
Shoot from the HIP: Hessian Interatomic
Potentials without derivatives

Andreas Burger∗
University of Toronto

Vector Institute

Luca Thiede
University of Toronto

Vector Institute

Nikolaj Rønne
Technical University of Denmark

Nandita Vijaykumar
University of Toronto

Tejs Vegge
Technical University of Denmark

Arghya Bhowmik
Technical University of Denmark

Alán Aspuru-Guzik
Acceleration Consortium

University of Toronto
Vector Institute

NVIDIA

Abstract

Fundamental tasks in computational chemistry, from transition state search to vi-
brational analysis, rely on molecular Hessians, which are the second derivatives of
the potential energy. Yet, Hessians are computationally expensive to calculate and
scale poorly with system size, with both quantum mechanical methods and neural
networks. In this work, we demonstrate that Hessians can be predicted directly
from a deep learning model, without relying on automatic differentiation or finite
differences. We observe that one can construct SE(3)-equivariant, symmetric Hes-
sians from irreducible representations (irrep) features up to degree l=2 computed
during message passing in graph neural networks. This makes HIP Hessians one
to two orders of magnitude faster, more accurate, more memory efficient, easier
to train, and enables more favorable scaling with system size. We validate our
predictions across a wide range of downstream tasks, demonstrating consistently
superior performance for transition state search, accelerated geometry optimization,
zero-point energy corrections, and vibrational analysis benchmarks. We open-
source the HIP codebase and model weights to enable further development of the
direct prediction of Hessians.

1 Introduction

Over the past decades, molecular simulation has become a cornerstone for many tasks in material
discovery and molecular design. Beyond energy and forces, chemists, chemical engineers, materials
scientists, and physicists frequently rely on Hessians to enable many critical workflows [1, 2]. For
example, second-order geometry optimization accelerates the determination of reliable equilibrium
structures. Transition-state searches are needed to find reaction pathways and estimate barrier heights
and transition rates. This determines whether a reaction is viable and how to tune selectivity, with
high industrial relevance for the chemical and pharmaceutical industry. Vibrational analyses connect
theory to experiment through infrared and Raman spectra and provide zero-point energies, which are
essential for ranking isomers and estimating reaction free energies.

∗andreas.burger@mail.utoronto.ca

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: SIMBIOCHEM.

Despite their broad utility, Hessian calculations remain a significant computational bottleneck. For a
molecule with N atoms, the Hessian is a 3N × 3N matrix, where each entry requires a mixed second
derivative of the electronic energy with respect to two nuclear coordinates

Hα,β
IJ =

∂2E

∂Rα
I ∂Rβ

J

(1)

with I, J = 1, . . . , N indexing atoms, and α, β ∈ {x, y, z} indexing the cartesian x, y and z compo-
nents of the atom positions R.
Traditional approaches rely either on analytic second derivatives or on numerical differentiation of
gradients, both of which have severe limitations [3, 4, 5]. Analytic second derivatives are available
only for a limited set of methods, such as Hartree-Fock, DFT, and MP2; whereas, for higher-level
correlated wavefunction methods such as CCSD or CASPT2, they are either not yet implemented
in most computational packages or computationally prohibitive. Numerical approaches sidestep
analytic derivations but can become infeasible even for medium-sized molecules, requiring O((3N)2)
gradient evaluations [6].
Most computational chemistry calculations are carried out with Kohn-Sham density functional theory
[7] (KS-DFT), due to its balance of computational cost and accuracy [8]. However, the O(N4)
scaling of hybrid KS-DFT with system size remains expensive, which has spurred the development
of machine-learning interatomic potentials (MLIPs). MLIPs promise to deliver near-DFT accuracy at
a fraction of the cost by incorporating symmetries, thereby drastically reducing the need for extensive
training data [9, 10, 11, 12, 13, 14]. Recently, some MLIP models have also been adapted to compute
Hessians via automatic differentiation (AD). These AD Hessians incur significant computational costs
of O(N2), which presents practical challenges during training and inference [15, 16, 17, 18, 19].
In this work we introduce HIP: Hessian Interatomic Potentials. HIPs predict the Hessian directly,
to eliminate the need for finite differences, coupled-perturbed equation solvers, or automatic differ-
entiation. By building on SE(3)-equivariant neural networks, we demonstrate how HIP can predict
Hessians at a fraction of the computational cost of traditional methods. A key observation is that one
can construct the Hessian from spherical harmonic features of the atom nodes and the messages
between atoms, while satisfying equivariance and symmetry constraints by design. This approach is
not only faster but also more accurate, enabling a variety of critical tasks in molecular simulations.

Our contributions are the following:

1. We present Hessian Interatomic Potentials (HIP), a method to construct SE(3)-equivariant,
symmetric Hessians directly, without finite differences, coupled-perturbed solvers, or auto-
matic differentiation, using an equivariant neural network backbone.

2. We introduce a loss function that targets the part of the Hessian subspace particularly
important for molecular optimization problems.

3. We show that, compared to AD, the predicted Hessians are 10-70x faster for single molecule
evaluation and over 70x faster in batched molecular prediction, while also requiring 2-3x
less peak memory on small molecules with 5-30 atoms.

4. We show that the predicted Hesians are more accurate on benchmark datasets, with 2x lower
Hessian MAE, 3.5x lower eigenvalue MAE, and 1.5x higher eigenvector cosine similarity.

5. Finally, we rigorously validate the practical utility of our predicted Hessians in several
downstream applications, such as (i) zero-point energy corrections, (ii) second-order ge-
ometry optimization, (iii) transition state search, and (iv) frequency analysis for extrema
classification.

2 Background

2.1 MLIPs and equivariant neural networks

Early works on machine learning interatomic potentials used local atomic environment descriptors in
combination with linear regression [20, 21], Gaussian processes [22], and simple neural networks
[23]. SchNet [9] was the first work to introduce rotation-invariant graph neural networks to predict
molecular properties like energies and forces. Next-generation invariant architectures include ViSNet
[24] and QuinNet [25]. In parallel, rotation-equivariant architectures were developed, such as

2

Figure 1: In contrast to previous methods that rely on AD to construct the Hessian matrix, Hessian
Interatomic Potentials (HIP) use a learned Hessian readout that predict the Hessian directly.

Cormorant [26], DimeNet [27], GemNet [11], PaiNN [12], NequIP [14], SphereNet [28], MACE
[13] and the Equiformer family [29, 30]. Graph neural networks represent a molecule as a graph
G = (V, E) in 3D Euclidean space R3, with nodes/atoms I ∈ V at positions rI ∈ R3 and edges
(I, J) ∈ E defined by a cutoff radius. At layer t, each node carries a feature h

(t)
I that is a direct sum

of irreducible SO(3) representations (irreps): h(t)
I =

⊕lmax

l=0 h
(t,l)
I , where h

(t,l)
I = {h(t)

I,l,m}lm=−l

has 2l + 1 components. To update the node’s features, the model sends messages between each
connected node, which are then aggregated in a permutation invariant fashion (usually the sum, or
attention-weighted-sum operation) and then added to the receiving node. In SO(3)-equivariant GNNs,
node features transform under a global rotation Q via Wigner D-matrices:

h
(t)
i,l,m

(
Q{rk}Nk=1

)
=

l∑
m′=−l

D
(l)
mm′(Q)h

(t)
i,l,m′

(
{rk}Nk=1

)
, (2)

Translation equivariance is enforced by building messages from relative displacements rI,J = rJ−rI .
If we want O(3) instead of SO(3) equivariance, each order-l feature has an extra parity label that
determines the transformation under a global coordinate inversion.
Two irreps pl1 and gl2 interact using the Clebsch-Gordan tensor product [10]

hl3,m3 =
(
pl1,m1 ⊗

l3
l1,l2

gl2,m2

)
m3

=

l1∑
m1=−l1

l2∑
m2=−l2

C
(l3,m3)
(l1,m1),(l2,m2)

pl1,m1gl2,m2 (3)

A message from source atom J to target atom I is then constructed as

vI,J,l3 = vl3(hI ,hJ , rI,J) =
∑
l1,l2

wl1,l2,l3(||rI,J ||)
(
fl1(hI ,hJ)⊗l3

l1,l2
Yl2

(
rI,J
||rI,J ||

))
(4)

where Yl2 is the spherical harmonic of degree l2, wl1,l2,l3 : R→ R is a learned weighting function,
and fl1 a simple function that takes both node features in, for example concatenation in the case of
EquiformerV2. A more efficient variation of equation 4 relying on the reduction of the SO(3) tensor
product to the SO(2) tensor products was proposed by eSCN [31] and adopted by subsequent works,
such as EquiformerV2. Finally, the messages are pooled to update the node features, which can be
done, for example, via a sum or using graph attention [30].
After several layers of message passing, task-dependent readout heads map the node features to the
desired targets while respecting symmetry. For example, energies E are SO(3)-invariant per-graph
scalars. The energy readout head therefore uses a global pooling and a reduction operation to output
a l=0 feature. Forces F are SO(3) equivariant per-atom vectors (l = 1), and can be outputted either
by a direct force readout head, or as the derivative of the energy F = −∇RE. As we will see
in section 3, Hessians are SO(3)-equivariant per-graph matrices composed of per-atom-pair 3× 3
equivariant sub-matrices.

3

2.2 Hessians from MLIPs

MLIPs have gained widespread popularity for their ability to accurately approximate molecular
energies and forces. The forces can either be directly predicted [11, 30], or calculated as the
derivative of the MLIP energy using automatic differentiation. Previous work has shown that the
Hessian can be calculated using AD to some success [32, 15, 16, 17, 18, 19]. Although AD Hessians
are much cheaper to calculate compared to DFT, they still have some downsides. First, accurately
modeling the energy does not guarantee low errors on Hessians [15], but requires dedicated training
[33, 19]. Second, compared to energies and forces, Hessians are expensive: Given a probing vector
v, AD only lets us calculate Hv. To calculate the full 3N × 3N Hessian, we need 3N Hessian
vector products (HVPs) with the unit vectors v = ei, i = 0, ..., 3N − 1, each yielding one column
of the Hessian. Since the energy calculation with an MLIP is usually O(N), the total cost of the
Hessian calculation is O(N2). While the HVPs can theoretically be parallelized, the O(N2) memory
footprint requires even medium-sized systems to be computed sequentially.

Instead of relying on automatic differentiation, we propose to directly predict Hessians with an
equivariant neural network. Unlike direct force prediction, Hessians only need to be symmetric rather
than energy-conservative[34], and they offer a much greater speedup, as shown in section 4.

3 HIP Hessian Prediction

Any equivariant neural network [35] with features of at least l = 2 can be equipped with a Hessian
readout head. In this work, we pick the EquiformerV2 architecture as the backbone with four
transformer layers [30]. Each layer contains a layer norm, message passing with graph attention,
another layer norm, and a feed-forward layer.

3.1 Hessian Symmetry Requirements

Hessians are symmetric, real-valued, Cartesian tensors. This means, under rotation of the coordinate
system with rotation matrix Q, each Hessian sub-block HI,J transforms as

HI,J
Q−→ QHI,JQ

⊤ (5)

Any physically meaningful Hessian has to satisfy this rotation symmetry, as well as the symmetry of
the upper and lower triangular H = H⊤. We elaborate on the symmetry of Hessians in A.3.

3.2 Hessian Prediction Head

Starting from T layers of message passing in the backbone, we use the atom features h(T)
I,m,c, and

feed them into a Hessian readout module. Here, we first add another Hessian readout-specific
EquiformerV2 layer to improve expressivity. We then construct the Hessian sub-blocks: We first send
normal messages with equation 4, but instead of attention and summing, we treat the messages as
atom-pair features:

hI,J,l,m,c = v(h
(T)
I ,h

(T)
J , rI,J) =

∑
l1,l2

wl1,l2,l3(||rI,J ||)
(
fl1(hI ,hJ)⊗l3

l1,l2
Yl2

(
rI,J
||rI,J ||

))
(6)

As we are reusing the message passing machinery with an interaction cutoff radius, predicting
Hessians scales initially O(N)2 in memory and compute within the cutoff, and then reduces to
O(N) scaling for larger systems. This sparsity with distance assumption aligns with the sparsity of
Hessians due to locality of electron interactions that is common in quantum chemistry and can be
mathematically rigorously justified [36]. After message passing we have to transform the atom pair
features hI,J,l,m,c into the corresponding Hessian sub-blocks HI,J . First, we project the pair feature
irreps down to a single {h̃I,J,l,m}l∈{0,1,2} irreps feature (1x0e + 1x1e + 1x2e in e3nn notation
[37]) using a linear layer Wl,c

h̃I,J,l,m = Wl,chI,J,l,m,c (7)

4

We then expand h̃I,J,l,m to an intermediate Hessian sub-block H′
I,J using the tensor product expan-

sion [38]:

H′
I,J,m1,m2

=
∑
l,m

Cl,m
l1=1,m1,l2=1,m2

h̃I,J,l,m (8)

where Cl,m
l1,m1,l2,m2

are the Clebsch-Gordon coefficients ensuring that the relation in equation 5 is
enforced [38]. Physically, this is a simple change of basis from the coupled to the uncoupled angular
momentum basis [39]. H′

I,J,m1,m2
is a 3 × 3 block, since m1 and m2 run from −l1 = −l2 = −1

to l1 = l2 = 1. As Cl,m
l1=1,m1,l2=1,m2

= 0 for all l > 2, hI,J,l,m,c only needs to contain irreps up to
l = 2 to build the 3× 3 Hessian sub-blocks. Intuitively, equation 8 is the inverse of the irreducible
tensor decomposition, so it assembles a spherical tensor back from its irreducible components.
Conversely, this also means we need all irreps up to l = 2 as only including irreps up to l = 1 would
not be sufficient to express the 3×3 tensors that decompose into l = 2 irreps. Finally, we symmetrize
the immediate Hessian to the final prediction with H = H′ +H′⊤.

3.3 Loss function design

To learn the Hessians, one can use standard loss functions like mean absolute error (MAE) or mean
squared error (MSE) between predicted and actual Hessian elements:

LMAE / MSE =
∑
i,j

|Hi,j −Hpred
i,j |MAE / MSE (9)

However, we are often mainly interested in the smallest eigenvalues and the corresponding eigen-
vectors [40, 41]. For this reason, we design a loss function to emphasize this subspace of the
eigen-decomposition.
Let V = [v1,v2, ...,v3N] be the matrix with columns made from eigenvectors of the ground truth
Hessian H, and Λ the corresponding matrix with eigenvalues on the diagonal and zeros everywhere
else. Further denote V[:,:k] and V[:,k:] the matrices sliced to contain all columns up to/starting from
the kth one. We can then define a subspace loss by

Lsub =
∑
i,j

∣∣∣V⊤
[:,:k]H

predV[:,:k] −Λ[:,:k]

∣∣∣
i,j

(10)

If Hpred = H we have V⊤HpredV = Λ, and the loss has therefore the correct minimum. Using
L = LMAE/MSE + αLsub lets us emphasize the subspace corresponding to the k lowest eigenvectors
and eigenvalues. Since the Hessian always has six redundant degrees of freedom with eigenvalues
close to zero, we need to set k > 6. In practice, we use k = 8. As we will show in A.6, predicting
Hessians with HIP using any loss function significantly outperforms AD Hessians. MAE combined
with the subspace loss in equation 10 further improves results in transition state search and extrema
classification with frequency analysis by a small margin, which is why we use them in the experiment
of the main text. For details and ablations of the choice of loss function see A.6.

4 Experiments

We evaluate our proposed approach for direct prediction of molecular Hessians across multiple tasks
that test both accuracy and practical utility. Specifically, we measure prediction accuracy and quantify
computational speed-ups relative to AD and finite-difference Hessian calculation. We further assess
downstream performance in geometry optimization, zero-point energy, and transition state (TS)
searches. For TS searches, we additionally perform frequency analyses to evaluate the reliability of
the predicted Hessians in distinguishing true transition states. See A.1 for details.

Dataset The HORM dataset contains DFT energies, forces, and Hessians computed at the ωB97X/6-
31G* level of theory. The training dataset comprises 1,725,362 geometries sampled from the
Transition1x dataset, with 50,844 additional geometries serving as the validation set. To isolate
the Hessian from the forces and energy, we train only the Hessian prediction head using a fixed
EquiformerV2 backbone from HORM [19]. This ensures that the energy and force predictions of
AD-EquiformerV2 and HIP-EquiformerV2 are the same for all experiments. All baseline models
originate from [19] and were also trained using the same ground-truth DFT Hessians. Therefore, all
downstream task improvements are purely due to better Hessians.

5

Table 1: Comparison of Hessian prediction errors on the HORM-Transition1x validation set.
Numbers denote the mean absolute error (MAE), except for the cosine similarity (CosSim) and
average time per forward pass of a single molecule. Bold values highlight the best-performing model
in each task. Baseline AD models are taken from [19].

Hessian Model
Hessian ↓ Eigenvalues ↓ CosSim v1 ↑ λ1 ↓ Time ↓

eV/Å2 eV/Å2 unitless eV/Å2 ms

AD

AlphaNet 0.385 2.871 0.750 0.770 767.0

LEFTNet 0.150 0.684 0.804 0.322 1110.7

LEFTNet-df 0.197 0.669 0.532 0.742 341.3

EquiformerV2 0.074 0.242 0.541 0.324 633.0

Predicted HIP-EquiformerV2 0.030 0.063 0.870 0.130 38.5

Figure 2: HIP compared to ground-truth DFT Hessian. The horizontal and vertical axis index the
(3NAtoms)

2 entries of the Hessian. We depict the absolute values of test sample 12345 in eV/Å2.

Accuracy To quantitatively assess the accuracy and speed of our directly predicted Hessians, we
calculate the average elementwise mean absolute error, average eigenvalue error, and average time
per prediction. Since, for many tasks such as ZPE and TS search, the smallest eigenvalue/eigenvector
pair is particularly important, we calculate the cosine similarity and eigenvalue error for these tasks
separately. The results are presented in Table 1. In every metric, our direct prediction Hessian
approach outperforms the other models. The improvement is especially notable in prediction speed,
where we are an order of magnitude faster than the models relying on automatic differentiation.
In Figures 2(a) and (b), we visually inspect the HIP Hessian compared to the ground-truth DFT
Hessian, respectively. We observe good agreement with the absolute difference between the two
shown in Figure 2(c).

Figure 3: Computational cost. (a) Speed and (b) memory footprint for a single sample as a function
of molecule size, and (c) scaling of Hessian predictions in parallel with increasing batch size. AD
values are shown in blue, and HIP (this work) in orange.

6

Figure 4: Geometry optimization. Methods ordered by their median (horizontal line) for (a) number
of steps and (b) wall-clock time to convergence. For clarity, we omit to plot the wall-clock time of
RFO with AD or finite difference Hessians, as they require one and two orders of magnitude more
time than RFO with HIP predicted Hessians.

Speedup and memory In Figure 3(a-b), we further compare the prediction time and memory
footprint as a function of molecule size. The direct prediction of Hessians is 10 - 74× faster than
using AD for molecules in the HORM dataset. HIP predicted Hessians also benefit from a much
more favorable scaling with the molecule size. Figure 3(c) compares the batched AD Hessian as
implemented in [19] with our HIP-EquiformerV2. We observe at minimum a 78× speedup as a
function of batch size compared to AD. We explain the significant performance degradation of
batched AD Hessians in A.4.

Geometry optimization We now turn to downstream applications of the Hessian, first focusing on
geometry optimization. We compare exact second-order approaches using Hessians (RFO) against
first-order methods, and quasi-second-order RFO initialized with Hessians followed by BFGS updates.
See A.7.1 for details. Figure 4(a) shows that RFO with HIP Hessians converges within the fewest
steps in the median case. In contrast, both finite difference Hessians and AD Hessians frequently
fail to converge. Among the Hessian-initialized BFGS methods (blue), the predicted Hessian also
performs the best. Steepest descent with line search does not converge within the step budget, which
demonstrates the difficulty of the task.
As seen in Figure 4(b), RFO and BFGS methods with HIP Hessians are also the fastest in terms of
wall-clock time. The current implementation is bottlenecked by memory transfer from and to the
CPU. We would expect an even more significant speedup if the optimization was performed on GPU
and parallelized across samples.

Zero-point energy We evaluated an important thermochemical property of the relaxed equilibrium
state, the zero-point energy (ZPE). We report both the ZPE of the reactant, as well as the relative
ZPE between reactant and product ∆ZPE. Experimental details are in A.7.3. Table 2 shows the
mean absolute error with standard deviation (MAE (Std)) for each model compared to DFT. The
HIP-predicted Hessians reach an order of magnitude lower MAE than the next-best model, and two
orders of magnitude lower MAE than the same model using automatic differentiation Hessians. The
results are also well below the chemical accuracy of 43 meV.

Transition state search Another important application of Hessians is transition state search.
We use the recently introduced ReactBench benchmark [33], but additionally verify the predicted
transition states with DFT. A step-by-step description of the workflow can be found in A.7.2. We
present metrics of each step of the workflow in Figure 5. The growing string method (GSM) success
rate is the same for both AD and HIP-EquiformerV2 models. GSM only uses energy and forces, which

7

https://github.com/deepprinciple/ReactBench

are the same for both models. For all subsequent metrics, the HIP predicted Hessians outperform the
AD ones. The RFO convergence and DFT-verified convergence metrics depend on the Hessian the
most. For both, the HIP Hessians yield the most improvements over AD Hessians.

Figure 5: Transition state search workflow suc-
cess rate across diverse models. ”DFT-verified
TS success” is defined when the DFT Hessian
has one negative eigenvalue. ”DFT-verified con-
verged and TS success” additionally requires the
DFT force RMS to be below 2× 10−3 Ha/Bohr.

Hessian Model ZPE MAE (Std) [eV] ∆ZPE MAE (Std) [eV]

AD AlphaNet 0.0565 (0.0283) 0.0625 (0.0770)
AD LeftNet 1.2957 (0.3331) 0.1996 (0.2552)
AD LeftNet-DF 0.0094 (0.0039) 0.0269 (0.0264)
AD EquiformerV2 0.0600 (0.0719) 0.0539 (0.0706)
Predicted HIP-EquiformerV2 0.0004 (0.0003) 0.0016 (0.0018)

Table 2: Zero-point energy. Mean average error
and standard deviation of the signed error of the
ZPE of the predicted/AD Hessian compared to
DFT. We report both the ZPE at the reactant, as
well as the relative ∆ZPE between reactant and
product.

Hessian Model Accuracy ↑
AD AlphaNet 71%
AD LeftNet-DF 78%
AD LeftNet 82%
AD EquiformerV2 75%
Predicted HIP-EquiformerV2 92%

Table 3: Classifying extrema using Hessian
frequency analysis. We report the accuracy by
model in characterizing stationary points via the
correct number of negative Hessian eigenvalues.
Percentages were computed over 1000 samples,
roughly half of which were true transition states
and 37% were minima. Validated against DFT.

Frequency analysis for extrema classification We further investigate the ability of the Hessian
methods to differentiate different extrema on the potential energy surface. We perform frequency
analysis on 1000 geometries from the HORM-T1x validation set. Roughly half (44%) are 1st order
transition states, 37% are minima, and the rest are higher order transition states according to their
DFT Hessians. As shown in Table 2, the HIP-predicted Hessians achieve the best accuracy compared
to all models using AD. In particular, HIP-EquiformerV2 has a significant advantage of 10 percentage
points in accuracy over any other model, and +17% over the same model with AD (EquiformerV2).

Limitations Direct Hessian regression requires ground-truth data from DFT, which can be par-
ticularly expensive to obtain for larger systems. Therefore, the experiments in this work focus on
small organic molecules. Future work should explore applying Hessian prediction to other chemical
systems, such as materials, larger complexes, or even proteins. Furthermore, to isolate the Hessian
from the force and energy predictions, we trained only the Hessian regression head using a fixed
backbone. For optimal results, energy, forces, and Hessians should be trained end-to-end.

5 Conclusion

In this work, we have presented Hessian Interatomic Potentials (HIP), a novel method for directly
predicting molecular Hessians using SE(3)-equivariant neural networks. Our approach eliminates
the need for traditional computationally expensive methods, such as finite differences or automatic
differentiation, offering a significant improvement in computational time, memory usage, and accu-
racy. Through extensive validation across a range of critical molecular tasks, we have shown that our
predicted Hessians are highly effective for practical applications in computational chemistry. By mak-
ing Hessians more accessible, we believe our method enables new possibilities for high-throughput
screening, material discovery, and drug design. For future work, any base model using spherical
harmonics and message passing can be made HIP.

8

Acknowledgments

We are thankful for funding by the Pioneer Center for Accelerating P2X Materials Discovery
(CAPeX), DNRF grant number P3. A.A.-G. thanks Anders G. Frøseth for his generous support.
A.B. and L.T. acknowledge the AIST support to the Matter lab for the project titled ”SIP project -
Quantum Computing”. A.B. is thankful for support through the Google NSERC IRC award. L.T.
thanks the NSERC for the support through the Discovery Grant. This research was undertaken thanks
in part to funding provided to the University of Toronto’s Acceleration Consortium from the Canada
First Research Excellence Fund CFREF-2022-00042. Resources used in preparing this research
were provided, in part, by the Province of Ontario, the Government of Canada through CIFAR, and
companies sponsoring the Vector Institute.

References
[1] Chen Qu and Joel M. Bowman. An ab initio potential energy surface for the formic acid dimer:

Zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling
splitting calculated in relaxed 1–4-mode subspaces. Physical Chemistry Chemical Physics,
18(36):24835–24840, September 2016. 1

[2] Jing Huang, Yanzi Zhou, and Daiqian Xie. Predicted infrared spectra in the HF stretching band
of the H2–HF complex. The Journal of Chemical Physics, 149(9), September 2018. 1

[3] Poul Jørgensen and Jack Simons. Ab initio analytical molecular gradients and Hessians. The
Journal of Chemical Physics, 79(1):334–357, July 1983. 1

[4] Nicholas C. Handy and Henry F. Schaefer. On the evaluation of analytic energy derivatives for
correlated wave functions. The Journal of Chemical Physics, 81(11):5031–5033, December
1984. 1

[5] Andrew Komornicki and George Fitzgerald. Molecular gradients and hessians implemented in
density functional theory. The Journal of Chemical Physics, 98(2):1398–1421, January 1993. 1

[6] Trygve Helgaker, Poul Jørgensen, and Jeppe Olsen. Multiconfigurational Self-Consistent Field
Theory. In Molecular Electronic-Structure Theory, chapter 12, pages 598–647. John Wiley &
Sons, Ltd, 2000. 1

[7] W. Kohn. Self-Consistent Equations Including Exchange and Correlation Effects. Physical
Review, 140(4A):A1133–A1138, 1965. 1

[8] Markus Bursch, Jan-Michael Mewes, Andreas Hansen, and Stefan Grimme. Best-Practice
DFT Protocols for Basic Molecular Computational Chemistry. Angewandte Chemie,
134(42):e202205735, October 2022. 1

[9] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller. SchNet –
A deep learning architecture for molecules and materials. The Journal of Chemical Physics,
148(24):241722, March 2018. 1, 2.1

[10] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point
clouds, May 2018. 1, 2.1

[11] Johannes Gasteiger, Florian Becker, and Stephan Günnemann. GemNet: Universal Directional
Graph Neural Networks for Molecules. In Advances in Neural Information Processing Systems,
volume 34, pages 6790–6802. Curran Associates, Inc., 2021. 1, 2.1, 2.2

[12] Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the
prediction of tensorial properties and molecular spectra. In Proceedings of the 38th International
Conference on Machine Learning, pages 9377–9388. PMLR, July 2021. 1, 2.1

[13] Ilyes Batatia, David P. Kovacs, Gregor Simm, Christoph Ortner, and Gabor Csanyi. MACE:
Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields.
Advances in Neural Information Processing Systems, 35:11423–11436, December 2022. 1, 2.1

9

[14] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai
Kornbluth, Nicola Molinari, Tess E. Smidt, and Boris Kozinsky. E(3)-equivariant graph
neural networks for data-efficient and accurate interatomic potentials. Nature Communications,
13(1):2453, May 2022. 1, 2.1

[15] Eric C.-Y. Yuan, Anup Kumar, Xingyi Guan, Eric D. Hermes, Andrew S. Rosen, Judit Zádor,
Teresa Head-Gordon, and Samuel M. Blau. Analytical ab initio hessian from a deep learning
potential for transition state optimization. Nature Communications, 15(1):8865, October 2024.
1, 2.2

[16] Nils Gönnheimer, Karsten Reuter, and Johannes T. Margraf. Beyond Numerical Hessians:
Higher-Order Derivatives for Machine Learning Interatomic Potentials via Automatic Differen-
tiation. Journal of Chemical Theory and Computation, April 2025. 1, 2.2

[17] Austin Rodriguez, Justin S. Smith, and Jose L. Mendoza-Cortes. Does Hessian Data Improve the
Performance of Machine Learning Potentials? Journal of Chemical Theory and Computation,
July 2025. 1, 2.2

[18] Nicholas J. Williams, Lara Kabalan, Ljiljana Stojanovic, Viktor Zólyomi, and Edward O.
Pyzer-Knapp. Hessian QM9: A quantum chemistry database of molecular Hessians in implicit
solvents. Scientific Data, 12(1):9, January 2025. 1, 2.2

[19] Taoyong Cui, Yunhong Han, Haojun Jia, Chenru Duan, and Qiyuan Zhao. HORM: A Large
Scale Molecular Hessian Database for Optimizing Reactive Machine Learning Interatomic
Potentials, May 2025. 1, 2.2, 4, 1, 4, A.5, A.7.2

[20] Aidan P Thompson, Laura P Swiler, Christian R Trott, Stephen M Foiles, and Garritt J Tucker.
Spectral neighbor analysis method for automated generation of quantum-accurate interatomic
potentials. Journal of Computational Physics, 285:316–330, 2015. 2.1

[21] Alexander V Shapeev. Moment tensor potentials: A class of systematically improvable inter-
atomic potentials. Multiscale Modeling & Simulation, 14(3):1153–1173, 2016. 2.1

[22] Albert P Bartók, Mike C Payne, Risi Kondor, and Gábor Csányi. Gaussian approximation
potentials: The accuracy of quantum mechanics, without the electrons. Physical review letters,
104(13):136403, 2010. 2.1

[23] Jörg Behler and Michele Parrinello. Generalized neural-network representation of high-
dimensional potential-energy surfaces. Physical review letters, 98(14):146401, 2007. 2.1

[24] Yusong Wang, Shaoning Li, Xinheng He, Mingyu Li, Zun Wang, Nanning Zheng, Bin Shao,
Tie-Yan Liu, and Tong Wang. Visnet: an equivariant geometry-enhanced graph neural network
with vector-scalar interactive message passing for molecules. arXiv preprint arXiv:2210.16518,
2022. 2.1

[25] Zun Wang, Guoqing Liu, Yichi Zhou, Tong Wang, and Bin Shao. Efficiently incorporating
quintuple interactions into geometric deep learning force fields. Advances in Neural Information
Processing Systems, 36, 2024. 2.1

[26] Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. Advances in neural information processing systems, 32, 2019. 2.1

[27] Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for
molecular graphs. arXiv preprint arXiv:2003.03123, 2020. 2.1

[28] Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin, and Shuiwang Ji.
Spherical message passing for 3d molecular graphs. In International Conference on Learning
Representations, 2022. 2.1

[29] Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant Graph Attention Transformer for 3D
Atomistic Graphs, February 2023. 2.1

[30] Yi-Lun Liao, Brandon M Wood, Abhishek Das, and Tess Smidt. Equiformerv2: Improved
equivariant transformer for scaling to higher-degree representations. In The Twelfth International
Conference on Learning Representations, 2024. 2.1, 2.1, 2.2, 3

10

[31] Saro Passaro and C. Lawrence Zitnick. Reducing SO(3) convolutions to SO(2) for efficient
equivariant GNNs. In Proceedings of the 40th International Conference on Machine Learning,
volume 202 of ICML’23, pages 27420–27438. JMLR.org, July 2023. 2.1

[32] Xingyu Yang, Haitao Ma, Qing Lu, and Wensheng Bian. Efficient Method for Numerical
Calculations of Molecular Vibrational Frequencies by Exploiting Sparseness of Hessian Matrix.
The Journal of Physical Chemistry A, March 2024. 2.2

[33] Qiyuan Zhao, Yunhong Han, Duo Zhang, Jiaxu Wang, Peichen Zhong, Taoyong Cui, Bangchen
Yin, Yirui Cao, Haojun Jia, and Chenru Duan. Harnessing Machine Learning to Enhance
Transition State Search with Interatomic Potentials and Generative Models, May 2025. 2.2, 4,
A.7.2, A.7.4

[34] Filippo Bigi, Marcel Langer, and Michele Ceriotti. The dark side of the forces: Assessing
non-conservative force models for atomistic machine learning, July 2025. 2.2

[35] Alexandre Duval, Simon V. Mathis, Chaitanya K. Joshi, Victor Schmidt, Santiago Miret,
Fragkiskos D. Malliaros, Taco Cohen, Pietro Liò, Yoshua Bengio, and Michael Bronstein. A
Hitchhiker’s Guide to Geometric GNNs for 3D Atomic Systems, March 2024. 3

[36] Jörg Kussmann, Arne Luenser, Matthias Beer, and Christian Ochsenfeld. A reduced-scaling
density matrix-based method for the computation of the vibrational hessian matrix at the
self-consistent field level. The Journal of Chemical Physics, 142(9), 2015. 3.2

[37] Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks. arXiv preprint
arXiv:2207.09453, 2022. 3.2

[38] Oliver Unke, Mihail Bogojeski, Michael Gastegger, Mario Geiger, Tess Smidt, and Klaus-Robert
Müller. Se (3)-equivariant prediction of molecular wavefunctions and electronic densities.
Advances in Neural Information Processing Systems, 34:14434–14447, 2021. 3.2, 3.2

[39] Alan Robert Edmonds. Angular momentum in quantum mechanics, volume 4. Princeton
university press, 1996. 3.2

[40] Emili Besalú and Josep Maria Bofill. On the automatic restricted-step rational-function-
optimization method. Theoretical Chemistry Accounts, 100(5):265–274, December 1998.
3.3, A.7.1, A.7.2

[41] Charles J. Cerjan and William H. Miller. On finding transition states. The Journal of Chemical
Physics, 75(6):2800–2806, September 1981. 3.3

[42] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer New York, 2006. A.1

[43] Nikita Doikov, El Mahdi Chayti, and Martin Jaggi. Second-Order Optimization with Lazy
Hessians. In Proceedings of the 40th International Conference on Machine Learning, pages
8138–8161. PMLR, July 2023. A.1

[44] Jack Simons, Poul Joergensen, Hugh Taylor, and Judy Ozment. Walking on potential energy
surfaces. The Journal of Physical Chemistry, 87(15):2745–2753, 1983. A.1, A.2.4, A.2.4

[45] Ajit Banerjee, Noah Adams, Jack Simons, and Ron Shepard. Search for stationary points on
surfaces. The Journal of Physical Chemistry, 89(1):52–57, January 1985. A.1, A.2.4, A.2.4

[46] Eric D. Hermes, Khachik Sargsyan, Habib N. Najm, and Judit Zádor. Sella, an Open-Source
Automation-Friendly Molecular Saddle Point Optimizer. Journal of Chemical Theory and
Computation, 18(11):6974–6988, November 2022. A.1

[47] James D. Louck and Harold W. Galbraith. Eckart vectors, Eckart frames, and polyatomic
molecules. Reviews of Modern Physics, 48(1):69–106, January 1976. A.1, A.7.4

[48] Peter Deglmann, Filipp Furche, and Reinhart Ahlrichs. An efficient implementation of second
analytical derivatives for density functional methods. Chemical Physics Letters, 362(5):511–518,
August 2002. A.2.1

11

[49] Erik Bitzek, Pekka Koskinen, Franz Gähler, Michael Moseler, and Peter Gumbsch. Structural
Relaxation Made Simple. Physical Review Letters, 97(17):170201, 2006. A.2.4, A.7.1

[50] Graeme Henkelman and Hannes Jónsson. A dimer method for finding saddle points on high
dimensional potential surfaces using only first derivatives. The Journal of Chemical Physics,
111(15):7010–7022, 1999. A.2.5

[51] Graeme Henkelman, Blas P. Uberuaga, and Hannes Jónsson. A climbing image nudged elastic
band method for finding saddle points and minimum energy paths. The Journal of Chemical
Physics, 113(22):9901–9904, 2000. A.2.5

[52] Baron Peters, Andreas Heyden, Alexis T. Bell, and Arup Chakraborty. A growing string method
for determining transition states: Comparison to the nudged elastic band and string methods.
The Journal of Chemical Physics, 120(17):7877–7886, 2004. A.2.5, A.2.5

[53] Paul M. Zimmerman. Single-ended transition state finding with the growing string method.
Journal of Computational Chemistry, 36(9):601–611, 2015. A.2.5, A.2.5, A.7.2

[54] N. van der Aa, H. ter Morsche, and R. Mattheij. Computation of eigenvalue and eigenvector
derivatives for a general complex-valued eigensystem. The Electronic Journal of Linear Algebra,
16:300–314, January 2007. A.6

[55] Johannes Steinmetzer, Stephan Kupfer, and Stefanie Gräfe. Pysisyphus: Exploring potential
energy surfaces in ground and excited states. International Journal of Quantum Chemistry,
121(3):e26390, 2021. A.7.1, A.7.2, A.7.4

[56] Henry C. Herbol, James Stevenson, and Paulette Clancy. Computational Implementation of
Nudged Elastic Band, Rigid Rotation, and Corresponding Force Optimization. Journal of
Chemical Theory and Computation, 13(7):3250–3259, July 2017. A.7.1

[57] Cody Aldaz, Tamas Stenczel, Joshua Kammeraad, and Paul M. Zimmerman. Zimmerman-
Group/pyGSM. ZimmermanGroup, August 2025. A.7.2

[58] E. B. Wilson, J. C. Decius, P. C. Cross, and Benson R. Sundheim. Molecular Vibrations: The
Theory of Infrared and Raman Vibrational Spectra. Journal of The Electrochemical Society,
102(9):235Ca, September 1955. A.7.4

[59] Hrant P. Hratchian, Michael J. Frisch, and H. Bernhard Schlegel. Steepest descent reaction path
integration using a first-order predictor–corrector method. The Journal of Chemical Physics,
133(22):224101, December 2010. A.7.4

12

A Appendix

A.1 Molecular optimization with Hessians

Rational function optimization (RFO) Geometry optimization locates minima argminR E(R) of
the potential energy surface (PES) starting from non-equilibrium molecular geometries. It underpins
most workflows from global searches to high-throughput screening. If Hessians are available,
second-order methods are favored due to their fast convergence guarantees [42, 43]. RFO [44, 45]
is a commonly used second-order optimizer (it makes use of Hessian information to accelerate
convergence) for molecular geometries [46]. An attractive property of RFO is that it can be used both
for minimizing E(R) as well as for finding saddle points, and it is robust to indefinite Hessians [45].
As computing the Hessian is usually too expensive, a common practice is to maintain an approximate
Hessian using the BFGS quasi-Newton scheme. We provide more details in A.2.4.

Zero-point energy (ZPE) Zero-point corrections account for the quantum mechanical vibrational
energy that molecules have at absolute zero temperature. To calculate the ZPE, one relaxes a
geometry to an extrema, computes the Hessian, and sums the frequencies ZPE = ℏ

2

∑
i

√
λ̃i.

Here, λ̃i are eigenvalues of the mass-weighted Hessian H̃AB = HAB/mAmB , and ℏ is Planck’s
reduced constant. One is usually interested in the relative ZPE between reactant and product states:
∆ZPE = ZPE(RR)− ZPE(RP). The relative ZPE is relevant for reaction thermochemistry, as
∆ZPE enters as a correction to the reaction free energy ∆G and therefore the equilibrium constant,
which relates forward and backward rates via detailed balance.

Transition states Transition states (TS) are first-order saddle points on the PES. They represent the
maximum barrier along the minimum energy path (MEP) between two minima. Identifying transition
states is crucial for understanding reaction mechanisms and mapping reaction networks. A first-order
saddle point is characterized by having exactly one negative eigenvalue of the Hessian. Over the
years, various computational methods have been developed to describe MEPs and locate transition
states. We review methods for transition state search in A.2.5.

Frequency analysis for extrema classification To carry out frequency analysis, one must first
remove the five or six redundant degrees of freedom, corresponding to the invariance of the energy
under rotation and translation. This is done by mass-weighing the Hessian and performing an Eckart
projection [47], which we describe in A.7.4. Then, the projected matrix is decomposed into its
eigenvalues, with all positive eigenvalues signaling a minimum, and exactly N negative eigenvalue
signaling the presence of a order-N transition state.

A.2 Extended background

A.2.1 Hessians from DFT

The gold standard for computing nuclear Hessians is to derive them analytically. In Kohn-Sham
DFT, this is achieved using the Coupled Perturbed Kohn–Sham (CPKS) method [48], which is
employed to calculate the ground truth in the dataset and in the workflows of our experiments. If
available, analytical Hessians provide the most efficient ab-initio way to obtain Hessians, but they
still scale as O(N5). A major downside of the CPKS approach to Hessians is its highly complex
implementation and need for exchange-correlation-functional-specific derivations, which makes it
not always available. An alternative is to use a finite-difference scheme, requiring only energies or
forces. Finite differences also scale O(N5) for hybrid DFT, although with more numerical noise and
a much larger computational prefactor. We provide more details in A.2.3.

A.2.2 Analytical Hessians via CPKS

In Kohn-Sham DFT, Hessians are obtained with the Coupled Perturbation Kohn-Sham (CPKS)
method. This is much more complex and computationally demanding than energy or force calcula-
tions. The difficulty arises from the need to calculate the response term of the electron density, which
involves understanding how the self-consistent field (SCF) solution to the Kohn-Sham equations
changes with a change in the nuclear coordinates. To see why this is necessary, write the DFT energy

13

in terms of the density matrix P(R) = (C)T (R)S(R)C(R) with molecular orbital coefficients C
and overlap matrix S:

E[P] = Tr[hP] +
1

2
Tr[J[P]] + ρ(P) (11)

To get the force, so the nuclear gradient, we first have to define the Lagrangian to enforce normalization
of the wavefunction:

L(C, ϵ,R) = E[R]− Tr[ϵ(CTSC− I)] (12)
We then get the nuclear gradient by differentiating L. The derivative w.r.t. nuclear component x is:

dL
dx

=
∂L
∂x

+
∂L
∂C︸︷︷︸
=0

∂C

∂x
− Tr

[
ϵCT ∂S

∂x
C

]
+ 2Tr

[
(SCϵ)T

dC

dx

]
(13)

=
∂E

∂x
− 2Tr

[
(SCϵ)T

dC

dx

]
− Tr

[
ϵCT ∂S

∂x
C

]
+ 2Tr

[
(SCϵ)T

dC

dx

]
(14)

=
∂E

∂x
− Tr

[
ϵCT ∂S

∂x
C

]
︸ ︷︷ ︸

”Pulay terms”

(15)

Due to the stationarity ∂L
∂C = 0 we did not need to calculate the density response ∂C

∂x , which is
why calculating forces is cheap, on the same order as the cost of energies. However, once we want
Hessians, we need to differentiate equation 12 twice:

d2L
dxdy

=
∂2L
∂x∂y

+
∂2L
∂C∂x

dC

dy
+

∂2L
∂ϵ∂x

dϵ

dy
(16)

=
∂2L
∂y ∂x

−
[

∂2L
∂C ∂x

∂2L
∂ε ∂x

] ∂2L
∂C2

∂2L
∂C ∂ε

∂2L
∂ε ∂C

∂2L
∂ε2


−1 

∂2L
∂C ∂y
∂2L
∂ε ∂y

 . (17)

Solving the linear system of equations scales formally as O(N5) in computation and O(N4) in
memory. Similar to energy calculations, density fitting, sparsification (integral screening), and other
optimizations can reduce the cost for CPKS. Still, the scaling remains worse in both computation and
memory compared to energy calculations.

A.2.3 Hessians via finite differences

A major downside of the CPKS approach to Hessians is its highly complex implementation and need
for exchange-functional-specific derivations. Therefore, many new methods do not support Hessians,
and most codes instead resort to finite difference calculations in these cases. Using central differences
of the forces along the 3N Cartesian directions, the Hessian elements are constructed from

Hij ≈
Fi(R+ hej)− Fi(R− hej)

2h
(18)

This requires 2× 3N displaced gradient calculations. Each gradient calculation scales similarly to
the energy calculation with O(N4), leading to a O(N5), the same as naive CPKS, although typically
with more numerical noise and a much larger prefactor because we have to repeatedly converge an
SCF, as opposed to solving a large linear system in analytical Hessians.

A.2.4 Geometry optimization

Geometry optimization locates minima argminR E(R) of the potential energy surface starting
from non-equilibrium molecular geometries. It underpins most workflows from global searches to
high-throughput screening. The efficiency of geometry optimization depends on four key factors: (i)
the choice of coordinate system, (ii) the quality of the Hessian approximation, (iii) the update strategy,
and (iv) the step size control. Cartesian coordinates are straightforward but strongly coupled, which
limits step size and slows convergence for flexible systems. In contrast, internal coordinates are better
aligned with chemically meaningful motions, separate stiff and soft modes, and allow constraints to
be imposed naturally. These properties often lead to substantially fewer iterations. Some of the most
widely used optimizers are the first-order FIRE [49] optimizer and the second-order rational function
optimization (RFO) optimizer.

14

RFO Rational function optimization (RFO) [44, 45] is a commonly used second-order optimization
technique in molecular geometry optimization. RFO starts with a [2/2]-Padé-expansion of the energy:

E(Rt +∆x)− E(Rt) ≈
g⊤∆x+ 1

2∆x⊤H∆x

1 + |∆x|2
(19)

The extrema ∆x′ of this surrogate are given by the solution of the generalized eigenvalue problem:[
H g

g⊤ 0

][
∆x′

1

]
= λ

[
I 0

0 1

][
∆x′

1

]
. (20)

An attractive property of RFO is that it can be used both for minimizing E(R) as well as for finding
saddle points (important for transition state search, see next section): If we pick the first eigenvector
of equation 20, we get an update pointing to the minimum; if we select the second eigenvector, we
get a transition state update. In contrast to Newton-Raphson optimization, RFO is also robust to
indefinite Hessians. For detailed derivation, see [44, 45]. In this paper, for minimization, we are
using restricted step RFO (RS-RFO), which adds a trust region to prevent unphysically large steps.
For the transition point search, we are using restricted step partitioned RFO (RS-P-RFO), a slight
modification that treats the subspace with negative and positive eigenvalues of the Hessian separately.

BFGS To apply RFO in practice, we need a Hessian at each step. As computing full Hessians is
usually too expensive, a common practice is to maintain an approximate Hessian using the BFGS
quasi-Newton scheme. BFGS updates approximate Hessians Bk of the true Hessian H(Rk) using
the update equation

Bk+1 = Bk −
Bksks

⊤
k Bk

s⊤k Bksk
+

yky
⊤
k

y⊤
k sk

, y⊤
k sk > 0, (21)

where the curvature condition y⊤
k sk > 0 (typically ensured by a Wolfe line search) guarantees that

Bk+1 remains positive-definite, which is desirable for minimization. In the RFO framework, Bk

simply replaces the exact Hessian H in the augmented eigenvalue problem in equation 20.

A.2.5 Transition State Search

Computational methods for transition state search can broadly be categorized as single-ended and
double-ended. In double-ended methods, we know the product and reactant states (the two minima on
the energy surface) and try to find an interpolation on the MEP that goes through the TS. In contrast,
in single-ended methods, we only know a starting point and try to climb up on the energy surface
to find a nearby transition state. Often, double-ended methods are used to give good initial guesses,
which are then refined by single-ended methods. In this study, we are using the Growing string
method to find the initial states, which we then refine with RS-P-RFO (see above).
Different double-ended methods are distinguished by how they grow the interpolations between
product and reactant states. The most common approaches are the nudge elastic band method [50, 51]
and the growing string method (GSM) [52, 53].

Nudged elastic band method The nudged elastic band method aims to find the minimum energy
path between given initial and final configurations. A set of images connecting these states is linked
by classical spring forces, forming an elastic band. Each image experiences a total force comprising
the spring force along the local tangent and the true force perpendicular to it. The images are
simultaneously optimized to trace the MEP. To converge to the transition state, a climbing image is
introduced, for which the force along the band is inverted, leaving only the perpendicular component
of the true force. This drives the climbing image up the potential energy surface along the band while
descending perpendicularly, reaching the transition state along the MEP.

Growing string method The growing string method (GSM) locates transition states by incremen-
tally constructing a discrete path of structures on the potential energy surface. Starting from the
reactant and product endpoints, two path fragments are iteratively grown together. At each iteration,
a new node on the string is added along the local tangent direction and relaxed orthogonally to the
path according to the force

F⊥ = F− (t̂⊤F)t̂, (22)

15

where F = −∇E is the force and t̂ is the local tangent unit vector. Convergence is typically
accelerated by approximate Hessians, constructed in delocalized internal coordinates and updated by
quasi-Newton schemes, which enable eigenvector-guided optimization while avoiding full second-
derivative evaluations [53]. Once the two fragments merge, the full string is reparameterized to
maintain uniform node distance, and the highest energy node serves as a transition state estimate,
which can be further refined using Hessian-based eigenvector following [52].

A.3 Hessian properties

The Hessian is a symmetric matrix H = H⊤ where each sub-block transforms under rotation as a
cartesian tensor

HI,J
Q−→ QHI,JQ

⊤ (23)

or equivalently

H
Q−→ (IN ⊗Q)H(IN ⊗Q)⊤ (24)

The symmetry follows directly from Schwartz’s theorem, which states that for every scalar function
E(R) that has continuous partial second derivatives in the neighborhood of a point R0, the partial
second derivatives commute(

∂2E

∂Ri∂Rj

)
R=R0

=

(
∂2E

∂Rj∂Ri

)
R=R0

(25)

The transformation law under rotation follows straightforwardly from the chain rule:
First, write the rotated coordinates as

R′ = (IN ⊗Q)R (26)
∂R′

∂R
= (IN ⊗Q) (27)

Then, define the energy in the rotated frame

E′(R′) = E((IN ⊗Q)⊤R′) = E(R) (28)

Then the first order derivative is

∇R′E′(R′) = (IN ⊗Q)∇RE′(R′) (29)

= (IN ⊗Q)∇RE((IN ⊗Q)−1(IN ⊗Q)R′) (30)
= (IN ⊗Q)∇RE(R) (31)

showing the equivariance of the forces. The second-order derivative is

H′ = ∇2
R′E′(R′) = ∇R′((IN ⊗Q)∇RE(R)) (32)

= (IN ⊗Q)∇R′∇RE(R) (33)

= (IN ⊗Q)∇R∇RE(R)(IN ⊗Q)⊤ (34)

= (IN ⊗Q)H(IN ⊗Q)⊤ (35)

which shows the equivariance of the Hessian matrix.

A.4 Batched AD Hessian performance

We observe in Figure 3 a fast degradation of the AD Hessian speed with batch size. To explain this, we
have to understand exactly how AD treats Hessians. From the point of view of the AD engine, there
is no difference between a batch of two molecules of system size NA and NB , and a larger system
of size NA + NB . In both cases, the MLIP function takes in an array of dimension 3NA + 3NB ,
and returns either a single scalar EA +EB or even worse, an array [EA, EB], so mathematically the
energy function looks like E(R) : R3NA+3NB → R or E(R) : R3NA+3NB → R2. Consequently,
a Hessian of this function is a block diagonal matrix of dimension 3(NA + NB) × 3(NA + NB),
or even 2 × 3(NA + NB) × 3(NA + NB). Therefore, the memory costs grow quadratically with
the batch size. Since we have to implement the Hessian calculation with sequential Hessian-Vector
products in order not to run out of memory, we can not even make use of parallelization in the batched
processing of Hessians.

16

A.5 Training Details

We train our model HIP-EquiformerV2 for roughly six days on only a single H100 GPU. The
hyperparameters are listed in 4. We inherit the model settings and large parts of the optimizer settings
from the HORM codebase [19]. We expect much better results to be possible by training end-to-end,
for longer, and tuning the hyperparameters.

Table 4: Hyperparameters used
Model Type: EquiformerV2

Layers: 4
Sphere channels: 128
Attention hidden channels: 64
Attention heads: 4
Attention alpha channels: 64
Attention value channels: 64
FFN hidden channels: 128
Activation: SiLU
Distance basis: 512 (Gaussian)
Radius cutoff: 12 Angstrom
Cutoff Hessian: 12 Angstrom
Hessian layers: 3
Spherical harmonics: Lmax=4, Mmax=2
Grid resolution: 18, Sphere samples: 128
Dropout: α=0, drop path=0

Loss MAE weight: 1
Eigen subspace k: 8
Eigen loss weight α: 1.0

Optimizer AdamW
Betas: (0.9, 0.999)
AMSGrad: True
Weight decay: 0
Batch size: 128 (train), 256 (val)
Gradient clipping: 0.1 (norm)

Learning Rate Learning rate: 0.0005
Scheduler: StepLR
Step size: 10
Gamma: 0.85

Trainer Epochs: 300 with limited batches (approx. 35 full epochs)
Limit train batches per epoch: 1600

A.6 Loss function

We are trying to design a loss function that emphasizes the lowest lying eigenvalues/eigenvectors. To
design such a loss function, one could naively compute a loss directly as L =

∑k
i |v

predict
i − vtrue

1 |.
This requires computing the eigenvalues and eigenvectors of the true and predicted Hessian via
an eigenspectrum decomposition. Unfortunately, backpropagation through such an eigenspectrum
decomposition is numerically unstable [54]. First, gradients computed using the eigenvectors tensor
will only be finite when H has distinct eigenvalues. Furthermore, if the distance between any two
eigenvalues is close to zero, the gradient will be highly sensitive, as it depends on the eigenvalues λi

through the computation of mini ̸=j
1

λi−λj
. Instead, we propose the following subspace loss.

In the following section, we compare the eigenspace loss that we introduced in equation 10 to the
standard choice of mean square error (MSE) and mean absolute error (MAE).
In particular, we emphasize the subspace k = 8. The reason for this is that transition state search, ZPE,
and frequency analysis for extrema classification all depend on the two lowest-lying eigenvectors
and eigenvalues. We choose k = 8 instead of k = 2 to account for the usual 6 redundant degrees of
freedom, which we do not remove during training for numerical stability.

17

Loss Hessian ↓ Eigenvalues ↓ CosSim v1 ↑ λ1 ↓ λ2 ↓ λE
1 ↓ λE

2 ↓ CosSim vE
1 ↑ CosSim vE

2 ↑
eV/Å2 eV/Å2 unitless eV/Å2 eV/Å2 eV/Å2 eV/Å2 unitless unitless

MSE 0.033 0.072 0.728 0.168 0.088 0.037 0.013 0.959 0.928
MAE 0.026 0.057 0.825 0.127 0.052 0.031 0.012 0.976 0.952
MAE+Sub 0.030 0.063 0.870 0.130 0.030 0.031 0.010 0.980 0.957

Table 5: Accuracy of HIP-EquiformerV2 using different loss functions. Superscript E denotes after
removing redundant degrees of freedom using Eckart-projection on the mass-weighted matrix.

Figure 6: Geometry relaxation with HIP-EquiformerV2 trained using different loss functions

We combine the subspace loss with MAE, so the total loss becomes

LMAE+Sub = LMAE + L(k=8)
sub (36)

=
∑
i,j

|Hi,j −Hpred
i,j |+

∑
i,j

∣∣∣V⊤
[:,:k]H

predV[:,:8] −Λ[:,:8]

∣∣∣
i,j

(37)

For simplicity, we weight both the MAE and subspace loss equally. Future work could benefit from
carefully tuning the relative weights between the loss terms.

On downstream tasks, subspace loss improves over MAE and MSE in (i) transition state search, as
shown in Table 7, and (ii) transition state identification frequency analysis, as shown in Table 8. We
observe equal performance between MAE and the subspace loss for (i) geometry relaxation Table 6
and (ii) computing the zero-point energy Table 6.

Table 5 shows that the subspace loss improves the first eigenvector v1 cosine similarity, and the
second eigenvalue λ2 MAE. This is consistent with the better performance of the subspace loss on
transition state-related tasks, since the transition state is characterized via the two smallest eigenvalues
λ1, λ2, and is found by following the first eigenvector v1.

MSE generally underperforms compared to MAE and MAE with subspace loss. MSE has the
theoretical advantage that it is rotation invariant, while the MAE is not. In practice, however, we find
that the MSE leads to a high variance (spikes) in the training loss and gradient norm across batches.
We speculate that MAE outperforms MSE due to training stability.
Hessian prediction with any loss function tested significantly outperforms prior AD Hessians.

Hessian Model ZPE MAE (Std) [eV] ∆ZPE MAE (Std) [eV]

MSE HIP-EquiformerV2 0.0008 (0.0012) 0.0019 (0.0025)
MAE HIP-EquiformerV2 0.0004 (0.0004) 0.0013 (0.0019)
MAE+Sub HIP-EquiformerV2 0.0004 (0.0003) 0.0016 (0.0018)

Table 6: Zero-point energy by HIP-EquiformerV2 for different loss functions

18

Loss Model TS Success RFO Converged Both
MSE HIP-EquiformerV2 718 669 659
MAE HIP-EquiformerV2 740 693 683
MAE+Sub HIP-EquiformerV2 750 705 698

Table 7: Transition state search with HIP-EquiformerV2 trained with different loss functions

Name TPR ↑ FPR ↓ FNR ↓ TNR ↑ Precision ↑ Accuracy ↑ Accuracy All ↑
MSE 88% 11% 12% 89% 86% 89% 86%
MAE 93% 7% 7% 93% 91% 93% 91%
MAE+Sub 93% 6% 7% 94% 92% 94% 92%

Table 8: Identifying transition states (left) and any extrema (rightmost column) via frequency analysis
using HIP-EquiformerV2 for different loss functions.

A.7 Experimental Details

A.7.1 Relaxations

We compare our RFO-based optimization [40] using predicted Hessians (RFO predicted), and our
RFO with BFGS updates with initial predicted Hessian (RFO-BFGS predicted init) against first-
order methods, quasi-second-order BFGS variants, and exact second-order approaches obtained via
automatic differentiation or finite differences.
Our baselines include steepest descent with backtracking line search (SteepestDescent) and the
first-order method FIRE [49]. For quasi-second-order methods, we consider RFO with BFGS updates
initialized from either the identity (RFO-BFGS unit init), AD Hessian (RFO-BFGS AD init), or
finite difference Hessian (RFO-BFGS FiniteDifference init). For full second-order methods, we
include RFO with either automatic differentiation or finite difference Hessians. We run relaxations
on 80 reactant geometries from the Transition1x validation set (which is different from HORM-T1x),
that we noise with 0.5 Å RMS. We use the RS-RFO and redundant coordinate implementation in
pysisyphus [55, 56]. We set the convergence criteria to ”Gaussian default” (see A.7.4), with a budget
of 150 steps.

A.7.2 Transtion State Search with ReactBench

We use the recently introduced ReactBench benchmark [33]. The workflow consists of generating an
initial guess using the growing string method [57, 53], followed by local search using the restricted-
step partitioned rational-function-optimization method (RS-P-RFO) [40]. Finally, convergence to
the correct transition state is confirmed by frequency analysis, and following the intrinsic reaction
coordinate (IRC) [55].
Following previous work [33, 19], we report success metrics of each step:

1. GSM successfully converged below a force RMS of 5e−5 Hartree/Bohr within 100 iterations
(”GSM Success”)

2. After RS-P-RFO, the frequency analysis determines geometry as a true transition state (”TS
Success”)

3. IRC converged to the same criteria and yields the original initial reactant and product (”IRC
Verified”).

We then treat the samples successfully passing (a)-(c) as transition state proposals, and verify for a
random subset of 100, if the DFT Hessians have one negative eigenvalue and the DFT force RMS is
below 2e−3 Ha/Bohr. We additionally report if RS-P-RFO converged to ”Gaussian default” (A.7.4)
within 50 steps.

A.7.3 Zero-Point energy

Starting from 80 reactant and product geometries from the Transition1x validation set, we relax
the geometries using DFT and RS-RFO (BFGS, identity initialization), up to ”Gaussian tight”
convergence (see A.7.4). We use the same level of theory for the relaxation as for the training of the
models. Then we compute the ZPE from the Eckart-projected, mass-weighted Hessian as predicted
by the different models and compare to DFT. We report all energies in eV per molecule.

19

https://github.com/deepprinciple/ReactBench

Setting Max Force RMS Force Max Step RMS Step Used for

Gaussian loose 1.7e-3 1.0e-2 6.7e-3
Gaussian default 4.5e-4 3.0e-4 1.8e-3 1.2e-3 Relaxation, TS search 4
Gaussian tight 1.5e-5 1.0e-5 6.0e-5 4.0e-5 ZPE 4
Gaussian very tight 1.0e-6 6.0e-6 4.0e-6

Table 9: Convergence metrics used in our experiments

A.7.4 Convergence Criteria

Throughout our experiments, we adopt the following convergence criteria, set forth by the Gaussian
software and widely used in different codebases. All criteria need to be met for a geometry to be
considered converged.

Mass-weighting and Eckart Projection

We briefly describe the process of removing the redundant degrees of freedom of the Hessian [58, 47].

We start from a system of N atoms with Cartesian coordinates q = (x1, y1, z1, . . . , xN , yN , zN)⊤ ∈
R3N , atomic positions Ri = (xi, yi, zi)

⊤, and masses mi.

Centering at the center of mass The first step is to use COM-centered coordinates ri = Ri−Rcom,
which are computed from the total mass M =

∑N
i=1 mi, and the center of mass (COM)

Rcom =
1

M

N∑
i=1

mi Ri. (38)

Mass-weighing Given a Cartesian Hessian H ∈ R3N×3N , its mass-weighted form is

H̃ = M−1/2 HM−1/2. (39)

where the diagonal mass matrix is

M = diag
(
m1,m1,m1︸ ︷︷ ︸

atom 1

, . . . ,mN ,mN ,mN︸ ︷︷ ︸
atom N

)
∈ R3N×3N . (40)

Inertia tensor and principal axes To build the Eckart vectors, we require the eigendecomposition
of the inertia tensor. The inertia tensor about the COM is

I =

N∑
i=1

mi

[(
ri · ri

)
13 − ri r

⊤
i

]
=

(
Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

)
, (41)

with components

Ixx =
∑
i

mi(y
2
i + z2i), Iyy =

∑
i

mi(x
2
i + z2i), Izz =

∑
i

mi(x
2
i + y2i),

Ixy = −
∑
i

mixiyi, Ixz = −
∑
i

mixizi, Iyz = −
∑
i

miyizi.
(42)

The eigendecomposition of the inertia tensor is then IE = EΛ, where the columns {̂i1, î2, î3} of E
are orthonormal principal axes.

Translational and rotational subspace (Eckart vectors) We can now define the three mass-
weighted translational unit vectors {tα}α=x,y,z ∈ R3N (using unit vectors e.g., êx = (1, 0, 0)⊤)

t(i)α =
√
mi êα, α ∈ {x, y, z}, i = 1, . . . , N, (43)

as well as the three mass-weighted rotational vectors {rk}k=1,2,3 ∈ R3N using the COM-centered
coordinates and the principal axes from the inertia tensor:

r
(i)
k =

√
mi

(̂
ik × ri

)
, k = 1, 2, 3. (44)

20

For linear molecules, one rotational vector has (near-)zero norm and is discarded; in practice, we
drop any rk whose norm is below a small threshold. We collect the translation and rotation vectors as
rows of a matrix

T =


t⊤x
t⊤y
t⊤z
r⊤1
r⊤2
r⊤3

 ∈ Rd×3N , (45)

with d = 6 for non-linear molecules and d = 5 for linear molecules. We then orthonormalize these
rows (e.g., QR factorization of T⊤) to obtain an orthonormal set {ua}da=1 spanning the rigid-body
subspace in mass-weighted coordinates.

Eckart projector To build the projector, two equivalent forms are convenient in practice.
1) Explicit projector

P = I3N −
d∑

a=1

ua u
⊤
a . (46)

2) Nullspace basis via the SVD T⊤ = UΣV⊤, which we use as default due to improved numerics.
The columns of U associated with zero singular values span the vibrational subspace. Stack them
row-wise to form Pbasis ∈ R(3N−d)×3N .
Finally, we apply the Eckart projection

H̃Eckart = Pbasis H̃ P⊤
basis. (47)

followed by re-enforcing the projected Hessian to be symmetric:

H̃Eckart ← 1
2

(
H̃Eckart + H̃⊤

Eckart

)
. (48)

Intrinsic Reaction Coordinate with Euler Predictor-Corrector

The intrinsic reaction coordinate (IRC) traces the steepest-descent path on the potential energy surface
(PES) from a transition state (TS) toward reactant and product minima. We use the IRC provided in
the ReactBench benchmark [33], which itself uses the pysisyphus implementation [55]. We integrate
in mass-weighted Cartesian coordinates to obtain a physically meaningful path, solving:

dx

ds
= − g(x)

∥g(x)∥
,

where x are mass-weighted coordinates and g is the mass-weighted gradient. The pysisyphus
implementation follows an Euler predictor-corrector (EulerPC) scheme [59]. Starting from a TS, we
diagonalize the mass-weighted Hessian, identify the imaginary mode (transition vector), and displace
slightly along it to initialize the path. We perform small Euler integrations along −g/∥g∥, updating
the gradient via a local Taylor expansion using the current Hessian. The Hessian is updated with BFGS
updates from ∆x,∆g. We refine the predicted point using distance-weighted interpolation (DWI)
of previously visited points (coordinates, energies, gradients, Hessians). The corrector integrates
the IRC equation on this surrogate PES using a modified Bulirsch-Stoer procedure with Richardson
extrapolation.

21

https://github.com/deepprinciple/ReactBench

	Introduction
	Background
	MLIPs and equivariant neural networks
	Hessians from MLIPs

	HIP Hessian Prediction
	Hessian Symmetry Requirements
	Hessian Prediction Head
	Loss function design

	Experiments
	Conclusion
	Appendix
	Molecular optimization with Hessians
	Extended background
	Hessians from DFT
	Analytical Hessians via CPKS
	Hessians via finite differences
	Geometry optimization
	Transition State Search

	Hessian properties
	Batched AD Hessian performance
	Training Details
	Loss function
	Experimental Details
	Relaxations
	Transtion State Search with ReactBench
	Zero-Point energy
	Convergence Criteria

