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Abstract. The interpretation of logical expressions into loss functions
has given rise to so-called differentiable logics. They function as a bridge
between formal logic and machine learning, offering a novel approach for
property-driven training. The added expressiveness of these logics comes
at the price of a more intricate semantics for first-order quantifiers. To
ease their integration into machine-learning backends, we explore how to
formalize semantics for first-order differentiable logics using the Math-
ematical Components library in the Rocq proof assistant. We seek to
give rigorous semantics for quantifiers, verify their properties with re-
spect to other logical connectives, as well as prove the soundness and
completeness of the resulting logics.

Keywords: Neural Network Verification · Formal Specifications · Loss Func-
tions · Differentiable Logics · Interactive Theorem Proving.

1 Introduction

Quantitative logics, i.e. logics that have semantics over the real numbers instead
of over {0, 1} have been studied for decades, and date back to the ideas of
Kleene, Gödel, and Łukasiewicz at the start of the 20th century [10, 22]. Fuzzy
logics [22], and the logics of the Lawvere quantale [22, 5, 15] are important
examples of quantitative logics. To illustrate, let us have a toy syntax with
atomic propositions and conjunction, such as

Φ ∋ ϕ := A |ϕ ∧ ϕ (1)

where A is interpreted in a domain D ⊆ [−∞,∞]. D varies among logics and
restricts the interpretation of connectives. For example, the Gödel logic has a
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standard semantics over [0, 1] where the conjunction is interpreted as the mini-
mum function.

Recently, there was a surge of interest in quantitative logics, stimulated by
the growing interest in AI safety [13, 14]. Differentiable Logics (DLs) form a
family of methods that applies key insights from quantitative logics to this do-
main for property-driven learning[25]. Generally, it is considered desirable to
be able to use machine learning algorithms in a way that imposes certain logi-
cal specifications during training [20, 27]. Differentiable logics have been shown
to effectively translate arbitrary logical specifications into real-valued and dif-
ferentiable functions that, in turn, can be used as loss functions in standard
gradient-descent algorithms [8]. Such loss functions help improve the adherence
of the resulting neural networks to specifications [16]. At the same time, DLs
have proven to be useful in compiling specifications for the back-ends of neural
network verifiers [12], a process necessary to provide programming language sup-
port to property-driven training [11]. This calls for stronger guarantees about
the correctness of such compilers, and rigorous semantics for DLs, as well as
their soundness, completeness, and compositionality [1, 8, 25].

Nevertheless, there is one fundamental problem that differentiable logics face.
Many specifications of interest for machine learning involve quantifiers, yet the
majority of quantitative logics is propositional [5, 22, 25]. A canonical specifi-
cation of this kind is robustness [9], i.e. small perturbations to the inputs of a
neural network should result in small changes to its output, formally:

Definition 1 (ϵ-δ-Robustness). Let ϵ, δ ∈ R+, || · || be a norm, and f : Rn →
Rm be a measurable function. One says f is ϵ-δ-robust around x̄ ∈ Rn if

∀x ∈ Rn, ||x− x̄|| ≤ ϵ⇒ ||f(x)− f(x̄)|| ≤ δ (2)

Expanding some sound and complete propositional quantitative logics to first-
order logic often comes at the expense of either completeness or continuity. For
example, the first-order extension of Gödel logic is the only one, among the most
prominent fuzzy logics [22, 25], that is sound and complete w.r.t. models with
values in [0, 1] and with universal and existential quantifiers interpreted as infima
and suprema [3]. However, connectives of this logic are continuous and therefore
not suitable for gradient-descent algorithms.

Recently, a promising solution was proposed by Capucci: interpreting quanti-
fiers as p-means [7], a generalization of p-norms over a probability space [6]. This
new semantics gives hope that the open problem of finding a suitable approach
to quantification in DLs will find its resolution, and we can soon find a logic that
is sound and complete relative to this new quantitative semantics.

With rigorous semantics for quantifiers, first-order DLs could be integrated
into verifier back-ends. We must hence provide guarantees of the resulting logics,
as well as of quantifiers with respect the other logical connectives. Rigorous
computer formalizations of propositional semantics for DLs have been used to
this end [1]. Extending these formalizations to first-order logics is a non trivial
challenge that is yet to be overcome. Furthermore, the new semantics proposed
by Capucci presents a particular challenge for formal verification, since, unlike
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the previous formalizations of DLs [1], it now also involves results from real
analysis and probability. Most notably, it involves formalisations of measure
spaces, probability spaces, and Lebsegue integrals, as well as the use of results
such as Jensen’s and Hölder’s inequalities [19].

Rocq’s Mathematical Components library (MathComp) [26], is a particularly
good fit for this task, due to its extensive mathematical libraries. Many of the
aforementioned standard results from measure theory are formalized in the li-
brary modules on algebra and analysis. However, some, such as the encoding of
extended real numbers, still require further development.

In this extended abstract, we first quickly review the approach to quantifi-
cation proposed by Capucci, explain its relation to the available mathematical
libraries in Rocq, and report on our current work on formalizing the novel seman-
tics. With this formalization, we contribute towards developing the semantics for
quantifiers in DLs. Tangentially, we extend MathComp as necessary. In the long
term, this formalization is expected to become part of a larger collaborative
project [2], that develops a novel first-order quantitative logic and provides its
full formalization in Rocq, including, when and if that will be proven, the formal-
isation of the soundness and completeness results for the logic. Our work seeks
to aid in the development of programming language support for property-driven
development of neural networks, as well as influence machine learning research
in general [12, 2].

2 Preliminaries

We introduce preliminaries from the extended arithmetic of the reals. They are
an abridged version of [7], specifically we do not address the ‘non-linear’ fragment
therein. We also diverge from ibid. in notation, preferring standard linear logic
notation.

Our base setting are the positive extended reals [0,∞], considered as sup-
lattice with the usual order ≤. The topology on R+ is extended to [0,∞] by
adding to the opens all the intervals (a,∞]. As a measure space, [0,∞] is con-
sidered equipped with completion of its Borel σ-field (i.e. the Lebesgue σ-field);
and then further equipped with the obvious extension of the Lebesgue measure
given by setting λ((a,∞]) = ∞ for a <∞ and λ({∞}) = 0.

Definition 2 (Multiplication). On [0,∞], conjunctive multiplication and
disjunctive multiplication are, respectively, the following operations:

a⊗ b 0 a ∈ (0,∞) ∞
0 0 0 0

b ∈ (0,∞) 0 ab ∞
∞ 0 ∞ ∞

a

&

b 0 a ∈ (0,∞) ∞
0 0 0 ∞

b ∈ (0,∞) 0 ab ∞
∞ ∞ ∞ ∞

(3)

Notice ⊗ and

&

differ only when a is 0 and b is ∞, or vice versa. Often we
write ab instead of a⊗ b.
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Definition 3 (Duality Operator). Let a ∈ [0,∞]. Then the dual of a is

a⊥ =


1/a a ∈ (0,∞)

∞ a = 0

0 a = ∞

Note a

&

b = (a⊥⊗ b⊥)⊥. Moreover we define a⊸ b = a⊥

&

b, which extends
the definition of b/a.

2.1 p-Means

The following definitions relate specifically to the new quantifier semantics. They
are what are classically known as generalized weighted means [23], though geo-
metric mean, much like multiplication above, bifurcates into a conjunctive and
a disjunctive version.

Throughout the following, fix a probability space (S,ΣS ,P).

Definition 4 (p-Means). Let f : S → [0,∞] be a measurable function. For
p ∈ (0,∞), the (generalized weighted) p-mean of f is

⟨f⟩S,p :=

(∫
S

f(s)p dP(s)
)1/p

(4)

where we extended the functions (−)p as follows

∞p =

{
1 p = 0

∞ p > 0
0p = 0. (5)

Dually, the (generalized weighted) harmonic p-mean of f is

⟨f⟩S,−p :=
(
⟨f⊥⟩S,p

)⊥
. (6)

When S can be inferred from the context, we write ⟨f⟩p.
The definition of p-means can be extended to p = 0 and p = ∞ by taking

limits [7]. First we have

Lemma 1. As p −→ +∞,

⟨f⟩+p −→ ess sup (f) =: ⟨f⟩+∞, ⟨f⟩−p −→ ess inf (f) =: ⟨f⟩−∞. (7)

These quantities are so defined:

Definition 5 (Essential Extrema). Let (S,ΣS , µ) be a measure space and
f : S → [0,∞] a measurable function.
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1. Let U = {a ∈ [0,∞] : µ({x ∈ X : a < f(x)}) = 0} and inf(U) be the infimum
of U. The essential supremum of f is

ess sup (f) = inf U (8)

recalling that inf ∅ = ∞.
2. The essential infimum of f is

ess inf (f) = − ess sup (−f) (9)

On the other end of the spectrum, we have:

Lemma 2. As p −→ 0, both ⟨f⟩+p and ⟨f⟩−p converge to a limit, thus defining
disjunctive and conjunctive geometric means:

⟨f⟩+p −→: ⟨f⟩+0, ⟨f⟩−p −→: ⟨f⟩−0. (10)

For bounded functions, these quantities coincide with the classical (weighted)
geometric mean:

Definition 6 (Geometric Mean). Let f : S → [0,∞) be a measurable func-
tion and (S,ΣS , µ) a measure space. The geometric mean of f is

GM [f ] = exp

(
1

µ(S)

∫
S

ln f(s) dµ(s)

)
(11)

For unbounded functions, conjunctive and disjunctive geometric means may
differ in the same way as ⊗ and

&

, namely in the way they handle 0 and ∞.
See [7] for clarifications.

3 Proposed Language and its Semantics

We introduce the main ideas for first-order quantitative logic following Capucci
[7], where the case is made that the positive reals support a family of sub-
structural logics where the multiplicative connectives are interpreted as actual
multiplication, and the additives as the p-norm and converge to the actual addi-
tives as p→ ∞. We stress that only a language (i.e. a syntax for formulae), and
not a logic (i.e. an entailment relation), are defined therein. Here we propose a
simplified version of that language which features only multiplicative connectives
(in the style of classical multiplicative linear logic [17]).

For simplicity, we use the same symbols of Section 2 for our language.
A first-order theory over this language is given by a fixed set of sorts S and a

family of atomic predicates for each context, denoted as {A(X)}X∈ListS . Recall
a context is a finite (and possibly empty) list of typed variables X = (x1 :
X1, . . . , xn : Xn), where Xi ∈ S. Then, for each context, and simultaneously
over all contexts, we inductively define the set of formulae of the theory Φ(X)
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by closing the atomic predicates under duality, multiplicative conjunction, and
universal and existential quantification over fresh variables:

Φ(X) ∋ ϕ(x) := A(x) ∈ A(X)

|ϕ(x)⊥

|ϕ(x)⊗ ϕ(x)

| ∀p(y ∈ Y ).ψ(y,x)

| ∃p(y ∈ Y ).ψ(y,x)

(12)

where p ∈ [0,∞] and ψ ∈ Φ(Y,X), where Y is another sort. Let Φ =
⋃

X Φ(X) be
the set of formulae over arbitrary contexts. We encode multiplicative disjunction
and linear implication respectively as

ϕ1

&

ϕ2 := (ϕ⊥1 ⊗ ϕ⊥2 )
⊥ ϕ1 ⊸ ϕ2 := ϕ⊥1

&

ϕ2

An interpretation of such a theory is given by (1) a choice of probability
space JXK for each sort X ∈ S, where, for a context X as above, we let JXK =
JX1K × · · · × JXnK (as well as J()K = 1); and (2) a given measurable function
JAK : JXK → [0,∞] for each atomic predicate A ∈ A(X). Then the translation
function (corresponding to multiplicative semantics in [7]) J · K : Φ → [0,∞] is
defined inductively on the structure of formulae as follows:

Jϕ(x)⊥K := Jϕ(x)K⊥

Jϕ1(x)⊗ ϕ2(x)K := Jϕ1(x)KJϕ2(x)K
J∀p(y ∈ Y ).ψ(y,x)K := ⟨Jψ(·,x)K⟩JY K,−p

J∃p(y ∈ Y ).ψ(y,x)K := ⟨Jψ(·,x)K⟩JY K,p

(13)

Hence the semantics is defined w.r.t. the quantale [0,∞]⊗ we described above
(definition 2, [7]), which we note is isomorphic to the Lawvere quantale intro-
duced in [21] and central in [5, 4].

As an example of the usefulness of this semantics, we can use it to construct
the softmax operator [24], using the same logical formulae used for argmax, as
shown in [7]. Indeed, suppose f : S → [0,∞) is a measurable function we want
to express the softmax of. The first-order theory of softmax has one sort X and
a single atomic predicate ϕ(x) ∈ A(X). We target f by interpreting X as S and
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set Jϕ(x̄)K = f(s̄). Then the softmax of f is obtained as follows:

(softmax f)(s̄) = J(∃1(x ∈ X).ϕ(x)) ⊸ ϕ(x̄)K

= J(∃1(x ∈ X).ϕ(x))K⊥

&

Jϕ(x̄)K

= (⟨Jϕ(x)K⟩S,1)⊥

&

Jϕ(x̄)K

=

(∫
S

JϕK(s)dP(s)
)⊥ &

Jϕ(x̄)K

=

(∫
S

f(s)dP(s)
)⊥ &

f(s̄)

=
f(s̄)∫

S
f(s)dP(s)

(14)

Note that often f = exp(−βu) for some scoring function u : S → [−∞,∞]
and inverse temperature β ∈ (0,∞]—this is the form most common in machine
learning [18]. Similarly, s̄ ∈ argmax f ⇐⇒ J(∃∞(x ∈ X).ϕ(x)) ⊸ ϕ(x̄)K ≥ 1.

For a second example, we show how the robustness property of Definition 1
can be encoded in such a language. Since this is usually a ‘hard’ predicate, we
have many choices on how to approach it as a soft predicate, here we give a very
crude such encoding, parametrised by the given constants ϵ, δ ∈ R, the function
f : Rm → Rn, the point x̄ ∈ Rn, as well as by a ‘softness degree’ p ∈ [0,∞]. Thus
we look at a first-order theory with one sort X and predicates E,D ∈ A(X),
and we interpret it by setting

JXK = Rm, JEK = 1{x∈Rn | ∥x−x̄∥≤ϵ}, JDK = 1{x∈Rn | ∥f(x)−f(x̄)∥≤δ}. (15)

where 1A denotes the indicator function of a measurable set A. Then (2) is

J∀p(x ∈ X).(E(x) ⊸ D(x))K =
(∫

Rm

(
JEK(s)
JDK(s)

)p

dP(s)
)−1/p

(16)

4 Properties of Quantifiers

In the machine learning community there is a general consensus on the desir-
able properties of loss functions—convexity or continuity are widely considered
desirable [20]. From a programming language perspective, there is no consensus
as to how to define soundness for quantitative logics. In the future, we intend to
follow the general approach applied by Slusarz et al. Moreover, Varnai and Di-
marogonas suggest characterizing quantitative logics in terms of their geometric
properties, valuable for optimization tasks [27]. As for quantifiers, we wish that
our formulation possesses good numerical properties, as well as behave similarly
to quantifiers in classical logic. Currently we are working to formalize and prove
the following properties in Rocq, which were presented by Capucci [7].

Through the following, Let X be a context, Y a sort, and ϕ(x) ∈ Φ(X),
ψi(y,x) ∈ Φ(Y,X).
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Lemma 3 (Duality).

1. J∀p(y ∈ Y ).ψ(y,x)K = J∃p(y ∈ Y ).ψ(y,x)⊥K⊥

2. J∃p(y ∈ Y ).ψ(y,x)K = J∀p(y ∈ Y ).ψ(y,x)⊥K⊥

Lemma 4 (Distributivity over Implication).

1. Jϕ(x) ⊸ ∀p(y ∈ Y ).ψ(y,x)K = J∀p(y ∈ Y ).(ϕ(x) ⊸ ψ(y,x))K

2. J∀p(y ∈ Y ).(ψ(y,x) ⊸ ϕ(x))K = J(∃p(y ∈ Y ).ψ(y,x)) ⊸ ϕ(x)K.

These lemmas will be potentially useful to prove the residuation property, an
important feature of many quantitative logics [17].

Lemma 5 (Abductive). Let JZK ⊆ JY K then

1. J∃p(z ∈ Z).ψ(z,x)K ≤ J∃p(y ∈ Y ).ψ(y,x)K

2. J∀p(y ∈ Y ).ψ(y,x)K ≤ J∀p(z ∈ Z).ψ(z,x)K.

Intuitively, confidence depends on the amount of evidence.

The following are often desirable properties of loss functions.

Lemma 6 (Monotonic). If Jψ1K ≤ Jψ2K then

1. J∃p(y ∈ Y ).ψ1(y,x)K ≤ J∃p(y ∈ Y ).ψ2(y,x)K

2. J∀p(y ∈ Y ).ψ1(y,x)K ≤ J∀p(y ∈ Y ).ψ2(y,x)K.

Lemma 7 (p-Monotonic and Bounded). If 0 ≤ q ≤ p then

1. J∃q(y ∈ Y ).ψ(y,x)K ≤ J∃p(y ∈ Y ).ψ(y,x)K ≤ J∃∞(y ∈ Y ).ψ(y,x)K

2. J∀∞(y ∈ Y ).ψ(y,x)K ≤ J∀p(y ∈ Y ).ψ(y,x)K ≤ J∀q(y ∈ Y ).ψ(y,x)K.

Hence we can approximate the quantifier semantics of Gödel logic while man-
taining differentiability.

5 Work in progress on the Rocq formalization

In “Taming Differentiable Logics with Coq Formalisation” a formalization for
several quantitative logics was developed [1]. We seek to expand this formaliza-
tion so that it is suitable for reasoning about first-order DLs, with p-means as the
semantics for quantifiers. So far we have formalized the semantics presented in
section 3, and some basic properties of the p-means. To illustrate, we present the
encodings needed for lemma 3. Note the following implementations have been
simplified for clarity.

To encode the p-mean, we make use of the Lnorm, MathComp’s encoding of
the p-norm [6], and add an encoding for the geometric mean.
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Definition Lnorm P p f :=
match p with
| p%:E => (\int[mu]_x `|f x| `^ p) `^ p^-1
| +oo => ess_sup P (abse \o f)
| -oo => ess_inf P (abse \o f)

end.

Definition geo_mean P f :=
expeR \int[P]_x (lne (f x)).

Definition pmean P p f :=
if p == 0 then geo_mean P f else Lnorm P p f.

Where ess_sup, ess_inf, geo_mean, and pmean correspond respectively to
the essential supremum, essential infimum, geometric mean and p-mean. For the
dual, we use MathComp’s power function.

Definition dual a := if a == 0 then +oo else x `^ -1.

We can represent quantifiers in terms of the previous encodings, and add
notations for clarity.

Notation "x ^'" := (cdual x).
Notation "'forall_ p f " := (pmean P p f).
Notation "'exists_ p f " := (('forall_p (fun y => (f y)^'))^').

Lastly, lemma 3 is encoded as Lemma Duality, using the facts that the dual is
idempotent and the harmonic p-mean non-negatove, encoded as Lemma idem_dual
and Lemma forall_gt0, respectively.

Lemma Duality p x :
(0 < p) ->
'forall_p (psi x) = ('exists_p (fun y => (psi x y)^'))^'.

Proof.
by move=> ?; rewrite (*this is true since*)

idem_dual //= (*the dual is idempotent and*)
?forall_gt0 //; (*the harmonic p-mean is non-negative and*)

under eq_fun do rewrite (*in the body of the harmonic p-mean*)
idem_dual //. (*the dual is idempotent.*)

Qed.

To formalize the rest of section 4 in Rocq, as well as the lemmas in section 2.1,
we are currently working on extending the analysis module of MathComp. In
particular, Hölder’s inequalities must be generalized to functions that go to the
extended reals. In this process, we noticed the original encoding of the power
function over extended real numbers incorrectly assumed its exponent is a real
number greater than or equal to zero. The implementation has now been gener-
alized for negative exponents.
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6 Conclusions and Future Work

In this extended abstract we described our work in progress. We presented the
main ideas behind a first-order quantitative logic to be applied in AI verifica-
tion. We presented a promising translation for quantifiers and introduced some
desirable properties for this translation, following closely [7]. We argued for the
usefulness of a computer formalization to provide compilation guarantees. Lastly,
we presented some preliminary progress in formalization of these results in Rocq.

In the future we hope to:

1. Develop a Hilbert and Sequent Calculus for the language.
2. Prove soundness and completeness for the resulting logic.
3. Formalize the properties mentioned in section 4 and the resulting proofs of

soundness and completeness.
4. Test the performance of the logic for property-driven training.
5. Integrate our results into verification back-ends such as that of Vehicle [12].
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