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Abstract

In real-world information-seeking scenarios, users have dynamic and diverse needs,
requiring RAG systems to demonstrate adaptable resilience. To comprehensively
evaluate the resilience of current RAG methods, we introduce HawkBench, a
human-labeled, multi-domain benchmark designed to rigorously assess RAG per-
formance across categorized task types. By stratifying tasks based on information-
seeking behaviors, HawkBench provides a systematic evaluation of how well RAG
systems adapt to diverse user needs. Unlike existing benchmarks, which focus
primarily on specific task types (mostly factoid queries) and rely on varying knowl-
edge bases, HawkBench offers: (1) systematic task stratification to cover a broad
range of query types, including both factoid and rationale queries, (2) integration of
multi-domain corpora across all task types to mitigate corpus bias, and (3) rigorous
annotation for high-quality evaluation. HawkBench includes 1,600 high-quality
test samples, evenly distributed across domains and task types. Using this bench-
mark, we evaluate representative RAG methods, analyzing their performance in
terms of answer quality and response latency. Our findings highlight the need for
dynamic task strategies that integrate decision-making, query interpretation, and
global knowledge understanding to improve RAG generalizability. We believe
HawkBench serves as a pivotal benchmark for advancing the resilience of RAG
methods and their ability to achieve general-purpose information seeking. We host
our codes and data in this repository.

1 Introduction

Large Language Models (LLMs) excel in general reasoning and knowledge-based tasks but often
struggle with timeliness and knowledge coverage gaps, particularly in specialized domains and
user-specific data [OpenAI, 2023, DeepSeek-AI, 2024]. To address these limitations, incorporating
external knowledge has become a common approach, with Retrieval-Augmented Generation (RAG)
emerging as an effective solution to enhance factual accuracy and adaptability [Zhu et al., 2024].

During the information-seeking process using RAG, users may have a wide range of information
needs, from simple factoid retrieval to more complex rationale-based queries [Qian et al., 2025,
Zhao et al., 2024a]. This versatility requires RAG systems to possess diverse capabilities, including
accurate referencing and advanced reasoning skills.
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Recent advancements in RAG methods have enhanced vanilla RAG systems by targeting specific
advanced capabilities. For instance, some methods focus on improving multi-hop reasoning to handle
tasks with implicit information intents [Zhao et al., 2024b, Xu et al., 2024], while others address
information aggregation tasks by constructing intermediate structures, such as graphs or memory
modules, to better integrate relevant information [Qian et al., 2025, Edge et al., 2024].

While these advancements enable RAG systems to effectively leverage external knowledge for
specific tasks, their ability to generalize across diverse scenarios remains uncertain. A recent survey
categorizes external knowledge-based tasks into distinct levels, emphasizing that no single method
can effectively address all query types [Zhao et al., 2024a]. This suggests that current RAG methods
lack the resilience required for general-purpose information-seeking tasks, highlighting the need for a
systematic evaluation of RAG methods across a broad range of information-seeking tasks, examining
the resilience of these methods when faced with information-seeking tasks in any form.

Existing public benchmarks for RAG evaluation focus narrowly on isolated dimensions of information-
seeking tasks. For instance, LegalBench-RAG evaluates information-seeking tasks in the legal
domain [Guha et al., 2023], MutiHop-RAG tests multi-hop reasoning [Tang and Yang, 2024], and
CRAG emphasizes comprehensive evaluation on factual QA tasks [Yang et al., 2024]. While these
benchmarks excel in their targeted domains, they collectively fail to assess the resilience of RAG
methods across stratified task types due to three critical limitations:

First, fragmented evaluation protocols. Current benchmarks are siloed by design, each priori-
tizing distinct query types. This specialization creates inconsistent evaluation criteria, hindering
fair comparisons of RAG performance across diverse task categories. Second, domain bias and
knowledge leakage. Many benchmarks rely on heterogeneous knowledge bases (e.g., Wikipedia and
web snippets), leading to corpus-dependent performance gaps that obscure true method capabilities.
Worse, LLMs are often pretrained on these same sources (e.g., Wikipedia), inflating benchmark
scores through memorization rather than genuine retrieval-augmented reasoning. Third, limited
query diversity. Most benchmarks disproportionately emphasize factoid questions (e.g., "When
was Einstein born?"), neglecting rationale-based queries (e.g., "Explain how relativity revolutionized
physics") that require synthesis and contextual analysis. This narrow focus misaligns with real-world
user needs, where information-seeking behaviors span both factual lookup and complex reasoning.

HawkBench is characterized by the following key features:

Domain Thoroughness – We curate raw texts from a diverse range of sources—including profes-
sional textbooks, academic papers, financial reports, legal contracts, and novels—to ensure that the
benchmark reflects real-world information needs. This broad selection captures both general and
specialized knowledge, offering a robust foundation for evaluation.

Systematic Task Stratification – We systematically define four query types: (1) explicit factoid
queries, (2) implicit factoid queries, (3) explicit rationale queries, and (4) implicit rationale queries.
This stratification, inspired by Zhao et al. [2024a] with refined modifications, ensures comprehensive
task coverage. Importantly, all query types share the same underlying knowledge distribution,
allowing for direct and fair performance comparisons across different tasks.

Rigorous Annotation Quality – HawkBench employs a hybrid annotation process that leverages
both advanced LLMs—specifically GPT-4 and DeepSeek-V3—and human oversight. Initially, LLMs
generate query-answer pairs from the curated texts. Expert annotators then evaluate these pairs against
predefined stratification levels, refine the answers by correcting inaccuracies, and enhance clarity.
This process results in a high-quality dataset of 1,600 annotated test samples, evenly distributed
across all task types.

We further validate HawkBench by applying representative RAG methods and performing a com-
prehensive analysis of their performance in terms of both answer quality and response latency. Our
empirical results reveal that while current RAG methods excel in specific tasks, they generally lack
overall resilience. Enhancing their adaptability will require dynamic task strategies that integrate
decision-making, query interpretation, and a holistic understanding of global knowledge.

Our contributions are as follows: (1) We introduce HawkBench, a high-quality benchmark with strati-
fied tasks designed to assess the resilience of RAG methods for general-purpose information-seeking.
(2) We conduct a comprehensive empirical evaluation of recent RAG methods on HawkBench,
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Figure 1: Query Stratification of HAWKBENCH. To account for referencing difficulty, we categorize
tasks into queries with explicit intent and implicit intent. Regarding reasoning, tasks are categorized
into factoid queries and rationale queries. By combining these two categorizations, we stratify
information-seeking tasks into four levels.

enabling a side-by-side comparison of their capabilities. (3) We propose insights and strategies to
improve the generalizability and adaptability of current RAG methods.

2 HawkBench

2.1 Preliminary

Recent advancements in large language models (LLMs) have popularized the Retrieval-Augmented
Generation (RAG) approach, which leverages external knowledge to perform specific tasks. In RAG,
a generation model θ(·) and a retrieval model γ(·) collaborate to produce a final response Y . Formally,
the process is expressed as:

Y = θ(q,Z), Z = γ(q,X ), (1)

where q denotes the input query, X represents the external knowledge base, Z is the retrieved relevant
information, and Y is the generated answer.

This RAG framework can be viewed as an information-refinement process following the Markov
chain: X → Z → Y. As information passes through each stage, it is progressively distilled, leading
to the inequality I(X ,Z) ≥ I(Y,Z), where I(·) denotes mutual information. Ideally, the retrieval
step should extract a Z that is both sufficient—containing all the information necessary to generate
Y—and minimal—excluding irrelevant details from X . In fact, the condition I(X ,Z) = I(Y,Z)
would hold if and only if an optimal retrieval output Z∗ exists that perfectly balances these two
criteria. Achieving such an optimal Z∗ is challenging due to estimation biases in both the retrieval
and generation processes. To better understand these challenges, it is essential to consider two
interrelated dimensions:

Referencing The retrieval process must determine not only which pieces of information in X are
relevant to the query q but also how much information is required. The referencing is straightforward
when q explicitly states its intent, as the semantic connections between q and the relevant content
in X are easier to measure. However, for implicit queries—where the intent is not clearly stated—
identifying the necessary evidence becomes more complex. Thus, the referencing dimension measures
how to access the relevant knowledge, capturing both the volume of information needed and its
accessibility within the knowledge base.

Reasoning Once the retrieval model produces Z , the generation model must process and integrate
this information to formulate the final answer Y . For factoid queries, the retrieved information
typically aligns closely with the required answer, meaning that the reasoning effort is relatively
minimal. In contrast, when the query demands a rationale—requiring the synthesis and integration
of multiple pieces of information—the generation process must engage in more complex in-context
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reasoning. Therefore, the reasoning dimension measures how to utilize the relevant knowledge,
reflecting the cognitive effort needed to bridge the gap between the retrieved data and the final,
coherent response.

To systematically analyze the difficulty of information-seeking tasks within the RAG framework,
we decompose queries along these two dimensions. As shown in Figure 1 (left), we categorize
tasks based on: Referencing: Whether the query explicitly or implicitly conveys its intent, thereby
affecting the ease with which relevant information can be identified. Reasoning: Whether the
task involves straightforward fact extraction or requires integrating information to form a reasoned
response. By combining these dimensions, we define four levels of information-seeking tasks, each
posing unique challenges to the RAG pipeline, as outlined in the next section.

2.2 Query Stratification

In Figure 1 (middle), we illustrate our query stratification, presenting the four query types below.

Level 1: Explicit Factoid Query Level 1 queries exhibit an explicitly stated information-seeking
intent and typically require minimal reasoning. The answer is directly available in the retrieved text.
For instance, the query

“What is OpenAI’s most recent AI model?”

clearly specifies its intent, allowing the retrieval system to easily locate the pertinent information.
The generator can then extract the final answer with little or no additional reasoning.

Level 2: Implicit Factoid Query Level 2 queries present an implicit information-seeking intent,
which necessitates an extra step to resolve the reference before the answer can be extracted. Consider
the query

“Has the company that proposed MLA made any recent advancements?”

The query does not directly name the company. The system must first infer that “the company that
proposed MLA” refers to, for example, DeepSeek. Once this implicit reference is established, the
relevant knowledge can be retrieved, and the answer can be extracted with minimal reasoning. Thus,
Level 2 queries require additional referencing effort compared to Level 1, while the reasoning for
answer extraction remains straightforward.

Level 3: Explicit Rationale Query In Level 3 queries, the intent is explicitly stated, but there
exists a semantic gap between the query and the relevant information. Although the query clearly
indicates what is being asked, the final answer is not directly extractable from a single text fragment
and requires synthesizing information from multiple sources. For example, the query

“How do recent techniques enhance the long-context processing capabilities of LLMs?”

explicitly requests an explanation. However, the necessary rationale is dispersed across several texts.
This scenario demands a more complex retrieval process, possibly aided by structured representations
(e.g., graphs), and a generator capable of synthesizing the information into a coherent answer.

Level 4: Implicit Rationale Query Level 4 queries pose the highest challenge as they involve both
an implicit intent and the need to generate a global explanation. For example, the query

“How have recent LLM techniques impacted the NLP community?”

requires the system to first infer the underlying intent and then integrate diverse pieces of information
across the entire knowledge base to form a comprehensive explanation. This task demands extensive
referencing to identify loosely connected yet relevant content and significant reasoning to synthesize
a unified, high-level response.

2.3 Comparison of the Four Query Levels

In Figure 1 (right), we compare the four query levels across two aspects: Reference and Reasoning.
First, in terms of Reference, the amount of relevant knowledge required increases from Level 1
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to Level 4 queries, reflected in the mutual information between the knowledge base and retrieved
knowledge, I(X ,Z). Level 1 queries require minimal knowledge, as answers are directly extractable
from a few text chunks. In contrast, higher-level queries, such as Level 3 and Level 4, require
synthesizing information from a broader range of texts. Second, in terms of Reasoning, complexity
increases across levels due to the growing semantic gap between retrieved knowledge and the final
answer. For Level 1 queries, reasoning is minimal, but for Level 3 and Level 4 queries, more
reasoning is needed to connect multiple, loosely connected pieces of information. This is reflected in
the decreasing mutual information I(Z,Y) as redundant information is filtered out during refinement.

These varying requirements for referencing and reasoning present significant challenges for current
RAG systems, which struggle to adapt to the diversity of information-seeking tasks. There is no
one-size-fits-all solution, as each task demands distinct capabilities. This underscores the necessity of
benchmarking current RAG methods across a broad range of tasks to better assess their resilience.

2.4 Construction

Corpus Collection While most current LLMs are proficient in general world knowledge due to their
training on large-scale corpora, they often lack coverage in specialized, domain-specific areas. To
address this gap, HawkBench incorporates 229 domain-specific texts into its knowledge base. These
texts are carefully selected from a larger collection of long texts gathered across diverse domains,
which can also serve as a global corpus for retrieval. The selected 229 contexts span a wide range
of domains, including professional textbooks (manually labeled into categories such as technology,
humanities, art, and science), financial reports, legal contracts, novels, and academic papers. This
diverse and comprehensive collection ensures that HawkBench can thoroughly evaluate the domain
resilience of RAG methods by covering a broad range of user information needs.

Annotation Process The annotation process for constructing HawkBench follows a systematic
approach, as illustrated in Figure 6. The process consists of three key steps:

(1) Configuration: The annotator selects the target query level and domain, with assistance from a
strong LLM (GPT-4o and DeepSeek-v3).

(2) Question-Answer Pair Generation: The system prompts the LLM agent using built-in QA
generation prompts to produce initial question-answer pairs. During this step, the system first samples
from the knowledge base, selecting a random text span of varying lengths based on the task type.
For Level-1 tasks, approximately 1K tokens are used as the context. For Level-2 tasks, we use a
retrieval system retrieves the top-10 passages based on the generated L1 query, selecting five passages
to prompt the agent to transform explicit factoid queries into implicit intent queries. For Level-3
and Level-4 tasks, up to 120K tokens are sampled as the knowledge context to guide the agent in
generating information aggregation queries, with different prompts controlling the process. The codes
for annotation system and all built-in prompts are in this repository.

L Discard % Edit % Ave. Time Total Time

1 6.7% 3.5% 26s 4.5h
2 28.1% 41.4% 71s 23.1h
3 25.2% 47.9% 183s 41.5h
4 29.1% 40.6% 201s 45.2h

Figure 2: Statistical Details of Construction.

(3) Quality Control: The annotator reviews
the generated question to ensure it aligns with
the target task type’s definition. If the question
is unsuitable, it is discarded. If the question
is valid, the annotator evaluates the generated
answer for clarity, conciseness, and semantic
richness. The answer is then manually edited to
ensure high quality.

We employed three PhD students proficient in English as annotators. As shown in Table 2, the
difficulty of annotating different task types varies significantly. For Level-1 tasks, most generated
QA pairs are valid with only minor edits needed, making this task relatively quick. In contrast, for
Levels 2–4, the generated QA pairs are often invalid and discarded, and the quality of the answers
generally requires more extensive manual editing. This process results in longer annotation times for
higher-level tasks. The total annotation time includes both system latency (primarily due to QA pair
generation) and manual annotation work. The three annotators dedicated approximately one week of
full-time work to constructing HawkBench, each receiving a salary of around $1,000. Additionally,
constructing HawkBench incurred around $597 in GPT-4o usage and $278 in DeepSeek-v3 usage.
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Dataset Distribution Table 3 presents the statistical details of HawkBench. The dataset contains
1,600 test samples, derived from 229 context knowledge bases. The compressed file size of Hawk-
Bench is only 26MB, making it highly portable for distribution. We have thoroughly reviewed the
licenses of all source texts to ensure that they permit redistribution. HawkBench is distributed under
the Apache License 2.0.

3 Experiment

3.1 Baselines and Metrics

To investigate the resilience of RAG methods on HawkBench, we select the following representative
baseline methods: Vanilla RAG: This method retrieves the top passages as context. Enhanced RAG
Methods: HyDE [Gao et al., 2023] generates a hypothetical document to enhance query retrieval.
RQRAG [Chan et al., 2024] rewrites the input query into sub-queries to refine retrieval. Global RAG:
These methods index the knowledge base into an intermediate form to enhance global awareness. This
includes memory-based methods such as MemoRAG [Qian et al., 2025] and graph-based methods
like GraphRAG [Edge et al., 2024].

Additionally, we explore the application of long LLMs in HawkBench, including vanilla LLMs, the
prompt compression method Lingua-2 [Pan et al., 2024], and long-context acceleration methods such
as MInference [Jiang et al., 2024]. All baselines in the main experiments use Qwen2.5-7B-instruct as
the generator [Team, 2025], with BGE-M3 as the retriever [Chen et al., 2023] and the top-k set to 5
for all RAG methods.

For Level 1 and Level 2 tasks, which focus on factoid queries, we use Rouge-L and lexical F1-score
as evaluation metrics. These metrics emphasize surface-form lexical overlap and are well suited for
evaluating fact-based answers.

For Level 3 and Level 4 tasks, which involve rationale queries, we introduce a new evaluation metric,
denoted as S-F1, to robustly assess sentence-level semantic equivalence between the ground-truth and
predicted answers. Specifically, let A∗ denote the ground-truth answer and A the predicted answer.
We tokenize both A and A∗ into sentences {si} and {s∗i }, respectively. Then, S-F1 is defined as:

S-F1(A,A∗) =
1

2n

n∑
i=1

1{LLM(si,A∗)=True} +
1

2m

m∑
i=1

1{LLM(s∗i ,A)=True}, (2)

where 1condition is an indicator function that returns 1 if the condition holds and 0 otherwise, n is the
number of sentences in A, and m is the number of sentences in A∗.

Intuitively, S-F1 computes the average of: (1) Precision: the proportion of sentences in the predicted
answer si ∈ A that are judged by a strong LLM to be semantically supported by the ground-truth
answer A∗. (2) Recall: the proportion of sentences in the ground-truth answer s∗i ∈ A∗ that are
judged to be semantically supported by the predicted answer A.

Here, “supported by” means that for a given sentence, the LLM judge determines whether its meaning
or rationale is present, possibly rephrased but semantically equivalent, in the other answer. More
concretely, we apply the following process: (1) Each predicted answer is split into sentences. For
each si ∈ A, the LLM judge is prompted to return a binary decision (0/1) indicating whether the
content of si is covered by A∗. (2) Each ground-truth answer is similarly split into sentences, and for
each s∗i ∈ A∗, we query whether its rationale is reflected in A.

Compared to lexical F1-score, S-F1 moves beyond surface-form matching and directly evaluates
sentence-level semantic alignment between A and A∗, making it a more robust metric for rationale-
based tasks where lexical overlap alone cannot capture equivalence. For completeness, we also report
Rouge-L scores alongside S-F1 when evaluating Level 3 and Level 4 tasks.

3.2 Main Results

We conduct comprehensive experiments across all baselines, with the full results presented in Table 5.
To provide a more detailed analysis, we examine the results from multiple perspectives, offering a
deeper understanding of performance across different dimensions.

6



Table 1: Evaluation performance across four levels, averaged over all domains. The best scores are
highlighted in bold, and the second-best scores are underlined.

Method Type LEVEL-1 LEVEL-2 LEVEL-3 LEVEL-4
Rouge-L F1 Rouge-L F1 Rouge-L S-F1 Rouge-L S-F1

LLM Long LLM 13.0 12.9 12.9 11.5 26.2 24.0 16.9 33.2
Lingua-2 Compression 11.4 11.4 12.2 11.4 23.7 23.9 15.4 25.2
MInference Accelerating 11.5 11.1 12.6 11.2 25.6 24.2 17.1 33.3

RAG Standard RAG 50.9 57.5 34.0 38.6 17.9 27.3 15.3 18.3
HyDE Enhanced RAG 64.4 73.5 40.0 44.5 19.4 28.0 15.6 18.4
RQRAG Enhanced RAG 64.2 73.6 41.1 46.8 19.7 28.6 15.4 17.4
MemoRAG Global RAG 44.8 50.2 33.7 37.3 27.3 34.1 19.0 35.0
GraphRAG Global RAG 49.3 57.4 34.0 37.0 25.3 32.5 20.6 28.7

Level 1
Technology Novel Art Humanities Paper Science Finance Legal

Top-5 66.2 55.1 54 28.8 64 57.1 83.9 50.9

Top-10 74.4 70.7 72.2 69.4 62.1 65.4 80.9 75

Top-50 12.7 35.9 29.3 16.4 28 23.3 44.2 37.1

LLM 6.8 6.1 6.9 5.8 20.4 9.1 24.8 23.3

Lingua-2 3.5 3 9.1 2.1 7.4 6.2 28.2 31.4

MInference 7.1 5.1 7.1 5.1 13.9 7.7 23.2 19.7

HyDE 78.2 69.4 71.4 72.9 66.7 67.5 82.1 79.5

RQRAG 78.2 68.3 74.2 70.7 67.6 66.4 83.9 79.2

MemoRAG 51.4 34.9 46 55 35.1 44.6 68.2 66.5

GraphRAG 66.8 58 55.9 57 34.9 58.5 72.7 55.3

Technology
Novel
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ties
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Science

Fi
na

nc
e
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al

0
22
44
66
88

Level 2
Technology Novel Art Humanities Paper Science Finance Legal

Top-5 41.7 35.8 34.8 36.6 45.6 25.1 47.1 41.7

Top-10 45 49.3 40.4 39.6 43.9 31.7 54.2 51.5

Top-50 21.6 26.8 21.3 25.4 19.2 18.4 22 27.5

LLM 8.6 10.6 11.7 12.8 14.2 8.8 8.5 16.6

Lingua-2 8.9 9.3 9.8 12.6 12.2 8.9 12.1 17.5

MInference 8.1 11.6 10.7 12.3 13.6 8.7 8.8 15.7

HyDE 48.6 46.7 39.3 40.2 43.4 32.3 55.6 49.9

RQRAG 48 46.2 45.4 40.9 47.5 37.2 58.6 50.2

MemoRAG 37.9 30.4 36 35.3 42 26.1 48.1 42.6

GraphRAG 38.9 40.7 30.9 38.7 31 27.4 48.6 39.4
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15
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60

Top-5 Top-50 LLM HyDE MemoRAG GraphRAG

Level 3
Technology Novel Art Humanities Paper Science Finance Legal

Top-5 27.5 22.2 30 22.1 27.7 34.9 22.5 31.4

Top-10 33.3 22.8 35.6 28.1 44.9 43.6 26.3 33.1

Top-50 25.5 23.3 30.5 29.7 30.7 37.2 31.2 35.4

LLM 20.1 17.4 19.2 23.8 34.8 26.1 30.9 26.5

Lingua-2 16.3 17.4 18.4 18.5 31.8 19.5 35.9 33.9

MInference 19.8 16.8 20.2 23.8 34.8 25.8 25 27.3

HyDE 34.6 14.1 33.5 21.6 35.7 36.7 24.3 23.5

RQRAG 31.7 23.1 32.4 20.9 32.9 37.8 23.5 26.9

MemoRAG 33.4 25.7 29.8 29.8 44.5 42 33.4 34.3

GraphRAG 31.6 29 33.2 23.9 44 42.7 29.2 26.1
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5
15
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Level 4
Technology Novel Art Humanities Paper Science Finance Legal

Top-5 23.4 26.2 16.1 16.6 15.6 21.5 9.9 16.9

Top-10 40.2 22.7 17.1 22.9 16.1 19.3 19.9 33.1

Top-50 41.4 33.9 32.7 34.1 28 41.7 31.6 35.4

LLM 35 37.3 34.4 29.6 31.4 32.2 35.2 26.5

Lingua-2 32.2 23.3 24.9 10.5 27 22.3 35.8 33.9

MInference 37.3 34.5 37 28 32.4 28.1 35.6 27.3

HyDE 25.6 20 14.2 16.9 16.7 20.5 18.6 23.5

RQRAG 22.1 17.8 15.8 17 17.9 24 13.1 26.9

MemoRAG 43.8 44.1 37.2 37.8 26.1 36.3 30.1 34.3

GraphRAG 37.3 37.5 34.4 31.4 21.5 27.4 20.2 26.1
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Figure 3: Evaluation performance across four levels and eight domains for selected methods.

Resilience across Levels Table 1 presents the performance of all baselines across the four task
levels, averaged by domain. From these results, we draw several key insights: (1) Standard RAG
and Enhanced RAG methods perform well on factoid queries (Level-1 and Level-2), suggesting that
these queries often rely on specific text spans that can be easily located with minimal reasoning or
simple enhancements. (2) Global RAG methods underperform on Level-1 and Level-2 tasks but
excel on Level-3 and Level-4 tasks. This indicates that global reasoning is not beneficial for factoid
queries and may even hinder performance. However, for rationale queries, which require synthesizing
information from a broad range of text, global awareness helps gather more comprehensive evidence,
leading to improved performance. (3) Directly applying long LLMs to process the entire knowledge
base is feasible but underperforms on factoid queries due to over-referencing and redundant noise.
However, for rationale queries, long LLMs outperform vanilla RAG methods due to their strong
reasoning ability over long contexts. Efficient long-context methods, such as accelerated pre-filling
or prompt compression, yield performance comparable to vanilla LLMs.

Resilience over Domains Figure 3 presents the experimental results across different lev-
els and domains for selected methods. The results highlight how different methods perform
across domain-specific knowledge: (1) For structured knowledge sources, such as financial
reports and legal documents, most methods perform well on factoid queries. The inherent
clarity and precision of these texts reduce semantic ambiguity, improving retrieval accuracy.

20

40

60

Level-1 Level-2 Level-3 Level-4

Top-1 Top-5 Top-10 Top-50

Figure 4: Evaluation performance across four
levels for RAG with varying Top-k selections.

(2) For explanatory texts, such as academic papers
that focus on providing rationales, global RAG meth-
ods excel. Their global awareness enables them
to effectively organize and integrate explicit reason-
ing from the knowledge base. (3) For unstructured
knowledge in domains like literature, art, and human-
ities—where texts contain higher semantic ambigu-
ity—global RAG methods perform better on Level-
4 tasks. This suggests that aggregating high-level
implicit information is more effective for narrative-
based content than for structured knowledge domains.

Impact of Top-k Figure 4 systematically investigates the impact of Top-k selection using vanilla
RAG. The results show that while increasing Top-k introduces more knowledge into the generation

7



process, it also increases redundancy. The trade-off between knowledge recall and precision varies
across query levels. Factoid queries rely on precise evidence, and excessive redundancy signifi-
cantly degrades performance. In contrast, rationale queries benefit from higher recall, as effective
information aggregation requires a more comprehensive set of evidence from the knowledge base.

Efficiency Analysis Table 2 presents a comparison of task latency across methods and task levels.
The following insights can be drawn from the results:

(1) Standard RAG methods are highly efficient, as the retrieval process is not sensitive to the size of
the knowledge base. In contrast, long LLMs and global RAG methods experience a notable increase

Level RAG HyDE LLM MemoRAG GraphRAG

1 0.6 1.0 29.1 20.9 1.7 (+∞)
2 0.7 2.0 32.7 21.5 2.0 (+∞)
3 1.6 2.1 48.3 33.4 3.0 (+∞)
4 1.7 2.2 52.1 35.9 3.5 (+∞)

Table 2: Task latency (queries per second) com-
parison across methods and levels. Experiments
were conducted on an Nvidia A800-80G GPU us-
ing the ART dataset. GraphRAG employs GPT-4o
for graph construction, which can take up to half
an hour, denoted by +∞.

in latency across all tasks, while only improving
performance on rationale tasks. (2) Long LLMs
incur the highest latency for all task types but
fail to deliver a clear performance advantage.
This suggests that directly using the full knowl-
edge base may not be a proper approach. (3)
The graph construction process for GraphRAG
relies heavily on robust model APIs, leading
to substantial construction latency. However,
once the graph is constructed, performance be-
comes efficient. This indicates that optimiz-
ing the process of perceiving the global knowl-
edge base—such as accelerating the graph con-
struction in GraphRAG or memory formation in
MemoRAG—could be beneficial for improving performance on rationale queries.

Retrieval Strategy Analysis In addition to comparing different RAG architectures, we further
investigate the impact of retrieval strategies on performance across various task levels. Specifically,
we evaluate three types of retrievers: dense retrieval, sparse retrieval, and a hybrid approach that
combines both. The goal is to understand how the choice of retriever influences the resilience and
adaptability of RAG systems under different information-seeking challenges.

Level-1 Level-2 Level-3 Level-40

10

20

30

40

50

60

70

80

Pe
rfo

rm
an

ce

vanilla RAG - Sparse
vanilla RAG - Dense
vanilla RAG - Hybrid
RQRAG - Sparse
RQRAG - Dense
RQRAG - Hybrid
MemoRAG - Sparse
MemoRAG - Dense
MemoRAG - Hybrid

Figure 5: Performance of different retrieval
strategies across the four HawkBench levels.

Figure 5 presents the performance of representa-
tive RAG methods (vanilla RAG, RQRAG, and
MemoRAG) using each retrieval strategy across
the four task levels in HawkBench. The results
demonstrate that retrieval strategy has a substantial
impact on downstream performance. Dense and
hybrid retrievers consistently outperform sparse
retrievers, particularly on rationale-intensive tasks
(Levels 3 and 4), where retrieving semantically
rich information is crucial. Notably, methods
that incorporate additional retrieval cues—such as
query rewriting in RQRAG or memory-guided re-
trieval in MemoRAG—benefit significantly from
hybrid retrieval. This suggests that hybrid retriev-
ers enhance the likelihood of capturing diverse,
relevant evidence when guided by auxiliary sig-
nals. These findings underscore the importance of
retrieval design in RAG pipelines, especially when
targeting general-purpose or reasoning-intensive tasks. Future research may explore adaptive retrieval
modules that dynamically select the most suitable retrieval strategy based on task characteristics.

3.3 Key Insights

Current RAG methods Lack Resilience. Current RAG methods tend to be optimized for specific
types of information-seeking tasks (e.g., fact retrieval or rationale generation). However, this
specialization leads to a lack of overall resilience across a broader range of tasks. While empirical
analyses provide heuristics to guide method selection for particular tasks, we still lack a systematic,
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adaptable solution that can handle diverse tasks with varying requirements. This gap emphasizes
the need for developing RAG systems that can dynamically adjust to different information-seeking
challenges, moving beyond task-specific optimizations toward a more generalized framework.

Global Awareness: Construction and Utilization Challenges. Global awareness is essential for
tasks that require the integration of information from multiple sources. However, current global RAG
methods struggle with efficiently building and fully leveraging this awareness. While methods such
as GraphRAG (which uses graph construction) and memory-based approaches show promise, their
reliance on inefficient global intermediate construction processes (e.g., building graphs or memory
stores) remains a major bottleneck. For example, graph construction can take tens of minutes, making
it impractical for real-time use. Optimizing these construction processes could make these systems
more viable. Additionally, there is a need for research into how to best utilize global intermediates
(e.g., graphs, memory caches) to improve retrieval and reasoning. Exploring efficient ways to
construct and use these intermediates is an important direction for future work.

Dynamic Task Understanding and Adaptive Query Interpretation. As information-seeking tasks
become more complex, the need for dynamic task understanding and adaptive query interpretation
becomes increasingly important. A one-size-fits-all solution is not feasible; instead, RAG systems
must integrate decision-making mechanisms that allow them to dynamically adjust how they access
(referencing) and utilize (reasoning) knowledge. By understanding the task context and adapting the
retrieval strategy accordingly, RAG systems can more effectively address a wider range of queries.
This adaptability would significantly enhance the robustness and efficiency of RAG methods, enabling
them to handle varying complexities and task types more effectively.

The Potential of Agentic Information-Seeking Systems. Looking ahead, agentic information-
seeking systems—designed to autonomously navigate knowledge acquisition—offer a compelling
direction for the future of AI. By integrating retrieval, reasoning, and synthesis, these systems can
perform complex tasks such as literature reviews, report writing, or exploratory research. Recent
developments like OpenAI’s Deep Research exemplify this trend, signaling a shift toward AI agents
that not only assist but independently manage knowledge-intensive workflows. As these systems
mature, they hold the potential to reshape how we interact with and generate information, making
them a key area for future investigation and innovation.

4 Related Work

RAG Methods RAG was introduced by Lewis et al. [2020] to enhance language models’ ability to
handle knowledge-intensive tasks by providing relevant context through retrieval. Research in RAG
has focused on two main areas: (1) improving retrieval quality to set an upper bound for generation
accuracy [Qian et al., 2024, Gao et al., 2024], and (2) optimizing the use of retrieved passages for
relevance and accessibility during generation [Jiang et al., 2023, Zhao et al., 2024b].

The integration of RAG with LLMs has gained momentum, especially in knowledge-intensive
applications [Shuster et al., 2021]. As a result, there is increasing demand for more generalized RAG
systems capable of handling a wider range of tasks, including those beyond factoid queries [Zhao
et al., 2024a]. However, traditional RAG pipelines face challenges in addressing complex tasks with
implicit information needs, often failing to provide sufficient context for accurate generation [Gao
et al., 2024, Zhao et al., 2024a]. Recent advances have aimed to expand RAG’s applicability. For
example, GraphRAG [Edge et al., 2024] and HippoRAG [Jimenez Gutierrez et al., 2024] introduce
knowledge graphs to facilitate retrieval and enhance global awareness. Agent-based approaches, such
as ActiveRAG [Xu et al., 2024, Yoon et al., 2024], plan information access and utilization via agents.

RAG Benchmarking As RAG systems are increasingly adopted, the need for comprehensive
evaluation benchmarks has become evident. Early benchmarks, such as KILT [Petroni et al., 2021],
primarily focused on task-specific aspects like single-hop and multi-hop reasoning, as well as factoid
queries. Recently, new benchmarks have been developed to address specialized tasks and domains.
For example, MultiHop-RAG evaluates multi-hop tasks [Tang and Yang, 2024], LegalBench-RAG
focuses on the legal domain [Guha et al., 2023], CRAG offers a comprehensive evaluation framework
for factoid question answering tasks, and RAGBench is designed to assess the explainability of RAG
systems [Friel et al., 2024]. While these benchmarks provide insights into various facets of RAG
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performance, they lack a comprehensive framework to evaluate the resilience of RAG systems when
faced with diverse information-seeking needs, particularly for stratified queries [Zhao et al., 2024a].

5 Conclusion

In this paper, we introduce HawkBench, a comprehensive framework designed to evaluate the re-
silience of RAG systems across diverse information-seeking tasks. HawkBench is distinguished
by its systematic task stratification, multi-domain corpora, and high-quality annotations, making it
an robust tool for assessing the resilience of RAG methods. Our evaluation of representative RAG
methods reveals that while current RAG systems are often optimized for specific tasks, they lack
resilience across general tasks. This highlights the need for dynamic task strategies that integrate
decision-making, query interpretation, and global knowledge utilization to enhance the generaliz-
ability of RAG systems. HawkBench serves as a critical resource for advancing the development of
resilient, versatile RAG systems capable of addressing a wide range of real-world user needs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the experiment section, including the main experiments and discussions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer:[Yes]

Justification: In Appendix, we have a Limitation section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not contain theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer:[Yes]
Justification: We have disclosed necessary details for our result reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:[Yes]

Justification: In Appendix, we have a section to discuss the implementation details of our
paper. We also provide source codes and training script in the supplement material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]

Justification: In Appendix, we have a implementaion details section to disclose these details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:[Yes]

Justification: We did t-test for the main experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes]

Justification: We disclose the required computing resources in the implementation details
section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]

Justification: We follow the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[Yes]

Justification: We discuss the impact of this paper in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer:[NA]
Justification: the models in this paper are trained for specific search scenarios, which does
not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer:[Yes]
Justification: We credited all used resources in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer:[Yes]
Justification: We introduced the details about our constructed training data in the main
content.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer:[Yes]
Justification: In the Appendix, we have screenshots of the annotation system. In the
supplementary materials, we provide codes for the annotation system.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer:[Yes]
Justification: We have described the usage of LLMs as a core component of our method in
the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Implementation Details

In our evaluation of baseline methods on HawkRAG, we use BGE-M3 [Chen et al., 2023] as the
retriever for vanilla RAG, RQ-RAG, HyDE, and MemoRAG, setting the hit number to 5. For methods
that segment long contexts into chunks, we utilize the semantic-text-splitter tool, limiting chunks to a
maximum of 512 tokens. MemoRAG employs the officially released memorag-qwen2-7b-inst as its
memory model. For GraphRAG, we leverage GPT-4o for graph construction and use the retrieved
context for generation. All baseline methods adopt Qwen-2.5-7B-instruct-128K as the generator.

HawkRAG’s raw texts are sourced from books-3-textbooks, legal contracts, arXiv papers, and
financial reports. During annotation, the annotator would select either GPT-4o or DeepSeek-v3 as the
assisting agent. Our annotation system, illustrated in Figure 6, is implemented using Streamlit. The
statistic details of HawkBench are presented in Table 3. In Table 5, we present the full results of the
main experiments.

All experiments were conducted on a server equipped with 8 NVIDIA A800-80G GPUs.

Table 3: Statistical Information of HawkBench. The symbols ⟨|C|⟩, ⟨|Q|⟩, and ⟨|A|⟩ represent the
average lengths of the context, query, and answer, respectively.

Dataset Num ⟨|C|⟩ Num ⟨|Q|⟩ ⟨|A|⟩ Num ⟨|Q|⟩ ⟨|A|⟩ Num ⟨|Q|⟩ ⟨|A|⟩ Num ⟨|Q|⟩ ⟨|A|⟩
LEVEL-1 LEVEL-2 LEVEL-3 LEVEL-4

TECHNOLOGY 200 144803.0 50 15.8 5.1 50 57.7 14.1 50 25.3 96.4 50 26.3 42.0
NOVEL 200 166960.2 50 14.2 6.8 50 51.6 19.0 50 28.2 121.5 50 31.1 63.5
ART 200 115591.8 50 17.0 6.9 50 53.6 14.8 50 27.0 125.2 50 34.4 87.7
HUMANITIES 200 152600.3 50 16.8 6.9 50 56.1 26.6 50 29.1 134.1 50 33.6 72.3
PAPER 200 41702.0 50 18.2 9.5 50 75.7 17.1 50 34.0 101.0 50 28.6 40.3
SCIENCE 200 143517.0 50 16.3 7.6 50 54.3 15.3 50 26.8 109.2 50 29.0 47.9
FINANCE 200 37364.6 50 17.2 10.5 50 62.6 12.5 50 27.0 105.6 50 28.0 65.0
LEGAL 200 49331.1 50 19.3 11.9 50 53.0 21.0 50 27.2 113.0 50 27.0 46.7

Total 1600 106483.7 400 16.8 8.2 400 58.1 17.5 400 28.1 113.3 400 29.7 58.2

B Limitations

This paper focuses on constructing a benchmark, HawkBench, to evaluate the resilience of RAG
methods across stratified tasks. While the benchmark provides a comprehensive framework, there are
several limitations to consider. First, dataset bias may arise during the curation process, as the raw data
are collected from multiple domains. This diversity, while beneficial, may inadvertently introduce
biases that could affect the generalizability of the results. Additionally, during the annotation process,
both the assisting LLMs and human annotators may introduce errors, which could impact the overall
evaluation quality. Although we strive for thoroughness in evaluating task and domain diversity,
HawkBench’s size, while reasonable, may not cover all professional knowledge-intensive domains or
task types.

Furthermore, while we conduct comprehensive experiments using HawkBench, it is not feasible
to test all available RAG methods, alternative retrievers, or LLMs on this benchmark. We selected
representative methods and models that are expected to provide generalizable findings, but this
selection does not encompass the full range of possible approaches. Additionally, we did not evaluate
commercial RAG solutions in this study, as these systems are typically closed-sourced and subject to
changes over time, making them challenging to incorporate into a static benchmark evaluation.

C Public Data and Model Memorization vs. Genuine Retrieval

Most publicly available web data, including domain-specific corpora, are likely included in the
pre-training corpus of today’s large language models. This challenge is shared by nearly all modern
NLP benchmarks.

Nevertheless, benchmarks built on such corpora remain meaningful for several reasons. First, seeing a
text during pre-training does not guarantee full memorization, nor does it ensure accurate answers for
queries requiring complex reasoning or synthesis. Our benchmark’s query–answer pairs are manually
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Domain & Level gemini-2.5-flash gpt-4o-mini gpt-4.1 Best RAG (Qwen-2.5 7B)

Legal-Level 1 13.6 10.5 15.3 79.2
Legal-Level 2 25.2 20.6 30.0 45.9
Legal-Level 3 15.8 20.7 22.0 32.7
Legal-Level 4 12.4 13.2 14.3 17.9
Finance-Level 1 13.6 12.3 22.3 79.5
Finance-Level 2 25.2 13.3 23.1 54.7
Finance-Level 3 13.8 17.8 20.2 30.8
Finance-Level 4 13.4 15.8 18.9 20.4
Science-Level 1 13.6 12.2 13.2 45.1
Science-Level 2 25.1 17.8 21.2 33.8
Science-Level 3 15.7 21.4 20.1 27.3
Science-Level 4 13.4 17.2 17.4 20.4

Table 4: Comparison of commercial LLM APIs with the best-performing RAG system (Qwen-2.5
7B). RAG substantially outperforms LLMs in factoid queries (Level 1 and 2), while LLMs remain
competitive in higher-level reasoning tasks (Level 3 and 4).

annotated to capture nuanced, multi-step information-seeking behaviors that go well beyond simple
fact recall.

Second, to mitigate concerns regarding memorization versus genuine retrieval, we include evaluations
using several strong commercial LLM APIs. By comparing the performance of a range of models on
our benchmark, we can better assess the extent to which retrieval-augmented reasoning (rather than
memorization) contributes to success. Specifically, we compare RAG methods with three leading
commercial LLMs. The results are shown in Table 4.

The results demonstrate that while strong LLMs have memorized substantial information from public
corpora, they still lag behind retrieval-augmented methods in overall performance. Notably, for
factoid queries at Level 1 and Level 2, RAG methods outperform strong LLMs by a large margin,
suggesting that even with exposure to the underlying texts during pre-training, LLMs cannot reliably
recall fine-grained factual details. For Level 3 and Level 4 tasks, which require summarizing broad
content or synthesizing information, strong LLMs perform comparably to RAG methods, as these
queries demand less precise retrieval and more general reasoning.

In summary, these results show that even though portions of HawkBench may have been seen
by strong LLMs during pretraining, it remains a robust benchmark for evaluating stratified
RAG performance. Without retrieval, even advanced LLMs such as GPT-4.1 can only solve a
small fraction of the tasks, highlighting the necessity of effective retrieval-augmented reasoning.
Moreover, these experiments suggest that HawkBench not only provides a comprehensive testbed
for RAG evaluation, but also serves as a tool for assessing the factual memorization capabilities of
state-of-the-art LLMs.

D Broader Impact

Our work aims to advance the robustness and generalizability of RAG systems by introducing a
comprehensive benchmark, HawkBench, that stratifies tasks based on real-world information-seeking
complexity. This can benefit a wide range of applications—such as question answering, legal and
financial document analysis, and educational tutoring—by enabling more adaptive and reliable
retrieval-augmented language models.

However, improving general-purpose information-seeking systems also raises concerns. These
include the risk of propagating misinformation from retrieved content, amplifying biases present in
training or retrieval corpora, and enabling misuse in sensitive domains without sufficient oversight.
We encourage developers to adopt careful evaluation and safeguards when deploying RAG systems,
especially in high-stakes or regulated scenarios.

Ultimately, we hope that HawkBench facilitates more transparent, equitable, and effective develop-
ment of retrieval-based AI systems, while fostering research into more accountable and context-aware
reasoning mechanisms.
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Step 1: Select the agent to use and 
choose annotation query level.

Step 2: Choose a domain and 
click the button to sample a 

corpus from the selected domain.

Step 3: Click the “Generate New Question” button, and 
the system will use the selected agent to generate 

question-answer pairs based on the built-in modules.

Step 4: Review the generated QA pairs. If the question is 
inappropriate, click the “Generate” button again. If the 

answer is inadequate, manually modify it. Once the QA pairs 
meet the annotation standards, click “Save” to proceed.

Figure 6: Annotation Interface of HawkBench.
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Table 5: Full details of main experimental results.
Dataset TECH NOV ART HUM PAPER SCI FIN LEG AVE

LEVEL-1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1

Top-1 47.8 52.6 39.9 42.4 39.5 46.2 25.2 27.9 30.8 32.7 29.3 44.1 87.2 88.5 38.5 39.1 42.3 46.7
Top-5 59.0 66.2 47.0 55.1 44.2 54.0 23.5 28.8 58.2 64.0 44.6 57.1 80.3 83.9 50.4 50.9 50.9 57.5
Top-10 69.0 74.4 58.3 70.7 56.8 72.2 58.6 69.4 57.5 62.1 45.6 65.4 77.6 80.9 74.1 75.0 62.2 71.3
Top-50 12.8 12.7 33.8 35.9 25.3 29.3 14.1 16.4 27.6 28.0 20.4 23.3 43.5 44.2 35.3 37.1 26.6 28.4

LLM 7.5 6.8 6.3 6.1 7.1 6.9 6.8 5.8 20.1 20.4 8.2 9.1 24.6 24.8 23.5 23.3 13.0 12.9
Lingua-2 5.0 3.5 3.8 3.0 8.9 9.1 3.0 2.1 8.2 7.4 5.9 6.2 27.0 28.2 29.8 31.4 11.4 11.4
MInference 8.0 7.1 5.3 5.1 7.2 7.1 5.3 5.1 15.7 13.9 7.2 7.7 23.3 23.2 19.7 19.7 11.5 11.1

HyDE 71.2 78.2 57.2 69.4 56.5 71.4 62.5 72.9 63.6 66.7 47.3 67.5 79.5 82.1 77.8 79.5 64.4 73.5
RQRAG 72.0 78.2 55.4 68.3 59.0 74.2 57.5 70.7 65.7 67.6 45.1 66.4 80.9 83.9 78.2 79.2 64.2 73.6
MemoRAG 46.9 51.4 29.6 34.9 35.1 46.0 48.5 55.0 32.9 35.1 35.1 44.6 65.4 68.2 65.1 66.5 44.8 50.2
GraphRAG 58.7 66.8 52.5 58.0 44.3 55.9 48.1 57.0 28.8 34.9 39.6 58.5 67.7 72.7 54.3 55.3 49.3 57.4

Dataset TECH NOV ART HUM PAPER SCI FIN LEG AVE
LEVEL-2 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1 R-L F1

Top-1 35.6 40.3 20.1 22.5 27.4 33.4 26.7 32.2 32.8 38.0 22.3 25.5 40.5 42.5 33.1 37.1 29.8 34.0
Top-5 37.1 41.7 28.9 35.8 29.8 34.8 30.8 36.6 40.9 45.6 23.0 25.1 44.0 47.1 37.1 41.7 34.0 38.6
Top-10 39.1 45.0 40.9 49.3 31.9 40.4 35.0 39.6 40.9 43.9 28.9 31.7 51.9 54.2 45.4 51.5 39.3 44.4
Top-50 20.1 21.6 25.2 26.8 18.9 21.3 22.7 25.4 21.0 19.2 16.8 18.4 23.0 22.0 25.3 27.5 21.6 22.8

LLM 10.1 8.6 11.4 10.6 11.5 11.7 14.8 12.8 17.1 14.2 9.8 8.8 10.4 8.5 18.4 16.6 12.9 11.5
Lingua-2 10.2 8.9 10.1 9.3 8.9 9.8 13.2 12.6 14.6 12.2 9.8 8.9 13.2 12.1 17.5 17.5 12.2 11.4
MInference 9.7 8.1 11.8 11.6 11.0 10.7 13.9 12.3 15.9 13.6 9.9 8.7 10.7 8.8 17.6 15.7 12.6 11.2

HyDE 45.3 48.6 39.7 46.7 33.5 39.3 33.2 40.2 39.0 43.4 30.2 32.3 54.3 55.6 45.1 49.9 40.0 44.5
RQRAG 44.4 48.0 38.5 46.2 36.5 45.4 33.3 40.9 41.5 47.5 33.8 37.2 54.7 58.6 45.9 50.2 41.1 46.8
MemoRAG 33.0 37.9 26.2 30.4 30.2 36.0 31.1 35.3 38.8 42.0 24.7 26.1 46.6 48.1 39.2 42.6 33.7 37.3
GraphRAG 34.8 38.9 35.9 40.7 28.9 30.9 33.5 38.7 31.7 31.0 25.0 27.4 45.9 48.6 36.5 39.4 34.0 37.0

Dataset TECH NOV ART HUM PAPER SCI FIN LEG AVE
LEVEL-3 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1

Top-1 15.5 26.9 12.4 14.6 12.3 26.0 10.1 19.9 20.3 23.5 17.8 26.0 12.6 13.7 19.2 23.2 15.0 21.7
Top-5 15.5 27.5 15.7 22.2 14.4 30.0 16.4 22.1 22.9 27.7 19.0 34.9 17.2 22.5 22.3 31.4 17.9 27.3
Top-10 22.3 33.3 20.4 22.8 18.4 35.6 19.2 28.1 30.3 44.9 24.2 43.6 22.4 26.3 27.9 33.1 23.1 33.5
Top-50 18.9 25.5 19.8 23.3 19.3 30.5 24.5 29.7 26.5 30.7 23.9 37.2 27.1 31.2 26.7 35.4 23.3 30.4

LLM 23.8 20.1 23.3 17.4 23.2 19.2 23.7 23.8 30.3 34.8 24.6 26.1 30.2 30.9 30.3 26.5 26.2 24.9
Lingua-2 19.8 16.3 21.9 17.4 19.9 18.4 20.6 18.5 26.7 31.8 22.0 19.5 30.8 35.9 28.4 33.9 23.7 23.9
MInference 23.3 19.8 23.2 16.8 22.1 20.2 23.5 23.8 29.9 34.8 24.6 25.8 29.4 25.0 28.8 27.3 25.6 24.2

HyDE 17.7 34.6 16.0 14.1 16.7 33.5 16.4 21.6 26.1 35.7 21.6 36.7 16.6 24.3 24.1 23.5 19.4 28.0
RQRAG 17.6 31.7 15.7 23.1 17.8 32.4 16.3 20.9 25.3 32.9 20.8 37.8 17.5 23.5 26.4 26.9 19.7 28.6
MemoRAG 23.2 33.4 24.5 25.7 25.1 29.8 26.0 29.8 32.6 44.5 27.3 42.0 26.9 33.4 32.7 34.3 27.3 34.1
GraphRAG 22.1 31.6 23.8 29.0 22.2 33.2 24.6 23.9 31.4 44.0 27.2 42.7 24.3 29.2 26.7 26.1 25.3 32.5

Dataset TECH NOV ART HUM PAPER SCI FIN LEG AVE
LEVEL-4 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1 R-L S-F1

Top-1 16.3 24.5 13.1 20.4 14.9 9.0 15.9 13.8 17.7 17.4 14.7 15.6 13.0 13.0 11.8 16.5 14.7 16.3
Top-5 16.8 23.4 14.4 26.2 17.7 16.1 15.3 16.6 16.9 15.6 17.7 21.5 11.8 9.9 11.7 16.9 15.3 18.3
Top-10 21.1 40.2 17.4 22.7 20.3 17.1 18.4 22.9 20.5 16.1 18.0 19.3 16.0 19.9 13.8 8.3 18.2 20.8
Top-50 17.8 41.4 16.7 33.9 17.3 32.7 17.5 34.1 17.5 28.0 15.9 41.7 15.9 31.6 16.7 34.1 16.9 34.7

LLM 16.2 35.0 17.4 37.3 16.8 34.4 17.2 29.6 17.1 31.4 15.2 32.2 19.6 35.2 15.6 30.1 16.9 33.2
Lingua-2 13.9 32.2 14.1 23.3 15.0 24.9 13.8 10.5 17.5 27.0 12.9 22.3 20.4 35.8 15.8 25.1 15.4 25.2
MInference 16.2 37.3 18.6 34.5 16.9 37.0 17.7 28.0 17.1 32.4 15.7 28.1 18.8 35.6 15.5 33.6 17.1 33.3

HyDE 16.8 25.6 14.8 20.0 16.7 14.2 15.5 16.9 15.2 16.7 19.4 20.5 13.7 18.6 12.6 15.2 15.6 18.4
RQRAG 16.0 22.1 14.8 17.8 17.6 15.8 16.0 17.0 15.3 17.9 17.7 24.0 13.2 13.1 12.8 11.1 15.4 17.4
MemoRAG 17.7 43.8 20.0 44.1 19.8 37.2 19.7 37.8 20.4 26.1 16.9 36.3 19.8 30.1 17.9 24.2 19.0 35.0
GraphRAG 20.7 37.3 21.1 37.5 22.7 34.4 22.4 31.4 23.7 21.5 20.4 27.4 19.2 20.2 15.1 19.5 20.6 28.7
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