condition tokens include all
other forms of guidance signals. This versatile category includes image tokens and auxiliary control
tokens. For example, image tokens encode reference images, guiding structural edits (like the edited
first frame in video propagation) or serving as a style reference (in stylization) and ID reference
(in ID insertion). Besides, auxiliary control tokens can contain diverse signals like camera poses,
depth maps, segmentation masks, human pose skeletons, edge maps, sparse trajectories for motion
guidance, and audio signals for lip-syncing, providing fine-grained control.

This classification allows any video editing task to be represented within our structured approach, the
specific combination can leads to different tasks, making it easier to uniformly process these tasks
within a unified framework.

3.2 UNIFIED IN-CONTEXT VIDEO EDITING

We introduce Unified In-Context Video Editing (UNIC), a simple yet effective paradigm for diverse
video editing tasks. The core idea is to represent all inputs, including the noisy tokens, the reference
video, and all other multi-modal conditioning signals (images, cameras, etc.), as a single, unified
token sequence. This contrasts with approaches that inject conditions via additional control modules.
By processing all information jointly within the full-attention layers, the model can flexibly learn the
contextual relationships for different editing tasks from the conditions provided “in context”.

Preliminary. Our method inherits the video diffusion transformers trained using flow matching.
Specifically, the training objective is given by:

LFM(θ) = Et,x0,x1
∥vθ(xt, t)− (x1 − x0)∥22 , (1)

where x1 ∼ p(x1) represents the video sample, x0 ∼ N (0,1) is a Gaussian sample, and t is
randomly distributed in [0, 1]. The function vθ is the neural network that takes the noised version
xt = tx1 + (1− t)x0 as input.

Training with this loss function leads to the following ordinary differential equation (ODE):

dxt

dt
= vθ(xt, t), (2)

which allows us to sample a synthesized video x1 from a random Gaussian noise x0.

Our transformer consists of several DiT blocks, where each block contains 2D self-attention to learn
spatial information and 3D self-attention to fuse spatio-temporal information.
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3.2.1 IN-CONTEXT VIDEO EDITING

For video editing and re-rendering tasks, given a reference video Vref ∈ Rf×c×h×w and a set of
conditions {Ci | i = 1 . . . n}, our goal is to generate a target video Vtar ∈ Rf×c×h×w that aligns
with these conditions while preserving required content of Vref .

Instead of using DDIM inversion or adding add additional control modules like previous work, we
propose a unified and parameter-efficient approach, concatenating all the inputs along the frame
dimension to perform self-attention. First, we encode the reference video Vref using a 3D VAE
encoder to obtain its latent representation zref . Similarly, other conditions Ci are converted into
token sequences zi using modality-specific tokenizers (e.g., the same 3D VAE for image conditions,
a T5 tokenizer for text, an MLP for camera pose, etc.).

As shown in Fig. 3, during generation, the model operates on a noisy latent ztar. By concatenating
multi-modal tokens as: zcond = [z1; . . . ; zN ], which is then combined with noisy token ztar, reference
video tokens zref in frame dimension into a single sequence as the model input z = [ztar; zref ; zcond],
we can simply perform full 3D attention to enable the interaction of the tokens. Without requiring an
intricate inversion process or task-specific architectural modifications, the only requirements for this
framework are the modality-specific tokenizers, which are also needed in other methods.

3.2.2 EFFECTIVE AND FLEXIBLE TASK UNIFICATION

Based on in-context editing framework, theoretically we can unify all the video editing tasks. However,
directly concatenating them introduces specific challenges: 1) Task Ambiguity: When different
editing tasks rely on conditions from the same modality (an image can refer to style reference or ID),
simple concatenation can make it difficult for the model to distinguish the target task of the conditional
tokens. 2) Positional Encoding Conflicts & Inflexibility: The 3D RoPE used in video generation
base models, often assigns sequential indices in the frame dimension, which will raise problems when
handling different conditions. For example, style reference does not have a direct correspondence
with video frames, whereas camera pose requires frame-to-frame correspondence, making it difficult
to maintain appropriate alignments under sequential indices. The situation becomes more problematic
in variable-length editing, where it even struggles to clearly distinguish boundaries between reference
videos and conditions. To address these difficulties, we introduce two key components: Condition
Bias and Task-Aware RoPE Index.

Condition Bias As mentioned above, to address the task ambiguity, we propose Condition Bias,
the task-specific learnable embedding that is directly added to tokens before attention computation.
To be specific, for each condition in the context, including the multi-modal signals and reference
video, i.e., zi ∈ {zref, z1, . . . , zN}, we inject a learnable bias bi ∈ Rd corresponding to its task type:

z̃i = zi + bi . (3)

These task-aware tokens {z̃i} then undergo standard full self-attention. The biases implicitly guide
attention by structuring token representations: tokens from the same task share similar bias-induced
feature offsets, promoting intra-task alignment while maintaining cross-task distinction. The learnable
embeddings are zero-initialized to preserve original token semantics, and their dimension-preserving
addition enables simple integration with existing architectures.

Task-aware RoPE Index Standard 3D Rotary Position Embedding (RoPE) assigns sequential
indices to frames. For instance, in a re-camera control task with N frames, noisy tokens might occupy
indices 0 to N − 1, reference video tokens N to 2N − 1, and camera poses 2N to 3N − 1. When the
video frame length N varies, it will be hard to find the boundaries between the conditions, causing
poor frame alignment.

To address this, we introduce a task-aware RoPE indexing scheme: 1) For tasks where conditional
inputs have a direct frame-to-frame correspondence with the video (e.g., reference videos, camera
poses, audio), we reuse the indices of the noisy latent video frames (0 to N − 1), which can help
maintain the alignment. 2) For tasks that do not have such direct frame-to-frame correspondence (e.g.,
ID images, style references), we assign indices based on a base offset and task-specific offset. The
base offset, m, is determined by the video length (i.e., m = N ). Beyond this, each task t is assigned
with a pre-defined, fixed task offset, Ot, and a slot count (or length), Lt. The value Ot dictates the
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Table 1: Quantitative comparison on six video editing tasks: ID Insert/Swap/Delete, Re-Camera
control, Stylization, and Propagation. Best results are highlighted in bold.

ID Insert

Method Identity Alignment Video Quality
CLIP-I↑ DINO-I↑ CLIP-score↑ Smoothness↑ Dynamic↑ Aesthetic↑

VACE (Jiang et al., 2025) 0.522 0.110 0.100 0.933 44.568 5.407
Pika (pik, 2025) 0.689 0.387 0.253 0.934 20.65 5.393
Ours 0.598 0.245 0.216 0.961 11.07 5.627

ID Swap
VACE (Jiang et al., 2025) 0.712 0.423 0.230 0.964 29.306 6.015
Pika (pik, 2025) 0.700 0.393 0.209 0.948 20.09 5.210
AnyV2V(Prop) (Ku et al., 2024) 0.605 0.229 0.218 0.917 7.596 4.842
Ours(Prop) 0.693 0.414 0.236 0.980 5.153 5.801
Ours 0.725 0.429 0.242 0.971 7.500 6.056

ID Delete

Method Video Reconstruction Alignment Video Quality
PSNR↑ RefVideo-CLIP↑ CLIP-score↑ Smoothness↑ Dynamic↑ Aesthetic↑

AnyV2V(Prop) (Ku et al., 2024) 19.504 0.869 0.205 0.964 4.980 5.325
VACE (Jiang et al., 2025) 20.947 0.883 0.211 0.966 15.441 5.332
VideoPainter (Bian et al., 2025) 22.987 0.920 0.212 0.957 13.759 5.403
Ours(Prop) 20.378 0.906 0.209 0.968 9.017 5.408
Ours 19.171 0.900 0.217 0.970 10.934 5.493

Propagation

Method Frame Alignment Alignment Video Quality
RefVideo-CLIP↑ CLIP-score↑ Smoothness↑ Dynamic↑ Aesthetic↑

AnyV2V (Ku et al., 2024) 0.812 0.229 0.935 13.462 5.136
VACE(I2V) (Jiang et al., 2025) 0.574 0.234 0.932 36.783 5.425
Ours 0.840 0.226 0.966 12.762 5.565

Stylization

Method Style & Content Alignment Video Quality
CSD-Score↑ ArtFID↓ CLIP-score↑ Smoothness↑ Dynamic↑ Aesthetic↑

AnyV2V(Prop) (Ku et al., 2024) 0.207 43.299 0.195 0.937 9.227 4.640
StyleMaster (Ye et al., 2024) 0.306 38.213 0.188 0.952 9.758 5.121
Ours(Prop) 0.197 36.198 0.215 0.932 11.569 5.045
Ours 0.259 37.619 0.171 0.945 9.370 5.276

Re-Camera Control

Method Camera Control Alignment Video Quality
RotErr↓ TransErr↓ CLIP-score↑ Smoothness↑ Dynamic↑ Aesthetic↑

ReCamMaster-Wan (Bai et al., 2025a) 1.454 5.695 0.219 0.917 31.751 4.738
Ours 1.275 5.667 0.220 0.933 24.21 4.826

starting point of task t’s allocation relative to m, and Lt defines how many consecutive indices the
task occupies. The index range for such a task t is calculated as:

Index(t) = (m+Ot) + [0, . . . , Lt − 1] (4)

These task offsets Ot and lengths Lt are chosen to ensure non-overlapping task slots and maintain
clear task distinction. For example, if ID images (task 1) are defined with a task offset O1 = 100
and require L1 = 3 slots (supporting up to 3 IDs), they will use indices from N + 100 to N + 102.
If a style reference (task 2) is defined with a task offset O2 = 200 and requires L2 = 1 slot, it will
occupy the index N + 200. This adaptive approach ensures that task slots automatically scale with
the video length N , while preserving their relative positional relationships and avoiding overlap.

Training Strategy In this work, we unify six tasks into this framework, including ID insert, ID swap,
ID delete, re-camera control, video style transfer, video propagation. These tasks were chosen due to
their diverse condition modalities and varying editing degree. However, joint training performance is
affected by training order due to differences in task complexity and convergence rates. For example,
re-camera control requires 600k iterations to converge, while simpler tasks like ID-swapping achieve
good results in only 80k iterations. During joint training, if we start with easier tasks, they dominate
the optimization with faster loss reduction, failing to allocate sufficient capacity to more difficult
tasks. Therefore, we choose a hard-to-easy training strategy, i.e., progressively training tasks from
higher to lower difficulty for convergence.
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4 EXPERIMENTS

Dataset and Benchmark UNIC is trained on multiple datasets to support multi-task video editing.
For ID swap/insert/delete and stylization tasks, we use self-constructed datasets (see Appendix for
details). These are also adapted for the propagation task by using the first frame of the target video as
the edited input. For re-camera control, we use the Multi-Cam Video Dataset from ReCamMaster (Bai
et al., 2025a). To comprehensively evaluate the method, we construct a unified video editing
benchmark incorporating six representative video editing tasks with distinct editing area ratio and
conditioning modalities. The details of the benchmark can be found in Appendix.

Evaluation Metrics The evaluation of these tasks is conducted across two dimensions: task-specific
performance and overall video quality. To assess task-specific performance, for ID tasks, we employ
the DINO-score (Caron et al., 2021) and CLIP-score (Radford et al., 2021) to evaluate identity
similarity with the reference image. For the style task, style similarity with the reference style
image is validated using the CSD-score (Somepalli et al., 2024), while ArtFID and CFSD (Chung
et al., 2024) are used to consider content preservation. Furthermore, for re-camera control, we use
RotErr, TransErr, and CamMC following CamI2V (Zheng et al., 2024) to evaluate the alignment with
the given camera pose. Besides, the overall quality of the generated videos is assessed by motion
smoothness, dynamic degree, and aesthetic score, subject consistency, background consistency,
temporal flickering and imaging quality (Huang et al., 2024).

4.1 EDITING PERFORMANCE COMPARISON

We compare our approach with the state-of-the-art unified video editing methods like VACE (Jiang
et al., 2025) and task-specific methods from different video editing methods, like ReCamMaster (Bai
et al., 2025a). We provide an evaluation of overall video performance, including text alignment
and overall quality, as well as task-specific metrics such as DINO-score in ID-related tasks. Since
the propagation version (indicated by a (prop) suffix) for Swap/Delete/Stylization tasks requires the
edited first frame, we specifically use Insert-Anything (Song et al., 2025), FLUX (Labs, 2024), and
the first frame of StyleMaster (Ye et al., 2024) to obtain the edited first frame.

As presented in Table 1, our six-in-one framework demonstrates consistent and strong performance
across all evaluated video editing tasks. Notably, our model achieves leading results in ID Insert and
Re-Camera Control, outperforming existing methods on most metrics. For Stylization, we achieve
comparable performance to specialized models like StyleMaster (Ye et al., 2024). While for ID
Delete, specialized models like VideoPainter (Bian et al., 2025) show better video reconstruction with
PSNR, our approach still surpasses it in alignment with CLIP-score and some video quality aspects
such as Smoothness and Aesthetic score. Furthermore, a significant advantage of our method is its
flexibility, supporting arbitrary resolutions and lengths, a capability not present in many fixed-length
video editing models.

4.2 VIDEO QUALITY COMPARISON ON DIFFERENT EDITING TASKS

Here we give a more comprehensive report on the generated video quality compared with the
baseline methods, as shown in Table 2. Our method demonstrates consistently stable video quality
across all editing tasks. The results show that our approach maintains reliable performance metrics
across different scenarios, including identity swap, style transfer, and camera control tasks. The
temporal quality remains stable with competitive motion smoothness and minimal flickering artifacts.
Additionally, our method exhibits robust consistency in both subject and background preservation
while delivering satisfactory imaging quality.

4.3 COMPARISON WITH OTHER CONDITION INJECTION METHODS

To further demonstrate the difference with other conditioning and tuning methods, we implement
both LoRA and adapter-based versions, with the latter following the design of VideoAnyDoor (Tu
et al., 2025) for ID insert and ID swap tasks. The computational cost and performance are shown in
Table 3 and Table 4. Our method demonstrates superior performance compared to other approaches,
consistently outperforming both LoRA and Adapter-based methods across all metrics in both ID

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Video Quality Comparison on different editing tasks. Best results are highlighted in bold.

Motion
Smoothness

Dynamic
Degree

Aesthetic
Score

Subject
Consistency

Background
Consistency

Temporal
Flickering

Imaging
Quality

ID Swap
VACE (Jiang et al., 2025) 0.990 0.350 0.613 0.966 0.957 0.982 0.697
Pika (pik, 2025) 0.994 0.250 0.517 0.973 0.960 0.990 0.708
AnyV2V(Prop) (Ku et al., 2024) 0.966 0.150 0.499 0.873 0.909 0.957 0.552
Ours 0.993 0.100 0.605 0.975 0.970 0.988 0.690

AnyV2V(Prop) (Ku et al., 2024) 0.960 0.350 0.433 0.858 0.924 0.949 0.375
StyleMaster (Ye et al., 2024) 0.988 0.400 0.490 0.941 0.956 0.978 0.499
Ours 0.989 0.300 0.551 0.929 0.948 0.974 0.604

Re-Camera Control
ReCamMaster-Wan (Bai et al., 2025a) 0.994 0.500 0.459 0.930 0.921 0.983 0.576
Ours 0.994 0.600 0.449 0.925 0.942 0.986 0.604

Table 3: Computational cost comparison with LoRA and
adapter-based methods on ID Insert task.

Method FLOPs Params CLIP-I↑ DINO-I↑ CLIP-Score↑
Adapter-based 51.73T 1.65B 0.505 0.190 0.158
LoRA 69.29T 1.20B 0.537 0.222 0.193
Full Finetuning 69.29T 1.20B 0.528 0.242 0.203
Ours 69.29T 1.20B 0.568 0.254 0.227
Ours + step cache 39.28T 1.20B 0.558 0.249 0.232

Table 4: Quantitative comparison
with LoRA and adapter methods.

ID Insert CLIP-I↑ DINO-I↑ CLIP-Score↑
Adapter-based 0.505 0.190 0.158
LoRA 0.537 0.222 0.193
Ours 0.568 0.254 0.227
ID Swap CLIP-I↑ DINO-I↑ CLIP-Score↑
Adapter-based 0.694 0.417 0.221
LoRA 0.713 0.433 0.230
Ours 0.732 0.449 0.238

Table 5: Ablation study on the training order of different tasks. We employ three settings: hard to
easy, easy to hard, and joint training. Best results are highlighted in bold.

Training Order Identities ReCam Style
CLIP-I↑ DINO-I↑ RotErr↓ TransErr↓ CamMC↓ CSD-Score↑ ArtFID↓ CFSD↓

-> camera
-> camera+id
-> camera+id+style+propagation

0.725 0.429 1.275 5.667 6.154 0.259 37.619 0.107

-> id
-> id+style+propagation
-> camera+id+style+propagation

0.726 0.427 1.398 5.681 6.275 0.247 37.748 0.109

-> camera+id+style+propagation 0.713 0.421 2.287 9.694 10.377 0.298 38.953 0.170

Insert and ID Swap tasks. Moreover, with a simple step cache optimization, our approach shows
significant efficiency potential while maintaining competitive performance.

4.4 ANALYSIS FOR OUR IN-CONTEXT VIDEO EDITING

We provide a set of experiments to demonstrate the training choice of in-context video editing
for different tasks. Based on our experimental results, we summarize several key findings that
highlight how specific training strategies enable robust multi-task unification and enhance the overall
performance of our in-context framework.

Should we train tasks sequentially or jointly? To determine the optimal training strategy for our
unified tasks, which possess varying levels of difficulty, we investigate whether sequential training or
joint training yields superior performance. As shown in Table 5, we report results under different
training strategies. Among our selected six tasks, re-camera control is the most difficult, since
the modality is far away from the visual content, while the ID-related task is relatively easy to
learn. We experiment with three approaches: (1) sequential training from hard to easy tasks, (2)
sequential training from easy to hard tasks, and (3) joint training of all tasks from scratch. Our
findings indicate that the sequential training approaches (hard-to-easy and easy-to-hard) can help the
multi-task learning. In contrast, joint training from scratch, while capable of learning easier tasks,
struggles significantly with harder ones, resulting in poor performance on the re-camera control task.
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Table 6: Performance Comparison between task-specific model and unified model. We evaluate
our unified model (B4) against task-specific models trained for ID (B1), style (B2), and re-camera
control (B3) on relevant metrics for each task. Best results are highlighted in bold.

Task Identities Style ReCam
DINO-I↑ CLIP-I↑ CSD-Score↑ ArtFID↓ CFSD↓ RotErr↓ TransErr↓ CamMC↓

B1 id 0.449 0.723 - - - - - -
B2 style - - 0.234 37.674 0.096 - - -
B3 camera - - - - - 1.472 5.836 6.434
B4 id+style+camera 0.429 0.725 0.259 37.619 0.107 1.275 5.667 6.154

Table 7: Ablation Study on Condition Bias and Task-aware RoPE. We compare our full model
(D4) with their variants. Best results are highlighted in bold. ↑ indicates higher is better; ↓ indicates
lower is better.

Condition RoPE Identities Style ReCam
Bias Sequential Task-aware DINO-I↑ CLIP-I↑ CSD-Score↑ ArtFID↓ CFSD↓ RotErr↓ TransErr↓ CamMC↓

D1 ✓ 0.433 0.710 0.242 34.194 0.081 2.501 8.972 13.119
D2 ✓ ✓ 0.434 0.723 0.274 35.548 0.091 1.428 6.039 6.566
D3 ✓ 0.422 0.710 0.258 32.768 0.072 1.304 6.038 6.498
D4 ✓ ✓ 0.429 0.725 0.259 37.619 0.107 1.275 5.667 6.154

Will the task unification affect single-task performance? There is a natural concern about whether
multi-task learning affects single-task performance. To explore this, we conduct a comparative study
between task-specific models and the unified model. We train separate models for stylization, ID-
related editing, and re-camera control, and compare their performance with the unified model. As
shown in Table 6, the unified model does not impair task performance and even offers advantages
in camera control and style similarity in stylization. However, it slightly compromises content
preservation in stylization. This trade-off is due to the training mechanism: during ID-related tasks,
the model is trained to fully preserve content. As a result, in stylization tasks, the unified model retains
more information than just style, leading to higher style similarity but reduced content preservation.
Overall, unifying diverse tasks within this framework does not significantly degrade individual task
performance and can even enhance it in some cases.

Do condition bias and task-aware RoPE Matter? To validate our proposed Condition Bias and
Task-Aware RoPE, we conduct an ablation study, with results presented in Table 7. Comparing our
full model against variants clearly demonstrates their benefits. The baseline model (D1), lacking both
components, performs adequately on simple tasks but struggles with complex temporal tasks like
re-camera control, showing high TransErr and CamMC. Adding Condition Bias alone (D2) improves
CLIP-I in ID swap and reduces TransErr in re-camera control, while implementing only Task-aware
RoPE (D3) significantly reduces CamMC in re-camera control. The full model (D4), combining
both components, achieves superior performance across all tasks. These results demonstrate how
Condition Bias enables effective task disambiguation while Task-aware RoPE enhances temporal
modeling, together creating a robust unified video editing framework.

5 CONCLUSION

In this paper, we introduce UNified In-Context Video Editing (UNIC), a simple yet effective frame-
work that unifies diverse video editing tasks within a single model in an in-context manner. To this
end, we formulate the input of different video editing tasks as three types of tokens, integrating them
as a single unified token sequence jointly modeled with the original full-attention of diffusion trans-
formers. With the devised task-aware RoPE and conditional bias, our method can flexibly perform
different editing tasks and support their combination. To facilitate the evaluation, we also construct a
unified video editing benchmark. Extensive experiments on six representative video editing tasks
demonstrate that our unified model shows superior performance on each task and exhibits emergent
task composition abilities.
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Ethics Statement This work has been conducted in accordance with the ICLR Code of Ethics. We
have carefully considered the ethical implications of our research and can confirm several key points.
The training data used in this study was legally obtained through legitimate commercial sources.
Prior to model training, we implemented a comprehensive data filtering and screening process to
remove potentially harmful, biased, or problematic content. This ensures our model adheres to ethical
AI principles.

Reproducibility Statement To ensure the reproducibility of our work, we will ensure the following
points. Code: Our code and model will be made publicly available, including necessary scripts. Data:
Detailed descriptions of our data processing pipeline and preprocessing steps are provided in Appendix
C. Experimental Setup: We have stated all experimental configurations, including hyperparameters,
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A APPENDIX

The Appendix of this paper contains the following main sections:

• Additional Experiment and Analysis - providing supplementary experimental results and
detailed analysis

• UNIC Benchmark - describing the benchmark details

• Training Dataset Construction - the construction of training datasets

• Training Schemes - explaining the specific training strategies and protocols

• Limitation and Future Work - discussing current limitations and future research directions

• Statement for Large Language Models - clarifying the usage of large language models

B ADDITIONAL EXPERIMENT AND ANALYSIS

B.1 ADAPTION TO OTHER BASE MODEL

We also adapt our method to another base model Wan-1.3B Wang et al. (2025a), which has a similar
model size and comparable T2V performance to our base model. The experimental results are shown
in Table 8. We evaluate our method on three different tasks: ID insertion, stylization, and camera
control (ReCam). The results demonstrate that our approach achieves comparable performance across
both base models. While the Wan 1.3B model shows slightly lower performance in some metrics, this
is likely due to the fact that we did not further adjust the training parameters specifically for this
model. Nevertheless, these results demonstrate that our method is model-agnostic and successfully
unifies these diverse video generation tasks across different base models.

Table 8: Performance comparison on different base models.

Task Type CLIP-I↑ DINO-I↑ CLIP-Score↑
ID Insert Internal 1B 0.598 0.245 0.216
ID Insert Wan 1.3B 0.528 0.210 0.193
Task Type CSD-score↑ ArtFID↓ CLIP-Score↑
Stylization Internal 1B 0.259 37.619 0.171
Stylization Wan 1.3B 0.236 35.318 0.181
Task Type RotErr↓ TransErr↓ CLIP-Score↑
ReCam Internal 1B 1.275 5.667 0.220
ReCam Wan 1.3B 1.272 5.674 0.218

B.2 BENEFITS OF UNIFICATION

Our approach demonstrates significant advantages over task-specific adapters or task-specific tuning
like LoRA or adapters. We analyze these benefits from three key perspectives:

Parameter Efficiency Our method achieves remarkable parameter efficiency by adding only
thousands of trainable parameters to support six distinct tasks. In contrast, using separate LoRA
modules would require training and storing multiple task-specific modules, each containing millions
of parameters, resulting in substantially higher storage and computational demands.

Multi-task Synergy The shared architecture enables positive interactions between tasks through
cross-task information sharing. This is particularly evident in addressing domain-specific limitations.
For example, in re-camera control tasks, multi-task joint training significantly improves human
representation quality compared to single-task training, as shown in Table 9. The multi-task approach
achieves better scores in human-anatomy (0.903 vs 0.889), human-identity (0.887 vs 0.844), and
human-clothes (0.921 vs 0.891), demonstrating how shared knowledge across tasks helps mitigate
domain-specific constraints.
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Table 9: Comparison of human-centered metrics between ReCam-only training and multi-task joint
training.

Task Training Strategy Human-Anatomy↑ Human-Identity↑ Human-Clothes↑
ReCam ReCam Only Training 0.889 0.844 0.891
ReCam Multi-Task Joint Training 0.903 0.887 0.921

Efficient Fine-tuning The unified architecture facilitates rapid adaptation to new tasks through
shared representations. Our experiments demonstrate the efficiency of knowledge transfer, as shown
in Table 10. When fine-tuning for propagation tasks based on ID swap knowledge, we achieve
superior performance (RefVideo-CLIP: 0.820) with just 0.4k training steps, compared to 2k steps
required by propagation-only training (RefVideo-CLIP: 0.792). This 5× reduction in training steps,
along with consistent improvements across multiple metrics, validates the effectiveness of our unified
framework.

Table 10: Comparison of fine-tuning efficiency and performance metrics between different training
strategies.

Strategy Training Steps RefVideo-CLIP↑ CLIP-score↑ Smoothness↑ Dynamic↑ Aesthetic↑
propagation only 1k 0.765 0.205 0.948 12.956 5.028
propagation only 2k 0.792 0.219 0.952 13.262 4.912
based on ID swap 0.2k 0.789 0.217 0.951 13.245 5.036
based on ID swap 0.4k 0.820 0.226 0.956 13.562 5.265

These benefits enable not only more efficient model deployment but also better task performance and
easier extension to new video editing tasks. Moreover, unlike methods requiring multiple LoRAs, our
unified approach allows for seamless task composition without the risk of conflicting behaviors when
combining different editing operations.

Table 11: Comparison with different conditioning and tuning methods.

Lightweight Efficient Finetuning Task Composition

LoRA ✓ × ×
Adapter × × ×
Ours ✓ ✓ ✓

B.3 SCALING UP MODEL SIZE

We conduct comprehensive experiments to investigate the impact of model scaling on various video
editing tasks. Our analysis compares the performance between 1B and 10B parameter models across
different tasks and evaluation metrics, as shown in Table 12.

The results demonstrate significant improvements when scaling up to larger models. For the ID
Insert task, scaling to 10B parameters yields substantial enhancements across all metrics, with CLIP-I
improving by 5.7% and DINO-I increasing by 17.1%. Similar improvements are observed in ID
Swap tasks, while ID Delete shows remarkable enhancement in reconstruction quality with PSNR
increasing from 19.171 to 47.850. These results provide strong quantitative evidence that scaling up
model size leads to better performance across various video editing tasks.

B.4 COMPUTATION COST ANALYSIS

We provide a detailed breakdown of the computational requirements for different video editing tasks
in our unified framework, as shown in Table 13.

B.5 ANALYSIS OF JOINT TRAINING PERFORMANCE

We investigate the performance degradation observed in joint training and propose potential solu-
tions. Our analysis reveals that the degradation primarily stems from the varying complexity and
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Table 12: Performance comparison between 1B and 10B parameter models across ID tasks.

Task Type CLIP-I↑ DINO-I↑ CLIP-Score↑
ID Insert 1B 0.598 0.245 0.216
ID Insert 10B 0.632 0.287 0.246
ID Swap 1B 0.725 0.429 0.242
ID Swap 10B 0.731 0.447 0.238

Task Type PSNR↑ RefVideo-CLIP↑ CLIP-Score↑
ID Delete 1B 19.171 0.900 0.217
ID Delete 10B 47.850 0.888 0.208

Table 13: Detailed computational requirements for different video editing tasks.

Task Memory Consumption Inference Time/Iter Number of Tokens Denoising Steps Video Resolution
ID Insert 24.45G 2.45s (43, 1008, 1152)=49932288 30 672x384x77
ID Swap 24.45G 2.45s (43, 1008, 1152)=49932288 30 672x384x77
ID Delete 24.45G 2.45s (43, 1008, 1152)=49932288 30 672x384x77
Propagation 22.23G 2.31s (41, 1008, 1152)=47609856 30 672x384x77
Stylization 22.23G 2.31s (41, 1008, 1152)=47609856 30 672x384x77
Re-Camera Control 22.16G 3.66s (60, 1008, 1152)=69672960 30 672x384x77

convergence rates across different tasks. Specifically, re-camera control requires approximately 600k
iterations to converge in single-task training, while simpler tasks like ID-swapping and stylization
achieve satisfactory results within 80k iterations.

Table 14: Performance comparison between balanced (0.25 each) and imbalanced (ReCam: 0.7,
others: 0.1) sampling strategies in joint training.

Train ID Swap ReCam Style
Strategy CLIP-I↑ DINO-I↑ RotErr↓ TransErr↓ CamMC↓ CSD-Score↑ ArtFID↓
balanced 0.713 0.421 2.287 9.694 10.377 0.298 38.953
imbalanced 0.712 0.409 2.010 7.279 8.040 0.192 39.453

To address this issue, we experiment with an imbalanced sampling strategy that allocates more
training resources to the complex re-camera control task (0.7) while reducing the sampling probability
for simpler tasks (0.1 each). The results show that while this approach improves re-camera control
performance, it leads to degraded performance in simpler tasks, suggesting that achieving optimal
performance across tasks of varying complexity remains challenging in joint training scenarios.

B.6 ANALYSIS OF TASK INDICATION METHODS

We investigate different approaches for indicating tasks in the model input, comparing text-based
task indication with our task-aware rope design. Specifically, we explore three settings: (1) pure text
indication where we prepend task type to the caption (e.g., "[stylization] A woman is..."), (2) our
original design with task-aware rope and condition bias, and (3) a combined approach incorporating
both mechanisms.

While text-based task indication (A1) shows improved condition image similarity metrics (DINO-
I and CSD-Score), it compromises video consistency (lower Refvideo-CLIP) and ReCam task
performance. The combined approach (A3) also underperforms compared to our original design (A2),
suggesting that explicit text indication may interfere with the model’s ability to balance instruction
understanding and content preservation. This limitation might be addressed through large-scale
pre-training.

C UNIC BENCHMARK

To comprehensively evaluate performance, we create a unified benchmark of six tasks, each containing
20 to 50 carefully designed evaluation cases.
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Table 15: Performance comparison of different task indication methods. Text Indication refers to
indicating task type to caption. Ours means using task-aware RoPE and condition bias. Combined
refers to indicating both through text and our design.

Method Text Task-aware Condition ID Swap Stylization ReCam
Indication Rope Bias DINO-I↑ Refvideo-CLIP↑ CSD-Score↑ ArtFID↓ RotErr↓ TransErr↓

A1 (Text Only) ✓ 0.432 0.723 0.294 42.090 1.622 6.613
A2 (Ours) ✓ ✓ 0.429 0.776 0.259 37.619 1.275 5.667
A3 (Combined) ✓ ✓ ✓ 0.441 0.733 0.304 40.771 1.653 6.416

C.1 ID INSERT

We collect 20 videos from Artgrid (art, 2025) as source video, and we carefully select a suitable
ID for each video to insert, also ensuring that the semantic is reasonable. As shown in Fig.S 4, our
selected ID includes both clean object without background and complete picture with background.

Figure 4: ID Pool and example of ID insert evaluation cases.

C.2 ID SWAP

For this task, we utilize 14 videos from VPBench (Bian et al., 2025) and 6 videos online as the
source videos. With the source videos, the objects to be swapped were segmented using SAM2 (Ravi
et al., 2024). Then, we carefully design and choose the object to place in. As shown in Fig.S5, an
appropriate ID was then selected from our ID pool to replace the segmented object, and a caption
was generated to describe the final target video.

Figure 5: Example of ID swap evaluation cases.
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C.3 ID DELETE

For ID delete, we expand the 10 videos in VPBench (Bian et al., 2025) to 20 by additionally collecting
10 videos. Also, SAM2 (Ravi et al., 2024) is used to segment the object to be deleted. Then we
generate caption for the target video. The example is shown in Fig.S6.

Figure 6: Example of ID Delete evaluation cases.

C.4 STYLIZATION

For the stylization task, we collected 12 representative styles to serve as references. These include
diverse artistic expressions such as pixel art, oil painting, Chinese painting, and line art, among
others. Examples of these styles are illustrated in Fig.S7. Then we randomly select 50 videos from
Artgrid (art, 2025) as the source videos.

Figure 7: Example of Stylization evaluation cases.

C.5 PROPAGATION

For the propagation task, we expand the 38 example of GenProp (Liu et al., 2024a) to 50 examples
by adding 12 stylization propagation test cases. Example is shown in Fig.S8.

Figure 8: Example of propagation evaluation cases.

C.6 RE-CAMERA CONTROL

To evaluate the re-camera control task, we utilized 10 basic camera trajectories and 50 randomly
selected videos from Koala (Wang et al., 2024a). Each of the 10 trajectories was then applied to 5
distinct videos from this set (totaling 50 trajectory-video pairs).
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D TRAINING DATASET CONSTRUCTION

This section details the construction of our datasets for the six tasks.

D.1 ID-RELATED TASK

To generate training data for ID-related tasks such as deletion, swap, and insertion (as illustrated
in Fig. S9), we first use SAM2 (Ravi et al., 2024) to obtain an object’s segmentation mask from
the source video. This mask is then applied with cv2.inpaint to produce an inpainted video.
However, this simple inpainting method often introduces visual artifacts in the inpainted regions. To
address this, we train a ControlNet conditioned on the original video, which effectively eliminates
these artifacts. The resulting artifact-free video serves as the reference video for the insertion task,
with the original source video as the target. Additionally, a masked video, created by applying the
segmentation mask to the source video, serves as the reference video for both deletion and swap tasks.
Using this method, we create 3000 videos for each task.

Figure 9: ID-related task data construction.

D.2 STYLIZATION

When considering how to construct the paired style video dataset, a straightforward idea is to use
a video-to-video stylization model to convert real-world videos into stylized ones. However, our
experiments revealed that this approach frequently results in temporal inconsistencies, flickering
artifacts, and lower visual quality.

We then noted that Text-to-Video (T2V) models are capable of generating stylized videos that exhibit
superior quality and maintain higher fidelity to a given reference style image. This observation led us
to an alternative strategy: rather than stylizing an existing real video, we first generate a high-quality
stylized video using a T2V model. Subsequently, we transform this stylized video into a realistic
counterpart using a tile-based video ControlNet. As illustrated in Fig.S10, the results confirm that
this is a feasible method. Using this method, we create 10,000 paired videos.

D.3 PROPAGATION TASK DATASET

To construct a dataset for the propagation task, we leverage existing paired data from our ID-related
and Stylization task training sets. Each pair in these datasets contains a source video and a target
video.
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Figure 10: Stylization pair data construction.

The propagation task requires input triplets consisting of a source video, a target video, and the first
frame of that target video. We can generate these triplets from our existing paired data in two distinct
configurations. In one configuration, the original source video serves as the propagation source, the
original target video serves as the propagation target, and we use the first frame of this original target
video. Alternatively, the roles can be reversed: the original target video can serve as the propagation
source, with the original source video becoming the propagation target, and we would then use the
first frame of this (now) target video. This strategy effectively allows us to derive a greater volume of
propagation training data from our existing resources. Specifically, we combine 9,000 samples from
ID-related tasks and 10,000 samples to form a 19,000-sample dataset.

D.4 RE-CAMERA CONTROL TASK DATASET

For the Re-Camera control task, we employ the Multi-Cam Video dataset from the ReCamMaster (Bai
et al., 2025a). This established training dataset provides 136,000 videos.

E TRAINING SCHEMES

E.1 MODEL DETAILS FOR SIX TASKS

Figure 11: Detailed Input and RoPE index for the six tasks.

Figure S11 illustrates the model architecture details for handling the six distinct tasks. The configura-
tion for each task, particularly concerning input encoding and Rotary Positional Encoding (RoPE)
indices, is as follows:

• ID Insertion and Swapping: For these tasks, the injected ID image(s) are encoded using
the same 3D VAE Encoder employed for the reference video. Their RoPE indices commence
from a base offset of 6, with an additional task-specific offset of 100. This allocation has
a length of 3, accommodating up to three ID images. If fewer than three ID images are
provided for a given instance, the embedding slots for the remaining IDs are filled with
representations corresponding to black images.
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• ID Deletion: In the ID deletion task, all input ID image slots are effectively treated as
black images (i.e., their embeddings correspond to black images), signaling the removal
operation. The RoPE indexing follows the same base offset of 6 and task offset of 100 as ID
insertion/swapping.

• Stylization: For the stylization task, the style reference image is also embedded using the
3D VAE Encoder. It utilizes the same base RoPE offset of 6, but with a different task-specific
offset of 200. Therefore, the RoPE indices for style tokens begin at 206 (i.e., 6 + 200).

• Propagation: The propagation task leverages the direct correspondence with the first frame
of the target video. Consequently, the tokens representing this first frame (used as the
propagation source/reference) are assigned RoPE index 1.

• Re-camera Control: Camera parameters for re-camera control, initially provided as a
tensor of size F × 3× 4 (where F is the number of frames), undergo a specific tokenization
process. First, the last two dimensions (3 × 4) are flattened, resulting in F × 12. These
features are then spatially padded to match the VAE token dimensions of H/4×W/4 to
obtain F × 12×H/4×W/4. Subsequently, an MLP embeds these processed parameters
into a tensor of shape F × emb_dim ×H/4×W/4, aligning them with the dimensionality
of tokens encoded by the 3D VAE. Crucially, since this task regards the reference video
primarily as soft guidance rather than requiring strict pixel-to-pixel alignment, the RoPE
indices for the reference video tokens are shifted by +300 from their original positions (e.g.,
original index i becomes i+ 300).

E.2 TRAINING PROGRESS

As shown in Fig.S12, we present two training progression strategies for our method: one starting
with tasks deemed “hard” and progressing to “easy” ones, and the converse strategy, from “easy” to
“hard”. The classification of tasks as “hard” or “easy” is based on our empirical observations during
training within this in-context framework. For instance, we found that the re-camera control task
typically requires training on approximately 100k data volume to reach satisfactory performance,
whereas ID-related tasks (such as ID insertion or swapping) achieve comparable results with only
about 20k volume. Consequently, we categorize re-camera control as a “harder” task in this context.

Figure 12: Training progress with different settings. We demonstrate two settings of the progress
and the data volume of each task.

E.3 TRAINING DETAILS

UNIC is trained on multiple datasets to support multi-task video editing. All finetuning experiments
start from an internal pre-trained model with 1B parameters and 28 sequential standard Diffusion
Transformer (DiT) blocks. Each block contains 2D self-attention, 3D self-attention, cross attention
and FFN layers.The model is finetuned for 16k iterations on 32 H800 GPUs with a batch size of 64.
We only finetune the transformer module and the new tokenizers (like the MLP for the camera pose),
while freezing the 3D VAE, Text T5 Tokenizer.
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F LIMITATION AND FUTURE WORK

Our current unification efforts are limited to the six tasks discussed. The incorporation of additional
modalities, such as lip-syncing with audio, remains unexplored in this work. In future research, we
intend to integrate a wider array of tasks to investigate whether there is an upper limit to the number
of tasks that can be successfully unified. Furthermore, recognizing that a high token count during
self-attention can significantly increase computational overhead, we plan to explore architectural
designs or alternative mechanisms to improve efficiency.

While we acknowledge that a better unification solution might exist, particularly from the ultimate
perspective of video editing tasks, our work represents meaningful progress from traditional task-
specific models that require heavy task-specific adapters, even though we still utilize task-specific
embeddings and tokenizers. We have explored prompt-driven approaches to replace them, but
our experiments revealed significant challenges: current video generation models tend to focus on
rendering text rather than understanding and executing instructions effectively. Even with fine-tuning,
the performance falls behind our current design. Implementing a truly prompt-driven video editing
system would require large-scale pre-training, which is currently beyond our computational resources.
Our current model design represents the maximum level of unification we could achieve while
maintaining strong performance across tasks. We remain committed to advancing toward a fully
unified, prompt-driven approach in future work.

G STATEMENT FOR LARGE LANGUAGE MODELS

We utilize large language models (LLMs) in this paper only for the purpose of grammar correction
and text refinement. The LLMs are not employed for generating original content or contributing to
the conceptual development of the ideas presented.
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