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Abstract

Neural solvers have achieved impressive progress on simple routing problems via
data-driven training, but often struggle with complex constraints. We rethink the
popular single-paradigm neural solvers and identify paradigm-inherent limitations:
construction solvers suffer from inflexible stepwise feasibility, and improvement
solvers easily get stuck in infeasible searches with long runtimes. However, these
paradigms are naturally complementary: construction efficiently provides strong
initial solutions that help improvement rapidly reach feasible, high-quality solu-
tions. Motivated by this, we propose Construct-and-Refine (CaR), the first generic
neural framework for efficient constraint handling, compatible with existing con-
struction and improvement solvers. To promote synergistic paradigm integration,
we introduce a joint training framework with bespoke losses to generate diverse,
high-quality, (near)-feasible solutions that are refined by a light improvement
process (e.g., only 10 steps down from 5k). We also present the first study of a
shared encoder for cross-paradigm representation learning in handling complex
constraints. Extensive experiments on hard-constrained TSPTW and CVRPBLTW
demonstrate that CaR achieves superior feasibility, solution quality, and efficiency
compared to both traditional and neural state-of-the-art solvers.

1 Introduction

Vehicle routing problems (VRPs) often involve complex real-world constraints [1, 2]. For decades,
the Operations Research (OR) community has put remarkable efforts into designing hand-crafted
heuristics to handle these constraints and approximate near-optimal solutions, leading to powerful
solvers such as OR-Tools [3] and LKH3 [4]. Recently, neural combinatorial optimization (NCO)
solvers [5–7] have enriched the landscape for solving VRPs, which learn deep models to solve
VRPs in a data-driven manner, thereby reducing dependence on domain knowledge. Benefiting
from GPU parallelism, they are often fast while maintaining competitive solution quality. In general,
existing neural solvers fall into two paradigms: 1) Construction solvers (e.g. [8, 9]), which construct
solutions node by node from scratch, excelling in efficiency but prone to local optima; 2) Improvement
solvers (e.g. [10, 11]), which iteratively refine a complete solution, exploring a broader search space
but facing longer runtime. However, when they come to handling complex VRP constraints, both
paradigms face critical inherent limitations that significantly hinder both feasibility and optimality.

∗Yining Ma is the corresponding author (yiningma@mit.edu).

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: DiffCoALG: Differen-
tiable Learning of Combinatorial Algorithms.



Construction solvers are inherently built upon a stepwise feasibility satisfaction process, where
constraints must be enforced at each node selection step. While feasibility masking addresses this
by excluding the invalid candidates and works well for simple cases like the Capacitated VRP
(CVRP), it fails to handle more complex ones such as the Traveling Salesman Problem with Time
Windows (TSPTW), where computing accurate masks itself is NP-hard thus intractable [12]. Recent
attempts, such as lookahead strategies [13] and learnable approximated masking [12], alleviate this
but come with high computational costs and still yield large infeasibility rates. Moreover, as discussed
in Section 4, even for complex VRPs where feasibility masking is tractable, such as CVRP with
backhaul, duration limit, and time window constraints (CVRPBLTW), enforcing multiple constraints
through such stepwise masking can overly restrict learning, thereby degrading model performance
and making it more prone to local optima. Hence, achieving stepwise feasibility satisfaction while
maintaining optimality remains a critical challenge in current construction solvers.

On the other hand, the performance of improvement solvers on complex-constrained VRPs remains
largely unexplored. Akin to the construction methods, they struggle with accurate feasibility masking
for complex local search operators (e.g., k-opt). While prior work [11] showed that learning-guided
infeasible region exploration improves performance in simpler constrained CVRP, it lacks feasibility
guarantees and remains potentially time-consuming for complex VRPs. In more complex VRPs like
CVRPBLTW, these improvement solvers face prolonged searches in infeasible regions (see Table 1),
further amplifying the inherent inefficiencies in exploring complex search spaces.

As a result, both solver paradigms struggle with constraint handling when used alone, often exhibit-
ing inefficiencies, poor adaptability to complex constraints, or high infeasibility and suboptimality.
However, they offer complementary strengths: improvement solvers excel at exploring local neigh-
borhoods to repair infeasible or suboptimal solutions, while construction solvers provide strong
initializations that allow improvement to rapidly reach feasible, high-quality solutions. This raises
our research question: can we unify the strengths of the two paradigms to handle constraints without
sacrificing efficiency?

Motivated by this, we present Construct-and-Refine (CaR), the first generic neural framework
that promotes efficient constraint handling through paradigm integration. Unlike existing methods
that are often paradigm-limited, inefficient or lack generality across VRPs with varying constraint
complexities, CaR unites the efficiency of construction with the flexibility of improvement, enabling
efficient constraint handling for general complex VRPs where feasibility masking is either intractable
(TSPTW) or overly restrictive (CVRPBLTW). To enhance the synergy between paradigms, CaR
adopts an end-to-end joint training framework with bespoke loss functions that enable the construction
module to generate diverse, high-quality, (near)-feasible initial solutions, which are then passed to a
light refinement module, reducing the number of improvement steps required, e.g., from 5k to 10.
Moreover, to further balance computational cost and enhance synergy, we take the first step toward
exploring how a unified encoder across construction and refinement modules can enable more effective
cross-paradigm representation learning. Lastly, we show that CaR is a generic framework compatible
with existing state-of-the-art construction and improvement methods for efficient constraint handling.

Our contributions are: 1) We introduce Construct-and-Refine (CaR), the first neural framework that
enables efficient constraint handling through paradigm integration, excelling in solving complex
VRPs where existing neural solvers fail to solve effectively; 2) We explore cross-paradigm rep-
resentation learning by unifying encoders across the two paradigms, yielding notable benefits for
hard-constrained scenarios; 3) We conduct extensive experiments on representative hard-constrained
TSPTW and CVRPBLTW, where masking is intractable or overly restrictive. Notably, CaR is the first
generic neural Construct-and-Refine framework for efficient constraint handling in VRPs, achieving
substantial reduction in infeasibility, especially where construction alone fails, while simultaneously
improving solution quality and runtime efficiency via light refinement.

2 Preliminaries

VRP variants. VRP is defined over a directed graph G = {V, E}, where V contains n customer
nodes {v1, v2, . . . , vn} (for both TSP and VRP variants) and a depot {v0} (for VRP only), and
e(vi,→vj) (or eij) ∈ E represents an edge from node vi to vj (i ̸= j) weighted by the 2D Euclidean
distances. It aims to minimize the total cost of a solution while satisfying variant-specific constraints.
This paper focuses on two representative complex VRPs: TSPTW with time window constraints,
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and CVRPBLTW with backhaul, duration limit, and time window constraints. See Appendix B for
more details on the constraints. Neural VRP solvers usually handle these constraints by feasibility
masking, which is tractable and effective in simpler cases like CVRP. However, they struggle with
harder variants, e.g., CVRPBLTW with multiple constraints, or TSPTW, where masking is NP-hard
since computing accurate masks requires evaluating future time-related feasibility for all possible
actions. We further discuss the limitations of the existing feasibility masking in Appendix F.1.

MDP formulations. We model construction and improvement as Constrained Markov Decision
Processes (CMDPs), defined by the tuple (S,A,P,R, C), where S is the state space, A the action
space, P the transition function, R the reward, and C the constraint function over m constraints. The
objective is to learn a policy πθ maximizing expected reward while satisfying constraints:

max
θ

J (πθ) = Eτ∼πθ
[R (τ |G)] , s.t. πθ ∈ ΠF , ΠF = {π ∈ Π |JC(πθ) = 0m}, (1)

where ΠF denotes the feasible policy set. Construction solvers build solutions sequentially, with
state st encoding partial routes, vehicle status, and unvisited nodes; action at selects the next node;
and the reward is the negative tour cost, R(τ | G) = −C(τ). In contrast, improvement solvers
refine complete solutions, where st includes the current and best-so-far solutions; actions apply local
operators (e.g., k-opt, remove-and-reinsert); and the reward is Rt = min[C(τ∗t )− C(τt+1), 0] [14].

Relaxation of CMDP. Following [12], we adopt Lagrangian relaxation to facilitate training by
penalizing constraint violations. The objective in Eq. (1) is augmented with a cost term:

C(τ) =
∑
eij∈τ

[
CL (eij)+

m∑
η=1

Cη
V (eij)

]
, (2)

where CL denotes the objective cost (e.g., tour length), and CV captures violations of m constraints.
For instance, if a vehicle arrives at node vj later than the time window upper bound uj , the violation
cost is CV (eij) = tj − uj . CV also incorporates the count of violated nodes.

3 Methodology

As discussed above, single-paradigm methods have inherent limitations for constraint handling but can
complement each other (see Appendix C for details). On one hand, improvement can rapidly repair
construction’s infeasible or suboptimal solutions, due to its strength in exploring local neighborhoods;
on the other hand, construction is highly efficient and can provide strong initializations that help
improvement rapidly reach feasible, high-quality solutions, complementing improvement’s limitation
in inefficiency. To further promote the synergic effects, we present our unified CaR framework for
complex VRPs where masking is intractable (TSPTW) or restrictive (CVRPBLTW).

3.1 Joint training framework of CaR

CaR aims to transcend simple paradigm merging to handle constraints more efficiently than either
paradigm alone. We develop a unified training framework to jointly optimize the two policies in CaR.

Relaxation of CMDP in CaR. Building on the success of relaxed CMDP formulation for con-
struction [12], we extend it to refinement to better balance objective and feasibility. Unlike prior
infinite-horizon approaches [11, 15], we adopt a fixed rollout limit TR, treating steps equally to align
with CaR’s lightweight and efficient refinement design.

Collaborative training framework. To integrate construction and refinement effectively, we design a
joint training framework that optimizes both processes simultaneously in each gradient step, allowing
them to co-evolve. As illustrated in Figure 1, for each batch of training instances G, the construction
module first generates a small set of diverse, high-quality initial solutions in parallel. These solutions
are then refined by a lightweight neural improvement process within TR steps (i.e., TR = 10
significantly fewer than the thousands of iterations in conventional improvement methods), enabling
rapid enhancement of high-potential candidates. The refined outputs then supervise construction,
promoting collaborative correction of infeasibility and sub-optimality.

Construction module loss. The policy πC
θ is trained via REINFORCE [16], using the loss function:

LC
RL =

1

S

S∑
i=1

R(τi)−
1

S

S∑
j=1

R(τj)

 log πC
θ (τi)

 , (3)
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Figure 1: Overall framework of CaR, where the construction module provides diverse near-feasible
and/or high-quality solutions for the refinement module to generate better solutions.

where the solution probability is factorized as πC
θ (τ) =

∏|τ |
t=1 π

C
θ (et | τ<t), with τ<t denoting the

partial solution prior to selecting edge et at step t. We employ a group baseline with diverse rollouts
to reduce REINFORCE variance. For simpler variants like CVRP, S solutions are generated via
POMO’s multi-start strategy [9], while for time-constrained variants (e.g., TSPTW), we sample S
solutions to avoid infeasibility (see Appendix F.2). To compensate for reduced diversity due to the
removal of the multi-start mechanism and to enhance the diversity of initial constructed solutions for
refinement, we introduce an auxiliary entropy-based diversity loss:

LDIV = −
|τ |∑
t=1

πC
θ (et | τ<t) log π

C
θ (et | τ<t), (4)

which largely encourages policy exploration during RL training. To avoid inefficiency, we evaluate
candidates using the cost in Eq. (2), and only feed the top p high-quality candidates to subsequent
refinement. If the refinement module improves a constructed solution (indicated by I = 1), the
best-refined solution τ∗ is used as a pseudo ground truth to supervise πC

θ :

LSL = −I ·
|τ∗|∑
t=1

log πC
θ (e

∗
t | τ∗<t), (5)

where I indicates whether such refinement led to improvement. The final construction loss integrates
three components, i.e., L(θC) = LC

RL + α1LDIV + α2LSL.

Refinement module loss. The refinement policy πR
θ iteratively improves solutions over TR steps,

with probability of the refined solution at step t is factorized as πR
θ (τt) =

∏K
κ=1 π

R
θ (aκ|a<κ, τt−1),

where K denotes the total number of sequential refinement moves/actions, with further details in
Appendix D. The RL loss LR

RL(t) for refinement is computed at each step t using the REINFORCE
algorithm in Eq. (3), where S is replaced by p, since only p solutions are refined. The final refinement
loss is defined as the average across all TR steps: L(θR) = 1

TR

∑TR

t=1 LR
RL(t), encouraging each

refinement step to contribute meaningfully and improving overall refinement efficiency.

Joint training loss. The joint training loss combines the above two losses, i.e., L(θ) = L(θC) +
ωL(θR), where ω balances their scales. Such joint loss promotes information exchange between
modules , enhancing synergy in collaboratively handling complex constraints.

3.2 Unified model architecture

To reduce overhead and enhance synergy, we take the first step in exploring shared encoders for more
effective cross-paradigm representation learning for hard-constrained VRPs.

Encoder. Given an instance batch {Gi}Bi=1, both paradigms learns to obtain high-dimensional node
embeddings hi via encoders. For CVRPBLTW, each node vi is represented by its coordinates, demand
(i.e., linehaul or backhaul), time window, and duration limit, i.e., f n

i = {xi, yi, qi, li, ui, ℓ}. Unlike
construction, refinement also incorporates solution features by encoding the sequential structure via
positional information. To support both paradigms, we use a shared 6-layer Transformer encoder [9]
with multi-head attention. Positional encoding, required only in refinement, is injected using cyclic
positional encoding (CPE) via the synthesis-attention (Syn-Att) mechanism [17]. Afterwards, a
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multi-layer perceptron (MLP) fuses node-level attention scores an and solution-level scores as from
positional embedding vectors through element-wise aggregation (see details in Figure 4).

Decoder. The decoder generates action probabilities from node representations, selecting the next
node for construction or the modification for refinement. In CaR, we retain the original neural solver
designs when applied to one construction and one improvement at a time. To validate generality,
we experiment with two construction backbones, POMO [9] and PIP [12], and two refinement
backbones, NeuOpt [11] and N2S [17]. To adapt improvement solvers for new variants (e.g.,
TSPTW, CVRPBLTW), we follow their original design and introduce variant-specific features, such
as refinement history and node-level feasibility information (see Appendix D for details), to enhance
constraint awareness. While we also explored a unified decoder, results in Figure 7 show degraded
performance, suggesting that while a shared encoder benefits representation learning, separate
decoders remain important for paradigm-specific optimization – an insight for future reference.

4 Experiments

We now evaluate our proposed Construct-and-Refine (CaR) framework in handling hard-constrained
TSPTW and CVRPBLTW instances. Additional results are provided in Appendix F.

Experimental settings. Training instances are generated on the fly as in [12, 18] (see Appendix B).
For TSPTW, we mainly focus on the hard variants in [12]. All experiments are conducted on problem
sizes n = 50/100, following established benchmarks [8, 10]. Models are trained with 20,000 instances
per epoch for 5,000 epochs with a batch size of 128 [18]. We set TR = 5 during training. During
inference, 8× augmentation [9] is used to construct initial solutions, followed by TR-step refinement.

Baseline. We compare CaR with SoTA traditional solvers (LKH3 [4], OR-Tools [3], and Greedy
heuristics) and neural solvers, including construction methods (POMO [9]+EAS [19]+SGBS [20],
PIP [12]) and the improvement solver NeuOpt-GIRE [11]. To ensure fairness, we upgrade NeuOpt-
GIRE and POMO-based solvers with our relaxed CMDP formulation (*) and solution-level features
(‡; see Appendix D). All models are trained to convergence with comparable training budgets.

Evaluation metrics. We evaluate performance using: 1) average solution length (Obj.), the mean
length of best feasible solutions; 2) average optimality gap (Gap), the difference from (near-)optimal
solutions found by top traditional solvers (LKH3 for TSPTW, OR-Tools for CVRPBLTW, HGS
for CVRP, marked with ⋄); 3) total inference time (Time) for solving 10,000 TSPTW or 1,000
CVRP/CVRPBLTW instances using single-GPU parallelization; and 4) average infeasible solution
rate per instance (Infsb%) after construction and refinement.

4.1 Model performance on constrained VRPs

TSPTW results. We first test CaR on TSPTW, where most neural solvers fail due to the lack of
feasibility masking. To verify generality, we use POMO* and PIP as construction backbones, with
CaR-POMO training 1.42× (at n=50) and 1.65× (at n=100) faster than CaR-PIP. As shown in
Table 1, CaR-POMO consistently outperforms PIP in both quality and feasibility. On TSPTW-50,
CaR reduces infeasibility to 0.00%, outperforming PIP (1.87%) and NeuOpt* (0.02%). On TSPTW-
100, CaR lowers PIP’s 4.67% infeasibility to 0.02% and reduces the gap from 1.030% to 0.146%.
While NeuOpt* improves with longer runtimes, CaR achieves competitive results with an 8× speedup
within a runtime budget of 10 minutes (Figure 2), which aligns with CaR’s aim of efficiency. Notably,
CaR surpasses LKH3 and finds feasible solutions even when it fails, highlighting the strength of our
cross-paradigm framework under complex constraints. .

CVRPBLTW results. On complex CVRPBLTW, feasibility masking filters out over 60% of nodes,
severely limiting the search space (Figure 6). Interestingly, removing these masks and applying the
relaxed CMDP in POMO significantly improves performance (e.g., CVRPBLTW-100: from 7.004%
to -1.645% in Table 1). Unlike TSPTW, NeuOpt* fails in CVRPBLTW with 27-56% infeasibility,
while CaR guarantees feasibility as other construction solvers. We compare CaR with the best
single-paradigm solvers in Figure 2. CaR achieves best area under the curve, indicating superior
efficiency and effectiveness. We also validate CaR with k-opt and R&R, where R&R performs better
(-2.448% vs. -1.724%) due to a finer-grained search better suited to multi-constraints variants.
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Table 1: Results on constrained VRPs: best are bolded; best within 1 min are shaded to show solver efficiency.

Method #Params Paradigm §
n=50 n=100

Obj. ↓ Gap ↓ Infsb% ↓ Time Obj. ↓ Gap ↓ Infsb% ↓ Time
T

SP
T

W
LKH3 (max trials = 100) / I 25.590 0.004% 11.88% 7m 46.625 0.103% 31.05% 27m

LKH3 (max trials = 10000) / I 25.611 ⋄ 0.12% 7h 46.858 ⋄ 0.13% 1.4d
OR-Tools† / I 25.763 -0.001% 65.72% 2.4h 46.424 0.026% 97.45% 12m
Greedy-C / C 26.394 1.534% 72.55% 4.5s 51.945 9.651% 99.85% 11.4s

POMO 1.25M L2C / / 100.00% 4s / / 100.00% 14s
POMO* 1.25M L2C 26.222 1.635% 37.27% 4s 47.249 1.959% 38.22% 14s

POMO* + PIP (greedy) 1.25M L2C 25.657 0.177% 2.67% 7s 47.372 1.223% 6.96% 32s
POMO* + PIP (sample 10) 1.25M L2C 25.650 0.152% 1.87% 1m 47.294 1.030% 4.67% 5.2m
NeuOpt-GIRE ∗‡ (T = 1k) 0.69M L2I 25.627 0.061% 0.19% 2.3m 47.011 0.336% 0.13% 5.9m
NeuOpt-GIRE ∗‡ (T = 5k) 0.69M L2I 25.617 0.028% 0.02% 11.6m 46.913 0.123% 0.02% 30m

CaR-POMO (TR = 5) 1.64M L2(C+I) 25.619 0.034% 0.02% 15s 47.278 1.065% 4.20% 36s
CaR-POMO (TR = 20) 1.64M L2(C+I) 25.614 0.014% 0.01% 51s 47.001 0.406% 2.34% 2.1m

CaR-PIP (TR = 5) 1.64M L2(C+I) 25.613 0.010% 0.02% 17s 47.000 0.315% 0.10% 58s
CaR-PIP (TR = 20) 1.64M L2(C+I) 25.612 0.005% 0.00% 52s 46.923 0.146% 0.02% 2.4m

C
V

R
PB

LT
W

OR-Tools (short) / I 14.890 1.402% 0.00% 10.4m 25.979 2.518% 0.00% 20.8m
OR-Tools / I 14.677 ⋄ 0.00% 1.7h 25.342 ⋄ 0.00% 3.5h

POMO 1.25M L2C 15.999 9.169% 0.00% 2s 27.046 7.004% 0.00% 4s
POMO+EAS+SGBS* 1.25M L2C 15.156 3.263% 0.00% 10.3m 25.558 0.854% 0.00% 1h

NeuOpt-GIRE ∗‡ (T = 1k) 0.69M L2I 14.521 1.329% 33.80% 1.1m 24.832 4.290% 56.30% 2.9m
NeuOpt-GIRE ∗‡ (T = 5k) 0.69M L2I 14.201 -1.163% 27.30% 5.5m 24.237 -0.533% 41.20% 15m

POMO* 1.25M L2C 14.873 2.310% 0.00% 2s 24.592 -1.645% 0.00% 4s
CaR (k-opt) (TR = 5) 1.64M L2(C+I) 14.872 2.271% 0.00% 3s 24.597 -1.674% 0.00% 5s

CaR (k-opt) (TR = 20) 1.64M L2(C+I) 14.844 2.114% 0.00% 8s 24.585 -1.724% 0.00% 17s
CaR (R&R) (TR = 5) 1.72M L2(C+I) 14.725 1.328% 0.00% 3s 24.552 -1.835% 0.00% 6s

CaR (R&R) (TR = 20) 1.72M L2(C+I) 14.601 0.463% 0.00% 10s 24.400 -2.448% 0.00% 19s

§ The abbreviations refer to: I – Improvement; L2C – Learning to Construct; L2I – Learning to Improve.
† OR-Tools presolves before search; if it detects infeasibility, it terminates immediately, making runtime shorter than preset.
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Figure 2: Performance over time on TSPTW-100 (left) and CVRPBLTW-100 (right). For CVRP-
BLTW, POMO+EAS+SGBS and CaR always achieve 0% infeasibility due to feasibility guarantee
by masking. Dots with black circles represent results reported in Table 1.

4.2 Effects of the unified representation on handling complex VRPs

Table 2: Effects of unified encoder on TSPTW.

Shared Rep. #Params
TSPTW-50 Hard TSPTW-100 Medium

Infsb% ↓ Gap ↓ Infsb% ↓ Gap ↓

× 2.8M 0.675% 0.199% 0.000% 7.589%
✓ 1.6M 0.010% 0.015% 0.000% 5.815%

We study the effect of a unified encoder. As
shown in Table 2, CaR with shared representa-
tion performs better on both hard-constrained
cases (TSPTW-50 Hard and TSPTW-100
Medium), indicating improved knowledge trans-
fer across paradigms. Compared with using sep-
arate encoders and decoders, which share only the constructed solutions, CaR also reduces the number
of learnable parameters. See Appendix F.3 for further analysis.

5 Conclusion

This paper proposes Construct-and-Refine (CaR), the first neural framework to handle constraints via
paradigm integration. CaR jointly learns to construct diverse, high-quality solutions and refine them
with a lightweight improvement module, enabling efficient constraint satisfaction. We also explore
shared encoders for cross-paradigm representation learning. CaR performs strongly across constrained
VRPs, offering key insights: 1) single-paradigm solvers struggle with complex constraints; 2) strict
feasibility masking may hurt performance, while relaxed penalties help; 3) combining construction
with light refinement efficiently recovers feasible, high-quality solutions; and 4) shared representations
boost performance particularly for complex cases. Future work includes applying CaR to more VRPs,
integrating diverse solvers, improving scalability, and developing foundation NCO models.
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for solving the vehicle routing problem. In Advances in Neural Information Processing Systems, pages
9861–9871, 2018.

[24] Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, and Hanjun Dai. Revisiting sampling
for combinatorial optimization. In International Conference on Machine Learning, pages 32859–32874.
PMLR, 2023.

[25] Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging symmetricity for neural combinato-
rial optimization. In Advances in Neural Information Processing Systems, 2022.

[26] Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO: Bisimulation
quotienting for generalizable neural combinatorial optimization. In Advances in Neural Information
Processing Systems, 2023.

[27] Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexandre Laterre,
and Thomas D Barrett. Combinatorial optimization with policy adaptation using latent space search. In
Advances in Neural Information Processing Systems, 2023.

[28] Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Thomas D Barrett. Winner
takes it all: Training performant RL populations for combinatorial optimization. In Advances in Neural
Information Processing Systems, 2023.

[29] Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with heavy
decoder: Toward large scale generalization. In Advances in Neural Information Processing Systems, 2023.

[30] André Hottung, Mridul Mahajan, and Kevin Tierney. PolyNet: Learning diverse solution strategies for
neural combinatorial optimization. In International Conference on Learning Representations, 2025.

[31] Fu Luo, Xi Lin, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu Zhang. Self-improved
learning for scalable neural combinatorial optimization. arXiv preprint arXiv:2403.19561, 2024.

[32] Daisuke Kikuta, Hiroki Ikeuchi, Kengo Tajiri, and Yuusuke Nakano. Routeexplainer: An explanation
framework for vehicle routing problem. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 30–42. Springer, 2024.

[33] Zefang Zong, Hansen Wang, Jingwei Wang, Meng Zheng, and Yong Li. Rbg: Hierarchically solving
large-scale routing problems in logistic systems via reinforcement learning. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 4648–4658, 2022.

[34] Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian. Pointerformer:
Deep reinforced multi-pointer transformer for the traveling salesman problem. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 8132–8140, 2023.

[35] Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In International Conference on
Learning Representations, 2023.

[36] James Fitzpatrick, Deepak Ajwani, and Paula Carroll. A scalable learning approach for the capacitated
vehicle routing problem. Computers & Operations Research, 171:106787, 2024.

[37] Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Günnemann.
Generalization of neural combinatorial solvers through the lens of adversarial robustness. In International
Conference on Learning Representations, 2022.

8



[38] Pei Xiao, Zizhen Zhang, Jinbiao Chen, Jiahai Wang, and Zhenzhen Zhang. Neural combinatorial optimiza-
tion for robust routing problem with uncertain travel times. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

[39] Zeyang Zhang, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning to solve travelling salesman problem
with hardness-adaptive curriculum. In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

[40] Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee. Learning
generalizable models for vehicle routing problems via knowledge distillation. In Advances in Neural
Information Processing Systems, 2022.

[41] Yuan Jiang, Yaoxin Wu, Zhiguang Cao, and Jie Zhang. Learning to solve routing problems via distribu-
tionally robust optimization. In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

[42] Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable neural
methods for vehicle routing problems. In International Conference on Machine Learning, pages 42769–
42789. PMLR, 2023.

[43] Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural solvers for
vehicle routing problems via ensemble with transferrable local policy. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, 2024.

[44] Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. Invit: A generalizable routing problem solver with
invariant nested view transformer. In Forty-first International Conference on Machine Learning, 2024.

[45] Han Lu, Zenan Li, Runzhong Wang, Qibing Ren, Xijun Li, Mingxuan Yuan, Jia Zeng, Xiaokang Yang,
and Junchi Yan. ROCO: A general framework for evaluating robustness of combinatorial optimization
solvers on graphs. In International Conference on Learning Representations, 2023.

[46] Chenguang Wang and Tianshu Yu. Efficient training of multi-task combinarotial neural solver with
multi-armed bandits. arXiv preprint arXiv:2305.06361, 2023.

[47] Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Tong Xialiang, and Mingxuan Yuan. Multi-task learning
for routing problem with cross-problem zero-shot generalization. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 1898–1908, 2024.

[48] Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan, Junyoung
Park, Kevin Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for vehicle routing
problems. arXiv preprint arXiv:2406.15007, 2024.

[49] Zhuoyi Lin, Yaoxin Wu, Bangjian Zhou, Zhiguang Cao, Wen Song, Yingqian Zhang, and Senthilnath
Jayavelu. Cross-problem learning for solving vehicle routing problems. arXiv preprint arXiv:2404.11677,
2024.

[50] Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

[51] Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network guided lo-
cal search for the traveling salesperson problem. In International Conference on Learning Representations,
2022.

[52] Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
optimization problems. Advances in Neural Information Processing Systems, 35:25531–25546, 2022.

[53] Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization. In
Advances in Neural Information Processing Systems, 2023.

[54] Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling salesman
problem. Advances in Neural Information Processing Systems, 2023.

[55] Kexiong Yu, Hang Zhao, Yuhang Huang, Renjiao Yi, Kai Xu, and Chenyang Zhu. Disco: Efficient
diffusion solver for large-scale combinatorial optimization problems. arXiv preprint arXiv:2406.19705,
2024.

[56] Paulo da Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Eren Akçay. Learning 2-opt heuristics
for the traveling salesman problem via deep reinforcement learning. In Asian Conference on Machine
Learning, pages 465–480, 2020.

9



[57] Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang. Learning
to iteratively solve routing problems with dual-aspect collaborative transformer. In Advances in Neural
Information Processing Systems, volume 34, pages 11096–11107, 2021.

[58] André Hottung and Kevin Tierney. Neural large neighborhood search for routing problems. Artificial
Intelligence, page 103786, 2022.

[59] Minjun Kim, Junyoung Park, and Jinkyoo Park. Learning to cross exchange to solve min-max vehicle
routing problems. In The Eleventh International Conference on Learning Representations, 2023.

[60] Minsu Kim, Jinkyoo Park, and joungho kim. Learning collaborative policies to solve np-hard routing
problems. In Advances in Neural Information Processing Systems, volume 34, pages 10418–10430, 2021.

[61] Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning global
partition and local construction for solving large-scale routing problems in real-time. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2024.

[62] Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. Udc: A unified neural
divide-and-conquer framework for large-scale combinatorial optimization problems. Advances in Neural
Information Processing Systems, 2024.

[63] Detian Kong, Yining Ma, Zhiguang Cao, Tianshu Yu, and jianhua Xiao. Efficient neural collaborative
search for pickup and delivery problems. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

[64] Rodrigo Ferreira Da Silva and Sebastián Urrutia. A general vns heuristic for the traveling salesman problem
with time windows. Discrete Optimization, 7(4):203–211, 2010.

[65] Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Advances in
Neural Information Processing Systems, 34:26198–26211, 2021.

10



Appendix

A Detailed literature review
A.1 Neural VRP solvers
A.2 Constraint handling for VRPs
A.3 Hybrid VRP solvers

B Problem selection and data generation
B.1 Traveling Salesman Problem with Time Window (TSPTW)
B.2 Capacitated VRP with Backhaul, Duration Limit, and Time Window Constraints

(CVRPBLTW)
C Limitations of individual paradigms for complex constraint handling
D Network architecture

D.1 Encoder
D.2 Decoder

E Experimental settings
F Additional experiments and discussion

F.1 Discussion of the existing feasibility masking
F.2 Discussion of the multi-start strategy and the diversification
F.3 Discussion of the unified model architecture
F.4 Additional results for the pattern of CaR’s refinement
F.5 Effects of joint training framework
F.6 Effects of LDIV and LSL

F.7 Sensitivity to random seeds and statistical significance

A Detailed literature review

A.1 Neural VRP solvers

Generally, neural VRP solvers can be broadly categorized into two paradigms: construction solvers
and improvement solvers.

1) Construction-based solvers learn to construct solutions from scratch in an end-to-end fashion.
Vinyals et al. [21] introduced the Pointer Network (PtrNet), leveraging Recurrent Neural Networks
(RNN) to solve the Traveling Salesman Problem (TSP) in a supervised manner. Building on this,
Bello et al. [22] explored reinforcement learning (RL) training for PtrNet. Nazari et al. [23] extended
the approach to solve CVRP in an autoregressive (AR) way. Among AR solvers, the Attention
Model (AM) [8] stands out as a milestone to solve multiple VRPs. This was further advanced by the
Policy Optimization with Multiple Optima (POMO) [9], which leverages diverse rollouts inspired
by the symmetry properties of VRP solutions. Subsequently, numerous studies have advanced AR
solvers in various perspectives, such as inference strategies [19, 20, 24], training paradigms [25–31],
interpretability [32], scalability [33–36], robustness [37, 38], benchmarking [7], and generalization
over different distributions [39–41], scales [42–44], and constraints [18, 45–49]. Beyond AR solvers,
another line of research predicts heatmaps in a non-autoregressive (NAR) manner to represent edge
probabilities for optimal solutions [50–55]. With the learned heatmap, these solvers can greatly
reduce the search space. Despite showing better scalability, NAR solvers often depend on post-search
procedures, which can be either time-consuming or ineffective in handling VRP constraints, even for
the simple cases such as CVRP.

2) Improvement-based solvers learns to iteratively improve initial solutions, drawing inspiration from
traditional (meta-)heuristics such as k-opt (e.g., 2-opt [10, 56, 57], extended to flexible k-opt [11]),
ruin-and-repair [17, 58], and crossover [59]. In general, improvement-based methods can achieve
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near-optimal solutions given prolonged search time, whereas construction-based methods typically
offer a more efficient trade-off between performance and runtime.

A.2 Constraint handling for VRPs

Classic neural methods handle VRP constraints using feasibility masking to exclude invalid actions [9,
57]. While effective for simpler VRPs (e.g., CVRP), such masking fails on more complex VRPs.
Firstly, calculating masking itself may be NP-hard [12], e.g., for TSPTW and TSPDL. While recent
methods have explored Lagrangian-based problem reformulation [15], lookahead strategies [13], and
learnable approximated masks to prevent infeasibility [12], they may incur high computational costs
and still yield high infeasibility rates. Secondly, current methods struggle with multi-constraint VRPs,
e.g., CVRPBLTW, where construction faces overly restrictive masks and improvement drifts into
infeasible regions (see Section 4). Moreover, no feasibility handling scheme effectively addresses
both types of the above challenges. Hence, an efficient, general, and effective constraint-handling
framework for neural VRP solvers remains absent.

A.3 Hybrid VRP solvers

Recent research has explored hybridizing construction-based approaches with search mechanisms to
enhance combinatorial optimization solvers. For instance, active search [19] and beam search [20]
have been used to augment construction policies. However, these methods are not well-suited for
hard-constrained vehicle routing problems (VRPs), where feasibility is critical. Other strategies, such
as collaborative policies [60], random reconstruction [29], and neural divide-and-conquer frameworks
(e.g., GLOP [61] and UDC [62]), have shown strong performance on CVRP but often struggle
to maintain feasibility when solutions are decomposed or reconstructed, even with penalty-based
guidance.

Beyond post-construction search, hybrid methods that integrate construction with intensive improve-
ment phases have been proposed. RL4CO [5] combines pretrained POMO [9] and NeuOpt [11]
at inference time, while NCS [63] employs a shared critic to jointly train the two modules. These
approaches, however, depend on separately optimized components and often require extensive
improvement steps (e.g., 5,000 iterations), limiting their efficiency and scalability.

Our approach distinguishes itself in three critical ways: 1) it adopts a joint training framework
with unified representation learning, unlike prior works that treat construction and improvement as
separate [5] or loosely coupled [63] components; 2) it achieves efficient and precise refinement in as
few as 10 steps, rather than relying on prolonged improvement; and 3) it is the first to systematically
explore the synergy between construction and improvement for effective constraint handling in
complex VRPs.

Among the most relevant hybrid baselines, LCP [60], RL4CO [5], and NCS [63] are not directly
applicable to complex constrained VRPs due to significant limitations: LCP’s divide-and-conquer
strategy impairs constraint handling; RL4CO lacks joint optimization; and NCS fails to generate fea-
sible moves or predict value functions accurately under hard constraints, leading to 100% infeasibility
on TSPTW in our preliminary evaluations.

B Problem selection and data generation

In this paper, we consider two representative VRPs: complex constrained VRPs where feasibility
masking is NP-hard thus intractable (TSPTW) or tractable but ineffective (CVRPBLTW) Below, we
introduce the detailed data generation process. Following the convention, all the node coordinates are
generated under a uniform distribution, i.e., xi, yi ∼ U [0, 1].

B.1 Traveling Salesman Problem with Time Window (TSPTW)

We primarily follow the settings of a recent study [12], which introduced TSPTW with three difficulty
levels: Easy [13], Medium, and Hard. Given our focus on complex constrained VRPs, we report
results on the Hard variant in the main tables, consistent with the benchmark dataset in [64]. Except
for the experiment in Table 2, where we use the Medium variant to show how CaR’s unified encoder
works as constraint hardness changes, all other TSPTW experiments default to the Hard setting.
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NP-hardness of computing feasibility masking on TSPTW. During solution construction, neural
solvers typically apply feasibility masking to exclude actions that violate constraints. In TSPTW, for
instance, a node vj is masked out if its arrival time tj exceeds its time window end uj , i.e., tj > uj .
However, as highlighted in PIP [12], feasibility in TSPTW is not purely local: selecting a node affects
the current time, which in turn influences the feasibility of all future selections due to interdependent
time window constraints. For example, a node with a late time window might be locally feasible, but
choosing it can delay the tour such that earlier nodes become unreachable, leading to irreversible
infeasibility. Ensuring global feasibility thus requires evaluating whether a current decision allows for
any feasible completions, i.e., a process that involves simulating all future possibilities. This renders
feasibility masking itself NP-hard, compounding the inherent difficulty of solving TSPTW.

TSPTW Hard. We first generate a random permutation τ of the node set and sequentially as-
sign time windows to ensure the existence of a feasible solution for each instance. The time
windows are drawn from a uniform distribution, where the lower and upper bounds are given by
li ∼ U [CL(τ

′
i)− η, CL(τ

′
i)] , ui ∼ U [CL(τ

′
i), CL(τ

′
i) + η], where CL(τ

′
i) denotes the cumulative

tour length of the partial sequence τ ′ up to step i, and η controls the time window width. To adaptively
scale time windows with problem size, we set η = n, offering greater flexibility than the fixed value
of 50 used in [12]. Time windows are then normalized following [8] to facilitate neural network
training. Since TSP solutions form a Hamiltonian cycle, it is equivalent to setting any node as the
starting point. Thus, we designate a specific starting node for TSPTW by redefining its upper bound
u0 as u0 = max (ui + CL(e(vi, v0))) , i ∈ [1, n].

TSPTW Medium. We generate the lower and upper bounds of the time windows following a uniform
distribution: li ∼ U [0, TN ], where TN estimates the expected tour length for the given problem scale
(e.g., T20 ≈ 10.9 [13]). The upper bound ui is derived from li as ui ∼ li + TN · U [0.1, 0.2]. While
this data generation rule does not guarantee instance feasibility, preliminary results show that the
time windows overlap significantly, leading to a high feasibility rate in the generated instances.

For all the TSPTW instances, we normalize all li and ui by u0 to ensure their values fall within [0, 1].
Training data is generated on the fly, while inference uses the dataset from [12] for fair comparison.
As noted in [12], all test instances are verified to be feasible, either empirically or theoretically.

B.2 Capacitated VRP with Backhaul, Duration Limit, and Time Window Constraints
(CVRPBLTW)

CVRPBLTW follows the setting in [18, 47, 65] and includes four key constraints: 1) Capacity
(C). Each node’s demand qi is sampled from U(1, . . . , 9), and the vehicle’s capacity Q varies by
problem scale, with Q50 = 40 and Q100 = 50. 2) Backhaul (B). Node demands are sampled
from a discrete uniform distribution {1, . . . , 9}, with 20% of customers randomly designated as
backhauls. Routes include both linehauls and backhauls without strict precedence constraints.
3) Duration Limit (L). The maximum route length is set to ℓ = 3, ensuring feasible solutions
in the unit square space U(0, 1). 4) Time Window (TW). The depot time window is defined as
[l0, u0] = [0, 3], and each customer node has a service time of si = 0.2. The time window for node vi
is computed as follows: the center is sampled as γi ∼ U(l0+CL(e(v0, vi)), u0−CL(e(vi, v0))−si),
where CL(e(v0, vi)) = CL(e(vi, v0)) represents the travel time between the depot v0 and node vi.
The half-width is drawn from wi ∼ U( si2 ,

u0

3 ) = U(0.1, 1). Finally, the time window is set as
[li, ui] = [max(l0, γi −wi),min(u0, γi +wi)]. Training data is generated on the fly, while inference
uses the 1k-instance dataset from [18] for fair comparison.

C Limitations of individual paradigms for complex constraint handling

Figure 3 depicts the illustrative search behaviors of neural solvers on two hard-constrained VRPs:
i) CVRPBLTW (a–c) where feasibility masking for construction is tractable but overly restrictive,
leading to a fragmented feasible space due to multiple constraints; and ii) TSPTW (d-f), where
computing feasibility masks is NP-hard and thus intractable [12], yielding a limited feasible region.

Both construction and improvement solvers may struggle with these hard constraints. In CVRPBLTW,
overly restrictive masking limits the exploration of construction in the fragmented feasible space,
causing early convergence to local optima (Figure 3(a)). This aligns with our findings in Section 4:
removing hard masking for CVRPBLTW improves performance (POMO* vs. POMO in Table 1) but
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still yields infeasible and suboptimal solutions (Appendix F.1). For TSPTW, the relaxed CMDP in
Eq.(2) offers partial relief, but Bi et al. [12] show it fails in complex cases and propose a learnable mask
to guide the policy toward near-feasible regions (Figure 3(d)). Still, the performance of construction
methods alone remains limited due to the rigidity of inherent stepwise feasibility. For improvement
methods with advanced operators (e.g., k-opt), masking is inapplicable and thus unavailable in both
cases, often resulting in inefficient search trajectories through both feasible and infeasible regions.
As shown in Figure 3(b) and Figure 3(e), while they can refine solutions, they are computationally
inefficient, often requiring substantial time to find good initial solutions, and performance degrades
significantly with multiple constraints and limited search steps (Table 1).

To address these limitations, we propose CaR, which unifies the strengths of both paradigms by using
construction to generate diverse, high-quality, near-feasible initial solutions, thereby reducing the
required refinement iterations. As shown in Figures 3(c) and (f), CaR applies lightweight refinement
with only a few steps to help construction escape local optima and reach higher-quality local optima,
enabling more effective and efficient constraint handling for complex VRPs.

Refined solution (short) Converged construction policy space (Approximated) feasibility maskInfeasible solution space

Feasible solution space Refined / Improved solution (with longer steps) Local optima
Global optima

(d) Construct (e) Refine / Improve (f) CaR

Constrained VRP with NP-hard feasibility mask (e.g. TSPTW) 

(a) Construct (c)  CaR(b) Refine / Improve 

Constrained VRP with available but too restrictive mask (e.g. CVRPBLTW) 

Feasible / Infeasible constructed solution (sampling) 

Figure 3: Illustration of the solution space and paradigm behaviors for two hard-constrained VRPs.

D Network architecture

The network architectures of mainstream neural construction and improvement solvers are typically
based on a Transformer encoder with an attention-based decoder, enabling unification across both
paradigms. In this paper, we adopt a unified encoder shared by the construction and refinement
decoders. Specifically, we use a 6-layer Transformer encoder, following POMO [9], while retaining
the original decoders from NeuOpt [11] and N2S [17], corresponding to two representative local
search operators: flexible k-opt [11] and remove-and-reinsertion (R&R) [17], respectively. For the
unexplored variants TSPTW and CVRPBLTW, we design new constraint-related features analogous
to the contextual features used in the original decoders. The concrete forward processes are introduced
below.

D.1 Encoder

As shown in Figure 4, the construction module first takes node features f n
i —including coordinates

(xi, yi) and constraint-related features (e.g., time windows [li, ui] and demand qi)—as input. For
each node vi, these features are projected into a d-dimensional embedding h

(0)
i ∈ Rd (d = 128) via

a linear layer. The initial embedding is then passed through a 6-layer Transformer network [9]. At
each layer j (j = 1, · · · , 6), the embedding h

(j−1)
i is projected into query, key, and value vectors:

q
(j)
i = W (j)

q h
(j−1)
i , k

(j)
i = W

(j)
k h

(j−1)
i , v

(j)
i = W (j)

v h
(j−1)
i , (6)

where W
(j)
q ,W

(j)
k ,W

(j)
v ∈ Rd×d. These are fed into a multi-head attention (MHA) layer, whose

output is:

h̃
(j)

i = Softmax

(
(q

(j)
i )⊤k

(j)
i√

d

)
v
(j)
i . (7)

The MHA output is then linearly transformed:

ĥi(j) = W
(j)
MHAh̃i

(j), (8)
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Figure 4: Overview of the unified network architecture in CaR. Blue dashed arrows indicate informa-
tion flow specific to refinement, while purple dashed arrows indicate flow exclusive to construction.

where WMHA(j) ∈ Rd×d. This passes through instance normalization with residual connection:

h′(j)
i = IN

(
ĥ
(j)

i + h
(j−1)
i

)
. (9)

Next, a feed-forward (FF) layer refines the output:

h′′(j)
i = W

(j)
2 · ReLU

(
W

(j)
1 h′(j)

i

)
, (10)

where W
(j)
1 ∈ Rd×d′

, W (j)
2 ∈ Rd′×d, and d′ = 512 as in [9]. The final embedding at layer j is:

h
(j)
i = IN

(
h′′(j)

i + h′(j)
i

)
. (11)

Thereafter, this process is repeated for 6 layers, and the final encoder output is hi = h
(6)
i .

When it comes to the refinement module, the input changes from a node feature set to a linked list (i.e.,
the solution), which consists of the original node features plus positional information and a pointer
to the next node in the solution. Notably, for CVRP variants, the depot node may appear multiple
times, with each occurrence treated as a distinct node due to its different position. The refinement
module shares the same operations as the construction module, except for Eq. (7). Specifically, we
first incorporate the cyclic positional encoding (CPE) from [57] to obtain the positional embedding
pi ∈ Rd. We then apply a self-attention mechanism:

p̃i = (W p
q pi)

⊤(W p
k pi), (12)

where W p
q ,W

p
k ∈ Rd×d, to compute the positional attention matrix as. We replace Eq. (7) from the

construction module with:

h̃
(j)

i = Softmax

MLP
([

(q
(j)
i )⊤k

(j)
i , p̃i

])
√
d

v
(j)
i , (13)

where the MLP reduces the dimension of the concatenated attention scores, i.e., [an, as] in Figure 4,
from 2 to 1, following the Syn-Att mechanism proposed in [17].

D.2 Decoder

The construction decoder primarily employs an MHA layer, where the key and value vectors are
linearly transformed from the node embedding hi. The query vector is computed using contextual
information from the construction process, including: 1) the embedding of the partial solution hs (i.e.,
the node embedding of the last node in the partial solution), and 2) the step-wise solution features
f s, which include the vehicle’s remaining load, current time, and current sub-tour length. The MHA
output is calculated as:

a =

n∑
i=0

Softmax
(
q⊤i ki√

d
+ ξi

)
vi, (14)
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where ξi is the feasibility mask for node vi. We mask out visited nodes to ensure solution validity
across all variants. For CVRP, as discussed in Appendix F.1, we also mask nodes that violate capacity
constraints at each construction step. The output of each head is then passed through a linear layer
parameterized by Wo, yielding ha = Woa. Finally, the decoder computes selection probabilities for
all candidate nodes using a single-head attention layer:

pi = Softmax
(
ζ · tanh

(
h⊤
a hi√
d

)
+ ξi

)
, (15)

where ζ scales the logits to encourage exploration [9].

The refinement decoder follows the original design in the NeuOpt [11] and N2S [17], which performs
two representative local search operators: the flexible k-opt2 and remove-and-reinsertion (R&R),
respectively. Figure 5 illustrates the detailed improvement process in a single time step for different
local search operators, where each node selection corresponds to a full computation of the network
decoder. Note that although the original NeuOpt and N2S decoders adopt different architectures, their
input and output formats are similar. At each refinement step t = 1, . . . , TR, the inputs include: (i)
the updated node embedding ht

i derived from the previous solution τt−1 (with τ0 as the top-p initial
construction solutions); (ii) refinement features encoding feasibility transition history for k-opt or
removal action history for R&R; and (iii) refinement embedding of the last action node, analogous to
the solution embedding in construction. The output is the selection probability over candidate nodes
for the next refinement operation (e.g., k-opt, removal, or insertion).

To adapt improvement solvers to new variants (e.g., TSPTW, CVRPBLTW), we follow their original
design principles while integrating variant-specific features, such as refinement history and node-level
feasibility information. Specifically, when using the NeuOpt decoder, we encode the feasibility of the
most recent three refinement steps as a binary vector to represent refinement history and incorporate
node-level feasibility features to enhance constraint awareness. For TSPTW, these features include
the arrival time at each node, time window violation value, last node arrival time, and an indicator of
whether the solution becomes infeasible after visiting the current node. For CVRPBLTW, node-level
feasibility features include binary indicators for depot and backhaul nodes, violation values for each
constraint, constraint-related attributes (e.g., arrival time and cumulative distance/demand), and
infeasibility markers indicating whether the solution becomes infeasible before or after visiting the
current node. Adapted NeuOpt variants are marked with ‡ in the main tables.
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Figure 5: Illustration of actions and operations in k-opt (top) and remove-and-reinsertion (bottom).

E Experimental settings

We preset refinement steps TR = 5 during training. Models are trained using Adam with a learning
rate of 1× 10−4, weight decay of 1× 10−6. Follow the setting of [9], we use instance normalization

2Following [11], we set k ≤ 4.
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in the MHA and set the embedding dimension to 128. To prevent out-of-memory issues early in
training, refinement is activated after a ∼10-epoch warmup of the construction module. To optimize
GPU memory utilization, we adjust the number of refined solutions p separately for each problem
size during training. We set α1 = 0.01 and α2 = 1 in the construction loss, and set ω = 100 for
TSPTW and CVRP, and 10 for CVRPBLTW based on the relative loss scales between modules
observed during warm-up epochs. During inference, TSPTW and CVRPBLTW results are obtained
without multi-starting, consistent with the training setup. For each augmented instance, we sample
one solution for TSPTW and greedily generate one for CVRPBLTW (p = 1), which are then passed
to the refinement module. For CVRP, Table 3 shows that multi-starting improves performance, so we
apply it during construction but refine only the top p solutions for efficiency, setting p = 2 for n = 50
and p = 1 for n = 100 due to the GPU memory constraint. We use only one GPU for all problem
sizes during inference to ensure fair comparison across variants. All experiments are ran on servers
equipped with NVIDIA GeForce RTX 4090 GPUs and Intel(R) Core i9-10940X CPUs at 3.30GHz.

F Additional experiments and discussion

F.1 Discussion of the existing feasibility masking

We now present our insights into the limitations of existing feasibility masking mechanisms. As
shown in Table 3, removing feasibility masking for CVRP hampers its performance, in contrast to
more complex problems like CVRPBLTW, where its removal leads to improved results (see results of
POMO* vs. POMO in Table 1). This suggests that while existing feasibility masking is sufficient for
simple problems, it is far from a silver bullet for handling complex constraints. In fact, for highly
constrained problems, feasibility masking is often intractable (e.g., TSPTW) or ineffective (e.g.,
CVRPBLTW), resulting in infeasibility and sub-optimality.

Table 3: Effects of the multi-starting strategy in [9] and feasibility
masking during construction on CVRP-50.

w. multi-start w. mask Obj.↓ Gap↓ Infsb%↓

× × 10.550 2.093% 0.00%

× ✓ 10.520 1.793% 0.00%

✓ × 10.431 0.921% 0.00%

✓ ✓ 10.424 0.857% 0.000%
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Figure 6: Masked node count in
CVRPBLTW construction.

To address these challenges, we propose the CaR framework. For TSPTW, CaR leverages refinement
to correct infeasibility and improve solution quality. For CVRPBLTW, we found that removing this
restrictive mask significantly improves the performance (Gap: 9.17% vs. 2.31%), but it leads to
unexpected infeasibility (2.6%). CaR addresses this by applying refinement, which further reduces
infeasibility and improves solution quality. However, a small fraction of infeasible solutions can
still remain. Since feasibility can ultimately be guaranteed through masking, we apply a final
reconstruction step with feasibility masking during inference to ensure all reported solutions are valid
(see Table 4). This strategy allows CaR to relax constraints during construction and refinement to
enhance quality while maintaining overall feasibility through targeted post-processing. Note that in
this paper, “without masks" does not imply removing all masks. All VRP variants must satisfy the
fundamental constraint that each node (except depots) is visited exactly once. To ensure the validity
of the generated solutions, we retain the masking of visited nodes during the construction process.

F.2 Discussion of the multi-start strategy and the diversification

Following the insights from [30] and [12], the multi-start strategy proposed in POMO [9] negatively
impacts performance when training on VRP variants with TW constraints. Therefore, in this paper,
we sample S start nodes instead of enumerating all nodes for constrained variants such as TSPTW
and CVRPBLTW. Motivated by the advantage of diversification by multi-start, we add the diversity
loss in Eq. (4), which is empirically proven to be effective (see Figure 10).
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Table 4: CaR module impact on CVRPBLTW feasibility and quality (Bold: reported in Table 1).

Method Module
n=50 n=100

Obj.↓ Gap↓ Infsb%↓ Obj.↓ Gap↓ Infsb%↓

CaR Construction (w/o mask) 14.798 2.116% 3.50% 24.404 -2.050% 2.80%
(k-opt) Refinement (k-opt) 14.759 1.682% 2.50% 24.360 -2.285% 2.60%

(TR = 20) Re-construction (w. mask) 14.844 2.114% 0.00% 24.585 -1.724% 0.00%

CaR Construction (w/o mask) 14.843 2.235% 2.60% 24.460 -1.715% 3.10%
(R&R) Refinement (R&R) 14.567 0.221% 1.10% 24.215 -2.886% 1.90%

(TR = 20) Re-construction (w. mask) 14.601 0.463% 0.00% 24.400 -2.448% 0.00%

Table 5: Effects of unified encoder on TSPTW.

Method
TSPTW-50 Medium TSPTW-50 Hard TSPTW-100 Medium
Infsb%↓ Gap↓ Infsb%↓ Gap↓ Infsb%↓ Gap↓

Construction-only 3.77% 5.230% 37.270% 1.635% 0.120% 10.931%

Separate 0.010% 2.047% 0.675% 0.199% 0.000% 7.589%
Unified (Ours) 0.000% 2.173% 0.010% 0.014% 0.000% 5.815%

Table 6: Model parameters and performance of
different unifications on TSPTW-50 Hard.

Encoder Decoder #Params Infsb%↓ Gap↓

Separate Separate 2.8M 0.675% 0.199%

Unified Unified 1.4M 0.010% 0.041%

Unified Separate 1.6M 0.010% 0.014%

#Params

Infsb%

Gap%

0.5 1.0 1.5 2.0 2.5

Unified Decoder
Separate Decoder (Ours)

Figure 7: Effects of separate decoder.

F.3 Discussion of the unified model architecture

Recall that CaR employs a unified encoder shared across the construction and refinement decoders.
As demonstrated in Table 2, this architecture significantly enhances performance. To further assess
the impact of the unified encoder under varying constraint complexities, we present comprehensive
results in Table 5 for Medium TSPTW-50, Hard TSPTW-50, and Medium TSPTW-100. Results
indicate that as problem complexity increases, evidenced by higher infeasibility rates (e.g., 37.270%
in Hard TSPTW-50) and greater optimality gaps (e.g., 10.931% in TSPTW-100), the performance
improvements attributed to the unified encoder become more pronounced. This suggests that shared
representations facilitate better generalization and constraint handling in more challenging scenarios.

We further evaluate this design on CVRPBLTW-100, where using separate encoders reduces the
optimality gap slightly from -2.448% to -2.544% but increases model parameters by 1.7× compared
to the unified encoder version of CaR (2.9M vs. 1.7M). To balance performance and computational
efficiency, we advocate for the unified encoder design.

Moreover, we explore the unification of the encoder and decoder components. As shown in Table 6
and Figure 7, results on TSPTW-50 indicate that employing a separate decoder increases the number
of model parameters by 1.1×, yet it further reduces the optimality gap. Therefore, this paper adopts
an architecture with a unified encoder and separate decoders for each module.

F.4 Additional results for the pattern of CaR’s refinement

During inference, we follow [9] to augment each instance 8×, generating eight initial solutions
for refinement. Figure 8 shows four representative refinement trajectories on a TSPTW instance to
illustrate the diversity in initial solutions and their subsequent refinement.
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Figure 8: CaR’s refinement on one TSPTW instance. Green dots and red crosses denote the feasible
and infeasible solutions, respectively. Green dashed lines mark the best-so-far feasible objective; the
red line indicates the best objective with data augmentation. CaR’s refinement process is shown over
time, with t = 0 representing the initially constructed solution.
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Figure 9: Refinement efficiency of CaR (top) and NeuOpt (bottom) on typical TSPTW-50 instances.

Moreover, to better understand how CaR refines solutions for feasibility and optimality, we also
visualize the objective trajectories on other randomly generated TSPTW-50 instances in Figure 9.
CaR dynamically navigates both feasible and infeasible regions, adjusting its focus based on the
current solution state. For example, in the instance of Figure 9 (d), CaR begins with a near-feasible
solution (t = 0), achieves feasibility in one step (t = 1), explores infeasible regions (t = 2–12), and
ultimately improves optimality (t = 13). In contrast, in the instance of Figure 9 (c), the construction
already yields a feasible, high-quality solution, and refinement continues to enhance optimality
efficiently. These patterns illustrate CaR’s ability to balance feasibility and optimality by exploring
both feasible and infeasible spaces. By comparison, NeuOpt fails to escape infeasible regions within
limited steps, highlighting CaR’s advantage in constraint-aware refinement.

F.5 Effects of the joint training framework.

We evaluate our joint training framework against simple construction-improvement combinations. As
shown in Table 7, CaR consistently outperforms these baselines. Although the construction quality
of pretrained PIP and CaR-PIP is similar (results not shown), their refinement performance differs
markedly, indicating that CaR’s stronger initializations that are easier to refine and light refinement
together drive rapid performance gains.

F.6 Effects of LDIV and LSL.

We further ablate the diversity loss and the supervised loss for the construction module in Eq. (4) and
Eq. (5), respectively. Figure 10 shows that diverse initial solutions aid refinement, and supervision
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Table 7: Effects of joint training on TSPTW-50 with fixed runtime.

Joint train Construction Improvement Gap↓ Infsb%↓

× Random LKH-3 0.011% 60.66%
× Random Pretrained NeuOpt* / 100.00%
× Random Trainable NeuOpt* / 100.00%

× Pretrained PIP LKH-3 0.003% 0.20%
× Pretrained PIP Pretrained NeuOpt* 0.134% 0.79%
× Pretrained PIP Trainable NeuOpt* 0.172% 2.59%

✓ (CaR) Trainable PIP Trainable NeuOpt* 0.005% 0.00%
Infsb% Gap

0.0

0.2

0.4

0.6
CaR
w/o DIV 
w/o SL 

Figure 10: LDIV and LSL.

with improved solutions strengthens cross-paradigm collaboration. Additional CVRP results in
Appendix F.2 show that LDIV remains effective with multi-starting.

F.7 Sensitivity to random seeds and statistical significance

NeuOpt CaR-POMO CaR-PIP

1

0

1

1e 5

Figure 11: Boxplot of diverse
methods on TSPTW-50.

Sensitivity to random seeds. To assess the robustness of CaR, we
evaluate its performance under five different random seeds, i.e., 2023,
2024, 2025, 2026 and 2027, during inference. As shown in Table 8,
the standard deviations are small, indicating that CaR’s performance
is stable with respect to random initialization.

Statistical significance. Figure 11 illustrates the distribution of op-
timality gaps for NeuOpt, CaR-POMO, and CaR-PIP, corresponding
to the results on TSPTW-50 in Table 1. We additionally conduct sig-
nificance tests, revealing that all pairwise differences are statistically
significant (p < 0.001). This suggest that CaR delivers a significant
performance improvement over the representative baselines.

Table 8: Standard deviation of the results in Table 1 under five different random seeds.

Problem Method
n=50 n=100

Gap ↓ Infsb% ↓ Gap ↓ Infsb% ↓

TSPTW CaR-POMO (TR = 20) 0.014% ± 0.000% 0.00% ± 0.01% 0.404% ± 0.001% 2.30% ± 0.03%

CaR-PIP (TR = 20) 0.005% ± 0.000% 0.00% ± 0.01% 0.144% ± 0.001% 0.02% ± 0.01%

CVRPBLTW CaR (k-opt) (TR = 20) 2.147% ± 0.029% 0.00% ± 0.00% -1.730% ± 0.004% 0.00% ± 0.00%

CaR (R&R) (TR = 20) 0.465% ± 0.007% 0.00% ± 0.00% -2.449% ± 0.010% 0.00% ± 0.00%
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