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ABSTRACT

We study the problem of using low cost to search for hyperparameter configura-
tions in a large search space with heterogeneous evaluation cost and model quality.
We propose a blended search strategy to combine the strengths of global and lo-
cal search, and prioritize them on the fly with the goal of minimizing the total
cost spent in finding good configurations. Our approach demonstrates robust per-
formance for tuning both tree-based models and deep neural networks on a large
AutoML benchmark, as well as superior performance in model quality, time, and
resource consumption for a production transformer-based NLP model fine-tuning
task.

1 INTRODUCTION

Hyperparameter optimization (HPO) of modern machine learning models is a resource-consuming
task, which is unaffordable to individuals or organizations with little resource (Yang & Shami, 2020).
Operating HPO in a low-cost regime has numerous benefits, such as democratizing ML techniques,
enabling new applications of ML, which requires frequent low-latency tuning, and reducing the
carbon footprint. It is inherently challenging due to the nature of the task: trying a large number
of configurations of heterogeneous cost and accuracy in a large search space. The expense can
accumulate from multiple sources: either a large number of individually cheap trials or a small
number of expensive trials can add up the required resources.

There have been multiple attempts to address the efficiency of HPO from different perspectives.
Each of them has strengths and limitations. For example, Bayesian optimization (BO) (Brochu et al.,
2010), which is a class of global optimization algorithms, is used to minimize the total number of
iterations to reach global optima. However, when the cost of different hyperparameter configura-
tions is heterogeneous, vanilla BO may select a configuration that incurs unnecessarily high cost.
As opposed to BO, local search (LS) methods (Wu et al., 2021) are able to control total cost by pre-
venting very expensive trials until necessary, but they may get trapped in local optima. Multi-fidelity
methods (Jamieson & Talwalkar, 2016) aim to use cheap proxies to replace some of the expensive
trials and approximate the accuracy assessment, but can only be used when such proxies exist. A
single search strategy is difficult to meet the generic goal of economical HPO.

In this work, we propose a blended search strategy which combines global search and local search
strategy such that we can enjoy benefits from both worlds: (1) global search can ensure the con-
vergence to the global optima when the budget is sufficient; and (2) local search methods enable a
better control on the cost incurred along the search trajectory. Given a particular global and local
search method, our framework, which is named as BlendSearch, combines them according to
the following design principles. (1) Instead of sticking with a particular method for configuration
selection, we consider both of the candidate search methods and decide which one to use at each
round of the configuration selection. (2) We use the global search method to help decide the starting
points of local search threads. (3) We use the local search method to intervene the global search
method’s configuration selection to avoid configurations that may incur unnecessarily large evalu-
ation cost. (4) We prioritize search instances of both methods according to their performance and
efficiency of performance improvement on the fly. Extensive empirical evaluation on the AutoML
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(a) Loss vs. evaluation time for configs tried by each
method. One point represents one config. The lower is
the loss the better is the quality of the config. Longer
evaluation time corresponds to larger training cost
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(b) Best loss vs. optimization time per method. Col-
ored circles – configs proposed by LS threads in our
method (color change indicates thread change); dia-
monds – configs proposed by BO in our method

Figure 1: A typical example of the different behaviors of BO, LS and our proposed BlendSearch
in tuning a set of 11-dim hyperparameters for XGBoost. BO is prone to selecting expensive but
not necessarily good configs. LS avoids expensive configs in the beginning but is prone to getting
stuck in local regions. BlendSearch switches between one BO and multiple LS search threads
and prioritizes the more promising ones, and turns out to try more low-cost, high-quality configs.

Benchmark (Gijsbers et al., 2019) validates the robust performance of our method on a wide variety
of datasets. BlendSearch is now publicly available in an open-source AutoML Library1.

2 BACKGROUND AND RELATED WORK

We first briefly introduce the vanilla Bayesian optimization methods and local search methods,
which are among the building blocks of our method. Bayesian optimization is a class of global
optimization algorithms which is suitable for optimizing expensive black-box functions. It mod-
els the probabilistic distribution of the objective conditioned on the optimization variables. Typical
models include Gaussian process (Snoek et al., 2012), random forest (Hutter et al., 2011), and tree
Parzen estimator (TPE) (Bergstra et al., 2011). In BO methods, an acquisition function is used
to determine the next point to evaluate. Two common acquisition functions are the expected im-
provement (EI) (Bull, 2011) over the currently best-observed objective and upper confidence bound
(UCB) (Srinivas et al., 2009). Local search methods are prevalent in the general optimization liter-
ature (Spall et al., 1992; Nesterov & Spokoiny, 2017) but less studied in the HPO literature due to
the possibility of getting trapped in local optima (György & Kocsis, 2011). Recent work (Wu et al.,
2021) shows that a local search method FLOW2 can make HPO cost-effective when combined with
low-cost initialization and random restart. At each iteration, it samples a pair of vectors (with oppo-
site directions) uniformly at random from a unit sphere, the center of which is the best configuration
found so far (a.k.a. incumbent) and the radius of which is the current stepsize. Expensive configu-
rations are avoided in the beginning as each iteration proposes a configuration near the incumbent.
Random restart of the local search is performed once the convergence condition is satisfied.

There are several attempts to address the limitations of vanilla BO or local search methods. BOwLS
(BO with local search) (Gao et al., 2020) uses a BO model to select the starting point of a local search
thread. Each local search thread is run until convergence and the BO model is updated with the start
point and the converged loss. Trust region BO (Eriksson et al., 2019) fits a fixed number of local
models and performs a principled global allocation of samples across these models via an implicit
bandit approach. It is primarily designed for HPO problems with high-dimensional numerical hy-
perparamters. Unfortunately, all existing work that tries to combine global search with local search
methods does not consider the heterogeneity of evaluation cost incurred along with the search. There
are also a lot of attempts in making HPO efficient by speeding up configuration evaluation. Multi-
fidelity optimizations (Klein et al., 2017; Li et al., 2017; Kandasamy et al., 2017; Falkner et al., 2018;
Lu et al., 2019; Li et al., 2020) are proposed for this purpose. They usually require an additional
degree of freedom in the problem called ‘fidelity’, to allow performance assessment on a configura-

1https://github.com/microsoft/FLAML
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Figure 2: Framework. Both paths from ‘Config Evaluator’ are executed independently.

tion with different fidelities. There is surprisingly little prior work for generic cost-effective HPO.
Gaussian process with expected improvement per second (GPEIPS) (Snoek et al., 2012) models the
evaluation cost using another Gaussian process, and heuristically adds the estimated cost into the ac-
quisition function. It does not always outperform GPEI as the acqusition function can overpenalize
good but expensive configurations.

3 BLENDSEARCH

Our framework needs the following information as inputs.

• B is the total budget of cost. In this work, we measure the cost by CPU/GPU time.
• P is the input HPO problem, which has the following attributes characterizing the problem.

– P.X is the search space in which each element x is a d-dimensional hyperparameter configu-
ration. For a non-categorical hyperparameter coordinate i ∈ [d], if different values of xi lead
to heterogeneous cost and there is a known value P.xLowCosti corresponding to a low cost, it is
considered as a controlled dimension. We use P.D to denote such a set of controlled dimen-
sions.

– P.LossFunc(·) is the loss function to be minimized in terms of the configurations x ∈ P.X .
– P.CostFunc(·) is the cost function that outputs the cost incurred when evaluating x.
The goal of an HPO algorithm is to minimize the loss P.LossFunc(x) with the constraint that
the total cost incurred G(π) :=

∑
x∈I(π) P.CostFunc(x) ≤ B, where I(π) is the search tra-

jectory of algorithm π. Note that both P.LossFunc(x) and P.CostFunc(x) are black-box
functions meaning that typically the analytic form is not available, and only function values can
be observed. In order to distinguish the operation of querying from loss/cost function and the
loss/cost observation, we use P.LossFunc(x) and P.CostFunc(x) to denote the former, and
use l(x) and c(x) to denote the latter. l and c (omitting x) are used when there is no ambiguity.

• G is the global search method to be used. L is the local search method to be used. L.∆ is the largest
stepsize used in local search method L, i.e., the largest possible change on a hyperparameter value
between two consecutive search steps.

The overall design of our framework is presented in Figure 2 and Algorithm 1. The key idea is to
maintain a pool of search threads, one of which corresponds to global search and the others local
search. The pool starts with one global search thread and gradually adds local search threads as
the search goes on. Here a search thread is an instance of a global search or local search method,
each with its own search trajectory. At each round, a search thread selector selects one of the
search threads from the pool according to a priority metric that reflects the search threads’ current
performance and efficiency of performance improvement. The selected search thread will then be
used to propose a configuration to evaluate in this round. When the selected search thread is the
global search thread, a config validator first checks whether the proposed configuration is within
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the ‘admissible’ region for evaluation. If not, it uses a backup local search thread instead. A local
search thread will be created only when the global search thread proposes a valid config and a certain
create thread condition is met, and will be deleted once it converges. Two local search threads will
be merged into one if they are close enough. The priority of each search thread is updated after each
evaluation round.

Algorithm 1 BlendSearch
Inputs: HPO problem P , a global search method G, a local search method L, total budget B.

1: Initialization: Initialize F .S = [S0] where S0 is an instance of G. We denote by F .x0 the
initial point of the search. By design, the values of the controlled dimensions of F .x0 are set to
be P.xLowCost and those for the other dimensions are proposed by S0.

2: while F .c < B do
3: S̃, S̃bak ← SelectThread(F)

4: (x, l, c)← SearchEvaluate1Step(S̃,F , P )

5: if x is invalid then (x, l, c)← SearchEvaluate1Step(S̃bak,F , P )

6: if x is proposed by global search & CreateNewLSCondition is satisfied then
7: Initialize S = InitializeSearchThread(L, P, (x, l, c))
8: Add the new LS thread S into the pool: F .S← F .S + S

9: DeleteAndMergeLS(F) . Merge or delete existing LS threads when necessary
10: Update F .Priority
11: if x is proposed by global search then UpdateGSModel(S0, (x, l, c))

For convenience, we use F to denote a collection of framework-level variables:

• F .S is the list of search threads maintained in our framework. F .S contains at least one search
thread and among them there is one and only one global search thread, i.e., S0, in F .S.

• F .Priority is a priority dictionary, in which the keys are the search threads in F .S, and the
values are the priority of the corresponding search threads.

• Bookkeeping information of F : F .l∗ is the best loss achieved among all the search threads and
F .c is the total cost consumed in our framework.

• F .R is the ‘admissible’ region on the controlled dimensions of the current search, which is a
hyperrectangle and can be written in the form of F .R := {[F .xmin

i ,F .xmax
i ]}i∈D with F .xmin

i
and F .xmax

i denoting the minimum and maximum value along the i-th dimension in F .R respec-
tively. They are initially set as F .xmin

i = F .xmax
i = P.xLowCosti for all i ∈ D. The ‘admissible’

region gradually expands during the search: (1) it is expanded to cover all the points evaluated by
all the search threads and all the points that are possible to be reached by the local search within
one search step, as shown in line 7 and 8 of Algorithm 2; (2) it expands if a local search thread
converges, as shown in line 3 of Algorithm 7 (included in Appendix A).

In the following, we explain the key steps in our algorithm.

Step 1: Search thread selector (line 3 of Alg 1). In addition to the primary search thread S̃,
SelectThread also outputs a backup search thread S̃bak which is guaranteed to be a local search
thread. It is set to be none when there is no local search thread yet in F .S. Specifically,

S̃ = arg max
S∈F.S

F .Priority(S), S̃bak =

{
arg maxS∈(F.S\S0) F .Priority(S) F .S \ S0 6= ∅
None F .S \ S0 = ∅,

(1)
The design of the priority metric follows the principle of optimism in the face of uncertainty from the
multi-armed bandit problem to balance exploitation and exploration (Lattimore & Szepesvári, 2020).
Specifically, linear extrapolation is performed adaptively and locally to calculate the improvement
speed of each search thread. The estimated future reward based on such a linear extrapolation
provides a first-order upper bound of the ground truth future reward assuming each search thread has
a diminishing return, i.e., the speed of improvement decreases as more resource is spent. Formally,
we introduce the following variables and functions for each search thread S ∈ F .S.

• Bookkeeping information: S.l1st and S.l2nd are the best loss so far and second best loss before the
best loss is achieved. S.c1st and S.c2nd are the total cost taken when S.l1st and S.l2nd are achieved
respectively. S.c is the total cost spent in S. S.x1st is the best configuration found so far.
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• S.s is the performance improvement speed of S. It is calculated as S.s = S.l2nd−S.l1st

S.c−S.c2nd . This
formula is only valid when there is at least one improvement. Otherwise, we do not have enough
information to estimate the speed of improvement. We set the speed to the highest speed of all the
search threads when S.l2nd = S.l1st. It is due to an implicit assumption of diminishing return.

• S.xmin and S.xmax are the minimum and maximum value of the i-th dimension of all hyperpa-
rameters configurations evaluated in S respectively.

• S.CostImp(·) is a function whose input is a target loss and output is the anticipated cost for S
to generate a better loss than this target. We use the following formula to compute it, which is
intuitively using the cost for improvement in the past to estimate that in the future.

S.CostImp(l) = max

{
S.c− S.c1st, S.c1st − S.c2nd, 2

S.l1st − l
S.s

}
(2)

Our proposed priority metric is essentially the negative of the projected loss of S:

F .Priority(S) = −(S.l1st − S.s× b) (3)

in which b = min(maxS∈F.S S.CostImp(F .l∗), B − F .c). maxS∈F.S S.CostImp(F .l∗) can be
considered as the resource needed for every S to have a better performance than the currently best
performance F .l∗. Our priority metric estimates the loss of each search thread if such an amount of
resource (restricted by the budget left B − F .c) is given. By considering both the search threads’
current performance and potential improvement, it provides a fair trade-off between exploiting the
currently-best and exploring the potentially-better choices.

Algorithm 2 SearchEvaluate1Step
Inputs: HPO problem P , search thread S, and F

1: if S is None then Construct x as follows: generate the controlled dimensions of x by adding
Guassian noises on the corresponding dimensions of F .x0 and for the rest of the dimensions
sample uniformly at random from the search space P.X .

2: else x← S.ProposeConfig()

3: if S = S0 (i.e., S is the global search thread) & x /∈ F .R then x←invalid
4: else l, c← P.LossFunc(x), P.CostFunc(x) . Evaluate configuration x

5: if x 6= invalid then
6: BookKeeping(S,x, l, c,F) and update speed S.s,
7: ∀i ∈ P.D, S.xmin

i ← min{xi, S.xmin
i }, F .xmin

i ← min{S.xmin
i − L.∆,F .xmin

i },
8: ∀i ∈ P.D, S.xmax

i ← max{xi, S.xmax
i }, F .xmax

i ← max{S.xmax
i + L.∆,F .xmax

i }
9: Outputs: x, l, c

Step 2: Config validator and evaluator (line 4-5 of Alg 1). After a search thread (and a backup
search thread) is selected, the next step is to propose the next configuration to try with the chosen
search thread(s). Intuitively speaking, we consider generating the next configuration to try primarily
according to the selected search thread S̃ whose priority is ranked the highest. But we set a guard
rail for the global search thread as it may propose an unnecessarily high-cost configuration. We thus
introduce a config validator to validate the configurations proposed by global search according to
whether they are within the current admissible region of our framework F .R (line 3 of Alg 2). A
configuration marked as ‘invalid’ means that it is considered to be prone to incur unnecessarily
high cost and will not be evaluated at this round. In this case, the selected backup search thread will
be used to perform another round of SearchEvaluate1Step (line 5 of Alg 1) if it is a valid
search thread (i.e., not none). In the case where the backup thread is none, we generate the new
configuration according to line 1 of Alg 2. The config validator helps avoid potentially high-cost
evaluation and thus avoid creating local search threads from high-cost points until necessary. It does
not stick to local searches forever because the admissible region F .R gets expanded. Note that
according to the definition of F .R, only the controlled dimensions of the hyperparameter configura-
tions are subject to validation check. If needed, a multi-fidelity pruning strategy can be used in this
config evaluator component. Multi-fidelity pruning does not necessarily yield better performance.
So the adoption of multi-fidelity pruning in BlendSearch is optional.

Step 3: Search thread creator, updater and cleaner (line 6-11 of Alg 1). If the newly proposed
configuration is proposed by global search and it is not marked as ‘invalid’, we consider creating
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a new local search thread using the proposed configuration as a starting point. To make sure the
newly created local search thread is relatively good, we first check whether the proposed configura-
tion’s performance is better than at least half of the existing threads’ performance (specified in the
CreateNewLSCondition). If so, a new local search thread will be initialized and added to the
active search thread pool S. In DeleteAndMergeLS, we check whether a local search thread has
converged according to the convergence condition of the specific local search method. If it is, the
search thread will be removed from S. In addition, we also go through all the local search threads to
see whether the incumbent of a LS thread is reachable in one step by another LS thread with lower
loss (ref. Appendix A). If so, the former LS thread will be deleted. After a configuration proposed
by global search is evaluated, the observation tuple (x, l, c) is then used to update the model of the
global search method through function UpdateGSModel. For example, when the global search
method is a Bayesian optimization method, the model is the surrogate model used.

Due to page limit, detailed pseudocode for several of the straightforward functions men-
tioned in our framework are provided in Appendix A, including CreateNewLSCondition,
DeleteAndMergeLS, InitializeSearchThread and BookKeeping.

4 EXPERIMENTS

We evaluate BlendSearch in tuning tabular machine learning libraries with an AutoML bench-
mark (Gijsbers et al., 2019), and in fine-tuning NLP models for text data. The AutoML benchmark
consists of 39 tabular datasets that represent real-world data science classification problems. It in-
cludes datasets of all sizes, of different problem domains and with various levels of difficulty. As
each dataset has 10 cross-validation folds, all the results reported in this paper are averaged over the
10 folds. With this benchmark, we are able to evaluate multiple HPO methods on a large number
of datasets within a manageable computational budget, for tuning three machine learning libraries:
XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017) and DeepTables2. The first two
are popular libraries based on gradient boosted trees, and the third is an easy-to-use deep learn-
ing toolkit which utilizes latest research findings for tabular data. We chose them because gradient
boosted trees and deep neural networks are the most frequent winners in data science competitions.
We run experiments for XGBoost and LightGBM on the AutoML benchmark and report the results
in Section 4.1. As a real application, we report an NLP model fine-tuning task for a production use
case in Section 4.2. Finally, in Section 4.3 we perform ablation study to investigate the effectiveness
of several important components of our framework. Due to page limit, we include the results for
tuning DeepTables in Appendix B. We include the following baselines in our experiments.

• BO (Akiba et al., 2019) – the Bayesian optimization baseline. We choose a modern HPO library
Optuna and use the TPE sampler because of its flexibility in handling mixed continuous and
discrete space and good peformance reported in existing work (Falkner et al., 2018).

• LS (Wu et al., 2021) – the recent baseline of using local search with random restart, based on
FLOW2. It is proved to be able to control cost effectively and outperform BO methods for numer-
ical cost-related hyperparameter search.

• BOwLS (Gao et al., 2020) – the baseline of an existing approach of combining local search with
BO, i.e., using BO to propose start points for local search.

• ASHA (Li et al., 2020), i.e., asynchronous successive halving – a state-of-the-art HPO method
that uses multi-fidelity optimization and supports parallel tuning.

Initialization setting. For the local search method used in our framework, a low-cost initialization
is needed to realize its unique advantages in controlling the cost. It is implemented via setting a low-
cost initial value for each of the controlled dimensions. For example, among the hyperparameters
tuned in LightGBM (shown in Table 2 of Appendix B), three hyperparameters, including ‘tree num’,
’leaf num’ and ‘min child weight’ have initial values corresponding to the min or max values in their
range, depending on whether they have a positive or negative correlation with the evaluation cost. It
does not require the loss of the initial configuration to be low. Only one single low-cost initial value
for each controlled dimension needs to be specified as input. To ensure a fair evaluation, we use the
same low-cost initial point (if controlled dimensions exist) as the starting point of all the baselines.

2https://github.com/DataCanvasIO/DeepTables
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Figure 3: Optimization performance curve for XGBoost. Lines correspond to the mean loss over 10
folds, and shades correspond to 95% confidence intervals. 1-auc is used for binary classification and
log-loss is used for multi-class classification.
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Figure 4: Aggregated rank and scaled loss on LightGBM and XGBoost. The scaled loss is obtained
by min-max scaling using the max and min loss over all time across all the methods. Sub-figure (a)
& (b) share the same legend, and BS is short for BlendSearch in sub-figure (c). Both rank and scaled
regret are aggregated first across datasets then across 10 folds of data in each dataset.

4.1 TUNING XGBOOST AND LIGHTGBM

We tune a set of 9-dimensional hyperparameters (all numerical) in LightGBM and 11-dimensional
hyperparameters (9 numerical and 2 categorical) in XGBoost. A detailed description of the search
space can be found in Appendix B. In this section, we omit the multi-fidelity baseline method, i.e.,
ASHA, because we do not find a good ‘fidelity’ dimension that works well in tuning LightGBM
and XGBoost (ref. additional results in Appendix B). We perform the evaluation on 37 out of
the 39 datasets from the AutoML benchmark (‘Robert’ and ‘Dionis’ are excluded due to out-of-
memory error and extremely long training time). The input budget B (in terms of CPU time) is set
to be 4 hours for the 3 largest datasets among the 37 datasets, and 1 hour for the rest. From the
performance curves shown in Figure 3, we observe that BO tends to perform well on small datasets,
e.g., ‘credit’ in Figure 3(a), where the 1h budget is sufficient. Under the same budget, it may perform
badly on large datasets, e.g., ‘volkert’ in Figure 3(c), as it may try configurations which consume a
very large portion of the budget at the early stage of the search. On the medium size dataset, e.g.,
‘KDDCup09’ in Figure 3(b), the local search method is more efficient than BO in the early stage
but is outperformed in the later stage. BlendSearch performs similarly to the better one between
LS and BO in the early stage, and surpasses both of them in the later stage. We also observe that
BOwLS performs similarly with LS (sometimes worse). This is because BOwLS needs to wait until
a local search converges before proposing a new one. The aggregated result over all the test cases in
Figure 4(a) & (b) is consistent with these observations.

The interplay between local and global search in BlendSearch. We investigated the dynamics
of local and global search thread selection in BlendSearch. As a case study, we show the results
in tuning XGBoost on two datasets in Figure 1(b) and Figure 5(a). The result in Figure 1(b) shows
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BlendSearch in tuning XGBoost on dataset
KDDCup09. In this figure (and Figure 1(b),
which shows the result for dataset Volkert), each
marker corresponds to one time of search thread
selection in BlendSearch. The diamonds
correspond to the global search thread, and
the solid circles correspond to the local search
threads (different colors for different threads).
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switches and the # of local search threads in-
duced by the GS (short for global search) in
BlendSearch for tuning XGBoost. The result
is aggregated over all the datasets evaluated in
tunning XGBoot. The outliers with very large
# of thread switches and threads induced by GS
are from very small datasets, where the number
of evaluations is large.

that the global search indeed plays a role after 1000s which contributes to BlendSearch’s better
performance comparing to LS. The result in Figure 5(a) shows that although the first point suggested
by the global search (at around 200s) does not yield significantly better performance immediately,
the induced new local search thread (the thread in green circle) lead to a significantly better per-
formance soon. These two figures together indicate that global search is not only responsible for
directly finding better configurations, but also for creating local search threads that can achieve yet
better performance. We show two statistics about the overall interplay between global and local
search in BlendSearch on all the datasets evaluated for tuning XGBoost in Figure 6.

We provide additional experiments for tuning XGBoost and LightGBM in Appendix B, including a
comparison with ASHA under different settings of fidelity, and an empirical study about the effect
of low-cost initialization.

Takeaway. (1) BlendSearch is able to overcome the limitations of BO and LS and at the same
time, inherit their advantages. By blending BO and LS, BlendSearch is able to outperform both
on this large collection of datasets over time. (2) The interplay between global and local search
indeed contribute to BlendSearch’s good performance.

4.2 TRANSFORMER-BASED NLP MODEL FINE-TUNING

This section presents an application of economical hyperparameter optimization to an NLP model
fine tuning task used in a large software company. It starts from a large transformer-based model
Turing-NLRv2 with 24 transformer layers, each with 16 attention heads and hidden-dimension 1024
totaling 340M parameters. It is pretrained on English Wikipedia (2,500M words) and BookCorpus
(800M words), and uses byte-pair encoding3. This pre-trained model is then fine-tuned (Dai &
Le, 2015) for use in multiple production scenarios, including sequence classification, named entity
recognition and question answering. The fine-tuning procedure is performed for a dozen separate
tasks, and is repeated on a regular cadence, typically every few weeks. We focus our experiment
on a single sequence classification fine-tuning task where the objective is to label a document (con-
sisting of one or more sentences) with one of five possible classes. For fine-tuning this model we
introduce a classification layer with 1024 × 5 = 5120 additional weight parameters, randomly ini-
tialized. The dataset used for training consists of 52K labeled examples, which we split 80/20 for
training/validation. The objective to maximize is the f1-score obtained on the validation set of 10.4K
labeled documents. Selecting hyperparameters for fine-tuning this model has been a manual process
that typically takes a data scientist a few days.

3msturing.org
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Table 1: Results of language model fine-tuning.

method wall-clock GPU-hours f1
Manual (10-20 working hours, spanned to a few days) 40-80h 0.645

BlendSearch 3h 12h 0.652
ASHA-1 6h 24h 0.624

ASHA-16 6h 384h 0.640

In our experiment we use a 6-dimensional search space (4 numerical and 2 categorical). A detailed
description of all the hyperparameters tuned, including their ranges, can be found in Table 5 in
Appendix B. We compare to ASHA and let it use 16 VMs with 4 NVIDIA Tesla V100 GPUs on
each VM. We run ASHA with 16 concurrent jobs for 6 hours in wallclock time. That amounts to
4×16×6 = 384 GPU hours of hardware cost. We run BlendSearch on a single VM of the same
configuration for 3 hours, which uses 12 GPU hours in total. For comparison, we include ASHA-1
using the same single VM. The results are summarized in Table 1.

Takeaway. Not only BlendSearch finds a more accurate model than both ASHA and manual
effort, it does so faster and consumes only 3% of the resources of ASHA-16.

4.3 ABLATION STUDY

To investigate the effectiveness of several important modules of our framework (colored in orange
in Figure 2), we perform an ablation study in tuning XGBoost on a random subset of the datasets
(one third of the datasets mentioned in Section 4.1). We show the aggregated rank of different
variants of our method in Figure 4(c). Specifically, we study the following three modules of the
framework. (1) Priority metric. ‘BS-Priority:RoundRobin’ uses the round-robin policy in the
search thread selector. (2) Config validator. ‘BS-w/o-ConfigValidator’ skips the validity check of
the proposed configuration. (3) Create new thread condition. In ‘BS-CreateCond:Always’ and
‘BS-CreatCond:BestOrFirst’, the following two conditions are used as the condition for creating
new local search threads respectively: always create, and create a new thread only when the loss is
better than all the existing search threads’ loss or there is no local search thread yet.

From this ablation study, we have the following observations: (1) Making round-robin selection is
worse than doing selection using our designed priority metric. Round-robin’s relative performance
becomes worse in the later stage of the search because it cannot avoid bad-performing search threads.
(2) The config validator is also vital in our framework. (3) Overall, the conditions for creating new
threads has a smaller impact on our method comparing to the other designs studied. ‘Better than
half’ condition used by default tends to perform the best.

5 EXTENSION AND FUTURE WORK

In the low-resource scenario which is targeted by this paper, each single trial is not resource-saturated
if we spend all resources in it. So we do not recommend parallel trials in this low-resource scenario.
In the case where more resources than the maximum resource each single trial can consume are
available, our framework can be extended by running the trials from different search threads on
multiple workers. For example, if there are additional workers available, we can keep invoking
the search thread selector (but skip the local search threads that have O(d) trials running). Our
design of having multiple independent local search threads naturally allows efficient asynchronous
parallel trials. The design of utilizing existing global optimization methods allows existing easy-
to-parallelize global optimization (such as random search or batch versions of BO) to be plugged
in. The prioritization of search threads is still useful as long as the maximal concurrent number
of trials divided by the number of search threads is smaller than O(d). Since our method can be
used together with multi-fidelity pruning methods, it can naturally inherit the asynchronous resource
scheduling when used in the parallel setting. Parallelization is now supported in the latest version of
BlendSearch’s implementation.

In this work, we show the effectiveness of BlendSearch through extensive empirical study. As
future work, it is worth studying the theoretical properties of BlendSearch, including theoretical
guarantees about its convergence rate and total resource consumption.
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A MORE DETAILS ABOUT BLENDSEARCH

We provide detailed pseudocode of the sub-algorithms used in our framework.

Algorithm 3 SelectThread
Inputs: Framework-level state F which keeps a list of candidate search thread F .S and a pri-
ority function F .Priority.

1: S̃ = arg maxS∈F.S F .Priority(S)

2: S̃bak =

{
arg maxS∈(F.S\S0) F .Priority(S) F .S \ S0 6= ∅
S0 F .S \ S0 = ∅,

Outputs: S̃, S̃bak

Algorithm 4 BookKeeping
Inputs: Search thread S, one entry of observation x, l, c generated by S, and F .

1: S.c← S.c+ c
2: if S is a local search thread then Update {S.xmin

i }i∈[d], and {S.xmax
i }i∈[d]

3: if l < S.l1st then
4: S.l2nd, S.c2nd ← S.l1st, S.c1st; S.l1st, S.c1st ← l, S.c; and S.xbest ← x
5: if l < F .l∗ then F .l∗ ← l

Algorithm 5 InitializeSearchThread
Inputs: Search method L or G, problem P and initial point (x, l, c).

1: S.π = L.π or G.π
2: Initialize bookkeeping information of S: S.l1 = S.l2 = l, S.c1st = S.c2nd = S.c = c, and
S.xmin

i = S.xmax
i = xi for i ∈ P.D

Choice of L.∆ used in constructing the ‘admissible’ region F .R. We normalize each numeric
hyperparameter into [0,1]. The setting of L.∆ is decided by the local search method. For the local
search method we chose, L.∆ is a constant corresponding to the initial stepsize (fixed as 0.1).

Definition of ReachableInOneStep in Alg 7. We define local search thread S1 to be reachable
by S2 if the distance between their incumbents is no larger than the maximal distance between the
next proposal of S2 and the incumbent of S2. In the local search method we used, the incumbent is
the currently best config, and the maximal distance is equal to the stepsize.

B MORE DETAILS ABOUT EXPERIMENTS AND ADDITIONAL RESULTS

B.1 EXPERIMENT SETUP

Settings of BO and LS. For BO, we use implementation from Optuna 2.0.0 (https://optuna.
readthedocs.io/en/stable/index.html) with default settings for TPE sampler. For
LS, we follow the implementation guidelines from Wu et al. (2021). After a local search thread
is created from a particular starting point, we fix the categorical dimensions and only search for
numerical dimensions in that local search thread. A local search thread S is considered to have
converged (corresponding to S.converged() in Algorithm 7) once the stepsize of the local search
thread is smaller than a lower bound introduced by Wu et al. (2021).

Experiments in tuning XGBoost and LightGBM. The XGBoost and LightGBM experiments are
performed in a server with Intel Xeon E5-2690 v4 2.6GHz, and 256GB RAM. A full list of hyperpa-
rameters tuned and their ranges can be found in Table 3 and Table 2. The search space for numerical
hyperparameters aligns with the search space used in (Wu et al., 2021). On the same fold, the same
random seed is used for LS, BO and BS. Experiments on different folds use different random seeds.

Experiments in NLP model fine tuning. For ASHA, we set min and max epochs as 1 and 16, and
reduction factor 4.
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Algorithm 6 CreateNewLSCondition
Inputs: l,F .
Outputs: |F .S| = 1 or l ≤ Median({S.l1st}S∈F.S\S0

)

Algorithm 7 DeleteAndMergeLS
Inputs: S,F

1: if S.converged() then
2: F .S← F .S \ S,
3: F .R.xmin

i ← F .R.xmin
i − L.∆, and F .R.xmax

i ← F .R.xmax
i + L.∆, ∀i ∈ D′

4: else
5: for ∀S′ ∈ F .S \ S do
6: if S ∈ S′.ReachableInOneStep() & S′.l < S.l then
7: F .S← F .S \ S
8: break
9: else if S′ ∈ S.ReachableInOneStep() & S.l < S′.l then F .S← F .S \ S′

Result aggregation details. Aggregated rank in Figure 4(a)&(c) and 12(c) is calculated as follows:
(1) per dataset per fold, the method is ranked based on the loss on validation set at each second
(x-axis), starting from when there is at least one finished config evaluation in any method; (2) the
rank is then averaged across datasets per fold; (3) we finally compute the average rank (line) and
confidence interval (shaded area) across 10 folds. Scaled loss in Figure 4(b) is calculated similarly.
Per dataset per fold, min-max scaling is applied on each method using the maximum and minimum
loss along the whole performance curve across all methods.

B.2 ADDITIONAL EXPERIMENTAL RESULTS ON LIGHTGBM AND XGBOOST

More performance curves on LightGBM and XGBoost. The performance curves for tuning
LightGBM on 3 representative datasets with an 1h budget are shown in Figure 7. We observe that
the performance of LS is quite good (comparing to BO), especially on large datasets. This result is
consistent with the results reported in (Wu et al., 2021), where all the hyperparameters for tuning are
numerical. In our experiment of XGBoost tuning, we include categorical hyperparameters. LS per-
forms worse in this case because the introduction of categorical hyperparameters amplifies the local
search method’s limitation of being trapped in local optima. The observations about BlendSearch
for LightGBM are similar to XGBoost tuning. The performance curves on the three large datasets
with a 4h budget are shown in Figure 8 and 9, where similar conclusions can be drawn.

Multi-fidelity. We compare BO and BlendSearch with the multi-fidelity baseline ASHA for
tuning LightGBM and XGBoost in Figure 10. In this experiment, we tried two choices of fidelity
dimensions with ASHA, including number of iterations and sample size (the sample size begins with
10K, so small datasets are excluded) respectively. The results show that the multi-fidelity baseline
overall perform no better than BO and are significantly worse than BlendSearch.

Table 2: Hyperparameters tuned in LightGBM.

hyperparameter type range init
tree num int [4, min(32768, # instance)] 4
leaf num int [4, min(32768, # instance)] 4

min child weight float [0.001, 20] 20
learning rate float [0.01, 0.1] random

subsample float [0.6, 1.0] random
reg alpha float [1e-10, 1.0] random

reg lambda float [1e-10, 1.0] random
max bin int [7, 1023] random

colsample by tree float [0.7, 1.0] random
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Table 3: Hyperparameters tuned in XGBoost.

hyperparameter type range init
tree num int [4, min(32768, # instance)] 4
leaf num int [4, min(32768, # instance)] 4

min child weight float [0.001, 20] 20
learning rate float [0.01, 0.1] random

subsample float [0.6, 1.0] random
reg alpha float [1e-10, 1.0] random

reg lambda float [1e-10, 1.0] random
colsample by level float [0.6, 1.0] random
colsample by tree float [0.7, 1.0] random

booster categorical {gbtree, gblinear} gblinear
tree method categorical {auto, approx, hist} random

Table 4: Hyperparameters tuned in DeepTables.

hyperparameter type range init
early stopping rounds int [1, max(min(1.5M/# instance),150),10)] 10

batch size int [16, 1024] 512
dropout float [0, 0.5] 0.1

learning rate float [1e-4, 3e-2] 3e-4
dense dropout float [0, 0.5] 0.1

net categorical {DCN, dnn nets} random
auto discrete boolean {False, True} random

apply gbm features boolean {False, True} random
fixed embedding dim boolean {False, True} random

Table 5: Hyperparameters tuned in fine-tuning Turing language model.

hyperparameter type range init
learning rate float [1e-6, 1e-3] random

hidden dropout probability float [0.05, 0.4] random
warmup proportion float [0.2, 0.4] random

batch size categorical {16, 32} 32
epochs int [1, 16] 1

learning rate scheduler categorical {Warmup linear decay polynomial,
Warmup linear, Warmup linear decay
exponential}

random
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Figure 7: Optimization performance curve for LightGBM (1h).
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Figure 8: Optimization performance curve for LightGBM (4h).
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Figure 9: Optimization performance curve for XGBoost (4h).
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Figure 10: Aggregated results on LightGBM and XGBoost. ‘PurneWithSample’ and ‘PruneWith-
Iter’ represent ASHA using sample size and iteration number as resource dimension respectively.
BO and BlendSearch are the same as those in Figure 4.
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Figure 11: Aggregated rank and scaled loss on LightGBM with random initialization.
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Figure 12: Performance curves on cane, aggregated rank and aggregated loss on DeepTables.

Ablation study on the low-cost initialization. In this work, we use low-cost initialization for
the controlled dimensions of the hyperparameters. Although such information is fairly easy to ob-
tain, we investigate our method’s robustness when no controlled dimension is provided. We test
BlendSearch in a controlled dimension agnostic setting: there are still hyperparameters with het-
erogeneous cost, but the controlled dimensions and a low-cost initial point is not specified as input.
In such scenarios, BlendSearch will use random initialization and the config validator always
returns ‘yes’. We compare BlendSearch with local search and BO under such a setting using
the same random initial point. In Figure 11 we report the results including the aggregated rank and
scaled loss on LightGBM across half of the datasets mentioned in Section 4.1 in Figure 11(a) & (b).
The results show that even if BlendSearch is agnostic to the controlled dimensions and a random
initialization is used, it is still able to outperform both the local search method and BO.

B.3 TUNING DEEPTABLES.

In this experiment, we tune 9-dimensional hyperparameters (5 numerical and 4 categorical as
detailed in Table 4) in DeepTables. Since the training of deep neural networks are more
time-consuming than that of XGBoost, we run experiments for DeepTables on the datasets
where they are worse than the best known performance in the benchmark, including ‘shut-
tle’,‘cnae’,‘mfeat’,‘vehicle’,‘phoneme’, ‘kc1’. All experiments for DeepTables are performed in
a server with the same CPU, 110GB RAM, and one Tesla P100 GPU. A full list of hyperparameters
tuned and their ranges can be found in Table 4.

Recall that we mentioned multi-fidelity pruning strategies could be incorporated into
BlendSearch in the config evaluator component. In this experiment, we are particularly in-
terested showing the performance of BlendSearch when combined with multi-fidelity methods.
To this end, we include the three state-of-the-art multi-fidelity methods, including BOHB (Falkner
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et al., 2018), ASHA (Li et al., 2020), and asynchronous HyperBand (Li et al., 2017; 2020)
which are shown efficient for tuning deep neural networks and the BlendSearch based on each
of them. We use the following libraries for baselines: For BOHB, we use HpBandSter 0.7.4
(https://github.com/automl/HpBandSter). For ASHA and asynchronous HyperBand,
we use implementations from Optuna 2.0.0. In all the methods compared, including both existing
methods and variants of BlendSearch, the number of training epochs is used as the fidelity di-
mension, with maximum epochs set to be 1024, reduction factor set to be 3, and minimum epochs
4. For ASHA, we set the minimum early stopping rate to be 4 (we adopted this setting as it yields
better performance comparing to the default setting, i.e., 0). The number of training epochs is used
as the fidelity dimension.

BlendSearch incorporates existing multi-fidelity methods in the following way: Each config,
either proposed by global search or local search, uses the same schedule to increase the fidelity
and check its pruning condition. For example, when ASHA (Li et al., 2020), i.e., asynchronous
successive halving, with a reduction factor of η, is used as the pruning strategy, after each config
is evaluated by a certain fidelity, it is compared with other configs already evaluated by the same
fidelity. The config will be pruned if its loss is ranked in the worst 1/η. Otherwise, the fidelity is
multiplied by η. In addition to the original pruning conditions specified by the multi-fidelity method,
a configuration will also be pruned at a particular fidelity level where no pruning is performed
yet, and the configuration does not yield superior performance (comparing to the currently-best
performance) when evaluated at that fidelity level.

We present the performance of all compared methods for tuning DeepTables in Figure 12. Fig-
ure 12(a) shows the learning curves on dataset cane with budget 1h. Figure 12(b) and (c) show the
aggregated rank and loss on all the 6 datasets within budget 1h. The performance of multi-fidelity
methods are significantly improved when used in our BlendSearch framework.
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