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Abstract

Contours or closed planar curves are common in many domains. For example,
they appear as object boundaries in computer vision, isolines in meteorology,
and the orbits of rotating machinery. In many cases when learning from con-
tour data, planar rotations of the input will result in correspondingly rotated
outputs. It is therefore desirable that deep learning models be rotationally equiv-
ariant. In addition, contours are typically represented as an ordered sequence
of edge points, where the choice of starting point is arbitrary. It is therefore
also desirable for deep learning methods to be equivariant under cyclic shifts.
We present RotaTouille, a deep learning framework for learning from contour
data that achieves both rotation and cyclic shift equivariance through complex-
valued circular convolution. We further introduce and characterize equivariant
non-linearities, coarsening layers, and global pooling layers to obtain invariant
representations for downstream tasks. Finally, we demonstrate the effectiveness
of RotaTouille through experiments in shape classification, reconstruction, and
contour regression.

1 Introduction

Equivariance and invariance are the central concepts in geometric deep learning. Designing architec-
tures that respect certain symmetries, often defined in terms of group actions, allows us to incorporate
prior geometric knowledge about the data into the learning process. This can lead to models that
generalize better, require less data, and are more efficient by reducing the effective hypothesis space.
Equivariance is especially useful when the task requires the model to be sensitive to transformations
of the input, such as translation, rotation, or permutation, while still producing consistent and mean-
ingful output. Invariance, on the other hand, is desirable when the output should remain unchanged
under transformations. Convolutional neural networks (CNNs) illustrate both concepts in image
analysis. Convolutions are translation-equivariant, so shifting an input image shifts the feature maps
accordingly, which is useful for segmentation, while applying global pooling after the convolutional
layers achieves invariance, allowing classification to be insensitive to the object’s position. Graph
neural networks (GNNs) offer another example: they are often designed to be invariant or equivariant
under permutations of node orderings (graph isomorphisms). A comprehensive overview of methods
and concepts in geometric deep learning can be found in [9] and [17].

In this paper, we focus on what we will refer to as contours. Contours are complex-valued signals on
finite cyclic groups, i.e., functions Z,, — C*, where Z,, denotes the cyclic group of order n, and CFis
the k-dimensional complex vector space consisting of k-tuples of complex numbers. See Fig. 1 for an
illustration of a simple contour. Contours can serve as sparse representations of object boundaries, but
they are not limited to simple closed shapes. Contours can also accommodate more general signals, in-
cluding self-crossing curves and multichannel contours. For example, contours occur naturally as cell
shapes in cell morphology [7, 10, 29], and as orbit plots in the vibrational analysis of rotating machin-
ery [11, 21, 22]. Our method uses complex-valued neural networks, which employ complex-valued
weights and are often employed in applications such as radar imaging [16, 34], MRI fingerprinting
and reconstruction [14, 41], and other areas where data are naturally represented in the complex
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Figure 1: An illustration showing a contour 2 : Z, — C" where n = 5 and k = 1, and how a cyclic
shift by one and a rotation by 7 /2 radians changes the image of z in C. For readability, we write
x; = x(4). For k > 1, one can think of the image of x as a stack of contours, one for each copy of C.

domain. See [4, 27] for a detailed overview of complex-valued neural networks and their applications.
Complex-valued CNNs have also been applied to images, showing self-regularizing effects [18].

1.1 Contributions

The group G,, = Z,, xS! acts on a contour z: Z,, — (o by combining two operations: the cyclic
group Z,, acts by cyclically shifting the starting point of the contour, and S* acts by rotating the image
of = about the origin in each copy of the complex plane. These actions are illustrated in Fig. 1. We pro-
pose rotation- and cyclic shift-equivariant (as well as invariant) layers for deep learning on contours,
leveraging complex-valued convolutions over the cyclic group (circular convolution). Convolution is
well known for its cyclic shift-equivariance, and working in the complex domain also ensures equiv-
ariance to planar rotations. Our framework, RotaTouille, comprises the following main layer types:

* Convolution layers. Linear equivariant layers based on complex circular convolutions.

 Activation functions. Equivariant non-linear functions applied element-wise allowing the
network to learn more complex functions.

 Coarsening layers. Equivariant local pooling layers downsampling the signal by coarsening the
domain.

« Invariant layers. Global pooling layers producing real-valued invariant embeddings.

This layer taxonomy aligns well with the Geometric Deep Learning Blueprint proposed in [9, p. 29].
Throughout the paper, we show that the proposed layers are indeed equivariant and provide a
classification of all possible equivariant non-linear activation functions. We evaluate RotaTouille
in different tasks, including shape classification, shape reconstruction, and node-level curvature
regression. Furthermore, we compare the effect of various design choices in an ablation study. Our
implementation, including all code required to reproduce the experiments, is publicly available.!

1.2 Related Work

Shape analysis is a central topic in computer vision and machine learning, with early approaches
often based on hand-crafted descriptors computed from contours. Examples include Curvature
Scale Space (CSS) representations [1, 30] and generalized CSS (GCSS) [6], which were later used
in the DeepGCSS neural network classifier [31]. The use of neural networks for contour data
appeared already in [19], where the authors used fully connected neural networks to classify contours.
Other classical works combined contour fragments with skeleton-based features to improve shape
recognition [36-38]. The shape context (SC) descriptors [5], based on log-polar histograms, have
also been shown to be effective in capturing the local geometric structure in a rotation-invariant way.

More recently, deep learning methods have become more popular for contour analysis. ContourCNN
[15] models planar contours using real-valued circular convolutions on point sequences, with a
custom pooling strategy to discard shape-redundant points. A similar convolutional approach was
proposed in [28]. Two-dimensional CNNs have also been applied to contour images [3, 11, 22] and

"https://github.com/odinhg/rotation-equivariant-contour-learning
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transformer-based architectures have been adapted for shape data using SC descriptors in [23]. None
of these deep learning-based methods is intrinsically equivariant or invariant to rotations and they
instead rely on data augmentation or manual feature extraction of invariant features. ShapeEmbed was
recently introduced in [33] as a self-supervised variational autoencoder (VAE) that takes the pairwise
distance matrix of contour points as input. It produces latent representations that are invariant to a
fixed set of symmetries, including rotations and cyclic shifts.

Several works have explored learning rotation equivariant or invariant representations more directly,
particularly for images and point clouds. The O2-VAE model [10] applies steerable CNNs [13] to
cell images, encoding them into a latent space that is invariant to planar rotations. Although effective
in capturing texture- and intensity-based features, such approaches operate on pixel grids rather than
directly on contour data. Group-equivariant CNNs (G-CNNs) [12] provide a general framework for
building networks equivariant to discrete symmetry groups, though they have been applied mostly
to images. Closer in spirit to our approach are quaternion neural networks for 3D point clouds
[39], where rotation-equivariant layers are constructed using the action of unit quaternions on R3.
Topological methods have also been applied to contour data. Persistent homology has been used to
extract stable shape features for morphological classification and comparison [7, 29].

2 Methodology

We begin by defining contours and the action of the group Z,, x.S* on them, along with the concepts
of equivariant and invariant maps. Subsequently, we introduce the various equivariant and invariant
layers that form RotaTouille. For completeness, groups and group actions are defined in Section A.1.

2.1 Contours

For an integer n > 0, we let Z,, = {0,1,...,n — 1} denote the cyclic group of order n under
addition modulo n. A contour is a function x: Z,, — C* where k > 0. The set of all contours
XF = map(Z,, (Ck) is a vector space over C with addition and scalar multiplication defined
pointwise. For any function f: S — C* where S is a set, we use the shorthand notation fi=mjof
where 7 : Ck - Cis the projection onto the j-th coordinate.

2.2 Group Actions and Equivariant Maps

The circle group S* C C consists of all unit complex numbers and the group product is given as
complex multiplication. We consider the product group G,, = Z,, x.S* and let it act on contours
as follows: for (I,w) € G,, and a contour z € X* we define (I, w) - x to be the contour mapping
q — wx(q — ). Here, w acts by scalar multiplication in CFand ¢ — I is computed modulo n. We
show that this does indeed define a (left) group action in Proposition A.3.

A function f: X¥ — X% where m is a divisor of n is called equivariant if f((I,w)+z) = (I, w)-f(x)
forallz € X% and all (I,w) € G,,. That is, the function commutes with our group action on contours.
A function f: X* — Y where Y is a set is called invariant if f((l,w)+z) = f(z) forall z € X*
and all (I,w) € G,,. The concepts of invariance and equivariance are more general than described
here and can be defined for any group action, including group representations (also known as linear
actions). For a broader exposition, see [9, Chapter 3.1] or [42, Chapter 2.1].

2.3 Circular Convolution as Linear Equivariant Layer

Ifamap T: X} — X[ satisfies T'(wz) = wT'(x) and T(z +y) = T(x) + T(y) for all w € ST and
x,y € X}, then T is automatically C-linear. This is a consequence of the fact that every complex
number can be written as a (nonunique) finite sum of unit complex numbers. Now, suppose T'
also commutes with cyclic shifts, so 7" is any additive map that is equivariant with respect to our
group action: T((I, w) « z) = (I,w) « T(x). Then it is well known that T is necessarily the circular

convolution operator. For completeness, we include a proof of this in Proposition A.4.

The circular convolution x: X} x X! — X is defined by letting (y x x)(q) = Z;Z;Ol y(i)z(g—7)
for z,y € X} and q € Z,. In convolutional neural networks, we tend to work with kernels smaller

than the signal. If y € X!, for some m < n, we extend y with zeros to X! before convolving with
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x. That is, we let y(q) = 0 whenever ¢ > m. We also want our equivariant layers to handle multi-
channel signals, both as inputs and as hidden representations. By convention, we integrate information
across the input channels by summing. Fixing ¢ € X% , we define the circular convolution operator
Convg: Xk — X! as

k
Convy(x) = Z(ﬁj * T
j=1

for x € XF. We refer to ¢ as a filter (or kernel) that is typically learned during training, and m as the
kernel size. Note that we do not use an additive bias term as this would break rotational equivariance.
In practice, we often have multiple filters in each convolutional layer. Let ® = (¢',..., qbk/)
be a collection of %’ filters, often referred to as a filter bank. The convolutional layer denoted
Convg: XF — X is defined coordinate-wise by letting Convg(z); = Convy; (x) for all
j=1,...,k". We show that the convolutional layer satisfies the equivariance property. The proof
that this satisfies equivariance is provided in Section A.2.

Proposition 2.1. The convolutional layer Convg: XF — Xffl is equivariant, that is, for all
(I,w) € Gy, and x € XF, we have (I, w) - Convg(z) = Conve((I,w) - z).

2.4 Non-linear Activation Functions

To learn more complex, non-linear functions on the space of contours, we need to introduce non-
linear activation functions between the linear layers. We also want these activation functions to
be equivariant. Any function a: C — C can be extended to a function X¥ — X by point-wise
application in each coordinate, and this function is equivariant if and only if a(wz) = wa(z) for all
z € Cand w € S'. We classify such functions in the following proposition proven in Section A.2:
Proposition 2.2. A function a: C — C satisfies the equivariance condition a(wz) = wa(z) for all
z € Candw € St if and only if there exists a function g: [0, 00) — C such that a(z) = g(|z|)z for
all z € C.

Functions on this form already appear in the existing literature on complex-valued neural networks
and we list some of them in Table 1.

Table 1: Examples of equivariant activation functions for contours.

Activation Function  Choice of g(r)
Siglog [41] (r+1)7t

ModReLU? [2, 43] ReLU(r 4 b)r—!
Amplitude-Phase [20]  tanh(r)r~!

2.5 Coarsening Functions

A coarsening (or local pooling) function is an equivariant function P: X* — Xk with m < n.
In this section, we suppose that n = mp for some integer p > 1 and think of p as the coarsening
factor. We fix two positive integers ns and ng called stride and dilation, respectively, and let
@: C? — C be any function such that P(wz) = wP(z) for all w € S and z € CP. For

convenience, we write @?;é z; instead of @(zo, . . ., zp—1). Examples include magnitude-based
argmax @?;é z; = argmax,—o, . p—1|%;|, and the mean @f;é zj=p ! ?;3 z;j for z € CP.
For a contour # € X} we define the coarsening function Pg: X} — X! by letting

p—1

Py (x)(q) = @x(qns + naj)

j=

for all ¢ € Z,, and extend this to a function Pg: X* — X* coordinate-wise. We refer to the

case with ny = 1 and ng = m as coset pooling. That is, we pool over the cosets ¢ + (m) =
{¢, g+ m,...,q+ (p — 1)m} for g € Z,, and the function P is equivariant as we have

>The ModReLU activation function has a learnable bias parameter b € R.
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Py ((Lw) - 2)(q) = Puwa((q +mj) 1) =wPa((g = 1) +mj) = ((l,w) - P ())(q)-
§=0 j=0

For ngy = p and ng = 1, we get strided pooling, which is the most common type of pooling operation
in CNNs. However, strided pooling is only approximately equivariant in the sense that cyclically
shifting the input signal by Ip, cyclically shifts the output signal by (:

|
-

Pg((lp,w) »x)(q) = @ww((qp +J) —1lp) =wipz((¢—Dp+j) = ([, w) - Pg(x))(q).

J

Il
o

In other words, strided pooling is equivariant with respect to the subgroup p Z,, xS* of G,,, but is

true to the assumption that points close in the domain Z,, tend to be mapped to close points in c*.
Coset pooling, on the other hand, is truly equivariant, but does not aggregate locally.

2.6 Invariant Feature Extraction

A global pooling function is an invariant map A: X* — Y where Y is some set. We will only consider

Y = R". The idea then is that A aggregates channel-wise information into a real-valued contour
embedding that can be used in downstream tasks. In the implementation, we use a combination of
the mean and maximum of absolute values similar to what is done in [36]. Specifically, we define the
global pooling function A: X% — R* by setting the i-th component of A(x) to be

.....

n—1
an™' > () + (1—a)  max |z;(5)| §))
=0 e
for x € X* and where a € [0, 1] is a learned parameter.

3 Experiments

We perform various experiments to assess the feasibility of RotaTouille. This section outlines the
details of preprocessing and implementation, introduces the datasets, and presents the results.

3.1 Preprocessing and Implementation Details
Data preprocessing. For image data, we extract contours through a three-step process:

1. Binarization. For grayscale images, we convert the images to binary images by applying
thresholding, for example, by using Otsu’s method [32].

2. Contour extraction. We use the OpenCV library [8] to extract contours from the binary images,
selecting the one with the largest area in the case of multiple contours.

3. Equidistant resampling. We resample the contour to a fixed number of points, equidistantly
with respect to the Euclidean distance.

See Fig. 2 for an illustration of the image-to-contour conversion process.

Before passing the contours to the model, they are centered at their mean and rescaled by dividing by
the standard deviation of the magnitudes, as this showed to improve convergence of the complex-
valued models. The image datasets are standardized using statistics computed on the training dataset.

Multi-scale invariant features. Choosing the optimal kernel size in 1D CNNss is not straightforward.
One approach is to build an ensemble of models with different kernel sizes to capture features at mul-
tiple scales. While effective, this increases the number of parameters and computational cost. In our
classification experiments, extracting invariant features at different network depths improved perfor-
mance without adding learnable parameters. Figure 3 illustrates the structure of a convolutional block.
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Original Binary Contour Resampled

Figure 2: Image-to-contour conversion process. The input image is binarized, contours are extracted,
and then resampled to a fixed length with equidistant points.

Input —] Conv —] ModReLU |—>| Coarsening |—>| Global Pool |— Tnvariant features

Equivariant features

Figure 3: Multi-scale invariant feature extraction. After each convolutional block, a global pooling
operation produces an invariant feature vector at that scale. Equivariant features are passed to the
next block, and the final feature vector concatenates the invariant vectors from all depths.

Contour re-centering. Before every convolutional layer and global pooling layer, we re-center
the contour channel-wise as this showed improvements in training stability and performance of our
method. This re-centering is an equivariant operation.

Model architectures. For classification and regression, we use the ModReL.U activation with
strided local pooling and global pooling layers that aggregate via a learnable combination of mean
and absolute-value maximum. These choices were guided by preliminary experiments on related
datasets, which indicated robustness. The classification model has seven convolutional layers followed
by a fully connected head, while the regression model uses four convolutional layers with a linear
head. For the RotatedMNIST classification task, radial histogram features are concatenated with
the invariant features from the global pooling layers before the classification head. The contour
autoencoder has five convolutional layers in both encoder and decoder, including pooling and
unpooling layers. Full architecture details are provided in Section A.4.

Training, model selection and evaluation. We use the Adam optimizer in all experiments and
use 10% of the training data for validation to choose the best model for evaluation on the separate
test data. For the classification tasks, the test data is randomly rotated to test the robustness of the
candidate models. In this case, we also apply random rotation to augment the training data for the non-
invariant baseline models to make the comparison fair. Each experiment is repeated ten times with
different seeds, and we report mean test scores together with standard deviations. For more details on
hyperparameter values for the different model and dataset combinations, see Table 5 in the appendix.

3.2 Datasets

Now, we describe the five datasets used in our experiments. We have three datasets for shape
classification, one for shape reconstruction, and one for node-level regression.

Fashion MNIST. The Fashion MNIST dataset [45] contains 60,000 training and 10,000 test
grayscale images of clothing items, each of size 28 x 28 pixels. We convert these images to contours
by applying the image to contour conversion process described earlier. For the baseline CNN, we
create two versions of the dataset: one with filled contours and one with unfilled contours. The
filled contours are binary images where the contour is filled in, while the unfilled contours are binary
images where only the contour is drawn. Hence, we discard all texture information in the images and
only use the shape of the clothing items. We refer to this dataset as FashionMNIST.

ModelNet. We create a multi-channel dataset based on ModelNet [44], which contains 3D CAD
models from various object categories. We select the classes bottle, bowl, cone, and cup, chosen
for their tendency to form a single connected component in cross-section. For each model, we
uniformly sample a point cloud and divide it into four disjoint volumes along the second axis. From
each volume, we generate a 64 x 64 binary image by projecting points onto an orthogonal plane, then
extract contours from the four image channels. Each sample thus consists of a stack of four contour
slices. The final ModelNet dataset contains 644 training examples and 160 test examples.
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Rotated MNIST. The rotated MNIST dataset [25] is a modified MNIST [26] where each image
is randomly rotated by an angle uniformly sampled from [0, 27). It contains 12,000 training and
50,000 test examples of size 28 x 28 pixels, grayscale, with handwritten digits 0-9. We convert the
images to contours using the process described above and include a simple rotation-invariant texture
feature based on the radial histogram (RH). The RH captures the distribution of pixel intensities
by dividing the image into 14 radial bins and counting pixels in each bin. We refer to this dataset
as RotatedMNIST.

Cell Shapes. We use a subsample of the Profiling Cell Shape and Texture (PCST) benchmark dataset
introduced [10] with 1000 shapes from each of the 9 categories corresponding to different combina-
tions of eccentricity and boundary randomness. We extract contours and refer to this dataset as PCST.

Curvature contours. We construct a synthetic dataset for curvature regression. Given a continuous
contour 7y: [0,27) — C where (t) = x(t) + iy(t) with 2 and y twice differentiable, the curvature
k is defined in terms of the first and second derivatives as

_ |:E/y// _ y/xll‘
(x’2+y’2)3/2

The curvature measures the local deviation of the curve from a straight line. The Curvature dataset
is generated as follows: First, we sample a number of modes m uniformly from {2, 3,4, 5}. Then, for
eachmode k = 1, ..., m, we sample four coefficients af, b7, aZ, bz independently from the uniform
distribution on [—1, 1], and define the contour v = = + ¢y where

m m

x(t) = Z (af cos(kt) + b sin(kt)) and y(t) = Z (a} cos(kt) + bY sin(kt)) .

k=1 k=1

This construction ensures periodicity and smoothness while introducing controlled geometric variabil-
ity through the random coefficients and number of modes. Lastly, we sample 100 points equidistant
in arc length, and use the curvature in these points as the ground truth. See Fig. 4 for examples of
generated curves. We discard contours with maximum curvature greater than 1000 to avoid extreme
values. We generate 2000 contours for training and 1000 contours for test data.

0.00 176 351 0.00 146 291 0.00 081 162 000 121 241 0.00 146 292
log(1+k) log(1+k) log(1+k) log(1+k) log(1+k)

Figure 4: Five example contours from the Curvature dataset with log-curvature values colored.

3.3 Results

Shape classification. We evaluate RotaTouille on the classification datasets FashionMNIST,
ModelNet, and RotatedMNIST. The cross-entropy loss function is used for training and performance
is measured using test accuracy (or test error). As a first proof of concept, we compare RotaTouille
with the baseline models on FashionMNIST. The baseline CNN uses contour images, and we test
both filled and unfilled contours. We also include a baseline graph neural network based on the graph
convolutional network (GCN) introduced in [24]. The graph is a fixed cycle graph with the Cartesian
coordinates of the contour points as the node features. As an additional baseline, we implement the
ContourCNN method using the optimal configuration reported in [15]. To evaluate RotaTouille on
multichannel data, we compare it with the baseline models on ModelNet. The results are listed in Ta-
ble 2, where RotaTouille slightly outperforms the baseline models on both datasets. The GCN model
performs poorly on FashionMNIST, but is comparable to RotaTouille on the ModelNet dataset.

The RotatedMNIST dataset was originally designed to evaluate model robustness to rotations and
has been widely used as a benchmark in prior work. We evaluate RotaTouille on this dataset to
compare with existing methods. We report test error, defined as 1 — accuracy, directly quantifying
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Table 2: Comparison of accuracies on the FashionMNIST and ModelNet contour datasets between
RotaTouille and the baseline models. Accuracies are computed on the test dataset.

Model Accuracy
FashionMNIST ModelNet
CNN (filled contours) 0.849 + 0.002 0.898 + 0.032
CNN (unfilled contours)  0.852 4 0.001 0.905 + 0.012
GCN 0.626 £+ 0.003 0.923 + 0.027
ContourCNN 0.771 £0.004  0.849 + 0.022
RotaTouille 0.867 £+ 0.002 0.934 4+ 0.016

misclassification and allowing comparison with prior works using the Rotated MNIST dataset.
As shown in Table 3, using only contours yields a test error of 5.70%, which is not particularly
competitive. However, augmenting our method with the simple radial histogram (RH) feature reduces
the error to 3.72%, outperforming some of the other methods, including a image-based CNN used in
[12]. While this does not match the accuracy of the most competitive methods, it demonstrates that a
contour-based representation, when combined with a basic invariant feature, can achieve competitive
performance on a challenging rotation benchmark.

Table 3: Comparison of test errors (in percent) on the RotatedMNIST dataset between existing
methods and RotaTouille, both with and without the invariant radial histogram (RH) feature. Results
marked with * are taken from previous papers (not re-implemented).

Method Test error (%)
SVM (RBF kernel)* [25] 10.38 +0.27
TIRBM* [40] 4.2
RC-RBM+Gradients IHOF* [35] 3.98

CNN* [12] 5.03 4+ 0.0020
P4CNN* [12] 2.28 +0.0004
H-Net* [43] 1.69

GCN 48.44 +0.79
ContourCNN [15] 21.79 £ 1.12
RotaTouille (contours only) 5.70 £0.13
RotaTouille (contours + RH feature) 3.72 +£0.11

Shape reconstruction. To demonstrate the flexibility of RotaTouille, we include an unsupervised
learning task. Here, we train an autoencoder for contour reconstruction on the PCST dataset, and
compare it to a similar architecture on binary images. We use the mean square error (MSE) as the
reconstruction loss function. Using 10% of the dataset, we evaluate performance by visual inspection
and compute the intersection over union (IoU) between the original shape and its reconstruction. For
the contour-based model, we first convert the contours to binary images to compute the IoU scores.

See Fig. 5 for visualizations of the reconstructions. Both models are able to reconstruct the
overall shapes, but seem to struggle with high frequency details. Based on the appearance of the
reconstructions, our method is able to capture sharp corners better than the image-based model. This
is particularly clear in example 2 and 3 of Fig. 5. Another advantage of the contour-based model
is that it is guaranteed to produce valid contours, while the image-based model can produce invalid
shapes with holes or multiple components. Moreover, it is not restricted to a fixed pixel grid. In
terms of IoU, both models scores 0.97 on the validation data.

Curvature regression. We also consider a node-level regression task in which the goal is to predict
the curvature at each point of a discrete contour from the Curvature dataset. For this task, we use
the mean absolute error (MAE) as both the loss function and the evaluation metric. As baselines,
we implement a 1D real-valued CNN and a graph-based GCN model operating on the Cartesian
coordinates of the contour points, as well as a circle fitting method that estimates curvature by fitting
a circle to every three consecutive contour points and computing the curvature from the fitted radius.
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Figure 5: Ten randomly selected PCST validation examples (two per row). From left to right:
original image, image-based autoencoder reconstruction, original contour, contour-based autoencoder
reconstruction.

The baseline CNN employs circular convolutions like ContourCNN, but without priority pooling. As
shown in Table 4, RotaTouille achieves the lowest MAE and highest R?.

Table 4: Mean absolute errors (MAE) and R? scores on the test set for the curvature regression task.

Model MAE R?

Circle fitting 0.4411 0.1071

CNN (real-valued)  0.4479 + 0.0046 0.2220 + 0.0077
GCN 0.9063 + 0.0003  —0.0064 + 0.0001
RotaTouille 0.3944 + 0.0092 0.2480 + 0.0149

3.4 Ablation Study

We investigated how different design choices in our framework affect model performance. All ablation
studies were conducted on the FashionMNIST contour dataset, with all other components and the
architecture kept fixed as in the main experiments. We evaluate several configurable components of
the model. Local pooling (coarsening) is tested with no pooling, or with strided and coset pooling
using mean, max, or a learnable aggregation. We test the activation functions listed in Table 1.
The sampling rate of contour points is varied across 16, 32, 64, 128, and 256, while kernel sizes
range from 3 to 13 in odd increments. For global pooling, we compare mean, max, and a learnable
combination as in Eq. (1). Numerical results are provided in Section A.5 in the appendix.

We observe minimal performance differences across configurations, except for the local pooling
strategy: Despite its approximate equivariance, strided pooling consistently outperforms coset pooling,
while omitting pooling yields similar accuracy but increases training time due to more contour points.
Performance is largely robust to kernel size, while sampling rate has a small positive effect, with
mean accuracy increasing from 0.855 (16 points) to 0.878 (256 points). This robustness likely reflects
the simple shapes in FashionMNIST. For more complex shapes, appropriate choice of sampling rate
and kernel sizes may be needed to capture high-frequency details.

4 Conclusion

We introduced a framework for deep learning on contours that is equivariant to rotations by defining
an action of the group Z,, x.S* on contours and constructing corresponding complex-valued convolu-
tional layers. We also developed non-linear activation functions and pooling operations that preserve
equivariance, as well as a global pooling layer to produce invariant features. While the performance
gains are modest, RotaTouille provides a easy-to-implement framework that explicitly encodes rota-
tional symmetry on contour data. This makes it a promising option for practical applications in shape
analysis and other fields where rotation equivariance and invariance is essential.
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A Appendix
A.1 Groups and Group Actions

We recall some basic definition from group theory used in this manuscript. A group G is a non-empty

set together with a binary operation G x G — G mapping (g, h) — gh and a distinguished element

e € G called the identity element of G such that the following identities hold:

Associativity. For all g, h, k € G, we have (gh)k = g(hk),

Identity. For all g € G, we have eg = g = ge, and

Inverses. For all g € G, there exists an h € G such that gh = e = hg. The element h is unique, and
we usually denote it by g~ !

Given two groups G and H, one can form the product group G x H consisting of all pairs (g, k)
with ¢ € G and h € H. The binary operation is defined coordinate-wise as (g1, h1)(g2, ha) =
(9192, h1ha) for g1, 92 € G and hy, hy € H.

For a group G with identity element e, and a set .S, a (left) group action of G on Sisamap Gx.S — S
mapping (g, x) — g - x that satisfies the following two conditions:

Identity. Forall z € S, we have e+ x = x, and

Compatibility. Forall g,h € Gandx € S, wehave g« (h-x) = (gh) -z

Proposition A.3. Let G,, = Z,, xS and X* = map(Z,,C*). The map G,, x X¥ — X* mapping
((I,w),z) — (L, w) « x where ((I,w) »x)(q) = wx(q — 1) for q € Z,, is a group action.

Proof. Letz € XF. The identity element in G,, is the element (0, 1), so the map e - = sends every
q € Z, to 1z(q — 0) = x(q). For the compatibility condition, we let (I, w), (I',w") € G, q¢ € Zy,
and straight-forward computation shows that
(@ w) T w')) ) (q) = (14T, ww') - 2)(q) = ww'z(q — (1 +1))
=w'wz(g -1 =) = (', w')+ ((,w) - 2))(q).

(l,
Since this holds for all ¢ € Z,,, the maps ((I, w)(I’,w’)) 2 and (I, w") ((I, w) »x) are the same. [J

A.2 Proofs

Proposition Ad. IfT: X! — X} is C-linear and commutes with cyclic shifts, then T is a circular
convolution operator.

Proof. Let §;: [n] — C be the Kronecker delta function defined by

_J1 ifg=yj,and
%(4) = {O otherwise.

Every x € X, can be written uniquely as 2 = Y7~ 5 #(5)8;. If we write S: X! — X} for the

cyclic shift operator defined by S(x)(¢q) = (g — 1), then we can express the cyclic shift equivariance
as T'o S = S oT. On basis elements, we have S(0;) = ;41 50 6; = S7(Jy) for all j € Z,,. Thus,

we can rewrite x = Z?:_Ol x(j)S7(80) and since T is linear and commutes with S, we have that

n—1 n—1 —
T(a) =T | Y ()57 (60) | = D ()T (57(0)) Z %))
7=0 j=0 =0
and hence T'(z)(q) = Z? ém(])y(q — j) where y = T'(0p) € X .. This is precisely the circular
convolution of x and y. O

Proposition 2.1. The convolutional layer Convg: X — X,’f/ is equivariant, that is, for all
(I,w) € Gy, and x € XF, we have (I, w) - Convg(z) = Conve((l,w) « ).

n’
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Proof. For (l,w) € G, q € Z,, and ¢ € D, we have

k
(I, w) « Convy(z Z

k
¢jxx;)(qg—1) :Zw ¢j*xx;)(qg—1)
=1

k
= Z(qu (@,

for any z € X*. Since Convg and the group action are defined coordinate-wise, we are done. [

w) +5))(q) = Convy((l,w) - x)(q)

Proposition 2.2. A function a: C — C satisfies the equivariance condition a(wz) = wa(z) for all
z € Cand w € S* if and only if there exists a function g: [0,00) — C such that a(z) = g(|z|)z for
all z € C.

Proof. If a(z) = g(|z|)z, then a(wz) = g(Jwz|)wz = wg(|z])z = wa(z) since |w| = 1. Now,
assume that a satisfies the equivariance condition. We have a(0) = wa(0) for all w € S, so a(0)
must be zero. If z # 0, write z = rw with 7 > 0 and w € S, and observe that a(z) = a(rw) =
wa(r) = zr~la(r). Define the function g by letting g(0) = 0 and g(r) = r~'a(r) whenever

r # 0.

A.3 Training Details

Table 5: Hyperparameters for the training of the models. All models were trained using the Adam
optimizer with the specified learning rate. Hyperparameter values were chosen based on performance
on validation data. The number of (real) parameters is an estimate of the model complexity. Random
rotations were applied to improve generalization for the non-equivariant and non-invariant models.

Model Dataset LR Batch Size Epochs Parameters Data Aug.
CNN (2D) FashionMNIST 0.01 128 200 294 666 Yes
GCN FashionMNIST 0.001 128 200 74 826 Yes
ContourCNN FashionMNIST 0.001 128 200 42874 Yes
RotaTouille FashionMNIST 0.0005 128 200 65 089 No
CNN (2D) ModelNet 0.01 16 200 1143012 Yes
GCN ModelNet 0.001 16 200 75594 Yes
ContourCNN ModelNet 0.001 16 200 42964 Yes
RotaTouille ModelNet 0.0005 16 200 64 747 No
GCN RotatedMNIST 0.001 128 200 74826 Yes
ContourCNN RotatedMNIST 0.001 128 200 42874 Yes
RotaTouille RotatedMNIST 0.0005 128 200 65 089 No
RotaTouille + RH RotatedMNIST 0.0005 128 200 66 881 No
CNN (2D) PCST 0.001 32 200 5315 Yes
RotaTouille PCST 0.001 32 200 4378 No
CNN (1D) Curvature 0.001 32 100 34033 Yes
GCN Curvature 0.001 32 100 41473 Yes
RotaTouille Curvature 0.001 32 100 27269 No

A.4 Model Details

Here, we provide detailed descriptions of the model architectures used in the experiments.

A.4.1 RotaTouille Models

Classification model. The ConvBlock used in the classifier consists of a sequence of operations that
together form the basic building block of the model. The structure can be summarized schematically
as

ConvLayer — ModReLLU — BatchNorm — (Coarsening) — Global pooling.
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The block begins with a ConvLayer, which performs a complex-valued circular convolution. This is
followed by the equivariant activation function ModReLU. Next, BatchNorm is applied, operating
only on the magnitudes (absolute values) of the complex activations to stabilize training. If the
coarsening factor p > 1, a Coarsening step is applied, performing local pooling through a learnable
combination of the mean and absolute-value maximum. The resulting contour is then forwarded
to the next ConvBlock. Finally, a Global pooling layer produces real-valued invariant features
using a learnable combination of the mean and absolute-value maximum, which are subsequently
concatenated and used by the classification head. The full classifier architecture is listed in Table 6.

Table 6: RotaTouille classifier architecture used for the FashionMNIST, ModelNet and
RotatedMNIST datasets. For the ModelNet dataset, the number of input channels in the first
layer is 4 instead of 1.

Layer Input — Output Kernel p Notes
Feature extractor

ConvBlock 1 —8 9 1

ConvBlock 8 — 8 9 2

ConvBlock 8 — 16 9 1

ConvBlock 16 — 16 9 2

ConvBlock 16 — 35 9 1

ConvBlock 35— 35 9 1

ConvBlock 35— 10 9 1

Classifier head

Linear mi +mo — 128 - - Followed by BatchNorm, Dropout (0.5) and ReL.U.
The number of invariant features from the global
pooling layers is denoted by mi, and mo is any
additional invariant features such as radial pixel in-
tensity histograms.

Linear 128 = n - - Where n is the number of classes.

Contour autoencoder model. The contour autoencoder used with the PCST dataset consists of an
encoder and a decoder part. The EncoderBlock used in the autoencoder consists of a sequence of
operations that progressively transform and coarsen the input representation. The structure can be
summarized schematically as

(ConvLayer — BatchNorm — Amplitude-Phase) x 2 — Coarsening.

Each block consists of a ConvLayer performing complex-valued circular convolution, followed by
BatchNorm on magnitudes and an Amplitude-Phase activation function as an equivariant nonlinearity.
This sequence is repeated twice. Finally, Coarsening is applied using strided convolution with stride
p and kernel size p. If the number of input and output channels match, a skip connection adds
the input contour to the output. The DecoderBlock is identical to the encoder blocks, except the
order is reversed, batch normalization is omitted and coarsening is replaced with strided transposed
convolutions for unpooling. The full autoencoder architecture is described in Table 7.

Regression model. For the node-level regression model, we do not include any local pooling layers
since we are predicting one curvature value per point in the input contour. We take absolute values
before the regression head to obtain rotation invariant features, but still maintaining cyclic shift
equivariance. The regression model used with the Curvature dataset is described in Table 8.
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Table 7: RotaTouille contour autoencoder architecture.

Layer Input — Output Kernel p
Encoder
EncoderBlock 1 —4 11 2
EncoderBlock 4 — 4 9 2
EncoderBlock 4 —4 7 2
EncoderBlock 4 — 4 5 2
EncoderBlock 4 —4 3 2
Decoder
DecoderBlock 4 — 4 3 2
DecoderBlock 4 — 4 5 2
DecoderBlock 4 — 4 7 2
DecoderBlock 4 — 4 9 2
DecoderBlock 4 — 1 11 2

Table 8: RotaTouille regression model architecture.

Layer Input — Output

Kernel Notes

Equivariant feature extractor (complex-valued)

ConvLayer 1 —8
ConvLayer 8 — 16
ConvLayer 16 — 32
ConvLayer 32 — 64

5
5
5
5

Followed by ModReLLU and BatchNorm.
Followed by ModReLU and BatchNorm.
Followed by ModReLLU and BatchNorm.
Followed by ModReLU and BatchNorm.

Regression head (real-valued)

Linear 64 — 1

Element-wise absolute values as input.

A.4.2 Baseline Models

2D CNN classifier for images.

The baseline 2D CNN classifier uses 2D convolutions with batch

normalization, ReLU activations, and max pooling, followed by a fully connected classifier. The
architecture is summarized in Table 9.

Table 9: Baseline 2D CNN classifier for images. For the ModelNet dataset, the number of input

channels in the first layer is 4 instead of 1.

Layer Input — Output Kernel Pool Notes
Feature extractor

Conv2d 1—32 3 - Followed by BatchNorm and ReL.U.
Conv2d 32 —» 64 3 - Followed by BatchNorm and ReLLU.
MaxPool2d - - 2
Conv2d 64 — 64 3 - Followed by BatchNorm and ReL.U.
Conv2d 64 — 64 3 - Followed by BatchNorm and ReL.U.
MaxPool2d - - 2

Classifier head
Linear m — 64 - - Followed by BatchNorm, Dropout (0.5) and ReLU.

The embedding size m depends on the input size.

Linear 64 —>n - - Where n is the number of classes.

2D CNN autoencoder. The 2D CNN autoencoder is composed of convolutional downsampling
blocks, called ConvBlock2d, which consist of two consecutive sequences of convolution, batch
normalization, and ReL.U activation, followed by a downsampling operation. The upsampling
counterpart, DeconvBlock2d, consists of an upsampling operation followed by two consecutive
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sequences of ReLU activation and convolution. We use strided (transposed) convolutions for the
upsampling and downsampling operations. The full architecture is summarized in Table 10.

Table 10: Baseline 2D CNN autoencoder.

Layer Input — Qutput Kernel Pool / Upsample
Encoder
ConvBlock2d 1—4 3 4
ConvBlock2d 44 3 4
ConvBlock2d 48 3 4
Decoder
DeconvBlock2d 8 — 4 3 4
DeconvBlock2d 4 — 4 3 4
DeconvBlock2d 4 — 1 3 4

Graph convolutional network (GCN). The GCN classification and regression models are both
based on GCN layers [24] for cyclic graphs with self-loops. The full architecture is summarized
in Table 11. For regression on the Curvature dataset, we use Njayers = 3 and Njayers = 5 for
classification tasks.

Table 11: Baseline GCN architectures for contour classification and node-level regression. For the
ModelNet dataset, the number of input channels in the first layer is 8 instead of 2.

Layer Input — Output Notes

Feature extractor
GCNLayer 2 — 128 Repeated njayers times with ReLU activation.

Classifier head

GlobalMeanPool 128 — 128 Global average pooling across contour points.
Linear 128 — 64 Followed by BatchNorm, Dropout (0.5) and ReLU.
Linear 64 —n Where n is the number of classes.

Regression head
Linear 128 — 64 Followed by BatchNorm, Dropout (0.5) and ReLU.
Linear 64 —1

ContourCNN and 1D CNN. The ContourCNN is used for contour classification, while the 1D
CNN is used for node-level regression. Each CircConvBlock in the ContourCNN consists of a circular
1D convolution, batch normalization, ReLU activation, and priority pooling as in [15]. Both networks
operate on real-valued contour coordinates.

Table 12: Baseline ContourCNN classifier architecture used for contour classification. For the
ModelNet dataset, the number of input channels in the first layer is 8 instead of 2.

Layer Input — Output Kernel Notes

Feature extractor
CircConvBlock 2—32 3 Priority pooling to I = 40.
CircConvBlock 32 — 64 3 Priority pooling to [ = 30.
CircConvBlock 64 — 128 3 Priority pooling to I = 20.

Classifier head

GlobalMeanPool 128 — 128 - Global average pooling across contour points.
Linear 128 — 80 - Followed by BatchNorm, Dropout (0.5) and ReL.U.
Linear 80—+ n - Where n is the number of classes.
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Table 13: Baseline 1D CNN regressor architecture used for node-level regression.

Layer Input — Output Kernel Notes
Feature extractor
Convld 2—16 5 Followed by BatchNorm and ReLU.
Convld 16 — 32 5 Followed by BatchNorm and ReL.U.
Convld 32— 64 5 Followed by BatchNorm and ReLU.
Convld 64 — 64 5 Followed by BatchNorm and ReL.U.
Regression head
Linear 64 — 1 -

A.5 Ablation Study Results

Here, we list all numerical results for the ablation study in Section 3.4.

Table 14: Comparison of test accuracies on the FashionMNIST dataset for different choices of local
pooling (coarsening) functions and aggregation functions. Note that in some training runs, coset
pooling led to numerical instabilities (NaN losses), preventing convergence. For consistency, we
report mean accuracy scores only over the successfully converged.

Accuracy

Figure 6:

Pooling type  Aggregation Accuracy

No Pooling - 0.869 £ 0.015
Strided Mean 0.868 £+ 0.002
Coset Mean 0.827 £0.025
Strided Max 0.865 £ 0.003
Coset Max 0.842 £ 0.003
Strided Combined 0.867 £ 0.002
Coset Combined 0.841 £ 0.001
Pooling Type
s No Pooling Strided Coset
0.90
@ I X
0.85 ‘|' T -
0.80
0.75
Mean Max Combined

Aggregation Method

A bar plot visualizing the numerical results in Table 14.
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Table 15: Comparison of test accuracies on the FashionMNIST dataset for different choices of
non-linear activation functions. See Table 1 for definitions of the activation functions used.

Activation function Accuracy
Siglog 0.868 £ 0.002
ModReLU 0.867 £+ 0.002

Amplitude-Phase (tanh)  0.869 4 0.001

Table 16: Comparison of test accuracies on the FashionMNIST dataset for different choices of the
number of sampled contour points.

Contour points  Accuracy

16 0.855 4= 0.003
32 0.866 £+ 0.003
64 0.873 4= 0.002
128 0.877 £ 0.002
256 0.878 4= 0.002

Table 17: Comparison of test accuracies on the FashionMNIST dataset for different choices kernel
sizes.

Kernel size Parameters Accuracy

3 33997 0.870 = 0.003
5 44 361 0.875 £ 0.002
7 54725 0.876 4= 0.002
9 65089 0.876 £+ 0.002
11 75453 0.875 4 0.002
13 85817 0.876 £+ 0.002

Table 18: Comparison of test accuracies on the FashionMNIST dataset for different choices of the
aggregation function used on the contour points’ absolute values in the global pooling layer for
producing invariant representaion.

Aggregation function Accuracy

Mean 0.864 + 0.003
Max 0.869 =+ 0.002
Combined 0.867 4+ 0.002
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