
On the Relationship between
And-Sum Circuits and Deterministic Boolean Circuits

Abstract

And-Sum Circuits are a recently proposed target
representation language for knowledge compila-
tion that utilizes AND and SUM nodes with signed
edges. A key property of these circuits is “boolean-
ity”, which states that every subcircuit computes a
0/1-valued function. We provide a characterization
of booleanity in terms of logical restrictions on
the inputs to SUM nodes, analogous to how de-
terminism is characterized in traditional Boolean
Circuits. We demonstrate that And-Sum Circuits
where SUM nodes are connected by either at most
one positive edge or by only positive edges can
be efficiently translated to and from a semanti-
cally equivalent decomposable and deterministic
Boolean Circuits. This implies that And-Sum Cir-
cuits whose SUM nodes have input degree at most
two are expressively equivalent to decomposable
and deterministic Boolean Circuits.

1 INTRODUCTION

Knowledge Compilation is the process of translating a
knowledge base from a source language to a target lan-
guage that allows for answering queries of a specific type
exactly and tractably [Akers, 1978, Darwiche and Marquis,
2002]. When the type of query involves counting models,
the target language typically considers Boolean Circuits that
satisfy determinism, which roughly states that the inputs of
any or-gate specify mutually exclusive properties [Amar-
illi and Capelli, 2024]. Essentially, determinism ensures
that the model count of a disjunction of formulae be com-
puted as the sum of the model count of each subformula:
MC(α ∨ β) = MC(α) + MC(β) if α ∧ β = ⊥. Enforcing
determinism however may cause a blow up of the minimum
size of the target representations.

Recently, Onaka et al. [2025] proposed Boolean Decom-

posable And-Sum Circuits (B-DASC), a target representa-
tion language that employs AND (∧) and SUM (+) nodes
with signed edges. The inclusion of negative edges and
addition allows for representing model subtraction, for in-
stance, when one models the model count of a disjunction
as MC(α ∨ β) = MC(α) + MC(β) − MC(α ∧ β). As a
consequence, B-DASCs allow for efficient model counting
without requiring determinism. They are also closed under
negation, and allow for efficient conjoin operation [Dar-
wiche, 2011]. Hence, B-DASC are a very interesting class of
target representations to study.

Booleanity in B-DASCs refers to the property that any sub-
circuit computes a Boolean function, that is, that the output
of any gate is 0/1-valued for any assignment of its inputs.
While such property is trivially satisfied by Boolean Cir-
cuits, the use of addition and negative weights in And-Sum
Circuits makes enforcing such property less trivial.

In this work we study in greater detail the effects of re-
quiring booleanity for And-Sum circuits, and its relation
with deterministic Boolean Circuits. In particular, we char-
acterize booleanity in terms of logical restrictions of the
underlying Boolean formulae, similarly to how determinism
can be characterized. We show that any B-DASC whose gates
are connected by at most one negative or by only positive
edges can be translated to semantically equivalent determin-
istic and decomposable Boolean circuits. And we show the
converse to also be true. Those results provide a more clear
view of B-DASC in the knowledge compilation landscape.

2 CIRCUIT REPRESENTATIONS

A Boolean Circuit is a directed acyclic graph whose inner
nodes are labeled as ¬ (negation), ∧ (conjunction) or ∨

(disjunction) gates, and whose leaves are associated with
propositional variables (typically denoted as X , Y , etc).
We only consider here rooted circuits, that is, circuits with
a single output node. A Boolean circuit thus represents a
Boolean formula, obtained by interpreting each node as its
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logical function when the variables in the leaves are fixed at
some input assignment.

And-Sum Circuits deviate from such traditional circuits by
assigning inner nodes to either ∧ or + , and by labeling
edges connecting + -nodes to their inputs with weights in
{−1, 1} [Onaka et al., 2025]. Given an assignment σ to its
input variables (leaves), an And-Sum Circuit computes a
formula f(σ) such that fv(σ) =

∑
c wvcfc(σ), if v is a

+ -node with inputs {fc} and weights wvc, and fv(σ) =
minc fc(σ), if v is a ∧ -node with inputs fc.

We say that a node in a Boolean or a And-Sum Circuit is
binary/ternary if it has has at most two/three inputs. The
scope of a (sub)circuit is the set of variables appearing at its
leaves. We denote the scope of a circuit rooted at a node v
by Var(v).

The tractability of query answering with Circuits depends
on a few properties, which we review next.

Negated Normal Form (NNF) Boolean circuits constrain
¬ -nodes to have only variable nodes (leaves) as input [Dar-

wiche, 2001]; in effect, NNFs are generally represented
having only ∧ and ∨ inner nodes and literals as leaves
(e.g., X or ¬X).

A Boolean (resp., And-Sum) circuit is smooth if for every
∨ -node (resp. + -node) it follows that any two input cir-

cuits have identical scopes, that is, Var(c) = Var(c′) for
any two inputs c and c′. A Boolean or And-Sum Circuit is
decomposable if the scopes of any two inputs c and c′ of a
∧ -node are disjoint: Var(c)∩Var(c′) = ∅. Decomposability

allows for tractable model satisfiability in Boolean circuits.

The support of a (Boolean or And-Sum) circuit is the set
of assignments for which the respective function evaluates
to non-zero. A Boolean (resp., And-Sum) Circuit is deter-
ministic if the supports of the inputs of a ∨ -node (resp.,
+ -node) are disjunct: fc(σ) ̸= 0 ⇒ fc′(σ) = 0 for all

input c′ ̸= c. This implies that
∑

c fc(σ) ≤ 1 for Boolean
Circuits and that

∑
c fc(σ) ∈ {−1, 0, 1} for And-Sum Cir-

cuits. Determinism allows for tractable model counting in
Boolean circuits.

A vtree is a rooted binary tree whose leaves correspond to
variables (generally, of a circuit) [Pipatsrisawat and Dar-
wiche, 2008]. Each node of a vtree thus corresponds to
a binary partition of a subset of variables. A Boolean or
And-Sum Circuit with binary ∧ -nodes is structured decom-
posable if any ∧ -node can be mapped to a node of the vtree
such that the scopes of each input corresponds to the binary
partition induced by the vtree node. Structured Decompos-
ability allows for tractable conjoin operations, which takes
two circuits α and β and in polynomial time and space
produces a circuit that represents the function α ∧ β.

Decomposable Boolean And-Sum Circuits allow for
tractable conjoin and model counting. Remarkably, the adop-

tion of signed edges also allows for tractable negation, a
feature that is lacking in popular languages like smooth,
deterministic and (structured) decomposable NNFs [Vinall-
Smeeth, 2024]. For instance, the negation of an And-Sum
Circuit ϕ can be represented by a circuit with a binary +

root node with a child that always evaluate to 1, connected
with a positive weight, and a child that is ϕ, connected with
a negative weight. That is, by computing 1− ϕ. Moreover,
conjoin and negation preserve booleanity, smoothness, and
(structured) decomposability. Also, by composing negation
and conjoins we also have available a disjoin operation for
Boolean And-Sum Circuits [Onaka et al., 2025].

3 CHARACTERIZING BOOLEANITY

And-Sum Circuits are Boolean if every node outputs a value
0 or 1 for every input assignment, which suffices for ensur-
ing that the circuit actually computes a Boolean function.

While Onaka et al. [2025] considered only Boolean decom-
posable And-Sum Circuits (B-DASCs), they did not care to
characterize the necessary and sufficient conditions for this
property to hold. We now investigate such necessary and
sufficient conditions for booleanity in detail.

To simplify notation, for any + -node v, we write ψ+
i , i =

1, . . . , n, to denote the input nodes connected by positive
edges, and ψ−

j , j = 1, . . . ,m, to denote the input nodes
connected by negative edges. Thus, the function computed
by the node v is:

fv(σ) =

n∑
i=1

ψ+
i (σ)−

m∑
j=1

ψ−
j (σ). (1)

Since we assume the circuit is Boolean, we can also view
each circuit as a Boolean function, used to form logical
expressions (e.g., ψ+

1 ⇒ ψ−
3 ).

3.1 ALL EDGE WEIGHTS ARE POSITIVE

Suppose m = 0. Then, the function computed by a circuit
root at r is fr =

∑n
i=1 ψ

+
i . For fr to be Boolean, fr(σ)

must be either 0 or 1. If fr(x) = 0, then ψ+
i (σ) = 0 for all

i. On the other hand, if fr(σ) = 1, then exactly one ψ+
i (σ)

must be 1, and all other children must be 0. This means that
for any assignment σ, the children are logically contradic-
tory (or mutually exclusive). That is, a + -node with only
positive weights is Boolean only if it is deterministic.

3.2 EXACTLY ONE POSITIVE EDGE WEIGHT

Now, suppose that there is exactly one child with a positive
edge weight (i.e., n = 1 and m > 0), and any other children
have negative edge weights. Then the function computed
by r is fr(σ) = ψ+

1 (σ) −
∑m

j=1 ψ
−
j (σ). It is immediately
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clear that fr(σ) ≤ 1. Thus, we must only establish sufficient
and necessary conditions for fr(σ) ≥ 0 in order for it to be
Boolean. Those conditions are exactly given by ψ−

j ⇒ ψ+
1

for j = 1, . . . ,m, and by ψ−
j ⇒ ¬ψ−

k for any j ̸= k ∈
{1, . . . ,m}. Interestingly, those conditions constraint the
boolean function represented by fr to be logically equivalent
to

ψ+
1 ∧

m∧
j=1

¬ψ−
j ⇔ ¬

¬ψ+
1 ∨

m∨
j=1

ψ−
j

 . (2)

Note that the clause on the right is deterministic by the rea-
soning above. We will exploit that fact to derive a translation
to deterministic Boolean circuits later.

3.3 EXACTLY ONE NEGATIVE EDGE WEIGHT

Suppose now that n > 1 and m = 1. Thus the circuit
computes fr(σ) =

∑n
i=1 ψ

+
i (σ)−ψ

−
1 (σ). Clearly, in order

to observe booleanity, we must have that ψ+
i (σ)+ψ

+
j (σ) ≥

ψ−
1 (σ) ≥ 0 for any i ̸= j and σ. That is, we have that no

more than two positively signed inputs can be true for the
same configuration, that if exactly two positively signed
inputs are true then the negatively signed input must also
be true, and that if the negatively signed input is true then
some positively signed input must be true as well. Those
conditions imply that the Boolean function represented by
fr is logically equivalent to

n∨
i=1

ϕi ∨
n∨

i=1

∨
j ̸=i

ϕij (3)

where
ϕi = ψ+

i ∧
∧
j ̸=i

¬ψ+
j ∧ ¬ψ−

1 , (4)

and
ϕij = ψ+

i ∧ ψ+
j ∧

∧
k ̸=i,k ̸=j

¬ψ+
k ∧ ψ−

1 . (5)

Unlike the case of exactly one positive edge weight, the
formulas for ¬ϕi and ¬ϕij are not deterministic clauses.

Consider the case of a ternary + -node r, that is, when
n = 2 and m = 1. Then the logical constraints above imply
that fr is logically equivalent to

(¬ψ+
1 ∧ψ+

2 ∧¬ψ−
1 )∨(ψ

+
1 ∧¬ψ+

2 ∧¬ψ−
1 )∨(ψ

+
1 ∧ψ+

2 ∧ψ−
1 ).

If ψ−
1 ⇔ ψ+

1 ∧ψ+
2 , then fr computes ψ+

1 ∨ψ+
2 , even when

ψ+
1 and ψ+

2 are not deterministic. If instead ψ−
1 ⇔ ψ+

1 ∨ψ+
2 ,

then fr computes ψ+
1 ∧ ψ+

2 , even when ψ+
1 and ψ+

2 are not
decomposable.

3.4 POSITIVE AND NEGATIVE EDGE WEIGHTS

Suppose that n > 0 and m > 1. Then for Equation (1) to
define a Boolean function, we need to ensure that whenever

a subset of p of the positively signed inputs are 1, then at
least p− 1 negatively signed inputs must also be 1. That is,
for p = 2, . . . ,m:∨

S⊂[n]:|S|=p

∧
i∈S

ψ+
i =⇒

∨
S⊆[m]:|S|=p−1

∧
j∈S

ψ−
j , (6)

where [k] = {1, . . . , k}. Conversely, if p of the negatively
signed inputs are 1, then at least p of the positively signed
inputs must be 1 as well. Thus, for p = 1, . . . ,m:∨

S⊂[m]:|S|=p

∧
j∈S

ψ−
j =⇒

∨
S⊂[n]:|S|=p

∧
i∈S

ψ+
i . (7)

The above conditions are necessary and sufficient for
booleanity in such circuits.

As with the previous case, we do not obtain a formula repre-
sented as a (negation of) deterministic disjunction here.

+ -nodes with two or more positive edges and two or more
negative edges can represent functions which are not ex-
pressed with a single positive edge or a single negative edge.
For example, if ψ−

1 ⇔ ψ−
2 ⇔ ψ+

1 ∧ ψ+
2 , then a + -node

with children ψ+
1 , ψ+

2 , ψ−
1 and ψ−

2 computes an XOR of
ψ+
1 and ψ+

2 .

4 RELATION TO DETERMINISTIC
DECOMPOSABLE BOOLEAN
CIRCUITS

The main difference of deterministic Decomposable
Boolean Circuits (det-Ds) with respect to Negation Normal
Form circuits is to allow negation also outside of literals,
while preserving correctness of weighted model counting,
for any ring [Monet and Olteanu, 2019]. Thus, det-Ds are
naturally closed under negation. As Onaka et al. [2025]
have shown, the same is true for Boolean And-Sum Circuits,
as they allow the encoding of negation ¬ϕ as 1 − ϕ. This
simple observation suffices to show that any det-D Circuit
can be tractably transformed to a Boolean Decomposable
And-Sum Circuit simply by transforming each ¬ -node into
a + -node with children +1 and −ϕ, then transforming each
∨ -node to a + -node with the same children and positive

edges. Due to determinism, ∨ -nodes can be translated di-
rectly to + -nodes with positive edges. The converse is also
true. Because + -nodes with only positively-signed edges
are deterministic, they can be easily transformed into deter-
ministic ∨ nodes. Accordingly, (smooth) And-Sum Circuits
with only positively-signed edges can be tractably translated
to (smooth) det-Ds, simply by mapping + into ∨ nodes.

A (smooth) Boolean And-Sum Circuit with exactly one
positively-signed child at each + -node can also be trans-
lated into a (smooth) det-D Circuit by applying the transfor-
mation in Figure 1 to every + -node. The transformation is
based on the fact that right hand formula in Expression (2)
is a deterministic disjunction.
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+

ψ+
1 ψ−

1
. . . ψ−

m

¬

∨

¬

ψ+
1

ψ−
1

. . . ψ−
m

Figure 1: Transformation of a Boolean And-Sum Circuit
with at most one positive subcircuit at each + -node to a
deterministic and decomposable Boolean Circuit.

Note that a binary + -node (i.e., with two children) either
contains only positive edge weights or exactly one positive
edge weight. Thus, And-Sum Circuits with binary + -nodes
can be tractably translated into det-D Circuits.

Instead, + -nodes with three children allow for nodes with
two positive edge weights and one negative weights, that,
as we discussed, can already encode non-deterministic dis-
junctions of their input. And + -nodes with higher in-degree
can express even more Boolean functions of their input. It
remains an open question whether such nodes still allow
for tractable translations to det-Ds, or whether they make
Boolean And-Sum Circuits able to encode Boolean func-
tions exponentially more succinctly than det-Ds.

We have thus shown that (smooth) decomposable And-Sum
Circuits whose sum nodes have either only positively-signed
children or at most one positively-signed children can be
tractably transformed into (smooth) decomposable and de-
terministic Boolean Circuits. We call such a class quasi-
deterministic And-Sum Circuits, as we have shown they
typically define + -nodes with are deterministic or near
deterministic. Boolean And-Sum Circuits with binary + -
nodes are thus a subclass of such a language.

The diagram in Figure 2 updates the current state of knowl-
edge about circuit equivalences with these new results. Ar-
rows indicate the existence of a tractable (i.e., linear) trans-
formation from the source language to the target language.
Colored arrows are contributions of this work. The lan-
guage q-b-DASC in the diagram refers to the class of quasi-
deterministic And-Sum Circuits.

An interesting consequence of Figure 2 concerns the knowl-
edge compilation framework based on structured decom-
posable And-Sum Circuits from [Onaka et al., 2025]. The
authors detail a bottom-up compiler where + -nodes arise
solely from NOT operations, and their CONJOIN algorithm
does not increase the arity of these nodes. This inherently
limits all + -nodes in their circuits to being binary. Since,
as we have established (and Figure 2 confirms), And-Sum
Circuits with only binary + -nodes can be converted to struc-
tured det-Ds with linear overhead, it follows that the circuit
class in [Onaka et al., 2025] is less general than the And-
Sum formalism might suggest. By exclusively generating
binary + -nodes, their approach effectively confines itself

NNFSDNNF

DNNFdet-SDNNF

det-DNNF

dec-DNNF

det-D

pos-b-DASC

q-b-DASCSDD

OBDD

Figure 2: A Knowledge Compilation Map. s: smooth. d: de-
terministic. S: structured. D: decomposable. dec: Decision.
pos: positive edges only. q: at most one positive edge or no
negative edge at each sum node. And-Sum Circuits (ASC)
are always considered Boolean. Arrows denote the existence
of a linear-time transformations from the source to target
language. Colored arrows are new results.

to the expressive power of structured det-Ds, thereby not
fully exploring the representational capabilities that Boolean
And-Sum circuits with higher-degree + -nodes could offer.

5 CONCLUSION

And-Sum circuits are a recently proposed class of arithmetic
circuits that uses arithmetic functions to compute Boolean
functions. Like decomposable and deterministic circuits,
they are closed under negation (even though they do not
allow negation), and when satisfying structured decompos-
ability, allow for efficient conjoin operation.

In this work, we have shown that the requirement that each
node of an And-Sum circuit computes a Boolean func-
tion make such circuits behave similarly to determinis-
tic Boolean circuits. In particular, we have characterized
the necessary and sufficient logical constraints imposed by
booleanity for different conditions: when sum nodes are con-
nected via only positive edges, when they are connected via
at most one positive edge (and the rest being negative), when
they are connected via at most one negative edge (and the
rest being positive), as well as the general case. We showed
that the first two cases lead to conditions that can be easily
represented in the language of decomposable deterministic
Boolean circuits.

Thus, this work extends the current state of the knowledge
compilation map, drawing new connections between arith-
metic and Boolean circuits. The work leaves open the ques-
tion of whether arbitrary boolean And-Sum Circuits can be
tractably translated into deterministic Boolean circuits. As
such, it also leaves open the characterization of the succinct-
ness of (Boolean) And-Sum Circuits.
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