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Abstract

Scoring the Optical Character Recognition (OCR) capabilities of Large Multi-
modal Models (LMMs) has witnessed growing interest. Existing benchmarks have
highlighted the impressive performance of LMMs in text recognition; however,
their abilities in certain challenging tasks, such as text localization, handwritten
content extraction, and logical reasoning, remain underexplored. To bridge this gap,
we introduce OCRBench v2, a large-scale bilingual text-centric benchmark with
currently the most comprehensive set of tasks (4× more tasks than the previous
multi-scene benchmark OCRBench), the widest coverage of scenarios (31 diverse
scenarios), and thorough evaluation metrics, with 10, 000 human-verified question-
answering pairs and a high proportion of difficult samples. Moreover, we construct
a private test set with 1, 500 manually annotated images. The consistent evaluation
trends observed across both public and private test sets validate the OCRBench v2’s
reliability. After carefully benchmarking state-of-the-art LMMs, we find that most
LMMs score below 50 (100 in total) and suffer from five-type limitations, includ-
ing less frequently encountered text recognition, fine-grained perception, layout
perception, complex element parsing, and logical reasoning. The benchmark and
evaluation scripts are available at https://github.com/Yuliang-Liu/MultimodalOCR.

1 Introduction

The emergence of Large Language Models (LLMs) [1, 2, 3] has greatly improved the understanding
and generation of structured text. However, in reality, much of the textual content is unstructured;
it appears within images, videos, and other non-textual media in varied positions, orientations, and
shapes. The need for processing such unstructured content leads to the study of Large Multimodal
Models (LMMs) [4, 5, 6] that extend the text-only LLMs to additional modalities. By pretraining
on multimodal data, LMMs acquire the zero-shot ability to interpret across diverse media, such as
recognizing and understanding complex visual scene text [7]. Such capability represents a significant
advancement over standard Optical Character Recognition (OCR), because LMMs not only spot text
but also interpret its semantic relevance to a scene.

Compared with classic OCR that typically relies on task-specific models to spot text, the increasing
capability of LMMs to process multimodal inputs has opened new potential to redefine the area of
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Figure 1: Large multimodal models struggle with text-intensive tasks accurately. They are
prone to errors in tasks like text localization, handwritten content extraction, and mathematical
reasoning, revealing limitations in tackling complex textual information within images.

OCR. OCR has therefore become an important aspect of recent LMM evaluations. Some text-focused
tasks have been included in standard benchmarks to assess the proficiency of LMMs in recognizing
and interpreting textual content [8, 9]. Typically, text-based Visual Question Answering (VQA)
datasets [10, 11, 12] are repurposed to evaluate OCR by framing generic VQA into questions that
require accurate reading of embedded text. However, many of these datasets are initially created for
classic OCR models, which are of limited diversity, depth, and suitability for evaluating LMMs. A
common drawback is that, many questions lack sufficient complexity to assess the reasoning abilities
of LMMs on scene text, and some can even be answered without visual input [13, 12].

More recently, several customized benchmarks [14, 15, 16, 17, 18] have explored the OCR capabil-
ities of LMMs. For example, OCRBench [14] consolidates 5 core text-oriented tasks to evaluate
LMM performance across traditional OCR functions. Other datasets, such as ComTQA [19] and
ChartX [20], focus on structured text interpretation like table and chart understanding. While such
effort represents a leap over standard OCR benchmarks, they remain limited in both data diversity and
quantity (see Tab. 1), often leading to rapid performance saturation. For example, recent LMMs such
as Qwen2.5-VL [21] have achieved 96.4% accuracy on the DocVQA dataset [22], nearly matching
human performance at 98.1%, and 88.8% on OCRBench [14]. This raises an important question for
the community: Do models perform well enough on text-oriented visual understanding tasks in the
LMM era, or do existing benchmarks fail to capture the broader challenges in diverse environments?

To answer the question above, we conducted preliminary tests with several state-of-the-art LMMs,
including Qwen2.5-VL-7B [21], InternVL3-14B [23], and GPT-4o [24]. These tests assessed
performance on text-oriented tasks, such as text localization, handwritten content extraction, and
document-based logical reasoning. As illustrated in Fig. 1, each model can fail on one of the text-
intensive tasks. These failures reveal a gap in detailed visual perception across different models, which
constrains their effectiveness in tasks requiring accurate text localization, recognition, and contextual
understanding within images. Recent benchmarks, such as OmniDocBench [25], CC-OCR [26], and
MMLONGBENCH-DOC [27], have broadened evaluation to cover more comprehensive scenarios,
including fine-grained document parsing and multi-page document understanding. Their analyses
reveal the limited capabilities of LMMs for practical OCR applications and highlight the growing
need for benchmarks that allow for more robust and varied evaluation of LMMs.

To bridge this gap, we propose OCRBench v2, a comprehensive benchmark designed to assess LMMs
across diverse text-oriented visual understanding tasks. As shown in Fig. 3, OCRBench v2 assesses
eight core text-reading abilities, including text recognition, text referring, text spotting, relation
extraction, element parsing, mathematical calculation, visual text understanding, and knowledge
reasoning, organized into a total of 23 concrete tasks. This benchmark provides 10, 000 high-quality,
human-validated instruction-response pairs and also six types of evaluation metrics, which offers
a rigorous framework for evaluating LMM performance in complex, practical OCR scenarios. For
better evaluation quality, we further collect and label 1, 500 additional text-images from scratch,
reserved as the private test set. This private data serves as an independently curated test set to validate
model generalization. In summary, the contributions of this work are three-fold:
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Table 1: Comparison between the proposed benchmark and existing text-centric datasets.

Benchmark #Scenario #Task #Image #Instruction

OCRbench [14] ∼ 14 5 0.9k 1k
Seed-bench-2-plus [15] ∼ 8 1 0.6k 2.3k
CONTEXTUAL [16] ∼ 11 1 0.5k 0.5k
Fox [17] 2 9 0.7k 2.2k
MMTab-eval [28] 1 9 23k 49k
ComTQA [19] 1 4 1.6k 9k
ChartX [20] 1 7 6k 6k
MMC [29] 1 9 1.7k 2.9k
OmniDocBench [25] 9 5 1k 1k
MMLONGBENCH-DOC [27] 7 2 6.4k 1.1k
OCRBench v2 (Ours) 31 23 9.5k 10k

• OCRBench v2: an improved benchmark designed to assess eight core OCR competencies and
covers 23 tasks across 31 diverse scenarios, which provides a thorough evaluation framework
encapsulating fundamental and advanced text-centric challenges.

• We systematically evaluate state-of-the-art LMMs, ranging from commercial APIs to open-source
models, which establishes broad baselines for OCR performance and enables a comparative
understanding of model capabilities across varied text-oriented visual understanding tasks.

• We provide a detailed analysis to identify factors affecting the OCR capabilities of LMMs. The
analysis examines performance across various dimensions such as model generalization to diverse
text types, model robustness, and the ability to tackle complex visual-textual relations.

2 Related Work

OCR-Enhanced LMMs. Inspired by LLMs, visual encoders are integrated into them to create
LMMs capable of processing both images and text. Early LMMs exhibit strong zero-shot OCR
capabilities, motivating the exploration of text-centric LMMs. For instance, some work [30, 31] use
text-centric instruction-tuning to enhance OCR-related abilities. But they are restricted to low-res
inputs, limiting the ability to recognize dense and small text. To address this, several studies [32, 33,
34] shift attention to increasing the input resolution. As the resolution of inputs increases, so does
computational cost. To tackle this issue, TextMonkey [7] introduces a Token Resampler to compress
redundant visual feature tokens, mPLUG-DocOwl2 [35] presents a DocCompressor module for
compressing high-res images, and DocKylin [36] adopts adaptive pixel slimming and dynamic token
slimming modules to reduce redundant regions. To enhance layout perception, DocLayLLM [37]
integrates layout information into LMMs inputs, LayTokenLLM [38] shares position IDs between
text and layout tokens, DocMark [39] utilizes adaptive generation of markup languages to build
structured document representations, while Marten [40] introduces an additional mask generator
during pre-training. Despite strong results on existing benchmarks, challenges remain unsolved in
certain key areas such as text localization, entity extraction, and logical reasoning.

Benchmarks for Text-Centric LMMs. Previous efforts have focused on creating scenario-specific
benchmarks to assess LMMs. For example, DocVQA [22], ChartQA [41], Infographics VQA [42],
and TextVQA [10] evaluate models on document understanding, chart reasoning, infographic interpre-
tation, and scene text comprehension, respectively. To broaden evaluation scope, OCRBench [14] in-
troduces a holistic evaluation framework covering five text-oriented tasks, while CONTEXTUAL [16]
and SEED-Bench-2-Plus [15] introduce context-sensitive and diverse real-world images. Other
benchmarks target specific challenges such as dense text understanding [43], complex structure
parsing [26], and fine-grained document analysis [25]. To provide a more thorough assessment, some
benchmarks design multiple tasks within a specific scenario. TableVQA-Bench [18], MMTab [28],
and ComTQA [19] explore table-based tasks, while ChartY [44], ChartX [20], and MMC [29] focus
on chart information extraction and reasoning. OmniDocBench [25] focuses on document parsing
tasks and provides a comprehensive evaluation framework. Recently, DUDE [45], MM-NIAH [46],
MP-DocVQA [47], MMLONGBENCH-DOC [27], and LongDocURL [48] explore the long doc-
ument understanding capability of LMMs. In this work, we establish OCRBench v2, a systematic
benchmark to reveal the limitations of LMMs in diverse single-image, text-related scenarios.
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Figure 2: As evaluation for LMMs expands to diverse text-oriented tasks, existing datasets often
require task-specific handling, making unified and scalable evaluation difficult.

3 Why Do We Need OCRBench v2?

Limitations of Existing Benchmarks. Recent evaluations of LMMs’ OCR capabilities have made
significant progress, yet most existing benchmarks exhibit limitations. Datasets like DocVQA,
ChartQA, and TextVQA are often narrow in scope, focusing predominantly on text recognition within
specific domains such as forms, tables, or documents. While useful for isolated capabilities, they fall
short in task diversity, instruction complexity, and structured output formats that better reflect the
multimodal nature of LMMs. In particular, many of these benchmarks were originally tailored for
traditional OCR systems that prior to the emergence of LMMs. Furthermore, as illustrated in Fig. 2,
complex task-specific processes are needed for LMMs when extended to more text-oriented tasks,
which limits the evaluation of their broader capabilities. In this spirit, OCRBench v2 aims to evaluate
OCR systems in terms of what ultimately matters: can a model recognize, understand, and reason
over visual text to produce correct and meaningful answers?

The Necessity of Unified Multi-task Evaluation. With the emergence of LMMs, current models
now excel at end-to-end performance across diverse tasks. Therefore, modern OCR goes beyond basic
character recognition. Real-world documents often involve complex layouts and semantic structures
that demand contextual understanding and reasoning. To assess these multi-task models, unified
benchmarks like LongDocURL [48], OmniDocBench [25], CCOCR [26], OCRBench [14], CON-
TEXTUAL [16], SEED-Bench-2-Plus [15], have been proposed and successfully demonstrated the
value of evaluating text-oriented models across diverse tasks. These benchmarks show the importance
of unified evaluation frameworks in guiding model development. However, as model capabilities
expand, existing benchmarks with limited task coverage result in fragmented and sometimes mislead-
ing insights. To address this, a unified benchmark is essential to: 1) Understand generalization: Can
a model perform consistently across varied text-centric tasks? 2) Diagnose failure models: Does a
model that excels in recognition also succeed in reasoning, localization, and parsing? 3) Guide model
development: Unified evaluation provides clearer signals for architecture and training improvements.

As shown in Fig. 3, OCRBench v2 tackles this by combining 23 tasks under 8 core capabilities
within one framework. This holistic design enables systematic comparison of models and highlights
trade-offs (e.g., performance on reasoning vs. recognition) that isolated benchmarks cannot reveal.

How OCRBench v2 Addresses the Gaps. OCRBench v2 is a comprehensive, and high-difficulty
benchmark specifically built to evaluate LMMs in realistic OCR settings, with key advantages: 1)
Breadth of coverage: With 31 scenarios, we ensure diverse contextual challenges; 2) Task variety:
The benchmark spans 8 OCR-related capabilities, many of which are poorly handled by current
LMMs; 3) Instruction complexity: Human-authored prompts and structured outputs (e.g., Markdown,
JSON, LaTeX) raise the bar beyond simple answer extraction; 4) Private evaluation test set: To
prevent overfitting and training contamination, we additionally provide a private test set.

Ultimately, OCRBench v2 fills a critical gap by offering a unified and challenging benchmark that
reflects the practical needs of OCR in the LMM era. It not only measures what current models can
do, but more importantly, reveals what they still cannot.

Design Rationale: Focusing on Single-Image Text Tasks. While designing OCRBench v2, we
focus on challenges in single-image, text-related scenarios, and do not extend our study to multi-image
tasks. This design choice is grounded in two considerations: 1) Single-image understanding is the
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Figure 3: Sample visualizations for each task. OCRBench v2 comprises 23 sub-tasks grouped
under 8 core OCR capabilities. Tasks marked with contain both English and Chinese instructions,
while other tasks are either English-only or Chinese-only (Zoomed in for better clarity).

foundation for more complex multimodal tasks. Many existing models still perform unsatisfactorily in
various single-image scenarios, which motivates our work; 2) Given long-context inputs, multi-page
tasks have more emphasis on long-sequence modeling, requiring specific benchmarks to assess this
capability individually. For example, MMLONGBENCH-DOC focuses on evaluating the ability of
LMMs to locate and understand content across pages in long documents.

Private Dataset for Reliable Evaluation. To further enhance the assessment quality, we also
construct a private test set. This data comprises 1, 500 manually collected text-rich images with
human-annotated labels, covering 23 tasks aligned with the distribution of the public data. Among
the private data, 735 images were manually captured, and 765 images were sourced from unlabeled
data with diverse scenarios. The data sources include printed books, e-books, scanned documents,
and web content. During data collection and annotation, we meticulously curated samples to align
with practical text-oriented applications. Given that benchmarks may be contaminated in massive
internet-scraped pre-training data of LMMs, this data will not be released. Instead, we maintain a
regularly updated leaderboard to reflect the performance of advanced LMMs. Moreover, consistent
performance trends and model rankings observed on both the public and private test sets (see
Section 5.2) indicate the benchmark’s well-founded design and its effectiveness in identifying model
capabilities.

4 Benchmark Construction

In this section, we describe the task description, annotation curation, statistics, and evaluation criteria.

4.1 Task Description

To provide a comprehensive evaluation framework for text-reading tasks, we categorize OCR capa-
bilities into eight core areas, each encompassing specific sub-tasks that address various aspects of
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text comprehension and interpretation. Fig. 3 exhibits samples for each task, with visual inputs and
corresponding instructions. Detailed descriptions of these core capabilities are as follows.

Text Recognition. This fundamental capability focuses on perceiving textual content. The related
tasks include (fine-grained) text recognition and full-page OCR.

Text Referring. Determining the location of texts accurately is necessary for real-world OCR
applications. This ability is evaluated with text grounding and VQA with position tasks.

Text Spotting. Text spotting is a widely studied OCR task that requires models to output both the
location and content of text. We consider it a distinct capability due to this unique output format.

Relation Extraction. Given that texts are often densely arranged in images, the ability to extract and
map visual components is essential. This capability is assessed through key information extraction,
key information mapping, and handwritten content extraction.

Element Parsing. LMMs face the need of parsing complex elements for downstream applications.
This ability is evaluated via table parsing, chart parsing, document parsing, and formula recognition.

Mathematical Calculation. Math calculation is essential for LMMs to address numerical reasoning
tasks. Hence, text counting is introduced to assess the textual perception ability. Besides, we enhance
the math QA data by rendering textual questions into images, accompanied by geometric figures.

Visual Text Understanding. To tackle sophisticated tasks involving human interaction, LMMs need
to comprehend the semantic information of texts, a capability we term visual text understanding. This
ability is evaluated by document classification and diagram QA. Additionally, we include basic VQA
instructions where answers are located directly within the image, which refers to cognition VQA.

Knowledge Reasoning. Some tasks require complex inference and world knowledge, including
science QA, APP agent interactions, ASCII art classification, text translation, and reasoning VQA
(where answers are not directly visible in images).

4.2 Annotation Curation

Dataset Collection. To ensure data diversity, we manually harvest and screen 81 text-rich academic
datasets. To ensure diverse scenario coverage, we also supplement them with additional private data.
In all, our dataset comprises 31 typical scenarios (see Tab. 11 for the full list).

Annotation Protocol. Before starting the annotation, we conducted thorough discussions to establish
clear guidelines. For example, in questions involving numbers such as dates, amounts, or frequencies,
answers were required to include all common formats—Arabic numerals, English abbreviations, and
full English expressions. For coordinate-related questions, all coordinate values in the answers were
normalized to a 0–1000 scale based on the image size to ensure consistency across varying image
resolutions. In cases where multiple correct answers were possible, all valid answers were included.
For the “read all text” task, we required that the answer follow a natural reading order from left to
right and from top to bottom. Based on these guidelines, 15 professional annotators carried out the
annotation work. Each annotator strictly adhered to the instructions and created QA pairs along with
the relevant coordinate information, depending on the task requirements.

Manual Verification. To ensure data quality, we perform a manual cross-validation process to ensure
accuracy and quality. Specifically, each annotated example was first completed by one annotator,
then reviewed by a second annotator to verify the correctness. If disagreements or ambiguities arose,
the case was escalated to a third annotator for judgment. In instances where consensus could not be
reached among all three annotators, the corresponding instruction was excluded from the dataset.
Finally approximately 1% annotations are corrected.

4.3 Statistics of OCRBench v2

Here we present the OCR-related statistics and the measurement of prompt quality. As shown in
Fig. 4 (a) and (b), we count the distribution of line-level OCR results of 7, 400 English and 2, 600
Chinese images. And Fig. 4 (c) exhibits the average number of line-level OCR results per category.
These statistics demonstrate that the text information is sufficiently rich in OCRBench v2. In addition,
Fig. 4 (d) compares the Average Entropy, Type-Token Ratio, and Average Variability Index of the
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Figure 4: OCR-related statistics and prompt quality assessment of OCRBench v2.

Table 2: Evaluation of existing LMMs on English tasks of OCRBench v2’s public data. “Recog-
nition”, “Referring”, “Spotting”, “Extraction”, “Parsing”, “Calculation”, “Understanding”, and
“Reasoning” refer to text recognition, text referring, text spotting, relation extraction, element parsing,
mathematical calculation, visual text understanding, and knowledge reasoning, respectively. Higher
values indicate better performance. Best performance is in boldface, and the second best is underlined.
The notations apply to all subsequent figures.

Method Recognition Referring Spotting Extraction Parsing Calculation Understanding Reasoning Average

Open-source LMMs
LLaVA-Next-8B [49] 41.3 18.8 0 49.5 21.2 17.3 55.2 48.9 31.5
LLaVA-OV-7B [50] 46.0 20.8 0.1 58.3 25.3 23.3 64.4 53.0 36.4
Monkey [51] 35.2 0 0 16.6 16.3 14.4 59.8 42.3 23.1
TextMonkey [7] 39.1 0.7 0 19.0 12.2 19.0 61.1 40.2 23.9
Molmo-7B [52] 52.4 21.3 0.1 45.5 7.6 28.5 65.3 55.0 34.5
Cambrian-1-8B [53] 45.3 21.5 0 53.6 19.2 19.5 63.5 55.5 34.7
Pixtral-12B [54] 48.9 21.6 0 66.3 35.5 29.8 66.9 53.7 40.3
Qwen2.5-VL-7B [21] 68.8 25.7 1.2 80.2 30.4 38.2 73.2 56.2 46.7
InternVL3-14B [23] 67.3 36.9 11.2 89.0 38.4 38.4 79.2 60.5 52.6
Deepseek-VL2-Small [55] 62.7 28.0 0.1 77.5 32.7 14.3 77.1 53.9 43.3
MiniCPM-o-2.6 [56] 66.9 29.5 0.5 70.8 33.4 31.9 69.9 57.9 45.1
GLM-4V-9B [57] 61.8 22.6 0 71.7 31.6 22.6 72.1 58.4 42.6
Ovis2-8B [58] 73.2 24.6 0.7 62.4 44.8 40.6 72.7 62.6 47.7

Closed-source LMMs
GPT-4o [1] 61.2 26.7 0 77.5 36.3 43.4 71.1 55.5 46.5
GPT-4o-mini [59] 57.9 23.3 0.6 70.8 31.5 38.8 65.9 55.1 43.0
Gemini-Pro [60] 61.2 39.5 13.5 79.3 39.2 47.7 75.5 59.3 51.9
Claude3.5-sonnet [61] 62.2 28.4 1.3 56.6 37.8 40.8 73.5 60.9 45.2
Step-1V [62] 67.8 31.3 7.2 73.6 37.2 27.8 69.8 58.6 46.7

questions between OCRBench v2 and OCRBench. OCRBench v2 presents higher values across all
three metrics, indicating more diverse, less redundant, and structurally varied questions. This suggests
it provides a more comprehensive and challenging benchmark for LMMs.

4.4 Evaluation Criteria

We adopt six types of evaluation metrics tailored to specific task categories. In the following, we
present an overview of the evaluation metrics and their applicability to specific tasks.

Parsing Type. To evaluate the element parsing ability of LMMs, we assess their performance
in transforming input images into structured formats, including HTML, Markdown, and JSON.
TEDS [63] is employed to measure the structural similarity between outputs and the desired format.

Localization Type. For text referring, the IoU score is applied to quantify the distance between the
predicted regions and the ground truth.

Extraction Type. To evaluate relation extraction, we employ the F1 score to assess key information
extraction and mapping. Since this evaluation requires structural extraction of information from the
output of LMMs, the format is provided in the given prompt.

Long Reading Type. To assess performance on long text reading tasks, BLEU [64], METEOR [65],
F1 score, and edit distance are used to assess the similarity between predicted text and ground truth.
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Table 3: Evaluation of existing LMMs on Chinese tasks of OCRBench v2’s public data. “LLM
Size” indicates the number of parameters of the language model employed in each method.

Method LLM Size Recognition Extraction Parsing Understanding Reasoning Average

Open-source LMMs
LLaVA-Next-8B [49] 8B 5.7 2.9 12.2 7.5 17.2 9.1
LLaVA-OV-7B [50] 8B 14.8 15.7 13.7 16.0 28.7 17.8
Monkey [51] 8B 4.6 11.2 8.4 21.5 20.0 13.1
TextMonkey [7] 8B 23.5 14.8 8.4 19.9 12.2 15.8
Molmo-7B [52] 8B 7.1 15.0 9.2 9.0 23.7 12.8
Cambrian-1-8B [53] 8B 5.3 14.9 12.6 8.5 8.1 9.9
Pixtral-12B [54] 12B 13.4 10.9 21.0 7.0 20.7 14.6
Qwen2.5-VL-7B [21] 8B 75.3 61.4 41.8 59.3 40.4 55.6
InternVL3-14B [23] 14B 66.2 64.8 33.5 63.4 50.6 55.7
Deepseek-VL2-Small [55] 16B 60.9 50.6 28.3 53.0 20.5 42.7
MiniCPM-o-2.6 [56] 7B 53.0 49.4 27.1 43.5 32.7 41.1
GLM-4V-9B [57] 9B 24.4 60.6 20.4 52.8 25.2 36.6
Ovis2-8B [58] 7B 72.2 50.8 37.7 47.9 37.4 49.2

Closed-source LMMs
GPT-4o [1] - 21.6 53.0 29.8 38.5 18.2 32.2
GPT-4o-mini [59] - 13.1 38.9 27.2 28.8 16.9 25.0
Gemini-Pro [60] - 52.5 47.3 30.9 51.5 33.4 43.1
Claude3.5-sonnet [61] - 21.0 56.2 35.2 55.0 30.5 39.6
Step-1V [62] - 56.7 41.1 37.6 38.3 39.2 42.6

Counting Type. In text counting, LMMs are required to count the number of text instances. Thus,
we use the L1 distance to measure the absolute difference between predicted and ground truth counts.
The final score is then normalized to the range of [0, 1] based on the ground truth.

Basic VQA Type. For questions where the original data provides options, we use exact string
matching to compute accuracy. In other cases, we follow the approach of OCRBench to check
whether the ground truth is contained in the prediction for short answers (fewer than 5 words) and
employ ANLS to measure prediction quality for longer answers (5 words or more).

5 Results and Findings

Here we first benchmark state-of-the-art LMMs on OCRBench v2, presenting the quantitative analysis,
then summarize key findings of current limitations for LMMs. All results are presented as percentages.

5.1 Baselines

The tested LMMs in this section includes LLaVA-Next-8B [49], LLaVA-OV-7B [50], Monkey [51],
TextMonkey [7], Molmo-7B [52], Cambrian-1-8B [53], Pixtral-12B [54], Qwen2.5-VL-7B [21],
InternVL3-14B [23], Deepseek-VL2-Tiny [55], MiniCPM-o-2.6 [56], GLM-4v-9B [57], Ovis2-
8B [58], GPT4o [24], GPT4o-mini [59], Gemini-1.5-Pro [60], Claude3.5-sonnet [61], and Step-
1V [62]. More LMM evaluation results can be found in Tabs. 12, 13, 14, and 15.

5.2 Main Results

Evaluation results on public data are shown in Tab. 2 and Tab. 3. While LMMs perform well on
some basic capabilities such as text recognition and visual text understanding, most LMMs achieve
low scores in other capabilities, such as text spotting and element parsing, mostly below 50. In
particular, some LMMs show significant limitations in text spotting capabilities, failing to precisely
locate and recognize the texts. Additionally, LMMs demonstrate inadequate abilities in element
parsing and mathematical calculation, which are crucial for complicated tasks like document analysis
and mathematical reasoning. Besides, after comparing the performance of LMMs on visual text
understanding and knowledge reasoning capabilities, we find that they perform poorly in knowledge
reasoning. This suggests the deficiency of LMMs in logical reasoning.

Evaluation results on private data are shown in Tab. 4 and Tab. 5. We observe similar evaluation
trends to those in the public test set experiments. Overall, LMMs exhibit unsatisfactory performance
in text referring, text spotting, element parsing, mathematical calculation, and knowledge reasoning
capabilities. In addition, closed-source LMMs outperform their open-source counterparts, demon-
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Table 4: Evaluation of existing LMMs on English tasks of OCRBench v2’s private data.

Method Recognition Referring Spotting Extraction Parsing Calculation Understanding Reasoning Average

Open-source LMMs
LLaVA-Next-8B [49] 41.4 17.0 0 49.0 12.9 16.1 60.9 30.5 28.5
LLaVA-OV-7B [50] 45.4 18.5 0 60.0 15.5 32.0 59.0 39.3 33.7
Monkey [51] 31.5 0.1 0 34.4 26.3 17.7 61.4 22.4 24.2
TextMonkey [7] 39.8 1.6 0 27.6 24.8 10.2 62.3 21.2 23.4
Molmo-7B [52] 40.8 19.5 0 51.7 10.0 33.9 67.0 48.0 33.9
Cambrian-1-8B [53] 44.0 19.0 0 52.3 19.0 20.7 64.0 39.3 32.3
Pixtral-12B [54] 45.1 21.8 0 71.6 21.7 30.4 77.3 39.5 38.4
Qwen2.5-VL-7B [66] 51.5 24.5 3.1 64.8 13.1 53.3 78.6 45.5 41.8
InternVL3-14B [23] 55.8 24.5 2.1 89.3 21.0 59.5 72.0 50.0 46.8
Deepseek-VL2-Small [55] 56.6 23.7 0 86.4 18.9 30.6 72.2 39.5 41.0
MiniCPM-o-2.6 [56] 54.1 24.7 0.3 74.4 17.6 39.2 75.7 47.0 41.6
GLM-4v-9B [57] 52.7 20.6 0 79.4 15.9 21.5 74.7 32.0 37.1
Ovis2-8B [58] 54.2 20.9 0 83.6 24.2 54.7 74.1 57.3 46.1

Closed-source LMMs
GPT-4o [1] 58.6 23.4 0 87.4 23.1 51.6 74.4 62.3 47.6
GPT-4o-mini [59] 55.3 21.8 0 85.4 20.6 45.2 75.5 49.0 44.1
Gemini1.5-Pro [60] 59.1 41.2 6.6 89.5 22.4 54.7 78.8 60.3 51.6
Claude3.5-sonnet [61] 52.9 24.9 2.5 86.9 23.8 61.4 74.4 53.0 47.5
Step-1V [62] 56.7 27.4 2.6 86.3 33.3 42.6 76.6 48.7 46.8

Table 5: Evaluation of existing LMMs on Chinese tasks of OCRBench v2’s private data.

Method LLM Size Recognition Extraction Parsing Understanding Reasoning Average

Open-source LMMs
LLaVA-Next-8B [49] 8B 2.8 0.9 14.9 20.0 7.4 9.2
LLaVA-OV-7B [50] 8B 5.4 13.6 20.3 34.0 13.6 17.4
Monkey [51] 8B 1.5 28.4 29.1 40.0 8.3 21.5
TextMonkey [7] 8B 10.5 15.2 30.2 44.0 7.6 21.5
Molmo-7B [52] 8B 3.4 29.8 6.6 24.0 11.1 15.0
Cambrian-1-8B [53] 8B 2.4 19.8 26.7 36.0 7.6 18.5
Pixtral-12B [54] 12B 6.2 22.3 11.4 26.0 14.0 16.0
Qwen2.5-VL-7B [66] 8B 24.4 78.9 33.1 82.0 29.0 49.5
InternVL3-14B [23] 14B 62.1 59.5 33.2 80.0 29.2 52.8
DeepSeek-VL2-Small [55] 16B 51.6 56.3 27.8 79.6 25.3 48.1
MiniCPM-o-2.6 [56] 7B 54.0 62.4 24.1 68.0 29.8 47.7
GLM-4v-9B [57] 9B 60.6 65.2 32.4 82.0 18.2 51.7
Ovis2-8B [58] 7B 61.0 67.7 43.6 82.0 25.6 56.0

Closed-source LMMs
GPT-4o [1] - 41.7 52.1 29.0 76.0 29.4 45.7
GPT-4o-mini [59] - 20.0 53.6 27.9 66.0 19.6 37.4
Gemini1.5-Pro [60] - 71.4 63.8 30.5 82.0 29.9 55.5
Claude3.5-sonnet [61] - 34.2 62.5 35.2 78.0 32.2 48.4
Step-1V [62] - 65.2 64.9 33.1 78.0 25.5 53.4

strating stronger generalization capabilities. The consistent results across both public and private test
sets confirm the soundness of OCRBench v2’s task design, data collection process, and evaluation
metrics, and demonstrate its effectiveness in revealing the capability limitations of current LMMs.

5.3 Main Findings

We provide in-depth analyses for LMMs’ common limitations, including rare text recognition,
fine-grained spatial perception, layout perception, complex element analysis, and logical reasoning.

Finding 1. LMMs still face challenges with less frequently encountered texts, such as dot matrix
texts and mathematical formulas. This performance gap highlights the continuing challenges LMMs
face in real-world text recognition. For instance, occluded text, CAPTCHA, and dot-matrix text are
considered low-frequency text, whereas other types belong to high-frequency text. Tab. 6 shows
the performance of some LMMs on high-frequency and low-frequency texts. Notably, recognition
accuracy varies significantly across these categories. For example, InternVL3-14B achieves 79.1%
on high-frequency texts but drops to 46.7% on low-frequency ones.

Finding 2. Current LMMs still exhibit limited performance in tasks requiring precise spatial
understanding, such as text referring and text spotting. For instance, when provided with coordinate
information as input, many models are able to output the relevant content from captions or chapters.
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Table 6: LMMs’ performance on high- and low-frequency words.

Category Pixtral-12B [54] Cambrian-1-8B [53] InternVL3-14B [23] Qwen2.5-VL-7B [66]

High Frequency 58.3 59.8 79.1 84.5
Low Frequency 23.6 40.2 46.7 53.3

However, almost all models struggle to accurately retrieve the corresponding text from documents
with dense text based on given coordinates. We investigate the content response accuracy and the
IoU score for answer region localization in the VQA with position task. Tab. 7 suggests that although
LMMs can roughly identify where the answer is located, they struggle to output the exact region.

Finding 3. While LMMs achieve good performance on basic text recognition, they struggle with
complex layouts such as overlapping or rotated texts. For example, GPT-4o fails to detect the
characters in overlapping handwritten text and misrecognizes numbers in 90° rotated images, revealing
LMMs’ limitations in handling texts with complex layouts. Rotating images in the DocVQA dataset
led to a significant performance drop of 55.7% for InternVL3-14B (from 90.9% to 35.2%).

Table 7: LMMs’ performance on VQA with position task.

Category Pixtral-12B [54] Cambrian-1-8B [53] InternVL3-14B [23] Qwen2.5-VL-7B [66]

Content Accuarcy 68.8 71.7 78.3 75.2
IoU Accuracy 1.7 0.0 12.9 9.6

Finding 4. LMMs still struggle to parse text into structured formats in downstream applications
such as document digitalization. For instance, InternVL3-14B achieves 94.4% accuracy in unpaired
entities matching, but its performance drops to 84.9% in key information extraction, where the model
is required to identify the corresponding value given an entity. The performance further degrades in
element parsing tasks that demand structured outputs.

Finding 5. Despite recent advances, LMMs still face challenges in complex mathematical and textual
reasoning tasks. To assess their capabilities, we evaluated InternVL3-14B on the private test set
covering reasoning VQA, ScienceQA, and APP agent tasks. Questions were categorized into five
types: common sense reasoning, visual-text understanding, pattern recognition, calculation, and
expert knowledge. Human ratings showed the model achieved accuracies of 72.9%, 83.0%, 69.2%,
56.5%, and 71.8%, respectively, indicating notable variation.

6 Conclusion

In this work, we introduce OCRBench v2, a comprehensive benchmark designed to evaluate the OCR
capabilities of LMMs. Covering 23 tasks across 31 diverse scenarios, our benchmark systematically
assesses eight core capabilities that are essential for text-oriented visual understanding tasks. It
includes 10, 000 high-quality QA pairs and six rigorous evaluation metrics. In addition, we curate
a private test set of 1, 500 manually labeled images to ensure robust generalization evaluation.
Leveraging this benchmark, we conduct extensive experiments on representative LMMs. Through
in-depth analysis of experimental results, we identify critical limitations of current models and
uncover key factors that affect their OCR performance. We hope OCRBench v2 could aid future
research on enhancing LMMs’ text understanding ability.
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eration due to laws or regulations in their jurisdiction).
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societal impacts of the work performed?
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: All samples included in our benchmark have been manually filtered to ensure
that the content is safe for release.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Some of the data used in our study are derived from existing academic datasets,
with detailed information provided in the Appendix. In addition, we use publicly pre-trained
models to evaluate their performance on our benchmark.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We establish a unified instruction format for 23 text-oriented tasks and provide
corresponding evaluation metrics. Additionally, self-annotated data are included in both the
public and private test sets of our benchmark.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Our benchmark construction involved human filtering and annotation. All
major contributors to this process are listed as co-authors.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [No]

Justification: The evaluation process doesn’t involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used solely for language editing and expression refinement. They
did not contribute to the core methodology, scientific rigor, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

This supplementary material contains the following content:

• Sec. A.1: Comparison experiments between LMMs and some text-centric expert models.
• Sec. A.2: Data collection.
• Sec. A.3: Task definitions.
• Sec. A.4: Additional statistics of OCRBench v2.
• Sec. A.5: Evaluation metrics.
• Sec. A.6: Experimental setting for the evaluation process.
• Sec. A.7: Compute resources for the evaluation process.
• Sec. A.8: Evaluation results for LMMs on OCRBench v2.
• Sec. A.9: Potential factors affecting OCR capabilities
• Sec. A.10: Visualization samples for task examples.
• Sec. A.11: Visualization samples for failure cases.
• Sec. A.12: Biases during the data construction.
• Sec. A.13: Discussion of broader impacts.
• Sec. A.14: Discussion of limitations.

A.1 Comparison with LMMs and Text-centric Expert Models

Comparison with text recognizers. We compare LMMs with several representative scene text
recognizers, including CRNN [67], ABINet [68], ASTER [69], MASTER [70], and SVTR [71],
on the text recognition task. The weights of these models are loaded from mmocr2. The results
are shown in Tab. 8, where we selected 5 representative LMMs, including Qwen2.5VL-7B [66],
InternVL3-14B [23], GPT4o [1], Gemini1.5-Pro [60], and Step-1V [62]. The results demonstrate
that LMMs exhibit remarkable text recognition capabilities, validating our motivation to evaluate
LMMs on more challenging OCR-related tasks.

Table 8: Comparison between LMMs and text recognizers.

Method Accuracy

CRNN [67] 38.1
ABINet [68] 62.4
ASTER [69] 50.0
MASTER [70] 54.1
SVTR [71] 57.8

Qwen2.5VL-7B [66] 73.0
InternVL3-14B [23] 71.1
GPT4o [1] 74.1
Gemini1.5-Pro [60] 64.1
Step-1V [62] 75.4

Comparison with text spotters. We also compare LMMs with ABCNet series [72, 73] and
TESTR [74] on the text spotting task. The ABCNet series utilize the official weights3, and TESTR
is also initialized with its publicly released checkpoint4. These models were fine-tuned with Total-
Text [75]. The results are shown in Tab. 9. Although LMMs demonstrate promising capabilities in
text recognition, there remains notable potential for improvement in the text spotting task.

Comparison with GOT. We notice a recent work, GOT [76], that can parse the textual elements
within images. We conduct comparison experiments between GOT and some representative LMMs,
and the results are shown in Tab. 10. We observe that LMMs show advantages in general text
recognition, while GOT demonstrates better performance in the document parsing task.

2https://github.com/open-mmlab/mmocr
3https://github.com/aim-uofa/AdelaiDet
4https://github.com/mlpc-ucsd/TESTR
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Table 9: Comparison between LMMs and text spotters.

Method F1 score

ABCNet [72] 32.2
ABCNetV2 [73] 44.2
TESTR [74] 51.8

Qwen2.5VL-7B [66] 1.2
InternVL3-14B [23] 11.2
Gemini1.5-Pro [60] 13.5
GPT4o [1] 0
Step-1V [62] 7.2

Table 10: Comparison between LMMs and GOT [76].

Method Rec FG-Rec Full-Rec Doc-Parse

GOT [76] 64.1 52.9 73.3 53.9

Qwen2.5VL-7B [66] 73.0 36.4 84.2 39.1
InternVL3-14B [23] 71.1 36.4 83.0 36.9
GPT4o [1] 74.1 13.8 54.1 35.9
Gemini1.5-Pro [60] 64.1 22.9 83.9 40.5
Step-1V [62] 76.8 24.8 74.8 36.0

A.2 Data Collection

Text Recognition. The data for text recognition task are sampled from ICDAR2013 [77], SVT [78],
IIIT5K [79], ICDAR2015 [80], SCUT-CTW1500 [81], COCO-Text [82], CUTE80 [83], TotalText,
SVTP [84], WordArt [85], NonSemanticText [14], IAM [86], ORAND-CAR-2014 [87], HOST [88],
and WOST [88]. Meanwhile, CAPTCHA (Completely Automated Public Turing Test to Tell Hu-
mans Apart) images are sourced from a CAPTCHA dataset5 and a number CAPTCHA dataset6.
Additionally, dot matrix images in the text recognition task are manually collected from the web
page.

Fine-grained Text Recognition. In the fine-grained text recognition task, images are sampled from
the test sets of Fox [17], Totaltext, COCO-Text, CTW1500 [89], and ICDAR2015. We use the
original annotations for Fox, while the other datasets are manually re-annotated.

Full-page OCR. The data sources for full-page OCR task include Fox, HierText [90], CTW [91],
RCTW-17 [92], ReCTS [93], LSVT2019 [94], M6Doc [95], and CDLA7.

Text Grounding. The images for the text grounding task are sampled from testset of Totaltext,
COCO-Text, CTW1500, and ICDAR2015. QA pairs and bounding boxes annotations are based on
their official OCR annotations.

VQA with Position. The images used for VQA with position task are sampled from the test sets
of TextVQA [10] and RICO [96], with QA pairs and bounding box annotations derived from their
original datasets.

Text Spotting. The data sources for the text spotting task include Totaltext, COCO-Text, CTW1500,
and ICDAR2015.

Key Information Extraction. The data sources for key information extraction task include
FUNSD [97], SROIE [98], POIE [99], M6Doc, XFUND [100], ICDAR2023-SVRD [101], and
a private dataset of photographed receipts.

Key Information Mapping. The data sources for the key information mapping task include FUNSD
and POIE.

5https://aistudio.baidu.com/datasetdetail/159309
6https://www.heywhale.com/mw/dataset/5e5e56b6b8dfce002d7ee42c/file
7https://github.com/buptlihang/CDLA
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Handwritten Content Extraction. This task’s data is our private data, which contains real exam
paper data with student information removed and manually annotated QA pairs.

Table Parsing. The images for table parsing task are selected from MMTab [28], WTW [102],
TabRecSet [103] and flush table recognition competition8.

Chart Parsing. The data sources for the chart parsing task come from OneChart [44] and MMC [29].

Document Parsing. The data sources for document parsing task come from DoTA [104],
DocVQA [105], M6Doc, and CDLA.

Formula Recognition. The data sources for the formula Recognition task includes HME100K [106],
IM2LATEX-100K [107], M2E [108], MathWriting [109], MLHME-38K9, CASIA-CSDB [110], and
some private data.

Math QA. The data sources for the math QA task includes MathMatics [111], MathVerse [112],
MathVision [107], and MathVista [113].

Text Counting. The data for the text counting task are collected from IIIT5K, SVT, ICDAR2013,
HierText, and TotalText.

Cognition VQA. The data sources for the cognition VQA task include EST-VQA [12],
OCRVQA [114], ST-VQA [11], TEXTVQA, DIR300 [115], ChartQA [41], DVQA [116],
PlotQA [117], InfoVQA [118], WTW, PubTabNet [119], WTQ [120], CORD [121], LLaVAR [30],
WebSRC [122], DocVQA, M6Doc, XFUND, Publaynet [123], RVL-CDIP [124], ScreenQA [125],
SlideVQA [126], a movie poster collection dataset10, a website screenshot collection dataset11, and a
private receipt photograph dataset.

Diagram QA. The data sources for the diagram QA task include AI2D [127] and TextBookQA [128].

Document Classification. The images for the document classification task are collected from
RVL-CDIP.

Reasoning VQA. The reasoning VQA task shares some common data sources with the cognition
VQA task. Additionally, portions of the reasoning VQA dataset are drawn from MMSI [129] and
CMMMU [130].

Science QA. The images and annotations of the science QA task are collected from ScienceQA [131]
and MMMU-Pro [132]

APP Agent. The data source of the APP agent task is RICO.

ASCII Art Classification. The data sources for the ASCII art classification task is ASCIIEval [133].

Text Translation. The datasets collected for text translation task includes memes12, MSRA-
TD500 [134], MTWI2018 [135], M6Doc, ICDAR2023-SVRD, EST-VQA, RCTW17 [136],
DAST1500 [137], XFUND, ArT2019 [138], ChartQA, CDLA, ICDAR2015, SlideVQA, Fintab-
net [139], ScienceQA, InfoVQA, COMICS-Dialogue13, and ExpressExpense SRD14.

A.3 Task Definitions

In this section, we introduce the definition of each task, and the visualizations for each task can be
found in Sec. A.10.

Text Recognition. Text recognition refers to the fundamental OCR ability on text image patches,
which asks LMMs to read the text content. To comprehensively evaluate LMMs’ text recognition
ability across diverse scenarios, our collection incorporates various text types, including regular text,

8https://github.com/10jqka-aicubes/table-recognition
9https://ai.100tal.com/icdar

10https://www.kaggle.com/datasets/neha1703/movie-genre-from-its-poster
11https://huggingface.co/datasets/Zexanima/website_screenshots_image_dataset/tree/

main
12https://www.kaggle.com/datasets/dvishal485/meme-challenge?resource=download
13https://huggingface.co/datasets/lmms-lab/M4-Instruct-Data
14https://expressexpense.com/blog/free-receipt-images-ocr-machine-learning-dataset/
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Table 11: The number of images included in each scene category in public data.

Scene Number Scene Number Scene Number

Schematic diagram 1238 Scientific paper 799 Word 728
Table(filled) 705 Chart 620 Receipts 609
Questions 581 Mathematical formula 475 Product labels 434

Phone screenshot 431 Indoor scenes 395 Industry research reports 343
Poster 264 Street scene 224 ASCII Art 199

Shop sign 189 Financial reports 153 Chemical formula 149
Textbook 148 Magazine 146 Email 111

Web screenshot 99 Details page 95 Verification code 87
Resumes 67 Illustration 61 Newspaper 52

Road signs 43 Menus 31 Notify 30
Questionnaire 29
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Figure 5: Overview of the eight testable text-reading capabilities and associated tasks in
OCRBench v2. Each color represents a distinct capability type.

irregular text, artistic text, handwriting text, digit string text, non-semantic text, occluded text, doc
matrix text, and CAPTCHA text.

Fine-grained Text Recognition. This task requires LLMs to read and comprehend textual content
within the given region. It evaluates LLMs’ fine-grained perception capabilities in understanding text
in natural scenes and documents.

Full-page OCR. Full-page OCR [17] task requires LMMs to extract and recognize all text content
from the given images. Converting text into digital format facilitates subsequent processing and
analysis of text images.

Text grounding. In this task, users would provide a text string and require LMMs to locate its specific
location, evaluating LMMs’ fine-grained perception capabilities.

VQA with Position. For VQA with position task, LMMs need to not only respond to the question but
also provide the exact position coordinates that directly correspond to the answer. We ask LMMs to
output both information in JSON format for convenient evaluation, and the coordinates are required
to be normalized with image sizes and scaled to the range of [0, 1000].

Text Spotting. Text spotting task needs LMMs to output the localization and content of all appeared
text simultaneously. Due to the interference of background elements and the large number of text
instances, this task demands high fine-grained perception capabilities from the model. Besides, the
coordinates are required to be normalized with image sizes and scaled to the range of [0, 1000].
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Figure 6: The quantity distribution of English tasks of public data.
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Figure 7: The quantity distribution of Chinese tasks of public data.

Key Information Extraction. The key information extraction task is to extract the necessary
information from densely arranged text. In this task, we provide some desired entities as keys and
demand LMMs to output the corresponding values to form the output JSON string.

Key Information Mapping. In this task, we provide a set of entity keys and their corresponding
values in the prompt. The LMMs are then asked to match and pair these keys with their respective
values into groups.

Handwritten Content Extraction. To investigate the information extraction capabilities of LMMs in
educational scenarios, we collect some Chinese examination papers, containing both printed question
text and handwritten student responses. There are four types of questions in these examination papers,
including single-choice, multiple-choice, true or false, and brief response questions. The prompts
require LMMs to extract the handwritten content for specific questions.

Table Parsing. Table parsing task requires LMMs to parse the given table into structured text,
including Markdown and HTML format.

Chart Parsing. Apart from tables, charts can also be converted to structured information. In this
task, LLMs are required to transform visual charts into JSON format.

Document Parsing. In the document parsing task, both text and the complex elements, including
charts, tables, and formulas, are required to be parsed.

Formula Recognition. This task asks LMMs to recognize the given formula in the LaTeX format.
The collection includes mathematical and chemical formulas.
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Figure 8: The OCR lines distribution of English tasks of public data.
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Figure 9: The OCR lines distribution of Chinese tasks of public data.

Math QA. Math QA task evaluates the LMMs’ mathematical calculation ability. In particular, we
render the mathematical problem description and related figures into images and ask LMMs to answer
the questions within the images.

Text Counting. Text counting task is built to evaluate the quantity property perceiving ability of
LMMs, including the character frequency in words and the word counting in the given image.

Cognition VQA. In OCRBench v2, we split text-centric VQA instructions into cognition VQA and
Reasoning VQA based on whether the answers can be directly found in the images. Cognition VQA
task refers to the instructions where answers are explicitly present in the given image. This task
evaluates the fundamental text-centric question-answering ability based on visual content.

Diagram QA. In the diagram QA task, LMMs need to respond to the question about the given
diagrams, reflecting LMMs’ ability to understand the relationship between the visual elements.

Document Classification. Document classification task asks LMMs to classify the category of the
given document image. The included categories are letters, forms, emails, handwritten documents,
advertisements, scientific reports, scientific publications, specifications, file folders, news articles,
budgets, invoices, presentations, questionnaires, resumes, and memos.

Reasoning VQA. In reasoning VQA tasks, the answers often do not directly appear in the image.
This forces LMMs to perform logical reasoning to respond to questions based on visual information.

Science QA. In the Science QA task, LMMs are required to respond to the scientific problem. We use
PaddleOCR15 to extract text from the collected images and filter out those with fewer than four OCR

15https://github.com/PaddlePaddle/PaddleOCR
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results. Additionally, when extra subject-related knowledge is provided by the source, we incorporate
it by rendering it into the images.

APP Agent. For the APP agent task, LMMs need to understand the relationship between textual
content, icons, and world knowledge to respond to the question from the user, simulating the real-
world application scene.

ASCII Art Classification. We incorporate a recent image classification task that uses images
composed purely of ASCII characters [133]. This task is included in OCRBench v2 to evaluate
LMMs’ ability to assess LMMs’ pattern recognition and visual abstraction abilities.

Text Translation. In the text translation task, LMMs need to execute translation between Chinese
and English texts, evaluating LMMs’ semantic understanding abilities.

A.4 Additional Statistics of OCRBench v2

Scene Coverage. Our dataset can be divided into 31 classic scenes according to the scene of the
image. The specific scenes and the corresponding number of pictures are shown in Tab. 11.

Statistics of each task. Fig. 5 shows an overview of each task in OCRBench v2.The distribution of
23 tasks in OCRBench v2 is displayed in Fig. 6 and Fig. 7. Additionally, we calculate and present the
average number of OCR text lines per task in Fig. 8 and Fig. 9. As illustrated in these figures, the task
distribution is well-balanced, with each task containing adequate textual information for analysis.

A.5 Evaluation Metrics

Parsing Type. We use Tree-Edit-Distance-based Similarity (TEDS) [63] to evaluate parsing tasks,
which require LMMs to transform the images to structured formats. Tree Edit Distance (TED) refers
to the minimum number of edits to transform one tree into another. TEDS is based on TED to
calculate the similarity of two trees. Assuming T1 and T2 are two different trees, TED(T1, T2) refers
to their TED, and the TEDS is defined as:

TEDS(T1, T2) = 1− TED(T1, T2)

max(|T1|, |T2|)
, (1)

where |T1| and |T2| is the number of nodes of trees, TED(T1, T2) can be calculated by dynamic
programming algorithm. If T1 and T2 are identical, then their TEDS equals 1. As the structural
difference between two trees increases, their TED value becomes larger, resulting in the TEDS
approaching 0.

Localization Type. In the text referring and spotting tasks, LMMs are required to provide regression
bounding boxes of target objects. IoU score is adopted to measure the distance between the predicted
regions and the ground truth.

IoU(B1, B2) =
Intersect(B1, B2)

Union(B1, B2)
, (2)

where Intersect(B1, B2) refers to the overlap area of bounding box B1 and B2, while
Union(B1, B2) refers to their union area.

Extraction Type. The F1 score is used to evaluate LMMs’ relation extraction capability. Given the
predicted and ground truth Key-Value pairs, the F1 score is formulated as follows:

Precision =
N3

N2
, (3)

Recall =
N3

N1
, (4)

Fmean =
2 ∗ Precision ∗Recall

Precision+Recall
, (5)

where N1, N2, and N3 denote the number of ground-truth Key-Value pairs, predicted Key-Value
pairs, and correctly matched Key-Value pairs, respectively.
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Long Reading Type. To evaluate LMMs’ ability to recognize text across entire paragraphs or pages,
BLEU [64], METEOR [65], F1 score, and normalized edit distance are employed. And the final
score is the average value of these metrics.

BLEU evaluates prediction quality by comparing n-gram match rates between the prediction and
ground truth sequences. For each n-gram type, precision is calculated as the ratio of matching n-grams
to total predicted n-grams. The final BLEU score is the geometric mean of these precision values
multiplied by a penalty BP , which is defined as:

BLEU = BP ∗ exp(
N∑

n=1

wn log pn), (6)

BP =

{
1 Lp ≥ Lg

e
(1−Lp

Lg
)

Lp < Lg

, (7)

where pn represents the precision of n-grams, Lp represents the length of prediction sequence,
Lg represents the length of ground truth sequence, wn is weight factor, usually evenly distributed
(wn = 1

N ). Typically, N is set to 4.

METEOR employs a semantic-aware matching strategy with four levels. 1) Exact Match: words
in the prediction that are identical to the ground truth. 2) Stem match: matching words that have
the same word stem. 3) Synonym Match: matching words based on synonymous relationships. 4)
Paraphrase Match: Matching similar phrases at the phrase level. These matches are combined to
calculate precision and recall, from which a weighted harmonic mean F1 score is derived as:

Pmeteor =
Nmatch

Npred
, (8)

Rmeteor =
Nmatch

Ngt
, (9)

Fmeteor =
10 ∗ Pmeteor ∗Rmeteor

Pmeteor + 9 ∗Rmeteor
, (10)

where Nmatch, Npred, and Ngt represent the number of matched items, words in prediction, and
words in ground truth, respectively. The final METEOR score is obtained by multiplying the Fmeteor

by the penalty adjustment factor. The calculation is formulated as follows:

METEOR = Fmeteor ∗ (1−BPmeteor), (11)

BPmeteor = 0.5 ∗ Nchunk

Nmatch
, (12)

where Nchunk refers to the number of contiguous matching phrases. More chunks indicate greater
word order differences, resulting in a heavier penalty.

The calculation method of the F1 score in long reading metrics follows the same approach as discussed
in extraction metrics, as shown in Equations 3, 4, 5.

Normalized Edit Distance (NED) measures string similarity by computing the minimum number of
operations needed to transform one string into another. And then NED is normalized by the length of
the longer string. The calculation is formulated as follows:

NED(S1, S2) =
ED(S1, S2)

max(len(S1), len(S2))
(13)

where ED(S1, S2) represents the edit distance between the prediction string S1 and the ground truth
S2. The NED value of 0 indicates identical strings, while 1 indicates completely different strings.

Counting Type. In OCRBench v2, character frequency counting and word counting tasks are included.
For character frequency, we use exact match evaluation since the answers are typically single-digit
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integers. For word counting, we evaluate using the L1 distance between predicted and ground truth
counts, normalized to [0, 1] based on the ground truth. This can be formulated as follows:

score =


0 Cpred ≤ 0

1− |Cpred−Cgt|
Cgt

) 0 < Cpred < 2 ∗ Cgt

0 Cpred ≥ 2 ∗ Cgt

, (14)

where Cpred and Cgt denote the predicted count and ground truth count, respectively.

Basic VQA Type. The remaining tasks in OCRBench v2 are basic VQA types, and we employ
different evaluation metrics based on question types. For multiple-choice questions, we use exact
matching between predictions and answer options. In other cases, we check whether the ground truth
is contained in the prediction for answers shorter than 5 words, and use ANLS for longer answers.

A.6 Experimental setting

The detailed public data construction are shown in Sec. A.2 and Sec. A.5. Private data consists of
unlabeled images collected manually from websites and real life. At the same time, we annotated and
checked the private test set to ensure the quality. The environment configuration of each open-source
model experiment strictly complies with the official version and uses the official pre-trained model
and inference code. The model parameters of the open-source model and the API parameters of the
closed-source model use the official default parameters for fair. Specifically, we use the official API
versions: GPT-4o (gpt-4o-2024-08-06), GPT-4o-mini (gpt-4o-mini-2024-07-18), and Gemini 1.5 Pro
(gemini1.5-pro-002).

A.7 Compute resources

Evaluations of open-source models were conducted on 8×NVIDIA GeForce RTX 4090 (24GB) and a
NVIDIA H800 Tensor Core GPU (80GB). The closed-source experiments obtained the results by
calling the official API.

A.8 Results and Discussions

Tab. 12, Tab. 13, Tab. 14, and Tab. 15 exhibit the results of 39 open-source models and 5 closed-source
models on the public and private test sets of OCRBench v2

Evaluation results on public data are shown in Tab. 12 and Tab. 13. Most LMMs performed well in
tasks such as Understanding, Recognition, Extraction, which shows that current models have basic
OCR capabilities. However, they performed poorly in tasks such as Referring, Spotting, Parsing, and
Calculation. The scores of all models are basically below 50 points, which shows that the models still
lack the ability in text localization, logical reasoning, and understanding complex elements.

Evaluation results on private data are shown in Tab. 14 and Tab. 15. The performance trends of
the models on private and public datasets are consistent. In addition, most models perform worse on
private datasets than on public datasets, which shows that private data may be more challenging for
LMMs due to the lack of training, and also reflects the importance of private data construction.

A.9 Potential Factors Affecting OCR Capabilities

High-Res Visual Encoders. Since text often appears small in images, the resolution setting of the
visual encoder could be a key factor affecting the text perception ability [51]. Here we change the
input resolution of the LMMs and observe the performance changes. In particular, InternVL2-8B is
chosen, and the resolution setting includes 448, 896, and dynamic. Tab. 16 lists the results. Indeed,
when the input resolution increases from 448 to 896, the performance increases by 4.1%.

Pre-provided OCR Information. To study the impact of OCR information, we use PaddleOCR16 to
pre-extract OCR results and incorporate them with prompts. Tab. 17 shows the results. We observe

16https://github.com/PaddlePaddle/PaddleOCR
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Table 12: Evaluation of existing LMMs on English tasks of OCRBench v2’s public data. “Recog-
nition”, “Referring”, “Spotting”, “Extraction”, “Parsing”, “Calculation”, “Understanding”, and
“Reasoning” refer to text recognition, text referring, text spotting, relation extraction, element parsing,
mathematical calculation, visual text understanding, and knowledge reasoning, respectively. Higher
values indicate better performance. Best performance is in boldface, and the second best is underlined.
The notations apply to all subsequent figures.

Method Recognition Referring Spotting Extraction Parsing Calculation Understanding Reasoning Average

Open-source LMMs
LLaVA-Next-8B [49] 41.3 18.8 0 49.5 21.2 17.3 55.2 48.9 31.5
LLaVA-OV-7B [50] 46.0 20.8 0.1 58.3 25.3 23.3 64.4 53.0 36.4
Monkey [51] 35.2 0 0 16.6 16.3 14.4 59.8 42.3 23.1
TextMonkey [7] 39.1 0.7 0 19.0 12.2 19.0 61.1 40.2 23.9
XComposer2-4KHD [140] 45.1 21.8 0.1 15.9 11.7 15.7 66.8 45.9 27.9
Molmo-7B [52] 52.4 21.3 0.1 45.5 7.6 28.5 65.3 55.0 34.5
Cambrian-1-8B [53] 45.3 21.5 0 53.6 19.2 19.5 63.5 55.5 34.7
Pixtral-12B [54] 48.9 21.6 0 66.3 35.5 29.8 66.9 53.7 40.3
EMU2-chat [141] 42.1 0.2 0 12.5 8.1 11.2 42.7 33.4 18.8
mPLUG-Owl3 [142] 41.6 14.0 0.6 24.4 10.9 11.1 52.2 46.0 25.1
CogVLM-chat [143] 50.9 0 0 0.2 8.4 15.0 58.1 41.7 21.8
Qwen-VL [4] 34.6 7.5 0 18.2 20.0 8.1 57.2 41.1 23.3
Qwen-VL-chat [4] 34.5 4.1 0 25.9 14.0 13.8 55.7 39.5 23.4
Qwen2-Vl-7B [66] 72.1 47.9 17.5 82.5 25.5 25.4 78.4 61.5 51.4
Qwen2.5-VL-7B [21] 68.8 25.7 1.2 80.2 30.4 38.2 73.2 56.2 46.7
InternVL2-8B [144] 49.9 23.1 0.5 65.2 24.8 26.7 73.5 52.9 39.6
InternVL2-26B [144] 63.4 26.1 0 76.8 37.8 32.3 79.4 58.9 46.8
InternVL2.5-8B [23] 59.0 25.0 1.4 77.5 35.1 29.4 75.3 57.2 45.0
InternVL2.5-26B [23] 65.6 26.1 1.6 86.9 36.2 37.4 78.3 62.9 49.4
InternVL3-8B [23] 68.6 30.4 8.8 85.3 34.0 27.1 77.5 60.3 49.0
InternVL3-14B [23] 67.3 36.9 11.2 89.0 38.4 38.4 79.2 60.5 52.6
Deepseek-VL-7B [145] 37.1 15.4 0 23.5 14.6 20.8 53.3 52.9 27.2
Deepseek-VL2-Small [55] 62.7 28.0 0.1 77.5 32.7 14.3 77.1 53.9 43.3
MiniCPM-V-2.6 [56] 66.8 6.0 0.8 62.0 28.8 32.4 73.7 52.1 40.3
MiniCPM-o-2.6 [56] 66.9 29.5 0.5 70.8 33.4 31.9 69.9 57.9 45.1
GLM-4V-9B [57] 61.8 22.6 0 71.7 31.6 22.6 72.1 58.4 42.6
VILA1.5-8B [146] 35.3 15.5 0 21.1 12.7 17.3 46.3 40.3 23.6
LLaVAR [30] 37.3 0 0 1.0 9.9 12.3 34.6 27.0 15.3
UReader [33] 22.4 0.1 0 0 9.2 7.9 41.0 29.1 13.7
DocOwl2 [147] 24.0 9.7 0 13.4 13.5 8.8 53.7 32.0 19.4
Yi-VL-6B [148] 28.9 2.9 0 9.7 12.9 15.8 36.1 32.0 17.3
Janus-1.3B [149] 46.1 0 0 0.2 14.5 13.5 36.0 39.1 18.7
Eagle-X5-7B [150] 34.7 17.8 0 21.7 20.6 21.5 61.0 42.6 27.5
Idefics3-8B [151] 23.8 13.2 0 63.2 23.8 23.0 65.8 44.9 32.2
Phi-4-MultiModal [152] 63.7 16.4 0 40.4 19.1 18.3 69.8 53.9 35.2
SAIL-VL-1.6-8B [153] 67.7 28.6 2.8 70.5 25.9 29.5 73.9 59.7 44.8
Kimi-VL-A3B-16B [154] 56.5 13.8 0 59.2 33.8 32.9 75.5 56.7 41.1
Ovis1.6-3B [58] 59.2 14.3 0 65.0 32.1 29.0 69.8 56.8 40.8
Ovis2-8B [58] 73.2 24.6 0.7 62.4 44.8 40.6 72.7 62.6 47.7

Closed-source LMMs
GPT-4o [1] 61.2 26.7 0 77.5 36.3 43.4 71.1 55.5 46.5
GPT-4o-mini [59] 57.9 23.3 0.6 70.8 31.5 38.8 65.9 55.1 43.0
Gemini-Pro [60] 61.2 39.5 13.5 79.3 39.2 47.7 75.5 59.3 51.9
Claude3.5-sonnet [61] 62.2 28.4 1.3 56.6 37.8 40.8 73.5 60.9 45.2
Step-1V [62] 67.8 31.3 7.2 73.6 37.2 27.8 69.8 58.6 46.7

that adding OCR information does not help much. This suggests that OCRBench v2 evaluates LMMs
capabilities across multiple dimensions, rather than solely focusing on text recognition abilities.

Connection Between OCR and LLMs. We further explore a direct pipeline by first extracting OCR
information and then by feeding it directly into Qwen2.5. Unlike LMMs, this pipeline separates
OCR and language modeling into distinct stages. The results shown in Tab. 17 suggest that Qwen2-
VL-7B outperforms Qwen2.5 with OCR information, demonstrating LMMs’ remarkable ability to
incorporate both textual and visual features efficiently.

A.10 Samples for Each Task

As show in Fig. 10 to Fig. 18 , there are 23 OCR tasks included in OCRBench v2. Among them,
Fig. 10 to Fig. 16 present examples of English tasks, including text recognition, diagram QA, text
counting, formula recognition, math QA, VQA with position, ASCII art classification, reasoning
VQA, text translation, APP agent, table parsing, cognition VQA, document classification, science QA,
chart parsing, key information extraction, full-page OCR, text spotting, fine-grained text recognition,
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Table 13: Evaluation of existing LMMs on Chinese tasks of OCRBench v2’ public data. “LLM
Size” indicates the number of parameters of the language model employed in each method.

Method LLM Size Recognition Extraction Parsing Understanding Reasoning Average

Open-source LMMs
LLaVA-Next-8B [49] 8B 5.7 2.9 12.2 7.5 17.2 9.1
LLaVA-OV-7B [50] 8B 14.8 15.7 13.7 16.0 28.7 17.8
Monkey [51] 8B 4.6 11.2 8.4 21.5 20.0 13.1
TextMonkey [7] 8B 23.5 14.8 8.4 19.9 12.2 15.8
XComposer2-4KHD [140] 7B 16.7 18.8 12.1 27.5 2.3 15.5
Molmo-7B [52] 8B 7.1 15.0 9.2 9.0 23.7 12.8
Cambrian-1-8B [53] 8B 5.3 14.9 12.6 8.5 8.1 9.9
Pixtral-12B [54] 12B 13.4 10.9 21.0 7.0 20.7 14.6
EMU2-chat [141] 37B 2.3 0.5 8.5 1.0 7.3 3.9
mPLUG-Owl3 [142] 8B 6.6 17.9 9.7 6.0 26.1 13.3
CogVLM-chat [143] 7B 5.5 10.0 9.8 1.5 2.5 5.9
Qwen-VL [4] 8B 7.2 5.3 10.7 11.5 11.2 9.2
Qwen-VL-chat [4] 8B 9.5 8.2 9.3 11.0 21.1 11.8
Qwen2-Vl-7B [66] 7B 51.3 51.4 21.6 52.5 37.5 42.9
Qwen2.5-VL-7B [21] 7B 75.3 61.4 41.8 59.3 40.4 55.6
InternVL2-8B [144] 8B 20.6 45.2 23.2 54.4 38.1 36.3
InternVL2-26B [144] 26B 21.9 46.0 34.8 50.9 34.8 37.7
InternVL2.5-8B [23] 8B 52.8 52.8 28.6 56.4 40.5 46.2
InternVL2.5-26B [23] 26B 32.4 56.1 32.6 56.3 43.6 44.2
InternVL3-8B [23] 8B 68.9 62.0 31.6 57.9 47.3 53.5
InternVL3-14B [23] 14B 66.2 64.8 33.5 63.4 50.6 55.7
Deepseek-VL-7B [145] 7B 8.0 13.3 15.7 5.5 18.5 12.2
Deepseek-VL2-Small [55] 16B 60.9 50.6 28.3 53.0 20.5 42.7
MiniCPM-V-2.6 [56] 8B 51.0 29.9 21.2 34.0 33.6 33.9
MiniCPM-o-2.6 [56] 7B 53.0 49.4 27.1 43.5 32.7 41.1
GLM-4V-9B [57] 9B 24.4 60.6 20.4 52.8 25.2 36.6
VILA1.5-8B [146] 8B 5.4 8.8 8.5 3.0 15.5 8.2
LLaVAR [30] 13B 2.3 1.7 8.9 0 2.5 3.1
UReader [33] 7B 6.8 2.7 8.4 2.5 7.2 5.5
DocOwl2 [147] 7B 4.2 10.3 8.6 4.0 9.6 7.3
Yi-VL-6B [148] 6B 4.8 4.4 8.5 4.0 25.0 9.4
Janus-1.3B [149] 1.3B 7.6 8.7 11.4 4.5 10.7 8.6
Eagle-X5-7B [150] 8B 7.5 12.0 11.6 5.0 19.2 11.1
Idefics3-8B [151] 8B 7.0 15.5 15.9 9.0 18.1 13.1
Phi-4-MultiModal [152] 5.6B 51.5 32.3 12.1 34.4 23.0 30.7
SAIL-VL-1.6-8B [153] 8B 31.2 40.0 23.9 42.3 35.0 34.5
Kimi-VL-A3B-16B [154] 16B 57.2 54.7 31.5 52.5 31.4 45.5
Ovis1.6-3B [58] 3B 11.5 23.7 22.8 28.8 18.9 21.1
Ovis2-8B [58] 7B 72.2 50.8 37.7 47.9 37.4 49.2

Closed-source LMMs
GPT-4o [1] - 21.6 53.0 29.8 38.5 18.2 32.2
GPT-4o-mini [59] - 13.1 38.9 27.2 28.8 16.9 25.0
Gemini-Pro [60] - 52.5 47.3 30.9 51.5 33.4 43.1
Claude3.5-sonnet [61] - 21.0 56.2 35.2 55.0 30.5 39.6
Step-1V [62] - 56.7 41.1 37.6 38.3 39.2 42.6

text grounding, key information mapping, and document parsing. These figures show corresponding
images and QA pairs for each of the 23 tasks. Fig. 17 to Fig. 18 provide examples of Chinese tasks,
including key information extraction, text translation, formula recognition, reasoning VQA, cognition
VQA, handwritten content extraction, document parsing, full-page OCR, and table parsing, along
with their associated images and QA pairs.

A.11 Samples for LMMs’ Limitations

Fig. 19 to Fig. 21 provide examples corresponding to the findings discussed in Sec. 5.3 of the main
text, which show error results of GPT-4o [1], Monkey [51], and Qwen2VL-8B on various tasks
in OCRBench v2. These examples highlight the current limitations of LLMs on OCR tasks. For
instance, LLMs exhibit poor recognition of less frequently encountered texts, struggle to accurately
locate text in tasks involving text and coordinates, and demonstrate insufficient perception of text in
complex layouts such as rotated texts. Additionally, their logical reasoning abilities are limited when
addressing mathematical problems, and their analysis of complex elements in charts remains weak.
These are the capabilities of LLMs in OCR tasks that require further improvement.
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Table 14: Evaluation of existing LMMs on English tasks of OCRBench v2’s private data.

Method Recognition Referring Spotting Extraction Parsing Calculation Understanding Reasoning Average

Open-source LMMs
LLaVA-Next-8B [49] 41.4 17.0 0 49.0 12.9 16.1 60.9 30.5 28.5
LLaVA-OV-7B [50] 45.4 18.5 0 60.0 15.5 32.0 59.0 39.3 33.7
Monkey [51] 31.5 0.1 0 34.4 26.3 17.7 61.4 22.4 24.2
TextMonkey [7] 39.8 1.6 0 27.6 24.8 10.2 62.3 21.2 23.4
XComposer2-4KHD [140] 39.5 12.0 0 69.7 26.0 20.2 68.2 35.8 33.9
Molmo-7B [52] 40.8 19.5 0 51.7 10.0 33.9 67.0 48.0 33.9
Cambrian-1-8B [53] 44.0 19.0 0 52.3 19.0 20.7 64.0 39.3 32.3
Pixtral-12B [54] 45.1 21.8 0 71.6 21.7 30.4 77.3 39.5 38.4
EMU2-chat [141] 34.3 0 0 20.4 21.3 20.3 47.1 18.3 20.2
mPLUG-Owl3 [142] 34.9 17.0 0 12.0 14.9 24.1 50.7 25.5 22.4
CogVLM-chat [143] 40.8 0 0 1.6 18.6 10.9 60.2 26.8 19.9
Qwen-VL [4] 35.9 4.2 0 38.7 28.5 13.8 60.1 16.9 24.8
Qwen-VL-chat [4] 34.1 12.6 0.1 42.6 19.5 18.4 58.3 20.3 25.7
Qwen2-Vl-7B [66] 47.0 42.0 1.5 90.2 13.7 36.4 71.1 36.6 42.3
Qwen2.5-VL-7B [66] 51.5 24.5 3.1 64.8 13.1 53.3 78.6 45.5 41.8
InternVL2-8B [144] 43.0 21.6 0 70.2 19.2 35.6 65.9 33.6 36.1
InternVL2-26B [144] 56.0 21.2 0 80.5 23.9 40.3 72.1 40.7 41.8
InternVL2.5-8B [23] 48.9 21.2 0 82.1 20.3 41.2 67.8 42.3 40.5
InternVL2.5-26B [23] 53.5 21.4 0 84.0 21.4 51.5 67.5 41.5 42.6
InternVL3-8B [23] 49.7 22.3 0.2 86.8 22.4 57.0 70.7 53.0 45.3
InternVL3-14B [23] 55.8 24.5 2.1 89.3 21.0 59.5 72.0 50.0 46.8
Deepseek-VL-7B [145] 33.5 13.7 0 19.1 11.7 24.8 60.5 32.5 24.5
Deepseek-VL2-Small [55] 56.6 23.7 0 86.4 18.9 30.6 72.2 39.5 41.0
MiniCPM-V-2.6 [56] 52.2 18.6 0.3 45.8 19.6 20.9 68.9 37.3 33.0
MiniCPM-o-2.6 [56] 54.1 24.7 0.3 74.4 17.6 39.2 75.7 47.0 41.6
GLM-4v-9B [57] 52.7 20.6 0 79.4 15.9 21.5 74.7 32.0 37.1
VILA1.5-8B [146] 36.0 14.5 0 26.0 17.4 20.3 44.7 27.0 23.2
LLaVAR [30] 13.8 0 0 8.3 15.2 4.4 42.4 15.0 12.4
UReader [33] 20.9 0 0 0 20.7 11.3 39.0 20.8 14.1
DocOwl2 [147] 25.4 7.5 0 47.1 26.2 8.3 52.8 19.5 23.4
Yi-VL-6B [148] 31.1 4.0 0 23.4 22.5 18.1 43.0 15.5 19.7
Janus-1.3B [149] 32.6 0 0 0.3 13.0 18.4 32.1 17.9 14.3
Eagle-X5-7B [150] 34.6 18.5 0 9.7 18.5 24.0 63.1 37.0 25.7
Idefics3-8B [151] 37.4 13.0 0 28.9 19.4 21.1 65.4 21.8 26.0
Phi-4-MultiModal [152] 58.4 19.0 0 53.5 38.7 28.7 66.8 39.8 38.1
SAIL-VL-1.6-8B [153] 56.7 24.1 2.2 79.3 22.8 45.4 69.2 45.3 43.1
Kimi-VL-A3B-16B [154] 49.1 13.5 0 28.8 21.9 37.6 69.4 36.2 32.1
Ovis1.6-3B [58] 48.5 19.5 0 69.2 20.7 22.1 74.6 49.5 38.0
Ovis2-8B [58] 54.2 20.9 0 83.6 24.2 54.7 74.1 57.3 46.1

Closed-source LMMs
GPT-4o [1] 58.6 23.4 0 87.4 23.1 51.6 74.4 62.3 47.6
GPT-4o-mini [59] 55.3 21.8 0 85.4 20.6 45.2 75.5 49.0 44.1
Gemini1.5-Pro [60] 59.1 41.2 6.6 89.5 22.4 54.7 78.8 60.3 51.6
Claude3.5-sonnet [61] 52.9 24.9 2.5 86.9 23.8 61.4 74.4 53.0 47.5
Step-1V [62] 56.7 27.4 2.6 86.3 33.3 42.6 76.6 48.7 46.8

A.12 Biases in Data Construction

Tab. 11 presents the scenario coverage statistics in our benchmark. The most frequent scenario
accounts for 12.4% of the total samples. Among the 31 scenarios, 21 have more than 100 samples,
which demonstrates the diversity of scene types in OCRBench v2.

In addition, we have manually verified all samples in our benchmark and did not identify any obvious
regional or demographic biases.

A.13 Broader Impacts

Our benchmark aims to enhance the evaluation of LMMs in text-oriented visual comprehension tasks.
By establishing comprehensive benchmarks that reveal deficiencies in models’ OCR capabilities,
we provide insights for improving model performance. This advancement will elevate processing
efficiency across scenarios such as document automation, assisted reading tools, and complex layout
analysis, thereby benefiting applications in domains like healthcare and education. However, enhanced
OCR functionality also introduces risks of misuse, including unauthorized extraction of sensitive
information from images, surveillance-related applications, or generation of forged documents. To
mitigate these risks, we restrict the use of this benchmark solely to research purposes and urge the
community to prioritize privacy and fairness considerations in future model development.
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Table 15: Evaluation of existing LMMs on Chinese tasks of OCRBench v2’s private data.

Method LLM Size Recognition Extraction Parsing Understanding Reasoning Average

Open-source LMMs
LLaVA-Next-8B [49] 8B 2.8 0.9 14.9 20.0 7.4 9.2
LLaVA-OV-7B [50] 8B 5.4 13.6 20.3 34.0 13.6 17.4
Monkey [51] 8B 1.5 28.4 29.1 40.0 8.3 21.5
TextMonkey [7] 8B 10.5 15.2 30.2 44.0 7.6 21.5
XComposer2-4KHD [140] 7B 12.9 38.6 37.5 60.0 13.1 32.4
Molmo-7B [52] 8B 3.4 29.8 6.6 24.0 11.1 15.0
Cambrian-1-8B [53] 8B 2.4 19.8 26.7 36.0 7.6 18.5
Pixtral-12B [54] 12B 6.2 22.3 11.4 26.0 14.0 16.0
EMU2-chat [141] 37B 1.2 3.0 29.3 4.0 3.6 8.2
mPLUG-Owl3 [142] 8B 1.6 27.4 27.3 16.0 10.0 16.5
CogVLM-chat [143] 7B 2.4 16.2 22.5 20.0 3.1 12.8
Qwen-VL [4] 8B 4.3 0 30.6 38.0 5.1 15.6
Qwen-VL-chat [4] 8B 9.1 3.6 18.9 44.0 7.1 16.5
Qwen2-Vl-7B [66] 7B 23.7 63.5 27.9 80.0 28.5 44.7
Qwen2.5-VL-7B [66] 8B 24.4 78.9 33.1 82.0 29.0 49.5
InternVL2-8B [144] 8B 35.2 42.8 26.1 78.0 24.4 41.3
InternVL2-26B [144] 26B 20.4 50.7 29.0 76.0 14.5 38.1
InternVL2.5-8B [23] 8B 42.8 47.9 27.3 80.0 23.5 44.3
InternVL2.5-26B [23] 26B 40.2 42.7 25.6 74.0 27.0 41.9
InternVL3-8B [23] 8B 57.7 55.8 29.9 72.0 29.4 49.0
InternVL3-14B [23] 14B 62.1 59.5 33.2 80.0 29.2 52.8
Deepseek-VL-7B [145] 7B 3.2 14.7 10.7 30.0 9.8 13.7
DeepSeek-VL2-Small [55] 16B 51.6 56.3 27.8 79.6 25.3 48.1
MiniCPM-V-2.6 [56] 8B 53.1 53.2 32.8 76.0 23.4 47.7
MiniCPM-o-2.6 [56] 7B 54.0 62.4 24.1 68.0 29.8 47.7
GLM-4v-9B [57] 9B 60.6 65.2 32.4 82.0 18.2 51.7
VILA1.5-8B [146] 8B 1.4 9.1 22.2 16.0 6.4 11.0
LLaVAR [30] 13B 2.2 2.0 27.1 10.0 1.9 8.6
UReader [33] 7B 0.3 2.0 28.1 12.0 2.4 9.0
DocOwl2 [147] 7B 1.0 17.8 29.4 20.0 3.9 14.4
Yi-VL-6B [148] 6B 1.6 6.4 28.8 10.0 5.3 10.4
Janus-1.3B [149] 1.3B 4.1 2.2 10.4 14.0 6.7 7.5
Eagle-X5-7B [150] 8B 1.9 16.1 13.6 22.0 8.1 12.3
Idefics3-8B [151] 8B 2.9 29.0 12.3 26.0 7.9 15.6
Phi-4-MultiModal [152] 5.6B 30.5 40.5 42.7 56.0 16.9 37.3
SAIL-VL-1.6-8B [153] 8B 35.8 41.5 35.7 76.0 23.9 42.6
Kimi-VL-A3B-16B [154] 16B 54.0 71.1 32.5 84.0 28.7 54.1
Ovis1.6-3B [58] 3B 22.5 33.3 31.5 54.0 17.0 31.7
Ovis2-8B [58] 7B 61.0 67.7 43.6 82.0 25.6 56.0

Closed-source LMMs
GPT-4o [1] - 41.7 52.1 29.0 76.0 29.4 45.7
GPT-4o-mini [59] - 20.0 53.6 27.9 66.0 19.6 37.4
Gemini1.5-Pro [60] - 71.4 63.8 30.5 82.0 29.9 55.5
Claude3.5-sonnet [61] - 34.2 62.5 35.2 78.0 32.2 48.4
Step-1V [62] - 65.2 64.9 33.1 78.0 25.5 53.4

Table 16: Evaluation of InternVL2-8B with different resolution settings on the English tasks of
OCRBench v2’s public data.

Method Resolition Recognition Referring Spotting Extraction Parsing Calculation UnderstandingReasoning Average

InternVL2-8B [144]
448 47.3 19.1 0.1 52.8 27.3 25.4 61.1 49.1 35.3
896 48.7 23.0 0.5 66.2 26.2 25.9 73.2 51.9 39.4

dynamic 49.9 23.1 0.5 65.2 24.8 26.7 73.5 52.9 39.6

Table 17: Evaluation of Qwen2-VL-7B and Qwen2.5-7B with pre-provided OCR information on
English tasks of OCRBench v2’s public data.

Method Recognition Referring Spotting Extraction Parsing Calculation Understanding Reasoning Average

Qwen2-VL-7B [66] 72.1 47.9 17.5 82.5 25.5 25.4 78.4 61.5 51.4
Qwen2-VL-7B+OCR 69.8 50.4 20.1 79.1 29.4 28.0 77.7 60.0 51.8
Qwen2.5-8B+OCR 28.6 13.8 0 45.9 24.2 31.3 61.1 40.5 30.7
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Text Recognition

What is written in the image?

avenue

Text Counting

How many words are in the picture? 
Please output the exact number 
without any additional explanation.

11

Diagram QA

What part of the food web is the 
producer organism? Here's the options: 
Gray whales, Plankton, Humans, Squid.

Plankton

Formula Recognition

What is the Latex tag for mathematical 
expression in images?

9 . 2 \\div 4 . 5 \\approx 2 . 0 \\t 2 . 0 4 
\\n 4 . 5 \\DIV 9 . 2 \\n 9 0 \\n 2 0 0 \\n 1 
8 0 \\n 2 0

Text Counting

How many times does the character 'e' 
appear in the picture? Please output the 
exact number without any additional 
explanation.

three

Math QA

Please use the information from the 
provided image to directly answer the 
mathematical question described in the 
image.

7.07

VQA with Position

What is the brand of the fine whest
ales? Output the answer with 
'answer' and 'bbox'.

"answers": "WILD BOAR“
"bbox": [609,708,698,745]

ASCII Art Classification

Which of the following options best 
matches the image?  Here's some 
options: train, car, submarine, ship. 
Directly output the results without any 
additional explanation.

train

Reasoning VQA 

Which way is it to the museum?

right

Text Translation

Please translate the text shown in the 
image to Chinese. Please provide the 
translated content directly.

创造力

Character Counting Word Counting

Figure 10: Samples for each task.

A.14 Limitations

One challenge we encountered is that LMMs sometimes produce responses that deviate from the
given instructions, making it difficult to extract the desired answers. In future work, we plan to
develop a more objective assessment framework to address this issue.

Another limitation arises when evaluating commercial LMMs, as some models occasionally refuse to
answer certain questions due to safety filters or unclear content policies. This can lead to incomplete
or biased performance assessments compared to open-source models that do not exhibit such behavior.
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APP Agent

What's the name of the chef who received four and a
half stars on the recipe?

sberenter

Table Parsing

Recognize the table in the presented picture and
represent it in the markdown-format.

Fiscal years ended July 31, |  |  |  |\n| --- | --- | --- | --- | --- |\n|  
| 2019 | 2018 | Change |  |\n|  | Amount  | Amount  | ($) | (%) 
|\n|  |  | (In thousands, except percentages) |  |  |\n| Interest 
income | $30,182 | $13,281 | 16,901 | 127 |\n| Interest 
expense | $(17,334) | $(6,442) | (10,892) | 169 |\n| Other 
income (expense), net | $(1,867) | $509 | (2,376) | (467) |

Cognition VQA

What car should I look at that has a fuel economy of 30
MPG in highway?

2021 Toyota GR Supra 3.0 Premium Auto (Natl)

Figure 11: Samples for each task.
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Document Classification

What type of document is the image? Here is the options:
letter, form, email, handwritten, advertisement, scientific
report, scientific publication, specification, file folder, news
article, budget, invoice, presentation, questionnaire, resume,
memo. Directly output the results without any additional
explanation.

Questionnaire

Science QA

Based on the information from the provided image, answer the
following question: Based on the Venn diagram, what do Natty
Bumppo and Daniel Boone have in common? Here are the
choices: 'Both fought in the French and Indian War.', 'Both were
created by writer James Fenimore Cooper.'. Please output the
answer directly.

Both fought in the French and Indian War.

Figure 12: Samples for each task.
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Chart Parsing

Convert the key information in the chart into a nested python dict.

{'title': 'Exploring Delicacies Around the World', 
'source': 'Source: Food and Travel Magazine', 
'x_title': 'None',
'y_title': ['None', 'None'], 

'values': {
'Cuisine Varieties': {

'Africa': '150', 
'Asia': '180', 
'Europe': '200', 
'North America': '240', 
'South America': '300'

}, 
'Growth Rate': {

'Africa': '10.0%',
'Asia': '12.0%', 

'Europe': '15.0%', 
'North America': '18.0%',
'South America': '20.0%'

}, 
'Local Preference': {

'Africa': '25.0%', 
'Asia': '30.0%',
'Europe': '35.0%', 
'North America': '40.0%', 
'South America': '45.0%’}}}

Key Information Extraction

Find out the value of 'Serving Size', 'Calories/Energy per serving',
'Total Fat per serving', 'Total Fat % daily value/intake', 'Sodium
per serving', 'Sodium % daily value/intake', 'Carbohydrate per
serving', 'Carbohydrate % daily value/intake', 'Protein per serving'
stated in the image. Extract the required information using the text
in the image directly, and return the result in a dict with keys 'SS',
'CE-PS', 'TF-PS', 'TF-D', 'SO-PS', 'SO-D', 'CAR-PS', 'CAR-D',
'PRO-PS'.

{
'SS': ['1/2 cup (122g)’], 
'CE-PS': ['90’], 
'TF-PS': ['0g’],
'TF-D': ['0%’],
'SO-PS': ['0mg’], 
'SO-D': ['0%’], 
'CAR-PS': ['21g’],
'CAR-D': ['7%’],
'PRO-PS': ['less than 1g’]

}

Figure 13: Samples for each task.
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Full Page OCR

Read all the text in the image. Directly output the content and
split the texts with space.

SURREALISM, ABSTRACTION\n& THE UNCONSCIOUS\nIn 
the 1920s, while a student at Yale, Rothko took\nphilosophy and 
psychology classes that led to his\ninterest in the unconscious and 
eventually to Sigmund\nFreud's The Interpretation of Dreams. Then, 
in the '40s,\nlike many American artists, he came under the 
influence\nof European Surrealist artists and writers living in 
New\nYork. Many artists also found inspiration in the Museum\nof 
Modern Art's influential 1936 exhibition, Fantastic Art,\nDada and 
Surrealism.\nBy the mid-1940s, Rothko loosened up his 
technique,\ninspired by the Surrealist method of 
automatism\n(\"automatic\" drawing or writing). Unlike 
some\nSurrealist artists, such as Salvador Dali, who 
\"pictured\"\nunconscious dreams in paintings, Surrealists 
using\nautomatism tried to access the unconscious by letting\nthe 
brush meander freely without planning or control.\nRothko 
experimented with the fluidity of watercolor and\nsoon realized he 
could achieve similar luminous effects\nin oil paint by diluting the 
pigment and applying color in\nthin washes, one on top of another. 
Rothko's imagery also\nchanged. Many works suggest 
paleontology and geology\nand evoke a vision of primordial life. 
Water seems to be\na primal element in which biomorphic shapes 
proliferate.\nSome compositions include stacked horizontal zones 
that\nmay stand for layers of the unconscious.

Text Spotting

543, 770, 589, 794, 49-0223A, 
545, 731, 580, 760, 502, 
309, 594, 666, 641, YELLOWSTONE,
417, 160, 554, 198, TOUR

Spotting all the text in the image with word-level. Output the 
normalized coordinates of the left-top and right-bottom corners of 
the bounding box and the text content. The coordinates should be 
normalized ranging from 0 to 1000 by the image width and 
height.\nYour answer should be in the following format:
[(x1, y1, x2, y2, text content), (x1, y1, x2, y2, text content)...] # 
The normalized coordinates and the content of the text in the 
image.

Figure 14: Samples for each task.
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Fine-grained Text Recognition

Recognize the text within the [192, 223, 332, 346] of the
image. The coordinates have been normalized ranging from 0
to 1000 by the image width and height.

DIOS LE ABRE CAMINO\\n
AL HOMBRE\\n
QUE SABE A DONDE VA

Text Grounding

Where is the region of the text 'COMNAM'? Output the
normalized coordinates of the left-top and right-bottom
corners of the bounding box. The coordinates should be
normalized ranging from 0 to 1000 by the image width and
height.
Your answer should be in the following format:
(x1, y1, x2, y2) # x1, y1, x2, y2 are the normalized
coordinates of the bounding box.

[126,537,248,624]

Key Information Mapping

According to the information in the image, please pair the
corresponding keys and values below: Keys that need to be paired
are 'Serving Size', 'Calories/Energy per 100g/ml', 'Carbohydrate
per serving', 'Protein per 100g/ml', 'Total Fat per serving',
'Carbohydrate per 100g/ml', 'Total Fat per 100g/ml', 'Protein per
serving'. Values that need to be paired are '0.8 g', '11.0 g', '200ml
(1 cup)', '10.0 g', '1.6 g', '49 kcal(206 kJ)', '5.0 g', '5.5 g'.

{"Calories/Energy per 100g/ml": "49 kcal(206 kJ)"
"Protein per serving": "10.0 g"
"Protein per 100g/ml": "5.0 g"
"Total Fat per serving": "1.6 g"
"Total Fat per 100g/ml": "0.8 g"
"Carbohydrate per serving": "11.0 g"
"Carbohydrate per 100g/ml": "5.5 g"
"Serving Size": "200ml (1 cup)“}

Figure 15: Samples for each task.
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Document Parsing

Convert the privided document into markdown format.

We describe a winning strategy for Alice with \\(\\Delta(G)\\) 
colours in the \\([B,A]\\)-edge colouring game played on 
\\(G\\).\n\nThe only unsafe edges are the star edges of pending 
objects and the edge \\(vz\\). Alice may arbitrarily number the 
pending objects \\(O_{1},O_{2},\\ldots,O_{k+\\ell}\\) and 
performs basically the same pairing strategy as in the proof of 
Lemma 67 with only small extensions, as described in the 
following.\n\n* If Bob colours the matching edge of the pending 
object \\(O_{j}\\), then, if this was the first such move and the 
edge \\(vz\\) is still uncoloured, Alice colours \\(vz\\) with the 
same colour (if possible, or a new colour otherwise); otherwise, 
Alice colours a star edge of the pending object 
\\(O_{j+1\\mod{k+\\ell}}\\) with the same colour, if possible. If it 
is not possible, she uses a new colour for such a star edge.\n* If 
Bob colours the first star edge of the pending object \\(O_{j}\\) 
and there is still a pending object with only uncoloured star edges, 
then Alice colours the matching edge of the pending object 
\\(O_{j-1\\mod{k+\\ell}}\\) with the same colour. If the matching 
edge is already coloured, then Alice misses her turn.\n* If Bob 
colours the first star edge of the pending object \\(O_{j}\\) and 
there is no pending object with only uncoloured star edges left, 
then Alice colours \\(vz\\) with a new colour (if \\(vz\\) is still 
uncoloured) or misses her turn (if \\(vz\\) is already coloured).\n* 
If Bob colours the edge \\(vz\\), an edge \\(vx_{j}\\) or the second 
star edge of the pending object (a triangle) \\(O_{j}\\), then Alice 
misses her turn.\n* If Bob colours an edge \\(zu_{i}\\), then Alice 
colours \\(vz\\) (if \\(vz\\) is still uncoloured) or misses her turn 
(otherwise).\n\nThis strategy has the same properties as the 
strategy for the single galaxy in the proof of Lemma 67, and, in 
addition, it guarantees that the edge \\(vz\\) is coloured before it is 
in danger to be infeasible for any colour. \n\n### Permitted for 
game \\([A,a]\\)\n\n**Definition 69** (full tree).: Let 
\\(n,m_{1},m_{2}\\in{\\mathbb{N}}\\). An 
_\\((n,m_{1},m_{2})\\)-full tree_ is based on a path \\(P_{3}\\), 
where there are \\(m_{1}\\) (respectively, \\(n\\), \\(m_{2}\\)) leafs
attached its three vertices, i.e., the graph has the vertex 
set\n\n\\[\\{w_{1},v,w_{2}\\}\\cup\\{x_{i}\\mid 1\\leq i\\leq
m_{1}\\}\\cup\\{y_{j}\\mid 1\\leq j \\leq n\\}\\cup\\{z_{i}\\mid 
1\\leq i\\leq m_{2}\\}\\]\n\nand the edge 
set\n\n\\[\\{w_{1}v,vw_{2}\\}\\cup\\{w_{1}x_{i}\\mid 1\\leq
i\\leq m_{1}\\}\\cup\\{vy_{j}\\mid 1 \\leq j\\leq
n\\}\\cup\\{w_{2}z_{i}\\mid 1\\leq i\\leq m_{2}\\}.\\]\n\nA _full 
tree_ is an \\((n,m_{1},m_{2})\\)-full tree for some 
\\(n,m_{1},m_{2}\\in{\\mathbb{N}}\\).“

Figure 16: Samples for each task.
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Reasoning VQA
某物体的三视图是如图所示的三个图形，那么
该物体的形状是()
A. 圆柱体 B. 圆锥体
C. 立方体 D. 长方体
请直接回答所给候选答案的选项字母，无需进
行解释，注意可能有多选。

A

Formula Recognition

将图中的数学公式转换为LaTex表达式

\\rm{H{g}^{*}\\xrightarrow{\\ k_{Q}\\ }H{g}\\ +热能}

Key Information Extraction

从图中提取: 发票代码, 并按json格式返回

{'发票代码': '144011972082'}

Text Translation

Please translate the text shown in 
the image to English.

Beijing Meteorological Bureau

Cognition VQA 

万向轮的特点是什么？

即推即走，教材万向轮，刹车和锁扣即可定位

Handwritten Content Extraction

在多项选择题第65题中，考生答题的手写内容
是什么？选项可能有多个，请输出考生选择的
所有选项.

ABCDE

Figure 17: Samples for each task.
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Document Parsing

Parse the document image in Markdown format.

西安石油大学硕士学位论文 \n图4-5 2ED020I12FA型号
IGBT驱动器的实物图及内部原理图 \na)实物图 b)内部原理
图 \n表4-5 2ED020I12FA型号IGBT驱动器部分引脚功
能 \n<table><tr><td>引脚序号</td><td>名称
</td><td>功能
</td></tr><tr><td>2</td><td>INHS+</td><td>非反
相驱动器输入高端
</td></tr><tr><td>3</td><td>INHS-</td><td>反向
驱动器输入高端</td></tr><tr><td>7 
</td><td>VCC1HS</td><td>正电源输入高端
</td></tr><tr><td>12</td><td>INLS+</td><td>非
反相驱动器输入低端
</td></tr><tr><td>13</td><td>INLS-</td><td>反相
驱动器输入低端</td></tr></table> \n\n44    \n(C)1994-
2020 China Academic Joumal Electronic Publishing 
House.All rights reserved.http://www.cnki.net

Full Page OCR

Read all the text in the image .

着力打造上海国际旅游度假区，
提升上海旅游业的国际竞争力和影响力,
推动世界著名旅游城市建设。

Table Parsing

Parse the HTML-formatted structural information of all the
tables in the image.

<table><tr><td> 星期</td><td> 一</td><td> 
二</td><td> 三</td><td> 四</td><td> 五</td> 
</tr> <tr><td> 每股涨跌</td><td> 
+4</td><td> +4.5</td><td> -1</td><td> -
2.5</td><td> -6</td> </tr></table>

Figure 18: Samples for each task.
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Limited recognition on less frequently encountered texts

What is written in the image?

22

unanswerable

red

The image shows a 5x7 
LED matrix displaying 
the letter \"H\"

Limited fine-grained spatial perception

Where is the region of the text 'CHEESE'? 
Output the normalized coordinates of the left-
top and right-bottom corners of the bounding 
box. 

[164,191,677,275]

(0.00, 0.00, 0.00, 0.00)

(156, 100, 695, 183)

(354, 188, 1062, 313)

Figure 19: Samples for LMM’S Limitations. The portion of LLM’s response marked in red is
incorrect content, and the content in the red dashed box is missing information.
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Insufficient layout perception

What is the name of the bank where 
the check was issued?

First Wisconsin Bank of 
Wausau Wausau,Wisconsin

USAA Federal 
Savings Bank

First Wisconsin Bank of 
Wausau Wausau,Wisconsin

The check was issued 
by Bank of New York 
in Milwaukee.

Limited logical reasoning

Please use the information from the provided 
image to directly answer the mathematical 
question described in the image. 

D

A

B

B. 54°

Figure 20: Samples for LMM’S Limitations. The portion of LLM’s response marked in red is
incorrect content, and the content in the red dashed box is missing information.
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Weak analytics for complex elements

Convert the key information in the chart 
into a python dict.

{'title': 'Annual Revenue of the Education Industry', 'source': 
'Data Source: Government Reports, Deloitte', 'x_title': 'None’, 
'y_title': ['RMB Billion', 'None’], 
'values': {'Revenue': {'2015': '1200', '2016': '1400', '2017': '1500', 
'2018': '1700', '2019': '1800', '2020': '2000', '2021': '2200’},
'Growth Rate': {'2015': '4.0%', '2016': '2.0%', '2017': '7.0%', 

'2018': '6.0%', '2019': '5.0%', '2020': '6.0%', '2021': '8.0%'}}}

{'2015': 1000, '2016': 1000, '2017': 1000, '2018': 1000, '2019': 1000, 
'2020': 1000, '2021': 1000, '2022': 1000, '2023': 1000, '2024': 1000, 
'2025': 1000, '2026': 1000, '2027': 1000, '2028': 1000, '2029': 1000, 
'2030': 1000, '2031': 1000, '2032': 1000, '2033': 1000, '2034': 1000, 
'2035': 1000, '2036': 1000, '2037': 1000, '2038': 1000, '2039': 1000, 
'2040': 1000, '2041': 1000, '2042': 1000, '2043': 1000, '2044': 1000, 
'2045': 1000, '2046': 1000, '2047': 1000, '2048': 1000, '2049': 1000, 
'2050': 1000, '2051': 1000, '2052': 1000, '2053': 1000, '2054': 1000, 
'2055': 1000, '2056': 1000, '2057': 1",}

Annual Revenue of the Education Industry\":
'source': 'Data Source: Government Reports, Deloitte', 
'x_title': 'None’, 'y_title': ['RMB Billion', 'None’], 
{\"Revenue\": [
{\"year\": \"2015\", \"value\": 1200},
{\"year\": \"2016\",  \"value\": 1400 },     
{\"year\": \"2017\", \"value\": 1500},    
{\"year\": \"2018\", \"value\": 1700},     

{\"year\": \"2019\", \"value\": 1800},
{\"year\": \"2020\", \"value\": 2000}, 

{\"year\": \"2021\", \"value\": 2200}],
\"Growth Rate\": [ 
{\"year\": \"2015\", \"value\": 4},
{\"year\": \"2016\", \"value\": 2}, 
{\"year\": \"2017\", \"value\": 7}, 
{\"year\": \"2018\", \"value\": 6}, 
{\"year\": \"2019\", \"value\": 5}, 
{\"year\": \"2020\", \"value\": 8},
{\"year\": \"2021\", \"value\": 8}]}}

'title': 'Annual Revenue of the Education Industry’, 
'source': 'Data Source: Government Reports, Deloitte', 
'x_title': 'None’, 'y_title': ['RMB Billion', 'None’], 
{\"2015\": {\"Revenue\": 1200, \"Growth Rate\": \"4%\"},
\"2016\": {\"Revenue\": 1400, \"Growth Rate\": \"2%\"},     
\"2017\": {\"Revenue\": 1500, \"Growth Rate\": \"7%\"}, 
\"2018\": {\"Revenue\": 1700, \"Growth Rate\": \"6%\"}, 
\"2019\": {\"Revenue\": 1800, \"Growth Rate\": \"5%\"}, 
\"2020\": {\"Revenue\": 2000, \"Growth Rate\": \"6%\"},  
\"2021\": {\"Revenue\": 2200,\"Growth Rate\": \"8%\"}}

Figure 21: Samples for LMM’S Limitations. The portion of LLM’s response marked in red is
incorrect content, and the content in the red dashed box is missing information.
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