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ABSTRACT

In learning with noisy labels, the noise transition reveals how an instance relates
from its clean label to its noisy one. Accurately inferring an instance’s noise
transition is crucial for inferring its clean label. However, when only a noisy dataset
is available, noise transitions can typically be inferred only for a “special” group of
instances. To use these learned transitions to assist in inferring others, it is essential
to understand the connections among different transitions across different instances.
Existing work usually addresses this by introducing assumptions that explicitly
define the similarity of noise transitions across various instances. However, these
similarity-based assumptions often lack empirical validation and may not be aligned
with real-world data. The misalignment can lead to misinterpretations of both noise
transitions and clean labels. In this work, instead of directly defining similarity, we
propose modeling the generative process of noisy data. Intuitively, to understand
the connections among noise transitions across different instances, we represent the
causal generative process of noisy data using a learnable graphical model. Relying
solely on noisy data, our method can effectively discern the underlying causal
generative process, subsequently inferring the noise transitions of instances and
their clean labels. Experiments on various datasets with different types of label
noise further demonstrate our method’s effectiveness.

1 INTRODUCTION

Supervised learning relies on annotated large-scale datasets, which can be both time-consuming and
costly to create. Although several existing annotation methods offer cost-effective alternatives, such
as online queries (Blum et al., 2003), crowdsourcing (Yan et al., 2014), and image engines (Li et al.,
2017), the datasets obtained by these methods are imperfect. The labels of these datasets usually
contain errors. These noisy labels would be harmful to deep neural networks because the network
can memorize noisy labels easily (Zhang et al., 2017; Han et al., 2018; Bai et al., 2021) and lead to
the degeneration of classification accuracy.

Modeling the noise transition plays an important role in many label-noise learning algorithms (Liu &
Tao, 2016; Patrini et al., 2017; Xia et al., 2019; Li et al., 2021). Let Y , X and Ỹ denote the variables
of the clean label, instance and noisy label, respectively. The noise transition for an instance x can be
represented by P (Ỹ |Y,X = x), which reveals the probability distribution of the event that given an
instance, its latent clean label is transited to the observed noisy label. If the noise transition is given,
classifiers learned on noisy data can be used to infer the optimal ones defined by the clean data, with
theoretical guarantees (Liu & Tao, 2016; Patrini et al., 2017; Xia et al., 2019).

However, noise transitions are generally unknown and need to be inferred. When given only a
noisy dataset, noise transitions can be inferred for a “special” group of instances. For example, if
instances belong to a clean class with probability one, their noise transition can be inferred (Xia et al.,
2019). To use these learned transitions to assist in inferring others, it is essential to understand the
connections among different transitions across different instances. Prior work tackles this issue by
making additional assumptions. They manually define a similarity for noise transition across various
instances. For example: (1). The noise transition is class dependent, which means that the noise
transition for the instances in a class is the same (Liu & Tao, 2016; Patrini et al., 2017; Xia et al.,
2019); (2). The noise transition for the instances in the same manifold is the same (Cheng et al.,
2022a); (3). For the instances and their two nearest-neighbor instances belong to the same true class,
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these instances share a same noise transition (Zhu et al., 2021). However, the similarity in previous
work is defined by human prior knowledge. It is unclear whether these predefined similarities are
truthfulness to the underlying connection. Given only noisy data, they are hard to verify. If similarities
are not truthful, the estimation error of the noise transition could be large.

Noisy label: Dog
Clean label: Cat

(a)

Noisy label: Dog
Clean label: Cat

(b)

Figure 1: The pictures contain the
same noisy labels.

In this paper, to understand the connections of noise transitions
among different instances without predefined similarity, we propose
to explore the generative process of noisy data. By understanding
this process, the connection of noise transitions across instances in
different datasets would be automatically captured. Consider the
CIFAR-10N dataset, shown in Fig. 1. The annotator, with a keen
eye for animal features like furs, mislabels both cat images as “dog”
due to their furry appearance. Recognizing that the noise transition
of the first image is from “cat” to “dog” allows us to extrapolate
this transition to the second image. This extrapolation is possible
because both images share a common causal factor furs that influence
their labeling. In essence, the connections between noise transitions across different instances are
established through these causal factors.

The heart of our exploration lies in understanding the generative process of noisy data. This process
is anchored by causal factors, which significantly influence how noise transitions manifest across
instances. Drawing from the aforementioned example, if we can decode the generative process and
pinpoint “furs” as a causal factor for generating noisy labels, then two images containing this factor
will likely have similar noise transitions. Such insights enable us to establish connections between
the noise transitions of various images.

However, a challenge emerges: the causal factors responsible for generating the noisy data are latent.
Similarly, the generative process, which hinges on these causal factors, also remains latent. Despite
our extensive search, we found no existing methods that attempt to unveil these latent noisy data
generative processes. To address this void, we introduce a novel generative model that aims to infer
the latent generative processes from noisy labels. To achieve this, we use encoders to infer latent
causal factors and clean labels from noisy data. Then model the generative process by a learnable
graph. Both empirical evidence and theoretical analysis demonstrate that our method can effectively
determine the underlying causal generative process, which in tune helps to learn clean labels.

The rest of this paper is organized as follows. Section 2 provides a brief overview of related work in
the field. Section 3 presents our proposed method and its implementation. In Section 4, we conduct
experiments using synthetic and real-world datasets to validate the effectiveness of the proposed
method. Finally, in Section 5, we summarize our paper.

2 RELATED WORK

In this section, we briefly review the related literature.

Noise Transition Modeling Modeling noise transition is important in many algorithms to learn
with noisy labels. With the provided noise transition, the optimal classifier defined on the clean
data can be learned using infinite noisy data. The philosophy is that the clean class posterior can be
inferred using noisy class posterior and noise transition. Many previous works demonstrate that the
noise transition can be estimated based on some training instances. For example, the noise transition
can be estimated through the anchor points whose clean class posterior of a class is one (Liu & Tao,
2016; Patrini et al., 2017; Xia et al., 2019); The noise transition can be estimated through a set of
examples with theoretically guaranteed Bayes optimal labels (Yang et al., 2022). To use the estimated
noise transitions on other instances, previous work with theoretical guarantee defines the similarity of
noise transitions across instances. For example, the noise transition is class-dependent (Liu & Tao,
2016; Patrini et al., 2017; Xia et al., 2019); Xia et al. (2020) propose that the transition matrices are
dependent on image parts.

Other Methods in Learning with Noisy Labels Some noise-robust algorithms (Han et al., 2018;
Li et al., 2020) select examples deemed likely to be accurate for training purposes. These selections
are based on the memorization effect (Zhang et al., 2017; Liu et al., 2020; Bai et al., 2021), which
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suggests deep neural networks initially learn dominant patterns before progressively learning less
common ones. In noisy label environments, accurate labels often constitute the majority, leading
networks to prioritize learning from examples with accurate labels, typically indicated by lower
loss values. Co-Teaching (Han et al., 2018) employs this principle to identify low-loss examples
as likely accurate. DivideMix (Li et al., 2020) uses a Gaussian Mixture Model to separate training
examples into labeled and unlabeled sets based on their training loss, with the labeled set presumed
to contain accurate labels. Additionally, some methods use generative models to facilitate learning
with noisy labels. CausalNL (Yao et al., 2021) and InstanceGM (Garg et al., 2023) utilize instance-
specific information to enhance classifier learning. Conversely, NPC (Bae et al., 2022) focuses on the
generative process of estimated clean labels, not the noisy data generation, using generative models
for label calibration. Finally, SOP (Liu et al., 2022a) applies the sparse property of the label noise,
i.e., incorrect labels are the minority, to prevent models from overfitting to label noise.

Identifiable and Causal Representation Learning Representation learning aims to identify the
underlying latent variables that generate the observed low-dimensional variables. The mapping from
latent variables to the observed variables is usually linear. However, previous studies prove that it is
ill-posed to recover the latent variables with only these observed variables (Hyvärinen & Pajunen,
1999; Locatello et al., 2019). Recent advances in non-linear independent component analysis (ICA)
show that it is possible to identify latent variables using auxiliary information. For example, using the
temporal information to identify the latent variables (Sprekeler et al., 2014; Hyvärinen & Morioka,
2016; 2017); auxiliary variables that modulate the distribution of latent variables can be accessed
(Hyvärinen et al., 2019; Khemakhem et al., 2020). Causal representation learning (Schölkopf et al.,
2021) aims to recover the latent causal factors and causal structure from observed low-dimensional
variables. The definition of causal factor is more strict. The change in some factors can influence
other factors. Yang et al. (2021) proposes leveraging the auxiliary labels related to causal factors to
recover the latent causal factors and structure. Brehmer et al. (2022) learn the causal representations
by using the paired samples before and after interventions. Lachapelle et al. (2022) learn the causal
representations by regularizing the latent causal structure to be sparse. Causal representations can be
learned from time-series data with the observed intervention targets (Lippe et al., 2022; 2023).

3 LEARNING THE LATENT NOISY DATA GENERATIVE PROCESS

Understanding the generative process is critical to understanding the connection of noise tran-
sitions across different instances. We propose a practical method to learn the generative pro-
cess, inspired by the latest theoretical advances in latent causal representation learning (Yang
et al., 2021; Liu et al., 2022b). Emerging theories in causality (Hyvärinen et al., 2019; Khe-
makhem et al., 2020; Yang et al., 2021; Liu et al., 2022b) suggest that we can efficiently in-
fer the latent generative process with the aid of additional supervised information. However,
in learning with noisy labels, this additional supervised information necessitates clean labels.
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Figure 2: A illustration of the
noise transition generative model
with 4 latent variables.

Fortunately, the task of selecting clean examples from noisy training
data is well-established and well-studied. Many current techniques
ensure effective selection, and some are even backed by theoretical
guarantees.

We propose to use the supervision information on the selected clean
examples to learn a classification network. This network is used
to infer the clean label for each instance. Then, an encoder and
two decoder, which are used to capture the generative process, can
be learned by using the Variational AutoEncoder framework. The
trained encoder and decoders can be used to regularize the classifi-
cation network and improve the classification performance.

Problem Setting Let X and Ỹ denote the observed variables of
instances and noisy labels, respectively. The observed variables X
and Ỹ are influenced by the causal factors Z. The causal factors are
causally related, which means that some variables are the effects of
other variables. The effects of other variables to a causal factor Zi
can be represented as Zi := fZ(pa(Zi), Ni), where fZ(·) represents
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Figure 3: A working flow of our method. In the clean labels estimation stage, a classification network is used to
infer the clean labels of instances; In the inference stage, an instance encoder and a noisy label encoder are used
to infer the causal factors; In the generation stage, a decoder is used to generate the instances and noisy labels.

the causal mechanism, pa(Zi) represents all the causes of Zi, Ni is the corresponding latent noise
variable. The causal structure among Zi can be represented by a Directed Acyclic Graph (DAG).
The structure of the DAG is unknown. Our target is modeling the latent generative process of the
instances and noisy labels.

Generative Process In our approach, the generative process of noisy data involves the latent
clean labels Y , a set of latent factors Z, the variable of instances X , and the noisy labels Ỹ . Our
proposed generative process is flexible. In such a way, it allows different classes to have different
class conditional distributions p(Z|Y ). For instance, the distribution of latent factors for “house” and
“plane” can be markedly different. Moreover, we also allow to have causal associations among latent
causal factors. This usually happens in many real-world cases. As an illustration, a factor related to
the sun might influence a factor about brightness. Instances and noisy labels are then generated from
these causal factors via two distinct nonlinear mixing functions.

We also allow the causal factors used to generate instances and noisy labels to not be shared.
Considering the real-world case, the factors used to generate instances and the factors used to
generate noisy labels are different. The overall generative process is nonlinear. Specifically, the
generative processes of instances X and noisy labels Ỹ are nonlinear. But the generative process of
causal factors Z is linear, which can provide an identifiable guarantee. The generative process of
noisy data is shown in Fig. 2. The black arrow indicates the causal direction in the structural causal
model, while the blue arrow indicates the weights of the edge are changed across the clean label Y .
The observed instances X and the noisy label Ỹ are generated by causal factors Z. The causal factor
Zi is generated by its parent and corresponding noise variable Ni. Since causal factor Z is latent,
discovering the causal structure is a challenging problem. To provide a theoretical guarantee, we
assume the causal mechanism among causal factors is linear. This generative process of the causal
factor Z can be modeled by a linear Structure Causal Model (SCM):

Zi := W T
i Z +Ni, (1)

where W is a matrix used to represent the association among causal factors. The value of Wi,j

represents the weight of causal association between the causal factor Zi and its parent Zj . We assume
the causal structure among causal factors is a fully-connected DAG, then W is an upper triangular
matrix with zero-value diagonal elements. The diagonal elements are zero-value because the parents
of a causal factor do not contain itself.

The clean label Y modulate the weight matrix W via a function fW (·), i.e., W = fW (Y ). The
function fW (·) is called weight model in our paper. Then, the prior distribution of causal factors
pfW ,β(Z|Y ) can be modeled, where β is the parameter of the distribution of latent noise variable N
and β is modulated by clean label.

Intuition about Inferring Latent Generative Process Emerging theories in latent causality (Yang
et al., 2021; Liu et al., 2022b) suggest that we can efficiently infer the latent generative process
with the aid of additional supervised information. In the context of learning with noisy labels, this
additional supervised information necessitates some clean examples. Fortunately, the task of selecting
clean examples from noisy training data is well-established and well-studied. Many current techniques
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can effectively select a small set of examples with a high clean ratio. By having additional supervised
information derived from selected clean examples, inferring the generative process becomes feasible.

There we provide some intuition about the core idea of existing identifiability results (Liu et al.,
2022b) that why the generative process can be effectively inferred. At its heart is the realization that
the parameters governing this generative process are not unique to individual examples but are shared
across them. In our case, the same class has the same generative process Intuitively, the essence of
inferring the generative process lies in inferring these shared parameters. When these parameters
are consistent across different examples, their count remains unchanged, and the complexity of the
generative process remains constant. With a subset of selected clean examples along with their noisy
labels, one can calculate the most probable parameter value for generating these examples. This
likelihood narrows down the uncertainty of the parameter value. In Appendix C, we discuss the
specific assumption to make the latent generative process of noisy data fully identifiable.

We propose a practical method to learn the latent Generative Process (GenP) of noisy data. The
working flow of our method is shown in Fig. 3. We use a trained classification network to estimate
the clean labels. We use a network as the encoder to infer the causal factors for the instances. An
instances decoder is used to map the causal factors to instances. A noisy label decoder is used
to map the causal factors to noisy labels. These networks can be learned through the Variational
AutoEncoder framework. After training, the encoder and decoders serve as regularizers for the
classification network tasked with predicting clean labels. The underlying intuition is as follows:
given an instance x, the classification network outputs an estimated clean label y, then we utilize the
encoder to derive its corresponding casual factors z based on the instance and inferred clean label.
The inferred casual factors z are fed into the decoders and produce the most probable instance and
noisy label. By minimizing the difference between the predictions and the ground truths, the encoder
and decoders effectively guide the neural network to predict a clean label that aligns closely with the
generative process of the instance and noisy label.

3.1 CLEAN EXAMPLES SELECTION

With only the observed variables, recovering the latent variables and the generative process is ill-
posed (Hyvärinen & Pajunen, 1999; Locatello et al., 2019). Recent advances in causal representation
learning (Yang et al., 2021; Liu et al., 2022b) demonstrate the latent variables and the generative
process with the help of additional supervision information. In the learning with noisy labels setting,
the clean label Y can act as additional supervision information, but the clean label is unknown. We
have a noisy dataset D̃ = {(x(i), ỹ(i))}ni=1, where n is the number of examples. Let qD̃(X, Ỹ )

denotes the empirical noisy data distribution given by the noisy dataset D̃. We use the small-loss trick
to select clean examples to obtain additional supervision information. Specifically, the classification
network trained on noisy data will first memorize the examples with correct labels and then gradually
memorize the incorrect ones. Thus, the losses for examples with correct labels are probably smaller
than those with correct labels. The clean examples can be distinguished from noisy examples by
leveraging the loss. By employing the labels in the selected clean examples, the classification network
q̂ψ(·) could be obtained.

To improve the performance of the classification network, the information of the remaining examples
is exploited to train the classification network by using the semi-supervised learning method Mix-
Match (Berthelot et al., 2019). Specifically, Let the selected clean examples as the labeled examples
SX and the remaining examples as the unlabeled examples SU . The labels in the labeled examples
SX are refined through the output of the classification network q̂ψ(·). The outputs of the classification
network q̂ψ(·) for unlabeled examples are used to generate guessed labels. Then, the temperature
sharpening is applied to the refined labels and guessed labels on the labeled examples and unlabeled
examples, respectively. After that, the labeled examples SX and the unlabeled examples SU are
transformed into augmented labeled examples S ′X and augmented unlabeled examples S ′U by using a
linear mixing. The loss function used to train the classification network is

Lsemi = LSX + λuLSU + λrLreg, (2)

where LSX is the cross-entropy loss for the labeled examples; LSU is the mean squared error the
unlabeled examples; Lreg is a regularization term to prevent the model from predicting all examples
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to belong to a single class. These three terms are defined as follows specifically.

LSX = − 1

|S ′X |
∑

x,p∈S′
X

∑
i

pi log(qψ(Y = i|x)), (3)

LSU =
1

|S ′U |
∑

x,p∈S′
U

∥p− qψ(Y |x)∥22 , (4)

Lreg =
∑
i

1

C
log(1

/
C

|S ′X |+ |S ′U |
∑

x∈SX+SU

qψ(Y = i|x)), (5)

where p is the label, qψ(Y |x) := [qψ(Y = 1|x), . . . , qψ(Y = C|x)]T , and C denote number of
class.

3.2 DATA GENERATIVE PROCESS MODELING

To model the latent causal factors and their causal relation, we use an encoder network to infer the
latent causal factors. Then, we use a network to infer the weight of causal associations among the
causal factors. After that, we could build a Causal Structure Model (SCM) for causal factors by
employing the inferred latent factors with the weight of causal associations.

We first introduce the encoder q̂φ(·). The encoder takes an instance x̃ and corresponding clean labels
y as inputs, then output the distribution of causal factors z, i.e., qφ(Z = z|X = x, Y = y). Thus,
the encoder can be used to model the distribution qφ(Z|X, Y ). The weight model fW is learned to
infer the matrix W .

Modeling Generation of Observed Variables We assume that the instances and noisy labels
have different and independent generative processes. The instances and noisy labels are generated
through different causal factors. Each causal factor at least generates an observed variable, i.e., the
observed instance or the observed noisy label. The process of selecting different causal factors can be
implemented by a mask operation. Let MX denote the mask for selecting causal factors to generate
the instances, and MỸ denotes the mask for selecting causal factors to generate the noisy labels. The
masking process can be represented as follows.

ZX = MX ⊙Z,ZỸ = MỸ ⊙Z, (6)

where ⊙ is the element-wise multiplication. To ensure the sparsity of the masks, we utilize L1 loss
on the masks. The sparsity is used as we consider the causal factors for generating Ỹ and X can be
different. Additionally, it encourages learning simple generative processes that have been commonly
used in casualty literature.

The generative process of instance x and noisy label ỹ is shown in the following.

x ∼ pfX
(X|Z = zX), ỹ ∼ pfỸ

(Ỹ |Z = zỸ ). (7)

The generative probabilistic model for instances and noisy labels can be expressed as:

pf (X, Ỹ |Z) = pfX
(X|MX ⊙Z)pfỸ

(Ỹ |MỸ ⊙Z) (8)

To model these distributions, we utilize two decoder networks: an instance decoder, p̂fX
(·), and a

noisy label decoder, p̂fỸ
(·). The former outputs the instance x based on the causal factors z, while

the latter outputs the noisy label Ỹ using the same causal factors.

The overall generative model is a probabilistic model parameterized by θ = (f ,fW ,β):

pθ(X, Ỹ ,Z|Y ) = pf (X, Y |Z)pfW ,β(Z|Y ) (9)

Optimization for Generative Process The encoder, instance decoder, noisy label decoder, and
weight model have to be trained on the dataset with clean labels. We denote this dataset as D =
{(x(i), ỹ(i), y(i))}ni=1. Let qD(X, Ỹ , Y ) denotes the empirical data distribution given by the dataset
D. However, the clean label Y is unknown in the learning with noisy labels setting. We only have a
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Table 1: Means and standard deviations (percentage) of classification accuracy on Fashion-MNIST.

Fashion-MNIST

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE 93.16 ± 0.02 92.68 ± 0.16 91.41 ± 0.16 87.60 ± 0.33 71.76 ± 0.77
MentorNet 93.16 ± 0.01 91.57 ± 0.29 90.52 ± 0.41 88.14 ± 0.76 61.62 ± 1.42
CoTeaching 94.26 ± 0.06 91.21 ± 0.31 90.30 ± 0.42 89.10 ± 0.29 63.22 ± 1.56
Reweight 93.42 ± 0.16 93.12 ± 0.18 92.19 ± 0.18 88.51 ± 1.52 75.00 ± 5.28
Forward 93.48 ± 0.11 92.82 ± 0.12 91.05 ± 1.44 87.82 ± 1.81 78.34 ± 2.98
PTD 92.01 ± 0.35 91.08 ± 0.46 89.66 ± 0.43 85.69 ± 0.77 75.96 ± 1.38
CausalNL 91.63 ± 0.18 90.84 ± 0.31 90.68 ± 0.37 90.01 ± 0.45 78.19 ± 1.01
CCR 88.48 ± 0.16 83.59 ± 0.25 75.40 ± 0.19 64.39 ± 0.30 50.17 ± 0.29
MEIDTM 86.00 ± 0.84 80.99 ± 0.64 73.12 ± 2.34 63.81 ± 3.02 58.60 ± 3.32
BLTM 91.28 ± 1.93 91.20 ± 0.27 85.51 ± 4.77 82.42 ± 1.51 67.65 ± 5.65
DivideMix 95.04 ± 0.09 94.85 ± 0.15 94.22 ± 0.14 92.28 ± 0.13 85.76 ± 0.31

GenP 95.32 ± 0.11 95.14 ± 0.10 94.66 ± 0.12 93.78 ± 0.14 88.97 ± 0.28
Table 2: Means and standard deviations (percentage) of classification accuracy on CIFAR-10.

CIFAR-10

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE 87.81 ± 0.15 85.90 ± 0.30 82.67 ± 0.31 74.49 ± 0.95 46.81 ± 2.52
MentorNet 86.87 ± 0.14 83.89 ± 0.16 77.83 ± 0.28 61.96 ± 0.97 47.89 ± 2.03
CoTeaching 90.06 ± 0.32 87.16 ± 0.50 81.80 ± 0.26 63.95 ± 2.87 45.92 ± 2.21
Reweight 89.63 ± 0.27 87.85 ± 0.97 81.29 ± 6.49 80.33 ± 3.75 75.14 ± 2.40
Forward 88.89 ± 0.18 87.83 ± 0.30 82.01 ± 3.29 79.49 ± 1.85 71.11 ± 8.78
PTD 79.01 ± 0.20 76.05 ± 0.53 72.28 ± 0.49 58.62 ± 0.88 53.98 ± 2.34
CausalNL 83.39 ± 0.34 80.91 ± 1.14 79.05 ± 0.54 79.08 ± 0.50 76.56 ± 0.02
CCR 91.43 ± 0.05 90.93 ± 0.07 90.15 ± 0.11 89.01 ± 0.15 86.05 ± 0.18
MEIDTM 86.52 ± 0.38 82.93 ± 0.44 77.35 ± 0.21 68.21 ± 2.09 57.84 ± 3.51
BLTM 80.16 ± 0.37 77.50 ± 1.30 71.47 ± 2.33 63.20 ± 4.52 48.12 ± 9.03
DivideMix 96.03 ± 0.14 95.92 ± 0.12 95.66 ± 0.15 95.03 ± 0.12 86.98 ± 0.28

GenP 96.12 ± 0.12 96.05 ± 0.12 95.74 ± 0.13 95.44 ± 0.12 89.39 ± 0.45

noisy dataset D̃ = {(x(i), ỹ(i))}ni=1. Therefore, we use the learned classification network qψ(Y |X)

to predict the clean label for each instance. The distribution qD(X, Ỹ , Y ) can be approximate
through the noisy data distribution qD̃(X, Ỹ ) and distribution qψ(Y |X) modeled by the classification
network:

qD(X, Ỹ , Y ) = qD̃(X, Ỹ )qD(Y |X, Ỹ ) ≈ qD̃(X, Ỹ )qψ(Y |X). (10)

All the networks can be learned by maximizing the following Evidence Lower BOund (ELBO):

E(x,ỹ,y)∼qD [pθ(x, ỹ|y)] ≥ ELBO = E(x,ỹ,y)∼qD
[
Ez∼qφ [log pf (x, ỹ|z)]

−KL(qφ(z|x, y)||pfW ,β(z|y))]
≈ E(x,ỹ,y)∼qD̃qψ

[
Ez∼qφ [log pf (x, ỹ|z)] −KL(qφ(z|x, y)||pfW ,β(z|y))] ,

where KL denotes the Kullback–Leibler divergence.

Optimization in End-to-End Manner The working flow of our method is shown in Fig. 3. We
optimize our model end-to-end rather than learning the classification network and the generation
process alternately. The final loss function used to train the networks is

L = Lsemi − λELBOELBO + λM (∥MX∥1 + ∥MỸ ∥1), (11)

where λELBO and λM are hyperparameters. In our experiments, λELBO and λM is set to 0.01.

4 EXPERIMENTS

In this section, we compare the classification performance of the proposed method with that of
state-of-the-art methods on synthetic and real-world noisy datasets. Due to space limitation, the
optimization details are in the Appendix B.
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Table 3: Means and standard deviations (percentage) of classification accuracy on and CIFAR-100.

CIFAR-100

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE 57.43 ± 0.38 54.98 ± 0.19 50.65 ± 0.25 43.65 ± 0.15 34.91 ± 0.16
MentorNet 58.45 ± 0.06 55.98 ± 0.32 51.40 ± 0.68 43.79 ± 0.48 34.06 ± 0.52
CoTeaching 65.22 ± 0.41 62.36 ± 0.38 57.02 ± 0.43 49.84 ± 0.77 38.28 ± 1.08
Reweight 59.38 ± 0.33 55.14 ± 0.07 46.91 ± 1.26 37.80 ± 1.01 28.45 ± 2.57
Forward 59.58 ± 0.42 56.59 ± 0.25 52.75 ± 0.25 46.03 ± 0.65 35.07 ± 0.91
PTD 67.33 ± 0.33 65.33 ± 0.59 64.56 ± 1.55 59.73 ± 0.76 56.80 ± 1.32
CausalNL 47.29 ± 1.11 41.47 ± 0.43 40.98 ± 0.62 34.02 ± 0.95 32.13 ± 2.23
CCR 69.73 ± 0.07 68.84 ± 0.09 67.65 ± 0.08 66.54 ± 0.09 64.66 ± 0.11
MEIDTM 69.88 ± 0.45 69.16 ± 0.16 66.76 ± 0.30 63.46 ± 0.48 59.18 ± 0.16
BLTM 48.82 ± 0.44 46.61 ± 1.10 41.35 ± 0.85 35.67 ± 1.97 29.28 ± 0.74
DivideMix 77.15 ± 0.29 76.73 ± 0.24 76.13 ± 0.22 72.10 ± 0.33 61.10 ± 0.35

GenP 78.80 ± 0.20 77.98 ± 0.20 77.71 ± 0.23 75.05 ± 0.24 65.68 ± 0.39

Table 4: Means and standard deviations (percentage) of classification accuracy on CIFAR-10N.

CIFAR-10N

Worst Aggregate Random 1 Random 2 Random 3

CE 79.39 ± 0.35 87.91 ± 0.18 86.05 ± 0.13 86.12 ± 0.12 86.12 ± 0.16
MentorNet 77.91 ± 0.38 75.56 ± 0.25 77.10 ± 0.25 77.06 ± 0.13 77.06 ± 0.13
CoTeaching 81.86 ± 0.40 82.45 ± 0.08 82.90 ± 0.46 82.95 ± 0.26 82.66 ± 0.12
Reweight 77.68 ± 2.46 89.34 ± 0.09 88.44 ± 0.10 88.16 ± 0.10 88.03 ± 0.10
Forward 79.27 ± 1.18 89.22 ± 0.21 86.84 ± 0.97 86.99 ± 0.10 87.53 ± 0.34
PTD 65.62 ± 5.28 84.66 ± 3.28 82.11 ± 3.17 74.76 ± 9.98 84.29 ± 0.64
CausalNL 72.09 ± 0.84 82.20 ± 0.32 81.10 ± 0.09 81.13 ± 0.10 81.03 ± 0.41
CCR 80.43 ± 0.24 90.10 ± 0.09 88.53 ± 0.08 88.21 ± 0.11 88.46 ± 0.08
MEIDTM 79.59 ± 0.89 90.15 ± 0.27 87.81 ± 0.52 88.07 ± 0.18 87.86 ± 0.21
BLTM 68.21 ± 1.67 79.41 ± 1.00 78.09 ± 1.03 76.99 ± 1.23 76.26 ± 0.71
DivideMix 93.41 ± 0.19 95.12 ± 0.15 95.32 ± 0.13 95.15 ± 0.09 95.23 ± 0.16

GenP 93.87 ± 0.13 95.39 ± 0.18 95.38 ± 0.13 95.30 ± 0.12 95.26 ± 0.13

Table 5: Means and standard deviations (percentage) of classification accuracy on Clothing1M.

CE Decoupling MentorNet Co-teaching Forward

68.88 54.53 56.79 60.15 69.91

T-Revision BLTM CausalNL DivideMix GenP

70.97 73.39 72.24 74.76 74.81

4.1 EXPERIMENT SETUP

Datasets. We empirically verify the performance of our method on three synthesis datasets, i.e.,
Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky
et al., 2009), and two real-world datasets, i.e., CIFAR-10N (Wei et al., 2022) and Clothing1M (Xiao
et al., 2015). Fashion-MNIST contains 70,000 28x28 grayscale images with 10 classes total, 60,000
images for training, and 10,000 images for testing. Both CIFAR-10 and CIFAR-100 contain 50,000
training images and 10,000 testing images. The image size is 32x32. CIFAR-10 has 10 classes of
images, and CIFAR-100 has 100 classes of images. The three datasets contain clean labels. We
corrupted the training data manually according to the instance-dependent noisy label generation
method proposed in Xia et al. (2020). All experiments are repeated five times. CIFAR-10N is a
real-world label-noise version of CIFAR-10. It contains human-annotated noisy labels with five
different types of noise (Worst, Aggregate, Random 1, Random 2, and Random 3). The corresponding
noise rates are 40.21%, 9.03%, 17.23%, 18.12%, and 17.64%. Clothing1M contains 1 million images
with real-world noisy labels, including 50,000, 14,000, and 10,000 images with clean labels for
training, validation, and testing, respectively. We assume that the clean data is unavailable, and
therefore, we do not use the clean data for training and validation.
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Baselines. The baselines used in our experiments for comparison are: 1). CE, training the classifi-
cation network using standard cross-entropy loss on noisy data directly; 2), MentorNet (Jiang et al.,
2018), pretraining a classification network to select reliable examples for the main classification
network; 3), Co-teaching (Han et al., 2018), which uses two classification networks to select reliable
examples for each other; 4), Reweight (Liu & Tao, 2016), estimating a unbiased risk defined on clean
data using noisy data by using importance reweighting method; 5), Forward (Patrini et al., 2017),
which assumes the noise transition is class-dependent, the correct loss function; 6), PTD (Xia et al.,
2020), estimating instance-dependent noisy transition through the parts of instances; 7) CausalNL
Yao et al. (2021), which explores the information in the instances to help the learning of classification
network; 8), CCR (Cheng et al., 2022b) uses forward-backward cycle-consistency regularization
to learn noise transition; 9), MEIDTM (Cheng et al., 2022a), which uses Lipschitz continuity to
constrain the noise transition in the same manifold to be the same; 10), BLTM (Yang et al., 2022),
which learn the noise transition on a part of dataset with Bayes optimal label; 11), DivideMix (Li
et al., 2020), which divides the noisy examples into labeled examples and unlabeled examples, and
train the classification network using semi-supervised technique MixMatch (Berthelot et al., 2019).

Implementation. We implement our algorithm using PyTorch and conduct all our experiments
on RTX 4090. We use a PreAct ResNet-18 (He et al., 2016b) as the classification network for
Fashion-MNIST, CIFAR-10, CIFAR-100, and CIFAR-10N, a ResNet-50 (He et al., 2016a) with
ImageNet pre-trained weight as the classification network for Clothing1M. We use a 4-hidden-layer
convolutional network as the encoder, and the channel sizes of corresponding feature maps are 32, 64,
128, and 256 for Fashion-MNIST, CIFAR-10, CIFAR-100, and CIFAR-10N. We use a 5-hidden-layer
convolutional network as the encoder, and the channel sizes of corresponding feature maps are
32, 64, 128, 256, and 512 for Clothing1M. A 4-hidden-layer transposed-convolutional network as
the instance decoder and the channel size of corresponding feature maps are 256, 128, 64, and
32 for Fashion-MNIST, CIFAR-10, CIFAR-100, and CIFAR-10N. A 5-hidden-layer transposed-
convolutional network as the instance decoder and the channel size of corresponding feature maps are
512, 256, 128, 64, and 32 for Clothing1M. We use a three-layer MLP with the Leak ReLU activation
function as the weight model to infer the weight of causal associations among the causal factors. To
infer the noisy label, a three-layer MLP with the Leak ReLU activation function is used as the noisy
label decoder. The number of causal factors is set to 4 in all our experiments.

4.2 CLASSIFICATION ACCURACY

We conducted extensive experiments on three synthetic noise datasets, i.e., Fashion-MNIST, CIFAR-
10, and CIFAR-100, and two real-world datasets, i.e., CIFAR-10N and Clothing1M. We employed
instance-dependent noisy label generation methods for the synthetic datasets, as proposed by (Xia
et al., 2020). We experimented with noise rates of 0.1, 0.2, 0.3, 0.4, and 0.5, denoted by IDN-0.1,
IDN-0.2, IDN-0.3, IDN-0.4, and IDN-0.5 respectively. The experimental results for synthetic datasets
are presented in Tab. 1, Tab. 2 and Tab. 3. The real-world dataset experiment results are in Tab. 4 and
Tab. 5. Our proposed method outperforms existing methods in terms of test accuracy on both synthetic
and real-world datasets containing label noise. The experiment results demonstrate that the proposed
method can capture the noise transition under different settings and improve the performance of the
classification network.

5 CONCLUSION

Noise transition is important for many label-noise learning algorithms. However, current label-noise
learning methods often can only estimate the noise transitions for some instances. It is crucial to
understand the connection among the noise transitions for different instances to apply these estimated
noise transitions to other instances. Prior work tackled this issue by introducing new assumptions to
define the similarity of noise transitions across different instances. However, whether these predefined
similarities are truthfulness to the underlying connection is unclear. Given only noisy data, the
introduced assumptions are hard to verify. If similarities are not truthful, the estimation error of
the noise transition could be large, leading to performance degeneration for label-noise learning
algorithms. We propose a novel method to build the connection among the noise transitions. The
connection is built by modeling the causal generative process of noisy data. Experiments on both
synthesis and real-world datasets demonstrate the effectiveness of our method.
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Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
5050–5060, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
1cd138d0499a68f4bb72bee04bbec2d7-Abstract.html.

Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and
the statistical query model. J. ACM, 50(4):506–519, 2003. doi: 10.1145/792538.792543. URL
https://doi.org/10.1145/792538.792543.

Johann Brehmer, Pim de Haan, Phillip Lippe, and Taco S. Cohen.
Weakly supervised causal representation learning. In NeurIPS, 2022.
URL http://papers.nips.cc/paper_files/paper/2022/hash/
fa567e2b2c870f8f09a87b6e73370869-Abstract-Conference.html.

De Cheng, Tongliang Liu, Yixiong Ning, Nannan Wang, Bo Han, Gang Niu, Xinbo Gao, and
Masashi Sugiyama. Instance-dependent label-noise learning with manifold-regularized transition
matrix estimation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2022, New Orleans, LA, USA, June 18-24, 2022, pp. 16609–16618. IEEE, 2022a. doi: 10.
1109/CVPR52688.2022.01613. URL https://doi.org/10.1109/CVPR52688.2022.
01613.

De Cheng, Yixiong Ning, Nannan Wang, Xinbo Gao, Heng Yang, Yuxuan Du, Bo Han, and
Tongliang Liu. Class-dependent label-noise learning with cycle-consistency regularization. In
NeurIPS, 2022b. URL http://papers.nips.cc/paper_files/paper/2022/hash/
47f75e809409709c6d226ab5ca0c9703-Abstract-Conference.html.

Arpit Garg, Cuong Nguyen, Rafael Felix, Thanh-Toan Do, and Gustavo Carneiro. Instance-dependent
noisy label learning via graphical modelling. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), pp. 2288–2298, January 2023.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor W. Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels.
In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,
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A DERIVATION OF ELBO

The derivation of ELBO is shown as follows:

E(x,ỹ,y)∼qD [log pθ(x, ỹ|y)] = E(x,ỹ,y)∼qD

[
log

pθ(x, ỹ,z|y)
qφ(z|x, y)

qϕ(z|x, y)
pθ(z|x, ỹ, y)

]
= E(x,ỹ,y)∼qD

[∫
qφ(z|x, y) log

pθ(x, ỹ,z|y)
qφ(z|x, y)

qφ(z|x, y)
pθ(z|x, ỹ, y)

dz

]
= E(x,ỹ,y)∼qD

[∫
qφ(z|x, y) log

pθ(x, ỹ,z|y)
qφ(z|x, y)

dz

+KL(qφ(z|x, y)||pθ(z|x, ỹ, y))]

≥ E(x,ỹ,y)∼qD

[∫
qφ(z|x, y) log

pθ(x, ỹ,z|y)
qφ(z|x, y)

dz

]
.

ELBO = E(x,ỹ,y)∼qD

[∫
qφ(z|x, y) log

pθ(x, ỹ,z|y)
qφ(z|x, y)

dz

]
= E(x,ỹ,y)∼qD

[∫
qφ(z|x, y) log

pf (x, ỹ|z, y)pfW ,β(z|y)
qφ(z|x, y)

dz

]
= E(x,ỹ,y)∼qD

[∫
qφ(z|x, y) log pf (x, ỹ|z, y)dz +

∫
qφ(z|x, y)

pfW ,β(z|y)
qφ(z|x, y)

dz

]
= E(x,ỹ,y)∼qD

[
Ez∼qφ [log pf (x, ỹ|z, y)]−KL(qφ(z|x, y)||pfW ,β(z|y))

]
B IMPLEMENTATION DETAILS

Distributions modeling We provide the distribution modeling details here, including the distri-
bution of latent noise factors, the prior distribution of causal factors, and the inferred posterior
distribution of causal factors.

We assume the distribution of Ni is Gaussian, which also is modulated by the auxiliary variable Y .

Ni ∼ N (βi,1(Y ), βi,2(Y )), (12)

where βi,1 and βi,2 are the mean and variance of noise term Ni, respectively.

Since the distribution of noise variable Ni is Gaussian distribution modulated by the auxiliary
variable Y , the causal weights are also modulated by the auxiliary variable Y . Then, the conditional
probability distribution p(Z|Y ) is a multivariate Gaussian distribution:

pfW ,β(Z|Y ) = N (µ,Σ), (13)
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where µ is the mean, Σ is the covariance matrix.

The value of µi and Σi for a causal factor Zi can be computed using following formulas:

µi =
∑
j∈pai

fW i,j(Y )µj + βi,1(Y ), (14)

Σi,i =
∑
j∈pai

fW
2
i,j(Y )Σj,j + βi,2(Y ), (15)

Σi,j =
∑
k∈pai

fW k,j(Y )Σj,k, for i ̸= j, (16)

where pai represents the parents of the causal factor Zi.

The associations among the causal factors can be represented by a fully connected DAG, which can
be represented by an upper triangular matrix with zero-value diagonal elements. The weights of the
associations among the causal factors can be generated through the learnable MLP M(Y ). The Eq.
13 can be reformulated as

pfW ,β(Z|Y ) = pfW ,β(Z1|Y )

m∏
i=2

pfW ,β(Zi|Z<i, Y ) =

m∏
i=1

N (µZi , σ
2
Zi), (17)

where µZi =
∑
j<iWj,i(Y )Zj + βi,1(Y ), σ2

Zi
= βi,2(Y ), m is the number of causal factors.

The corresponding inference model qφ(Z|X, Y ) can be expressed as

qφ(Z|X, Y ) = qφ(Z1|Y )

m∏
i=2

qφ(Zi|Z<i, Y ) =

m∏
i=1

N (µ′
Zi , σ

′2
Zi), (18)

where µ′
Zi

=
∑
j<iW

′
j,i(Y )Zj + β′

i,1(Y ), σ′2
Zi = β′

i,2(Y ).

Select examples via Co-Training manner To prevent selection bias, we use two classification
networks to select clean examples for each other. Correspondingly, we have two encoders, two
instance decoders, two noisy label decoders, and two weight models.

First, two classification networks are used to output the clean labels:

Y1 = q̂1ψ(X), Y2 = q̂2ψ(X).

Then, we have two encoder networks to infer the causal factors based on the instances and clean
labels:

Z1 ∼ q1φ(X, Y1),Z2 ∼ q2φ(X, Y2).

We also have four decoder networks to reconstruct instances and noisy labels based on the inferred
causal factors:

X1 = p1fX
(Z1),X2 = p2fX

(Z2),

Ỹ 1 = p1fỸ
(Z1), Ỹ

2 = p2fỸ
(Z2).

The algorithm of the proposed method is shown in Alg. 1.
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Algorithm 1 GenP

Input: A noisy dataset D̃, Total epoch Tmax .
1: q1ψ(Y |X), q2ψ(Y |X)←WarmUP(D̃);
2: For T = 1, . . . , Tmax:
3: SX ,SU ← Selection(D̃, q1ψ, q2ψ);
4: S ′X ,S ′U ← MixUp(SX,SU);
5: For k=1, 2:
6: Sample (x, ỹ) ∼ D̃;
7: Sample ŷ ∼ qkψ(x) via gumbel softmax;
8: Sample z ∼ qkϕ(x, ŷ);
9: Feed ŷ to the encoder pkfW ,β to get the prior pkfW ,β(Z|Y = ŷ);

10: x̂← pkfX
(z);

11: ˆ̃y ← pkfỸ
(z);

12: Calculate the loss using Eq. 11 and update networks;
Output: The classification networks q1ψ(·), q2ψ(·).

Optimization. For experiments on Fashion-MNIST, CIFAR-10, CIFAR-100, and CIFAR-10N, we
employed SGD with a momentum of 0.9 and a weight decay of 0.0005 to optimize the classification
network. We used Adam with default parameters to optimize the encoder, weight model, instance
decoder, and noisy label decoder. Our network was trained for 300 epochs with a batch size of 64.
The initial learning rate for SGD was set at 0.02 and for Adam at 0.001. Both learning rates were
reduced by a factor of 10 after 150 epochs. For experiments on Clothing1M, we employed SGD with
a momentum of 0.9 and a weight decay of 0.001 to optimize the classification network. We used
Adam with default parameters to optimize the encoder, weight model, instance decoder, and noisy
label decoder. Our network was trained for 80 epochs with a batch size of 32. The initial learning
rate for SGD was set at 0.002 and for Adam at 0.001. Both learning rates were reduced by a factor of
10 after 40 epochs.

C IDENTIFIABILITY ANALYSIS

The generative process can be defined as:

pf (X, Ỹ |Z) = pfX
(X|MX ⊙Z)pfỸ

(Ỹ |MỸ ⊙Z)

= pεX
(X − p̂fX

(Z))pεỸ (Ỹ − p̂fỸ
(Z)), (19)

which means that the value of X and Ỹ can be decomposed as X = p̂fX
(Z) + εX , Ỹ = p̂fỸ

(Z) +
εỸ , where εX and εỸ are independent noises variable with probability density function pεX

(εX)
and pεỸ (εỸ ).

Intuitively, the instances are generated by a subset of causal factors, and the noisy labels are generated
by another subset of causal factors. When both the mixing functions p̂fX

(·) and p̂fỸ
(·) are bijective,

and the union of two subsets contains all causal factors, the function p̂f used to generate X and Ỹ is
bijective.

The distribution of latent noise factors and causal factors can be reformulated to the exponential family,
with the corresponding parameter ηN (Y ) and ηZ(Y ) respectively. Let m denote the dimension of
the sufficient statistics for the latent noise variables; m also is the number of causal factors. Let k
denote the dimension of the sufficient statistics for the causal factors. Under the setting of this paper,
pfW ,β(Z|Y ) is Gaussian, we have k = m + (m(m + 1))/2. In our model, the number of causal
factors is 4, thus k = 14. If we further assume βi,2(Y ) = 1, we have k = (m(m + 1))/2. In our
model, the number of causal factors is 4, thus k = 10 here. Then, we have the following theorem.
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Theorem 1. (Liu et al., 2022b) Suppose latent causal factors Z and the observed variables Y, Ỹ
follow the generative model defined in Eq. 9 with parameters (f ,fW ,β). Assume the following
holds:

(i) The set {x ∈ X |φε(x)} has measure zero, where is the characteristic function of the density
pε.

(ii) The function p̂f is bijective.

(iii) There exist 2m+ 1 distinct points yN 0,yN 1, . . . ,yN 2m, such that the matrix
LN = (ηN (Y = yN 1)− ηN (Y = yN 0), . . . ,ηn(Y = yN 2m)− ηN (Y = yN 0))

(20)
of size 2m× 2m is invertible.

(iv) There exist k + 1 distinct points yZ0,yZ1, . . . ,yZk, such that the matrix
LZ = (ηZ(Y = yZ1)− ηZ(Y = yZ0), . . . ,ηZ(Y = yZk)− ηz(Y = yZ0)) (21)

of size k × k is invertible.

(v) The function class of fW (·)i,j can be expressed by a Taylor series: for each fW (·)i,j ,
fW (0)i,j = 0.

then the true latent causal variables Z are related to the estimated latent causal variables Ẑ by
the following relationship: Z = PẐ + c, where P denotes the permutation matrix with scaling, c
denotes a constant vector.

The theorem guarantees that the causal factors can be identifiable up to permutation and scaling under
some mild assumptions. The Assumption (iii) requires 2m+ 1 distinct classes, and the Assumption
(iv) requires k + 1 distinct classes. But it does not mean that we must have 2m+ 1 + k + 1 distinct
classes. The k + 1 distinct classes that satisfy the Assumption (iv) could contain the 2m+ 1 distinct
classes that satisfy the Assumption (iii). Ideally, we may only need k + 1 distinct classes to achieve
identifiability. The supervision information in our work is from the labels in confident examples.
Thus, the confident examples have to contain the data points to satisfy these conditions, i.e., . When
the number of causal factors is 4, it needs 15 distinct classes, i.e., the class number is at least 15. If
we further assume βi,2(Y ) = 1, it only needs 11 distinct classes.

In summary, when the number of distinct classes is larger than the sufficient statistics of the latent
variable Z, and the confident examples at least contain an example of each class. Then the variable Z
could be identified.

D DIFFERENCES FROM PREVIOUS WORK

Previous research on learning with noisy labels has incorporated generative models (Yao et al., 2021;
Garg et al., 2023). However, our approach distinguishes itself from these earlier methods.

Previous work helps the learning of classifiers by exploiting the information contained in the dis-
tribution of instances. To be specific, when the latent clean label Y is a cause of the instance X,
the distribution of instance p(X) will generally contain some information about the distribution of
clean class posterior p(Y |X). To exploit the information contained in the instances, CausalNL and
InstanceGM use the generative model to model the generative relationship between the latent variable
Z and the observed instance X. However, they do not model the causal structure among the latent
variable Z. Therefore, their methods only “partially” model the noisy data generative process. These
methods do not analyze the identifiability of the generative process.

Our aim is to enable deep neural networks to capture the connections of noise transitions among
different instances automatically. Since once the connections are captured, the noise transition learned
in some examples can be generalized to other examples. To achieve this, we need to model the joint
distribution of all variables p(X, Ỹ , Y,Z,N). The noise transition can be obtained through

p(Ỹ |X, Y ) =

∫
Z,N

p(X, Ỹ , Y,Z,N)dZdN∫
Ỹ ,Z,N

p(X, Ỹ , Y,Z,N)dỸ dZdN
.
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Figure 4: Illustration of the test accuracy on CIFAR-10N with noise type “worst”. The error bar for standard
deviation has been shaded.

Table 6: The comparison of noise transition estimation error on CIFAR-10.

CIFAR-10

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

BLTM 0.275 ± 0.022 0.339 ± 0.020 0.467 ± 0.008 0.670 ± 0.106 0.816 ± 0.056
MEIDTM 0.240 ± 0.002 0.374 ± 0.001 0.563 ± 0.001 0.775 ± 0.002 0.985 ± 0.001
VolMinNet 0.477 ± 0.005 0.590 ± 0.000 0.680 ± 0.000 0.720 ± 0.000 0.783 ± 0.005

GenP 0.224 ± 0.005 0.302 ± 0.016 0.374 ± 0.008 0.434 ± 0.021 0.548 ± 0.041

To obtain this joint distribution, we propose a principled way to model the whole data generative pro-
cess. Specifically, we not only model the generative process from the latent variable Z to the instance
X but also model and learn causal structure among different latent variables {Z1, Z2, . . . , Zm} from
observed noisy data.

E HYPER-PARAMETER SENSITIVITY

We analyze the sensitivity regarding hyperparameters (λELBO and λM ) of the model on the CIFAR-
10N dataset, and the noise type is “worst”. The experiment results are shown in Fig. 4. The
hyperparameters λELBO and λM are set as 0.01.

F NOISE TRANSITION ESTIMATION ERROR

We conduct experiments on the dataset CIFAR-10 to calculate the noise transition estimation error.
The labels are corrupted manually using the instance-dependent noisy label generation method
proposed in Xia et al. (2020). The noise rates are from 0.1 to 0.5. The baselines used to compare
the noise transition estimation error are BLTM (Yang et al., 2022), MEIDTM (Cheng et al., 2022a)
and VolMinNet (Li et al., 2021). The experiment results are shown in Tab. 6. The experiment results
indicate that the proposed method outperforms these baselines in estimating noise transition.

G COMPARISON OF THE NOISE TRANSITION

We use t-SNE visualization to compare the noise transition inferred by our method with those derived
from the MEIDTM (Cheng et al., 2022a). We also select 30 pairs of data points with the same
predicted clean labels. The dataset is CIFAR-10 with instance-dependent label noise, and the noise
rate is 50%. The experiment results are shown in Fig. 5. These data points are the same in two figures.
We can see that the distance between the same pair is different in the two images. For example, the
pairs with number 21 are close to each other in the first figure but are further apart in the second figure.
This can verify that the similarity inferred by our method is different from the instance-dependent
transition matrix-based method MEIDTM.
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Table 7: Means and standard deviations (percentage) of classification accuracy on CIFAR-10N.

CIFAR-10N

Worst Aggregate Random 1 Random 2 Random 3

GenP (alternative) 93.72 ± 0.07 95.21 ± 0.19 95.14 ± 0.12 95.28 ± 0.09 94.99 ± 0.15

GenP (end-to-end) 93.87 ± 0.13 95.39 ± 0.18 95.38 ± 0.13 95.30 ± 0.12 95.26 ± 0.13

Table 8: Means and standard deviations (percentage) of classification accuracy on CIFAR-10N.

CIFAR-10N

Worst Aggregate Random 1 Random 2 Random 3

CE on the selected dataset 92.13 ± 0.05 91.64 ± 0.03 90.94 ± 0.07 90.06 ± 0.04 89.10 ± 0.25

GenP 93.87 ± 0.13 95.39 ± 0.18 95.38 ± 0.13 95.30 ± 0.12 95.26 ± 0.13

H ABLATION STUDY

Comparison between end-to-end learning and alternative learning approaches We conduct
the experiments of the alternative learning approach, which optimizes Lsemi and −λELBOELBO +
λM (∥MX∥1+ ∥MỸ ∥1) alternatively. The dataset is CIFAR-10N. The experiment results are shown
in Tab. 7. Empirically, the performance of the end-to-end learning approach is better than the
alternative learning approach.

Ablation study based on the number of latent variables We conduct the ablation study based
on the number of latent variables on the CIFAR-10N dataset, and the noise type is “worst”. The
experiment results are shown in Fig. 6. In our experiment, the number of latent variables is set as 4.

I THE DISTRIBUTION OF SELECTED EXAMPLES

We manually select all the examples with correct labels on the noisy dataset. These examples can be
viewed as a perfectly selected dataset.

To explore the difference between the distribution of selected examples and the distribution of
examples in the clean domain, we first use t-SNE to visualize the selected examples. The selected
examples are plotted in red, and other examples in the dataset are plotted in gray. The dataset is
CIFAR-10 with instance-dependent label noise, and the noise rate is 0.5. The visualized result is
shown in Fig. 7. As shown in the Fig. 7, the distribution of the selected dataset is different from the
whole dataset.

We then train a classifier on the selected examples with standard cross-entropy loss. The noise rates
are 0.1, 0.2, 0.3, 0.4, and 0.5. The experiment results are shown in Tab. 8. The experiment results
show that the performance of the method using standard cross entropy loss on the selected examples
is lower than our method, even if the classifier is trained on a perfect elected dataset.

J RECONSTRUCTED IMAGE VISUALIZATION

We visualize the reconstructed images from our model trained on the FashionMNIST dataset with a
noise rate of 0.5. Due to time constraints, the training epoch is 30, whereas the training epoch is 300
in other experiments. The visualization results are shown in Fig. 8. The images are arranged in a
comparative format: the first and third columns display the original images, while the second and
fourth columns show the corresponding reconstructed images by the proposed model, alternating
in this pattern throughout the display. The experiment results demonstrate that the model can
successfully reconstruct images.
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Figure 5: The t-SNE visualization of the similarity of the learned noise transition. The pairs of data points
with the same predicted clean label are marked with the same number. The distances between two data points
represent the difference between the two noise transitions of these data points. The distance between the pair
with the same number is different in the two images.
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Figure 6: The ablation study based on the number of latent variables.

Figure 7: The t-SNE visualization of the selected examples.
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Figure 8: The visualization of the reconstructed images.

22


	1 Introduction
	2 Related Work
	3 Learning the Latent Noisy Data Generative Process
	3.1 Clean Examples Selection
	3.2 Data Generative Process Modeling

	4 Experiments
	4.1 Experiment Setup
	4.2 Classification accuracy

	5 Conclusion
	A Derivation of ELBO
	B Implementation details
	C Identifiability Analysis
	D Differences from Previous Work
	E Hyper-parameter Sensitivity
	F Noise Transition Estimation Error
	G Comparison of the Noise Transition
	H Ablation Study
	I The Distribution of Selected Examples
	J Reconstructed Image Visualization

