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ABSTRACT

Diffusion models have achieved great success in generative tasks, with the qual-
ity of generated samples guaranteed by their convergence properties, typically
derived within the context of stochastic differential equations(SDE) and often in-
volving Kolmogorov equations for proofs. This paper introduces a novel method
for proving the convergence of diffusion models, which relies on direct estima-
tion of distributions without the need for SDE tools. This approach inspires
a Divide-and-Conquer strategy for approximating the reversed transition kernel
of Diffusion Probabilistic Models (DC-DPM), which is not derived from SDEs,
making previous convergence methods inapplicable. However, our method can be
easily extended to accommodate this. As our DC-DPM learns specific kernels for
each partition , these kernels require merging. According to the proof of conver-
gence, we design two merging strategies for these cluster-specific kernels along
with corresponding training and sampling methods. Experimental results demon-
strate the superior generation quality of our method compared to the traditional
single Gaussian kernel. Furthermore, our DC-DPM can synergize with previous
kernel optimization methods, enhancing their generation quality, especially with
a small number of timesteps.

1 INTRODUCTION

Diffusion models have recently gained prominence in generating multi-modal content across various
tasks, including image generation (Dhariwal & Nicholl, 2021} [Ho et al, 2020; [Rombach et al | 2022}
[Saharia et al.| |2022; |[Ramesh et al.}[2022), image super-resolution (Li et al.,2022), video generation

(Ho et al.|[2022azb), text-to-speech synthesis (Popov et al,2021), 3D generation (Poole et al}[2022),
and motion planning (Carvalho et al., [2023).

Diffusion models generate data by iteratively predicting noise and solving diffusion SDEs to de-
noise (Song et al} [2020b). Given the complexity of this process, achieving convergence towards
the desired data distribution is not a straightforward task, particularly when using a score function
approximated by a neural network.

Significant research advancements have been made to validate the convergence of diffusion models.
were the first to provide polynomial convergence guarantees for diffusion models.
The scope of this convergence was further expanded to a broader range of data distributions
et all 2022} [Lee et al. [2023). [De Bortolil (2022) demonstrated convergence when the data is only
supported on a lower-dimensional manifold. |Chen et al.| (2024); Benton et al. focused on
the development of convergence for deterministic sampling. Additionally, |Li et al. were able
to achieve a superior error bound by making additional assumptions on the Jacobian of the score
functions. However, the aforementioned convergence relies heavily on tools from SDEs, such as the
Kolmogorov equations and the Girsanov theorem [2022). This reliance
makes it challenging to adapt these methods to cases where the reverse process is not derived from
a SDE.

In this paper, we introduce a novel method to demonstrate the convergence of diffusion models.

Initially, we establish a error bound for one step by At*3” and €y, which mirrors the “local error”
in numerical methods for ODEs. Here, §3 is a positive number and ¢, denotes the L2 error of the
neural network approximation. Subsequently, we tackle the corner cases att = 0 and¢t = 1. Asa
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Figure 1: DC-DPM improves generation quality on small timesteps. Employing a divide-and-
conquer approach to approximate transition kernels in diffusion reverse process, DC-DPM generates
samples closer to ground truth distribution (GT) on 20 denoising steps. Colors represent data density.

result, we consolidate the preceding propositions and attain the convergence result. The properties
and corollaries presented in this paper are all unique contributions from our end.

Inspired by the proof above, we propose DC-DPM, a novel approach to represent the transition
kernel in the reverse process of diffusion probabilistic models (DPM) using a Divide-and-Conquer
strategy. To attain the convergence of DC-DPM, we employ the convexity of the Kullback-Leibler
divergence to transform the error term into the form of a single Gaussian case. This altered form
is consistent with the scenario outlined in our newly proposed proof method. As a result, we easily
prove the convergence of the newly proposed DC-DPM.

According to the convergence proof of DC-DPM, we cluster the data into different partitions, DC-
DPM learns reversed transition kernels for each data cluster and models the overall transition kernel
as a composition of these cluster-specific kernels. To determine how to combine the cluster-specific
kernels, we design two strategies along with corresponding training and sampling methods. DC-
DPM can collaborate with previous diffusion sampling optimization methods, particularly those
focused on optimizing the Gaussian transition kernel design, such as Extended-Analytic-DPM and
GMS, by utilizing the representations proposed in these works for each cluster-specific kernel in our
DC-DPM. Moreover, the convergence is not dependent on the data partitions, implying that any data
division pattern will lead to a convergent result.

Experimental results on 2D toy datasets and image datasets demonstrate that our method enhances
the generation quality of diffusion models compared to the traditional single Gaussian transition ker-
nel representation. Furthermore, our approach significantly improves the performance of previous
transition kernel optimization methods, including Extended-Analytic-DPM and GMS, especially in
scenarios with limited sampling steps.

Proofs for all Propositions are given in the Appendix.

2 BACKGROUND: DIFFUSION PROBABILISTIC MODELS AND ITS
CONVERGENCE

2.1 DIFFUSION PROBABILISTIC MODELS AND TRANSITION KERNELS

Given a finite set of data samples {y; € R%|i = 1,2,..., N}, where d represents the data dimension
and N is the number of samples. The distribution of these samples is characterized by:

1 N
Paata(®) = = D 0(x i), ()
i=0

where d(x) represents Dirac delta function. As real training processes are typically conducted on
such finite datasets, we assume that the ground truth data distribution adheres to Eq. (I).

Diffusion probabilistic models define two Markov chains including forward process and reverse
process. The forward process is typically hand-designed with Gaussian transition kernel to perturb
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data to noise and can be expressed as (Zhang et al., 2024):

p(wht‘st) :N(mt;at\swﬁaasl—)? (2)

where ¢, s are two timesteps and 0 < s <t < 1. ayy = 5+ and oy = (/1 — af‘s, where ay is a
hyperparameter which decreases monotonically from 1 to 0 over time ¢ (Kingma et al.| [2021).

Hence, the conditional distribution of x; given g can be derived as:
2
p(mt7t|w070) :N(mt;atx(ho't‘[)' (3)
Taking the initial condition Eq. (I)) into account, the single time marginal distribution of x; is:

12

1 _d Ty — Y,
p(xe,t) = N 2(27“7:52) 2 eXP(*”tT;
t

)- “4)

)

The reverse process reverses the forward one with a learned kernel. Based on Eq. and (@), the
ground truth reversed transition kernel can be derived with Bayes’ rule:

p(xs, 8)
Ts,S|xe,t) = plas, t|Ts, s
p( s | t ) ( t | s )p(mt,t) (5)
2
o Qs
= o) Y wi(en expl -5 3“” 'St = — 3wl

where o, = aﬂs wl(a:t,t) = Zui(mt’ )

(— Ith*atinIQ)
g (@e,t) 7 :

while u;(x,t) = exp 5o
t

Existing methods typically approximate the learnable reversed transition kernel as a single Gaussian
distribution (Ho et al.l 2020). The transition kernel can be expressed as (Zhang et al.,[2024):

_ _d Ozt\saf O‘SUZ
pxs, s|lxs, ) = (2mog)) 2 eXP{—ﬁ\| 2 LT 3 gz, 1)}, 6)
s|t t t

The mean of this Gaussian distribution is related to g(z¢,t), which is estimated by a neural net-
work yg(x¢,t) in a-prediction methods, while the variance is isotropic and only depends on the
timestep s and t. Another commonly used parameterization is e-prediction, which employs a noise
prediction network to estimate the noise €(x¢, t) (Salimans & Hol[2022)). Despite its difference from
x-prediction, these two parameterizations are equivalent, as demonstrated by the relationship

Ly = at:lj(mt,t) + ate(mt,t). (7)

In this paper, we utilize x-prediction for simplicity in our proofs. For clarity, we will refer to p(ax;)
and p(xs | ;) instead of p(x;,t) and p(xs, s | x4, t) when there is no ambiguity.

2.2 CONVERGENCE WITH KOLMOGOROV EQUATIONS

Define f; = dlog 2t and g, = —2f;, and the stochastic differential equation (SDE)

dx; = fix, dt + g, d By, )
where B; is the standard Brownian motion. According to /Anderson| (1982)), its reverse process is
d(l?t (ft:ct mtp(wt)) dt + gt dBt (9)

Previous efforts to prove the convergence of DPM heavily depend on the Kolmogorov equations of
Eq. (9) For instance, [Lee et al.|(2022) defines the discretization approximation

dzy = (fi-2i— — g7 Va,p(x,—)) dt + g, dBy, (10)

and establish the corresponding Kolmogorov forward equation for the single t1me marginal distri-
bution of Eq. ( . denoted as g(x;). Ultimately, the Chi-square divergence x2(q(z:)||p(x:)) is
estimated using the Kolmogorov equations. Numerous subsequent studies have embraced this con-
figuration (Lee et al., 2023} |Chen et al.| 2022} 2023bjja). However, this proof has its limitations as
it’s based on the Kolmogorov equations. This means it cannot be applied to other types of discretiza-
tions where constructing the Kolmogorov equations is challenging. Therefore, a proof that can be
readily adapted to a wider range of discretizations would be beneficial.
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3 METHOD

In this section, we first introduce a novel method to demonstrate that the distribution generated by the
conventional diffusion model closely matches the actual data distribution without using Kolmogorov
equations. We then propose to approximate the reverse process transition kernel in a divide-and-
conquer manner and prove its convergence using this novel method. We further propose merging
strategies for these kernels and present the corresponding training and sampling methods.

To start with, we outline some assumptions regarding the initial distribution and the neural network
approximation errors, which will be referenced throughout this paper:

Assumption 1 The initial distribution is a sum of Dirac deltas and max; ; ||y; — y;|| < M
for some positive constant M.

We adopt the assumption about the initial distribution from [Karras et al.| (2022), as it is precisely
the conditions during training, given the finite quantity of training data available in real-world situa-
tions. Additionally, we can consider y;s as independent and identically distributed samples from any
underlying continuous distribution pgutq, and pyqte in equation (1) will weakly converge to paqtq
(Varadarajan, |1958). Furthermore, our method can be extended to any initial distribution with com-
pact support. The only requirement is to replace the sum over y;s with an integral and verify the
conditions for interchanging this integral with other integrals and derivatives. The second compo-
nent of this assumption is that the gathered data is bounded, which is invariably the case in practical
applications.

Assumption 2 Forall t € [0, 1], yo and g are close in L?(p):

[ p@dlluaten )~ e O] dar < &5 < 1. an
R

This assumption has been adopted by previous studies (Lee et al.,|2022;|Chen et al.|[2022; |Lee et al.,
2023) and is confirmed by |Oko et al.| (2023]).

Assumption 3 «; is a predefined function, which decreases monotonically from I to 0, with
its derivatives bounded; specifically, 0 > d(ﬁ‘ > —C, for some positive constant C,.

In practice, «; is designed to be continuous and monotonically decreasing. This assumption is
naturally satisfied unless an unusual scheduler induces an unbounded derivative at¢ = O or ¢t = 1.

3.1 CONVERGENCE OF DPM FROM A NOVEL PERSPECTIVE

Considering that the sampling process occurs in discrete steps, we introduce the notation for time
discretization as D = {0 < tmin = top < t1 < -+ < tp = tmx < 1}. Subsequently, the
approximated single-time marginal distribution with the accurate y(z, t) is:

ﬁ(mtl) = /d T /d ﬁ(mti |xt¢+1) o .ﬁ(sctT—l |mt7)l~7(mtT) dthl e dxtT' (12)
R R

By substituting y(z¢, t) in Eq. and (6) with the network prediction yg (e, t), we obtain pg(x:,)

and pg (x4, |, , ). We also define At; = t;;1 — t; and denote the maximum At; as |D)|.

As pointed out in previous study (Zhang et al.l 2024)), singularities arise near t = 0 and ¢ = 1,
necessitating specific treatment. To address this, we divide the time interval into three distinct
segments: the left interval [0, ¢, ), the middle interval [tmin, tmax), and the right interval (¢max, 1].
Each section is handled independently. Previous work provides local error estimates for the middle
and right intervals (Zhang et al, [2024). However, their assertions are not strong enough to achieve
global convergence. We enhance these estimates to ensure global convergence. We refine the error
bound for the middle interval from (¢ — s)7 (Zhang et al.,[2024) to (¢ — s)3 5.
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Proposition 1 Forallt,,;, < s <t < tmaer and0 < B < 1, there exist 6 > 0 and Cy,Co >
0 depending on B, t i, and tmax, such that ift — s < 0, the inequality KL(p(xs)||po(xs)) <

KL(p(z+)||po(z:)) + C1(t — S) L4 Ca(t — s)ey holds.

To obtain this error bound, it’s necessary to estimate the integral within the Kullback-Leibler diver-
gence, which integrates over the entire R? domain. Thanks to the light tail of Gaussian distributions,
we design a B, which is related to |D|, and bound the integral over {x € R? : ||z|| > B} (Lemma
' As for {x € R? : ||z|| < B}, since ||z|| is small in this case (Lemma , we use a Taylor
expansion (Lemma 5) and find that the relationship g(a;, t) = >, w;(a,t)y; is crucial for cancel-
ing out the lower order terms of the error bound (Lemmafd). This justifies the training objective for
diffusion models from another perspective.

For the right interval, we improve the error bound from (1 — s)% (Zhang et al.,[2024), to (1 — s)2.

Proposition2 For all 0 < s < 1, there are constants C1,Cy > 0, such that
KL(p(zs)||pe(xs)) < C1(1 = 5)* + Ca(1 — 5)%ey

As for the left interval, it’s not feasible to compute the Kullback-Leibler divergence for Dirac deltas.
We adapt the idea from Theorem 2.1 in prior work (Lee et al.| [2023)), which applies the Wasserstein
distance to the left interval.

Proposition 3 Given 0 < t,,,;, < 1, the 2-Wasserstein distance

Wa(p(x0), p(24,,,,)) < V/2dCotmin. (13)

By combining the local error bounds above, we can establish global convergence as follows:

Proposition 4 Forall0 < 8 < 1, there exist§ > 0 and C1, Cs, C3 > 0, such that for all time
discretizations D with | D| < 6, the Kullback-Leibler divergence KL(p(xy,,.,,)||po(T+,,..,.)) <

Cl|D|% + Coeyy. Moreover, W3 (p(xo), p(,,.,)) < Cs|D|.

3.2 DIVIDE-AND-CONQUER APPROXIMATION AND ITS CONVERGENCE

Based on the analysis above, besides the single Gaussian transition kernel, any distribution submitted
to Proposition 4| could serve as the transition kernel.

As demonstrated in Eq. (5), the ground truth transition kernel of the diffusion reverse process is a
mixture of standard Gaussian distributions. Previous work proves that traditional approaches ap-
proximate this Gaussian mixture kernel with a single Gaussian distribution and can significantly
diverge from the true reverse transition kernel (Guo et al., 2024). This motivates our divide-and-
conquer (DC) transition kernel approximation.

Specifically, we propose to partition data and use cluster-specific kernels to represent data samples
in each segment. The true kernel is then approximated by integrating these cluster-specific kernels.
Consider a scenario where the training data is divided into L classes: {y; € R4i =1,2,...,N} =

UL {y! € R%i = 1,2,..., N;}. This partition can be arbitrary, and we will prove that any method
of data division result in convergence. We define a new approximation

p(xs|xy) Za Ty, t a:s|a:t) (14)
where
Al d 1 atl 02 t‘
A J sY s S _
P@slze) = (2moye) " 2ul(@e, t) exp{— ||z — —5 wt— gz, 1)1}, (15)
i=1 203, ot of
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_lmg—agyl)?

. e 207 ! N 1 _wl(@,t) d i _

wi(xy, 1) = o —aral 127 & (@e, 1) = 3252y wi(®e, 1), w(we, 1) = Ty and g (@4, 1) =
T o0 =

N ul(ay,t)yl. The single time marginal distribution of this approximation p(;) is defined in

the same way as in Eq. (12). Each cluster-specific kernel p(z|x;) can be approximated using any
method suitable for a standard diffusion probabilistic model, including a single Gaussian approxi-
mation in DDPM, single Gaussian with optimized variances in Extended-Analytic-DPM (Bao et al.,
2022a)), as well as GMS (Guo et al., |2024), which computes high-order moments and estimates
p'(xs|x;) as a mixture of two Gaussians with hand-crafted weights.

In this scenario, we need L neural networks to approximate ¢'(x;,t). In practice, we use a con-
ditional network yg(x¢,t,1) (also denoted as y}(x¢,t)). Additionally, a neural network as(x¢,t)

is necessary to approximate a(xy,t) = (at(xy4,t), - ,al(ze,t))T € RE. To derive the error
bound, we also make the assumption that y},(x¢, t) and a,(x, t) approximate §'(z,t) and a' (z, t)
in L2(p).

Assumption 4 For all t € [tyin, 1] and 1 < 1 < L, y} and aib are close to §' and a' in
L?(p) respectively:

[ p@ollvbent) - g, 0 dee < 25 < 1 (16)
R

and
/ p(a) (aly (@, t) — d (x4, 1)) dapy < €2y < 1. (17)
Rd

Moreover, aéﬁ(:ct, t) and a!(x4,t) are uniformly lower bounded by a constant C,.

Then, pg(x;|x;) is defined by y4s and afbs. po(xy) is defined in a manner consistent with equation
.

To estimate the error boundary of the Divide-and-Conquer Diffusion Probabilistic Models (DC-
DPM), we employ a strategy that transforms it into a single Gaussian case. Taking into account
that

L
p@slz) =Y d (@, t)p! (ms|zy), (18)
=1
where
N 2 2
_d 1 Q50 Q504
P (@le) = Y (2rog) Pl ) expl{— g5 lles - =@ - —5 P, (19)
=1 O’S‘t (o o

and given the convexity of the Kullback-Leibler divergence, we can deduce that

K L(p(@s|a,)|[p(@s]e.) <Y a' (@, ) KL (@) |5 (s |20). (20)
l

Eq. (20) allows us to bound the error of the divide-and-conquer approximations by the sum of its
individual components. Utilizing Propositions [T} [2] and[d] we can deduce the following corollaries:

Corollary 1 For all t,;n < s < t < tymae and 0 < [ < 1, there exist § > 0 and
C1,C5,C3 > 0 depending on B, tyin and tpqq, such that if t — s < 0, the inequality

3—

KL(p(a,)|[po(xs)) < KL(p(z1)||po (1)) + C1(t — 8)°2° + Ca(t — 8)ey1 + Csear holds.

Corollary 2 For all 0 < s < 1, there are constants C1,C5,C3 > 0, such that
KL(p(:Bs)Hpg(:Bs)) S Cl(l — 8)2 + CQ&yl F Cg&al.
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Corollary3 For all 0 < [ < 1, there exist 6 > 0 and Cy,C5,C3,Cy >
0, such that for all time discretizations D with |D| < §, the Kullback-Leibler
divergence KL(p(zx:,, )||Do(xt,,,.)) < Cl|D\# + Cheyr + CsTeq.  Moreover,
Wa(p(xo), p(®t,,.,)) < Ca|D

It is worthy to note that Corollaries above can not be easily proved with the methods based on
Kolmogorov equations as in the previous works, because it is not trivial to construct a Ito diffusion
with equation (14) being the solution to its corresponding Kolmogorov equations.

The term €, in Corollary [3|includes a coefficient 7', representing the inference time step. This factor
inhibits the error from converging to zero as |D| approaches zero. However, due to the simplistic
structure of a(xy,t), the network a,(x,,t) is relatively easy to train. This results in &, being
significantly smaller than €,;. Consequently, this maintains the error of DC-DPM at a reasonably
low value.

3.3 MERGING CLUSTER-SPECIFIC KERNELS

The divide-and-conquer representation of the reversed transition in Eq. consists of combination
coefficients a'(x;, t), referred to as the class part, and cluster-specific kernels p! (x,|x; ), referred to
as the diffusion part. For the diffusion part, to learn L cluster-specific kernels, we propose training
a single conditional network yg (x4, t,1) to represent them, rather than training L independent net-
works, in order to save computational overhead. For the class part, we propose two approaches to
estimate it: label diffusion approximation (LD) and fixed class approximation (FC).

Label diffusion approximation (LD) learns the class part in a manner similar to the diffusion part.
Define L; as the one-hot vector representing the class to which data point y; belongs. Then we
construct a(xs, t) as:

a(x,t) = Zwi(wht)l/i; (21)

where w; (¢, t) represents the coefficients in the ground truth transition kernel in Eq. . Substi-
tuting Eq. into Eq. aligns with the ground truth transition kernel in Eq. (3)). Given that the
structure of a(x,t) closely mirrors that of g (x,t), a neural network a4 (:,t) can be trained in a
manner analogous to the x-prediction networks in diffusion models. The training process to learn
the class part can be formulated as:

Proposition 5 Let L(x) denote the one-hot class vector of o, the optimal as(xy,t) for the
two objective functions

Ly = E?EOdiatathNp(wt|w0)vtNU(071)HL(:BO) - ad’(wtv t)”za (22)

and
Lo = Bagmpinta,ai~p(@i|zo),t~U(0,1) CE(L(x0), ag(xt, 1)), (23)

are the same and equal to a(x¢,t), where CE represents the cross-entropy loss.

Based on the analysis above, we present the algorithms for training the diffusion model yq (x4, ¢, 1)
in Algorithm I|and the label model a, (¢, t) in Algorithm

Algorithm 1 Training of diffusion model yg Algorithm 2 Training of label model ag
1: Repeat 1: Repeat
21 Ty ~ Ddata 21 Ty ~ Ddata
3: t ~ Uniform(ty,ta, ..., t7) 3: t ~ Uniform(ty,to, ..., t7)
4: xy ~ p(xe]To) 4: xy ~ p(xi|To)
5: Take gradient descent step on 5: Take gradient descent step on
Vo |yo (s, 1, 1(z0)) — zo|” Vs llag(@:,t) — L(o)|”
6: Until converged 6: Until converged
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The second approach, fixed class approximation (FC), first samples a label [ from Eq. att = 1.
In this scenario, a(z1,1) = (b%,0%,- -+ ,bY)T, where b' = J! represents the proportion of samples
in cluster [ relative to the total number of samples in the dataset. Then the label adheres to this value
along time ¢:

a(x,t) = elV. 24

Since the sampled label remains consistent over time ¢ in the FC approximation, the class part
aq(x,t) is necessitated solely at t = 1.

3.4 SAMPLING METHOD FOR DC-DPM

Conventionally, DDPM reverse approximation in Eq. (6) can be realized by the trajectory:

2 2
Ayt 10t atiflotz‘\tifl
Ty, = 2 Ty, + e Yo(Tt,,ti) + 00,1, 21, (25)
t; ti

where z;, ~ N(0,I)and ¢, ~ p(x¢,,tr). Our reverse process, using a mixture of cluster-specific
kernels, requires an additional random variable y (¢, ¢;) to represent the trajectory:

2 2
Qtilt; 19t i 1040, 4
mti71 = 0_2 wt,‘, + 0_2 y(mti 9 t’L) + O’ti,1 ‘ti th', . (26)
t; t;

The density of y(x4,,t;) is

p(y(wtn = = Z l wtm y - y@(wtutial))a (27)
l

and y(x4,, t;) is independent of z;,.

For label diffusion approximation (LD), our method samples two random variables in each step:
weight sampling in line 3 and diffusion sampling in line 5 as shown in AlgorlthmE} Fixed class
approximation (FC) samples the weight from the discrete distribution (b', b%, - - T Since the
weight term remains consistent over time ¢, weight sampling is executed only once, as shown in line
2 of Algorithm 4] After weight sampling, the model generates samples within one fixed class lg.
The generated distribution is:

Alo(wti):/%d“'/ndﬁlo(wti

According to Proposmon L 9 (o) approximates plf,,, () = 5— >, 6(x — y}°). Thus the distri-
0

i+1) o 'ﬁlo (1"15721 |$tT )plo (th7 tT) dxti+1 T dth' (28)

bution 3, b'p! () approximate p(zo) = 3, b'pl,;,» Wwhere b = 2t

Algorithm 3 Sampling process of label diffu- Algorithm 4 Sampling process of fixed class
sion approximation (LD) approximation (FC)
1: .’BtTNN(O,I) 1: .’BtTNN(O I)
2: fori=T,...,1do 2: I~ (b, 0%, -+ %)
3 I ~ag(xy,t;) 3 fori="1T,.. 1 do
4 z~N(0,I) 4: ZNN(O,I)
[ TP O't2_ Qs 0’?_
5 my,_, = e I;t; = Ty, 50 xy,_, = - I;t; = Ty,
O‘tiflo'?-t- ' Ottiflo'?.t. '
+'Tmy0(l‘tmtia D)+o, 0,2 +%ya(ﬂ3twti, D)+ou uz
6: end for 6: end for
7: return x;, 7: return x;,




Under review as a conference paper at ICLR 2025

Algorithm 5 Sampling process for LD ap- Algorithm 6 Sampling process for FC ap-
proximation with ODE-based methods proximation with ODE-based methods

1: thNN(O,I) 1: thNN(O,I)

2: fori=T,...,1do 20 L~ (bY, 0%, - bh)

33 z~N(0,1) 3: fori=1T,...,1do

4: Ty, 1 = ODE(QBfl N ti, l) 4: Ty, 1 = ODE(QBILL N ti, l)

5: end for 5: end for

6: return x;, 6: return x;,

As the probability flow ODE keeps the single-time marginals (Song et al., |2020b)), we can replace
the diffusion sampling method with probability flow ODE-based methods, such as DDIM (Song
et al.| [2020a), DPM Solver (Lu et al.| |2022al), PNDM (Liu et al., 2022) etc. We summarize this in
Algorithm where ODE (x4, t, 1) represents the ODE-based sampling methods. Similarly, the fixed
class approximation is also applicable to ODE-based methods, as presented in Algorithm 6]

4 EXPERIMENTS

4.1 IMAGE-SPACE RESULTS

Table 1: FID | on CIFAR-10 Dataset. Employing our Divide-and-Conquer (DC) kernel approx-
imation strategy on previous DPM methods enhances their generation quality especially on small
timesteps. LD represents merging kernels with label diffusion approximation while FC represents
fixed class approximation. SN-DDPM is short for Extended-Analytic-DPM (Bao et al.| [2022a).

| CIFAR-10 (Linear Schedule) | CIFAR-10 (Cosine Schedule)
# TIMESTEPS ‘ 10 25 50 100 200 1000 ‘ 10 25 50 100 200 1000
DDPM 43.14 21.63 1521 1094 823 5.11 | 34.76 16.18 11.11 838 6.66 492

+DC-LD (Ours) | 39.40 2195 1554 10.78 791 498 |27.78 1552 1012 729 5.61 4.11
+DC-FC (Ours) | 34.48 21.05 15.12 10.67 7.82 450 | 25.80 1458 9.66 6.72 5.03 3.46

SN-DDPM 21.87 691 458 374 334 371 | 1633 6.05 419 383 372 4.08
+DC-LD (Ours) | 16.77 639 429 340 297 330 | 1285 6.54 456 3.63 335 3.51
+DC-FC (Ours) | 11.90 498 3.62 298 255 293 | 992 495 335 267 253 274

GMS 1743 596 416 326 3.01 276 | 13.80 548 4.00 346 334 423
+DC-LD (Ours) | 1454 589 422 341 358 519 | 1080 6.22 453 3.64 334 435
+DC-FC (Ours) | 10.40 484 361 3.00 3.00 286 | 876 491 343 276 2.60 3.35

We quantitatively compare the sample quality using the widely recognized Fréchet Inception Dis-
tance (FID) score (Heusel et al., 2017). Utilizing the semantic labels from the CIFAR-10 dataset, we
categorize the data into 10 classes. We then apply our proposed divide-and-conquer approximation
to various transition kernel designs, including DDPM (Ho et al., 2020), Extended-Analytic-DPM
(Bao et al., |2022a)), and GMS (Guo et al. 2024). These kernels are merged using both the label
diffusion (LD) and fixed class (FC) approximation strategies. As illustrated in Table [T} our DC-
DPM approach significantly enhances the performance of existing methods, particularly at smaller
denoising timesteps. Specifically, DC-DPM achieves improvements of 25.78% for DDPM, 45.58%
for Extended-Analytic-DPM, and 40.33% for GMS in scenarios with 10 denoising steps.

4.2 LATENT-SPACE RESULTS

We also apply DC-DPM to latent diffusion models (Rombach et al.,[2022)). We perform comparative
experiments for unconditional generation on the CelebA-HQ-256 image dataset. To classify the data,
we first compute the VAE latent space of each image |Kingma & Welling|(2013)), extract the primary
dimension using principal component analysis (PCA) |Abdi & Williams| (2010), and then cluster
the images into 10 classes using the K-Means algorithm. Both the quantitative results in Table [3|
demonstrate that DC-DPM improves the generation quality of diffusion models in latent space.
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Table 2: FID | on CIFAR-10 (Linear
Schedule) with DDIM. DC-DPM can be ap-
plied to ODE-based samplers like DDIM.

#STEPS | 10 25 50

DDIM 21.31 1070 7.74
+DC-LD (Ours) | 2043 11.39 8.38
+DC-FC (Ours) | 16.54 9.15  6.60

#STEPS_10

Table 3: FID | on CelebA-HQ-256. DC-
DPM is applicable to latent diffusion models
to improve the generation quality.

#STEPS | 10 25 50

DDPM 3521 18.60 14.16
+DC-LD (Ours) | 30.58 15.76 12.25
+DC-FC (Ours) | 30.47 1537 12.16

#STEPS 25

enables higher quality generation on small timesteps for latent diffusion model on CelebA-HQ-256.

4.3 DETERMINISTIC SAMPLING METHODS

While we have only validated our DC-DPM with stochastic sampling methods, it is not guaranteed to
work with deterministic methods like DDIM. However, our experiments indicate that DC-DPM can
indeed function with deterministic sampling. As shown in Table[2] applying DC-DPM to the DDIM
sampler improves generation quality by 22.38% with 10 steps on the CIFAR-10 dataset. Figure 2]
provides qualitative results, further demonstrating the compatibility of DC-DPM with DDIM.

5 RELATED WORK

Significant research has focused on improving diffusion model performance on fewer timesteps,
broadly categorized into three approaches. Training-based methods includes trainable sampling

schedules (Watson et al [2021)), truncated diffusion (Lyu et al] 2022} [Zheng et al.| [2022)), neural

operators (Zheng et al.) , and distillation (Salimans & Hoj 2022; [Sauer et al., [2023} Meng]|
et all 2023 [Song et al), 2023} [Luo et all, 2023). The second category enhances the efficiency of

SDE and ODE solvers in the reverse process, including faster SDE and ODE solvers
2022aljb} [Zheng et al. 20230} [Xu et al} 2023} [Li et al.| [2024), adaptive step size solvers
Martineau et al., 2021)), predictor-corrector methods (Song et al.l [2020b} [Zhao et all, [2023), and
stochastic-calculus-based optimization (Sabour et al.,2024).

The third category focuses on improving the design of the transition kernel in the diffusion reverse
process. Analytic-DPM and Extended-Analytic-DPM esti-
mate the optimal variance. Our work also falls within this category, with the most closely related
prior work being GMS 2024). GMS represents the transition kernel as a mixture of
two Gaussians based on the estimation of higher-order moments. In contrast, the highlight of our
method is to divide data into clusters and construct the kernel function in a divide-and-conquer man-
ner. We construct a more general framework and previous Analytic-DPM, Extended-Analytic-DPM,
and GMS can serve as the cluster-specific kernel in our method.

6 CONCLUSION

In this paper, we propose DC-DPM, a novel divide-and-conquer approach for approximating the
transition kernel in the reverse process of diffusion probabilistic models. We provide convergence
proof for diffusion models from a new perspective, generalizing the transition kernel representation
from a conventional single Gaussian to a divide-and-conquer framework. This framework utilizes
cluster-specific kernels to represent segmented data, which are then merged to form an overall repre-
sentation. We propose two merging strategies along with their corresponding training and sampling
methods. Experimental results demonstrate the effectiveness of our approach, significantly enhanc-
ing generation quality, particularly over a limited number of timesteps.

10
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A PROOFS

A.1 PROOF OF PROPOSITION[I]

Lemma 1 For all positive integrable functions f(x), g(x):R? — R, we have

fRd f(x)
L f(x)dxlog =——— Logle )d:v < f( ) log @) da (29)
proof- Let F = [o, f(x)dz, G = [, g(x)dx and h(t) = tlogt. h(t) is convex because
d? 1
—h(t) = 7 > 0. (30)
And then
f z) w)
_ M M
_G/ ) aa. 31)

According to the probabilistic form of Jensen’s inequality

g(z),  f(z) g(=®) f(®) .« 1 ) das
G/Rd—h(—)dmZGh(/Rd——dm)_Gh(G | f@)da)

G yg(e) G g(z)

F F
= Gh(=) = Flog = 32
(&) 8 & (32)

Jea f(x) dz

f(x) dxlog =————
- o

Note that the integrability of f ensures the validity of Jensen’s inequality. O

Lemma2 Leto > 0,0 < 3 < land B =ocy/(d+2)log 2 + 0>M, for all v € R? with
|lv| < M, Let 6 = min(e’%,eiw‘l(fﬁ)) and C' = M (1 + v/27), then o < ¢ indicates

2.0((2
(2mo?) "% / exp(—%)(—(w + o*v)Tv)dz < Co* (33)
|z|>B
proof.
200112
(27702)—%‘/ u Bexp(_W)<—(x+02v)Tv)dx
>
W o oy 1211\, _r
= (2m0°) "2 /|z oolon exp(— 5,2 )(—z"v)dz
() 2
< 2ro?)t [ exp(— 20y 1) 1)) a2 (34)
[|z||>B—02M 20
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T T 27
= (271'02)*%M/ e / / A(d) sin?™2(p1) sin?3(g2) - - - sin(@g_z) dpg_1 - - - dpa dgy
0 o Jo

(3) 21t
2 (2m) M
r(g)

A(d),

where
r2

Ald) = o1 / >B_02Mexp( 202)Mrddr, (35)

and the derivation of equation (1) is attributed to the change in the integral variable of Z = x +
o?Y . The inequality in equation (2) arises from a broader integral domain and a Cauchy inequality.
Equation (3) is derived from the calculation of the d — 1 dimensional sphere S¢~!.

aa=o [ ewgm()' ! 6)
=0 xp(—— —) d—
r>B—o02M P 202 o a
N
_ o ! !
_O-M/T/>B—<721VI exp( 5 )" dr
— o ME(d).
Let § = ¢~ and then log 4 > 1.
2
E(d) :/ exp(——)rddr
> B=o?M 2
_ g T + o d—1)ri=2d
= —r% " exp( 5) . . Beo?u exp(——)( )T r
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= By e BT 4y 2)

+ee 3D

d+2

(d—=1)(d—3)---3((d+2)log =
d+2 1 d=1, 4 d+2 2E(1) d isodd,
< —_ — )2 2
2 ((d+2)log Z3) = (o7) = + {E(O) d is even,
1 dt1 2E(1) d isodd
< ! 4 )
((d+2)log o7 yrot {E(O) d is even.

Let 6 = e%W*I(fﬁ), we have (d + 2)log ﬁa‘l < 1, where W_ is the branch of Lambert W
function labelled by -1.

(38)
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Since all A > 0, exp(Ar — A\ /(d + 2)log &1 ) > 1, we have

2

E0) = / exp(—r—)dr
T>B—;2NI 2

2
< / exp(Ar — A/ (d + 2) log %) exp(—r—) dr
R (o 2

2
— Vamexp( — Ay/(d+2)log &) (39)
2 o

(d+2)log L
<2 _o e oot
< Varexp(- DAt
= 27‘1’(04)#.
As a result, by setting 6 = Inin(e*%,eiw‘l(fﬁb)) and C = M (1 + v/27), we can achieve the
required inequality.

. . . P B | _1
Lemma 3 Given the notations from Lemma if 0 = min(e” 7@ e1W-1( d+2)) we have

B+02Me _|B—&—02M|2

202

xp( ) < ot (40)

o

proof. When § = min(e™ 4<d1+2>,eiw‘1(_ﬁ)), we have 2=2"M > 1 and (d+2)log Lot < 1.
Since the function ¢ exp(fg) is decreasing when ¢ > 1, we have
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d+2
2
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Lemma 4 Given the notations from Lemma |2} consider a set of vectors {v; € R? | 1 <
i < N} such that max; ||v;|| < M, along with corresponding weights w; for each vector v;
satisfying Y, w; = 1. Forall1 <i < N, let C = %Tr(zj wjl|vi|[%) + M3 + 3M* and

1 _=B__ ..
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proof.

B
Let§ = e25 V(=227 we have 02 log - < 745, which means o((d + 2) log 1) i <olP
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Since the matrix V < Z W;iv;; T"is symmetric, it can be diagonalized: V' = UAUT where A
is an diagonal matrix, U is an orthogonal matrix and

ij'uj ;) ij v v;) ZwJHUZH 43)

With the change of variable z = U7 (x + o%v;), we have
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Lemma 5 When ||x|| < Band ), w;v; =0, let§ = min(e%ﬁw’l(”(gﬂ)), (14 M)PF' 1)
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Expanding the function ef at t = 0 with Lagrange’s remainder, where 0 < £ < B
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Lemma 6 For all t,,;, < s <t < tymas and 0 < 3 < 1, there exists a § > 0 and C > 0,

depending on f3, ty,in and tm,m, such that if t — s < 0, the inequality KL(p(x;)||p(xs)) <
KL(p(z,)|[p(x1)) + C(t — 5)°2" holds.

proof.
Noting that
p = Jra p(xs|®)p(2) deey
KLp(eolip) = [ pleeop(e) dedos FEnmE e de,
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= / / p(@s|z)p(a,) log p(a) da; da, — / / p(xs|z)p(x,) logp(x:) dz; dz, (48)
R4 JR4 R¢ JR4

Since p(xs|x:)p(x:) log p(x:) > 0 and p(xs|x:)p(a:) log p(a:) < 0 for all x; and x4, according
to Fubini’s theorem, we have

/ / zale)p(e:) log pley) de, dw, = / / (@sl:)p(a:) log plar) dz, daz,
R4 JR4 Rd JRd
— [ plen ogp(a) da “9)
R

and

/ / Dl |)p(@:) log plaze) da, der, = / / p(@s |2 )p(ae) log plae) dz, dez,
R4 JR4 Rd JRd
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= /Rd p(xt) log p(ay) day. (50)

Since the entropy of Gaussian mixtures and the cross entropy between Gaussians are all finite, we
have f]Rd f]Rd p(ws |$t)p($t) 10gp($t) dx; dx, and fRd f]Rd p(f'?s |33t)p(5'9t> logﬁ(wt) dx; dx, are
both integrable. As a result,

II:/ / P(:lewt)P(wt)logp(:ct)dwtdws—/ / p(@s|xe)p(x:) log p(x) Aoy ds
Re JRd -
:/ / P(wslwt)P(wt)logp(:vt)dwsdwt—/ / p(@s|@:)p(xt) log pey) des dey (51)
R4 JR4 Rd JRd

/ / (xs|ze)p(x) log p(zy) dx, dz,
Rd JRd p(xe)
= KL(p(z:)||p(2+))-

Now, let us delve into a detailed analysis of Part I.

I—/ / (s|2) log D222t Pz, z:) dzp(z:) de:
Rd
2
f\< s XsT4|s ||2

p(as|e,)
||ms m25 2 2

= /Rd[(Qﬂai‘t)_E /Rd gwi(wt,t) exp(— 208 t o3 )log(z w; (e, t) exp(

| j

s|t\| ( (z4,1) = y;)[[)] dasp(e) dae

:/ [(27T0'5\t) %/ +/ Zwi(wt,t)exp(
R Az, B,y (1)) Ac(ze,B,y(xet))

11 v
|l + o2, yil]? 1
- TQM) longj(wt,t) exp(—xTy; — 503|t||yi\|2)] dxs p(x;) da;. (52)
s i

1

According to Lemma let Oy = min(e’%eiwﬂ(*ﬁ)) and Cyy = M, (1 + v/27), where
M, = -, when o), < 6,

o
tmin

4 |z + o2, Ayi|?
III:/ (2m0?,) z/ ) Zwi(wt,t)eXp(—Q—‘z)log(
R4 Az, B,g(ze,t)) Tt

llz+o2, Ayl
> wi(Te, t) eXp(—%)
> Wi, t) exp(—m)

ot [ S
Rd Az, B,g(ze,t))

||w+o—s|tAyl||2 exp(_ 20&\1&
- ) 2 Og( ]2 )dmé p(mt)dxt (53)
Tse exp(—5,,)
:/ (2m§‘t)—%/ > wiay, t) expl
R Al@,B.g(@:,1)
||z + o2, Ayil|? 1
por— )@ Ay — 2ok [yl ) de. p(a,) da
O‘SIt 2
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4 4
< / Clllas|tp(wt) dx; = 011105|t~
Rd

o) 2

AccordmgtoLemma@andLemmalleth—max( Mo+M3+3M3, L (1+My) M2+t M3+
e

o 5
g(1+M PBM3+1(14 M, )2M4 S(1+My)ME+3 M and 6y = min(e 3° 1= 6<d+2)),(1—|—
M,)3P~1), where M, = U— when o), < dry
|z + o2yl
IV = Z/ w; (X, t 27ms|t) %/ exp(—272‘t)log[
lz|<B s\t

1
> wiwe t)exp(~a"y; — 503, [|y;|*)] dep(a:) ds

2+ o2 il 2

= w; (T, 7702:& —% exXp(————
N R e e

1
> wj(me, t) exp(—a"y; — §U§|t”yj”2) — 1] dz,p(x:) dx

<3 [ wilen )l pla) da

= Civoy, (54)
Because ‘72|t =(1- %z)i ag < Cetd(a, — o) < Q%C” (t — s). Let § = min(dyy, o) and
C = (Cu 4 Civ) (222 we get the result. - 0.

Oé
tmin

Proposition 1 Forallt,,;, < s <t < tmaer and 0 < § < 1, there exist 6 > 0 and Cy,Cy >
0 depending on 3, t,,in and tmaw, such that ift— s < 0, the inequality KL(p(xs)||po(xs)) <

KL(p(2:)||po(24)) + C1(t — 5)°7 + Calt — s)e, holds.

proof.
Since |y(xs, t)| = | >, wil®e, )ys| < D, wiwe, t)|ys| < Yo, wi(xe, t)M = M, we have

/Rd p(wt)|g(wt,t)|2 < M2 (55)

KL (p(x5)|[ps (1)) // (a|0)p(ae) log L ElZOP@) 0

po(@s|)po(@:)

/ / (zs|x)p(x:, t) lo (ws‘mt) dz; dz,
R JRE pe(ws|3’3t)

/Rd /Rd x|z )p(xy, t) log ((-’Bm )) da, dz,.
=/ / p(xs|@:)p(2e, t)[log ~( Zo|e1) + log D(@s|:) |da, dz,  (56)
R4 JR4

p(@s|T:) po(s|T:)
+ KL(p(x¢)|[po ()

o p(s|z:)
p(xs|es)p(at, t) log ——— da; ds
Rd JRd po(xs|Tt)

+Ci(t = 5)T + KL(p(x1)|[po(2))
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The inequality (1) use the conclusion in Proposition [6]

Since p(xs|x:) and po(xs|x:) are Gaussians with the same covariance matrix,

1 s02
- / / P, Dp(a|0) (2, — 22072 4,
R4 JRA 20’8“ t

o O—tz\s _ TOéS t\ _
- o2 (y($t7 75) + ye(fﬂm t))) P (ye(wm ) - y(iﬂm t))} dx, dz; (57)
t t
o 1 a50252|s 2 _ T _
- = p(wht)p(wslwt)Z 2 ( 2 ) (ye(mht) + y(wht)) (y9($t7t) - y(wtut)) dws dmt
R4 JR4 O.s\t Gt
I;

2
1 atsgg asats _

+ / / (@, p(as|y) —— (s — —22 @) T =12 (g (2, 1) — Gy, 1)) day dary

R2 JRA O—S\t Ut g.

t

Iz

2 2
SU‘

== [ ple) S ) + e ) (ol 1) ~ gl t) da

a?o?

: S‘t(/RdP(mt)H(ye(mnt)+@($t,t)|\2d$t /de(mt)H(ye(ﬂ?t, t) — gy, t)|? ) dx;

204

a?o?

;gi‘tey(/ﬂgd p(xt)H(yQ(mtv t) - 'g(mta t) + 2:’7(58157 t)Hz dmf)% (58)

a?o?

. i‘té‘y(/ p(ae)3(1[ye (e, t) — Glae, 1) * + 4| (e, 8)|?) dae) 2
20'5 Rd

0620'2

3——le (2 + 4M?)3

IN

IN

IN

IN

| /\

20
3 2
20T (1+4M?)202 e,

tmin

2
Qs Q505 _
L= / e / plas|ay) (@ — =) dag (yo (2, 1) — G(m0, 1)) da,
Rd Rd g

o3 t
(678

= %/ p(a) > wil,t)
05 JRd P

a202
sV s|t _ 2 1
M bt ) = gt dan)

S

OéO"S

Y; (y9 (xta t) - Ig(mtv t)) dmt (59)

IN

IA

2
« M

s 2 2
— MoZ,e, < ——0%,¢€
ol sty = 4 s|t€y

tmin

As as result, let Cy = (20%(1 +4M?)z + %)(%)% and ¢ use the value in Lemmaﬁ we

) i af
min min man

get the required result. (|
A.2  PROOF OF PROPOSITION[Z]
Proposition2 For all 0 < s < 1, there are constants C1,Co > 0, such that

KL(p(zs)||po(@s)) < C1(1 = 5)* + Co(1 — 5)%ey,

21



Under review as a conference paper at ICLR 2025

proof.
First, we consider the difference between p(x,) and p(x,). Since p(x1) = p(x1) ~ N (0, 1),

KL(p(z)||p(xs))

[l

_ 2\— 2 ||$5 — QsY;
= [emott [ S wan e 12 S g

> wi(e, 1) exp(—iums 2§§y1|‘ )

pepp— T Jdxsp(z1) dz, (60)
eXp( s ;’.’;(2 171)“2)
</ (2mo?) %/ Zw x1,1)exp(— ||:1:5— SyZHQ)log[
>~ i 7 17
erasyill
eXP(—T)
- |dxsp(x1) day
exp(_H s ;Z-(Q 171)”2)
>~ ]Rd z 17 2
a?

Qg _
52 (ms - asyi)T(yi —y(x1,1)) + 2% 2 Sy — y(z, )||2 dzsp(x;) de;

8

M? C2
< ‘*MQ dey < 2 < 1—35)2.
/Rd por Mp@)des < 5% —ay < 5 (-

tmin min

Upon considering equanons ,and (5 ) and designating Cy = C’Q( (1+4M?) 3+

04&) we are able to derive the des1red conclusion. O
t

tmin

min

The method used to prove the previous Proposmon cannot be applied to prove Proposition|[I|because
there is a o2 St in the denominator. This results in an error bound of o2 Se which does not allow for

global convergence.
A.3  PROOF OF PROPOSITION[3]

Proposition 3 Given 0 < t,,;, < 1, the 2-Wasserstein distance

WQ(p(w0)7p(xtmm)) < m~ (61)

proof.

N
Walpl0). lee,.,) < 7 D Walb(e = ), My o2, T)

i=1

N
1
- N Z \/Zio—tmm (62)
i=1
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N
1
<% ; V2dCotmin = \/2dCatmin.

O
A.4 PROOF OF PROPOSITION[4]
Proposition 4 Forall0 < 8 < 1, there exist§ > 0 and C1, Cs, C3 > 0, such that for all time
discretizations D with |D| < 6, the Kullback-Leibler divergence KL(p(xy,,,. )||pe(xt,,,,)) <
Cl|D|% + Coey. Moreover, W3 (p(xo), p(,,.,)) < Cs|D|.
proof.
According to Propositionand foralli € {1,2,...,T}
KL(p(zr,)||po(1,)) < KL(p(we,,)Ipo(r,,) + Caltion — )= + Caltiss —t)ey
1—
< KL(p(:1)|[ps (1)) + C1|D| =" + Caey. (63)
The final estimation using the 2-Wasserstein is simply the Proposition 3] (]
A.5 PROOF OF COROLLARY 1]
Corollary 1 For all t,in < s < t < tymar and 0 < B < 1, there exists a 6 > 0 and
C1,C5,C3 > 0, depending on 3, tpin and toaz, such that if t — s < 0, the inequality
KL(p(,)||po (@) < KL(p(x1)|[po(x0)) + Cu(t — 5)° = + Ca(t — s)ey + Caca holds.
proof. In accordance with the convexity of the Kullback-Leibler divergence, we have
K L(p(a,|ao)|[p(as]:) <D a (@, ) KL (2] 20), 5 (4|20))
1
DS d (@ )0t - )7 (64)
1

3—8

=yt —5)%2".

The equality in step (1) is a direct consequence of Proposition|[I]

KL(p(s)||ps(xs)) // (4] 2)p(a:) Lo p(wélsct)( p@slz)p@) 4o

Pe(ffs |+ )po ()

/ / 9|mt CCf, )log ( S‘ t) dmtdms
Rd JRd Do wslift)

/Rd /Rd (zs|ze)p(xe, t) log A(( )) dz; dxs.
_ op PEslT) ) D(@s|a)
- /Rd /de(ms|xt)p(ﬂct,t)[l 8 o) +1 gﬁg(ws\xt)]dwt dz, (65)
+ KL(p(21)||po (2+))

0 plxs|zt)
p(xs|xe)p(a, t) log ———= da; das
R Po(xs|xe)

I
+Ci(t— )77 + KL(p(a0)|[po ()
The inequality (1) results from equation (64).
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_ DY RECAACAD
- /Rd /Rd plsl )t los Zl 1 %s( t)pp (5| e
1

< /Rd /Rd p(wslwt)P(wt,t)Z£=1 b (@4, )Pk (25|21

l t ~l s
Za (x4, t) ws|mt)log al(wh P (@s| ) dz, dx,
aqa(wtv )pa(w5|wt)

P (xs|zr)
s , log dz; dz,
/Rd /R Tolmepla Zl a:sm e
wtv
s , E 1 d dz, 66
/Rd/]Rd (xs|xe)p(ay, t og @t x; dx (66)

1 a
(<) C / 1 (l wtv
20 614Eyl p wtv E 0og
S‘t Y l t7

S 020—2\1‘,5?![ +/ p mtv Z (mta a’ (xta )|d$t
Rd

< Caoien ([ plant) Y C—W(wt,t) — e 1) da)
R 1 a

2
= CQUS‘tEyl + C3eq1.

Given the established relationship between o, and ¢ — s, we are able to derive the necessary con-
clusion.

A.6 PROOF OF COROLLARY 2]

Corollary 2 For all 0 < s < 1, there are constants C1,Cy,C3 > 0, such that
KL(p(zs)||pe(zs)) < C1(1 = 5)* + Cagyr + Cacar.

proof.

Jra P(@s|z1)p(@1) day
= Ts|x1)p(xr)de lo — dz,
/Rd /de( EopE) do ® T P (@) P (1) dy

p(xs|z1)p(x1)
< /]Rd /de(mslml)p(ml)bgﬁe(wmme(wl)dml dxz,

p($3|331)
= s log 75— dx; dx;
L [ @ dainteniop BE az, de

= / p(:cs|ac1)p(w1)logmdw1 da,
Rd JR4 ( s| 1)
p(xs|z1)
+/Rd /de(mgxl)p(ml)logﬁe@skcl)dml d.’IZS (67)

[
< l Hpt s 1 Md dx,
< [, [ X o 0d @ dentan Ogﬁl(xs|w1) = da

»/Rd/]Rd (zs|x1)p ml)zkak( )p (ws|w1)
o (. |2
Zla (:133|:1:1) (ws|a31)10g l( ]‘) ( s| )

b
ag(x1, 1)p? (xs|@1)

daq dog
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1)
< C1(1 = 5)? + Caey + Caea

The inequality (1) utilizes Proposition [2|in conjunction with the method employed in the proof of
Corollary 1] O

A.7 PROOF OF COROLLARY 3]

Corollary3 For all 0 < B < 1, there is a 6 > 0 and C1,C5,C5,Cy >
0, such that for all time discretizations D with |D| < 0, the Kullback-Leibler
divergence KL(p(x:,, )||Do(xt,,,.)) < C’1|D\% + Caeyi + C3Teq.  Moreover,
Wa(p(zo), p(2t,,.,)) < Ca|D.

proof.
The methodology employed to prove this corollary mirrors that used in the proof of Proposition 4]
The sole divergence lies in the inclusion of an additional term with &,;. O

A.8 PROOF OF PROPOSITION[3]

Proposition 5 Let L(x) denote the one-hot class vector of o, the optimal a (¢, t) for the
two objective functions

L = Eggpgaras@imp(@leo) t~00,1)| | L(@0) — ag(@:, 1), (68)
and
LoE = Bagmpiata,zi~p(@i|zo),t~U(0,1) CE(L(Z0), ag(xt, 1)), (69)

are the same and equal to a(x¢,t), where CE represents the cross-entropy loss.

proof.

Given that the subscript is utilized for data indices, we opt to use superscripts for vector components
within the context of this proof. Let L; denotes the one-hot class vector of the data y;.

(1) Loss Lo. It is a constrained optimization problem:
argmin Lo,
ay (70)
s.t. ]lTa¢ =1, ale >0,

where 1 is a column vector, all of whose elements are 1s. Using the KKT condition Nocedal &
Wright (1999)

0=Va,(a,nle+ v(1Tay(ze,t) — 1) — pFay(xs, t)
1 _d
= Vad,(m,,,t) Z N(Zﬂ—a?) g Ui(mtat”Li - a¢(wt7t)|2 + V(]]'Tad)(wt?t) - 1) - lj’Ta¢(wtvt)

L N——~—
Ay

= ZAtvi(wta t)(a'(b(mt)t) - Ll) +rvl— H

= A, Zvi(wt,t)a(z)(:ct,t) — Ay Zvi(wt,t)Li + vl — p, (71)

which leads to
Yo vime, t) Ly — v /Ay + /A,

ay(xe,t) = ) (72)
¢ >, vi(@e, 1)
where p! > 0, Ve. Because ]lTa;)(cct, t) = 1, we have
v;(xy,t)1L; —vL/A, + 1T /A
]lTa;(CEt,t):ZlU(mt ) v / t+ /*L/ tZl—l/L/At‘i‘]lT/J//At, (73)

225 Vi (@i t)
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which indicates vL = 17 > 0. Since (@} (2, 1)) u! = 0, Vi, we have

Yoivime, t) Ly — Tv /Ay + /A,

( SR )'u' =0. (74)
If
> i@, )L — v/A + A =0, (75)
then
v>pu >0, (76)
which lead to the contradiction
vL > ]lTu. (77

As asresult, u = 0 and v = 0, and

Yo vi®e, t) Ly — v /Ay + 1/ Ay
le vy (mt’ t)
The Lagrange multiplier v and p are zero, which means we can omit the constrain 17 ay (2, t) = 1

and afl5 > 0. As the object function and the feasible set are all convex, the KKT condition is alson
sufficient.

(2) The loss L g. Using the KKT condition Nocedal & Wright| (1999))

aj(z, t) = = wi(x,t)L; = az, ). (78)

0= va¢(mf t) ‘CCE + (]lTad,(:ct,t) ) /LTa¢(£Et7t)

Vaswen 3 1 2ro?) d v, 1) 3 ~ L log(ah (e, 1) + (17 ag(w, 1) 1) -
i h/—/ l
Ay
Lzl/aé(a:tvt)
- — Z Atvi(mh t) + vl — Hy (79)
‘ L%/ag(mfwt)

which leads to

(@@ 1) =Y Af“’M)L (30)

where pi! > 0. Since (@, (a;,t))' i = 0, we must have p* = 0, V1.

Because 17 a},(x;,t) = 1, we have v = A; ZZ vi(x¢,t). Thus

A
wt; Z A tvl wt, Zwl wt; L - a(wh ) (81)

U] mt,

In this case, the Lagrange multiplier v is not zero, thus the constrain 17a4(x¢,t) = 1 is essential.
As the object function and the feasible set are all convex, the KKT condition is also sufficient. [

A.9 EXTENSION TO THE GENERAL UNDERLYING DISTRIBUTION

Our theory is developed based on the assumption that the initial distribution pg is in a Dirac sum
form as shown in Assumption [T} This is exactly what happens in diffusion training, that is, we
train the diffusion models based on the dataset, which can only be a Dirac sum form. However,

some works |Oko et al.|(2023)) assume the existence of a more general underlying initial distribution
general general

Do , and the dataset distribution pg is an i.i.d. N-sample of the pg In this section, we will

al
SN as N — oo, We first
general

establish results that our py trained on the dataset can also converge to p;
give a finite momentum assumption on the underlying initial distribution pj
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Assumption 5 The underlying initial distribution 5"’ has a compact support, that is:

p%eneral c ,Pc (Rd) (82)

Note that this is a rather mild assumption; it does not specify the continuity or differentia-

bility of pff"eml. This assumption of compactness is commonly met in image, text, and video

distributions.

Building upon Assumption we are now in a position to establish the convergence of py and p&"™.

However, before this, it is crucial to revisit the relationship of the Wasserstein distance between an
arbitrary distribution and its corresponding N-sample distribution.

Theorem 6 (Fournier & Guillin| 2015, Theorem 1) Let i € P (Rd) and let p > 0. Assume

that M, (1) < oo for some q > p. There exists a constant C' depending only on p, d, q such
that, forall N > 1,

N-1/2 4 N—(a-p)/q ifp > d/2and q # 2p,

E (W, (1w, 1)) < CME/4(1) § N~/2log(1+ N) + N~4P/9  jfp = d/2 and q # 2p,
NP4 N==p)/a if p € (0,d/2) and q # d/(d — p)

(83)

where M, (w) is the g-order momentum of u, pn is a N-sample empirical measure of fu.

Now, we are ready to establish the convergence property of learned distribution towards the general
underlying data distribution.

Proposition 7 For all 0 < § < 1, there exist 6 > 0, Ny > 0 and C1,Cs,Cy > 0, such
that for all time discretizations D with |D| < 0. Let pév ' be a Ny-sample of the gen-

eral underlying data distribution p§™™™, and pg be trained by the Ny-sample p)*. Then,
the Kullback-Leibler divergence KL(p(x, .. )||lpo(xt,,.,)) < C’1|D|¥ + Csey. Moreover,

W3 (56" (o), p(#+,,,,,)) < Cal D]

proof.

Based on the compactness property stipulated in Assumption the ¢ value of p£"™ (o) in The-
orem [6] can be any arbitrary integer. According to Theorem [6} the gap will approach 0 as N — oo

in either case. Therefore, for any do > 0, there exists a No such that for all N > N5, an N-sample

empirical distribution pY of p&™™ will satisfy the following condition:

Wa(p§™ " (o), p" (2

lmin

) <02 (84)

For the purpose of this proof, we set do = \/C5D, and N1 = 2 % N5(d2). In this case, the following
holds:

W2(P%eneral($o)ap(1)vl (z0)) < /C3D. (85)

By applying Proposition E|to pév ', we obtain:
W3 (5™ (o), plt,,.,))
<W3 (5™ (0), 5" (0)) + W3 (9 (o), P(1,,.,)) (86)

<(\/ CgD)2 + C3D
—204D.
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The proof can be concluded by setting Cy = 2C5. The values of Cy and C are derived from the
application of Proposition 4] O

B EXPERIMENTAL RESULTS ON IMAGENET

We further evaluate our proposed method on the challenging ImageNet64x64 dataset
[2009), as shown in Table ] Our DC-DPM applied to the raw DDPM not only outperforms DDPM
but also achieves lower FID scores than the higher-order SN-DDPM and GMS, which use enhanced
reverse kernels for diffusion models. This demonstrates the effectiveness of our approach.

Table 4: FID | on ImageNet64x64 Dataset. Employing our Divide-and-Conquer (DC) kernel
approximation strategy on DDPM enables better generation quality than previous methods.

# TIMESTEPS | 25 50 100 200 400
DDPM (Ho et al.,[2020) 29.21 2171 1912 17.81 17.48

27.58 20.74 18.04 16.72 16.37

SN-DDPM (Bao et al., [2022b)
GMS (Guo et al. 4[[) 26.50 20.13 17.29 16.60 15.98

DDPM+DC-DPM (Ours) | 24.60 1891 16.46 14.93 14.00

C COMBINATION WITH PREVIOUS DIFFUSION ACCELERATION METHODS

As our DC-DPM improves the representation of diffusion model reverse transition kernels, it is or-
thogonal to previous acceleration methods including faster SDE/ODE solvers like DPM Solver
[20224) and DPM Solver++ [2022b)). Therefore, our DC-DPM can be combined with
these methods and we provide evaluation on CIFAR10 dataset to showcase the further improvement
brought by our methods in Table 3]

Table 5: FID | of Combining Our Method with Faster ODE solvers on CIFAR10 Dataset.
Our Divide-and-Conquer (DC) kernel approximation strategy can be applied to previous diffusion
acceleration methods to enable better generation quality.

# TIMESTEPS 10 25 30 50

|
DPM Solver |, 2022a)) ‘7.95 6.54 6.17 3.37
Ours

+DC-DPM ( 578 349 328 290

DPM Solver++ (Lu et al., 2022b) ‘ 11.11 741 676 342

+DC-DPM (Ours 1094 429 380 299

D COMBINATION WITH EDM

Our DC-DPM can also be seamlessly combined with advanced diffusion methods such as EDM
(Karras et all [2022). As shown in Table [6] applying DC-DPM can improve the generation quality
of EDM, showcasing the powerful effectiveness of our proposed method.

E ABLATION STUDY

We conduct experiments to examine the impact of different classification approaches and varying
numbers of classes on the CIFAR-10 dataset. We flatten the input images and apply K-Means clus-
tering to the raw image values, classifying the training data into different numbers of clusters. The
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Table 6: FID | of Combining Our Method with EDM(Karras et al.,2022) on CIFAR10 Dataset.
Our DC-DPM can be applied to advanced diffusion methods like EDM for further improvement.

# TIMESTEPS | 10 25 30 50

EDM:Karrasetal.|, 2022) | 49.30 26.65 24.32 19.57
urs

+DC- 36.86 21.14 19.21 14.72

FIDs for various denoising timesteps are presented in Fig. (3a). Our results indicate that the quality
of generated images improves as the number of classes increases, although the rate of improvement
diminishes with a higher number of classes. Notably, the generation quality for clusters created via
K-Means remains inferior to that achieved using semantic labels, even when divided into 16 clusters.

In Fig. (3b), we compare scenarios with different numbers of semantic labels. The label S3 denotes
three semantic classes. Specifically, we consolidated the original 10 classes of the CIFAR-10 dataset
into three broader categories: vehicles, animals, and others. For S40, we divide each of the original
10 classes into four finer sub-classes using K-Means, resulting in a total of 40 classes. The gen-
eration quality initially improves and then deteriorates as the number of classes increases. While
having more classes makes each cluster-specific kernel easier to learn, it simultaneously raises the
complexity of managing all these classes within a single conditional diffusion network yg (x4, t,1).

16.2
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320
Qo0 Q18 =] 00 15.5
[ 156 = 5 ’ 15.0
28.0 5.
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(a) FIDs Using K-Means with Varying Cluster (b) FIDs with Semantic Label Classification at
Counts. Different Class Counts.

Figure 3: Ablations on Classification Approaches and Number of Classes on CIFAR-10.

F EXPERIMENTAL DETAILS

F.1 TRAINING DETAILS

We use aligned training setting to that of the noise prediction network in Extended-Analytic-DPM
and GMS for image-space experiments on CIFAR-10. We
use an exponential moving average (EMA) with a rate of 0.9999 and set the batch size as 128,
learning rate as 2e-4. We train 600K iterations and save a checkpoint every 10K iterations. For
the latent-space experiments on CelebA-HQ-256, we align the setting with LDM
[2022) and set the batch size as 48, learning rate as 9.6e-5. We train 500K iterations and choose the
best checkpoint to evaluate. We use the same training setting for the label model in label diffusion
merging approximation. Training on CIFAR-10 and CelebA-HQ-256 both take about 48 hours on 8
Tesla V100 GPUs.

To apply our method to Extended-Analytic-DPM and GMS, two higher-order noise prediction net-
works need to be trained. We align the settings with Extended-Analytic-DPM and GMS and train
two additional light-weight prediction heads with the backbone model frozen. Please refer to these
two original papers for more details.

F.2 EVALUATION DETAILS
Following Extended-Analytic-DPM and GMS, we calculate the FID score on 50K generated sam-

ples, using the official implementation of FID for pytorch (https: //github.com/mseitzer/pytorch-fid).
The reference distribution statistics of FID are computed on the full training set. The parameters in
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‘ Patterns (Number of Classes)

#STEPS | Circles (2) | Moons (2) | Pinwheel (5) | CheckerBoard (8) | Gaussians (8)

| 1GS FC LD | 1GS FC LD | 1GS FC LD | 1GS FC LD | 1GS FC LD

500 2.788 8.017 0.8717 | 3.935 7.051 2590 | 3.672 6.658 3.056 | -1.301 6.561 -2.912 | 6.339 7.945 2.567
100 7.685 5.0606 2.088 | 5.724 4.111 0.7585 | 3.891 9.002 3.789 | 0.1639 7913 -4.804 | 6.364 11.80 5.768
50 12.42 4764 2594 | 1321 5457 0.08196 | 14.05 1479 3.265 | 9.516 8.759 0.8225 | 1893 13.66 7.536
30 20.82 1086 1555 | 21.38 8.021  3.508 | 2437 17.64 8.619 | 3357 12.18 7.559 | 45770 8.005 1.572
20 5096 18.90 40.57 | 40.36 1044  10.12 | 5251 2048 9.817 | 1155 19.88 10.22 | 90.04 6.098 3.801
10 121.0 3344 7194 | 149.1 4329 4430 | 1693 21.07 1232 | 4949 5494 90.71 | 211.1 22.03 16.62

Table 7: Comparison on Synthetic Datasets. 1 GS indicates the baseline which approximates each
step as a single Gaussian. FC and LD represent our methods. Generation quality is assessed by
Maximum Mean Discrepancy (MMD) |. Values in the table have been rescaled by a factor of 107°.

sampling are kept aligned with those in Extended-Analytic-DPM, please refer to Appendix E.5 in
the original paper of Extended-Analytic-DPM 20224)) for more details.

F.3 RESULTS ON 2D SYNTHETIC DATASET

We validate our approach on five synthetic 2D datasets with varying distributions. Each dataset
consists of continuous 2D points (x,y) € R?, assigned class labels based on natural clustering. For
each experiment, we generated 4K samples and assessed generation quality using Maximum Mean
Discrepancy (MMD) with a Laplace kernel (bandwidth 0.1) (Gretton et al.}[2012). Each computation
was repeated 8 times, and we report the average MMD value, with lower values indicating better
generation quality. As shown in Table[7} our LD and FC methods outperform the single Gaussian
baseline, achieving lower MMD across different timesteps.

G QUALITATIVE RESULTS

Figure 4: DDPM + DC-DPM on 10 Denoising Steps.
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Figure 7: DDPM + DC-DPM on 100 Denoising Steps.
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Figure 10: SN-DDPM + DC-DPM on 50 Denoising Steps.
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Figure 13: GMS + DC-DPM on 25 Denoising Steps.
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Figure 14: GMS + DC-DPM on 50 Denoising Steps.

Figure 15: GMS + DC-DPM on 100 Denoising Steps.
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