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ABSTRACT

Diffusion models have achieved great success in generative tasks, with the qual-
ity of generated samples guaranteed by their convergence properties, typically
derived within the context of stochastic differential equations(SDE) and often in-
volving Kolmogorov equations for proofs. This paper introduces a novel method
for proving the convergence of diffusion models, which relies on direct estima-
tion of distributions without the need for SDE tools. This approach inspires
a Divide-and-Conquer strategy for approximating the reversed transition kernel
of Diffusion Probabilistic Models (DC-DPM), which is not derived from SDEs,
making previous convergence methods inapplicable. However, our method can be
easily extended to accommodate this. As our DC-DPM learns specific kernels for
each partition , these kernels require merging. According to the proof of conver-
gence, we design two merging strategies for these cluster-specific kernels along
with corresponding training and sampling methods. Experimental results demon-
strate the superior generation quality of our method compared to the traditional
single Gaussian kernel. Furthermore, our DC-DPM can synergize with previous
kernel optimization methods, enhancing their generation quality, especially with
a small number of timesteps.

1 INTRODUCTION

Diffusion models have recently gained prominence in generating multi-modal content across various
tasks, including image generation (Dhariwal & Nichol, 2021; Ho et al., 2020; Rombach et al., 2022;
Saharia et al., 2022; Ramesh et al., 2022), image super-resolution (Li et al., 2022), video generation
(Ho et al., 2022a;b), text-to-speech synthesis (Popov et al., 2021), 3D generation (Poole et al., 2022),
and motion planning (Carvalho et al., 2023).

Diffusion models generate data by iteratively predicting noise and solving diffusion SDEs to de-
noise (Song et al., 2020b). Given the complexity of this process, achieving convergence towards
the desired data distribution is not a straightforward task, particularly when using a score function
approximated by a neural network.

Significant research advancements have been made to validate the convergence of diffusion models.
Lee et al. (2022) were the first to provide polynomial convergence guarantees for diffusion models.
The scope of this convergence was further expanded to a broader range of data distributions (Chen
et al., 2022; Lee et al., 2023). De Bortoli (2022) demonstrated convergence when the data is only
supported on a lower-dimensional manifold. Chen et al. (2024); Benton et al. (2023) focused on
the development of convergence for deterministic sampling. Additionally, Li et al. (2023) were able
to achieve a superior error bound by making additional assumptions on the Jacobian of the score
functions. However, the aforementioned convergence relies heavily on tools from SDEs, such as the
Kolmogorov equations (Lee et al., 2022) and the Girsanov theorem (Chen et al., 2022). This reliance
makes it challenging to adapt these methods to cases where the reverse process is not derived from
a SDE.

In this paper, we introduce a novel method to demonstrate the convergence of diffusion models.
Initially, we establish a error bound for one step by ∆t

3−β
2 and ϵy , which mirrors the ”local error”

in numerical methods for ODEs. Here, β is a positive number and ϵy denotes the L2 error of the
neural network approximation. Subsequently, we tackle the corner cases at t = 0 and t = 1. As a
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Figure 1: DC-DPM improves generation quality on small timesteps. Employing a divide-and-
conquer approach to approximate transition kernels in diffusion reverse process, DC-DPM generates
samples closer to ground truth distribution (GT) on 20 denoising steps. Colors represent data density.

result, we consolidate the preceding propositions and attain the convergence result. The properties
and corollaries presented in this paper are all unique contributions from our end.

Inspired by the proof above, we propose DC-DPM, a novel approach to represent the transition
kernel in the reverse process of diffusion probabilistic models (DPM) using a Divide-and-Conquer
strategy. To attain the convergence of DC-DPM, we employ the convexity of the Kullback-Leibler
divergence to transform the error term into the form of a single Gaussian case. This altered form
is consistent with the scenario outlined in our newly proposed proof method. As a result, we easily
prove the convergence of the newly proposed DC-DPM.

According to the convergence proof of DC-DPM, we cluster the data into different partitions, DC-
DPM learns reversed transition kernels for each data cluster and models the overall transition kernel
as a composition of these cluster-specific kernels. To determine how to combine the cluster-specific
kernels, we design two strategies along with corresponding training and sampling methods. DC-
DPM can collaborate with previous diffusion sampling optimization methods, particularly those
focused on optimizing the Gaussian transition kernel design, such as Extended-Analytic-DPM and
GMS, by utilizing the representations proposed in these works for each cluster-specific kernel in our
DC-DPM. Moreover, the convergence is not dependent on the data partitions, implying that any data
division pattern will lead to a convergent result.

Experimental results on 2D toy datasets and image datasets demonstrate that our method enhances
the generation quality of diffusion models compared to the traditional single Gaussian transition ker-
nel representation. Furthermore, our approach significantly improves the performance of previous
transition kernel optimization methods, including Extended-Analytic-DPM and GMS, especially in
scenarios with limited sampling steps.

Proofs for all Propositions are given in the Appendix.

2 BACKGROUND: DIFFUSION PROBABILISTIC MODELS AND ITS
CONVERGENCE

2.1 DIFFUSION PROBABILISTIC MODELS AND TRANSITION KERNELS

Given a finite set of data samples {yi ∈ Rd|i = 1, 2, . . . , N}, where d represents the data dimension
and N is the number of samples. The distribution of these samples is characterized by:

pdata(x) =
1

N

N∑
i=0

δ(x− yi), (1)

where δ(x) represents Dirac delta function. As real training processes are typically conducted on
such finite datasets, we assume that the ground truth data distribution adheres to Eq. (1).

Diffusion probabilistic models define two Markov chains including forward process and reverse
process. The forward process is typically hand-designed with Gaussian transition kernel to perturb
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data to noise and can be expressed as (Zhang et al., 2024):

p(xt, t|xs, s) = N (xt;αt|sxs, σ
2
t|sI), (2)

where t, s are two timesteps and 0 ≤ s < t ≤ 1. αt|s = αt

αs
and σt|s =

√
1− α2

t|s, where αt is a
hyperparameter which decreases monotonically from 1 to 0 over time t (Kingma et al., 2021).

Hence, the conditional distribution of xt given x0 can be derived as:

p(xt, t|x0, 0) = N (xt;αtx0, σ
2
t I). (3)

Taking the initial condition Eq. (1) into account, the single time marginal distribution of xt is:

p(xt, t) =
1

N

∑
i

(2πσ2
t )

− d
2 exp(−||xt − αtyi||2

2σ2
t

). (4)

The reverse process reverses the forward one with a learned kernel. Based on Eq. (2) and (4), the
ground truth reversed transition kernel can be derived with Bayes’ rule:

p(xs, s|xt, t) = p(xt, t|xs, s)
p(xs, s)

p(xt, t)

= (2πσs|t)
− d

2

∑
i

wi(xt, t) exp{−
1

2σ2
s|t

||xs −
αt|sσ

2
s

σ2
t

xt −
αsσ

2
t|s

σ2
t

yi||2},
(5)

where σs|t = σt|s
σs

σt
. wi(xt, t) =

ui(xt,t)∑
j uj(xt,t)

while ui(xt, t) = exp(− ||xt−αtyi||2
2σ2

t
).

Existing methods typically approximate the learnable reversed transition kernel as a single Gaussian
distribution (Ho et al., 2020). The transition kernel can be expressed as (Zhang et al., 2024):

p̃(xs, s|xt, t) = (2πσs|t)
− d

2 exp{− 1

2σ2
s|t

||xs −
αt|sσ

2
s

σ2
t

xt −
αsσ

2
t|s

σ2
t

ȳ(xt, t)||2}, (6)

The mean of this Gaussian distribution is related to ȳ(xt, t), which is estimated by a neural net-
work yθ(xt, t) in x-prediction methods, while the variance is isotropic and only depends on the
timestep s and t. Another commonly used parameterization is ϵ-prediction, which employs a noise
prediction network to estimate the noise ϵ(xt, t) (Salimans & Ho, 2022). Despite its difference from
x-prediction, these two parameterizations are equivalent, as demonstrated by the relationship

xt = αtȳ(xt, t) + σtϵ(xt, t). (7)

In this paper, we utilize x-prediction for simplicity in our proofs. For clarity, we will refer to p(xt)
and p(xs | xt) instead of p(xt, t) and p(xs, s | xt, t) when there is no ambiguity.

2.2 CONVERGENCE WITH KOLMOGOROV EQUATIONS

Define ft =
dlogαt

dt and gt = −2ft, and the stochastic differential equation (SDE)

dxt = ftxt dt+ gt dBt, (8)

where Bt is the standard Brownian motion. According to Anderson (1982), its reverse process is

dxt = (ftxt − g2t∇xt
p(xt)) dt+ gt dB̃t. (9)

Previous efforts to prove the convergence of DPM heavily depend on the Kolmogorov equations of
Eq. (9) For instance, Lee et al. (2022) defines the discretization approximation

dxt = (ft−xt− − g2t−∇xt
p(xt−)) dt+ gt dB̃t, (10)

and establish the corresponding Kolmogorov forward equation for the single time marginal distri-
bution of Eq. (10), denoted as q(xt). Ultimately, the Chi-square divergence χ2(q(xt)||p(xt)) is
estimated using the Kolmogorov equations. Numerous subsequent studies have embraced this con-
figuration (Lee et al., 2023; Chen et al., 2022; 2023b;a). However, this proof has its limitations as
it’s based on the Kolmogorov equations. This means it cannot be applied to other types of discretiza-
tions where constructing the Kolmogorov equations is challenging. Therefore, a proof that can be
readily adapted to a wider range of discretizations would be beneficial.
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3 METHOD

In this section, we first introduce a novel method to demonstrate that the distribution generated by the
conventional diffusion model closely matches the actual data distribution without using Kolmogorov
equations. We then propose to approximate the reverse process transition kernel in a divide-and-
conquer manner and prove its convergence using this novel method. We further propose merging
strategies for these kernels and present the corresponding training and sampling methods.

To start with, we outline some assumptions regarding the initial distribution and the neural network
approximation errors, which will be referenced throughout this paper:

Assumption 1 The initial distribution is a sum of Dirac deltas and maxi,j ||yi − yj || ≤ M
for some positive constant M .

We adopt the assumption about the initial distribution from Karras et al. (2022), as it is precisely
the conditions during training, given the finite quantity of training data available in real-world situa-
tions. Additionally, we can consider yis as independent and identically distributed samples from any
underlying continuous distribution p̃data, and pdata in equation (1) will weakly converge to p̃data
(Varadarajan, 1958). Furthermore, our method can be extended to any initial distribution with com-
pact support. The only requirement is to replace the sum over yis with an integral and verify the
conditions for interchanging this integral with other integrals and derivatives. The second compo-
nent of this assumption is that the gathered data is bounded, which is invariably the case in practical
applications.

Assumption 2 For all t ∈ [0, 1], yθ and ȳ are close in L2(p):∫
Rd

p(xt)||yθ(xt, t)− ȳ(xt, t)||2 dxt < ε2y < 1. (11)

This assumption has been adopted by previous studies (Lee et al., 2022; Chen et al., 2022; Lee et al.,
2023) and is confirmed by Oko et al. (2023).

Assumption 3 αt is a predefined function, which decreases monotonically from 1 to 0, with
its derivatives bounded; specifically, 0 > dαt

dt ≥ −Cα for some positive constant Cα.

In practice, αt is designed to be continuous and monotonically decreasing. This assumption is
naturally satisfied unless an unusual scheduler induces an unbounded derivative at t = 0 or t = 1.

3.1 CONVERGENCE OF DPM FROM A NOVEL PERSPECTIVE

Considering that the sampling process occurs in discrete steps, we introduce the notation for time
discretization as D = {0 < tmin = t0 < t1 < · · · < tT = tmax < 1}. Subsequently, the
approximated single-time marginal distribution with the accurate ȳ(xt, t) is:

p̃(xti) =

∫
Rd

· · ·
∫
Rd

p̃(xti |xti+1) · · · p̃(xtT−1
|xtT )p̃(xtT ) dxti+1 · · · dxtT . (12)

By substituting ȳ(xt, t) in Eq. (12) and (6) with the network prediction yθ(xt, t), we obtain pθ(xti)
and pθ(xti |xti+1). We also define ∆ti = ti+1 − ti and denote the maximum ∆ti as |D|.
As pointed out in previous study (Zhang et al., 2024), singularities arise near t = 0 and t = 1,
necessitating specific treatment. To address this, we divide the time interval into three distinct
segments: the left interval [0, tmin), the middle interval [tmin, tmax], and the right interval (tmax, 1].
Each section is handled independently. Previous work provides local error estimates for the middle
and right intervals (Zhang et al., 2024). However, their assertions are not strong enough to achieve
global convergence. We enhance these estimates to ensure global convergence. We refine the error
bound for the middle interval from (t− s)

1
4 (Zhang et al., 2024) to (t− s)

3
2−β .
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Proposition 1 For all tmin ≤ s < t ≤ tmax and 0 < β < 1, there exist δ > 0 and C1, C2 >
0 depending on β, tmin and tmax, such that if t−s < δ, the inequality KL(p(xs)||pθ(xs)) ≤
KL(p(xt)||pθ(xt)) + C1(t− s)

3−β
2 + C2(t− s)εy holds.

To obtain this error bound, it’s necessary to estimate the integral within the Kullback-Leibler diver-
gence, which integrates over the entire Rd domain. Thanks to the light tail of Gaussian distributions,
we design a B, which is related to |D|, and bound the integral over {x ∈ Rd : ||x|| ≥ B} (Lemma
2). As for {x ∈ Rd : ||x|| < B}, since ||x|| is small in this case (Lemma 3), we use a Taylor
expansion (Lemma 5) and find that the relationship ȳ(xt, t) =

∑
i wi(xt, t)yi is crucial for cancel-

ing out the lower order terms of the error bound (Lemma 4). This justifies the training objective for
diffusion models from another perspective.

For the right interval, we improve the error bound from (1− s)
1
2 (Zhang et al., 2024), to (1− s)2.

Proposition 2 For all 0 < s < 1, there are constants C1, C2 > 0, such that
KL(p(xs)||pθ(xs)) ≤ C1(1− s)2 + C2(1− s)2εy .

As for the left interval, it’s not feasible to compute the Kullback-Leibler divergence for Dirac deltas.
We adapt the idea from Theorem 2.1 in prior work (Lee et al., 2023), which applies the Wasserstein
distance to the left interval.

Proposition 3 Given 0 < tmin < 1, the 2-Wasserstein distance

W2(p(x0), p(xtmin
)) <

√
2dCαtmin. (13)

By combining the local error bounds above, we can establish global convergence as follows:

Proposition 4 For all 0 < β < 1, there exist δ > 0 and C1, C2, C3 > 0, such that for all time
discretizations D with |D| < δ, the Kullback-Leibler divergence KL(p(xtmin

)||pθ(xtmin
)) ≤

C1|D|
1−β
2 + C2εy . Moreover, W 2

2 (p(x0), p(xtmin)) < C3|D|.

3.2 DIVIDE-AND-CONQUER APPROXIMATION AND ITS CONVERGENCE

Based on the analysis above, besides the single Gaussian transition kernel, any distribution submitted
to Proposition 4 could serve as the transition kernel.

As demonstrated in Eq. (5), the ground truth transition kernel of the diffusion reverse process is a
mixture of standard Gaussian distributions. Previous work proves that traditional approaches ap-
proximate this Gaussian mixture kernel with a single Gaussian distribution and can significantly
diverge from the true reverse transition kernel (Guo et al., 2024). This motivates our divide-and-
conquer (DC) transition kernel approximation.

Specifically, we propose to partition data and use cluster-specific kernels to represent data samples
in each segment. The true kernel is then approximated by integrating these cluster-specific kernels.
Consider a scenario where the training data is divided into L classes: {yi ∈ Rd|i = 1, 2, . . . , N} =⋃L

l=1{yl
i ∈ Rd|i = 1, 2, . . . , Nl}. This partition can be arbitrary, and we will prove that any method

of data division result in convergence. We define a new approximation

p̂(xs|xt) =

L∑
l=1

al(xt, t)p̂
l(xs|xt), (14)

where

p̂l(xs|xt) =

Nl∑
i=1

(2πσs|t)
− d

2 ul
i(xt, t) exp{−

1

2σ2
s|t

||xs −
αt|sσ

2
s

σ2
t

xt −
αsσ

2
t|s

σ2
t

ȳl(xt, t)||2}, (15)
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wl
i(xt, t) =

exp− ||xt−αty
l
i||

2

2σ2
t∑

l,j exp−
||xt−αty

l
j
||2

2σ2
t

, al(xt, t) =
∑Nl

i=1 w
l
i(xt, t), ul

i(xt, t) =
wl

i(xt,t)
al(xt,t)

and ȳl(xt, t) =∑Nl

i=1 u
l
i(xt, t)y

l
i. The single time marginal distribution of this approximation p̂(xt) is defined in

the same way as in Eq. (12). Each cluster-specific kernel p̂l(xs|xt) can be approximated using any
method suitable for a standard diffusion probabilistic model, including a single Gaussian approxi-
mation in DDPM, single Gaussian with optimized variances in Extended-Analytic-DPM (Bao et al.,
2022a), as well as GMS (Guo et al., 2024), which computes high-order moments and estimates
p̂l(xs|xt) as a mixture of two Gaussians with hand-crafted weights.

In this scenario, we need L neural networks to approximate ȳl(xt, t). In practice, we use a con-
ditional network yθ(xt, t, l) (also denoted as yl

θ(xt, t)). Additionally, a neural network aϕ(xt, t)

is necessary to approximate a(xt, t)
def
= (a1(xt, t), · · · , aL(xt, t))

T ∈ RL. To derive the error
bound, we also make the assumption that yl

θ(xt, t) and aϕ(xt, t) approximate ȳl(xt, t) and al(xt, t)
in L2(p).

Assumption 4 For all t ∈ [tmin, 1] and 1 ≤ l ≤ L, yl
θ and alϕ are close to ȳl and al in

L2(p) respectively: ∫
Rd

p(xt)||yl
θ(xt, t)− ȳl(xt, t)||2 dxt < ε2yl < 1, (16)

and ∫
Rd

p(xt)(a
l
ϕ(xt, t)− al(xt, t))

2 dxt < ε2al < 1. (17)

Moreover, alϕ(xt, t) and al(xt, t) are uniformly lower bounded by a constant Ca.

Then, p̂θ(xs|xt) is defined by yl
θs and alϕs. p̂θ(xt) is defined in a manner consistent with equation

(12).

To estimate the error boundary of the Divide-and-Conquer Diffusion Probabilistic Models (DC-
DPM), we employ a strategy that transforms it into a single Gaussian case. Taking into account
that

p(xs|xt) =

L∑
l=1

al(xt, t)p
l(xs|xt), (18)

where

pl(xs|xt) =

Nl∑
i=1

(2πσs|t)
− d

2 ul
i(xt, t) exp{−

1

2σ2
s|t

||xs −
αt|sσ

2
s

σ2
t

xt −
αsσ

2
t|s

σ2
t

yl
i||2}, (19)

and given the convexity of the Kullback-Leibler divergence, we can deduce that

KL(p(xs|xt)||p̂(xs|xt)) ≤
∑
l

al(xt, t)KL(pl(xs|xt)||p̂l(xs|xt)). (20)

Eq. (20) allows us to bound the error of the divide-and-conquer approximations by the sum of its
individual components. Utilizing Propositions 1, 2, and 4, we can deduce the following corollaries:

Corollary 1 For all tmin ≤ s < t ≤ tmax and 0 < β < 1, there exist δ > 0 and
C1, C2, C3 > 0 depending on β, tmin and tmax, such that if t − s < δ, the inequality
KL(p(xs)||p̂θ(xs)) ≤ KL(p(xt)||p̂θ(xt)) + C1(t− s)

3−β
2 + C2(t− s)εyl + C3εal holds.

Corollary 2 For all 0 < s < 1, there are constants C1, C2, C3 > 0, such that
KL(p(xs)||pθ(xs)) ≤ C1(1− s)2 + C2εyl + C3εal.
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Corollary 3 For all 0 < β < 1, there exist δ > 0 and C1, C2, C3, C4 >
0, such that for all time discretizations D with |D| < δ, the Kullback-Leibler
divergence KL(p(xtmin)||p̂θ(xtmin)) ≤ C1|D|

1−β
2 + C2εyl + C3Tεal. Moreover,

W2(p(x0), p(xtmin)) < C4|D|.

It is worthy to note that Corollaries above can not be easily proved with the methods based on
Kolmogorov equations as in the previous works, because it is not trivial to construct a Ito diffusion
with equation (14) being the solution to its corresponding Kolmogorov equations.

The term εal in Corollary 3 includes a coefficient T , representing the inference time step. This factor
inhibits the error from converging to zero as |D| approaches zero. However, due to the simplistic
structure of a(xt, t), the network aϕ(xt, t) is relatively easy to train. This results in εal being
significantly smaller than εyl. Consequently, this maintains the error of DC-DPM at a reasonably
low value.

3.3 MERGING CLUSTER-SPECIFIC KERNELS

The divide-and-conquer representation of the reversed transition in Eq. (14) consists of combination
coefficients al(xt, t), referred to as the class part, and cluster-specific kernels p̂l(xs|xt), referred to
as the diffusion part. For the diffusion part, to learn L cluster-specific kernels, we propose training
a single conditional network yθ(xt, t, l) to represent them, rather than training L independent net-
works, in order to save computational overhead. For the class part, we propose two approaches to
estimate it: label diffusion approximation (LD) and fixed class approximation (FC).

Label diffusion approximation (LD) learns the class part in a manner similar to the diffusion part.
Define Li as the one-hot vector representing the class to which data point yi belongs. Then we
construct a(xt, t) as:

a(xt, t) =
∑
i

wi(xt, t)Li, (21)

where wi(xt, t) represents the coefficients in the ground truth transition kernel in Eq. (5). Substi-
tuting Eq. (21) into Eq. (18) aligns with the ground truth transition kernel in Eq. (5). Given that the
structure of a(xt, t) closely mirrors that of ȳ(xt, t), a neural network aϕ(xt, t) can be trained in a
manner analogous to the x-prediction networks in diffusion models. The training process to learn
the class part can be formulated as:

Proposition 5 Let L(x0) denote the one-hot class vector of x0, the optimal aϕ(xt, t) for the
two objective functions

L2 = Ex0∼pdata,xt∼p(xt|x0),t∼U(0,1)||L(x0)− aϕ(xt, t)||2, (22)

and
LCE = Ex0∼pdata,xt∼p(xt|x0),t∼U(0,1)CE(L(x0),aϕ(xt, t)), (23)

are the same and equal to a(xt, t), where CE represents the cross-entropy loss.

Based on the analysis above, we present the algorithms for training the diffusion model yθ(xt, t, l)
in Algorithm 1 and the label model aϕ(xt, t) in Algorithm 2.

Algorithm 1 Training of diffusion model yθ
1: Repeat
2: x0 ∼ pdata
3: t ∼ Uniform(t1, t2, ..., tT )
4: xt ∼ p(xt|x0)
5: Take gradient descent step on

∇θ ∥yθ(xt, t, l(x0))− x0∥2
6: Until converged

Algorithm 2 Training of label model aθ
1: Repeat
2: x0 ∼ pdata
3: t ∼ Uniform(t1, t2, ..., tT )
4: xt ∼ p(xt|x0)
5: Take gradient descent step on

∇ϕ ∥aϕ(xt, t)− L(x0)∥2
6: Until converged

7
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The second approach, fixed class approximation (FC), first samples a label l from Eq. (21) at t = 1.
In this scenario, a(x1, 1) = (b1, b2, · · · , bL)T , where bl = Nl

N represents the proportion of samples
in cluster l relative to the total number of samples in the dataset. Then the label adheres to this value
along time t:

a(xt, t) = e(l). (24)

Since the sampled label remains consistent over time t in the FC approximation, the class part
aϕ(xt, t) is necessitated solely at t = 1.

3.4 SAMPLING METHOD FOR DC-DPM

Conventionally, DDPM reverse approximation in Eq. (6) can be realized by the trajectory:

xti−1
=

αti|ti−1
σ2
ti−1

σ2
ti

xti +
αti−1

σ2
ti|ti−1

σ2
ti

yθ(xti , ti) + σti−1|tizti , (25)

where zti ∼ N (0, I) and xtT ∼ p(xtT , tT ). Our reverse process, using a mixture of cluster-specific
kernels, requires an additional random variable y(xti , ti) to represent the trajectory:

xti−1 =
αti|ti−1

σ2
ti−1

σ2
ti

xti +
αti−1

σ2
ti|ti−1

σ2
ti

y(xti , ti) + σti−1|tizti . (26)

The density of y(xti , ti) is

p(y(xti , ti) = y) =
∑
l

al(xti , ti)δ(y − yθ(xti , ti, l)), (27)

and y(xti , ti) is independent of zti .

For label diffusion approximation (LD), our method samples two random variables in each step:
weight sampling in line 3 and diffusion sampling in line 5 as shown in Algorithm 3. Fixed class
approximation (FC) samples the weight from the discrete distribution (b1, b2, · · · , bL)T . Since the
weight term remains consistent over time t, weight sampling is executed only once, as shown in line
2 of Algorithm 4. After weight sampling, the model generates samples within one fixed class l0.
The generated distribution is:

p̂l0(xti) =

∫
Rd

· · ·
∫
Rd

p̂l0(xti |xti+1
) · · · p̂l0(xtT−1

|xtT )p
l0(xtT , tT ) dxti+1

· · · dxtT . (28)

According to Proposition 4, p̂l0(x0) approximates pl0data(x) =
1

Nl0

∑
i δ(x− yl0

i ). Thus the distri-

bution
∑

l b
lp̂l(x0) approximate p(x0) =

∑
l b

lpldata, where bl = Nl

N .

Algorithm 3 Sampling process of label diffu-
sion approximation (LD)

1: xtT ∼ N (0, I)
2: for i = T, ..., 1 do
3: l ∼ aθ(xti , ti)
4: z ∼ N (0, I)

5: xti−1
=

αti|ti−1
σ2
ti−1

σ2
ti

xti

+
αti−1

σ2
ti|ti−1

σ2
ti

yθ(xti , ti, l) + σti−1|tiz

6: end for
7: return xt0

Algorithm 4 Sampling process of fixed class
approximation (FC)

1: xtT ∼ N (0, I)
2: l ∼ (b1, b2, · · · , bC)
3: for i = T, ..., 1 do
4: z ∼ N (0, I)

5: xti−1
=

αti|ti−1
σ2
ti−1

σ2
ti

xti

+
αti−1

σ2
ti|ti−1

σ2
ti

yθ(xti , ti, l) + σti−1|tiz

6: end for
7: return xt0

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 5 Sampling process for LD ap-
proximation with ODE-based methods

1: xtT ∼ N (0, I)
2: for i = T, ..., 1 do
3: z ∼ N (0, I)
4: xti−1 = ODE(xti , ti, l)
5: end for
6: return xt0

Algorithm 6 Sampling process for FC ap-
proximation with ODE-based methods

1: xtT ∼ N (0, I)
2: l ∼ (b1, b2, · · · , bL)
3: for i = T, ..., 1 do
4: xti−1 = ODE(xti , ti, l)
5: end for
6: return xt0

As the probability flow ODE keeps the single-time marginals (Song et al., 2020b), we can replace
the diffusion sampling method with probability flow ODE-based methods, such as DDIM (Song
et al., 2020a), DPM Solver (Lu et al., 2022a), PNDM (Liu et al., 2022) etc. We summarize this in
Algorithm 5, where ODE(xt, t, l) represents the ODE-based sampling methods. Similarly, the fixed
class approximation is also applicable to ODE-based methods, as presented in Algorithm 6

4 EXPERIMENTS

4.1 IMAGE-SPACE RESULTS

Table 1: FID ↓ on CIFAR-10 Dataset. Employing our Divide-and-Conquer (DC) kernel approx-
imation strategy on previous DPM methods enhances their generation quality especially on small
timesteps. LD represents merging kernels with label diffusion approximation while FC represents
fixed class approximation. SN-DDPM is short for Extended-Analytic-DPM (Bao et al., 2022a).

CIFAR-10 (Linear Schedule) CIFAR-10 (Cosine Schedule)

# TIMESTEPS 10 25 50 100 200 1000 10 25 50 100 200 1000

DDPM 43.14 21.63 15.21 10.94 8.23 5.11 34.76 16.18 11.11 8.38 6.66 4.92
+DC-LD (Ours) 39.40 21.95 15.54 10.78 7.91 4.98 27.78 15.52 10.12 7.29 5.61 4.11
+DC-FC (Ours) 34.48 21.05 15.12 10.67 7.82 4.50 25.80 14.58 9.66 6.72 5.03 3.46

SN-DDPM 21.87 6.91 4.58 3.74 3.34 3.71 16.33 6.05 4.19 3.83 3.72 4.08
+DC-LD (Ours) 16.77 6.39 4.29 3.40 2.97 3.30 12.85 6.54 4.56 3.63 3.35 3.51
+DC-FC (Ours) 11.90 4.98 3.62 2.98 2.55 2.93 9.92 4.95 3.35 2.67 2.53 2.74

GMS 17.43 5.96 4.16 3.26 3.01 2.76 13.80 5.48 4.00 3.46 3.34 4.23
+DC-LD (Ours) 14.54 5.89 4.22 3.41 3.58 5.19 10.80 6.22 4.53 3.64 3.34 4.35
+DC-FC (Ours) 10.40 4.84 3.61 3.00 3.00 2.86 8.76 4.91 3.43 2.76 2.60 3.35

We quantitatively compare the sample quality using the widely recognized Fréchet Inception Dis-
tance (FID) score (Heusel et al., 2017). Utilizing the semantic labels from the CIFAR-10 dataset, we
categorize the data into 10 classes. We then apply our proposed divide-and-conquer approximation
to various transition kernel designs, including DDPM (Ho et al., 2020), Extended-Analytic-DPM
(Bao et al., 2022a), and GMS (Guo et al., 2024). These kernels are merged using both the label
diffusion (LD) and fixed class (FC) approximation strategies. As illustrated in Table 1, our DC-
DPM approach significantly enhances the performance of existing methods, particularly at smaller
denoising timesteps. Specifically, DC-DPM achieves improvements of 25.78% for DDPM, 45.58%
for Extended-Analytic-DPM, and 40.33% for GMS in scenarios with 10 denoising steps.

4.2 LATENT-SPACE RESULTS

We also apply DC-DPM to latent diffusion models (Rombach et al., 2022). We perform comparative
experiments for unconditional generation on the CelebA-HQ-256 image dataset. To classify the data,
we first compute the VAE latent space of each image Kingma & Welling (2013), extract the primary
dimension using principal component analysis (PCA) Abdi & Williams (2010), and then cluster
the images into 10 classes using the K-Means algorithm. Both the quantitative results in Table 3
demonstrate that DC-DPM improves the generation quality of diffusion models in latent space.
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Table 2: FID ↓ on CIFAR-10 (Linear
Schedule) with DDIM. DC-DPM can be ap-
plied to ODE-based samplers like DDIM.

# STEPS 10 25 50

DDIM 21.31 10.70 7.74
+DC-LD (Ours) 20.43 11.39 8.38
+DC-FC (Ours) 16.54 9.15 6.60

Table 3: FID ↓ on CelebA-HQ-256. DC-
DPM is applicable to latent diffusion models
to improve the generation quality.

# STEPS 10 25 50

DDPM 35.21 18.60 14.16
+DC-LD (Ours) 30.58 15.76 12.25
+DC-FC (Ours) 30.47 15.37 12.16

Figure 2: Qualitative Results with DDIM. Applying DC-DPM to ODE-based methods like DDIM,
enables higher quality generation on small timesteps for latent diffusion model on CelebA-HQ-256.

4.3 DETERMINISTIC SAMPLING METHODS

While we have only validated our DC-DPM with stochastic sampling methods, it is not guaranteed to
work with deterministic methods like DDIM. However, our experiments indicate that DC-DPM can
indeed function with deterministic sampling. As shown in Table 2, applying DC-DPM to the DDIM
sampler improves generation quality by 22.38% with 10 steps on the CIFAR-10 dataset. Figure 2
provides qualitative results, further demonstrating the compatibility of DC-DPM with DDIM.

5 RELATED WORK

Significant research has focused on improving diffusion model performance on fewer timesteps,
broadly categorized into three approaches. Training-based methods includes trainable sampling
schedules (Watson et al., 2021), truncated diffusion (Lyu et al., 2022; Zheng et al., 2022), neural
operators (Zheng et al., 2023a), and distillation (Salimans & Ho, 2022; Sauer et al., 2023; Meng
et al., 2023; Song et al., 2023; Luo et al., 2023). The second category enhances the efficiency of
SDE and ODE solvers in the reverse process, including faster SDE and ODE solvers (Lu et al.,
2022a;b; Zheng et al., 2023b; Xu et al., 2023; Li et al., 2024), adaptive step size solvers (Jolicoeur-
Martineau et al., 2021), predictor-corrector methods (Song et al., 2020b; Zhao et al., 2023), and
stochastic-calculus-based optimization (Sabour et al., 2024).

The third category focuses on improving the design of the transition kernel in the diffusion reverse
process. Analytic-DPM (Bao et al., 2022b) and Extended-Analytic-DPM (Bao et al., 2022a) esti-
mate the optimal variance. Our work also falls within this category, with the most closely related
prior work being GMS (Guo et al., 2024). GMS represents the transition kernel as a mixture of
two Gaussians based on the estimation of higher-order moments. In contrast, the highlight of our
method is to divide data into clusters and construct the kernel function in a divide-and-conquer man-
ner. We construct a more general framework and previous Analytic-DPM, Extended-Analytic-DPM,
and GMS can serve as the cluster-specific kernel in our method.

6 CONCLUSION

In this paper, we propose DC-DPM, a novel divide-and-conquer approach for approximating the
transition kernel in the reverse process of diffusion probabilistic models. We provide convergence
proof for diffusion models from a new perspective, generalizing the transition kernel representation
from a conventional single Gaussian to a divide-and-conquer framework. This framework utilizes
cluster-specific kernels to represent segmented data, which are then merged to form an overall repre-
sentation. We propose two merging strategies along with their corresponding training and sampling
methods. Experimental results demonstrate the effectiveness of our approach, significantly enhanc-
ing generation quality, particularly over a limited number of timesteps.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Lemma 1 For all positive integrable functions f(x), g(x) : Rd → R+, we have∫
Rd

f(x) dx log

∫
Rd f(x) dx∫
Rd g(x) dx

≤
∫
Rd

f(x) log
f(x)

g(x)
dx (29)

proof. Let F =
∫
Rd f(x) dx, G =

∫
Rd g(x) dx and h(t) = t log t. h(t) is convex because

d2

dt2
h(t) =

1

t
> 0. (30)

And then ∫
Rd

f(x) log
f(x)

g(x)
dx =

∫
Rd

g(x)h(
f(x)

g(x)
) dx

= G

∫
Rd

g(x)

G
h(

f(x)

g(x)
) dx. (31)

According to the probabilistic form of Jensen’s inequality

G

∫
Rd

g(x)

G
h(

f(x)

g(x)
) dx ≥ Gh(

∫
Rd

g(x)

G

f(x)

g(x)
dx) = Gh(

1

G

∫
Rd

f(x) dx)

= Gh(
F

G
) = F log

F

G
(32)

=

∫
Rd

f(x) dx log

∫
Rd f(x) dx∫
Rd g(x) dx

.

Note that the integrability of f ensures the validity of Jensen’s inequality. □

Lemma 2 Let σ > 0, 0 < β < 1 and B = σ
√

(d+ 2) log 1
σ4 + σ2M , for all v ∈ Rd with

|v| ≤ M , Let δ = min(e−
1
4 , e

1
4W−1(− 1

d+2 )) and C = M(1 +
√
2π), then σ < δ indicates

(2πσ2)−
d
2

∫
|x|>B

exp(−||x+ σ2v||2

2σ2
)(−(x+ σ2v)Tv) dx ≤ Cσ4 (33)

proof.

(2πσ2)−
d
2

∫
||x||>B

exp(−||x+ σ2v||2

2σ2
)(−(x+ σ2v)Tv) dx

(1)
= (2πσ2)−

d
2

∫
||z−σ2v||>B

exp(−||z||2

2σ2
)(−zTv) dz

(2)

≤ (2πσ2)−
d
2

∫
||z||>B−σ2M

exp(−||z||2

2σ2
)(M ||z||) dz (34)
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= (2πσ2)−
d
2M

∫ π

0

· · ·
∫ π

0

∫ 2π

0

A(d) sind−2(φ1) sin
d−3(φ2) · · · sin(φd−2) dφd−1 · · · dφ2 dφ1

(3)
= (2π)−

d
2M

2π
d
2

Γ(d2 )
A(d),

where

A(d) = σ−d

∫
r>B−σ2M

exp(− r2

2σ2
)Mrd dr, (35)

and the derivation of equation (1) is attributed to the change in the integral variable of Z = x +
σ2Y . The inequality in equation (2) arises from a broader integral domain and a Cauchy inequality.
Equation (3) is derived from the calculation of the d− 1 dimensional sphere Sd−1.

A(d) = σ

∫
r>B−σ2M

exp(− r2

2σ2
)M(

r

σ
)
d
d
r

σ
(36)

= σM

∫
r′>B−σ2M

σ

exp(−r′
2

2
)r′

d
dr′

= σME(d).

Let δ = e−
1
4 and then log 1

σ4 > 1.

E(d) =

∫
r>B−σ2M

σ

exp(−r2

2
)rd dr

= −rd−1 exp(−r2

2
)

∣∣∣∣∞
B−σ2M

σ

+

∫
r>B−σ2M

σ

exp(−r2

2
)(d− 1)rd−2 dr

= (
B − σ2M

σ
)d−1 exp(− (B − σ2M)2

2σ2
) + (d− 1)E(d− 2)

= ((d+ 2) log
1

σ4
)

d−1
2 exp(−

(d+ 2) log 1
σ4

2
) + (d− 1)E(d− 2)

= ((d+ 2) log
1

σ4
)

d−1
2 (σ4)

d+2
2 + (d− 1)E(d− 2)

= ((d+ 2) log
1

σ4
)

d−1
2 (σ4)

d+2
2 + (d− 1)((d+ 2) log

1

σ4
)

d−3
2 (σ4)

d+2
2 + · · · (37)

+

{
(d− 1)(d− 3) · · · 4((d+ 2) log 1

σ4 )(σ
4)

d+2
2 + 2E(1) d is odd,

(d− 1)(d− 3) · · · 3((d+ 2) log 1
σ4 )

1
2 (σ4)

d+2
2 + E(0) d is even,

≤ d+ 2

2
((d+ 2) log

1

σ4
)

d−1
2 (σ4)

d+2
2 +

{
2E(1) d is odd,
E(0) d is even,

≤ ((d+ 2) log
1

σ4
σ4)

d+1
2 σ4 +

{
2E(1) d is odd,
E(0) d is even.

Let δ = e
1
4W−1(− 1

d+2 ), we have (d + 2) log 1
σ4σ

4 ≤ 1, where W−1 is the branch of Lambert W
function labelled by -1.

E(1) =

∫
r>B−σ2M

σ

exp(−r2

2
)r dr

= −
∫
r>B−σ2M

σ

dexp(−r2

2
)

= − exp(−r2

2
)

∣∣∣∣∞
B−σ2M

σ

(38)
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= exp(− (B − σ2M)2

2σ2
)

= (σ4)
d+2
2 ,

Since all λ > 0, exp(λr − λ
√
(d+ 2) log 1

σ4 ) ≥ 1, we have

E(0) =

∫
r>B−σ2M

σ

exp(−r2

2
) dr

≤
∫
R
exp(λr − λ

√
(d+ 2) log

1

σ4
) exp(−r2

2
) dr

=
√
2π exp(

λ2

2
− λ

√
(d+ 2) log

1

σ4
) (39)

≤
√
2π exp(−

(d+ 2) log 1
σ4

2
)

=
√
2π(σ4)

d+2
2 .

As a result, by setting δ = min(e−
1
4 , e

1
4W−1(− 1

d+2 )) and C = M(1 +
√
2π), we can achieve the

required inequality.

Lemma 3 Given the notations from Lemma 2, if δ = min(e−
1

4(d+2) , e
1
4W−1(− 1

d+2 )) we have

B + σ2M

σ
exp(−|B + σ2M |2

2σ2
) < σ4. (40)

proof. When δ = min(e−
1

4(d+2) , e
1
4W−1(− 1

d+2 )), we have B−σ2M
σ ≥ 1 and (d + 2) log 1

σ4σ
4 ≤ 1.

Since the function t exp(− t2

2 ) is decreasing when t ≥ 1, we have

B + σ2M

σ
exp(−|B + σ2M |2

2σ2
) ≤ B − σ2M

σ
exp(−|B − σ2M |2

2σ2
)

=

√
(d+ 2) log

1

σ4
(σ4)

d+2
2 (41)

=

√
(d+ 2) log

1

σ4
σ4(σ4)

d−1
2 σ4

≤ σ4.

Lemma 4 Given the notations from Lemma 2, consider a set of vectors {vi ∈ Rd | 1 ≤
i ≤ N} such that maxi ||vi|| ≤ M , along with corresponding weights wi for each vector vi

satisfying
∑

i wi = 1. For all 1 ≤ i ≤ N , let C = 1
2 Tr(

∑
j wj ||vi||2) +M3 + 3

2M
4 and

δ = e
1
2βW−1(

−β
2(d+2)

) such that σ < δ indicates

(2πσ2)−
d
2

∫
||x||≤B

exp(−||x+ σ2yi||2

2σ2
)
∑
j

wj
1

2
vT
j xx

Tvj dx︸ ︷︷ ︸
I

−
∑
j

wj
1

2
σ2||vj ||2 < Cσ3−β .

(42)

proof.

Let δ = e
1
2βW−1(− β

2(d+2)
), we have σ2β log 1

σ4 ≤ 1
d+2 , which means σ((d+ 2) log 1

σ4 )
− 1

2 < σ1−β
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Since the matrix V
def
=

∑
j wjvjv

T
j is symmetric, it can be diagonalized: V = UΛUT where Λ

is an diagonal matrix, U is an orthogonal matrix and

Tr(Λ) = Tr(
∑
j

wjvjv
T
j ) =

∑
j

wj Tr(v
T
j vj) =

∑
j

wj ||vi||2. (43)

With the change of variable z = UT (x+ σ2vi), we have

I = (2πσ2)−
d
2

∫
||x||≤B

exp(−||x+ σ2yi||2

2σ2
)
∑
j

wj
1

2
||(x+ σ2vi − σ2vi)

Tvj ||2 dx

= (2πσ2)−
d
2

∫
||Uz−σ2vi||≤B

exp(−||z||2

2σ2
)
∑
j

wj
1

2
(||zTUTvj ||2 − 2σ2zTUTvjv

T
i vj

+ σ4|vT
i vj |2) dz

≤ (2πσ2)−
d
2

∫
||z||≤B+σ2M

exp(−||z||2

2σ2
)
1

2

∑
j

wj ||zTUTvj ||2 dz +M3σ2(B + σ2M) +
1

2
M4σ4

= (2πσ2)−
d
2

∫
||z||≤B+σ2M

exp(−||z||2

2σ2
)
1

2
zTΛz dz +M3σ3−β +

3

2
M4σ4

≤ (2πσ2)−
d
2
1

2

∑
l

∫
|zl|≤B+σ2M

exp(−||z||2

2σ2
)Λllz

2
l dz1

d∏
j=1,j ̸=l

∫ ∞

−∞
exp(−

z2j
2σ2

) dzj (44)

+M3σ3−β +
3

2
M4σ4

= Tr(Λ)(2πσ2)−
1
2
1

2

∫
|z|<B+σ2M

exp(− z2

2σ2
)z2 dz +M3σ3−β +

3

2
M4σ4

= Tr(Λ)
σ2

√
2π

1

2
[2
B + σ2M

σ
exp(−|B + σ2M |2

2σ2
) +

∫
|z|≤B+σ2M

exp(− z2

2σ2
) d

z

σ
]

+M3σ3−β +
3

2
M4σ4

≤ Tr(Λ)σ2 1

2
(σ4 + 1) +M3σ3−β +

3

2
M4σ4

=
∑
j

1

2
σ2wj |yj |2 + (Tr(Λ)

1

2
σ(3+β) +M3 +

3

2
M4σ1+β)σ3−β .

Let C = 1
2 Tr(Λ) +M3 + 3

2M
4, we get the required equation (42). □

Lemma 5 When ||x|| ≤ B and
∑

i wivi = 0, let δ = min(e
1

2β′ W−1(− β′
2(d+2)

)
, (1+M)β

′−1)
and C = 1

2 (1+M)M3+ 1
8M

4+ e
6 (1+M)3M3+ 1

2 (1+M)2M4+ 3
2 (1+M)M4+ 1

6M
6.

If σ ≤ δ, we have ∑
j

wj exp(−xTvj −
1

2
σ2||vj ||2)− 1

≤
∑
j

wj(
1

2
σ2(vT

j xx
Tvj − ||vj ||2)) + Cσ3−β (45)

proof.

Let δ = min(e
1

2β′ W−1(− β′
2(d+2)

)
, (1 + M)β

′−1) and then B = σ
√

(d+ 2) log 1
σ4 + σ2M < (1 +

σ1+β′
M)σ1−β′

< (1 + M)σ1−β′
. Thus x ≤ B ≤ (1 + M)σ1−β′ ≤ 1 and |vj | ≤ M , where

β′ = β
3 .
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Expanding the function et at t = 0 with Lagrange’s remainder, where 0 ≤ ξ ≤ B∑
j

wj exp(−xTvj −
1

2
σ2||vj ||2)− 1

=
∑
j

wj{−xTvj −
1

2
σ2||vj ||2 +

1

2
(−xTvj −

1

2
σ2||vj ||2)2 +

1

6
eξ(−xTvj −

1

2
σ2||vj ||2)3}

≤
∑
j

wj{[−
1

2
σ2||vj ||2 +

1

2
vT
j xx

Tvj ] +
1

2
σ2xTvj ||vj ||2 +

1

8
σ4||vj ||4

+
1

6
eB(||xTvj ||3 + 3σ2||xTvj ||2||vj ||2 + 3σ4||xTvj ||||vj ||4 + σ6||vj ||6)} (46)

=
∑
j

wj(
1

2
σ2(vT

j xx
Tvj − ||vj ||2)) +

∑
j

wj(
1

2
(1 +M)M3σ3−β′

+
1

8
M4σ4

+
1

6
e(1 +M)3M3σ3−3β′

+
1

2
(1 +M)2M4σ4−2β′

+
1

2
3(1 +M)M5σ5−β′

+
1

6
M6σ6)

≤
∑
j

wj(
1

2
σ2(vT

j xx
Tvj − ||vj ||2)) + Cσ3−β ,

where C = 1
2 (1+M)M3 + 1

8M
4 + e

6 (1+M)3M3 + 1
2 (1+M)2M4 + 3

2 (1+M)M4 + 1
6M

6. □

Lemma 6 For all tmin ≤ s < t ≤ tmax and 0 < β < 1, there exists a δ > 0 and C > 0,
depending on β, tmin and tmax, such that if t − s < δ, the inequality KL(p(xs)||p̃(xs)) ≤
KL(p(xt)||p̃(xt)) + C(t− s)

3−β
2 holds.

proof.

Noting that

KL(p(xs)||p̃(xs)) =

∫
Rd

∫
Rd

p(xs|xt)p(xt) dxt log

∫
Rd p(xs|xt)p(xt) dxt∫
Rd p̃(xs|xt)p̃(xt) dxt

dxs

≤
∫
Rd

∫
Rd

p(xs|xt)p(xt) log
p(xs|xt)p(xt)

p̃(xs|xt)p̃(xt)
dxt dxs

=

∫
Rd

∫
Rd

p(xs|xt)p(xt) log
p(xs|xt)

p̃(xs|xt)
dxt dxs︸ ︷︷ ︸

I

(47)

+

∫
Rd

∫
Rd

p(xs|xt)p(xt) log
p(xt)

p̃(xt)
dxt dxs︸ ︷︷ ︸

II

.

II =
∫
Rd

∫
Rd

p(xs|xt)p(xt) log p(xt) dxt dxs −
∫
Rd

∫
Rd

p(xs|xt)p(xt) log p̃(xt) dxt dxs (48)

Since p(xs|xt)p(xt) log p(xt) ≥ 0 and p(xs|xt)p(xt) log p̃(xt) ≤ 0 for all xt and xs, according
to Fubini’s theorem, we have∫

Rd

∫
Rd

p(xs|xt)p(xt) log p(xt) dxt dxs =

∫
Rd

∫
Rd

p(xs|xt)p(xt) log p(xt) dxs dxt

=

∫
Rd

p(xt) log p(xt) dxt (49)

and ∫
Rd

∫
Rd

p(xs|xt)p(xt) log p̃(xt) dxt dxs =

∫
Rd

∫
Rd

p(xs|xt)p(xt) log p(xt) dxs dxt
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=

∫
Rd

p(xt) log p̃(xt) dxt. (50)

Since the entropy of Gaussian mixtures and the cross entropy between Gaussians are all finite, we
have

∫
Rd

∫
Rd p(xs|xt)p(xt) log p(xt) dxt dxs and

∫
Rd

∫
Rd p(xs|xt)p(xt) log p̃(xt) dxt dxs are

both integrable. As a result,

II =
∫
Rd

∫
Rd

p(xs|xt)p(xt) log p(xt) dxt dxs −
∫
Rd

∫
Rd

p(xs|xt)p(xt) log p̃(xt) dxt dxs

=

∫
Rd

∫
Rd

p(xs|xt)p(xt) log p(xt) dxs dxt −
∫
Rd

∫
Rd

p(xs|xt)p(xt) log p̃(xt) dxs dxt (51)

=

∫
Rd

∫
Rd

p(xs|xt)p(xt) log
p(xt)

p̃(xt)
dxs dxt

= KL(p(xt)||p̃(xt)).

Now, let us delve into a detailed analysis of Part I.

I =
∫
Rd

∫
Rd

p(xs|xt) log
p(xs|xt)

p̃(xs|xt)
dxsp(xt) dxt

=

∫
Rd

[(2πσ2
s|t)

− d
2

∫
Rd

∑
i

wi(xt, t) exp(−
||xs −

αt|sσ
2
s

σ2
t

xt −
αsσ

2
t|s

σ2
t

yi||2

2σ2
s|t

) log(
∑
j

wj(xt, t) exp(

− ((xs −
αt|sσ

2
s

σ2
t

xt −
αsσ

2
t|s

σ2
t

ȳ(xt, t)︸ ︷︷ ︸
x

)T
αs

σ2
s

(ȳ(xt, t)− yj)︸ ︷︷ ︸
yj

+
1

2
σ2
s|t||

αs

σ2
s

(ȳ(xt, t)− yj)||2)))] dxsp(xt) dxt

=

∫
Rd

[(2πσ2
s|t)

− d
2

∫
A(xt,B,ȳ(xt,t))︸ ︷︷ ︸

III

+

∫
Ac(xt,B,ȳ(xt,t))︸ ︷︷ ︸

IV

∑
i

wi(xt, t) exp(

−
||x+ σ2

s|tyi||2

2σ2
s|t

) log
∑
j

wj(xt, t) exp(−xTyi −
1

2
σ2
s|t||yi||2)] dxs p(xt) dxt. (52)

According to Lemma 2, let δIII = min(e−
1
4 , e

1
4W−1(− 1

d+2 )) and CIII = Mσ(1 +
√
2π), where

Mσ = M
σ2
tmin

, when σs|t ≤ δIII,

III =
∫
Rd

(2πσ2
s|t)

− d
2

∫
A(xt,B,ȳ(xt,t))

∑
i

wi(xt, t) exp(−
||x+ σ2

s|t∆yi||2

2σ2
s|t

) log(

∑
j wj(xt, t) exp(−

||x+σ2
s|t∆yj ||2

2σ2
s|t

)∑
j wj(xt, t) exp(− ||x||2

2σs|t
)

) dxs p(xt) dxt

≤
∫
Rd

(2πσ2
s|t)

− d
2

∫
A(xt,B,ȳ(xt,t))

∑
i

wi(xt, t) exp(

−
||x+ σ2

s|t∆yi||2

2σ2
s|t

) log(
exp(− ||x+σ2

s|t∆yj ||2

2σ2
s|t

)

exp(− ||x||2
2σs|t

)
) dxs p(xt) dxt (53)

=

∫
Rd

(2πσ2
s|t)

− d
2

∫
A(xt,B,ȳ(xt,t))

∑
i

wi(xt, t) exp(

−
||x+ σ2

s|t∆yi||2

2σ2
s|t

)(−xT∆yi −
1

2
σ2
s|t||yi||2) dxs p(xt) dxt
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≤
∫
Rd

CIIIσ
4
s|tp(xt) dxt = CIIIσ

4
s|t.

According to Lemma 4 and Lemma 5, let CIV = max( 12Mσ+M3
σ+

3
2M

4
σ ,

1
2 (1+Mσ)M

3
σ+

1
8M

4
σ+

e
6 (1+Mσ)

3M3
σ+

1
2 (1+Mσ)

2M4
σ+

3
2 (1+Mσ)M

4
σ+

1
6M

6
σ and δIV = min(e

1
2
3
β
W−1(− β

6(d+2)
)
, (1+

Mσ)
1
3β−1), where Mσ = M

σ2
tmin

, when σs|t ≤ δIV

IV =
∑
i

∫
Rd

wi(xt, t)(2πσ
2
s|t)

− d
2

∫
|x|<B

exp(−
||x+ σ2

s|tyi||2

2σ2
s|t

) log[

∑
j

wj(xt, t) exp(−xTyj −
1

2
σ2
s|t||yj ||2)] dxp(xt) dxt

=
∑
i

∫
Rd

wi(xt, t)(2πσ
2
s|t)

− d
2

∫
||x||<B

exp(−
||x+ σ2

s|tyi||2

2σ2
s|t

)[

∑
j

wj(xt, t) exp(−xTyj −
1

2
σ2
s|t||yj ||2)− 1] dxsp(xt) dxt

≤
∑
i

∫
Rd

wi(xt, t)CIVσ
3−β
s|t p(xt) dxt

= CIVσ
3−β
s|t . (54)

Because σ2
s|t = (1 − α2

t

α2
s
)
1−α2

s

1−α2
t
≤ αs+αt

α2
s

(αs − αt) ≤ 2Cα

α2
tmin

(t − s). Let δ = min(δIII, δIII) and

C = (CIII + CIV)(
2Cα

α2
tmin

)
3
2 , we get the result. □.

Proposition 1 For all tmin ≤ s < t ≤ tmax and 0 < β < 1, there exist δ > 0 and C1, C2 >
0 depending on β, tmin and tmax, such that if t−s < δ, the inequality KL(p(xs)||pθ(xs)) ≤
KL(p(xt)||pθ(xt)) + C1(t− s)

3−β
2 + C2(t− s)εy holds.

proof.

Since |ȳ(xt, t)| = |
∑

i wi(xt, t)yi| ≤
∑

i wi(xt, t)|yi| ≤
∑

i wi(xt, t)M = M , we have∫
Rd

p(xt)|ȳ(xt, t)|2 < M2. (55)

KL(p(xs)||pθ(xs)) ≤
∫
Rd

∫
Rd

p(xs|xt)p(xt) log
p(xs|xt)p(xt)

pθ(xs|xt)pθ(xt)
dxt dxs

=

∫
Rd

∫
Rd

p(xs|xt)p(xt, t) log
p(xs|xt)

pθ(xs|xt)
dxt dxs

+

∫
Rd

∫
Rd

p(xs|xt)p(xt, t) log
p(xt, t)

pθ(xt, t)
dxt dxs.

=

∫
Rd

∫
Rd

p(xs|xt)p(xt, t)[log
p(xs|xt)

p̃(xs|xt)
+ log

p̃(xs|xt)

pθ(xs|xt)
] dxt dxs (56)

+ KL(p(xt)||pθ(xt))

(1)

≤
∫
Rd

∫
Rd

p(xs|xt)p(xt, t) log
p̃(xs|xt)

pθ(xs|xt)
dxt dxs︸ ︷︷ ︸

I

+ C1(t− s)
3−β
2 + KL(p(xt)||pθ(xt))
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The inequality (1) use the conclusion in Proposition 6.

Since p̃(xs|xt) and pθ(xs|xt) are Gaussians with the same covariance matrix,

I =
∫
Rd

∫
Rd

p(xt, t)p(xs|xt)
1

2σ2
s|t

[(2xs − 2
αt|sσ

2
s

σ2
t

xt

−
αsσ

2
t|s

σ2
t

(ȳ(xt, t) + yθ(xt, t)))
T
αsσ

2
t|s

σ2
t

(yθ(xt, t)− ȳ(xt, t))] dxs dxt (57)

= −
∫
Rd

∫
Rd

p(xt, t)p(xs|xt)
1

2σ2
s|t

(
αsσ

2
t|s

σ2
t

)2(yθ(xt, t) + ȳ(xt, t))
T (yθ(xt, t)− ȳ(xt, t)) dxs dxt︸ ︷︷ ︸

I1

+

∫
Rd

∫
Rd

p(xt, t)p(xs|xt)
1

σ2
s|t

(xs −
αt|sσ

2
s

σ2
t

xt)
T
αsσ

2
t|s

σ2
t

(yθ(xt, t)− ȳ(xt, t)) dxs dxt︸ ︷︷ ︸
I2

I1 = −
∫
Rd

p(xt)
α2
sσ

2
s|t

2σ4
s

(yθ(xt, t) + ȳ(xt, t))
T (yθ(xt, t)− ȳ(xt, t)) dxt

≤
α2
sσ

2
s|t

2σ4
s

(

∫
Rd

p(xt)||(yθ(xt, t) + ȳ(xt, t)||2 dxt

∫
Rd

p(xt)||(yθ(xt, t)− ȳ(xt, t)||2)
1
2 dxt

≤
α2
sσ

2
s|t

2σ4
s

εy(

∫
Rd

p(xt)||(yθ(xt, t)− ȳ(xt, t) + 2ȳ(xt, t)||2 dxt)
1
2 (58)

≤
α2
sσ

2
s|t

2σ4
s

εy(

∫
Rd

p(xt)3(||yθ(xt, t)− ȳ(xt, t)||2 + 4||ȳ(xt, t)||2) dxt)
1
2

≤ 3
α2
sσ

2
s|t

2σ4
s

εy(ε
2
y + 4M2)

1
2

≤ 3

2σ4
tmin

(1 + 4M2)
1
2σ2

s|tεy.

I2 =
αs

σ2
s

∫
Rd

p(xt)

∫
Rd

p(xs|xt)(xs −
αt|sσ

2
s

σ2
t

xt)
T dxs(yθ(xt, t)− ȳ(xt, t)) dxt

=
αs

σ2
s

∫
Rd

p(xt)
∑
i

wi(xt, t)
αsσ

2
t|s

σ2
t

yT
i (yθ(xt, t)− ȳ(xt, t)) dxt (59)

≤
α2
sσ

2
s|t

σ4
s

M(

∫
Rd

p(xt)||yθ(xt, t)− ȳ(xt, t)||2 dxt)
1
2

≤ α2
s

σ4
s

Mσ2
s|tεy ≤ M

σ4
tmin

σ2
s|tεy

As as result, let C2 = ( 3
2σ4

tmin

(1 + 4M2)
1
2 + M

σ4
tmin

)( 2Cα

α2
tmin

)
3
2 and δ use the value in Lemma 6, we

get the required result. □

A.2 PROOF OF PROPOSITION 2

Proposition 2 For all 0 < s < 1, there are constants C1, C2 > 0, such that
KL(p(xs)||pθ(xs)) ≤ C1(1− s)2 + C2(1− s)2εy .
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proof.

First, we consider the difference between p(xs) and p̃(xs). Since p(x1) = p̃(x1) ∼ N (0, I),

KL(p(xs)||p̃(xs))

=

∫
Rd

∫
Rd

p(xs|x1)p(x1) dx1 log

∫
Rd p(xs|x1)p(x1) dx1∫
Rd p̃(xs|x1)p̃(x1) dx1

dxs

≤
∫
Rd

∫
Rd

p(xs|x1)p(x1) log
p(xs|x1)p(x1)

p̃(xs|x1)p̃(x1)
dx1 dxs

=

∫
Rd

∫
Rd

p(xs|x1)p(x1) log
p(xs|x1)

p̃(xs|x1)
dx1 dxs

=

∫
Rd

(2πσ2
s)

− d
2

∫
Rd

∑
i

wi(x1, 1) exp(−
||xs − αsyi||2

2σ2
s

) log[

∑
i wi(x1, 1) exp(− ||xs−αsyi||2

2σ2
s

)

exp(− ||xs−αsȳ(x1,1)||2
2σ2

s
)

] dxsp(x1) dx1 (60)

≤
∫
Rd

(2πσ2
s)

− d
2

∫
Rd

∑
i

wi(x1, 1) exp(−
||xs − αsyi||2

2σ2
s

) log[

exp(− ||xs−αsyi||2
2σ2

s
)

exp(− ||xs−αsȳ(x1,1)||2
2σ2

s
)
] dxsp(x1) dx1

≤
∫
Rd

(2πσ2
s)

− d
2

∫
Rd

∑
i

wi(x1, 1) exp(−
||xs − αsyi||2

2σ2
s

)

· αs

σ2
s

(xs − αsyi)
T (yi − ȳ(x1, 1)) +

α2
s

2σ2
s

||yi − ȳ(x1, 1)||2 dxsp(x1) dx1

≤
∫
Rd

α2
s

2σ2
s

M2p(x1) dx1 ≤ M2

2σ2
tmin

α2
s ≤ C2

αM
2

2σ2
tmin

(1− s)2.

Upon considering equations (56), (58), and (59), and designating C2 = C2
α(

3
2σ4

tmin

(1 + 4M2)
1
2 +

M
σ4
tmin

), we are able to derive the desired conclusion. □

The method used to prove the previous Proposition cannot be applied to prove Proposition 1 because
there is a σ2

s|t in the denominator. This results in an error bound of σ2
s|t, which does not allow for

global convergence.

A.3 PROOF OF PROPOSITION 3

Proposition 3 Given 0 < tmin < 1, the 2-Wasserstein distance

W2(p(x0), p(xtmin
)) <

√
2dCαtmin. (61)

proof.

W2(p(x0), p(xtmin
)) ≤ 1

N

N∑
i=1

W2(δ(x− yi),N (yi, σ
2
tmin

I))

=
1

N

N∑
i=1

√
dσtmin

(62)
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≤ 1

N

N∑
i=1

√
2dCαtmin =

√
2dCαtmin.

□

A.4 PROOF OF PROPOSITION 4

Proposition 4 For all 0 < β < 1, there exist δ > 0 and C1, C2, C3 > 0, such that for all time
discretizations D with |D| < δ, the Kullback-Leibler divergence KL(p(xtmin)||pθ(xtmin)) ≤
C1|D|

1−β
2 + C2εy . Moreover, W 2

2 (p(x0), p(xtmin
)) < C3|D|.

proof.

According to Proposition 1 and 2, for all i ∈ {1, 2, . . . , T}

KL(p(xti)||pθ(xti)) ≤ KL(p(xti+1
)||pθ(xti+1

)) + C1(ti+1 − ti)
3−β
2 + C2(ti+1 − ti)εy

≤ KL(p(x1)||pθ(x1)) + C1|D|
1−β
2 + C2εy. (63)

The final estimation using the 2-Wasserstein is simply the Proposition 3. □

A.5 PROOF OF COROLLARY 1

Corollary 1 For all tmin ≤ s < t ≤ tmax and 0 < β < 1, there exists a δ > 0 and
C1, C2, C3 > 0, depending on β, tmin and tmax, such that if t − s < δ, the inequality
KL(p(xs)||p̂θ(xs)) ≤ KL(p(xt)||p̂θ(xt)) + C1(t− s)

3−β
2 + C2(t− s)εyl + C3εal holds.

proof. In accordance with the convexity of the Kullback-Leibler divergence, we have

KL(p(xs|xt)||p̂(xs|xt)) ≤
∑
l

al(xt, t)KL(pl(xs|xt), p̂
l(xs|xt))

(1)
=

∑
l

al(xt, t)C1(t− s)
3−β
2 (64)

= C1(t− s)
3−β
2 .

The equality in step (1) is a direct consequence of Proposition 1.

KL(p(xs)||p̂θ(xs)) ≤
∫
Rd

∫
Rd

p(xs|xt)p(xt) log
p(xs|xt)p(xt)

p̂θ(xs|xt)p̂θ(xt)
dxt dxs

=

∫
Rd

∫
Rd

p(xs|xt)p(xt, t) log
p(xs|xt)

p̂θ(xs|xt)
dxt dxs

+

∫
Rd

∫
Rd

p(xs|xt)p(xt, t) log
p(xt, t)

p̂θ(xt, t)
dxt dxs.

=

∫
Rd

∫
Rd

p(xs|xt)p(xt, t)[log
p(xs|xt)

p̂(xs|xt)
+ log

p̂(xs|xt)

p̂θ(xs|xt)
] dxt dxs (65)

+ KL(p(xt)||p̂θ(xt))

(1)

≤
∫
Rd

∫
Rd

p(xs|xt)p(xt, t) log
p̂(xs|xt)

p̂θ(xs|xt)
dxt dxs︸ ︷︷ ︸

I

+ C1(t− s)
3−β
2 + KL(p(xt)||p̂θ(xt))

The inequality (1) results from equation (64).
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I =
∫
Rd

∫
Rd

p(xs|xt)p(xt, t) log

∑L
l=1 a

l(xt, t)p̂
l(xs|xt)∑L

l=1 a
l
ϕ(xt, t)p̂lθ(xs|xt)

dxt dxs

≤
∫
Rd

∫
Rd

p(xs|xt)p(xt, t)
1∑L

k=1 a
k(xt, t)p̂k(xs|xt)

·
L∑

l=1

al(xt, t)p̂
l(xs|xt) log

al(xt, t)p̂
l(xs|xt)

alϕ(xt, t)p̂lθ(xs|xt)
dxt dxs

≤
∫
Rd

∫
Rd

p(xs|xt)p(xt, t)
∑
l

log
p̂l(xs|xt)

p̂lθ(xs|xt)
dxt dxs

+

∫
Rd

∫
Rd

p(xs|xt)p(xt, t)
∑
l

log
al(xt, t)

alϕ(xt, t)
dxt dxs (66)

(1)

≤ C2σ
2
s|tεyl +

∫
Rd

p(xt, t)
∑
l

log
al(xt, t)

alϕ(xt, t)
dxt

≤ C2σ
2
s|tεyl +

∫
Rd

p(xt, t)
∑
l

1

Ca
|al(xt, t)− alϕ(xt, t)|dxt

≤ C2σ
2
s|tεyl + (

∫
Rd

p(xt, t)
∑
l

1

Ca
|al(xt, t)− alϕ(xt, t)|2 dxt)

1
2

= C2σ
2
s|tεyl + C3εal.

Given the established relationship between σs|t and t − s, we are able to derive the necessary con-
clusion.

A.6 PROOF OF COROLLARY 2

Corollary 2 For all 0 < s < 1, there are constants C1, C2, C3 > 0, such that
KL(p(xs)||pθ(xs)) ≤ C1(1− s)2 + C2εyl + C3εal.

proof.

KL(p(xs)||p̂θ(xs))

=

∫
Rd

∫
Rd

p(xs|x1)p(x1) dx1 log

∫
Rd p(xs|x1)p(x1) dx1∫

Rd p̂θ(xs|x1)p̂θ(x1) dx1
dxs

≤
∫
Rd

∫
Rd

p(xs|x1)p(x1) log
p(xs|x1)p(x1)

p̂θ(xs|x1)p̂θ(x1)
dx1 dxs

=

∫
Rd

∫
Rd

p(xs|x1)p(x1) log
p(xs|x1)

p̂θ(xs|x1)
dx1 dxs

=

∫
Rd

∫
Rd

p(xs|x1)p(x1) log
p(xs|x1)

p̂(xs|x1)
dx1 dxs

+

∫
Rd

∫
Rd

p(xs|x1)p(x1) log
p̂(xs|x1)

p̂θ(xs|x1)
dx1 dxs (67)

≤
∫
Rd

∫
Rd

∑
l

al(xt, t)p
l(xs|x1)p(x1) log

pl(xs|x1)

p̂l(xs|x1)
dx1 dxs

+

∫
Rd

∫
Rd

p(xs|x1)p(x1)
1∑

k a
k(xt, 1)p̂l(xs|x1)∑̇

l
al(xs|x1)p̂

l(xs|x1) log
al(x1, 1)p̂

l(xs|x1)

alϕ(x1, 1)p̂θ(xs|x1)
dx1 dxs
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(1)

≤ C1(1− s)2 + C2εyl + C3εal

The inequality (1) utilizes Proposition 2 in conjunction with the method employed in the proof of
Corollary 1. □

A.7 PROOF OF COROLLARY 3

Corollary 3 For all 0 < β < 1, there is a δ > 0 and C1, C2, C3, C4 >
0, such that for all time discretizations D with |D| < δ, the Kullback-Leibler
divergence KL(p(xtmin)||p̂θ(xtmin)) ≤ C1|D|

1−β
2 + C2εyl + C3Tεal. Moreover,

W2(p(x0), p(xtmin)) < C4|D|.

proof.

The methodology employed to prove this corollary mirrors that used in the proof of Proposition 4.
The sole divergence lies in the inclusion of an additional term with εal. □

A.8 PROOF OF PROPOSITION 5

Proposition 5 Let L(x0) denote the one-hot class vector of x0, the optimal aϕ(xt, t) for the
two objective functions

L2 = Ex0∼pdata,xt∼p(xt|x0),t∼U(0,1)||L(x0)− aϕ(xt, t)||2, (68)

and
LCE = Ex0∼pdata,xt∼p(xt|x0),t∼U(0,1)CE(L(x0),aϕ(xt, t)), (69)

are the same and equal to a(xt, t), where CE represents the cross-entropy loss.

proof.

Given that the subscript is utilized for data indices, we opt to use superscripts for vector components
within the context of this proof. Let Li denotes the one-hot class vector of the data yi.

(1) Loss L2. It is a constrained optimization problem:argmin
aϕ

L2,

s.t. 1Taϕ = 1, alθ ≥ 0,
(70)

where 1 is a column vector, all of whose elements are 1s. Using the KKT condition Nocedal &
Wright (1999)

0 = ∇aϕ(xt,t)L2 + ν(1Taϕ(xt, t)− 1)− µTaϕ(xt, t)

= ∇aϕ(xt,t)

∑
i

1

N
(2πσ2

t )
− d

2︸ ︷︷ ︸
At

vi(xt, t)|Li − aϕ(xt, t)|2 + ν(1Taϕ(xt, t)− 1)− µTaϕ(xt, t)

=
∑
i

Atvi(xt, t)(aϕ(xt, t)− Li) + ν1− µ

= At

∑
i

vi(xt, t)aϕ(xt, t)−At

∑
i

vi(xt, t)Li + ν1− µ, (71)

which leads to

a∗
ϕ(xt, t) =

∑
i vi(xt, t)Li − ν1/At + µ/At∑

j vj(xt, t)
, (72)

where µl ≥ 0, ∀c. Because 1Ta∗
ϕ(xt, t) = 1, we have

1
Ta∗

ϕ(xt, t) =

∑
i vi(xt, t)1Li − νL/At + 1

Tµ/At∑
j vj(xt, t)

= 1− νL/At + 1
Tµ/At, (73)
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which indicates νL = 1
Tµ ≥ 0. Since (a∗

ϕ(xt, t))
lµl = 0, ∀l, we have

(

∑
i vi(xt, t)Li − 1ν/At + µ/At∑

j vj(xt, t)
)lµl = 0. (74)

If ∑
i

vi(xt, t)L
l
i − ν/At + µl/At = 0, (75)

then

ν > µl ≥ 0, (76)

which lead to the contradiction

νL > 1
Tµ. (77)

As as result, µ = 0 and ν = 0, and

a∗
ϕ(xt, t) =

∑
i vi(xt, t)Li − 1ν/At + µ/At∑

j vj(xt, t)
=

∑
i

wi(xt, t)Li = a(xt, t). (78)

The Lagrange multiplier ν and µ are zero, which means we can omit the constrain 1Taϕ(xt, t) = 1
and alϕ ≥ 0. As the object function and the feasible set are all convex, the KKT condition is alson
sufficient.

(2) The loss LCE . Using the KKT condition Nocedal & Wright (1999)

0 = ∇aϕ(xt,t)LCE + ν(1Taϕ(xt, t)− 1)− µTaϕ(xt, t)

= ∇aϕ(xt,t)

∑
i

1

N
(2πσ2

t )
− d

2︸ ︷︷ ︸
At

vi(xt, t)
∑
l

−Ll
i log(a

l
θ(xt, t)) + ν(1Taϕ(xt, t)− 1)− µ

= −
∑
i

Atvi(xt, t)

L1
i /a

1
θ(xt, t)
...

LL
i /a

L
θ (xt, t)

+ ν1− µ, (79)

which leads to

(a∗
ϕ(xt, t))

l =
∑
i

Atvi(xt, t)

ν − µl
Ll
i, (80)

where µl ≥ 0. Since (a∗
ϕ(xt, t))

lµl = 0, we must have µl = 0, ∀l.

Because 1Ta∗
ϕ(xt, t) = 1, we have ν = At

∑
i vi(xt, t). Thus

a∗
ϕ(xt, t) =

∑
i

Atvi(xt, t)

At

∑
j vj(xt, t)

Li =
∑
i

wi(xt, t)Li = a(xt, t). (81)

In this case, the Lagrange multiplier ν is not zero, thus the constrain 1Taϕ(xt, t) = 1 is essential.
As the object function and the feasible set are all convex, the KKT condition is also sufficient. □

A.9 EXTENSION TO THE GENERAL UNDERLYING DISTRIBUTION

Our theory is developed based on the assumption that the initial distribution p0 is in a Dirac sum
form as shown in Assumption 1. This is exactly what happens in diffusion training, that is, we
train the diffusion models based on the dataset, which can only be a Dirac sum form. However,
some works Oko et al. (2023) assume the existence of a more general underlying initial distribution
pgeneral
0 , and the dataset distribution p0 is an i.i.d. N -sample of the pgeneral

0 . In this section, we will
establish results that our pθ trained on the dataset can also converge to pgeneral

0 as N → ∞. We first
give a finite momentum assumption on the underlying initial distribution pgeneral

0 .
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Assumption 5 The underlying initial distribution pgeneral
0 has a compact support, that is:

pgeneral
0 ∈ Pc(Rd) (82)

Note that this is a rather mild assumption; it does not specify the continuity or differentia-
bility of pgeneral

0 . This assumption of compactness is commonly met in image, text, and video
distributions.

Building upon Assumption 5, we are now in a position to establish the convergence of pθ and pgeneral
0 .

However, before this, it is crucial to revisit the relationship of the Wasserstein distance between an
arbitrary distribution and its corresponding N -sample distribution.

Theorem 6 (Fournier & Guillin, 2015, Theorem 1) Let µ ∈ P
(
Rd

)
and let p > 0. Assume

that Mq(µ) < ∞ for some q > p. There exists a constant C depending only on p, d, q such
that, for all N ≥ 1,

E (Wp (µN , µ)) ≤ CMp/q
q (µ)


N−1/2 +N−(q−p)/q if p > d/2 and q ̸= 2p,

N−1/2 log(1 +N) +N−(q−p)/q if p = d/2 and q ̸= 2p,

N−p/d +N−(q−p)/q if p ∈ (0, d/2) and q ̸= d/(d− p)

(83)

where Mq(µ) is the q-order momentum of µ, µN is a N -sample empirical measure of µ.

Now, we are ready to establish the convergence property of learned distribution towards the general
underlying data distribution.

Proposition 7 For all 0 < β < 1, there exist δ > 0, N1 > 0 and C1, C2, C4 > 0, such
that for all time discretizations D with |D| < δ. Let pN1

0 be a N1-sample of the gen-
eral underlying data distribution pgeneral

0 , and pθ be trained by the N1-sample pN1
0 . Then,

the Kullback-Leibler divergence KL(p(xtmin
)||pθ(xtmin

)) ≤ C1|D|
1−β
2 + C2εy . Moreover,

W 2
2 (p

general
0 (x0), p(xtmin

)) < C4|D|.

proof.

Based on the compactness property stipulated in Assumption 5, the q value of pgeneral
0 (x0) in The-

orem 6 can be any arbitrary integer. According to Theorem 6, the gap will approach 0 as N → ∞
in either case. Therefore, for any δ2 > 0, there exists a N2 such that for all N > N2, an N -sample
empirical distribution pN0 of pgeneral

0 will satisfy the following condition:

W2(p
general
0 (x0), p

N (xtmin)) < δ2. (84)

For the purpose of this proof, we set δ2 =
√
C3D, and N1 = 2 ∗N2(δ2). In this case, the following

holds:

W2(p
general
0 (x0), p

N1
0 (x0)) <

√
C3D. (85)

By applying Proposition 4 to pN1
0 , we obtain:

W 2
2 (p

general
0 (x0), p(xtmin

))

≤W 2
2 (p

general
0 (x0), p

N1
0 (x0)) +W 2

2 (p
N1
0 (x0), p(xtmin

)) (86)

<(
√

C3D)
2
+ C3D

=2C3D.
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The proof can be concluded by setting C4 = 2C3. The values of C1 and C2 are derived from the
application of Proposition 4. □

B EXPERIMENTAL RESULTS ON IMAGENET

We further evaluate our proposed method on the challenging ImageNet64x64 dataset (Deng et al.,
2009), as shown in Table 4. Our DC-DPM applied to the raw DDPM not only outperforms DDPM
but also achieves lower FID scores than the higher-order SN-DDPM and GMS, which use enhanced
reverse kernels for diffusion models. This demonstrates the effectiveness of our approach.

Table 4: FID ↓ on ImageNet64x64 Dataset. Employing our Divide-and-Conquer (DC) kernel
approximation strategy on DDPM enables better generation quality than previous methods.

# TIMESTEPS 25 50 100 200 400

DDPM (Ho et al., 2020) 29.21 21.71 19.12 17.81 17.48
SN-DDPM (Bao et al., 2022b) 27.58 20.74 18.04 16.72 16.37
GMS (Guo et al., 2024) 26.50 20.13 17.29 16.60 15.98

DDPM+DC-DPM (Ours) 24.60 18.91 16.46 14.93 14.00

C COMBINATION WITH PREVIOUS DIFFUSION ACCELERATION METHODS

As our DC-DPM improves the representation of diffusion model reverse transition kernels, it is or-
thogonal to previous acceleration methods including faster SDE/ODE solvers like DPM Solver (Lu
et al., 2022a) and DPM Solver++ (Lu et al., 2022b). Therefore, our DC-DPM can be combined with
these methods and we provide evaluation on CIFAR10 dataset to showcase the further improvement
brought by our methods in Table 5

Table 5: FID ↓ of Combining Our Method with Faster ODE solvers on CIFAR10 Dataset.
Our Divide-and-Conquer (DC) kernel approximation strategy can be applied to previous diffusion
acceleration methods to enable better generation quality.

# TIMESTEPS 10 25 30 50

DPM Solver (Lu et al., 2022a) 7.95 6.54 6.17 3.37
+DC-DPM (Ours) 5.78 3.49 3.28 2.90
DPM Solver++ (Lu et al., 2022b) 11.11 7.41 6.76 3.42
+DC-DPM (Ours) 10.94 4.29 3.80 2.99

D COMBINATION WITH EDM

Our DC-DPM can also be seamlessly combined with advanced diffusion methods such as EDM
(Karras et al., 2022). As shown in Table 6, applying DC-DPM can improve the generation quality
of EDM, showcasing the powerful effectiveness of our proposed method.

E ABLATION STUDY

We conduct experiments to examine the impact of different classification approaches and varying
numbers of classes on the CIFAR-10 dataset. We flatten the input images and apply K-Means clus-
tering to the raw image values, classifying the training data into different numbers of clusters. The
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Table 6: FID ↓ of Combining Our Method with EDM(Karras et al., 2022) on CIFAR10 Dataset.
Our DC-DPM can be applied to advanced diffusion methods like EDM for further improvement.

# TIMESTEPS 10 25 30 50

EDM (Karras et al., 2022) 49.30 26.65 24.32 19.57
+DC-DPM (Ours) 36.86 21.14 19.21 14.72

FIDs for various denoising timesteps are presented in Fig. (3a). Our results indicate that the quality
of generated images improves as the number of classes increases, although the rate of improvement
diminishes with a higher number of classes. Notably, the generation quality for clusters created via
K-Means remains inferior to that achieved using semantic labels, even when divided into 16 clusters.

In Fig. (3b), we compare scenarios with different numbers of semantic labels. The label S3 denotes
three semantic classes. Specifically, we consolidated the original 10 classes of the CIFAR-10 dataset
into three broader categories: vehicles, animals, and others. For S40, we divide each of the original
10 classes into four finer sub-classes using K-Means, resulting in a total of 40 classes. The gen-
eration quality initially improves and then deteriorates as the number of classes increases. While
having more classes makes each cluster-specific kernel easier to learn, it simultaneously raises the
complexity of managing all these classes within a single conditional diffusion network yθ(xt, t, l).

(a) FIDs Using K-Means with Varying Cluster
Counts.

(b) FIDs with Semantic Label Classification at
Different Class Counts.

Figure 3: Ablations on Classification Approaches and Number of Classes on CIFAR-10.

F EXPERIMENTAL DETAILS

F.1 TRAINING DETAILS

We use aligned training setting to that of the noise prediction network in Extended-Analytic-DPM
(Bao et al., 2022a) and GMS (Guo et al., 2024) for image-space experiments on CIFAR-10. We
use an exponential moving average (EMA) with a rate of 0.9999 and set the batch size as 128,
learning rate as 2e-4. We train 600K iterations and save a checkpoint every 10K iterations. For
the latent-space experiments on CelebA-HQ-256, we align the setting with LDM (Rombach et al.,
2022) and set the batch size as 48, learning rate as 9.6e-5. We train 500K iterations and choose the
best checkpoint to evaluate. We use the same training setting for the label model in label diffusion
merging approximation. Training on CIFAR-10 and CelebA-HQ-256 both take about 48 hours on 8
Tesla V100 GPUs.

To apply our method to Extended-Analytic-DPM and GMS, two higher-order noise prediction net-
works need to be trained. We align the settings with Extended-Analytic-DPM and GMS and train
two additional light-weight prediction heads with the backbone model frozen. Please refer to these
two original papers for more details.

F.2 EVALUATION DETAILS

Following Extended-Analytic-DPM and GMS, we calculate the FID score on 50K generated sam-
ples, using the official implementation of FID for pytorch (https: //github.com/mseitzer/pytorch-fid).
The reference distribution statistics of FID are computed on the full training set. The parameters in

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Patterns (Number of Classes)

#STEPS Circles (2) Moons (2) Pinwheel (5) CheckerBoard (8) Gaussians (8)

1 GS FC LD 1 GS FC LD 1 GS FC LD 1 GS FC LD 1 GS FC LD
500 2.788 8.017 0.8717 3.935 7.051 2.590 3.672 6.658 3.056 -1.301 6.561 -2.912 6.339 7.945 2.567
100 7.685 5.066 2.088 5.724 4.111 0.7585 3.891 9.002 3.789 0.1639 7.913 -4.804 6.364 11.80 5.768
50 12.42 4.764 2.594 13.21 5.457 0.08196 14.05 14.79 3.265 9.516 8.759 0.8225 18.93 13.66 7.536
30 20.82 10.86 15.55 21.38 8.021 3.508 24.37 17.64 8.619 33.57 12.18 7.559 45.70 8.005 1.572
20 50.96 18.90 40.57 40.36 10.44 10.12 52.51 20.48 9.817 115.5 19.88 10.22 90.04 6.098 3.801
10 121.0 33.44 71.94 149.1 43.29 44.30 169.3 21.07 12.32 494.9 54.94 90.71 211.1 22.03 16.62

Table 7: Comparison on Synthetic Datasets. 1 GS indicates the baseline which approximates each
step as a single Gaussian. FC and LD represent our methods. Generation quality is assessed by
Maximum Mean Discrepancy (MMD) ↓. Values in the table have been rescaled by a factor of 10−5.

sampling are kept aligned with those in Extended-Analytic-DPM, please refer to Appendix F.5 in
the original paper of Extended-Analytic-DPM (Bao et al., 2022a) for more details.

F.3 RESULTS ON 2D SYNTHETIC DATASET

We validate our approach on five synthetic 2D datasets with varying distributions. Each dataset
consists of continuous 2D points (x, y) ∈ R2, assigned class labels based on natural clustering. For
each experiment, we generated 4K samples and assessed generation quality using Maximum Mean
Discrepancy (MMD) with a Laplace kernel (bandwidth 0.1) (Gretton et al., 2012). Each computation
was repeated 8 times, and we report the average MMD value, with lower values indicating better
generation quality. As shown in Table 7, our LD and FC methods outperform the single Gaussian
baseline, achieving lower MMD across different timesteps.

G QUALITATIVE RESULTS

Figure 4: DDPM + DC-DPM on 10 Denoising Steps.
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Figure 5: DDPM + DC-DPM on 25 Denoising Steps.

Figure 6: DDPM + DC-DPM on 50 Denoising Steps.

Figure 7: DDPM + DC-DPM on 100 Denoising Steps.
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Figure 8: SN-DDPM (Bao et al., 2022a) + DC-DPM on 10 Denoising Steps.

Figure 9: SN-DDPM + DC-DPM on 25 Denoising Steps.

Figure 10: SN-DDPM + DC-DPM on 50 Denoising Steps.
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Figure 11: SN-DDPM + DC-DPM on 100 Denoising Steps.

Figure 12: GMS (Guo et al., 2024) + DC-DPM on 10 Denoising Steps.

Figure 13: GMS + DC-DPM on 25 Denoising Steps.
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Figure 14: GMS + DC-DPM on 50 Denoising Steps.

Figure 15: GMS + DC-DPM on 100 Denoising Steps.
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