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Abstract
Deep learning models for medical image segmentation suffer significant perfor-1

mance drops due to distribution shifts, but the causal mechanisms behind these2

drops remain poorly understood. We extend causal attribution frameworks to3

high-dimensional segmentation tasks, quantifying how acquisition protocols and4

annotation variability independently contribute to performance degradation. We5

model the data-generating process through a causal graph and employ Shapley6

values to fairly attribute performance changes to individual mechanisms. Our7

framework addresses unique challenges in medical imaging: high-dimensional8

outputs, limited samples, and complex mechanism interactions. Validation on9

multiple sclerosis (MS) lesion segmentation across 4 centers and 7 annotators10

reveals context-dependent failure modes: annotation protocol shifts dominate when11

crossing annotators (7.4% ± 8.9% DSC attribution), while acquisition shifts dom-12

inate when crossing imaging centers (6.5% ± 9.1%). This mechanism-specific13

quantification enables practitioners to prioritize targeted interventions based on14

deployment context. Our code is available at anonymous repository.15

1 Introduction16

Medical image segmentation models excel in controlled settings but exhibit unpredictable perfor-17

mance drops in clinical deployments [1, 2]. Unlike classification tasks where shifts have been18

studied [3, 4, 5], segmentation presents unique challenges: spatial correlations, high-dimensional19

outputs that interact non-linearly with distribution shifts, etc.[1, 6]. Consider a white matter lesion20

(WML) segmentation model underperforming at a new hospital. The failure could stem from scanner21

changes (acquisition shift), inconsistent radiologist annotations (annotation shift), or demographic22

changes (population shift) [1]. Existing domain generalization methods treat these shifts monolith-23

ically, offering no insight into which mechanisms drive performance degradation [7]. We address24

this gap by extending causal attribution frameworks [3, 5] from low-dimensional classification to25

high-dimensional segmentation tasks. Our approach leverages the principle of Independent Causal26

Mechanisms (ICM) [8] to model the medical imaging data-generating process (DGP) [1, 9], and27

employs Shapley values to quantify each mechanism’s contribution to performance drops.28
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Figure 1: Causal modeling of domain shifts in medical imaging. We attribute performance degradation
to shifts in acquisition (P (X|S,D = MS)) versus annotation (P (Y |X,A)) mechanisms.
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2 Methods29

We model the DGP for segmentation task via a causal graph as in Figure 1. Following the ICM30

principle [8, 10], the joint distribution factorizes as: P (V ) =
∏n

i=1 P (Vi | PAi), where V =31

{V1, . . . , Vn} represents the system variables (demographics, images, annotations), and PAi denotes32

the parent variables of Vi. This factorization remains structurally invariant across environments,33

though the individual mechanism, PVi|PAi
, distributions may shift. Then, let f denote a model trained34

on data from a training environment ϵtr, later deployed in environment ϵdep, and M an assessment35

metric. Performance change between ϵtr-ϵdep is defined as ∆M = M(f, P ϵtr )−M(f, P ϵdep). ∆M36

can be causally attributed to shifts in the distributions of individual mechanisms. Through a causal37

lens, the transition from ϵtr to ϵdep is explained through a set of intervened (shifted) mechanisms. For38

any subset of mechanism indices I ⊆ {1, 2, ..., n}, we define a mixed distribution PI where only39

mechanisms in I are intervened upon:40

PI(V ) = P (Vi/∈I , do(Vi∈I = V
ϵdep
i ))) =

∏
i∈I

P
ϵdep
Vi|PAi

∏
i/∈I

P ϵtr
Vi|PAi

(1)

This represents the distribution that would result if we selectively transported only the mechanisms41

indexed by I from the deployment environment while keeping all other mechanisms at their training42

state, which will cause an estimated change of ∆MI = M(f, P ϵtr )−M(f, PI),43

Shapley Symmetry. This formulation allows us to systematically decompose ∆M into contribu-44

tions from individual mechanisms. However, the contribution of each mechanism to performance drop45

depends on the order in which mechanisms are shifted. For instance, altering annotation protocols46

before scanner parameters may yield different marginal impacts than the reverse sequence. This47

path-dependence, where mechanism shifts propagate non-additively, requires fair attribution. To48

ensure it, we employ Shapley values [11, 5] to symmetrize over all possible intervention sequences:49

ϕi(∆M) =
∑

I⊆{1,2,...,n}\{i}

|I|!(n− |I| − 1)!

n!

[
∆MI∪{i} −∆MI

]
(2)

∆MI Estimation. A fundamental challenge is that the distributions PI are not directly accessible;50

we only have samples from P ϵtr and P ϵdep . Computing ∆MI requires evaluating model performance51

under counterfactual mechanism combinations that take combinatorial complexity. To address this,52

we use importance sampling to reweight samples from the training distribution,53

M(f, PI) = E(VI)∼PI [M(f, PI)] ≈ E(VI)∼P ϵtr [wIM(f, PI))] ,

where wI(x, y) represents importance weights, wI(x, y) =
PI(x,y)
P ϵtr (x,y) =

∏
i∈I

P ϵdep (Vi|PAi)
P ϵtr (Vi|PAi)

.54

In medical image segmentation, this allows us to estimate how performance would change if, for55

example, only the annotation protocol shifted while scanner parameters remained constant. For exam-56

ple, when evaluating WML segmentation across hospitals, we can isolate the effect of annotation style57

differences by constructing weights that capture only the shift in P (Y |X,A) (annotation mechanism)58

while keeping P (X|S) (image acquisition mechanism) fixed. To estimate these importance weights,59

we train binary classifiers to discriminate between environments for each mechanism following [12].60

For mechanism i, we train a classifier Di to predict whether a sample comes from ϵtr or ϵdep based61

on (Vi,PAi). The density ratio can then be expressed as, P (ϵdep|Vi,PAi)
P (ϵtr|Vi,PAi)

· P (ϵtr)
P (ϵdep)

62

Discriminator Training, Di. Training robust discriminators Di for shift detection presents unique63

challenges in medical imaging contexts. To mitigate overfitting, we implement gradient penalty64

regularization [13] and employ a multi-scale architectural design that captures both local and global65

distribution shifts. Additionally, we utilize test-time augmentation during discriminator training66

to enhance stability when handling the limited sample sizes common in medical datasets. Our67

implementation is fully integrated within the nnU-Net framework [14].68

3 Experiments and Results69

Experimental procedure: We train nnU-Net segmentation models on source data (ϵtr) and test on70

target (ϵdep), measuring ∆M using Dice Similarity Coefficient (DSC) and F1 score. Discriminators71
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Di estimate density ratios enabling importance sampling to compute counterfactual performance72

under selective mechanism shifts, aggregated via Shapley values into per-mechanism attributions. We73

evaluated on MSSEG2016 [15, 16], comprising 53 MS patients from 4 centers with 7 annotators, with74

documented inter-rater variability and scanner heterogeneity. We designed two experiments: Exp. A75

trains on annotator i and tests on annotators j ̸= i (annotation shifts), while Exp. B trains on centers76

1,7,8 and tests on center 3 (acquisition shifts). Table 1 shows distinct mechanism contributions across
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Figure 2: Inter-annotator performance for Exp. A. Each cell shows DSC; ∆DSC . (a) Acquisition
mechanism P (X|S) shows predominantly negative ∆DSC , indicating minimal or positive contribu-
tion. (b) Annotation mechanism P (Y |X,A) exhibits predominantly positive ∆DSC .

77
environments. In Exp. A (annotator shifts), the annotation mechanism P (Y |X,A) contributes 7.4%±78

8.9% (DSC) and 12.8% ± 14.8% (F1) to performance changes, while the acquisition mechanism79

P (X|S) shows 1.6%± 7.1% and 5.8%± 12.3%. Negative ∆DSC values in the P (X|S) mechanism80

indicate performance improvements rather than degradation. In Exp. B (image shifts), the relative81

contributions reverse: acquisition mechanism P (X|S) contributes 6.5%± 9.1% (DSC) and 14.2%±82

12.9% (F1), while annotation mechanism shows 2.6%± 5.8% and 8.4%± 9.8%. Figure 2 visualizes83

the full attribution matrix for Exp. A, revealing heterogeneous annotator sensitivity with ∆DSC84

ranging from minimal values to 52.6%.85

Table 1: Mechanism Contributions to Performance Changes (%)

Exp. Mechanism ∆DSC(%) ∆F1(%)

A P (Y |X,A) 7.4 ± 8.9 12.8 ± 14.8
P (X|S) 1.6 ± 7.1 5.8 ± 12.3

Exp. Mechanism ∆DSC(%) ∆F1(%)

B P (Y |X,A) 2.6 ± 5.8 8.4 ± 9.8
P (X|S) 6.5 ± 9.1 14.2 ± 12.9

4 Discussion and Conclusion86

We extend causal attribution to medical image segmentation, addressing its unique challenges. Our87

findings reveal that dominant failure mechanisms depend critically on deployment context. In Exp.88

A, annotation mechanism contributes 2-3 times more to performance changes. This pattern reverses89

Exp. B, where acquisition shifts dominate. This has direct implications for resource allocation: when90

deploying across institutions with different annotation protocols, prioritize annotation standardization;91

when deploying to new scanner types, focus on scanner harmonization. While our experiments aimed92

to isolate individual mechanisms, real medical datasets contain inherent confounding that cannot be93

fully eliminated. In Exp. A, the acquisition mechanism still contributes 1.6− 5.8%, likely because94

different annotators labeled different case subsets or temporal annotation drift occurred. Importantly,95

the shifted mechanism dominates (1.7-3 times higher attribution). This residual attribution reflects96

real-world deployment where mechanisms rarely shift in complete isolation. Our approach requires a97

known DGP, sufficient samples for discriminator training, and assumes static mechanisms, limiting98

applicability. Future work should validate attribution accuracy using controlled synthetic experiments99

where ground truth is known, enabling evidence-based deployment strategies.100

3



Potential negative societal impacts:101

Over-reliance on attribution results without clinical context could lead to premature deployment deci-102

sions. The framework’s requirement for deployment data may exclude resource-limited institutions,103

potentially widening healthcare disparities. Additionally, focusing solely on dominant mechanisms104

might overlook rare but critical failure modes affecting minority patient subgroups.105
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