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Abstract
A major challenge in reinforcement learning is the
design of agents that are able to generalise across
tasks under common dynamics. A viable solution
is meta-reinforcement learning, which identifies
common structures among past tasks to be then
generalised to new tasks (meta-test). Prior works
learn meta-representation jointly while solving a
task, resulting in representations that do not gen-
eralise well across different policies, leading to
sampling-inefficiency during meta-test phases. In
this work, we introduce state2vec, an efficient
and low-complexity unsupervised framework for
learning disentangled representation that are more
general. The state embedding vectors learned with
state2vec capture the geometry of the underlying
state space, resulting in high-quality basis func-
tions for linear value function approximation.

1. Introduction
Finding high-quality representations remains a major chal-
lenge in reinforcement learning (RL). Recent efforts have
focused on learning representations from experience. De-
pending on whether the focus is on prediction accuracy,
data efficiency, stability or biological plausibility, there are
different ways of hypothesising on what constitutes a good
representation: Bellemare et al. (2019) learn a state repre-
sentation from which we can best approximate the value
function of any stationary policy for a given task; Gelada
et al. (2019) learn a representation for data efficiency by
solving auxiliary tasks; Ghosh & Bellemare (2020) discover
representations that guarantee the stability of temporal dif-
ference learning; and Stachenfeld et al. (2017) learn a pre-
dictive representation that captures many aspects of place
cell responses found in rodents’ brain.

While representation learning in the context of single task
RL has been vastly studied, these methods do not trivially
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extend to multi-task RL since the learned representations are
highly task-specific. In the case in which an agent must learn
different tasks that share some characteristics (e.g., taking
the train to work and taking the train back home), it is clearly
desirable for the agent to be able to leverage some of the
knowledge acquired while exploring one task to speed up
the solving of the other similar task. Recent works tackling
multi-task RL use deep reinforcement learning methods and
augment their main objective with auxiliary tasks (Barreto
et al., 2017; 2018). However, since these auxiliary tasks
are learned in parallel while solving a specific task, the
data used is on-policy, hence not guaranteed to generalise
to a significantly different policy (Lehnert et al., 2017a).
Higgins et al. (2017) and Du & Narasimhan (2019) address
the issue of adaptation and transfer in RL by proposing
to disentangle the representation learning phase from the
task solving phase. While their work is limited to tasks with
visual inputs and rely on deep learning methods, we propose
a simple and general framework for learning task agnostic
representations in an unsupervised way.

We consider a meta-reinforcement learning (meta-RL) prob-
lem in which tasks are characterized by the same environ-
ment (shared structure) but the reward function changes
arbitrarily across tasks. Here, the agent learns at two differ-
ent time scales: slow unsupervised meta-learning, exploiting
the large experience accumulated while exploring the do-
main (learning of the shared structure), and fast learning on
individual tasks. This enables learning how to quickly adapt
to a previously unseen task with little data.

We propose state2vec, an efficient yet reliable framework
for learning a representation that effectively captures the
underlying geometry of the state space. In particular, the
representation generated by state2vec exhibits the following
properties: (i) learned from data rather than handcrafted −
to avoid structural bias, see Madjiheurem & Toni (2019);
(ii) low-dimensional − to ensure a fast adaptation during
meta-testing; (iii) geometry-aware rather than task-aware −
generalise across optimal policies. State2vec encodes states
in low-dimensional embeddings, defining the similarity of
states based on the discounted future transitions. Moreover,
to ensure generalisation, the learning of the representation is
fully unsupervised: we impose that the data used for training
is entirely exploratory and independent of any specific task
(it is reward agnostic). This allows us to use the same
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representation without any retraining of the features to solve
tasks with varying reward functions. In the meta-testing
phase, the agent will need to simply learn a task-aware
coefficient vector to derive a value function approximation.
We show experimentally that state2vec captures with high
accuracy the structural geometry of the environment while
remaining reward agnostic. The experiments also support
the intuition that off-policy state2vec representations are
robust low dimensional basis functions enabling accurate
the value function approximation.

2. Background
2.1. Meta-Reinforcement Learning

In RL, a decision maker, or agent, interacts with an environ-
ment by selecting actions with the goal to maximise some
long term reward. This is typically modelled as a Markov
Decision Process (MDP). A discrete MDP is defined as the
tupleM = (S,A, P,R, γ), where S is a finite set of discrete
states, A a finite set of actions, P describes the transition
model − with P (s, a, s′) giving the probability of visiting
s′ from state s once action a is taken, R describes the re-
ward function and γ ∈ (0, 1] defines the discount factor. We
consider finite MDPs, in which the sets of states, actions,
and rewards have a finite number of elements. A policy π
is a mapping from states to probabilities of selecting each
action in A. Formally, for a stochastic policy, π(a|s) is the
probability that the agent takes action a when the agent is in
state s. Given a policy π, an action-value function Qπ is a
mapping S ×A 7→ R that describes the expected long-term
discounted sum of rewards observed when the agent is in
a given state s, takes action a, and follows policy π there-
after. Solving an MDP requires to find a policy that defines
the optimal action-value function Q∗, which satisfies the
following constraints:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s, a, s′) max
a′

Q∗(s′, a′)

(1)
This recursive equation is known as Bellman’s optimal equa-
tion. The optimal policy is a unique solution to Bellman’s
equation.

Here, we are interested in the set of MDPs spanned by the
tuple (S,A, P, γ):

M = {M1,M2, . . . ,Mn} (2)

where each task Mi is an MDP defined by (S,A, P,Ri, γ),
with Ri : S × A 7→ R. In other words, we investigate the
meta-learning problem in which tasks Mi share the same
MDP components, except the reward function. This is of
obvious interest as this formalism can be used to model real
life applications. This is the same setting adopted in prior
related works (Barreto et al., 2017; 2018; Borsa et al., 2019;

Lehnert et al., 2017a). In this setting, the main challenge is
to find an efficient way of learning the underlying dynamics
that is shared across all tasks, such that once this information
is known, solving a specific MDP becomes a much easier
problem.

2.2. Successor Representation

In order to address the meta learning problem, we need
to decouple the dynamics of the MDP (common across
tasks) from the reward function (task discriminant) in the
value function approximation. This decoupling motivates
the adoption of the successor representation, or SR, (Dayan,
1993). With the SR, we can factor the action-value function
into two independent terms:

Qπ(s, a) =
∑
s′

Ψπ(s, a, s′)R(s, a), (3)

where the SR Ψπ(s, a, s′) is defined, for γ < 1, as:

Ψπ(s, a, s′) = Eπ
[ ∞∑
t=0

γtI(st = s′)|s0 = s, a0 = a
]
,

(4)
where I(st = s′) = 1 if st = s′ and 0 otherwise.

The provided interpretation, is that the SR is a predictive
type of representation, which represents a state action pair
as a feature vector Ψπ

s,a such that, under policy π, the repre-
sentation Ψπ

s,a is similar to the feature vector of successors
states. Computing the action-value function given the SR is
computationally easier as it becomes a simple linear com-
putation. Furthermore, given the SR, the re-computation of
the action value function is robust to changes in the reward
function: the new action value function can be quickly re-
computed using the current SR. The SR is therefore a natural
tool to consider for transfer in reinforcement learning.

2.3. Successor Feature

Barreto et al. (2017) proposed a generalisation of the SR
called successor feature (SF). They make the assumption
that the reward function can be parametrised with

R(s, a) = φ(s, a)>w , (5)

where φ(s, a) is a feature vector for (s, a) and w ∈ Rd is
a vector of weights. Because no assumption is made about
φ(s, a), the reward function could be recovered exactly,
hence (5) is not too restrictive. Under this assumption,
the action-value function for the task defined by w can be
rewritten as:

Qπ(s, a) = ψπ(s, a)>w . (6)

where the successor feature ψπ(s, a) is defined as

ψπ(s, a)
.
= Eπ

[ ∞∑
t=0

γt−1φi+1|st = s, at = a
]
. (7)
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In Barreto et al. (2017), authors also define the general-
ized policy improvement (GPI) theorem, which shows that
given a previously computed SF approximation ψ̂πk(s, a)
for some tasks Mk ∈ M, the agent can derive a policy πj
for a new task Mj ∈M which is guaranteed to preform at
least as well as any previously learned policy. In practice,
this means that across all the observed tasks, we will con-
sider the best value function when deciding our policy. The
main limitation, however, is the double dependency of the
value function on Mk, which defines the task as well as the
policy. Consequently, if all previous tasks are significantly
different than the new task Mj (i.e. have significantly differ-
ent optimal policies), the derived policy πj will be far from
the optimal policy for task Mj , meaning the knowledge of
the previous task is not transferable to the new task.

3. Off-policy Successor Features
Approximators

The main limitation of the proposed methodologies is that
they proposed a representation that is transferable only
across similar policies (Lehnert et al., 2017b). In the fol-
lowing, we define state2vec and describe how we learn the
representations in an unsupervised way such that they can
generalised to different tasks.

3.1. Meta-training : State2vec

The successor features are learned while taking decision,
and is therefore intrinsically connected to the task. There-
fore, we propose to approximate the SF off-policy and to use
the same representation across all tasks inM. We proposed
an efficient unsupervised framework for learning continuous
feature representations of states, such that, similarly to the
SF, states that are neighbours in time should have similar
representation. Our method is directly inspired by Grover
& Leskovec (2016)’s node2vec, and hence we refer to it as
state2vec.

State2vec learns state representations based on sample
episodes’ statistics. It optimises the representations such
that states that are successors have similar representation.
It does so by first collecting a data set Dπ of n walks
L = {(s0, a0), (s1, a1) . . . , (sn, an)} by following a sam-
pling strategy π for maximum T steps (terminating earlier
if it results in an absorbing goal state). Then, optimise the
following objective function:

max
Ψ

∑
L∈Dπ

∑
(s,a)∈L

logPr(N(s, a)|Ψ(s, a)), (8)

where

N(si, ai) = {(si+1, ai+1), (si+2, ai+2), . . . , (si+T , ai+T )}

defines the succession of state action pair (si, ai) of size

T . Similarly to Grover & Leskovec (2016), we model the
conditional likelihood as

Pr(N(s, a)|Ψ(s, a)) =
∏

(sj ,aj)∈N(s,a)

Pr(sj , aj |Ψ(s, a)),

(9)

Unlike the node2vec algorithm, we account for the fact
that neighbours that are further in time should be further
discounted. We do so by modelling the the likelihood of
every source-neighbour pair as a sigmoid weighted by a
discount factor:

Pr(sj , aj |Ψ(s, a)) = γ|−j|σ(Ψ(sj , aj) ·Ψ(s, a)) (10)

where σ denotes the sigmoid function.

3.2. Meta-testing with state2vec

Once the state2vec representation are learned, we can use
them for solving any task inM without needing to do any
retraining. The solving of task Mw ∈ M given the struc-
tural representation Ψ reduces to optimising the following
value function approximation for the weight vector θw:

Q̂πw(s, a) = Ψ(s, a)>θw . (11)

This can be achieve using any parametric RL algorithm,
such as fitted Q-learning or LSPI (Riedmiller, 2005;
Lagoudakis & Parr, 2004).

4. Experiments
4.1. Case study

We consider the four-room domain (Sutton et al., 1999)
shown in Figure 1. It is a two-dimensional space quantized
into 169 states, 4 of which are doorways. The agent starts
at a random location, and must collect a goal object at a
location defined by the task. Depending on the task, the
environment also contains “dangerous” zones. The goal
object’s location is shown in green in Figure 1, while the
dangerous states are depicted in red. Collecting an object
gives an instantaneous reward of +100, and entering a dan-
gerous state gives an instantaneous penalty of −10. The the
episode terminates when a goal object is collected.

(a) (b) (c) (d)

Figure 1. Four-room environment with different configurations.
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4.2. Results

4.2.1. META-TRAINING

In the feature learning phase, we collect 300 sample walks
of length 100 and run state2vec with T = 50 and discount
factor γ = 0.8 for varying dimensions d. Figure 2 visualises
the low dimensional (projection onto the first two principal
components) representation of the states in the successor
representation and in the state2vec feature spaces. As seen
in Figure 2, is a close approximation to the exact successor
representation under a uniform policy. In both cases, we
clearly see that the representations have clustered the states
within the same room together, while isolating the doorway
states. The learned embeddings are shown to preserve the
geometry of the state space and identify states that have a
special structural role (e.g. doorways).

Figure 2. Visualisation of the states representation in feature space
(2D PCA projection). Left: the exact successor representation,
each vector in the original feature space has dimension 169. Right:
the state2vec approximation of dimension 50 in the embedding
space.

4.2.2. META-TESTING

In meta-testing phase, we use the learned state2vec fea-
tures to learn the optimal policy of each individual. We
collect sampled realisations of the form (s, a, s′) by sim-
ulating 50 episodes of maximum length 200 (terminating
earlier if the goal is reach) and run LSPI Lagoudakis & Parr
(2004) with state2vec representations as basis vectors to
learn the weights θw in 11. Figure 3 shows the performance
in terms of average cumulative reward for varying value
of d. As it can be seen, we are able to achieve strong per-
formance (maximum reward) for all tasks when using the
pre-computed state2vec representations of dimensionality
100 with minimal additional exploration per task.

We compare the quality of state2vec embeddings with a
state-of-the-art low dimensional basis function for linear
value function approximation (Madjiheurem & Toni, 2019)
Figure 4 shows an improved performance of state2vec over
node2vec in terms of average cumulative reward. We sus-
pect that the gain in performance comes for the fact that
state2vec is design for RL, whereas node2vec is a generic
graph embedding algorithm. Specifically, in the objective
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Figure 3. Average cumulative reward after meta-testing using pre-
trained state2vec for each of the environment in Figure 1.
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Figure 4. Comparison between node2vec and state2vec on envi-
ronment (1a) (one goal at the corner).

function, the notion of neighborhood in state2vec is such
that further states in time are discounted more than the im-
mediate successors.

5. Conclusion
In this work, we relied on an unsupervised approach to
address the problem generalisation in RL. We proposed
state2vec, an efficient and low-complexity unsupervised
framework for learning state representation. We showed that
state2vec results in embeddings that capture the geometry
of the state space and ensure sample-efficiency during meta-
testing. We hope that the proposed idea will pave the way
for developing unsupervised meta-reinforcement learning
systems that are capable of generalising across tasks.
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