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Abstract

Evaluating the diversity of generative models with-
out reference data poses methodological chal-
lenges. The reference-free Vendi [Friedman and
Dieng, 2023] and RKE [Jalali et al., 2023] scores
address this by quantifying the diversity of gen-
erated data using matrix-based entropy measures.
Among these two, the Vendi score is typically com-
puted via the eigendecomposition of an n× n ker-
nel matrix constructed from n generated samples.
However, the prohibitive computational cost of
eigendecomposition for large n often limits the
number of samples used to fewer than 20,000.
In this paper, we investigate the statistical con-
vergence of the Vendi and RKE scores under re-
stricted sample sizes. We numerically demonstrate
that, in general, the Vendi score computed with
standard sample sizes below 20,000 may not con-
verge to its asymptotic value under infinite sam-
pling. To address this, we introduce the t-truncated
Vendi score by truncating the eigenspectrum of the
kernel matrix, which is provably guaranteed to
converge to its population limit with n = O(t)
samples. We further show that existing Nyström
and FKEA approximation methods converge to
the asymptotic limit of the truncated Vendi score.
In contrast to the Vendi score, we prove that the
RKE score enjoys universal convergence guaran-
tees across all kernel functions. We conduct several
numerical experiments to illustrate the concentra-
tion of Nyström and FKEA computed Vendi scores
around the truncated Vendi score, and we analyze
how the truncated Vendi and RKE scores corre-
late with the diversity of image and text data. The
code is available at https://github.com/
aziksh-ospanov/truncated-vendi.

1 INTRODUCTION

The increasing use of generative artificial intelligence has
underscored the need for accurate evaluation of generative
models. In practice, users often have access to multiple
generative models trained with different training datasets
and algorithms, requiring evaluation methods to identify the
most suitable model. The feasibility of a model evaluation
approach depends on factors such as the required gener-
ated sample size, computational cost, and the availability
of reference data. Recent studies on evaluating generative
models have introduced assessment methods that relax the
requirements on data and computational resources.

Specifically, to enable the evaluation of generative models
without reference data, the recent literature has focused on
reference-free evaluation scores that remain applicable in
the absence of reference samples. The Vendi score [Fried-
man and Dieng, 2023] is one such reference-free metric that
quantifies the diversity of generated data using the entropy
of a kernel similarity matrix formulated for the generated
samples. Given the sorted eigenvalues λ1 ≥ · · · ≥ λn
of the normalized matrix 1

nK
1 for the kernel similarity

matrix K =
[
k(xi, xj)

]
1≤i,j≤n

of n generated samples
x1, . . . , xn, the definition of (order-1) Vendi score is as:

Vendi(x1, . . . , xn) := exp
( n∑

i=1

λi log
1

λi

)
(1)

Following conventional definitions in information theory,
the Vendi score corresponds to the exponential of the Von
Neumann entropy of normalized kernel matrix 1

nK. More
generally, Jalali et al. [2023] define the Rényi Kernel En-
tropy (RKE) score by applying order-2 Rényi entropy to
this matrix, which reduces to the inverse-squared Frobenius
norm of the normalized kernel matrix:

RKE(x1, . . . , xn) :=
1∥∥∥ 1

nK
∥∥∥2
F

(2)

1In general, we consider the trace-normalized kernel matrix
1

Tr(K)
K, which given ∀x : k(x, x) = 1, reduces to 1

n
K.
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Figure 1: Statistical convergence of Vendi and RKE scores for different sample sizes on ImageNet data: (Left plots)
finite-dimension cosine similarity kernel (Right plots) infinite dimension Gaussian kernel with bandwidth σ = 30. The RKE
and truncated Vendi scores converged with below 20000 samples, but the Vendi score with Gaussian kernel did not converge.

Although the Vendi and RKE scores do not require refer-
ence samples, their computational cost increases rapidly
with the number of generated samples n. Specifically, cal-
culating the Vendi score for the n × n kernel matrix K
generally involves an eigendecomposition of K, requiring
O(n3) computations. Therefore, the computational load of
Vendi score becomes substantial for a large sample size n,
and the Vendi score is typically evaluated for sample sizes
limited to 20,000. In other words, the Vendi score, as de-
fined in Equation (2), would be computationally infeasible
to compute with standard processors for sample sizes greater
than a few tens of thousands.

Following the above discussion, a key question that arises is
whether the Vendi score estimated from restricted sample
sizes (i.e. n ≤ 20000) has converged to its asymptotic value
with infinite samples, which we call the population Vendi.
However, the statistical convergence of the Vendi score has
not been thoroughly investigated in the literature. In this
work, we study the statistical convergence of the Vendi and
RKE diversity scores and aim to analyze the concentration
of the estimated scores from a limited number of generated
samples n ⪅ 20000.

1.1 OUR RESULTS ON VENDI’S CONVERGENCE

We discuss the answer to the Vendi convergence question
for two types of kernel functions: 1) kernel functions with a

finite feature dimension, e.g. the cosine similarity and poly-
nomial kernels, 2) kernel functions with an infinite feature
map such as Gaussian (RBF) kernels. For kernel functions
with a finite feature dimension d, we theoretically and nu-
merically show that a sample size n = O(d) is sufficient to
guarantee convergence to the population Vendi (asymptotic
value when n → ∞). For example, the left plot in Fig-
ure 1 shows that in the case of the cosine similarity kernel,
the Vendi score on n randomly selected ImageNet [Deng
et al., 2009] samples has almost converged as the sample
size reaches 5000, where the dimension d (using standard
DINOv2 embedding [Oquab et al., 2023]) is 768.

In contrast, our numerical results for kernel functions
with an infinite feature map demonstrate that for standard
datasets, a sample size bounded by 20,000 could be insuffi-
cient for convergence of the Vendi score. For example, the
right plot of Figure 1 shows the evolution of the Vendi score
with the Gaussian kernel on ImageNet data, and the score
continues to grow at a significant rate with 20,000 samples2.

Observing the difference between Vendi score convergence
for finite and infinite-dimension kernel functions, a natural
question is how to extend the definition of Vendi score
from finite to infinite dimension case such that the diversity

2The heavy computational cost prohibits an empirical evalua-
tion of the sample size required for Vendi’s convergence.



score would statistically converge in both scenarios. We
attempt to address the question by introducing an alternative
Vendi statistic, which we call the t-truncated Vendi score.
The t-truncated Vendi score is defined using only the top-t
λ1 ≥ · · · ≥ λt eigenvalues of the kernel matrix, where t is
an integer hyperparameter. This modified score is defined as

Truncated-Vendi(t)(x1, . . . , xn) = exp
( t∑
i=1

λtrunc
i log

1

λtrunc
i

)
where we shift each of the top-t eigenvalue λtrunc

i = λi+c by
the same constant c =

(
1−

∑t
i=1 λi

)
/t to ensure they add

up to 1 and provide a valid probability model. Observe that
for a finite kernel dimension d satisfying d ≤ t, the truncated
and original Vendi scores take the same value, because the
truncation will have no impact on the eigenvalues. On the
other hand, under an infinite kernel dimension, the two
scores may take different values.

As a main theoretical result, we prove that a sample size
n = O(t) is always enough to estimate the t-truncated
population Vendi from n empirical samples, regardless of
the finiteness of the kernel feature dimension. This result
shows that the t-truncated Vendi score provides a statisti-
cally converging extension of the Vendi score from the finite
kernel dimension to the infinite dimension case. To connect
the defined t-truncated Vendi score to existing computa-
tion methods for the original Vendi score, we show that the
existing computationally-efficient methods for computing
the Vendi score can be viewed as approximations of our
defined t-truncated Vendi. Specifically, we show that the
Nyström method in [Friedman and Dieng, 2023] and the
FKEA method proposed by Ospanov et al. [2024b] provide
an estimate of the t-truncated Vendi.

1.2 OUR RESULTS ON RKE’S CONVERGENCE

For the RKE score, we prove a universal convergence guar-
antee that holds for every kernel function. The theoretical
guarantee shows that the RKE score, and more generally
every order-α entropy score with α ≥ 2, will converge to
its population value within O( 1√

n
) error for n samples. Our

theoretical guarantee also transfers to the truncated version
of the RKE score. However, note that the truncation of the
eigenspectrum becomes unnecessary in the RKE case, since
the score enjoys universal convergence guarantees. Figure 1
shows that using both the cosine-similarity and Gaussian
kernel functions, the RKE score nearly converges to its limit
value with less than 10000 samples.

Finally, we present the findings of several numerical experi-
ments to validate our theoretical results on the convergence
of Vendi, truncated Vendi, and RKE scores. Our numerical
results on standard image, text, and video datasets and gen-
erative models indicate that in the case of a finite-dimension
kernel map, the Vendi score can converge to its asymptotic
limit, in which case, as we explained earlier, the Vendi score

is identical to the truncated Vendi. On the other hand, in
the case of infinite-dimension Gaussian kernel functions,
we numerically observe the growth of the score beyond
n =10,000. Our numerical results further confirm that the
scores computed by Nyström method in [Friedman and Di-
eng, 2023] and the FKEA method [Ospanov et al., 2024b]
provide tight estimations of the population truncated Vendi.
The following summarizes this work’s contributions:

• Analyzing the statistical convergence of Vendi and RKE
diversity scores under restricted sample sizes n ⪅ 2×104,

• Providing numerical evidence on the Vendi score’s lack
of convergence for infinite-dimensional kernel functions,
e.g. the Gaussian (RBF) kernel,

• Introducing the truncated Vendi score as a statistically
converging extension of the Vendi score from finite to
infinite dimension kernel functions,

• Demonstrating the universal convergence of the RKE di-
versity score across all kernel functions.

2 RELATED WORKS

Diversity evaluation for generative models Diversity eval-
uation in generative models can be categorized into two
primary types: reference-based and reference-free methods.
Reference-based approaches rely on a predefined dataset to
assess the diversity of generated data. Metrics such as FID
[Heusel et al., 2018], KID and distributed KID [Bińkowski
et al., 2018, Wang et al., 2023] measure the distance be-
tween the generated data and the reference, while Recall
[Sajjadi et al., 2018, Kynkäänniemi et al., 2019] and Cov-
erage [Naeem et al., 2020] evaluate the extent to which the
generative model captures existing modes in the reference
dataset. Pillutla et al. [2021, 2023] propose MAUVE metric
that uses information divergences in a quantized embedding
space to measure the gap between generated data and ref-
erence distribution. In contrast, the reference-free metrics,
Vendi [Friedman and Dieng, 2023] and RKE [Jalali et al.,
2023], assign diversity scores based on the eigenvalues of
a kernel similarity matrix of the generated data. Jalali et al.
[2023] interpret the approach as identifying modes and their
frequencies within the generated data followed by entropy
calculation for the frequency parameters. The Vendi and
RKE scores have been further extended to quantify the di-
versity of conditional prompt-based generative AI models
[Ospanov et al., 2024a, Jalali et al., 2024] and to select gen-
erative models in online settings [Rezaei et al., 2024, Hu
et al., 2024, 2025]. Also, [Zhang et al., 2024, 2025, Jalali
et al., 2025, Gong et al., 2025, Wu et al., 2025] extend the
entropic kernel-based scores to measure novelty and embed-
ding dissimilarity. In our work, we specifically focus on the
statistical convergence of the vanilla Vendi and RKE scores.

Statistical convergence analysis of kernel matrices’ eigen-
values. The convergence analysis of the eigenvalues of
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Figure 2: Computation of the proposed t-truncated Vendi score. The kernel similarity matrix eigenspectrum is truncated, and
the mass of the truncated tail (excluding the top-t eigenvalues) is uniformly redistributed among the top-t eigenvalues.

kernel matrices has been studied by several related works.
Shawe-Taylor et al. [2005] provide a concentration bound
for the eigenvalues of a kernel matrix. We note that the
bounds in [Shawe-Taylor et al., 2005] use the expecta-
tion of eigenvalues Em[λ̂(S)] for a random dataset S =
(x1, . . . ,xm) of fixed size m as the center vector in the
concentration analysis. However, since eigenvalues are non-
linear functions of a matrix, this concentration center vector
Em[λ̂(S)] does not match the eigenvalues of the asymptotic
kernel matrix as the sample size approaches to infinity. On
the other hand, our convergence analysis focuses on the
asymptotic eigenvalues with an infinite sample size, which
determines the limit value of Vendi scores. In another related
work, Bach [2022] discusses a convergence result for the
Von-Neumann entropy of kernel matrix. While this result
proves a non-asymptotic guarantee on the convergence of
the entropy function, the bound may not guarantee conver-
gence at standard sample sizes for computing Vendi scores
(less than 10000 in practice). In our work, we aim to provide
convergence guarantees for the finite-dimension and gener-
ally truncated Vendi scores with restricted sample sizes.

Efficient computation of matrix-based entropy. Several
strategies have been proposed in the literature to reduce the
computational complexity of matrix-based entropy calcu-
lations, which involve the computation of matrix eigenval-
ues—a process that scales cubically with the size of the
dataset. Dong et al. [2023] propose an efficient algorithm
for approximating matrix-based Renyi’s entropy of arbitrary
order α, which achieves a reduction in computational com-
plexity down to O(n2sm) with s,m ≪ n. Additionally,
kernel matrices can be approximated using low-rank tech-
niques such as incomplete Cholesky decomposition [Fine
and Scheinberg, 2001, Bach and Jordan, 2002] or CUR ma-
trix decompositions [Mahoney and Drineas, 2009], which
provide substantial computational savings. Pasarkar and Di-
eng [2024] suggest to leverage Nyström method [Williams
and Seeger, 2000] with m components, which results in
O(nm2) computational complexity. Further reduction in
complexity is possible using Random Fourier Features, as
suggested by Ospanov et al. [2024b], which allows the com-
putation to scale linearly with O(n) as a function of the
dataset size. This work focuses on the latter two methods
and the population quantities estimated by them.

Impact of embedding spaces on diversity evaluation. In
our image-related experiments, we used the DinoV2 embed-
ding [Oquab et al., 2023], as Stein et al. [2023] demonstrate
the alignment of this embedding with human evaluations.
We note that the kernel function in the Vendi score can be
similarly applied to other embeddings, including the stan-
dard InceptionV3[Szegedy et al., 2016] and CLIP embed-
dings [Radford et al., 2021] as suggested by Kynkäänniemi
et al. [2022].

3 PRELIMINARIES

Consider a generative model G that generates samples from
a probability distribution PX . To conduct a reference-free
evaluation of the model, we suppose the evaluator has access
to n independently generated samples from PX , denoted
by x1, . . . , xn ∈ X . The assessment task is to estimate the
diversity of generative model G by measuring the variety
of the observed generated data, x1, . . . xn. In the follow-
ing subsections, we will discuss kernel functions and their
application to define the Vendi and RKE diversity scores.

3.1 KERNEL FUNCTIONS AND MATRICES

Following the standard definition, k : X ×X → R is called
a kernel function if for every integer n ∈ N and inputs
x1, . . . , xn ∈ X , the following kernel similarity matrix
K ∈ Rn×n is positive semi-definite (PSD):

K =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

 (3)

Aronszajn’s Theorem [Aronszajn, 1950] shows that this
definition is equivalent to the existence of a feature map
ϕ : X → Rd such that for every x, x′ ∈ X we have the
following where ⟨·, ·⟩ denotes the standard inner product in
the Rd space:

k(x, x′) =
〈
ϕ(x), ϕ(x′)

〉
(4)

In this work, we study the evaluation using two types of ker-
nel functions: 1) finite-dimension kernels where dimension
d is finite, 2) infinite-dimension kernels where there is no



feature map satisfying (4) with a finite d value. A standard
example of a finite-dimension kernel is the cosine similarity
function where ϕcosine(x) = x/∥x∥2. Also, a widely-used
infinite-dimension kernel is the Gaussian (RBF) kernel with
bandwidth parameter σ > 0 defined as

kGaussian(σ)
(
x, x′

)
:= exp

(
−
∥∥x− x′

∥∥2
2

2σ2

)
(5)

Both the mentioned kernel examples belong to normalized
kernels which require k(x, x) = 1 for every x, i.e., the fea-
ture map ϕ(x) has unit Euclidean norm for every x. Given
a normalized kernel function, the non-negative eigenvalues
of the normalized kernel matrix 1

nK for n points x1, . . . xn
will sum up to 1, i.e., they form a probability model.

3.2 MATRIX-BASED ENTROPY FUNCTIONS AND
VENDI SCORE

For a PSD matrixA ∈ Rd×d with unit trace Tr(A) = 1,A’s
eigenvalues form a probability model. The order-α Renyi
entropy of matrix A is defined using the order-α entropy of
its eigenvalues as

Hα(A) :=
1

1− α
log

( d∑
i=1

λαi

)
(6)

For the special case α = 2, one can consider the Frobenius
norm ∥ · ∥F and apply the identity

∥∥A∥∥2
F

=
∑d

i=1 λ
2
i to

show H2(A) = log
(
1/
∥∥A∥∥2

F

)
. Moreover, for α = 1, the

above definition reduces to the Shannon entropy of the eigen-
values as H1(A) :=

∑d
i=1 λi log(1/λi) [Rényi, 1961].

Jalali et al. [2023] applies the above definition for order
α = 2 to the normalized kernel similarity matrix 1

nK to
define the RKE diversity score (called RKE mode count),
which reduces to

RKE(x1, . . . , xn) := exp
(
H2

( 1
n
K
))

=
∥∥∥ 1
n
K
∥∥∥−2

F
(7)

For a general entropy order α, [Friedman and Dieng, 2023,
Pasarkar and Dieng, 2024] apply the matrix-based entropy
definition to the normalized kernel matrix 1

nK and define
the order-α Vendi score for samples x1, . . . , xn as

Vendiα
(
x1, . . . , xn

)
:= exp

(
Hα

( 1
n
K
))

(8)

Specifically, for order α = 1, the above definition results in
the standard (order-1) Vendi score in Equation (2).

3.3 STATISTICAL ANALYSIS OF VENDI SCORE

To derive the population limits of Vendi and RKE scores
under infinite sampling, which we call population Vendi

and population RKE, respectively, we review the following
discussion from [Bach, 2022, Jalali et al., 2023]. First, note
that the normalized kernel matrix 1

nK, whose eigenvalues
are used in the definition of Vendi score, can be written as:

1

n
K =

1

n
ΦΦ⊤ (9)

where Φ ∈ Rn×d is an n× d matrix whose rows are the fea-
ture presentations of samples, i.e., ϕ(x1), . . . , ϕ(xn). There-
fore, the normalized kernel matrix 1

nK shares the same
non-zero eigenvalues with 1

nΦ
⊤Φ, where the multiplication

order is flipped. Note that 1
nΦ

⊤Φ is equal to the empirical
kernel covariance matrix ĈX defined as:

ĈX :=
1

n

n∑
i=1

ϕ(xi)ϕ(xi)
⊤ =

1

n
Φ⊤Φ.

As a result, the empirical covariance matrix ĈX = 1
nΦ

⊤Φ
and kernel matrix 1

nK = 1
nΦΦ

⊤ share the same non-zero
eigenvalues and therefore have the same matrix-based en-
tropy value for every order α:Hα(

1
nK) = Hα(ĈX). There-

fore, if we consider the population kernel covariance matrix
C̃X = Ex∼PX

[
ϕ(x)ϕ(x)⊤

]
, we can define the population

Vendi score as follows.

Definition 1. Given data distribution PX , we define the
order-α population Vendi, Vendiα(PX), using the matrix-
based entropy of the population kernel covariance matrix
C̃X = Ex∼PX

[
ϕ(x)ϕ(x)⊤

]
as

Vendiα(PX) := exp
(
Hα(C̃X)

)
(10)

Note that the population RKE score is identical to the popu-
lation Vendi2, since RKE and Vendi2 are the same.

4 STATISTICAL CONVERGENCE OF
VENDI AND RKE SCORES

Given the definitions of the Vendi score and the population
Vendi, a relevant question is how many samples are required
to accurately estimate the population Vendi using the Vendi
score. To address this question, we first prove the following
concentration bound on the vector of ordered eigenvalues
[λ1, . . . , λn] of the kernel matrix for a normalized kernel
function.

Theorem 1. Consider a normalized kernel function k sat-
isfying k(x, x) = 1 for every x ∈ X . Let λ̂n be the vector
of sorted eigenvalues of the normalized kernel matrix 1

nK
for n independent samples x1, . . . , xn ∼ PX . If we define
λ̃ as the vector of sorted eigenvalues of underlying covari-
ance matrix C̃X , then if n ≥ 2 + 8 log(1/δ), the following
inequality holds with probability at least 1− δ:

∥∥λ̂n − λ̃
∥∥
2
≤

√
32 log

(
2/δ

)
n



Note that in calculating the subtraction λ̂n − λ̃, we add
|d − n| zero entries to the lower-dimension vector, if the
dimension of vectors λ̂n and λ̃ do not match.

Proof. We defer the proof to the Appendix.

Theorem 1 results in the following corollary on a dimension-
free convergence guarantee for every Vendiα score with
order α ≥ 2, including the RKE score (i.e. Vendi2).

Corollary 1. In the setting of Theorem 1, for every α ≥ 2
and n ≥ 2 + 8 log(1/δ), the following bound holds with
probability at least 1− δ:∣∣∣Vendiα(x1, . . . , xn) 1−α

α −Vendiα
(
PX

) 1−α
α

∣∣∣ ≤
√

32 log 2
δ

n

Notably, for α = 2, we arrive at the following bound on the
gap between the empirical and population RKE scores:

∣∣∣RKE
(
x1, . . . , xn

)−1/2 − RKE
(
PX

)−1/2
∣∣∣ ≤

√
32 log 2

δ

n

Proof. We defer the proof to the Appendix.

Therefore, the bound in Corollary 1 holds regardless of the
dimension of kernel feature map, indicating that the RKE
score enjoys a universal convergence guarantee across all
kernel functions. Next, we show that Theorem 1 implies
the following corollary on a dimension-dependent conver-
gence guarantee for order-α Vendi score with 1 ≤ α < 2,
including standard (order-1) Vendi score.

Corollary 2. In the setting of Theorem 1, consider a finite
dimension kernel map where we suppose dim(ϕ) = d <∞.
(a) For α = 1, assuming n ≥ 32e2 log(2/δ), the following
bound holds with probability at least 1− δ:∣∣∣ log(Vendi1(x1, . . . , xn))− log

(
Vendi1

(
PX

)) ∣∣∣
≤

√
8d log

(
2/δ

)
n

log
( nd

32 log(2/δ)

)
.

(b) For every 1 < α < 2 and n ≥ 2 + 8 log(1/δ), the
following bound holds with probability at least 1− δ:∣∣∣Vendiα(x1, . . . , xn) 1−α

α −Vendiα
(
PX

) 1−α
α

∣∣∣
≤

√
32d2−α log

(
2/δ

)
n

Proof. We defer the proof to the Appendix.

Therefore, assuming a finite feature map d <∞ and given
an entropy order 1 ≤ α < 2, the above results indicate the
convergence of the Vendi score to the underlying population
Vendi given n = O(d2−α) samples. Observe that this result
is consistent with our numerical observations of the con-
vergence of Vendi score using the finite-dimension cosine
similarity kernel in Figure 1.

5 TRUNCATED VENDI SCORE AND ITS
ESTIMATION VIA PROXY KERNELS

Corollaries 1, 2 demonstrate that if the Vendi score order α
is greater than 2 or the kernel feature map dimension d is
finite, then the Vendi score can converge to the population
Vendi with n = O(d) samples. However, the theoretical
results do not apply to an order 1 ≤ α < 2 when the
kernel map dimension is infinite, e.g. the original order-1
Vendi score [Friedman and Dieng, 2023] with a Gaussian
kernel. Our numerical observations indicate that a standard
sample size below 20000 could be insufficient for the con-
vergence of order-1 Vendi score (Figure 1). To address this
gap, here we define the truncated Vendi score by truncat-
ing the eigenspectrum of the kernel matrix, and then show
that the existing kernel approximation algorithms for Vendi
score concentrate around this modified Vendi score.

Definition 2. Consider the normalized kernel matrix 1
nK of

samples x1, . . . , xn. Then, for an integer parameter t ≥ 1,
consider the top-t eigenvalues of 1

nK: λ1 ≥ λ2 ≥ · · · ≥ λt.
Define St =

∑t
i=1 λi and consider the truncated probabil-

ity sequence [λtrunc
1 , . . . , λtrunc

t ]:

λtrunc
i = λi +

1− St

t
for i = 1, . . . , t

We define the order-α t-truncated Vendi score as

Vendi(t)α (x1, . . . , xn) := exp
( 1

1− α
log

( t∑
i=1

λtrunc
α

i

))
Notably, for order α = 1, the t-truncated Vendi score is:

Vendi
(t)
1 (x1, . . . , xn) := exp

( t∑
i=1

λtrunc
i log

1

λtrunc
i

)
Remark 1. The above definition of t-truncated Vendi score
leads to the definition of t-truncated population Vendi
Vendi(t)α (PX), where the mentioned truncation process is
applied to the eigenspectrum of the population kernel co-
variance matrix C̃X . Note that the truncated Vendi score
is a statistic and function of random samples x1, . . . , xn,
whereas the truncated population Vendi is deterministic and
a characteristic of the population distribution PX .

According to Definition 2, we find the probability
model with the minimum ℓ2-norm difference from the t-
dimensional vector [λ1, . . . , λt] including only the top-t
eigenvalues. Then, we use the order-α entropy of the prob-
ability model to define the order-α t-truncated population
Vendi. Our next result shows that this population quantity
can be estimated using n = O(t) samples by t-truncated
Vendi score for every kernel function.

Theorem 2. Consider the setting in Theorem 1. Then, for
every n ≥ 2 + 8 log(1/δ), the difference between the t-
truncated population Vendi and the empirical t-truncated



Vendi score of samples x1, . . . , xn is bounded with proba-
bility at least 1− δ:∣∣∣Vendi(t)α

(
x1, . . . , xn

) 1−α
α −Vendi(t)α

(
PX

) 1−α
α

∣∣∣
≤

√
32max{1, t2−α} log

(
2/δ

)
n

Proof. We defer the proof to the Appendix.

As implied by Theorem 2, the t-truncated population Vendi
can be estimated using O(t) samples, i.e. the truncation
parameter t plays the role of the bounded dimension of
a finite-dimension kernel map. Our next theorem shows
that the Nyström method [Friedman and Dieng, 2023] and
the FKEA method [Ospanov et al., 2024b] for reducing
the computational costs of Vendi scores have a bounded
difference with the truncated population Vendi.

Theorem 3. Consider the setting of Theorem 1. (a) As-
sume that the kernel function is shift-invariant and the
FKEA method with t random Fourier features is used to
approximate the Vendi score. Then, for every δ satisfying
n ≥ 2 + 8 log(1/δ), with probability at least 1− δ:∣∣∣FKEA-Vendi(t)α

(
x1, . . . , xn

) 1−α
α −Vendi(t)α

(
PX

) 1−α
α

∣∣∣
≤

√
128max{1, t2−α} log

(
3/δ

)
min{n, t}

(b) Assume that the Nyström method is applied with param-
eter t for approximating the kernel function. Then, if for
some r ≥ 1, the kernel matrix K’s rth-largest eigenvalue
satisfies λr ≤ τ and t ≥ rτ log(n), the following holds
with probability at least 1− δ − 2n−3:∣∣∣Nystrom-Vendi(t)α

(
x1, . . . , xn

) 1−α
α −Vendi(t)α

(
PX

) 1−α
α

∣∣∣
≤ O

(√max{1, t2−α} log
(
2/δ

)
tτ2 log(n)2

n

)
Proof. We defer the proof to the Appendix.

6 NUMERICAL RESULTS

We evaluated the convergence of the Vendi score, the trun-
cated Vendi score, and the proxy Vendi scores using the
Nyström method and FKEA in our numerical experiments.
We provide a comparative analysis of these scores across
different data types and models, including image, text, and
video. In our experiments, we considered the cosine sim-
ilarity kernel as a standard kernel function with a finite-
dimension map and the Gaussian (RBF) kernel as a kernel
function with an infinite-dimension feature map. In the ex-
periments with Gaussian kernels, we matched the kernel
bandwidth parameter with those chosen by [Jalali et al.,

2023, Ospanov et al., 2024b] for the same datasets. We used
20,000 number of samples per score computation, consistent
with standard practice in the literature. To investigate how
computation-cutting methods compare to each other, in the
experiments we matched the truncation parameter t of our
defined t-truncated Vendi score with the Nyström method’s
hyperparameter on the number of randomly selected rows of
kernel matrix and the FKEA’s hyperparameter of the number
of random Fourier features. The Vendi and FKEA imple-
mentations were adopted from the corresponding references’
GitHub webpages, while the Nyström method was adopted
from the scikit-learn Python package.

6.1 CONVERGENCE ANALYSIS OF VENDI
SCORES

To assess the convergence of the discussed Vendi scores, we
conducted experiments on four datasets including ImageNet
and FFHQ [Karras et al., 2019] image datasets, a synthetic
text dataset with 400k paragraphs generated by GPT-4 about
100 randomly selected countries, and the Kinetics video
dataset [Kay et al., 2017]. Our results, presented in Fig-
ures 3, 4, and 5, show that for the finite-dimension cosine
similarity kernel the Vendi score converges rapidly to the
underlying value and the proxy versions including truncated
and Nyström Vendi scores were almost identical to the orig-
inal Vendi score. This observation is consistent with our
theoretical results on the convergence of Vendi scores under
finite-dimension kernel maps. On the other hand, in the case
of infinite dimension Gaussian kernel, we observed that the
Vendi1 score did not converge using 20k samples and the
score value kept growing with a considerable rate. However,
the t-truncated Vendi score with t = 10000 converged to its
underlying statistic shortly after 10000 samples were used.
Consistent with our theoretical result, the proxy Nyström
and FKEA estimated scores with their rank hyperparameter
matched with t also converged to the limit of the truncated
Vendi scores. The numerical results show the connection
between the truncated Vendi score and the existing kernel
methods for approximating the Vendi score.

6.2 CORRELATION BETWEEN THE TRUNCATED
VENDI SCORE AND DIVERSITY OF DATA

We performed experiments to test the correlation between
the truncated Vendi score and the ground-truth diversity
of data. To do this, we applied the truncation technique to
the FFHQ-based StyleGAN3 [Karras et al., 2021] model
and the ImageNet-based StyleGAN-XL [Sauer et al., 2022]
model and simulated generative models with different un-
derlying diversity by varying the truncation technique. Con-
sidering the Gaussian kernel, we estimated the t-truncated
Vendi score with t = 10000 by averaging the estimated
t-truncated Vendi scores over 5 independent datasets of
size 20k where the score seemed to converge to its under-



FFHQ Image Dataset:
Cosine Similarity Kernel (finite dimension)

FFHQ Image Dataset:
Gaussian Kernel (infinite dimension)

Figure 3: Statistical convergence of Vendi score for different sample sizes on FFHQ[Karras et al., 2019] data: (Left plot)
finite-dimension cosine similarity kernel (Right plot) infinite dimension Gaussian kernel with bandwidth σ = 35. DINOv2
embedding (dimension 768) is used in computing the scores.

Synthetic Countries Text Dataset:
Cosine Similarity Kernel (finite dimension)

Synthetic Countires Text Dataset:
Gaussian Kernel (infinite dimension)

Figure 4: Statistical convergence of Vendi score for different sample sizes on Synthetic Countries data: (Left plot) finite-
dimension cosine similarity kernel (Right plot) infinite dimension Gaussian kernel with bandwidth σ = 0.6. text-embedding-
3-large embedding (dimension 3072) is used in computing the scores.

Kinetics400 Video Dataset: 
Cosine Similarity Kernel (finite dimension)

Kinetics400 Video Dataset: 
Gaussian Kernel (infinite dimension)

Figure 5: Statistical convergence of Vendi score for different sample sizes on Kinetics400[Kay et al., 2017] data: (Left plot)
finite-dimension cosine similarity kernel (Right plot) infinite dimension Gaussian kernel with bandwidth σ = 4.0. I3D
embedding (dimension 1024) is used in computing the scores.



Figure 6: Diversity evaluation of Vendi scores on truncated StyleGAN3 generated FFHQ dataset with varying truncation
coefficient ψ. Fixed sample size n =20k is used for estimating the scores.

Figure 7: Diversity evaluation of Vendi scores on truncated StyleGAN-XL generated ImageNet dataset with varying
truncation coefficient ψ. Fixed sample size n =20k is used for estimating the scores.

lying value. Figures 6, 7 show how the estimated statistic
correlates with the truncation parameter for order-α Vendi
scores with α = 1, 1.5, 2. In all these experiments, the esti-
mated truncated Vendi score correlated with the underlying
diversity of the models. In addition, we plot the proxy Nys-
tröm and FKEA proxy Vendi values computed using 20000
samples which remain close to the estimated t-truncated
statistic. These empirical results suggest that the estimated
t-truncated Vendi score with Gaussian kernel can be used to
evaluate the diversity of generated data. Also, the Nyström
and FKEA methods were both computationally efficient in
estimating the truncated Vendi score from limited generated
data. We defer the presentation of the additional numerical
results on the convergence of Vendi scores with different
orders, kernel functions and embedding spaces to the Ap-
pendix.

7 CONCLUSION

In this work, we investigated the statistical convergence be-
havior of Vendi diversity scores estimated from empirical
samples. We highlighted that, due to the high computational
complexity of the score for datasets larger than a few tens
of thousands of generated data points, the score is often cal-
culated using sample sizes below 10,000. We demonstrated

that such restricted sample sizes do not pose a problem for
statistical convergence as long as the kernel feature dimen-
sion is bounded. However, our numerical results showed
a lack of convergence to the population Vendi when using
an infinite-dimensional kernel map, such as the Gaussian
kernel. To address this gap, we introduced the truncated
population Vendi as an alternative target quantity for di-
versity evaluation. We showed that existing Nyström and
FKEA methods for approximating Vendi scores concen-
trate around this truncated population Vendi. An interest-
ing future direction is to explore the relationship between
other kernel approximation techniques and the truncated
population Vendi. Also, a comprehensive analysis of the
computational-statistical trade-offs involved in estimating
the Vendi score is another relevant future direction.
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Supplementary Material

Azim Ospanov1 Farzan Farnia1

1Department of Computer Science and Engineering, The Chinese University of Hong Kong

A PROOFS

A.1 PROOF OF THEOREM 1

To prove the theorem, we will use the following lemma followed from [Gross, 2011, Kohler and Lucchi, 2017].

Lemma 1 (Vector Bernstein Inequality [Gross, 2011, Kohler and Lucchi, 2017]). Suppose that z1, . . . , zn are independent
and identically distributed random vectors with zero mean E[zi] = 0 and bounded ℓ2-norm ∥zi∥2 ≤ c. Then, for every
0 ≤ ϵ ≤ c, the following holds

P
(∥∥∥ 1

n

n∑
i=1

zi

∥∥∥
2
≥ ϵ

)
≤ exp

(
−nϵ

2

8c2
+

1

4

)
We apply the above Vector Bernstein Inequality to the random vectors ϕ(x1)⊗ ϕ(x1), . . . , ϕ(x1)⊗ ϕ(x1) where ⊗ denotes
the Kronecker product. To do this, we define vector vi = ϕ(xi)⊗ ϕ(xi)− Ex∼P

[
ϕ(x)⊗ ϕ(x)

]
for every i. Note that vi is,

by definition, a zero-mean vector and also for every x we have the following for the normalized kernel function k:∥∥ϕ(x)⊗ ϕ(x)
∥∥2
2
=

∥∥ϕ(x)∥∥2
2
·
∥∥ϕ(x)∥∥2

2
= k(x, x) · k(x, x) = 1

Then, the triangle inequality implies that∥∥vi∥∥2 ≤
∥∥ϕ(xi)⊗ ϕ(xi)

∥∥
2
+
∥∥Ex∼P

[
ϕ(x)⊗ ϕ(x)

]∥∥
2
≤

∥∥ϕ(xi)⊗ ϕ(xi)
∥∥
2
+ Ex∼P

[∥∥ϕ(x)⊗ ϕ(x)
∥∥
2

]
= 2

As a result, the Vector Bernstein Inequality leads to the following for every 0 ≤ ϵ ≤ 2:

P
(∥∥∥ 1
n

n∑
i=1

ϕ(xi)⊗ ϕ(xi)− Ex∼P

[
ϕ(x)⊗ ϕ(x)

]∥∥∥
2
≥ ϵ

)
≤ exp

(8− nϵ2

32

)
On the other hand, note that ϕ(x) ⊗ ϕ(x) is the vectorized version of rank-1 ϕ(x)ϕ(x)⊤, which shows that the above
inequality is equivalent to the following where ∥ · ∥HS denotes the Hilbert-Schmidt norm, which will simplify to the
Frobenius norm in the finite dimension case,

P
(∥∥∥ 1
n

n∑
i=1

[
ϕ(xi)ϕ(xi)

⊤]− Ex∼P

[
ϕ(x)ϕ(x)⊤

]∥∥∥
HS

≥ ϵ
)

≤ exp
(8− nϵ2

32

)
=⇒ P

(∥∥∥CX − C̃X

∥∥∥
HS

≥ ϵ
)

≤ exp
(8− nϵ2

32

)
Subsequently, we can apply the Hoffman-Wielandt inequality which shows that for the sorted eigenvalue vectors of CX

(denoted by λ̂n in the theorem) and C̃X (denoted by λ̃ in the theorem) we will have ∥λ̂n − λ̃∥2 ≤ ∥CX − C̃X∥HS, which
together with the previous inequality leads to
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P
(∥∥λ̂n − λ̃

∥∥
2
≥ ϵ

)
≤ exp

(8− nϵ2

32

)
If we define δ = exp

(
(8− nϵ2)/32

)
that implies ϵ ≤

√
32 log(2/δ)

n , we obtain the following for every δ ≥ exp
(
(2− n)/8

)
(since we suppose 0 ≤ ϵ ≤ 2)

P
(∥∥λ̂n − λ̃

∥∥
2
≥

√
32 log(2/δ)

n

)
≤ δ

=⇒ P
(∥∥λ̂n − λ̃

∥∥
2
≤

√
32 log(2/δ)

n

)
≥ 1− δ

which completes the proof.

A.2 PROOF OF COROLLARY 2

The case of α = 1. We show that Theorem 1 on the concentration of the eigenvalues λ = [λ1, . . . , λd] will further imply a
concentration bound for the logarithm of Vendi-1 score. In the case of Vendi1 (when α→ 1+), the concentration bound
will be formed for the logarithm of the Vendi score, i.e. the Von-Neumann entropy (denoted as Hα):

H1(CX) := H1(λ) =

d∑
i=1

λ̃i log
1

λ̃i

Theorem 1 shows that ∥λ̂n − λ̃∥2 ≤
√

32 log(2/δ)
n with probability 1− δ. To convert this concentration bound to a bound on

the order-1 entropy (for Vendi-1 score) difference H1(Ĉn)−H1(CX), we leverage the following two lemmas:

Lemma 2. For every 0 ≤ α, β ≤ 1 such that |β − α| ≤ 1
e , we have∣∣∣α log

1

α
− β log

1

β

∣∣∣ ≤ |β − α| log 1

|β − α|

Proof. Let c = |α − β|, where c ∈ [0, 1e ]. Defining g(z) = z log( 1z ), the first-order optimality condition g′(z) =
− log(z)− 1 = 0 yields 1

e as the local maximum of g(z). Therefore, there are three cases of placement of α and β on the
interval [0, 1]: α and β appear before maximum point, after maximum point or maximum point is between α and β. We
show that regardless of the placement of α and β, the above inequality remains true.

• Case 1: α, β ∈ [0, 1e ]. Note that g′′(z) = − 1
z . Since the second-order derivative is negative and the function g is

monotonically increasing within the interval [0, 1e ], the gap between g(α) and g(β) is maximized when α∗ = 0 and
β∗ = c− α∗ = c. This directly leads to the desired bound as follows:∣∣∣α log

1

α
− β log

1

β

∣∣∣ ≤
∣∣∣α∗ log

1

α∗ − β∗ log
1

β∗

∣∣∣ =
∣∣0 log 0− c log

1

c

∣∣ ≤ c log
1

c

Here, we use the standard limit 0 log 0 = 0.

• Case 2: α, β ∈ [ 1e , 1]. In this case, we note that g is concave yet decreasing over [ 1e , 1], and so the gap between g(α)
and g(β) will be maximized when α∗ = 1− c and β∗ = 1. This leads to:∣∣∣α log

1

α
− β log

1

β

∣∣∣ ≤
∣∣∣α∗ log

1

α∗ − β∗ log
1

β∗

∣∣∣ = (1− c) log
1

(1− c)
≤ c log

1

c

where the last inequality holds because c ∈ [0, 1e ], and if we define the function h(c) = c log 1
c − (1− c) log 1

1−c , then
we have h′(c) = log 1

c(1−c) − 2, which is positive over c ∈ [0, c0] (e−2 < c0 < e−1 is where c0(1− c0) = e−2), and
then negative over [c0, 1e ], and hence h(c) ≥ min{h(0), h(1/e)} = 0 for every c ∈ [0, 1/e].



• Case 3: α ∈ [0, 1e ) and β ∈ ( 1e , 1]. When α and β lie on the opposite ends from the maximum point, the inequality
becomes: ∣∣α log

1

α
− β log

1

β

∣∣ ≤ max
{∣∣(1/e) log 1

1/e
− β log

1

β

∣∣, ∣∣α log
1

α
− (1/e) log

1

1/e

∣∣}≤ c log
1

c

since we pick the side with the largest difference, this difference is upper bounded by either Case 1 or Case 2 because
max{| 1e − β|, |α− 1

e |} < c. Therefore, this case is upper-bounded by c log 1
c .

All the three cases of placement of α and β are upper-bounded by c log 1
c ; Therefore, the claim holds.

Lemma 3. If ∥u∥2 ≤ ϵ for d-dimensional vector u ≥ 0 where ϵ ≤ 1
e , then we have

d∑
i=1

ui log
1

ui
≤ ϵ

√
d log

√
d

ϵ

Proof. We prove the above inequality using the KKT conditions for the following maximization problem, representing a
convex optimization problem,

max
u∈Rd

d∑
i=1

ui log(
1

ui
)

subject to ui ≥ 0, for all i
d∑

i=1

u2i ≤ ϵ2 (equivalent to ∥u∥2 ≤ ϵ)

In a concave maximization problem subject to convex constraints, any point that satisfies the KKT conditions is guaranteed to
be a global optimum. Let us pick the following solution u∗ = ϵ√

d
1 and slack variables λ∗ =

√
d

2ϵ

(
log(

√
d
ϵ )− 1

)
, ∀i µ∗

i = 0.
The Lagrangian of the above problem:

L(u, λ, µ1, . . . , µd) =

d∑
i=1

ui log(
1

ui
) + λ(ϵ2 −

d∑
i=1

u2i )−
d∑

i=1

µiui

• Primal Feasibility. The solution u∗ satisfies the primal feasibility, since ϵ2 −
∑d

i=1(
ϵ√
d
)2 = ϵ2 − d ϵ2

d = 0 and
ϵ√
d
≥ 0.

• Dual Feasibility. λ∗ ≥ 0 is feasible because of the assumption ϵ ≤ 1
e implying that

√
d
ϵ ≥ e for every integer dimension

d ≥ 1. Note that this implies λ∗ =
√
d

2ϵ

(
log(

√
d
ϵ )− 1

)
≥ 0.

• Complementary Slackness. Since λ∗
(
ϵ2 −

∑d
i=1(

ϵ√
d
)2
)
= λ∗ · 0 = 0, the condition is satisfied.

• Stationarity. The condition is satisfied as follows:

∂

∂ui
L(u∗) = − log(u∗i )− 1− 2λ∗u∗i + µ∗

i = − log(
ϵ√
d
)− 1− 2 ·

√
d

2ϵ

(
− log(

ϵ√
d
)− 1

)
· ϵ√
d
= 0

Since all KKT conditions are satisfied and sufficient for global optimality, u∗ = ϵ√
d
1 is a global optimum of the specified

concave maximization problem. We note that this result is also implied by the Schur-concavity property of entropy. Following
this result, the specified objective is upper-bounded as follows:

d∑
i=1

ui log
1

ui
≤ ϵ

√
d log

√
d

ϵ

Therefore, the lemma’s proof is complete.



Following the above lemmas, knowing that ∥λ̂n − λ̃∥2 ≤
√

32 log(2/δ)
n from Theorem 1 and using the assumption

n ≥ 32e2 log(2/δ) ≈ 236.5 log(2/δ) that ensures the upper-bound satisfies
√

32 log(2/δ)
n ≤ 1

e , we can apply the above two
lemmas to show that with probability 1− δ:

∣∣∣H1(Ĉn)−H1(CX)
∣∣∣ = ∣∣∣H1(λ̂n)−H1(λ̃)

∣∣∣ ≤ √
8d log(2/δ)

n
log

( nd

32 log(2/δ)

)
Note that under a kernel function with finite dimension d, the above bound will be O

(√
d
n log

(
nd

))
.

The case of 1 < α < 2. Note that the inequality ∥v∥α ≤ d
2−α
2 ∥v∥2 holds for every d-dimensional vector v ∈ Rd. Therefore,

we can repeat the proof of Corollary 1 to show the following for every 1 < α < 2∣∣∣Vendiα(x1, . . . , xn) 1−α
α −Vendiα(Px)

1−α
α

∣∣∣ =
∣∣∣∥∥λ̂n

∥∥
α
−

∥∥λ̃∥∥
α

∣∣∣
≤

∥∥λ̂n − λ̃
∥∥
α

≤ d
2−α
2

∥∥λ̂n − λ̃
∥∥
2
.

Consequently, Theorem 1 impies that for every 1 ≤ α < 2 and δ ≥ exp((2− n)/8), the following holds with probability at
least 1− δ ∣∣∣Vendiα(x1, . . . , xn) 1−α

α −Vendiα(Px)
1−α
α

∣∣∣ ≤ d
2−α
2

√
32 log(2/δ)

n
=

√
32d2−α log(2/δ)

n

A.3 PROOF OF COROLLARY 1

Considering the α-norm definition ∥v∥α =
(∑d

i=1 |vi|α
)1/α

, we can rewrite the order-α Vendi definition as

Vendiα(x1, . . . , xn) =
∥∥λ̂n

∥∥ α
1−α

α
⇐⇒ Vendiα(x1, . . . , xn)

1−α
α =

∥∥λ̂n

∥∥
α

where λ̂n is defined in Theorem 1. Similarly, given the definition of λ̃ we can write

Vendiα(Px)
1−α
α =

∥∥λ̃∥∥
α

Therefore, for every α ≥ 2, the following hold due to the triangle inequality:∣∣∣Vendiα(x1, . . . , xn) 1−α
α −Vendiα(Px)

1−α
α

∣∣∣ =
∣∣∣∥∥λ̂n

∥∥
α
−

∥∥λ̃∥∥
α

∣∣∣
≤

∥∥λ̂n − λ̃
∥∥
α

≤
∥∥λ̂n − λ̃

∥∥
2
.

As a result, Theorem 1 shows that for every α ≥ 2 and δ ≥ exp((2− n)/8), the following holds with probability at least
1− δ ∣∣∣Vendiα(x1, . . . , xn) 1−α

α −Vendiα(Px)
1−α
α

∣∣∣ ≤
√

32 log(2/δ)

n

A.4 PROOF OF THEOREM 2

We begin by proving the following lemma showing that the eigenvalues used in the definition of the t-truncated Vendi score
are the projection of the original eigenvalues onto a t-dimensional probability simplex.

Lemma 4. Consider v ∈ [0, 1]d that satisfies 1⊤v = 1. i.e., the sum of v’s entries equals 1. Given integer 1 ≤ t ≤ d,
define vector v(t) ∈ [0, 1]d whose last d− t entries are 0, i.e., v(t)i = 0 for t+ 1 ≤ i ≤ d, and its first t entries are defined
as v(t)j = vj +

1−St

t where St = v1 + · · ·+ vt. Then, v(t) is the projection of v onto the following simplex set and has the
minimum ℓ2-norm distance to this set

∆t :=
{
u ∈ [0, 1]d : vi = 0 for all t+ 1 ≤ i ≤ d,

t∑
i=1

vi = 1
}
.



Proof. To prove the lemma, first note that v(t) ∈ ∆t, i.e. its first t entries are non-negative and add up to 1, and also its last
d− t entries are zero. Then, consider the projection problem discussed in the lemma:

min
u∈Rt

t∑
i=1

(
ui − vi

)2
subject to ui ≥ 0, for all i

t∑
i=1

ui = 1

Then, since we know from the assumptions that vi ≥ 0 and
∑t

i=1 vi ≤ 1, the discussed u∗ ∈ Rt where u∗i = vi+(1−St)/t
together with Lagrangian coefficients µi = 0 (for inequality constraint ui ≥ 0) and λ = (1− St)/t (for equality constraint)
satisfy the KKT conditions. The primal and dual feasibility conditions as well as the complementary slackness clearly hold
for these selection of primal and dual variables. Also, the KKT stationarity condition is satisfied as for every i we have
u∗i − vi − λ − µi = 0. Since the optimization problem is a convex optimization task with affine constraints, the KKT
conditions are sufficient for optimaility which proves the lemma.

Based on the above lemma, the eigenvalues λ̂
(t)

n used to calculate the t-truncated Vendi score Vendi(t)α (x1, . . . , xn) are
the projections of the top-t eigenvalues in λ̂n for the original score Vendiα(x1, . . . , xn) onto the t-simplex subset of Rd

according to the ℓ2-norm. Similarly, the eigenvalues λ̃
(t)

n used to calculate the t-truncated population Vendi Vendi(t)α (PX)

are the projections of the top-t eigenvalues in λ̃ for the original population Vendi Vendiα(Px) onto the t-simplex subset of
Rd.

Since ℓ2-norm is a Hilbert space norm and the t-simplex subset ∆t is a convex set, we know from the convex analysis that

the ℓ2-distance between the projected points λ̂
(t)

n and λ̃
(t)

is upper-bounded by the ℓ2-distance between the original points
λ̂n and λ̃. As a result, Theorem 1 implies that

P
(∥∥λ̂n − λ̃

∥∥
2
≤

√
32 log(2/δ)

n

)
≥ 1− δ

=⇒ P
(∥∥λ̂(t)

n − λ̃
(t)∥∥

2
≤

√
32 log(2/δ)

n

)
≥ 1− δ

However, note that the eigenvalue vectors λ̂
(t)

n and λ̃
(t)

can be analyzed in a bounded t-dimensional space as their entries
after index t + 1 are zero. Therefore, we can apply the proof of Corollary 2 to show that for every 1 ≤ α < 2 and
δ ≥ exp((2− n)/8), the following holds with probability at least 1− δ

∣∣∣Vendiα(x1, . . . , xn) 1−α
α −Vendiα(Px)

1−α
α

∣∣∣ ≤
√

32t2−α log(2/δ)

n

To extend the result to a general α > 1, we reach the following inequality covering the above result as well as the result of
Corollary 1 in one inequality

∣∣∣Vendiα(x1, . . . , xn) 1−α
α −Vendiα(Px)

1−α
α

∣∣∣ ≤
√

32max{1, t2−α} log(2/δ)
n

A.5 PROOF OF THEOREM 3

Proof of Part (a). As defined by Ospanov et al. [2024b], the FKEA method uses the eigenvalues of t random Fourier
frequencies ω1, . . . , ωt where for each ωi they consider two features cos(ω⊤

i x) and sin(ω⊤
i x). Following the definitions,

it can be seen that k(x, x′) = Eω∼pω

[
cos(ω⊤(x − x′))

]
which is approximated by FKEA as 1

t

∑t
i=1 cos(ω

⊤
i (x − x′)).

Therefore, if we define kernel matrix Ki as the kernel matrix for ki(x, x′) = cos(ω⊤
i (x− x′)), then we will have

1

n
KFKEA(t) =

1

t

t∑
i=1

1

n
Ki



where Eωi∼pω [
1
nKi] =

1
nK.

On the other hand, we note that ∥ 1
nK∥HS ≤ 1 holds as the kernel function is normalized and hence |k(x, x′)| ≤ 1. Since the

Frobenius norm is the ℓ2-norm of the vectorized version of the matrix, we can apply Vector Bernstein inequality in Lemma 1
to show that for every 0 ≤ ϵ ≤ 2:

P
(∥∥∥1

t

t∑
i=1

[ 1
n
Ki

]
− 1

n
K
∥∥∥
F
≥ ϵ

)
≤ exp

(8− tϵ2

32

)
=⇒ P

(∥∥∥ 1
n
KFKEA(t) − 1

n
K
∥∥∥
F
≥ ϵ

)
≤ exp

(8− tϵ2

32

)
Then, we apply the Hoffman-Wielandt inequality to show that for the sorted eigenvalue vectors of 1

nK (denoted by λ̂n) and
1
nK

FKEA(t) (denoted by λFKEA(t)) we will have ∥λ̂n − λFKEA(t)∥2 ≤ ∥ 1
nK

FKEA(t) − 1
nK∥HS, which together with the

previous inequality leads to

P
(∥∥∥λ̂n − λFKEA(t)

∥∥∥
2
≥ ϵ

)
≤ exp

(8− tϵ2

32

)
Furthermore, as we shown in the proof of Theorem 1 for every 0 ≤ γ ≤ 2

P
(∥∥λ̂n − λ̃

∥∥
2
≥ γ

)
≤ exp

(8− nγ2

32

)
which, by applying the union bound for γ = ϵ, together with the previous inequality shows that

P
(∥∥∥λ̃− λFKEA(t)

∥∥∥
2
≥ 2ϵ

)
≤ exp

(8− tϵ2

32

)
+ exp

(8− nϵ2

32

)
≤ 2 exp

(8−min{n, t}ϵ2

32

)
Therefore, Lemma 4 implies that

P
(∥∥∥λ̃(t)

− λFKEA(t)
∥∥∥
2
≥ ϵ

)
≤ 2 exp

(32−min{n, t}ϵ2

128

)
If we define δ = 2 exp

( 32−min{n,t}ϵ2
128

)
, implying that ϵ ≤

√
128 log(3/δ)
min{n,t} , then the above inequality shows that

P
(∥∥∥λ̃(t)

− λFKEA(t)
∥∥∥
2
≤

√
128 log(3/δ)

min{n, t}

)
≥ 1− δ

Therefore, if we follow the same steps of the proof of Theorem 2, we can show

∣∣∣FKEA-Vendi(t)α (x1, . . . , xn)
1−α
α −Vendi(t)α (Px)

1−α
α

∣∣∣ ≤

√
128max{1, t2−α} log(3/δ)

min{n, t}

Proof of Part (b). To show this theorem, we use Theorem 3 from [Xu et al., 2015], which shows that if the rth largest
eigenvalue of the kernel matrix 1

nK satisfies λr ≤ τ
n , then given t ≥ Cr log(n) (C is a universal constant), the following

spectral norm bound will hold with probability 1− 2
n3 :

∥∥ 1
n
K − 1

n
KNystrom(t)

∥∥
sp

≤ O
(τ log(n)√

nt

)
.

Therefore, Weyl’s inequality implies the following for the vector of sorted eigenvalues of 1
nK, i.e. λ̂n, and that of

1
nK

Nystrom(t), i.e., λNystrom(t), ∥∥λ̂n − λNystrom(t)
∥∥
∞ ≤ O

(τ log(n)√
nt

)
.



As a result, considering the subvectors λ̂n[1 : t] and λNystrom(t)[1 : t] with the first t entries of the vectors, we will have:

∥∥λ̂n[1 : t]− λNystrom(t)[1 : t]
∥∥
∞ ≤ O

(τ log(n)√
nt

)
=⇒
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2
≤ O

(
τ log(n)

√
t

n

)
Noting that the non-zero entries of λNystrom(t) are all included in the first-t elements, we can apply Lemma 4 which shows
that with probability 1− 2n−3 we have∥∥∥λ̂(t)

n − λNystrom(t)
∥∥∥
2
≤ O

(
τ log(n)

√
t

n

)
Also, in the proof of Theorem 2, we showed that

P
(∥∥λ̂(t)

n − λ̃
(t)∥∥

2
≤

√
32 log(2/δ)

n

)
≥ 1− δ

Combining the above inequalities using a union bound, shows that with probability at least 1− δ − 2n−3 we have∥∥∥λNystrom(t) − λ̃
(t)
∥∥∥
2
≤
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+O
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)
= O
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n

)
Hence, repeating the final steps in the proof of Theorem 2, we can prove

∣∣∣Nystrom-Vendi(t)α (x1, . . . , xn)
1−α
α −Vendi(t)α (Px)

1−α
α

∣∣∣ ≤ O
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(
log(2/δ) + t log(n)2τ2

)
n

)

B ADDITIONAL NUMERICAL RESULTS

In this section, we present supplementary results concerning the evaluation of diversity and the convergence behavior of
different variants of the Vendi score. We extend the convergence experiments discussed in the main text to include the
truncated StyleGAN3-t FFHQ dataset (Figure 12) and the StyleGAN-XL ImageNet dataset (Figure 13). Furthermore, we
demonstrate that the truncated Vendi statistic effectively captures the diversity characteristics across various data modalities.
Specifically, we conducted similar experiments as shown in Figures 7 and 6 on text data (Figure 9) and video data (Figure
11), showcasing the applicability of the metric across different domains.

We observe in Figure 12 that the convergence behavior is illustrated across various values of ψ. The results indicate that, for
a fixed bandwidth σ, the truncated, Nyström, and FKEA variants of the Vendi score converge to the truncated Vendi statistic.
As demonstrated in Figure 6 of the main text, this truncated Vendi statistic effectively captures the diversity characteristics
inherent in the underlying dataset.

We note that in presence of incremental changes to the diversity of the dataset, finite-dimensional kernels, such as cosine
similarity kernel, remain relatively constant. This effect is illustrated in Figure 13, where increase in truncation factor ψ
results in incremental change in diversity. This is one of the cases where infinite-dimensional kernel maps with a sensitivity
(bandwidth) parameter σ are useful in controlling how responsive the method should be to the change in diversity.

B.1 BANDWIDTH σ SELECTION

In our experiments, we select the Gaussian kernel bandwidth, σ, to ensure that the Vendi metric effectively distinguishes the
inherent modes within the dataset. The kernel bandwidth directly controls the sensitivity of the metric to the underlying data
clusters. As illustrated in Figure 10, varying σ significantly impacts the diversity computation on the ImageNet dataset. A
smaller bandwidth (e.g., σ = 20, 30) results in the metric treating redundant samples as distinct modes, artificially inflating
the number of clusters, which in turn slows down the convergence of the metric. On the other hand, large bandwidth results
in instant convergence of the metric, i.e. in σ = 60 n = 100 and n = 1000 have almost the same amount of diversity.
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Figure 8: Diversity evaluation of Vendi scores on StyleGAN-XL generated ImageNet dataset with varying truncation
parameter ψ. The setting is based on DinoV2 embedding and bandwidth σ = 30

Table 1: Statistical convergence of diversity scores for different sample size on DALL-E 3 generated MSCOCO data

n VENDI-1.0 RKE Vendi-t FKEA-Vendi Nystrom-Vendi Recall Coverage

2000 239.91 13.47 239.91 228.69 239.91 0.76 0.86
4000 315.35 13.51 315.35 280.68 315.35 0.81 0.87
6000 357.15 13.56 346.27 310.9 345.49 0.83 0.91
8000 392.36 13.56 354.8 329.56 357.41 0.87 0.91

Table 2: Statistical convergence of diversity scores for different sample size on SDXL generated MSCOCO data

n VENDI-1.0 RKE Vendi-t FKEA-Vendi Nystrom-Vendi Recall Coverage

2000 187.17 10.65 187.17 173.06 187.18 0.78 0.85
4000 236.49 10.7 236.49 222.78 236.08 0.82 0.87
6000 264.82 10.7 258.21 236.37 257.34 0.86 0.87
8000 289.08 10.71 265.84 251.59 266.23 0.86 0.86
10000 304.44 10.72 267.39 256.24 268.34 0.86 0.87



Figure 9: Diversity evaluation of Vendi scores on synthetic text dataset about 100 countries generated by GPT-4 with varying
number of countries. The setting is based on text-embedding-3-large embedding and bandwidth σ = 0.5

Figure 10: The diagram outlining an intuition behind a kernel bandwidth σ selection in diversity evaluation.



Figure 11: Diversity evaluation of Vendi scores on Kinetics400 dataset with varying number of classes. The setting is based
on I3D embedding and bandwidth σ = 4.0

Table 3: Compilation time (in seconds) of different Vendi scores with increasing sample size

Metric samples n
10000 20000 30000 40000 50000 60000 70000

Vendi 97s 631s 1868s - - - -
FKEA-Vendi 19s 36s 53s 71s 88s 105s 124s
Nystrom-Vendi 31s 44s 78s 91s 112s 136s 164s
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Figure 12: Statistical convergence of Vendi score for different sample sizes on StyleGAN3 generated FFHQ data at various
truncation factors ψ: (Left plot) finite-dimension cosine similarity kernel (Right plot) infinite dimension Gaussian kernel
with bandwidth σ = 35. DinoV2 embedding (dimension 768) is used in computing the scores.
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Figure 13: Statistical convergence of Vendi score for different sample sizes on StyleGAN-XL generated ImageNet data:
(Left plot) finite-dimension cosine similarity kernel (Right plot) infinite dimension Gaussian kernel with bandwidth σ = 40.
DinoV2 embedding (dimension 768) is used in computing the scores.



Figure 14: Diversity evaluation of Vendi scores on ImageNet dataset with varying number of classes based on CLIP
embedding and bandwidth σ = 5.0

C SELECTION OF EMBEDDING SPACE

To show that proposed truncated Vendi score remains feasible under arbitrary embedding selection, we conducted experiments
from Figures 6 and 7. Figures 14, 15, 16 and 17 extend the results to CLIP Radford et al. [2021] and SWaV Caron et al.
[2020] embeddings. These experiments demonstrate that FKEA, Nyström and t-truncated Vendi correlate with increasing
diversity of the evaluated dataset. We emphasize that proposed statistic remains feasible under arbitrary embedding space
that is capable of mapping image samples into a latent space.



Figure 15: Diversity evaluation of Vendi scores on truncated StyleGAN3 generated FFHQ with varying truncation coefficient
ψ based on CLIP embedding and bandwidth σ = 5.0



Figure 16: Diversity evaluation of Vendi scores on ImageNet dataset with varying number of classes based on SWaV
embedding and bandwidth σ = 1.0



Figure 17: Diversity evaluation of Vendi scores on truncated StyleGAN3 generated FFHQ with varying truncation coefficient
ψ based on SwAV embedding and bandwidth σ = 1.0
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