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Abstract

Deep learning models for medical image segmentation suffer significant perfor-
mance drops due to distribution shifts, but the causal mechanisms behind these
drops remain poorly understood. We extend causal attribution frameworks to
high-dimensional segmentation tasks, quantifying how acquisition protocols and
annotation variability independently contribute to performance degradation. We
model the data-generating process through a causal graph and employ Shapley
values to fairly attribute performance changes to individual mechanisms. Our
framework addresses unique challenges in medical imaging: high-dimensional
outputs, limited samples, and complex mechanism interactions. Validation on
multiple sclerosis (MS) lesion segmentation across 4 centers and 7 annotators
reveals context-dependent failure modes: annotation protocol shifts dominate when
crossing annotators (7.4% =+ 8.9% DSC attribution), while acquisition shifts dom-
inate when crossing imaging centers (6.5% =+ 9.1%). This mechanism-specific
quantification enables practitioners to prioritize targeted interventions based on
deployment context. Our code is available at anonymous repositoryl

1 Introduction

Medical image segmentation models excel in controlled settings but exhibit unpredictable perfor-
mance drops in clinical deployments [} [2]. Unlike classification tasks where shifts have been
studied [3, 14, 5], segmentation presents unique challenges: spatial correlations, high-dimensional
outputs that interact non-linearly with distribution shifts, etc.[1}16]. Consider a white matter lesion
(WML) segmentation model underperforming at a new hospital. The failure could stem from scanner
changes (acquisition shift), inconsistent radiologist annotations (annotation shift), or demographic
changes (population shift) [[1]]. Existing domain generalization methods treat these shifts monolith-
ically, offering no insight into which mechanisms drive performance degradation [[7]. We address
this gap by extending causal attribution frameworks [3, 5] from low-dimensional classification to
high-dimensional segmentation tasks. Our approach leverages the principle of Independent Causal
Mechanisms (ICM) [8] to model the medical imaging data-generating process (DGP) [1} 9], and
employs Shapley values to quantify each mechanism’s contribution to performance drops.
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Figure 1: Causal modeling of domain shifts in medical imaging. We attribute performance degradation
to shifts in acquisition (P(X|S, D = MS)) versus annotation (P (Y| X, A)) mechanisms.
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2 Methods

We model the DGP for segmentation task via a causal graph as in Following the ICM
principle [8| [10], the joint distribution factorizes as: P(V) = [[,_; P(V; | PA;), where V =
{V1,...,V,} represents the system variables (demographics, images, annotations), and PA; denotes
the parent variables of V;. This factorization remains structurally invariant across environments,
though the individual mechanism, Py, |PA;> distributions may shift. Then, let f denote a model trained
on data from a training environment ¢,,., later deployed in environment €4, and M an assessment
metric. Performance change between e, -€ e, is defined as AM = M (f, Pr) — M(f, Pr). AM
can be causally attributed to shifts in the distributions of individual mechanisms. Through a causal
lens, the transition from €, to €q¢;, is explained through a set of intervened (shifted) mechanisms. For
any subset of mechanism indices Z C {1, 2, ...,n}, we define a mixed distribution Pz where only
mechanisms in Z are intervened upon:

Pr(V) = P(Vigr,do(Viez = V")) = [ [ Pyiba, 11 Pitioa, @)
icT i¢T
This represents the distribution that would result if we selectively transported only the mechanisms

indexed by Z from the deployment environment while keeping all other mechanisms at their training
state, which will cause an estimated change of AMy = M(f, P<") — M(f, Pr),

Shapley Symmetry. This formulation allows us to systematically decompose AM into contribu-
tions from individual mechanisms. However, the contribution of each mechanism to performance drop
depends on the order in which mechanisms are shifted. For instance, altering annotation protocols
before scanner parameters may yield different marginal impacts than the reverse sequence. This
path-dependence, where mechanism shifts propagate non-additively, requires fair attribution. To
ensure it, we employ Shapley values [[L1}15] to symmetrize over all possible intervention sequences:

Z(n — |Z| - 1)!
b (AM) = 3 |Z1'( n|' ) [AMzy gy — AMq] 2)
IC{1,2,...n\{i} '

A M7 Estimation. A fundamental challenge is that the distributions Py are not directly accessible;
we only have samples from Pt and P¢?e». Computing A M7 requires evaluating model performance
under counterfactual mechanism combinations that take combinatorial complexity. To address this,
we use importance sampling to reweight samples from the training distribution,

M(f, Pr) = Ewy)~p [M(f, Pr)] = Eqvyy~perr [wzM(f, Pr))],

Pr(z,y) =TI Pfder (V;|PA,;)

where wz(x, y) represents importance weights, wz(x,y) = P oy) = Liez Po(vipay) -

In medical image segmentation, this allows us to estimate how performance would change if, for
example, only the annotation protocol shifted while scanner parameters remained constant. For exam-
ple, when evaluating WML segmentation across hospitals, we can isolate the effect of annotation style
differences by constructing weights that capture only the shift in P(Y| X, A) (annotation mechanism)
while keeping P(X|S) (image acquisition mechanism) fixed. To estimate these importance weights,
we train binary classifiers to discriminate between environments for each mechanism following [12].

For mechanism ¢, we train a classifier D; to predict whether a sample comes from €, or €4, based
- ) . . P(egep|Vi,PA;) P(esr)

on (V;,PA;). The density ratio can then be expressed as, PV PR Pl

Discriminator Training, D;. Training robust discriminators D; for shift detection presents unique

challenges in medical imaging contexts. To mitigate overfitting, we implement gradient penalty

regularization [13]] and employ a multi-scale architectural design that captures both local and global

distribution shifts. Additionally, we utilize test-time augmentation during discriminator training

to enhance stability when handling the limited sample sizes common in medical datasets. Our

implementation is fully integrated within the nnU-Net framework [14]].

3 Experiments and Results

Experimental procedure: We train nnU-Net segmentation models on source data (e;,.) and test on
target (eg4ep), measuring AN using Dice Similarity Coefficient (DSC) and F1 score. Discriminators
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D, estimate density ratios enabling importance sampling to compute counterfactual performance
under selective mechanism shifts, aggregated via Shapley values into per-mechanism attributions. We
evaluated on MSSEG2016 [15,[16], comprising 53 MS patients from 4 centers with 7 annotators, with
documented inter-rater variability and scanner heterogeneity. We designed two experiments: Exp. A
trains on annotator ¢ and tests on annotators j # 4 (annotation shifts), while Exp. B trains on centers
1,7,8 and tests on center 3 (acquisition shifts). Table E] shows distinct mechanism contributions across
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Figure 2: Inter-annotator performance for Exp. A. Each cell shows DSC; Apgc. (a) Acquisition
mechanism P(X|S) shows predominantly negative A pgc, indicating minimal or positive contribu-
tion. (b) Annotation mechanism P(Y| X, A) exhibits predominantly positive Apgc.

environments. In Exp. A (annotator shifts), the annotation mechanism P (Y| X, A) contributes 7.4%+
8.9% (DSC) and 12.8% =+ 14.8% (F1) to performance changes, while the acquisition mechanism
P(X|S) shows 1.6% % 7.1% and 5.8% + 12.3%. Negative A pg¢ values in the P(X|S) mechanism
indicate performance improvements rather than degradation. In Exp. B (image shifts), the relative
contributions reverse: acquisition mechanism P(X |S) contributes 6.5% + 9.1% (DSC) and 14.2% +
12.9% (F1), while annotation mechanism shows 2.6% + 5.8% and 8.4% + 9.8%. Figure [2] visualizes
the full attribution matrix for Exp. A, revealing heterogeneous annotator sensitivity with Apgc
ranging from minimal values to 52.6%.

Table 1: Mechanism Contributions to Performance Changes (%)

Exp. Mechanism Apsc(%) Ari(%) Exp. Mechanism Apsc(%) Ari(%)
A P(Y|X,A) 74+89 1284148 B P(Y|X,A) 26+58 84+098
P(X|S) 16+7.1 58+123 P(X|S)  65+9.1 1424129

4 Discussion and Conclusion

We extend causal attribution to medical image segmentation, addressing its unique challenges. Our
findings reveal that dominant failure mechanisms depend critically on deployment context. In Exp.
A, annotation mechanism contributes 2-3 times more to performance changes. This pattern reverses
Exp. B, where acquisition shifts dominate. This has direct implications for resource allocation: when
deploying across institutions with different annotation protocols, prioritize annotation standardization;
when deploying to new scanner types, focus on scanner harmonization. While our experiments aimed
to isolate individual mechanisms, real medical datasets contain inherent confounding that cannot be
fully eliminated. In Exp. A, the acquisition mechanism still contributes 1.6 — 5.8%, likely because
different annotators labeled different case subsets or temporal annotation drift occurred. Importantly,
the shifted mechanism dominates (1.7-3 times higher attribution). This residual attribution reflects
real-world deployment where mechanisms rarely shift in complete isolation. Our approach requires a
known DGP, sufficient samples for discriminator training, and assumes static mechanisms, limiting
applicability. Future work should validate attribution accuracy using controlled synthetic experiments
where ground truth is known, enabling evidence-based deployment strategies.
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Potential negative societal impacts:

Over-reliance on attribution results without clinical context could lead to premature deployment deci-
sions. The framework’s requirement for deployment data may exclude resource-limited institutions,
potentially widening healthcare disparities. Additionally, focusing solely on dominant mechanisms
might overlook rare but critical failure modes affecting minority patient subgroups.
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