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ABSTRACT

Diffusion models have achieved great success in generative tasks. However, previ-
ous approaches typically approximate the reversed transition kernel with a Gaus-
sian distribution. This approximation can diverge from real scenarios, necessi-
tating multiple iterative steps for high-quality sample generation and limiting the
real-time inference performance of diffusion models. In this paper, we propose a
Divide-and-Conquer strategy to improve the traditional single Gaussian transition
kernel representation in each denoising step of Diffusion Probabilistic Models
(DC-DPM), thus enhancing generation quality particularly over a limited number
of timesteps. By dividing the data into clusters, our DC-DPM learns specific ker-
nels for each partition. We design two merging strategies for these cluster-specific
kernels along with corresponding training and sampling methods. We provide the-
oretical proof of DC-DPM’s convergence to the true data distribution from a novel
perspective. Experimental results demonstrate the superior generation quality of
our method compared to the traditional single Gaussian kernel. Furthermore, our
DC-DPM can synergize with previous kernel optimization methods, enhancing
their generation quality, especially with a small number of timesteps.

1 INTRODUCTION

Diffusion models have recently gained prominence in generating multi-modal content across various
tasks, including image generation (Dhariwal & Nichol,[2021; Ho et al.,|2020; [Rombach et al., 2022;
Saharia et al.| 2022; Ramesh et al., 2022), image super-resolution (Li et al.||2022), video generation
(Ho et al.;, 2022a3b)), text-to-speech synthesis (Popov et al.,|2021), 3D generation (Poole et al.| [2022),
and motion planning (Carvalho et al.,2023)). Diffusion models generate data by iteratively predicting
noise and solving diffusion SDEs to denoise (Song et al.,2020b). In each step, the transition kernel
is approximated as a Gaussian, which can significantly differ from the true transition kernel (Guo
et al., | 2024)). Therefore, hundreds or thousands of denoising steps are needed to produce high-quality
data, limiting the real-time applicability of diffusion models.

Extensive research progress has been made to accelerate the diffusion reverse process. Besides the
training-based methods including knowledge distillation (Sauer et al., 2023; Meng et al.,2023;|Song
et al.}[2023}Luo et al.|[2023)) and training-free methods involving faster ODE/SDE solvers (Lu et al.}
2022alb; [Zheng et al., [2023b; [ Xu et al., |2023}; [Sabour et al., 2024 [Li et al.|, 2024), Analytic-DPM
(Bao et al.,|2022b) and Extended-Analytic-DPM (Bao et al.|[2022a) estimate the optimal variance for
the Gaussian transition kernel. GMS (Guo et al.| 2024) represents the kernel as a Gaussian mixture
by estimating high-order moments. However, due to computational constraints, GMS uses a mixture
of only two Gaussians combined with hand-crafted weights. Furthermore, the sampling process in
GMS involves multiple approximation operations, making it challenging to ensure convergence to
the true data distribution for GMS.

In this paper, we propose DC-DPM, a novel approach to represent the transition kernel in the re-
verse process of diffusion probabilistic models (DPM) using a Divide-and-Conquer strategy. We
first provide a proof for the convergence of the conventional single Gaussian kernel from a novel
perspective without using Kolmogorov equations, and then generalize this convergence proof from
the case of a single Gaussian kernel to our proposed divide-and-conquer transition kernel method.
We provide theoretical proof that our proposed divide-and-conquer representation of the transition
kernel converges to the true underlying data distribution, regardless of the data division patterns.
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Figure 1: DC-DPM improves generation quality on small timesteps. Employing a divide-and-
conquer approach to approximate transition kernels in diffusion reverse process, DC-DPM generates
samples closer to ground truth distribution (GT) on 20 denoising steps. Colors represent data density.

Starting by clustering the data into different partitions, DC-DPM learns reversed transition kernels
for each data cluster and models the overall transition kernel as a composition of these cluster-
specific kernels. To determine how to combine the cluster-specific kernels, we design two strategies
along with corresponding training and sampling methods. DC-DPM can collaborate with previous
diffusion sampling optimization methods, particularly those focused on optimizing the Gaussian
transition kernel design, such as Extended-Analytic-DPM and GMS, by utilizing the representations
proposed in these works for each cluster-specific kernel in our DC-DPM.

Experimental results on 2D toy datasets and image datasets demonstrate that our method enhances
the generation quality of diffusion models compared to the traditional single Gaussian transition ker-
nel representation. Furthermore, our approach significantly improves the performance of previous
transition kernel optimization methods, including Extended-Analytic-DPM and GMS, especially in
scenarios with limited sampling steps.

Proofs for all Propositions are given in the Appendix.

2 BACKGROUND: DIFFUSION PROBABILISTIC MODELS AND ITS
CONVERGENCE

2.1 DIFFUSION PROBABILISTIC MODELS AND TRANSITION KERNELS

Given a finite set of data samples {y; € R%|i = 1,2,..., N}, where d represents the data dimension
and N is the number of samples. The distribution of these samples is characterized by:

N
1
pdata(w) = Nzoé(m_yl)v (1)
where 6 (x) represents Dirac delta function. As real training processes are typically conducted on
such finite datasets, we assume that the ground truth data distribution adheres to Eq. (I).

Diffusion probabilistic models define two Markov chains including forward process and reverse
process. The forward process is typically hand-designed with Gaussian transition kernel to perturb

data to noise and can be expressed as (Zhang et al.| [2024):
p(wtvt‘wsvs) :N(mt;at\swsvo—asl—)? (2)

where ¢, s are two timesteps and 0 < s <t < 1. ay, = Z—; and oy = /1 — af‘s, where o is a
hyperparameter which decreases monotonically from 1 to O over time ¢ (Kingma et al.||2021).

Hence, the conditional distribution of x; given x( can be derived as:

p(x1, t|To,0) = N (245 o, 07 1). 3)
Taking the initial condition Eq. (T)) into account, the single time marginal distribution of @, is:
1 -4 || — vy |
pl@et) = 5 > (2rof) 77 exp(— =) 4)

(2
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The reverse process reverses the forward one with a learned kernel. Based on Eq. (2)) and (@), the
ground truth reversed transition kernel can be derived with Bayes’ rule:

p(xs, s)
Ts,S|Te,t) = plas, t|Ts
p( 575| i ) p( i | 6’S)p(wt,t) (5)
2 2
at g OKSO't
27To’s|t Zwl mh eXp{ || |52 Smt - 2‘8 i||2}7
O O

w; (@y,t)
where o, = at|sg wi(xy, t) = =

s (_Ilwt*atinIQ)
s ug (et °
5 uji(®e,

while u;(x:,t) = exp 50
t

Existing methods typically approximate the learnable reversed transition kernel as a single Gaussian
distribution (Ho et al.l 2020). The transition kernel can be expressed as (Zhang et al.,[2024):

2

_ 1 OO Q04
Pla,slwr, 1) = (2n0.0) "2 oxp{—5 g [|lwe = =@ — =g} (©)
T\t O Ut

The mean of this Gaussian distribution is related to y(x¢,t), which is estimated by a neural net-
work yg(x¢,t) in x-prediction methods, while the variance is isotropic and only depends on the
timestep s and ¢. Another commonly used parameterization is e-prediction, which employs a noise
prediction network to estimate the noise €(x;, t) (Salimans & Ho| |2022)). Despite its difference from
x-prediction, these two parameterizations are equivalent, as demonstrated by the relationship

Ly = atg(:vt,t) + Ute(a:t,t). (7)

In this paper, we utilize x-prediction for simplicity in our proofs. For clarity, we will refer to p(x;)
and p(xs | ) instead of p(x;,t) and p(xs, s | @+, t) when there is no ambiguity.

2.2 CONVERGENCE WITH KOLMOGOROV EQUATIONS

Define f; = dlog 2t and g, = —2f;, and the stochastic differential equation (SDE)
dz; = frxdt + g; d By, 3

where B; is the standard Brownian motion. According to /Anderson| (1982)), its reverse process is

dx; = (fixy — g2 Va,p(x,)) dt + g, dB;. 9)

Previous efforts to prove the convergence of DPM heavily depend on the Kolmogorov equations of
Eq. (9) For instance, [Lee et al.|(2022) defines the discretization approximation

dzy = (fi-xi— — g7 Va,p(x,—)) dt + g, dBy, (10)

and establish the corresponding Kolmogorov forward equation for the single tlme marginal distri-
bution of Eq. ( (10), denoted as g(x;). Ultimately, the Chi-square divergence x2(g(z:)||p(z:)) is
estimated using the Kolmogorov equations. Numerous subsequent studies have embraced this con-
figuration (Lee et al., 2023} |Chen et al.| |2022; 2023bza). However, this proof has its limitations as
it’s based on the Kolmogorov equations. This means it cannot be applied to other types of discretiza-
tions where constructing the Kolmogorov equations is challenging. Therefore, a proof that can be
readily adapted to a wider range of discretizations would be beneficial.

3 METHOD

In this section, we first introduce a novel method to demonstrate that the distribution generated by
conventional diffusion model closely matches the actual data distribution without using Kolmogorov
equations. We then propose to approximate the reverse process transition kernel in a divide-and-
conquer manner and prove its convergence using this novel method. We further propose merging
strategies for these kernels and present the corresponding training and sampling methods.

To start with, we outline some assumptions regarding the initial distribution and the neural network
approximation errors, which will be referenced throughout this paper:
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Assumption 1 The initial distribution is a sum of Dirac deltas and max; ; ||y; — y;|| < M
for some positive constant M.

Assumption 2 For all t € [0,1], yp and y are close in L*(p):

[ p@dlluatent) — e O] dar < &5 < 1. an
R

Assumption 3 «; is a predefined function, which decreases monotonically from 1 to 0, with

its derivatives bounded; specifically, 0 > % > —C, for some positive constant C,.

3.1 CONVERGENCE OF DPM FROM A NOVEL PERSPECTIVE
Considering that the sampling process occurs in discrete steps, we introduce the notation for time

discretization as D = {0 < tmin = to < t1 < -+ < tp = tmx < 1}. Subsequently, the
approximated single-time marginal distribution with the accurate y(z, t) is:

ﬁ(mtz) = /d o /dﬁ(mh":‘ctwl) o .ﬁ(th—1|$tT)ﬁ($tT) dwti+1 e dmtT' (12)
R R

By substituting y(z¢, t) in Eq. and (6) with the network prediction y (¢, t), we obtain pg(x;,)
and pg (x4, |T¢,, , ). We also define At; = t;11 — t; and denote the maximum At; as |D|.

i+1 )
As pointed out in previous study (Zhang et al.| |2024), singularities arise near ¢ = 0 and ¢t = 1,
necessitating specific treatment. To address this, we divide the time interval into three distinct
segments: the left interval [0, ¢, ), the middle interval [tmin, tmax), and the right interval (¢pax, 1].
Each section is handled independently. Previous work provides local error estimates for the middle
and right intervals (Zhang et al., [2024). However, their assertions are not strong enough to achieve
global convergence. We enhance these estimates to ensure global convergence. We refine the error
bound for the middle interval from (¢ — s)% (Zhang et al.,[2024) to (¢ — s)3 5.

Proposition 1 Forallt,,;, < s <t < tmaee and 0 < 8 < 1, there exist 6 > 0 and Cy,Cy >
0 depending on 3, tpin and tyaz, such that ift — s < 4, the inequality KL(p(xs)||po(xs)) <

KL(p(¢)|[po (@) + Cu(t — 5) 2

2 4+ Oy (t — s)ey holds.

For the right interval, we improve the error bound from (1 — s)% (Zhang et al.,[2024), to (1 — s)2.

Proposition 2 For all 0 < s < 1, there are constants C1,Cy > 0, such that
KL(p(zs)Ipo(s)) < C1(1 = 5)* + Co(1 — 5)%¢y.

As for the left interval, it’s not feasible to compute the Kullback-Leibler divergence for Dirac deltas.

We adapt the idea from Theorem 2.1 in prior work (Lee et al.| [2023)), which applies the Wasserstein
distance to the left interval.

Proposition 3 Given 0 < t,,;, < 1, the 2-Wasserstein distance
Wa(p(20), P(®t,:,,)) < V/2dCtmin.- (13)

By combining the local error bounds above, we can establish global convergence as follows:

Proposition 4 Forall0 < 3 < 1, there exist d > 0and Cy,Cs, C3 > 0, such that for all time
discretizations D with |D| < 0, the Kullback-Leibler divergence KL(p(x+. ;. )||pe(xt,.,,)) <

Cl|D|¥ + Caey. Moreover, W3 (p(xo), p(x4,,,,)) < C3|D|.
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3.2 DIVIDE-AND-CONQUER APPROXIMATION AND ITS CONVERGENCE

Based on the analysis above, besides the single Gaussian transition kernel, any distribution submitted
to Proposition ] could serve as the transition kernel.

As demonstrated in Eq. (3), the ground truth transition kernel of the diffusion reverse process is a
mixture of standard Gaussian distributions. Previous work provides evidence that traditional ap-
proaches, which approximate this Gaussian mixture kernel with a single Gaussian distribution, can
significantly diverge from the true reverse transition kernel (Guo et al., [2024)). This motivates our
divide-and-conquer (DC) transition kernel approximation.

Specifically, we propose to partition data and use cluster-specific kernels to represent data samples
in each segment. The true kernel is then approximated by integrating these cluster-specific kernels.
Consider a scenario where the training data is divided into L classes: {y; € R%i =1,2,...,N} =
U1L:1 {yl € R?i = 1,2,..., N;}. This partition can be arbitrary, and we will prove that any method
of data division result in convergence. We define a new approximation

plxs|xe) = Za (x4, t ws|wt) (14)
where
Ni d 1 Q| o2 ‘
A~ 3 S S _
pl(:cs|a:t):Z(27ms|t) 2ué(wt,t)exp{—202 [|lzs — 2 S:l?t— p l(mt, H }, (15)
i=1 st t t
exp_uwt—agyﬁwﬁ
. N
wl(xy, t) = . oty @ (@ 1) = S0 wl (@, 1), ul (@, 1) = “’;g-’”f 2 and g (a1, 1) =
1,j OXP =5

i\[:ll ul(x¢,t)yl. The single time marginal distribution of this approximation p(zx;) is defined in
the same way as in Eq. (12). Each cluster-specific kernel ' (z|x;) can be approximated using any
method suitable for a standard diffusion probabilistic model, including a single Gaussian approxi-
mation in DDPM, single Gaussian with optimized variances in Extended-Analytic-DPM (Bao et al.,
2022a)), as well as GMS (Guo et al., 2024), which computes high-order moments and estimates
p'(xs|x;) as a mixture of two Gaussians with hand-crafted weights.

In this scenario, we need L neural networks to approximate 4'(x,t). In practice, we use a con-
ditional network yg(z;,t,1) (also denoted as y,(x;,t)). Additionally, a neural network a,(x,t)

is necessary to approximate a(x;,t) < (al(zs,t), - ,a*(z;,t))T € RE. To derive the error
bound, we also make the assumption that y}(x, t) and a,(x, t) approximate §'(z,t) and a' (¢, t)
in L?(p).

Assumption 4 For all t € [tyn,1]and 1 <1 < L, y}, and afb are close to y' and a' in
L?(p) respectively:

[ peollublent) - g, O dee < 2 < 1 a6
R

and

/ p(@e)(ay (@2, t) — al (e, 1) daze < €2, < 1. (17
Rd

Moreover, afb(azt, t) and a'(x4,t) are uniformly lower bounded by a constant C,,.

Then, pg(xs|x;) is defined by y}s and afbs. po(xy) is defined in a manner consistent with equation
.

To estimate the error boundary of the Divide-and-Conquer Diffusion Probabilistic Models (DC-
DPM), we employ a strategy that transforms it into a single Gaussian case. Taking into account
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that
L
plaslme) = al(@e, t)p! (4] me), (18)
=1
where
N; 2 2
_d 1 iy sO0g asgt s
pl($s|wt) = Z(Zﬁasﬁ) 2U§($t7t) exp{_ﬁst = 5 Lt — 2‘ yf|‘2}7 (19)
= T o3 o

and given the convexity of the Kullback-Leibler divergence, we can deduce that

KL(p(as|z)||p(@s]a.) <D al (@, ) KL (@ |20)|[ (@4]a))- (20)
l

Eq. (20) allows us to bound the error of the divide-and-conquer approximations by the sum of its
individual components. Utilizing Propositions|[T} [2] and[4] we can deduce the following corollaries:

Corollary 1 For all t,;n < s < t < tymae and 0 < [ < 1, there exist § > 0 and
C1,C5,C3 > 0 depending on B, tyin and tpaq, such that if t — s < 0, the inequality

KL(p(a,)|[po(xs)) < KL(p(z1)||po (1)) + C1(t — 8)°2° + Ca(t — 8)ey1 + Csear holds.

Corollary 2 For all 0 < s < 1, there are constants C1,Cy,C3 > 0, such that
KL(p(zs)|lpe(xs)) < Ci(1 — 5)* + Coeyr + Csea.

Corollary3 For all 0 < B < 1, there exist 6 > 0 and C,C5,C3,Cy >
0, such that for all time discretizations D with |D| < 0, the Kullback-Leibler

divergence KL(p(zx:, . )||Do(xt,...)) < C’1|D\# + Coeyi + C3Teq.  Moreover,
W (p(@o), p(+,,;,)) < Ca|D

It is worthy to note that Corollaries above can not be easily proved with the methods based on
Kolmogorov equations as in the previous works, because it is not trivial to construct a Ito diffusion
with equation (14) being the solution to its corresponding Kolmogorov equations.

The term €, in Corollary [3|includes a coefficient 7', representing the inference time step. This factor
inhibits the error from converging to zero as |D| approaches zero. However, due to the simplistic
structure of a(xy,t), the network a,(x,,t) is relatively easy to train. This results in &,; being
significantly smaller than ¢,;. Consequently, this maintains the error of DC-DPM at a reasonably
low value.

3.3 MERGING CLUSTER-SPECIFIC KERNELS

The divide-and-conquer representation of the reversed transition in Eq. consists of combination
coefficients a'(xs, t), referred to as the class part, and cluster-specific kernels p! (x| ), referred to
as the diffusion part. For the diffusion part, to learn L cluster-specific kernels, we propose training
a single conditional network yg (x4, t,1) to represent them, rather than training L independent net-
works, in order to save computational overhead. For the class part, we propose two approaches to
estimate it: label diffusion approximation (LD) and fixed class approximation (FC).

Label diffusion approximation (LD) learns the class part in a manner similar to the diffusion part.
Define L; as the one-hot vector representing the class to which data point y; belongs. Then we
construct a(z;, t) as:

a(@y, t) =Y wiw, t)L;, @1)

where w; (x;, t) represents the coefficients in the ground truth transition kernel in Eq. . Substi-
tuting Eq. (Z1) into Eq. (I8) aligns with the ground truth transition kernel in Eq. (3. Given that the
structure of a(x¢,t) closely mirrors that of y(x,, t), a neural network a,(x;,t) can be trained in a
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manner analogous to the x-prediction networks in diffusion models. The training process to learn
the class part can be formulated as:

Proposition 5 Let L(x) denote the one-hot class vector of o, the optimal as(xy,t) for the
two objective functions

Ly = EiEOdiatavthp(wt|w0)vtNU(071)HL(:I:O) - ad’(wtv t)”zv (22)

and
LoE = Bagmpiata,i~p(@s|zo),t~U(0,1) CE(L(x0), ag(x:, 1)), (23)

are the same and equal to a(x¢,t), where CE represents the cross-entropy loss.

Based on the analysis above, we present the algorithms for training the diffusion model yy (x+, t,1)
in Algorithm([l|and the label model ay (¢, t) in Algorithm 2}

Algorithm 1 Training of diffusion model ¥y Algorithm 2 Training of label model ag
1: Repeat 1: Repeat
21 Ty ~ Ddata 21 Ty ~ Ddata
3: t ~ Uniform(ty,ta, ..., t7) 3: t ~ Uniform(ty,ta, ..., t7)
4: xy ~ p(xe|To) 4: xy ~ p(xe|To)
5: Take gradient descent step on 5: Take gradient descent step on
Vo ||yo (@, 1(x0)) — o Vo |las(@:,t) — L)
6: Until converged 6: Until converged

The second approach, fixed class approximation (FC), first samples a label [ from Eq. att = 1.
In this scenario, a(z1,1) = (b',b%,--- ,b%)T, where b’ = % represents the proportion of samples
in cluster [ relative to the total number of samples in the dataset. Then the label adheres to this value
along time ¢:

a(x,,t) = e, (24)
Since the sampled label remains consistent over time ¢ in the FC approximation, the class part
aq(x,t) is necessitated solely at ¢ = 1.

3.4 SAMPLING METHOD FOR DC-DPM

Conventionally, DDPM reverse approximation in Eq. (6) can be realized by the trajectory:

2 2
it 1014 Ot 10¢,|t,_,
mti,l - 02 xti + 0_2 Yo (mtq, ) t’L) + Oti,1 ‘ti ztia (25)
ti ti

where z;, ~ N(0,I)and ;, ~ p(x¢,,tr). Our reverse process, using a mixture of cluster-specific
kernels, requires an additional random variable y(x¢,, ¢;) to represent the trajectory:

2 2
Qtift; 10,4 Ot 1004,
T, = o2 Ty + o2 y(wtmti) + Oty_q|t; %t; (26)
ti ti

The density of y(x4,,t;) is

py(xy,,ti) = y) = Zal(wt )0(y — yo(@e,, 43, 1)), 27
!

and y(xy,, t;) is independent of z;,.

For label diffusion approximation (LD), our method samples two random variables in each step:
weight sampling in line 3 and diffusion sampling in line 5 as shown in AlgorlthmE} Fixed class
approximation (FC) samples the weight from the discrete distribution (b*, 52, - - T Since the
weight term remains consistent over time ¢, weight sampling is executed only once, as shown in line
2 of Algorithm [d] After weight sampling, the model generates samples within one fixed class lo.
The generated distribution is:

-'Bt / / mn ‘mt,ﬂ) e (fCtT 1 |33tT)pl°(fUtT, tT) dmti“ < dxgg. (28)
Rd R
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According to Proposition p' (o) approximates p, (z) = N2 0(®— y'). Thus the distri-
0

bution 3°, b'p! (o) approximate p(zo) = 3, b'ply;,. Where bt = AL

Algorithm 3 Sampling process of label diffu- Algorithm 4 Sampling process of fixed class
sion approximation (LD) approximation (FC)
1: iBtTNN(O,I) 1: thNN(O,I)
2: fori=T,...,1do 2: I~ (b5, 0%, -+ bY)
3 I ~ap(xy,,t;) 3: fori=1T,..,1do
4 z~N(0,I) 4 z~N(0,I)
Aty U't. A |t, U'f.
5 my, , = il 1;; ‘*133“ 5 my, , = d 1;; 17133“
—&-at“];””’l Yo (e, ti, 1) + 04,11, 2 +at“]:§”t“1 Yo(xe,, ti, 1) + 04, 11,2
6: end for 6: end for
7: return x;, 7: return x;,
Algorithm 5 Sampling process for LD ap- Algorithm 6 Sampling process for FC ap-
proximation with ODE-based methods proximation with ODE-based methods
1: .’BtTNN(O,I) 1: .’BtTNN(O,I)
2: fori=1T,....1do 2: 1~ (bY, 0%, - bh)
3 z~N(0,1) 3: fori=1T,...,1do
4: Ty, 1 = ODE(:Btl , ti, l) 4: Ty, 1 = ODE(CBtl , ti, l)
5: end for 5: end for
6: return x;, 6: return x;,

As the probability flow ODE keeps the single-time marginals (Song et al., |2020b)), we can replace
the diffusion sampling method with probability flow ODE-based methods, such as DDIM (Song
et al.| [2020a), DPM Solver (Lu et al., 2022al), PNDM (Liu et al., 2022) etc. We summarize this in
Algorithm where ODE (x4, t,1) represents the ODE-based sampling methods. Similarly, the fixed
class approximation is also applicable to ODE-based methods, as presented in Algorithm 6]

4 EXPERIMENTS
4.1 IMAGE-SPACE RESULTS

Table 1: FID | on CIFAR-10 Dataset. Employing our Divide-and-Conquer (DC) kernel approx-
imation strategy on previous DPM methods enhances their generation quality especially on small
timesteps. LD represents merging kernels with label diffusion approximation while FC represents
fixed class approximation. SN-DDPM is short for Extended-Analytic-DPM (Bao et al.,|2022a)).

\ CIFAR-10 (Linear Schedule) CIFAR-10 (Cosine Schedule)

# TIMESTEPS | 10 25 50 100 200 1000 | 10 25 50 100 200 1000

DDPM 43.14 21.63 1521 1094 823 5.11 | 3476 16.18 11.11 838 6.66 4.92
+DC-LD (Ours) | 39.40 2195 1554 10.78 791 498 | 27.78 1552 10.12 7.29 561 4.11
+DC-FC (Ours) | 3448 21.05 1512 10.67 7.82 4.50 | 25.80 14.58 9.66 6.72 5.03 3.46

SN-DDPM 21.87 691 458 374 334 371 |1633 605 419 383 372 408
+DC-LD (Ours) | 16.77 639 429 340 297 330 | 1285 6.54 456 3.63 335 3.51
+DC-FC (Ours) | 11.90 498 3.62 298 255 293 | 992 495 335 267 253 274

GMS 1743 596 416 326 301 276 | 1380 548 400 346 334 423
+DC-LD (Ours) | 1454 589 422 341 358 519 | 1080 622 453 3.64 334 435
+DC-FC (Ours) | 1040 4.84 361 300 3.00 286 | 876 491 343 276 2.60 3.35

We quantitatively compare the sample quality using the widely recognized Fréchet Inception Dis-
tance (FID) score (Heusel et al., 2017). Utilizing the semantic labels from the CIFAR-10 dataset, we
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categorize the data into 10 classes. We then apply our proposed divide-and-conquer approximation
to various transition kernel designs, including DDPM (Ho et al., [2020), Extended-Analytic-DPM
(Bao et al., |2022a)), and GMS (Guo et al. 2024). These kernels are merged using both the label
diffusion (LD) and fixed class (FC) approximation strategies. As illustrated in Table [T} our DC-
DPM approach significantly enhances the performance of existing methods, particularly at smaller
denoising timesteps. Specifically, DC-DPM achieves improvements of 25.78% for DDPM, 45.58%
for Extended-Analytic-DPM, and 40.33% for GMS in scenarios with 10 denoising steps.

Furthermore, as shown in Table [2} DC-DPM can also be applied to the ODE-based sampler DDIM,
resulting in a 22.38% generation quality improvement with 10 steps on the CIFAR-10 dataset.

4.2 LATENT-SPACE RESULTS

We also apply DC-DPM to latent diffusion models (Rombach et al.,2022)). We perform comparative
experiments for unconditional generation on the CelebA-HQ-256 image dataset. To classify the data,
we first compute the VAE latent space of each image |Kingma & Welling|(2013)), extract the primary
dimension using principal component analysis (PCA)|Abdi & Williams|(2010), and then cluster the
images into 10 classes using the K-Means algorithm. Both the quantitative results in Table[3]and the
qualitative results in Fig. [3|demonstrate that DC-DPM improves the generation quality of diffusion
models in latent space.

Table 2: FID | on CIFAR-10 (Linear
Schedule) with DDIM. DC-DPM can be ap-
plied to ODE-based samplers like DDIM.

Table 3: FID | on CelebA-HQ-256. DC-
DPM is applicable to latent diffusion models
to improve the generation quality.

# STEPS | 10 25 50 # STEPS | 10 25 50
DDIM 2131 10.70 7.74 DDPM 3521 18.60 14.16
+DC-LD (Ours) | 2043 11.39 8.38 +DC-LD (Ours) | 30.58 15.76 12.25
+DC-FC (Ours) | 16.54 9.15 6.60 +DC-FC (Ours) | 3047 15.37 12.16

4.3  ABLATIONS

We conduct experiments to examine the impact of different classification approaches and varying
numbers of classes on the CIFAR-10 dataset. We flatten the input images and apply K-Means clus-
tering to the raw image values, classifying the training data into different numbers of clusters. The
FIDs for various denoising timesteps are presented in Fig. (2a). Our results indicate that the quality
of generated images improves as the number of classes increases, although the rate of improvement
diminishes with a higher number of classes. Notably, the generation quality for clusters created via
K-Means remains inferior to that achieved using semantic labels, even when divided into 16 clusters.

In Fig. (2b), we compare scenarios with different numbers of semantic labels. The label S3 denotes
three semantic classes. Specifically, we consolidated the original 10 classes of the CIFAR-10 dataset
into three broader categories: vehicles, animals, and others. For S40, we divide each of the original
10 classes into four finer sub-classes using K-Means, resulting in a total of 40 classes. The gen-
eration quality initially improves and then deteriorates as the number of classes increases. While
having more classes makes each cluster-specific kernel easier to learn, it simultaneously raises the
complexity of managing all these classes within a single conditional diffusion network yg (x4, t,1).
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(a) FIDs Using K-Means with Varying Cluster
Counts.

(b) FIDs with Semantic Label Classification at
Different Class Counts.

Figure 2: Ablations on Classification Approaches and Number of Classes on CIFAR-10.
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#STEPS_10 #STEPS 25

Figure 3: Qualitative Results on CelebA-HQ-256 on 10 and 25 Denoising Steps.

5 RELATED WORK

Significant research has focused on improving diffusion model performance on fewer timesteps,
broadly categorized into three approaches. Training-based methods includes trainable sampling

schedules 2021), truncated diffusion (Lyu et al. 2022; [Zheng et al., 2022), neural

operators (Zheng et al., 2023a)), and distillation (Salimans & Hol 2022} Sauer et al., 2023} [Meng]|
et all, 2023 [Song et all, 2023; [Luo et al 2023). The second category enhances the efficiency of

SDE and ODE solvers in the reverse process, including faster SDE and ODE solvers

2022aljb; [Zheng et al.| [2023b; [Xu et al.,[2023} [Li et al.| [2024), adaptive step size solvers (Jolicoeur-
Martineau et al., 2021), predictor-corrector methods (Song et al.| [2020b} [Zhao et al. [2023), and

stochastic-calculus-based optimization (Sabour et al.| [2024).
The third category focuses on improving the design of the transition kernel in the diffusion reverse

process. Analytic-DPM 2022b) and Extended-Analytic-DPM 2022a)) esti-
mate the optimal variance. Our work also falls within this category, with the most closely related
prior work being GMS 2024). GMS represents the transition kernel as a mixture of
two Gaussians based on the estimation of higher-order moments. In contrast, the highlight of our
method is to divide data into clusters and construct the kernel function in a divide-and-conquer man-
ner. We construct a more general framework and previous Analytic-DPM, Extended-Analytic-DPM,
and GMS can serve as the cluster-specific kernel in our method.

6 CONCLUSION

In this paper, we propose DC-DPM, a novel divide-and-conquer approach for approximating the
transition kernel in the reverse process of diffusion probabilistic models. We provide convergence
proof for diffusion models from a new perspective, generalizing the transition kernel representation
from a conventional single Gaussian to a divide-and-conquer framework. This framework utilizes
cluster-specific kernels to represent segmented data, which are then merged to form an overall repre-
sentation. We propose two merging strategies along with their corresponding training and sampling
methods. Experimental results demonstrate the effectiveness of our approach, significantly enhanc-
ing generation quality, particularly over a limited number of timesteps.
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A PROOFS

A.1 PROOF OF PROPOSITION[]]

Lemma 1 For all positive integrablefunctions f(x), g(x):RY— Ry, we have

/ f(x)dalo g%‘i e )dw < Rdf(a:)loggggdw (29)
proof- Let F =[5, f(x)de, G = [, g(x)dx and h(t) = tlogt. h(t) is convex because
s—;h(t) = % > 0. (30)
And then
[ s@oslD e [ g
6. 42 (fég> G31)

According to the probabilistic form of Jensen’s inequahty

g(z), f(z) / 9(z) f(z)
G ——h(=—=%)dx > Gh —r——=d
.G (g(m))wf (Rd G @) r) = (G f(x)da)

= Gh(E) = Flogg (32)

Jpo /(@) dz

f(x)delog =———
- [ sieion

Note that the integrability of f ensures the validity of Jensen’s inequality. ([

Lemma2 Leto > 0,0 < 3 < 1land B =o/(d+2)log X + 0> M, for all v € R? with
1

|lv| < M, Let 6 = min(e‘Z,e%W*I(_ﬁ)) and C = M (1 + v/27), then o < ¢ indicates

2,112
(27r02)_% / exp(—”w—giafn)(—(:c + o?v)Tv)dx < Co* (33)
|z|>B g
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(27702)*% / exp(fm)(f(eran)Tv) dx

2
z||>B 20

2
A(d) = aid/ exp(—%)Mrd dr,
>B—02M 20

(34)

. d(pg ngl

(35)

and the derivation of equation (1) is attributed to the change in the integral variable of Z = x +
o?Y . The inequality in equation (2) arises from a broader integral domain and a Cauchy inequality.

Equation (3) is derived from the calculation of the d — 1 dimensional sphere S9~1.

A(d) = 0‘/>B . exp(—;?)M(;) d;

—O'M/ exp(— ) "y
B—02M 2

=oME(d
Let § = e~ and then log > 1.
E(d) = /T>B(72M exp(—?) dr
I B i I = ri2a
= —r® "exp( 5) . . o2 exp( 5)( )r r
B—o*M (B —o*M)?
= (P (- B (- 1B - 2)

= ((d+2)log —)F (6)F + (d — 1)((d+2) log %)%(04)¥ oo
L d=1)d=3)--4((d +2)log 1)(eh) " +2E(1) d is odd,
(d—1)(d—3)---3((d+2)log = )%(04)¥ + E(0) d is even,
d+2 ) d is odd,
<T((d+2)lg 4) { d is even,
1 d+1 (1) d is odd,
< ((d+2)log 0%+ 0" + {E(O) d is even.
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Letd = eiwﬂ(*ﬁ), we have (d + 2) log ﬁa‘l < 1, where W_ is the branch of Lambert W
function labelled by -1.

2 |0
= —exp(—+) (38)
B—o2M
(B —o*M)?
= exp 5,7 )
= (YT
Since all A > 0, exp(Ar — A\ /(d + 2)log &) > 1, we have
2
r
E(0) = /7~>352M exp(— ") dr
1 2
< / exp(Ar — A\ /(d + 2)log —) exp(—r—) dr
R g 2
A2 1
=2 exp(? — M/ (d+2)log ﬁ) (39)
d+2)log L
< Var exp(_%)
=V 277(04)#.

As a result, by setting 6 = min(e’%,eiwﬂ(fﬁr?)) and C = M (1 + +/27), we can achieve the
required inequality.

L1 1 _1
Lemma 3 Given the notations from Lemma if 0 = min(e” 1@, exW-1( d+2)) we have

B+J2Me 7|B+02M|2

557 ) < ot (40)

xp(

proof. When § = min(e™ 4<d1+2>,e%W‘1(7ﬁ)), we have B%ZM > land (d 4 2)log ro* < 1.

Since the function ¢ exp(—%) is decreasing when ¢t > 1, we have

B+oM (_|B+U2M|2)<B—J2Me (_|B—U2M\2)
*P 202 - o *P 202
1 d+2
=1/(d+2)log —(c*) = 41
\/([d+2)log —(07) 2 (41)

d—1

1
=4/(d+2)log —404(04)704
o

< o
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Lemma 4 Given the notations from Lemma l consider a set of vectors {v; € R? | 1 <
i < N} such that max; ||v;|| < M, along with corresponding wezghts wy for each vector v;
satisfying >, w; = 1. Forall1 <i < N, letC = } 3 Tr(>; wjl|vi|[2) + M3 + 3M* and

1 =8 o
§ = e23W1G@) such that o < § indicates

2
T

proof.

1 __ B 1
Let§ = ¢28V-1( 2<d+2)), we have 02/ logﬁ < d+2,

Zw] v zx’v;dx — ij o?||v;||? < Co3P.

(42)

which means o((d + 2)log )72 < o'™F

Since the matrix V' < Z w;iv;v; T"is symmetric, it can be diagonalized: V' = UAUT where A

is an diagonal matrix, U is an orthogonal matrix and
= Tr( ijvj v; Zw]Trv :ijHviHQ.
J

With the change of variable z = U (x + o%v;), we have

12

20,
I= (2#02)_%/ exp(—7‘|w+0 Yi
llz||<B

1
5oz ) 2 wigll(@ 0 — o) )| da

J

2
L 1
= (2m0?)72 exp(— =1 =)D :wj§(||ZTUTUjH2 —2022TU T v;v] v,

2
Uz—o2v;||<B 20

=

J
+ ot vl vj[?) d=

2]\ 1
7),

< (2m0?)"2
< (270”?) 5

xp(—

2
[|<KB+o2M 20

—

1

21 3
= (27702)_% / exp(—%)szAz dz + M303P - “Mo?
12l1<B+o2M 20° 72 2
1
< (27702)_%7 g / xp(— ‘ || A”zl dz; H / exp(— dz]
2 I |zl|§B+02]\4 G=1.j#l
3
+ M353 8 4+ §M40'4
_ 2y-41 2 3,3-8 | S a4
= Tr(A)(2mc”) "2 exp( 2)2 dz + M°c + =M*%*c
2 ‘ ‘<B+a‘2]\/f 20' 2
02 1._B+d*M |B + o2 M|? 22 z
- T _ _ 2 42
() T ep )+ [ (g )d)

3
+ M3o37F 4 §M404
1 3
< Tr(A)02§(a4 + 1)+ M3037P 4 §M4a4
3
— Z ~o%wjly; > + (Tr(A ) o3+ B) + M3 + 2M4 o838,
Let C = § Tr(A) + M3 + 3 M*, we get the required equation (42).
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Lemma 5 When ||x|| < Band ), w;v; =0, let§ = min(e%ﬁw’l(”(gﬂ)), (14 M)PF' 1)
and C = S(1+M)M3 + IM*+ ¢(1+M)3 M3+ 2 (1 + M)2M* + 3 (1 + M)M* + F MS.
If o <6, we have

1
ij exp(—aTv; — 50%||;[*) -1

< ij (0T za"v; — ||v;||?) + Co®? 45)

proof.

Let§ = min(eﬁw’l(fﬂ‘?“)), (1+ M)P'~1) and then B = o/ (d + 2) log 2 + 02M < (1+
o M)e P < (1 4+ M)o' . Thusx < B < (14 M)o'# < 1and |vj| < M, where
b=t

Expanding the function ef at t = 0 with Lagrange’s remainder, where 0 < £ < B

1
> wjexp(—zTv; — So[|uy][?) — 1
J

1 1 1
=2 uit-e Ty — 0%l + 5 (<27 v; — 5ol )2 + 5ef(~a T, — So?llwl))
< = 02|12 + LoT LTI S
Zw]{ oIl ? + 5ol ;) + So% w12 + 5o
1
+ 5e3<||wij||3+302||w%j||2|\vj||2 +3o4||wij||||vj||4+o6||vj||6 )} (46)
ij (vj Texlv; — ||v;]|?)) —i—Zw] (1+ M)M3g>F +8M4 4
1 ro1 1 s 1
+6e(1+M)3M3U3_3B +§(1+M)2M4a4_25 +§3(1+M)M5o—5—ﬂ +6M606)
<ng (v zz"v; — ||o;|[?)) + Co® 7,

where C' = $(1+ M)M® + 1 M4+ £(14+ M)3M3 + J(1+ M)2M* + 3(1+ M)M* + 1 MC. O

Lemma 6 Forall t,,;, < s <t < tyas and 0 < 8 < 1, there exists a § > 0 and C > 0,
depending on (3, t,;,, and tmam, such that if t — s < 0, the inequality KL(p(xs)||p(xs)) <

KL(p(x1)||p(x:)) + C(t — s) * holds.

proof.
Noting that

dx,

KLptenlpen) = [ [ plefenten detog 20
Rd

——————=dx;dx,

p(@s|z:)p(x:) doey
( |33t (t)dwt

20 dey daes 47
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p(ﬂ’?t)
+ /Rd /Rd p(xs|xs)p(x:) log @) de; dz, .

I

= /R /R p(@s|22)p(:) log p(ar) da, de, — / / p(@s |z )p(ae) log flae) dz, dzs (48)
d d R4 JRA

Since p(xs|x:)p(x:) log p(x:) > 0 and p(xs|x:)p(a:) log p(a:) < 0 for all x; and x;, according
to Fubini’s theorem, we have

/ / p(@s|w)p(ee) log plar) dz, dz, = / / p(@s|we)p(ae) log play) de, d,
Rd JRA Re JR4E

= / p(x,) log p(axy) day (49)
R4
and

/ / p(@s|ze)p(@:) log ) day day = / / p(@s |2 )p(:) log p(:) de, d,
Re JR4 Rd JRd

:/ p(xt) log p(axy) day. (50)
]Rd

Since the entropy of Gaussian mixtures and the cross entropy between Gaussians are all finite, we

have [ou [pa p(zs|ze)p(2) log p(x,) day dag and [ [pa p(xs|@)p(,) log p(ay) dae, da, are
both integrable. As a result,

= [ [ et dzde,~ [ [ s(ejepten g da de,
Re JR
:/ / p(ms|mt)p(wt)logp(a:t)dmsda:t—/ / p(xs|x)p(as) log p(ay) des day (51)
R4 JRd Rd JRd

s :I: o) ( ) Trsdx
/]Rd/Rd s|t t)lg()dsdt
= KL(p(:)|p(2¢)).

Now, let us delve into a detailed analysis of Part I.

I—/Rd/ Ts|xy) logES:Sdmgp(mt)dmt

2
W |y — S éa;t =yl
:/ [(27(0-5\15 2/ Zwl wtv eXp ) )log(zw_](xtat)exp(
R4 Js|1§ j
2
Q4|50 QsTys _ _
(@ = e = 5 (@) S @l t) —y))
t t O
x Y

+ 308 % @ 0) — y) )] dap(ey) da

:/ [(2%05\15) %/ +/ Zwi(act,t)exp(
R Az, B,g(xe,t)) Ac(ze,B,g(ze,t))

7

| v
|z + o2, yill” 1
- 2072‘) longj(mt,t) exp(—zly; — §U§|t||yi\|2)] dxs p(at) da;. (52)
st j

According to Lemma let oy = min(e’%,e%W*I(fﬁz)) and Cyy = M, (1 + v/27), where
M, = ——, when o, < o,
I + 02, Al

III:/ (2mo? )7%/ w;(x, 1) exp(—
Rd It A(a:t,B@(mt,t))zi: t 20

5\t

) log(
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2%, Aws |1

Zj wj(wtat) exp(_ 202

s|t

2
> wj (@, 1) exp(—42I)

g/ (27T03t)_%/ > wi(a, t) exp(
R Ao, Bg(wt)

|lz+02), Ay;I°
1z + o Awill” exp(——g7—

s|t
og( Ydas p(xy) day (53)
202 _l=I?
2 exp(—12E)

:/ (QWOE‘t)_%/ Zwi(mt?t)exp(
Rd A(ze,B,y(ze,t)

[l + 0%, Ay 1
- o) Ay — S0k [yl ) de, p(a,) da
Us|t 2

) dms p(wt) dmt

< / Cmagpp(ivt) dz, = CHIU;LW
Rd

According to Lemmaft]and LemmalS} let Cty = max (3 My + M2+ 3 M2, L (14 M,) M2+ 3 M2+
W

S(14+M,)3M3+L(14+M,)2MA+ 2(1+ M,)M*+ L M6 and 6y = min(e 37
6( a 2 o 2 o 6 o
Mo)éﬁ_l), where M, = GZL, when oy < by

t

(= 5drmy) (1+

min

|z + o, uill?
IV = E /wl @y, t 27TU§|t)_%/ eXp(—i‘t)log[
|z|<B

2
20 s\t

1
> wie t)exp(=a’y; — 503, [|yj|*)] dep(a) dy

4+ o2 gl |2
= / wi(w, £)(2702,) ! / exp(— 2 Ty
4 Rd [|z]|<B

2‘75|t

1
ij @y, t) exp(—a’y; — §U§|t”yj”2) — 1] dasp(x;) dz,

< Z/ wi(@;,1)Crvoly, "p(ar) da;

= Cwaé‘tﬁ. (54)

2 4 2 .
Because 02|t =(1- a—;)l X < %ﬁ‘”(as —y) < QQ?C“ (t — s). Let § = min(dyy, dpy) and
C=(Cm+ Clv)(

1—aj X
v rmamn

)% we get the result. a.

Proposition 1 Forallt,,;, < s <t < tmer and0 < B < 1, there exist 6 > 0 and Cy,Cs >
0 depending on B, t,,;n and tmax, such that if t — s < 0, the inequality KL(p(xs)||po(xs)) <
KL(p(xt)||pe(xt)) + C1(t — s) St Ca(t — s)ey holds.

proof.

Since |g(x:, t)| = | X0, wil®e, )ys| < D, wiwe, t)|ys| < Yo, wi(xe, )M = M, we have

/ p(a)|g(@:, ) < M. (55)
R

KL(p(xs)||pe(xs)) // Ts|lx)p :ct)logmdmtda&g

po(xs|xi)po(xt)
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// (zs|)p(2, t) log ———= p(xs|z,) dz; dz,
R JRE po(Ts|Tt)

/ / xs|xy)p(xe, t) log ———= p(,1) dz, dz,.

Rd JRd pe(:ct, )

/ / (zs|xs)p(y, )[log p(xs|zy) + log p(xs|zr) |desdxs  (56)
Rd JR4

p(@s|z:) po(s|T:)

+ KL(p(x¢)|[po(x+))

o p(s|z:)
p(xs|ee)p(at, t) log ———— da; ds
Rd JRE po(Ts|T:)

+C1(t = 5)T + KL(p(x1)|[po(:))

The inequality (1) use the conclusion in Proposition [6]

Since p(xs|x;) and pg(xs|x;) are Gaussians with the same covariance matrix,

2
(e el
= / / (et ms‘wt) [(2335 -2 |52 - T
Re JRd 07

g0 t\

t \

(g(wh ) + y@(wh )))T (y&(wh ) - g(wht)ﬂ dws dwt (57)

Uf

// (@2, t)p(@s|ae) 55— ( t's>(ye(wm+ﬂ<wt,t))T<ye(wt7t>—y<wt,t))dwsdmt
R4 JR4 s\t

I;
2

1 atsgg asats _
4 / / D@, )p(@ale) o (s — 20275 g T Tl (1, 1) — (e, ) de, daz,
Rd JRd Tt

0% 0%

Iz

aZo?
b= [ ple) s (e, ) + gl ) e t) ~ gl ) de
R s

O‘S”“"t<Adp<mt>\|<ye<mt,t> + (@, 1) day / p(@)l| (o (e, 1) = glae, 1)) * day

<
- 204
0[20'2
s7s|t _ _ 1
< St [ @)l n(@int) = 5ot + 25w O do)? (58)
0[20'2‘
s7 st 1
< Sty pe)s(luntent) — glen ] + 4llp( o)) e’
Tg R4
Cl{20'2
s s|t 1
< 201 Ey(€3+4M2)2
3 2
< gpr— (M) ey,

Qg Oét|30§ T _
L= / plz:) / p(@ale) (0 — 2750 )T dee (g (1, 1) — G(an, ) dz,
Rd R Ot

2
- 7/ (a2) sz (@0,1) ‘ Ty (s, t) — G (s, 1)) deee (59)
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2 2
X501 _ 1
<SR[ bl lln(ent) - gl de)?
S
2
@ 2 M,
S?zMUS\tayS T sty
s tmin

As as result, let Cy = (52— (1 + AM?)z + M )(%)% and ¢ use the value in Lemmaﬁ we

ag
tmin tmin tmin

get the required result. ]

A.2 PROOF OF PROPOSITION[2]

Proposition2 For all 0 < s < 1, there are constants C1,Cy > 0, such that
KL(p(zs)|[po(xs)) < Ci(1 —5)* + Ca(1 — 5)%¢y,.

proof.
First, we consider the difference between p(x,) and p(x;). Since p(x1) = p(x1) ~ N (0, I),

~
=
=

ws)|[p(ws))

p(xs|er)p(er) dey log

g ||lzs — syl 2
= [ nar [ S uan e 12 S oy

— . 2
> wi(@s, 1) exp(—LEsull)

_ dzgp(x,)dx (60)
expl [y A
,g ||ws* sy1||2
< (2 2 E (21, 1
_/ o> /Rd wi(x1, 1) exp(———————) log]
I\ws—asyill2
exp(— 252 )
T —o fm 2 ]dwsp(wl)dml
exp(fH s ;z(z Dl )

12

,i || - asyz
< 2 2 - s
< /]Rd 7m / E wi(x1, 1) exp(— o )

32 ("Es - asyi)T(yi —y(x1,1)) +

S

||yz y(x1, )||2dw5p(:c1)d:c1

M? 2M2
</ 5 SQM2 (z1)dzy < 5 o’ < Ca (1—s)2
Rd 40 g

tmin

Upon considering equatlons , and (5 b and designating Cy = C3 (57— (1 +4M 2)2 4

04M ), we are able to derive the des1red conclusmn |
B

min

The method used to prove the previous Proposition cannot be applied to prove Proposition[I|because
there is a Uél ; in the denominator. This results in an error bound of o?,,, which does not allow for

global convergence.

s[>
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A.3 PROOF OF PROPOSITION[3]

Proposition 3 Given 0 < t,,,;, < 1, the 2-Wasserstein distance

Wa(p(zo), P(Zt,0i)) < V2dCatmin. (61)
proof.
| N
WQ(p(wO)vp(wtmm)) < N Z WQ((S(J; - yi)>N(yi> U?,mnI))
=1
N
:NZBF%” (62)
XN
<% ; V2dCatmin = \/2dCotmin.
a
A.4  PROOF OF PROPOSITION 4]
Proposition 4 Forall0 < 8 < 1, there exist§ > 0 and C1, Cs, C3 > 0, such that for all time
discretizations D with |D| < 6, the Kullback-Leibler divergence KL(p(xy,, .. )||pe(xt,,,,)) <
C1[D|™Z" + Cae,. Moreover, W3 (p(@o), p(@t,,.,)) < Cl D).
proof.
According to Propositionand foralli € {1,2,...,T}
KL(p(.’Eti) (wtl)) < KL(p(xti+l)||p0(xti+l)) + Cl( +1 T ) + CQ( +1 T ti)ey
1—
< KL(p(z1)|[po(21)) + C1|D| 7 + Caey. (63)
The final estimation using the 2-Wasserstein is simply the Proposition O
A.5 PROOF OF COROLLARY [T
Corollary 1 For all t,in < s < t < tpmar and 0 < B < 1, there exists a 6 > 0 and
C1,C5,C3 > 0, depending on B, tpin and tmaz, such that if t — s < 0, the inequality
KL(p(.)||po (@) < KL(p(x1)|[po(x0)) + Cu(t — 8)° = + Ca(t — s)eys + Cazar holds.
proof. In accordance with the convexity of the Kullback-Leibler divergence, we have
K L(p(a,|zo)|[p(s]z:) <Y (@, ) KL (2] 2:), 5 (4]20))
DS d (@, )it —5)"7 (64)

8

=Cy(t—s)7.

The equality in step (1) is a direct consequence of Proposition|[I]

KL(p(zs)||po(zs)) / / sl )p xt)logﬁe(:cs|wt)pe(fﬂt)d s
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p(as|a;)
= xs|xy)p(xy, t)log —————— dax; dg
/Rd/wp( (1) log 22 da

plxy, T
s ,t)log =———— dxy dx,.
+ /R d /R N

/ / (zs|x:)p(y, )[log p(xs|zy) + log ?(wskct)]dwtdws
Rd JRd

p(@s|z:) Po(s|T:)
+ KL(p(x¢)|[po ()

o p(xs|xe)
p(xs|ee)p(at, t) log ———— da; das
Rd JRd Po(xs|x:)

+C1(t = 8)T + KL(p(x1)[po (1))

The inequality (1) results from equation (64).

Lol (@, t)p (.|,
[— /]Rd /l%d p(ws|mt)p(wt,t) 10g ZZZ 1 E ))z (( S| )) dwt dws
=1 CL¢ 9\ Ls| Lt
1
< /Rd /Rd p(wslwt)P(wt,t)Z£=1 Ak (@4, 8)pF (25|21

L

! Al
t s
E al(xy, t)p! (x| 2y) log al(wh )P (s [21) dz, dx,
a¢(wt, )pa(a’5|wt)

ZB a:t
/ / (zs|xe)p(e, t g log S| da:t dx,
R4 JR4 1 xs| t

xs|lxy)p(xTy, log daf: dx,
/Rd /]Rd | t ¢ ; a¢ a:t, !

1) a
< Cgas‘tayl +/ (e, t Zlo l

a¢ wt7

< Carlyeu+ [ vty C—aml(mt,w e 1)

1 1
< Caotye+ ([ pl@nt) Y rlal(@int) —al (e da)?

1 a

2
= CQUS‘tEyl + C3Eal~

(65)

(66)

Given the established relationship between o, and ¢ — s, we are able to derive the necessary con-

clusion.

A.6 PROOF OF COROLLARY[Z]

Corollary 2 For all 0 < s < 1, there are constants C1,Cy,C3 > 0, such that

KL(p(SCs)Hpg(SCS)) < Cl(l - 5)2 + CQEyl + C'35¢1l‘

proof.

KL(p(s)|15” (x))

Jga P(xs|x1)p(er) da,
= Tz )p(xy) de 1 de;
L. [, pedenen o8 P e )P ()
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= Ls|L r 07( S| 1)$ Z
= [ [ om0 52 o da,

—|—/ / p(xs|ei)p (a:l)logmdwldws (67)
Rd JRE PO (xs|e1)

p@slaen) o
/RdZa 1, t)p! (|21 )p(1) log £ la.a )d 1 dx

+ [, [t ) S )

al(x1, 1)p! (x4]21)
x| xs|z1)lo 70 dary s
Xl o os Zr s o

(1)
< Ci(1 - S) + Cagyr + Ceqp

The inequality (1) utilizes Proposition [2|in conjunction with the method employed in the proof of

Corollary 1]

A.7 PROOF OF COROLLARY 3]

Corollary3 For all 0 < B < 1, there is a 6 > 0 and C,C5,C5,Cy >
0, such that for all time discretizations D with |D| < 0§, the Kullback-Leibler

divergence KL(p(x:, . )||Do(xt,,,.)) < C’1|D\# + Caeyi + C3Teq.  Moreover,
Wa(p(xo), p(t,,:,)) < Ca|D

proof.

The methodology employed to prove this corollary mirrors that used in the proof of Proposition

The sole divergence lies in the inclusion of an additional term with &,;.

A.8 PROOF OF PROPOSITION[3

Proposition 5 Let L(x) denote the one-hot class vector of o, the optimal a (¢, t) for the
two objective functions

Ly = Ewo"’pdata7wt~p(wt|w0)7tNU(071)HL(mO) - a¢(mt, t)”z’ (68)

and
Lo = Bagmpinta,aimp(@i|zo),t~U(0,1) CE(L(x0), ag(xt, 1)), (69)

are the same and equal to a(xy,t), where CE represents the cross-entropy loss.

proof.

Given that the subscript is utilized for data indices, we opt to use superscripts for vector components

within the context of this proof. Let L; denotes the one-hot class vector of the data y;.
(1) Loss L. It is a constrained optimization problem:

argmin Lo,

as (70)

st. 1Ta, =1, d}, >0,

where 1 is a column vector, all of whose elements are 1s. Using the KKT condition [Nocedal &

Wright] (1999)
0=Va,(@,.nl2+ v(1Tay(ze,t) — 1) — play(xs, t)
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fv%wz (2702) "% vy(@s, )| Li — ag (@i, £))> + v(1 ag (@, t) — 1) — " ag(a, 1)
( %/—/
Ay

= ZAtUi(wt,t)(a¢(wt,t) — L)+ vl —p

=AY viltag(a,t) — Ay vi(my, t)Li + vl — p, (71)
which leads to
Yo vi(@e, t) Ly — v1 /Ay + /Ay

al(xs,t) = , (72)
¢ > vi(@e, t)
where pi! > 0, Ve. Because 17 aj; (;,t) = 1, we have
Z»’Uq;(wt,t)]].Li—l/L/At—|—]].T,UJ/A,§ T
17a}(x,, t) = =2 =1—-vL/A +1Tpu/A 73
%3en?) IHEN) VR T
which indicates L = 17y > 0. Since (ay(xt, ) ul = 0, Vi, we have
v;(xy, t)L; — 1v/A A
(sz (mt ) V/ t+,LL/ t)lul =0. (74)
> vi(@e, t)
If
> i@, t) L — v/A + pt AL =0, (75)
then
v>pul >0, (76)
which lead to the contradiction
vL > 17 p. (77)
As as result, 4 = 0 and v = 0, and
Sovi(we, t) Ly — lv /Ay + /Ay
a(xy,t) = == = wi(x, t)L; = a(xy, t). (78)
¢ Zj vy (wtv t) Xl:

The Lagrange multiplier v and y are zero, which means we can omit the constrain 17 a,(z,t) = 1
and ald) > 0. As the object function and the feasible set are all convex, the KKT condition is alson
sufficient.

(2) The loss L g. Using the KKT condition Nocedal & Wright| (1999)
0=Va,(a.nlcE + (]lTa(b(:ct, t)y—1)— uTa¢(:vt7t)
a(p(a:f,t) Z 27r0t 7% Ui(wta t) Z 7Li log(ale(mtv t)) + V(]]-Ta¢(mt7 t) - 1) -
l

ZE/—/
Ay

Lzl/aé(a:tvt)
== Awi(my,t) : +vl—p, (79)
‘ L%/aé%(mht)

which leads to
A (g, t) Il

* 1 _
(af (e, 1) =3 p——— (80)
where pi! > 0. Since (@}, (;,t))' i = 0, we must have p' = 0, V1.
Because ]lTaj;(a:t, t) =1, we have v = A; Z v;(x¢,t). Thus
Apvi (e, t
5@t ZA L Zwl @y, t)Li = a(x, t). (81)

’U] Zlft,

In this case, the Lagrange multiplier v is not zero, thus the constrain 17a4(x¢,t) = 1 is essential.
As the object function and the feasible set are all convex, the KKT condition is alson sufficient. [
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‘ Patterns (Number of Classes)

#STEPS | Circles (2) | Moons (2) | Pinwheel (5) | CheckerBoard (8) | Gaussians (8)

| 1GS FC LD | 1GS FC LD |1GS FC LD | 1GS FC LD | 1GS FC LD

500 2.788 8.017 0.8717 | 3.935 7.051 2590 | 3.672 6.658 3.056 | -1.301 6.561 -2.912 | 6.339 7.945 2.567
100 7.685 5.0606 2.088 | 5724 4.111 0.7585 | 3.8901 9.002 3.789 | 0.1639 7.913 -4.804 | 6.364 11.80 5.768
50 1242 4764 2594 | 1321 5457 0.08196 | 14.05 1479 3.265 | 9.516 8.759 0.8225 | 18.93 13.66 7.536
30 20.82 1086 1555 | 21.38 8.021  3.508 | 2437 17.64 8.619 | 33.57 12.18 7.559 | 45.70 8.005 1.572
20 5096 18.90 40.57 | 40.36 1044  10.12 | 52.51 2048 9.817 | 1155 19.88 10.22 | 90.04 6.098 3.801
10 121.0 33.44 7194 | 149.1 4329 4430 | 1693 21.07 12.32 | 4949 5494 90.71 | 211.1 22.03 16.62

Table 4: Comparison on Synthetic Datasets. 1 GS indicates the baseline which approximates each
step as a single Gaussian. FC and LD represent our methods. Generation quality is assessed by
Maximum Mean Discrepancy (MMD) |. Values in the table have been rescaled by a factor of 107°.

B EXPERIMENTAL DETAILS

B.1 TRAINING DETAILS

We use aligned training setting to that of the noise prediction network in Extended-Analytic-DPM
(Bao et al., |2022a) and GMS (Guo et al.| 2024) for image-space experiments on CIFAR-10. We
use an exponential moving average (EMA) with a rate of 0.9999 and set the batch size as 128,
learning rate as 2e-4. We train 600K iterations and save a checkpoint every 10K iterations. For
the latent-space experiments on CelebA-HQ-256, we align the setting with LDM (Rombach et al.,
2022) and set the batch size as 48, learning rate as 9.6e-5. We train 500K iterations and choose the
best checkpoint to evaluate. We use the same training setting for the label model in label diffusion
merging approximation. Training on CIFAR-10 and CelebA-HQ-256 both take about 48 hours on 8
Tesla V100 GPUs.

To apply our method to Extended-Analytic-DPM and GMS, two higher-order noise prediction net-
works need to be trained. We align the settings with Extended-Analytic-DPM and GMS and train
two additional light-weight prediction heads with the backbone model frozen. Please refer to these
two original papers for more details.

B.2 EVALUATION DETAILS

Following Extended-Analytic-DPM and GMS, we calculate the FID score on 50K generated sam-
ples, using the official implementation of FID for pytorch (https: //github.com/mseitzer/pytorch-fid).
The reference distribution statistics of FID are computed on the full training set. The parameters in
sampling are kept aligned with those in Extended-Analytic-DPM, please refer to Appendix E.5 in
the original paper of Extended-Analytic-DPM (Bao et al.} 2022a)) for more details.

B.3 RESULTS ON 2D SYNTHETIC DATASET

We validate our approach on five synthetic 2D datasets with varying distributions. Each dataset
consists of continuous 2D points (z,y) € R?, assigned class labels based on natural clustering. For
each experiment, we generated 4K samples and assessed generation quality using Maximum Mean
Discrepancy (MMD) with a Laplace kernel (bandwidth 0.1) (Gretton et al.,[2012). Each computation
was repeated 8 times, and we report the average MMD value, with lower values indicating better
generation quality. As shown in Table ] our LD and FC methods outperform the single Gaussian
baseline, achieving lower MMD across different timesteps.

C QUALITATIVE RESULTS
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Figure 6: DDPM + DC-DPM on 50 Denoising Steps.
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Figure 9: SN-DDPM + DC-DPM on 25 Denoising Steps.
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Figure 12: GMS (Guo et al., 2024) + DC-DPM on 10 Denoising Steps.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 15: GMS + DC-DPM on 100 Denoising Steps.
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