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Abstract

Neural solvers have achieved impressive progress on simple routing problems via1

data-driven training, but often struggle with complex constraints. We rethink the2

popular single-paradigm neural solvers and identify paradigm-inherent limitations:3

construction solvers suffer from inflexible stepwise feasibility, and improvement4

solvers easily get stuck in infeasible searches with long runtimes. However, these5

paradigms are naturally complementary: construction efficiently provides strong6

initial solutions that help improvement rapidly reach feasible, high-quality solu-7

tions. Motivated by this, we propose Construct-and-Refine (CaR), the first generic8

neural framework for efficient constraint handling, compatible with existing con-9

struction and improvement solvers. To promote synergistic paradigm integration,10

we introduce a joint training framework with bespoke losses to generate diverse,11

high-quality, (near)-feasible solutions that are refined by a light improvement12

process (e.g., only 10 steps down from 5k). We also present the first study of a13

shared encoder for cross-paradigm representation learning in handling complex14

constraints. Extensive experiments on hard-constrained TSPTW and CVRPBLTW15

demonstrate that CaR achieves superior feasibility, solution quality, and efficiency16

compared to both traditional and neural state-of-the-art solvers.17

1 Introduction18

Vehicle routing problems (VRPs) often involve complex real-world constraints [1, 2]. For decades,19

the Operations Research (OR) community has put remarkable efforts into designing hand-crafted20

heuristics to handle these constraints and approximate near-optimal solutions, leading to powerful21

solvers such as OR-Tools [3] and LKH3 [4]. Recently, neural combinatorial optimization (NCO)22

solvers [5–7] have enriched the landscape for solving VRPs, which learn deep models to solve23

VRPs in a data-driven manner, thereby reducing dependence on domain knowledge. Benefiting24

from GPU parallelism, they are often fast while maintaining competitive solution quality. In general,25

existing neural solvers fall into two paradigms: 1) Construction solvers (e.g. [8, 9]), which construct26

solutions node by node from scratch, excelling in efficiency but prone to local optima; 2) Improvement27

solvers (e.g. [10, 11]), which iteratively refine a complete solution, exploring a broader search space28

but facing longer runtime. However, when they come to handling complex VRP constraints, both29

paradigms face critical inherent limitations that significantly hinder both feasibility and optimality.30

Construction solvers are inherently built upon a stepwise feasibility satisfaction process, where31

constraints must be enforced at each node selection step. While feasibility masking addresses this32

by excluding the invalid candidates and works well for simple cases like the Capacitated VRP33

(CVRP), it fails to handle more complex ones such as the Traveling Salesman Problem with Time34

Windows (TSPTW), where computing accurate masks itself is NP-hard thus intractable [12]. Recent35

attempts, such as lookahead strategies [13] and learnable approximated masking [12], alleviate this36

but come with high computational costs and still yield large infeasibility rates. Moreover, as discussed37
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in Section 4, even for complex VRPs where feasibility masking is tractable, such as CVRP with38

backhaul, duration limit, and time window constraints (CVRPBLTW), enforcing multiple constraints39

through such stepwise masking can overly restrict learning, thereby degrading model performance40

and making it more prone to local optima. Hence, achieving stepwise feasibility satisfaction while41

maintaining optimality remains a critical challenge in current construction solvers.42

On the other hand, the performance of improvement solvers on complex-constrained VRPs remains43

largely unexplored. Akin to the construction methods, they struggle with accurate feasibility masking44

for complex local search operators (e.g., k-opt). While prior work [11] showed that learning-guided45

infeasible region exploration improves performance in simpler constrained CVRP, it lacks feasibility46

guarantees and remains potentially time-consuming for complex VRPs. In more complex VRPs like47

CVRPBLTW, these improvement solvers face prolonged searches in infeasible regions (see Table 1),48

further amplifying the inherent inefficiencies in exploring complex search spaces.49

As a result, both solver paradigms struggle with constraint handling when used alone, often exhibit-50

ing inefficiencies, poor adaptability to complex constraints, or high infeasibility and suboptimality.51

However, they offer complementary strengths: improvement solvers excel at exploring local neigh-52

borhoods to repair infeasible or suboptimal solutions, while construction solvers provide strong53

initializations that allow improvement to rapidly reach feasible, high-quality solutions. This raises54

our research question: can we unify the strengths of the two paradigms to handle constraints without55

sacrificing efficiency?56

Motivated by this, we present Construct-and-Refine (CaR), the first generic neural framework57

that promotes efficient constraint handling through paradigm integration. Unlike existing methods58

that are often paradigm-limited, inefficient or lack generality across VRPs with varying constraint59

complexities, CaR unites the efficiency of construction with the flexibility of improvement, enabling60

efficient constraint handling for general complex VRPs where feasibility masking is either intractable61

(TSPTW) or overly restrictive (CVRPBLTW). To enhance the synergy between paradigms, CaR62

adopts an end-to-end joint training framework with bespoke loss functions that enable the construction63

module to generate diverse, high-quality, (near)-feasible initial solutions, which are then passed to a64

light refinement module, reducing the number of improvement steps required, e.g., from 5k to 10.65

Moreover, to further balance computational cost and enhance synergy, we take the first step toward66

exploring how a unified encoder across construction and refinement modules can enable more effective67

cross-paradigm representation learning. Lastly, we show that CaR is a generic framework compatible68

with existing state-of-the-art construction and improvement methods for efficient constraint handling.69

Our contributions are: 1) We introduce Construct-and-Refine (CaR), the first neural framework that70

enables efficient constraint handling through paradigm integration, excelling in solving complex71

VRPs where existing neural solvers fail to solve effectively; 2) We explore cross-paradigm rep-72

resentation learning by unifying encoders across the two paradigms, yielding notable benefits for73

hard-constrained scenarios; 3) We conduct extensive experiments on representative hard-constrained74

TSPTW and CVRPBLTW, where masking is intractable or overly restrictive. Notably, CaR is the first75

generic neural Construct-and-Refine framework for efficient constraint handling in VRPs, achieving76

substantial reduction in infeasibility, especially where construction alone fails, while simultaneously77

improving solution quality and runtime efficiency via light refinement.78

2 Preliminaries79

VRP variants. VRP is defined over a directed graph G = {V, E}, where V contains n customer80

nodes {v1, v2, . . . , vn} (for both TSP and VRP variants) and a depot {v0} (for VRP only), and81

e(vi,→vj) (or eij) ∈ E represents an edge from node vi to vj (i ̸= j) weighted by the 2D Euclidean82

distances. It aims to minimize the total cost of a solution while satisfying variant-specific constraints.83

This paper focuses on two representative complex VRPs: TSPTW with time window constraints,84

and CVRPBLTW with backhaul, duration limit, and time window constraints. See Appendix B for85

more details on the constraints. Neural VRP solvers usually handle these constraints by feasibility86

masking, which is tractable and effective in simpler cases like CVRP. However, they struggle with87

harder variants, e.g., CVRPBLTW with multiple constraints, or TSPTW, where masking is NP-hard88

since computing accurate masks requires evaluating future time-related feasibility for all possible89

actions. We further discuss the limitations of the existing feasibility masking in Appendix F.1.90
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Figure 1: Overall framework of CaR, where the construction module provides diverse near-feasible
and/or high-quality solutions for the refinement module to generate better solutions.

MDP formulations. We model construction and improvement as Constrained Markov Decision91

Processes (CMDPs), defined by the tuple (S,A,P,R, C), where S is the state space, A the action92

space, P the transition function, R the reward, and C the constraint function over m constraints. The93

objective is to learn a policy πθ maximizing expected reward while satisfying constraints:94

max
θ

J (πθ) = Eτ∼πθ
[R (τ |G)] , s.t. πθ ∈ ΠF , ΠF = {π ∈ Π |JC(πθ) = 0m}, (1)

where ΠF denotes the feasible policy set. Construction solvers build solutions sequentially, with95

state st encoding partial routes, vehicle status, and unvisited nodes; action at selects the next node;96

and the reward is the negative tour cost, R(τ | G) = −C(τ). In contrast, improvement solvers97

refine complete solutions, where st includes the current and best-so-far solutions; actions apply local98

operators (e.g., k-opt, remove-and-reinsert); and the reward is Rt = min[C(τ∗t )− C(τt+1), 0] [14].99

Relaxation of CMDP. Following [12], we adopt Lagrangian relaxation to facilitate training by100

penalizing constraint violations. The objective in Eq. (1) is augmented with a cost term:101

C(τ) =
∑
eij∈τ

[
CL (eij)+

m∑
η=1

Cη
V (eij)

]
, (2)

where CL denotes the objective cost (e.g., tour length), and CV captures violations of m constraints.102

For instance, if a vehicle arrives at node vj later than the time window upper bound uj , the violation103

cost is CV (eij) = tj − uj . CV also incorporates the count of violated nodes.104

3 Methodology105

As discussed above, single-paradigm methods have inherent limitations for constraint handling but can106

complement each other (see Appendix C for details). On one hand, improvement can rapidly repair107

construction’s infeasible or suboptimal solutions, due to its strength in exploring local neighborhoods;108

on the other hand, construction is highly efficient and can provide strong initializations that help109

improvement rapidly reach feasible, high-quality solutions, complementing improvement’s limitation110

in inefficiency. To further promote the synergic effects, we present our unified CaR framework for111

complex VRPs where masking is intractable (TSPTW) or restrictive (CVRPBLTW).112

3.1 Joint training framework of CaR113

CaR aims to transcend simple paradigm merging to handle constraints more efficiently than either114

paradigm alone. We develop a unified training framework to jointly optimize the two policies in CaR.115

Relaxation of CMDP in CaR. Building on the success of relaxed CMDP formulation for con-116

struction [12], we extend it to refinement to better balance objective and feasibility. Unlike prior117

infinite-horizon approaches [11, 15], we adopt a fixed rollout limit TR, treating steps equally to align118

with CaR’s lightweight and efficient refinement design.119

Collaborative training framework. To integrate construction and refinement effectively, we design a120

joint training framework that optimizes both processes simultaneously in each gradient step, allowing121

them to co-evolve. As illustrated in Figure 1, for each batch of training instances G, the construction122

module first generates a small set of diverse, high-quality initial solutions in parallel. These solutions123
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are then refined by a lightweight neural improvement process within TR steps (i.e., TR = 10124

significantly fewer than the thousands of iterations in conventional improvement methods), enabling125

rapid enhancement of high-potential candidates. The refined outputs then supervise construction,126

promoting collaborative correction of infeasibility and sub-optimality.127

Construction module loss. The policy πC
θ is trained via REINFORCE [16], using the loss function:128

LC
RL =

1

S

S∑
i=1

R(τi)−
1

S

S∑
j=1

R(τj)

 log πC
θ (τi)

 , (3)

where the solution probability is factorized as πC
θ (τ) =

∏|τ |
t=1 π

C
θ (et | τ<t), with τ<t denoting the129

partial solution prior to selecting edge et at step t. We employ a group baseline with diverse rollouts130

to reduce REINFORCE variance. For simpler variants like CVRP, S solutions are generated via131

POMO’s multi-start strategy [9], while for time-constrained variants (e.g., TSPTW), we sample S132

solutions to avoid infeasibility (see Appendix F.2). To compensate for reduced diversity due to the133

removal of the multi-start mechanism and to enhance the diversity of initial constructed solutions for134

refinement, we introduce an auxiliary entropy-based diversity loss:135

LDIV = −
|τ |∑
t=1

πC
θ (et | τ<t) log π

C
θ (et | τ<t), (4)

which largely encourages policy exploration during RL training. To avoid inefficiency, we evaluate136

candidates using the cost in Eq. (2), and only feed the top p high-quality candidates to subsequent137

refinement. If the refinement module improves a constructed solution (indicated by I = 1), the138

best-refined solution τ∗ is used as a pseudo ground truth to supervise πC
θ :139

LSL = −I ·
|τ∗|∑
t=1

log πC
θ (e

∗
t | τ∗<t), (5)

where I indicates whether such refinement led to improvement. The final construction loss integrates140

three components, i.e., L(θC) = LC
RL + α1LDIV + α2LSL.141

Refinement module loss. The refinement policy πR
θ iteratively improves solutions over TR steps,142

with probability of the refined solution at step t is factorized as πR
θ (τt) =

∏K
κ=1 π

R
θ (aκ|a<κ, τt−1),143

where K denotes the total number of sequential refinement moves/actions, with further details in144

Appendix D. The RL loss LR
RL(t) for refinement is computed at each step t using the REINFORCE145

algorithm in Eq. (3), where S is replaced by p, since only p solutions are refined. The final refinement146

loss is defined as the average across all TR steps: L(θR) = 1
TR

∑TR

t=1 LR
RL(t), encouraging each147

refinement step to contribute meaningfully and improving overall refinement efficiency.148

Joint training loss. The joint training loss combines the above two losses, i.e., L(θ) = L(θC) +149

ωL(θR), where ω balances their scales. Such joint loss promotes information exchange between150

modules , enhancing synergy in collaboratively handling complex constraints.151

3.2 Unified model architecture152

To reduce overhead and enhance synergy, we take the first step in exploring shared encoders for more153

effective cross-paradigm representation learning for hard-constrained VRPs.154

Encoder. Given an instance batch {Gi}Bi=1, both paradigms learns to obtain high-dimensional node155

embeddings hi via encoders. For CVRPBLTW, each node vi is represented by its coordinates, demand156

(i.e., linehaul or backhaul), time window, and duration limit, i.e., f n
i = {xi, yi, qi, li, ui, ℓ}. Unlike157

construction, refinement also incorporates solution features by encoding the sequential structure via158

positional information. To support both paradigms, we use a shared 6-layer Transformer encoder [9]159

with multi-head attention. Positional encoding, required only in refinement, is injected using cyclic160

positional encoding (CPE) via the synthesis-attention (Syn-Att) mechanism [17]. Afterwards, a161

multi-layer perceptron (MLP) fuses node-level attention scores an and solution-level scores as from162

positional embedding vectors through element-wise aggregation (see details in Figure 4).163

Decoder. The decoder generates action probabilities from node representations, selecting the next164

node for construction or the modification for refinement. In CaR, we retain the original neural solver165
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Table 1: Results on constrained VRPs: best are bolded; best within 1 min are shaded to show solver efficiency.

Method #Params Paradigm §
n=50 n=100

Obj. ↓ Gap ↓ Infsb% ↓ Time Obj. ↓ Gap ↓ Infsb% ↓ Time
T

SP
T

W
LKH3 (max trials = 100) / I 25.590 0.004% 11.88% 7m 46.625 0.103% 31.05% 27m

LKH3 (max trials = 10000) / I 25.611 ⋄ 0.12% 7h 46.858 ⋄ 0.13% 1.4d
OR-Tools† / I 25.763 -0.001% 65.72% 2.4h 46.424 0.026% 97.45% 12m
Greedy-C / C 26.394 1.534% 72.55% 4.5s 51.945 9.651% 99.85% 11.4s

POMO 1.25M L2C / / 100.00% 4s / / 100.00% 14s
POMO* 1.25M L2C 26.222 1.635% 37.27% 4s 47.249 1.959% 38.22% 14s

POMO* + PIP (greedy) 1.25M L2C 25.657 0.177% 2.67% 7s 47.372 1.223% 6.96% 32s
POMO* + PIP (sample 10) 1.25M L2C 25.650 0.152% 1.87% 1m 47.294 1.030% 4.67% 5.2m
NeuOpt-GIRE ∗‡ (T = 1k) 0.69M L2I 25.627 0.061% 0.19% 2.3m 47.011 0.336% 0.13% 5.9m
NeuOpt-GIRE ∗‡ (T = 5k) 0.69M L2I 25.617 0.028% 0.02% 11.6m 46.913 0.123% 0.02% 30m

CaR-POMO (TR = 5) 1.64M L2(C+I) 25.619 0.034% 0.02% 15s 47.278 1.065% 4.20% 36s
CaR-POMO (TR = 20) 1.64M L2(C+I) 25.614 0.014% 0.01% 51s 47.001 0.406% 2.34% 2.1m

CaR-PIP (TR = 5) 1.64M L2(C+I) 25.613 0.010% 0.02% 17s 47.000 0.315% 0.10% 58s
CaR-PIP (TR = 20) 1.64M L2(C+I) 25.612 0.005% 0.00% 52s 46.923 0.146% 0.02% 2.4m

C
V

R
PB

LT
W

OR-Tools (short) / I 14.890 1.402% 0.00% 10.4m 25.979 2.518% 0.00% 20.8m
OR-Tools / I 14.677 ⋄ 0.00% 1.7h 25.342 ⋄ 0.00% 3.5h

POMO 1.25M L2C 15.999 9.169% 0.00% 2s 27.046 7.004% 0.00% 4s
POMO+EAS+SGBS* 1.25M L2C 15.156 3.263% 0.00% 10.3m 25.558 0.854% 0.00% 1h

NeuOpt-GIRE ∗‡ (T = 1k) 0.69M L2I 14.521 1.329% 33.80% 1.1m 24.832 4.290% 56.30% 2.9m
NeuOpt-GIRE ∗‡ (T = 5k) 0.69M L2I 14.201 -1.163% 27.30% 5.5m 24.237 -0.533% 41.20% 15m

POMO* 1.25M L2C 14.873 2.310% 0.00% 2s 24.592 -1.645% 0.00% 4s
CaR (k-opt) (TR = 5) 1.64M L2(C+I) 14.872 2.271% 0.00% 3s 24.597 -1.674% 0.00% 5s

CaR (k-opt) (TR = 20) 1.64M L2(C+I) 14.844 2.114% 0.00% 8s 24.585 -1.724% 0.00% 17s
CaR (R&R) (TR = 5) 1.72M L2(C+I) 14.725 1.328% 0.00% 3s 24.552 -1.835% 0.00% 6s

CaR (R&R) (TR = 20) 1.72M L2(C+I) 14.601 0.463% 0.00% 10s 24.400 -2.448% 0.00% 19s

§ The abbreviations refer to: I – Improvement; L2C – Learning to Construct; L2I – Learning to Improve.
† OR-Tools presolves before search; if it detects infeasibility, it terminates immediately, making runtime shorter than preset.

designs when applied to one construction and one improvement at a time. To validate generality,166

we experiment with two construction backbones, POMO [9] and PIP [12], and two refinement167

backbones, NeuOpt [11] and N2S [17]. To adapt improvement solvers for new variants (e.g.,168

TSPTW, CVRPBLTW), we follow their original design and introduce variant-specific features, such169

as refinement history and node-level feasibility information (see Appendix D for details), to enhance170

constraint awareness. While we also explored a unified decoder, results in Figure 7 show degraded171

performance, suggesting that while a shared encoder benefits representation learning, separate172

decoders remain important for paradigm-specific optimization – an insight for future reference.173

4 Experiments174

We now evaluate our proposed Construct-and-Refine (CaR) framework in handling hard-constrained175

TSPTW and CVRPBLTW instances. Additional results are provided in Appendix F.176

Experimental settings. Training instances are generated on the fly as in [12, 18] (see Appendix B).177

For TSPTW, we mainly focus on the hard variants in [12]. All experiments are conducted on problem178

sizes n = 50/100, following established benchmarks [8, 10]. Models are trained with 20,000 instances179

per epoch for 5,000 epochs with a batch size of 128 [18]. We set TR = 5 during training. During180

inference, 8× augmentation [9] is used to construct initial solutions, followed by TR-step refinement.181

Baseline. We compare CaR with SoTA traditional solvers (LKH3 [4], OR-Tools [3], and Greedy182

heuristics) and neural solvers, including construction methods (POMO [9]+EAS [19]+SGBS [20],183

PIP [12]) and the improvement solver NeuOpt-GIRE [11]. To ensure fairness, we upgrade NeuOpt-184

GIRE and POMO-based solvers with our relaxed CMDP formulation (*) and solution-level features185

(‡; see Appendix D). All models are trained to convergence with comparable training budgets.186

Evaluation metrics. We evaluate performance using: 1) average solution length (Obj.), the mean187

length of best feasible solutions; 2) average optimality gap (Gap), the difference from (near-)optimal188

solutions found by top traditional solvers (LKH3 for TSPTW, OR-Tools for CVRPBLTW, HGS189

for CVRP, marked with ⋄); 3) total inference time (Time) for solving 10,000 TSPTW or 1,000190

CVRP/CVRPBLTW instances using single-GPU parallelization; and 4) average infeasible solution191

rate per instance (Infsb%) after construction and refinement.192
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Figure 2: Performance over time on TSPTW-100 (left) and CVRPBLTW-100 (right). For CVRP-
BLTW, POMO+EAS+SGBS and CaR always achieve 0% infeasibility due to feasibility masking.
We show the SoTA method for each paradigm for comparison.

4.1 Model performance on constrained VRPs193

TSPTW results. We first test CaR on TSPTW, where most neural solvers fail due to the lack of194

feasibility masking. To verify generality, we use POMO* and PIP as construction backbones, with195

CaR-POMO training 1.42× (at n=50) and 1.65× (at n=100) faster than CaR-PIP. As shown in196

Table 1, CaR-POMO consistently outperforms PIP in both quality and feasibility. On TSPTW-50,197

CaR reduces infeasibility to 0.00%, outperforming PIP (1.87%) and NeuOpt* (0.02%). On TSPTW-198

100, CaR lowers PIP’s 4.67% infeasibility to 0.02% and reduces the gap from 1.030% to 0.146%.199

While NeuOpt* improves with longer runtimes, CaR achieves competitive results with an 8× speedup200

within a runtime budget of 10 minutes (Figure 2), which aligns with CaR’s aim of efficiency. Notably,201

CaR surpasses LKH3 and finds feasible solutions even when it fails, highlighting the strength of our202

cross-paradigm framework under complex constraints. .203

CVRPBLTW results. On complex CVRPBLTW, feasibility masking filters out over 60% of nodes,204

severely limiting the search space (Figure 6). Interestingly, removing these masks and applying the205

relaxed CMDP in POMO significantly improves performance (e.g., CVRPBLTW-100: from 7.004%206

to -1.645% in Table 1). Unlike TSPTW, NeuOpt* fails in CVRPBLTW with 27-56% infeasibility,207

while CaR guarantees feasibility as other construction solvers. We compare CaR with the best208

single-paradigm solvers in Figure 2. CaR achieves best area under the curve, indicating superior209

efficiency and effectiveness. We also validate CaR with k-opt and R&R, where R&R performs better210

(-2.448% vs. -1.724%) due to a finer-grained search better suited to multi-constraints variants.211

4.2 Effects of the unified representation on handling complex VRPs212

Table 2: Effects of unified encoder on TSPTW.

Method
TSPTW-50 Hard TSPTW-100 Medium
Infsb% Gap Infsb% Gap

Construction-only 37.270% 1.635% 0.120% 10.931%

Separate 0.675% 0.199% 0.000% 7.589%
Unified (Ours) 0.010% 0.014% 0.000% 5.815%

We explore the idea of learning unified repre-213

sentations for two paradigms, which by design214

ensures complementary knowledge sharing, en-215

abling synergistic module functionality when216

one lacks capability. As shown in Table 2,217

CaR with a shared encoder and separate de-218

coders outperforms the construction-only model219

on the hard-constrained Medium TSPTW-100220

and Hard TSPTW-50 cases, with the unified variant achieving the best results. This suggests that CaR221

not only strengthens standalone construction but also enables cross-paradigm knowledge transfer222

through shared representations. See Appendix F for more ablation results and further analysis.223

5 Conclusion224

This paper proposes Construct-and-Refine (CaR), the first neural framework to handle constraints via225

paradigm integration. CaR jointly learns to construct diverse, high-quality solutions and refine them226

with a lightweight improvement module, enabling efficient constraint satisfaction. We also explore227

shared encoders for cross-paradigm representation learning. CaR performs strongly across constrained228

VRPs, offering key insights: 1) single-paradigm solvers struggle with complex constraints; 2) strict229

feasibility masking may hurt performance, while relaxed penalties help; 3) combining construction230

with light refinement efficiently recovers feasible, high-quality solutions; and 4) shared representations231

boost performance particularly for complex cases. Future work includes applying CaR to more VRPs,232

integrating diverse solvers, improving scalability, and developing foundation NCO models.233
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A Detailed literature review429

A.1 Neural VRP solvers430

Generally, neural VRP solvers can be broadly categorized into two paradigms: construction solvers431

and improvement solvers.432

1) Construction-based solvers learn to construct solutions from scratch in an end-to-end fashion.433

Vinyals et al. [21] introduced the Pointer Network (PtrNet), leveraging Recurrent Neural Networks434

(RNN) to solve the Traveling Salesman Problem (TSP) in a supervised manner. Building on this,435

Bello et al. [22] explored reinforcement learning (RL) training for PtrNet. Nazari et al. [23] extended436

the approach to solve CVRP in an autoregressive (AR) way. Among AR solvers, the Attention437

Model (AM) [8] stands out as a milestone to solve multiple VRPs. This was further advanced by the438

Policy Optimization with Multiple Optima (POMO) [9], which leverages diverse rollouts inspired439

by the symmetry properties of VRP solutions. Subsequently, numerous studies have advanced AR440

solvers in various perspectives, such as inference strategies [19, 20, 24], training paradigms [25–31],441

interpretability [32], scalability [33–36], robustness [37, 38], benchmarking [7], and generalization442

over different distributions [39–41], scales [42–44], and constraints [18, 45–49]. Beyond AR solvers,443

another line of research predicts heatmaps in a non-autoregressive (NAR) manner to represent edge444

probabilities for optimal solutions [50–55]. With the learned heatmap, these solvers can greatly445

reduce the search space. Despite showing better scalability, NAR solvers often depend on post-search446

procedures, which can be either time-consuming or ineffective in handling VRP constraints, even for447

the simple cases such as CVRP.448

2) Improvement-based solvers learns to iteratively improve initial solutions, drawing inspiration from449

traditional (meta-)heuristics such as k-opt (e.g., 2-opt [10, 56, 57], extended to flexible k-opt [11]),450
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ruin-and-repair [17, 58], and crossover [59]. In general, improvement-based methods can achieve451

near-optimal solutions given prolonged search time, whereas construction-based methods typically452

offer a more efficient trade-off between performance and runtime.453

A.2 Constraint handling for VRPs454

Classic neural methods handle VRP constraints using feasibility masking to exclude invalid actions [9,455

57]. While effective for simpler VRPs (e.g., CVRP), such masking fails on more complex VRPs.456

Firstly, calculating masking itself may be NP-hard [12], e.g., for TSPTW and TSPDL. While recent457

methods have explored Lagrangian-based problem reformulation [15], lookahead strategies [13], and458

learnable approximated masks to prevent infeasibility [12], they may incur high computational costs459

and still yield high infeasibility rates. Secondly, current methods struggle with multi-constraint VRPs,460

e.g., CVRPBLTW, where construction faces overly restrictive masks and improvement drifts into461

infeasible regions (see Section 4). Moreover, no feasibility handling scheme effectively addresses462

both types of the above challenges. Hence, an efficient, general, and effective constraint-handling463

framework for neural VRP solvers remains absent.464

A.3 Hybrid VRP solvers465

Recent research has explored hybridizing construction-based approaches with search mechanisms to466

enhance combinatorial optimization solvers. For instance, active search [19] and beam search [20]467

have been used to augment construction policies. However, these methods are not well-suited for468

hard-constrained vehicle routing problems (VRPs), where feasibility is critical. Other strategies, such469

as collaborative policies [60], random reconstruction [29], and neural divide-and-conquer frameworks470

(e.g., GLOP [61] and UDC [62]), have shown strong performance on CVRP but often struggle471

to maintain feasibility when solutions are decomposed or reconstructed, even with penalty-based472

guidance.473

Beyond post-construction search, hybrid methods that integrate construction with intensive improve-474

ment phases have been proposed. RL4CO [5] combines pretrained POMO [9] and NeuOpt [11]475

at inference time, while NCS [63] employs a shared critic to jointly train the two modules. These476

approaches, however, depend on separately optimized components and often require extensive477

improvement steps (e.g., 5,000 iterations), limiting their efficiency and scalability.478

Our approach distinguishes itself in three critical ways: 1) it adopts a joint training framework479

with unified representation learning, unlike prior works that treat construction and improvement as480

separate [5] or loosely coupled [63] components; 2) it achieves efficient and precise refinement in as481

few as 10 steps, rather than relying on prolonged improvement; and 3) it is the first to systematically482

explore the synergy between construction and improvement for effective constraint handling in483

complex VRPs.484

Among the most relevant hybrid baselines, LCP [60], RL4CO [5], and NCS [63] are not directly485

applicable to complex constrained VRPs due to significant limitations: LCP’s divide-and-conquer486

strategy impairs constraint handling; RL4CO lacks joint optimization; and NCS fails to generate fea-487

sible moves or predict value functions accurately under hard constraints, leading to 100% infeasibility488

on TSPTW in our preliminary evaluations.489

B Problem selection and data generation490

As a single-task solver focused on constraint handling, our work aligns with prior single-task studies491

that typically evaluate 2–3 representative VRPs. Specifically, we consider three representative492

VRPs: complex constrained VRPs where feasibility masking is NP-hard thus intractable (TSPTW) or493

tractable but ineffective (CVRPBLTW), and simpler constraints (CVRP) where feasibility masking494

is tractable and effective. Below we introduce the detailed data generation process. Following the495

convention, all the node coordinates are generated under a uniform distribution, i.e., xi, yi ∼ U [0, 1].496

B.1 Traveling Salesman Problem with Time Window (TSPTW)497

We primarily follow the settings of a recent study [12], which introduced TSPTW with three difficulty498

levels: Easy [13], Medium, and Hard. Given our focus on complex constrained VRPs, we report499

12



results on the Hard variant in the main tables, consistent with the benchmark dataset in [64]. Except500

for the experiment in Table 2, where we use the Medium variant to show how CaR’s unified encoder501

works as constraint hardness changes, all other TSPTW experiments default to the Hard setting.502

NP-hardness of computing feasibility masking on TSPTW. During solution construction, neural503

solvers typically apply feasibility masking to exclude actions that violate constraints. In TSPTW, for504

instance, a node vj is masked out if its arrival time tj exceeds its time window end uj , i.e., tj > uj .505

However, as highlighted in PIP [12], feasibility in TSPTW is not purely local: selecting a node affects506

the current time, which in turn influences the feasibility of all future selections due to interdependent507

time window constraints. For example, a node with a late time window might be locally feasible, but508

choosing it can delay the tour such that earlier nodes become unreachable, leading to irreversible509

infeasibility. Ensuring global feasibility thus requires evaluating whether a current decision allows for510

any feasible completions, i.e., a process that involves simulating all future possibilities. This renders511

feasibility masking itself NP-hard, compounding the inherent difficulty of solving TSPTW.512

TSPTW Hard. We first generate a random permutation τ of the node set and sequentially as-513

sign time windows to ensure the existence of a feasible solution for each instance. The time514

windows are drawn from a uniform distribution, where the lower and upper bounds are given by515

li ∼ U [CL(τ
′
i)− η, CL(τ

′
i)] , ui ∼ U [CL(τ

′
i), CL(τ

′
i) + η], where CL(τ

′
i) denotes the cumulative516

tour length of the partial sequence τ ′ up to step i, and η controls the time window width. To adaptively517

scale time windows with problem size, we set η = n, offering greater flexibility than the fixed value518

of 50 used in [12]. Time windows are then normalized following [8] to facilitate neural network519

training. Since TSP solutions form a Hamiltonian cycle, it is equivalent to setting any node as the520

starting point. Thus, we designate a specific starting node for TSPTW by redefining its upper bound521

u0 as u0 = max (ui + CL(e(vi, v0))) , i ∈ [1, n].522

TSPTW Medium. We generate the lower and upper bounds of the time windows following a uniform523

distribution: li ∼ U [0, TN ], where TN estimates the expected tour length for the given problem scale524

(e.g., T20 ≈ 10.9 [13]). The upper bound ui is derived from li as ui ∼ li + TN · U [0.1, 0.2]. While525

this data generation rule does not guarantee instance feasibility, preliminary results show that the526

time windows overlap significantly, leading to a high feasibility rate in the generated instances.527

For all the TSPTW instances, we normalize all li and ui by u0 to ensure their values fall within [0, 1].528

Training data is generated on the fly, while inference uses the dataset from [12] for fair comparison.529

As noted in [12], all test instances are verified to be feasible, either empirically or theoretically.530

B.2 Capacitated VRP with Backhaul, Duration Limit, and Time Window Constraints531

(CVRPBLTW)532

CVRPBLTW follows the setting in [18, 47, 65] and includes four key constraints: 1) Capacity533

(C). Each node’s demand qi is sampled from U(1, . . . , 9), and the vehicle’s capacity Q varies by534

problem scale, with Q50 = 40 and Q100 = 50. 2) Backhaul (B). Node demands are sampled535

from a discrete uniform distribution {1, . . . , 9}, with 20% of customers randomly designated as536

backhauls. Routes include both linehauls and backhauls without strict precedence constraints.537

3) Duration Limit (L). The maximum route length is set to ℓ = 3, ensuring feasible solutions538

in the unit square space U(0, 1). 4) Time Window (TW). The depot time window is defined as539

[l0, u0] = [0, 3], and each customer node has a service time of si = 0.2. The time window for node vi540

is computed as follows: the center is sampled as γi ∼ U(l0+CL(e(v0, vi)), u0−CL(e(vi, v0))−si),541

where CL(e(v0, vi)) = CL(e(vi, v0)) represents the travel time between the depot v0 and node vi.542

The half-width is drawn from wi ∼ U( si2 ,
u0

3 ) = U(0.1, 1). Finally, the time window is set as543

[li, ui] = [max(l0, γi −wi),min(u0, γi +wi)]. Training data is generated on the fly, while inference544

uses the 1k-instance dataset from [18] for fair comparison.545

C Limitations of individual paradigms for complex constraint handling546

Figure 3 depicts the illustrative search behaviors of neural solvers on two hard-constrained VRPs:547

i) CVRPBLTW (a–c) where feasibility masking for construction is tractable but overly restrictive,548

leading to a fragmented feasible space due to multiple constraints; and ii) TSPTW (d-f), where549

computing feasibility masks is NP-hard and thus intractable [12], yielding a limited feasible region.550
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Both construction and improvement solvers may struggle with these hard constraints. In CVRPBLTW,551

overly restrictive masking limits the exploration of construction in the fragmented feasible space,552

causing early convergence to local optima (Figure 3(a)). This aligns with our findings in Section 4:553

removing hard masking for CVRPBLTW improves performance (POMO* vs. POMO in Table 1) but554

still yields infeasible and suboptimal solutions (Appendix F.1). For TSPTW, the relaxed CMDP in555

Eq.(2) offers partial relief, but Bi et al. [12] show it fails in complex cases and propose a learnable mask556

to guide the policy toward near-feasible regions (Figure 3(d)). Still, the performance of construction557

methods alone remains limited due to the rigidity of inherent stepwise feasibility. For improvement558

methods with advanced operators (e.g., k-opt), masking is inapplicable and thus unavailable in both559

cases, often resulting in inefficient search trajectories through both feasible and infeasible regions.560

As shown in Figure 3(b) and Figure 3(e), while they can refine solutions, they are computationally561

inefficient, often requiring substantial time to find good initial solutions, and performance degrades562

significantly with multiple constraints and limited search steps (Table 1).563

To address these limitations, we propose CaR, which unifies the strengths of both paradigms by using564

construction to generate diverse, high-quality, near-feasible initial solutions, thereby reducing the565

required refinement iterations. As shown in Figures 3(c) and (f), CaR applies lightweight refinement566

with only a few steps to help construction escape local optima and reach higher-quality local optima,567

enabling more effective and efficient constraint handling for complex VRPs.568

Refined solution (short) Converged construction policy space (Approximated) feasibility maskInfeasible solution space

Feasible solution space Refined / Improved solution (with longer steps) Local optima
Global optima

(d) Construct (e) Refine / Improve (f) CaR

Constrained VRP with NP-hard feasibility mask (e.g. TSPTW) 

(a) Construct (c)  CaR(b) Refine / Improve 

Constrained VRP with available but too restrictive mask (e.g. CVRPBLTW) 

Feasible / Infeasible constructed solution (sampling) 

Figure 3: Illustration of the solution space and paradigm behaviors for two hard-constrained VRPs.

D Network architecture569

The network architectures of mainstream neural construction and improvement solvers are typically570

based on a Transformer encoder with an attention-based decoder, enabling unification across both571

paradigms. In this paper, we adopt a unified encoder shared by the construction and refinement572

decoders. Specifically, we use a 6-layer Transformer encoder, following POMO [9], while retaining573

the original decoders from NeuOpt [11] and N2S [17], corresponding to two representative local574

search operators: flexible k-opt [11] and remove-and-reinsertion (R&R) [17], respectively. For the575

unexplored variants TSPTW and CVRPBLTW, we design new constraint-related features analogous576

to the contextual features used in the original decoders. The concrete forward processes are introduced577

below.578

D.1 Encoder579

As shown in Figure 4, the construction module first takes node features f n
i —including coordinates580

(xi, yi) and constraint-related features (e.g., time windows [li, ui] and demand qi)—as input. For581

each node vi, these features are projected into a d-dimensional embedding h
(0)
i ∈ Rd (d = 128) via582

a linear layer. The initial embedding is then passed through a 6-layer Transformer network [9]. At583

each layer j (j = 1, · · · , 6), the embedding h
(j−1)
i is projected into query, key, and value vectors:584

q
(j)
i = W (j)

q h
(j−1)
i , k

(j)
i = W

(j)
k h

(j−1)
i , v

(j)
i = W (j)

v h
(j−1)
i , (6)

where W
(j)
q ,W

(j)
k ,W

(j)
v ∈ Rd×d. These are fed into a multi-head attention (MHA) layer, whose585

output is:586

h̃
(j)

i = Softmax

(
(q

(j)
i )⊤k

(j)
i√

d

)
v
(j)
i . (7)
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Figure 4: Overview of the unified network architecture in CaR. Blue dashed arrows indicate informa-
tion flow specific to refinement, while purple dashed arrows indicate flow exclusive to construction.

The MHA output is then linearly transformed:587

ĥi(j) = W
(j)
MHAh̃i

(j), (8)

where WMHA(j) ∈ Rd×d. This passes through instance normalization with residual connection:588

h′(j)
i = IN

(
ĥ
(j)

i + h
(j−1)
i

)
. (9)

Next, a feed-forward (FF) layer refines the output:589

h′′(j)
i = W

(j)
2 · ReLU

(
W

(j)
1 h′(j)

i

)
, (10)

where W
(j)
1 ∈ Rd×d′

, W (j)
2 ∈ Rd′×d, and d′ = 512 as in [9]. The final embedding at layer j is:590

h
(j)
i = IN

(
h′′(j)

i + h′(j)
i

)
. (11)

Thereafter, this process is repeated for 6 layers, and the final encoder output is hi = h
(6)
i .591

When it comes to the refinement module, the input changes from a node feature set to a linked list (i.e.,592

the solution), which consists of the original node features plus positional information and a pointer593

to the next node in the solution. Notably, for CVRP variants, the depot node may appear multiple594

times, with each occurrence treated as a distinct node due to its different position. The refinement595

module shares the same operations as the construction module, except for Eq. (7). Specifically, we596

first incorporate the cyclic positional encoding (CPE) from [57] to obtain the positional embedding597

pi ∈ Rd. We then apply a self-attention mechanism:598

p̃i = (W p
q pi)

⊤(W p
k pi), (12)

where W p
q ,W

p
k ∈ Rd×d, to compute the positional attention matrix as. We replace Eq. (7) from the599

construction module with:600

h̃
(j)

i = Softmax

MLP
([

(q
(j)
i )⊤k

(j)
i , p̃i

])
√
d

v
(j)
i , (13)

where the MLP reduces the dimension of the concatenated attention scores, i.e., [an, as] in Figure 4,601

from 2 to 1, following the Syn-Att mechanism proposed in [17].602

D.2 Decoder603

The construction decoder primarily employs an MHA layer, where the key and value vectors are604

linearly transformed from the node embedding hi. The query vector is computed using contextual605

information from the construction process, including: 1) the embedding of the partial solution hs (i.e.,606

the node embedding of the last node in the partial solution), and 2) the step-wise solution features607

15



f s, which include the vehicle’s remaining load, current time, and current sub-tour length. The MHA608

output is calculated as:609

a =

n∑
i=0

Softmax
(
q⊤i ki√

d
+ ξi

)
vi, (14)

where ξi is the feasibility mask for node vi. We mask out visited nodes to ensure solution validity610

across all variants. For CVRP, as discussed in Appendix F.1, we also mask nodes that violate capacity611

constraints at each construction step. The output of each head is then passed through a linear layer612

parameterized by Wo, yielding ha = Woa. Finally, the decoder computes selection probabilities for613

all candidate nodes using a single-head attention layer:614

pi = Softmax
(
ζ · tanh

(
h⊤
a hi√
d

)
+ ξi

)
, (15)

where ζ scales the logits to encourage exploration [9].615

The refinement decoder follows the original design in the NeuOpt [11] and N2S [17], which performs616

two representative local search operators: the flexible k-opt1 and remove-and-reinsertion (R&R),617

respectively. Figure 5 illustrates the detailed improvement process in a single time step for different618

local search operators, where each node selection corresponds to a full computation of the network619

decoder. Note that although the original NeuOpt and N2S decoders adopt different architectures, their620

input and output formats are similar. At each refinement step t = 1, . . . , TR, the inputs include: (i)621

the updated node embedding ht
i derived from the previous solution τt−1 (with τ0 as the top-p initial622

construction solutions); (ii) refinement features encoding feasibility transition history for k-opt or623

removal action history for R&R; and (iii) refinement embedding of the last action node, analogous to624

the solution embedding in construction. The output is the selection probability over candidate nodes625

for the next refinement operation (e.g., k-opt, removal, or insertion).626

To adapt improvement solvers to new variants (e.g., TSPTW, CVRPBLTW), we follow their original627

design principles while integrating variant-specific features, such as refinement history and node-level628

feasibility information. Specifically, when using the NeuOpt decoder, we encode the feasibility of the629

most recent three refinement steps as a binary vector to represent refinement history and incorporate630

node-level feasibility features to enhance constraint awareness. For TSPTW, these features include631

the arrival time at each node, time window violation value, last node arrival time, and an indicator of632

whether the solution becomes infeasible after visiting the current node. For CVRPBLTW, node-level633

feasibility features include binary indicators for depot and backhaul nodes, violation values for each634

constraint, constraint-related attributes (e.g., arrival time and cumulative distance/demand), and635

infeasibility markers indicating whether the solution becomes infeasible before or after visiting the636

current node. Adapted NeuOpt variants are marked with ‡ in the main tables.637

E Experimental settings638

We preset refinement steps TR = 5 during training. Models are trained using Adam with a learning639

rate of 1× 10−4, weight decay of 1× 10−6. Follow the setting of [9], we use instance normalization640

in the MHA and set the embedding dimension to 128. To prevent out-of-memory issues early in641

training, refinement is activated after a ∼10-epoch warmup of the construction module. To optimize642

GPU memory utilization, we adjust the number of refined solutions p separately for each problem643

size during training. We set α1 = 0.01 and α2 = 1 in the construction loss, and set ω = 100 for644

TSPTW and CVRP, and 10 for CVRPBLTW based on the relative loss scales between modules645

observed during warm-up epochs. During inference, TSPTW and CVRPBLTW results are obtained646

without multi-starting, consistent with the training setup. For each augmented instance, we sample647

one solution for TSPTW and greedily generate one for CVRPBLTW (p = 1), which are then passed648

to the refinement module. For CVRP, Table 3 shows that multi-starting improves performance, so we649

apply it during construction but refine only the top p solutions for efficiency, setting p = 2 for n = 50650

and p = 1 for n = 100 due to the GPU memory constraint. We use only one GPU for all problem651

sizes during inference to ensure fair comparison across variants. All experiments are conducted on652

servers equipped with NVIDIA GeForce RTX 4090 GPUs and Intel(R) Core i9-10940X CPUs at653

3.30GHz.654

1Following [11], we set k ≤ 4.
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Figure 5: Illustration of actions and operations in k-opt (top) and remove-and-reinsertion (bottom).

F Additional experiments and discussion655

F.1 Discussion of the existing feasibility masking656

We now present our insights into the limitations of existing feasibility masking mechanisms. As657

shown in Table 3, removing feasibility masking for CVRP hampers its performance, in contrast to658

more complex problems like CVRPBLTW, where its removal leads to improved results (see results of659

POMO* vs. POMO in Table 1). This suggests that while existing feasibility masking is sufficient for660

simple problems, it is far from a silver bullet for handling complex constraints. In fact, for highly661

constrained problems, feasibility masking is often intractable (e.g., TSPTW) or ineffective (e.g.,662

CVRPBLTW), resulting in infeasibility and sub-optimality.663

Table 4: CaR module impact on CVRPBLTW feasibility and quality (Bold: reported in Table 1).

Method Module
n=50 n=100

Obj.↓ Gap↓ Infsb%↓ Obj.↓ Gap↓ Infsb%↓

CaR Construction (w/o mask) 14.798 2.116% 3.50% 24.404 -2.050% 2.80%
(k-opt) Refinement (k-opt) 14.759 1.682% 2.50% 24.360 -2.285% 2.60%

(TR = 20) Re-construction (w. mask) 14.844 2.114% 0.00% 24.585 -1.724% 0.00%

CaR Construction (w/o mask) 14.843 2.235% 2.60% 24.460 -1.715% 3.10%
(R&R) Refinement (R&R) 14.567 0.221% 1.10% 24.215 -2.886% 1.90%

(TR = 20) Re-construction (w. mask) 14.601 0.463% 0.00% 24.400 -2.448% 0.00%

To address these challenges, we propose the CaR framework. For TSPTW, CaR leverages refinement664

to correct infeasibility and improve solution quality. For CVRPBLTW, we found that removing this665

Table 3: Effects of the multi-starting strategy in [9] and feasibility
masking during construction on CVRP-50.

w. multi-start w. mask Obj.↓ Gap↓ Infsb%↓

× × 10.550 2.093% 0.00%

× ✓ 10.520 1.793% 0.00%

✓ × 10.431 0.921% 0.00%

✓ ✓ 10.424 0.857% 0.000%
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Figure 6: Masked node count in
CVRPBLTW construction.
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Table 5: Effects of unified encoder on TSPTW.

Method
TSPTW-50 Medium TSPTW-50 Hard TSPTW-100 Medium
Infsb%↓ Gap↓ Infsb%↓ Gap↓ Infsb%↓ Gap↓

Construction-only 3.77% 5.230% 37.270% 1.635% 0.120% 10.931%

Separate 0.010% 2.047% 0.675% 0.199% 0.000% 7.589%
Unified (Ours) 0.000% 2.173% 0.010% 0.014% 0.000% 5.815%

Table 6: Model parameters and performance of
different unifications on TSPTW-50 Hard.

Encoder Decoder #Params Infsb%↓ Gap↓

Separate Separate 2.8M 0.675% 0.199%

Unified Unified 1.4M 0.010% 0.041%

Unified Separate 1.6M 0.010% 0.014%

#Params

Infsb%

Gap%

0.5 1.0 1.5 2.0 2.5

Unified Decoder
Separate Decoder (Ours)

Figure 7: Effects of separate decoder.

restrictive mask significantly improves the performance (Gap: 9.17% vs. 2.31%), but it leads to666

unexpected infeasibility (2.6%). CaR addresses this by applying refinement, which further reduces667

infeasibility and improves solution quality. However, a small fraction of infeasible solutions can668

still remain. Since feasibility can ultimately be guaranteed through masking, we apply a final669

reconstruction step with feasibility masking during inference to ensure all reported solutions are valid670

(see Table 4). This strategy allows CaR to relax constraints during construction and refinement to671

enhance quality while maintaining overall feasibility through targeted post-processing. Note that in672

this paper, “without masks" does not imply removing all masks. All VRP variants must satisfy the673

fundamental constraint that each node (except depots) is visited exactly once. To ensure the validity674

of the generated solutions, we retain the masking of visited nodes during the construction process.675

F.2 Discussion of the multi-start strategy and the diversification676

Following the insights from [30] and [12], the multi-start strategy proposed in POMO [9] negatively677

impacts performance when training on VRP variants with TW constraints. Therefore, in this paper,678

we sample S start nodes instead of enumerating all nodes for constrained variants such as TSPTW679

and CVRPBLTW. Motivated by the advantage of diversification by multi-start, we add the diversity680

loss in Eq. (4), which is empirically proven to be effective (see Figure 10).681

F.3 Discussion of the unified model architecture682

Recall that CaR employs a unified encoder shared across the construction and refinement decoders.683

As demonstrated in Table 2, this architecture significantly enhances performance. To further assess684

the impact of the unified encoder under varying constraint complexities, we present comprehensive685

results in Table 5 for Medium TSPTW-50, Hard TSPTW-50, and Medium TSPTW-100. Results686

indicate that as problem complexity increases, evidenced by higher infeasibility rates (e.g., 37.270%687

in Hard TSPTW-50) and greater optimality gaps (e.g., 10.931% in TSPTW-100), the performance688

improvements attributed to the unified encoder become more pronounced. This suggests that shared689

representations facilitate better generalization and constraint handling in more challenging scenarios.690

We further evaluate this design on CVRPBLTW-100, where using separate encoders reduces the691

optimality gap slightly from -2.448% to -2.544% but increases model parameters by 1.7× compared692

to the unified encoder version of CaR (2.9M vs. 1.7M). To balance performance and computational693

efficiency, we advocate for the unified encoder design.694

Moreover, we explore the unification of the encoder and decoder components. As shown in Table 6695

and Figure 7, results on TSPTW-50 indicate that employing a separate decoder increases the number696

of model parameters by 1.1×, yet it further reduces the optimality gap. Therefore, this paper adopts697

an architecture with a unified encoder and separate decoders for each module.698
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Figure 8: CaR’s refinement on one TSPTW instance. Green dots and red crosses denote the feasible
and infeasible solutions, respectively. Green dashed lines mark the best-so-far feasible objective; the
red line indicates the best objective with data augmentation. CaR’s refinement process is shown over
time, with t = 0 representing the initially constructed solution.
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Figure 9: Refinement efficiency of CaR (top) and NeuOpt (bottom) on typical TSPTW-50 instances.

F.4 Additional results for the pattern of CaR’s refinement699

During inference, we follow [9] to augment each instance 8×, generating eight initial solutions700

for refinement. Figure 8 shows four representative refinement trajectories on a TSPTW instance to701

illustrate the diversity in initial solutions and their subsequent refinement.702

Moreover, to better understand how CaR refines solutions for feasibility and optimality, we also703

visualize the objective trajectories on other randomly generated TSPTW-50 instances in Figure 9.704

CaR dynamically navigates both feasible and infeasible regions, adjusting its focus based on the705

current solution state. For example, in the instance of Figure 9 (d), CaR begins with a near-feasible706

solution (t = 0), achieves feasibility in one step (t = 1), explores infeasible regions (t = 2–12), and707

ultimately improves optimality (t = 13). In contrast, in the instance of Figure 9 (c), the construction708

already yields a feasible, high-quality solution, and refinement continues to enhance optimality709

efficiently. These patterns illustrate CaR’s ability to balance feasibility and optimality by exploring710

both feasible and infeasible spaces. By comparison, NeuOpt fails to escape infeasible regions within711

limited steps, highlighting CaR’s advantage in constraint-aware refinement.712

F.5 Effects of the joint training framework.713

To assess our joint training framework, we evaluate simple combinations without our joint training714

framework. As shown in Table 7, joint training is crucial, showing that simply combining the two715

paradigms is insufficient.716
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Table 7: Effects of joint training on TSPTW-50. Inference time is fixed.

ID Construction Refinement Joint train Infsb%↓ Gap↓

0 Random Trainable NeuOpt* × 100.00% /
1 Pretrained PIP LKH3 × 0.15% 0.003%
2 Pretrained PIP Pretrained NeuOpt* × 0.03% 0.034%
3 Pretrained PIP Trainable NeuOpt* × 2.44% 0.161%

4 (CaR) Trainable PIP Trainable NeuOpt* ✓ 0.00% 0.005%
5 Pretrained POMO* LKH3 × 82.81% 0.024%
6 Pretrained POMO* Pretrained NeuOpt* × 0.22% 0.083%
7 Pretrained POMO* Trainable NeuOpt* × 33.89% 1.542%

8 (CaR) Trainable POMO* Trainable NeuOpt* ✓ 0.01% 0.014%

Infsb% Gap
0.0

0.2

0.4

0.6
CaR
w/o DIV 
w/o SL 

Figure 10: LDIV and LSL.

Table 8: Standard deviation of the results in Table 1 under five different random seeds.

Problem Method
n=50 n=100

Gap ↓ Infsb% ↓ Gap ↓ Infsb% ↓

TSPTW CaR-POMO (TR = 20) 0.014% ± 0.000% 0.00% ± 0.01% 0.404% ± 0.001% 2.30% ± 0.03%

CaR-PIP (TR = 20) 0.005% ± 0.000% 0.00% ± 0.01% 0.144% ± 0.001% 0.02% ± 0.01%

CVRPBLTW CaR (k-opt) (TR = 20) 2.147% ± 0.029% 0.00% ± 0.00% -1.730% ± 0.004% 0.00% ± 0.00%

CaR (R&R) (TR = 20) 0.465% ± 0.007% 0.00% ± 0.00% -2.449% ± 0.010% 0.00% ± 0.00%

F.6 Effects of LDIV and LSL.717

We further ablate the diversity loss and the supervised loss for the construction module in Eq. (4) and718

Eq. (5), respectively. Figure 10 shows that diverse initial solutions aid refinement, and supervision719

with improved solutions strengthens cross-paradigm collaboration. Additional CVRP results in720

Appendix F.2 show that LDIV remains effective with multi-starting.721

F.7 Efficiency under different TR722

As shown in Table 1, increasing the number of refinement steps (TR) improves CaR performance,723

particularly for larger problem instances. For example, the optimality gaps on TSPTW-50 and724

TSPTW-100 decrease from 0.034% and 1.065% at TR = 5 to 0.014% and 0.406% at TR = 20,725

respectively. This supports the intuition that longer solution sequences benefit from more refinement.726

Notably, CaR achieves competitive solution quality and feasibility with only 5 refinement steps,727

significantly reducing computational effort compared to traditional methods requiring up to 5,000728

steps. Further, we illustrate the evolution of the solution feasibility and optimality on hard-constrained729

problems (TSPTW-50 and CVRPBLTW-50). Results indicate that more constrained instances, such730

as CVRPBLTW, require additional refinement steps for convergence. This suggests that dynamically731

adjusting TR based on constraint complexity could further enhance CaR.732

F.8 Sensitivity to random seeds and statistical significance733

NeuOpt CaR-POMO CaR-PIP

1

0

1

1e 5

Figure 11: Boxplot of diverse
methods on TSPTW-50.

Sensitivity to random seeds. To assess the robustness of CaR, we734

evaluate its performance under five different random seeds, i.e., 2023,735

2024, 2025, 2026 and 2027, during inference. As shown in Table 8,736

the standard deviations are small, indicating that CaR’s performance737

is stable with respect to random initialization.738

Statistical significance. Figure 11 illustrates the distribution of op-739

timality gaps for NeuOpt, CaR-POMO, and CaR-PIP, corresponding740

to the results on TSPTW-50 in Table 1. We additionally conduct sig-741

nificance tests, revealing that all pairwise differences are statistically742

significant (p < 0.001). This suggest that CaR delivers a significant743

performance improvement over the representative baselines.744
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