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Abstract
Recently the Transformer structure has shown good performances in graph learn-
ing tasks. However, these Transformer models directly work on graph nodes
and may have difficulties learning high-level information. Inspired by the vision
transformer, which applies to image patches, we propose a new Transformer-
based graph neural network: Patch Graph Transformer (PatchGT). Unlike previous
transformer-based models for learning graph representations, PatchGT learns from
non-trainable graph patches, not from nodes directly. It can help save computation
and improve the model performance. The key idea is to segment a graph into
patches based on spectral clustering without any trainable parameters, with which
the model can first use GNN layers to learn patch-level representations and then
use Transformer to obtain graph-level representations. The architecture lever-
ages the spectral information of graphs and combines the strengths of GNNs and
Transformers. Further, we show the limitations of previous hierarchical trainable
clusters theoretically and empirically. We also prove the proposed non-trainable
spectral clustering method is permutation invariant and can help address the in-
formation bottlenecks in the graph. PatchGT achieves higher expressiveness than
1-WL-type GNNs, and the empirical study shows that PatchGT achieves com-
petitive performances on benchmark datasets and provides interpretability to its
predictions. The implementation of our algorithm is released at our Github repo:
https://github.com/tufts-ml/PatchGT.

1 Introduction
Learning from graph data is ubiquitous in applications such as drug design [15] and social network
analysis [37]. The success of a graph learning task hinges on effective extraction of information
from graph structures, which often contain combinatorial structures and are highly complex. Early
works [7] often need to manually extract features from graphs before applying learning models.
In the era of deep learning, Graph Neural Networks (GNNs) [35] are developed to automatically
extract information from graphs. Through passing learnable messages between nodes, they are able
to encode graph information into vector representations of graph nodes. GNNs have become the
standard tool for learning tasks on graph data.

While they have achieved good performances in a wide range of tasks, GNNs still have a few
limitations. For example, GNNs [36] suffer from issues such as inadequate expressiveness [36], over-
smoothing [28], and over-squashing [2]. These issues have been partially addressed by techniques
such as improving message-passing functions and expanding node features [5, 21].
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Another important progress is to replace the message-passing network with the Transformer architec-
ture [6, 18, 24, 38]. These models treat graph nodes as tokens and apply the Transformer architecture
to nodes directly. The main focus of these models is how to encode node information and how to
incorporate adjacency matrices into network calculations. Without the message-passing structure,
these models may overcome some associated issues and have shown premium performances in
various graph learning tasks. However, these models suffer from computation complexity because of
the global attention on all nodes. It is hard to capture the topological information of graphs.

As a comparison, the Transformer for image data works on image patches instead of pixels [9, 22].
While this model choice is justified by reduction of computation cost, recent work [31] shows that
“patch representation itself may be a critical component to the ‘superior’ performance of newer
architectures like Vision Transformers”. One intriguing question is whether patch representation
can also improve learning models on graphs. With this question, we consider patches on graphs.
Patches over graphs are justified by a “mid-level” understanding of graphs: for example, a molecule
graph’s property is often decided by some function groups, each of which is a subgraph formed by
locally-connected atoms. Therefore, patch representations are able to capture such mid-level concepts
and bridge the gap between low-level structures to high-level semantics.

Motivated by our question, we propose a new framework, Patch Graph Transformer (PatchGT). It
first segments a graph into patches based on spectral clustering, which is a non-trainable segmentation
method, then applies GNN layers to learn patch representations, and finally uses Transformer layers to
learn a graph-level representation from patch representations. This framework combines the strengths
of two types of learning architectures: GNN layers can extract information with message passing,
while Transformer layers can aggregate information using the attention mechanism. To our best
knowledge, we firstly show several limitations of previous trainable clustering method based on GNN.
We also show that the proposed non-trainable clustering can provide more reasonable patches and
help overcoming information bottleneck in graphs.

We justify our model architecture with theoretical analysis. We show that our patch structure derived
from spectral clustering is superior to patch structures learned by GNNs [4, 13, 39]. We also propose
a new mathematical description of the information bottleneck in vanilla GNNs and further show
that our architecture has the ability of mitigating this issue when graphs have small graph cuts. The
contributions of this paper are summarized as follows.

- We develop a general framework to overcome the information bottleneck in traditional GNNs
by applying a Transformer on graph patches in Section 3. The graph patches are from an
unlearnable spectral clustering process.

- We prove several new theorems for the limitations of previous pooling methods from the 1-WL
algorithm in Theorem 1 and Theorem 2. And we theoretically prove that PatchGT is strictly
beyond 1-WL and hence has better expressiveness in Theorem 3. Also, in Section 4.4, we
show that the segmentations from hierarchical learnable clustering methods may aggregate
disconnected nodes, which will definitely hurt the performance of the transformer model.

- We demonstrate the existence of information bottleneck in GNNs in Section 4.3. When a graph
consists of loosely-connected clusters, we make the first attempt to characterize such information
bottleneck. And it indicates when there is a small graph cut between two clusters, the GNNs
need to use more layers to pass signals from one group to another. And we further demonstrate
with direct attention between groups, PatchGT could overcome such limitations.

We run an extensive empirical study and demonstrate that the proposed model outperforms competing
methods on a list of graph learning tasks. The ablation study shows that our PatchGT is able to
combine the strengths of GNN layers and Transformer layers. The attention weights in Transformer
layers also provide explanations for model predictions.

2 Related Work
Transformer models have gained remarkable successes in NLP applications [16]. Recently, they have
also been introduced to vision tasks [9] and graph tasks [6, 11, 18, 20, 24, 34, 38, 40]. These models
all treat nodes as tokens. Particularly, Memory-based graph networks[1] apply a hierarchical attention
pooling methods on the nodes. GraphTrans [34] directly applies a GNN on all nodes, followed by
a transformer. Therefore, they are hard to be applied to large graphs because of huge computation
complexity.
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Figure 1: Model review. We segment a graph into several patch subgraphs by non-trainable
clustering. We first extract local information through a GNN, and the initial patch representations are
summarized by the aggregation of nodes within the corresponding patches. To further encode structure
information, we apply another patch-level GNN to update the representations of patches. Finally, we
use Transformer to extract the representation of the entire graph based on patch representations.

At the same time, image patches have been shown to be useful for Transformer models on image data
[9, 31], so it is not surprising if graph patches are also helpful to Transformer models on graph data.
Graph multiset pooling [3] applies trainable pooling methods on the nodes based on GNN. And then
adopt a global attention layer on learned clusters. We will show that such trainable clustering has
several limitations for attention mechanism in this work.

Hierarchical pooling models [4, 12, 13, 19, 27, 39] are relevant to our work in that they also aggregate
information from node representations in middle layers of networks. However, these methods all
form their pooling structures based on representations learned from GNNs. As a result, these pooling
structures inherit drawbacks from GNNs [36]. They may also aggregate nodes that are far apart on the
graph and thus cannot preserve the global structure of the input graph. Also such trainable clustering
methods need much computation for training. Furthermore, our main purpose is to use non-trainable
patches on graphs as tokens for a Transformer model, which is different from these models.

3 Patch Graph Transformer
3.1 Background

In this work, we consider graph-level learning problems. Let G = (V,E) denote a graph with
node set V and edge set E. Let A denote its adjacency matrix. The graph has both node features
X = (xi ∈ Rd : i ∈ V ) and edge features E = (ei,j ∈ Rd′

: (i, j) ∈ E). Let y denote the label of
graph. This work aims to learn a model that maps (A,X,E) to a vector representation g, which is
then used to predict the graph label y.

GNN layers. A GNN uses node vectors to represent structural information of the graph. It consists of
multiple GNN layers. Each GNN layer passes learnable messages and updates node vectors. Suppose
H = (hi ∈ Rd′′

: i ∈ V ) are node vectors, a typical GNN layer updates H as follows.

h′
i = σ(W1hi +

∑
j:(i,j)∈E

W2hj +W3ei,j) (1)

Here matrices (W1,W2,W3) are all learnable parameters; and σ is the activation function. We
denote the layer function by H′ = GNN(A,E,H). If there are no edge features, then the calculation
can be written in matrix form.

H′ = σ(HW⊤
1 +AHW⊤

2 ) (2)
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3.2 Model design

PatchGT has three components: segmenting the input graph into patches, learning patch represen-
tations, and aggregating patch representations into a single graph vector. The overall architecture
is shown in Figure 1. The second and third steps are in an end-to-end learning model. Graph
segmentation is outside of the learning model, which will be justified by our theoretical analysis later.

Forming patches over the graph. We first discuss how to form patches on a graph. One consideration
is to include an informative subgraph (e.g., a function group, a motif) into a single patch instead of
segmenting it into pieces. A reasonable approach is to run node clustering on the input graph and
treat each cluster as a graph patch. If a meaningful subgraph is densely connected, it has a good
chance of being contained in a single cluster.

In this work, we consider spectral clustering [30, 41] for graph segmentation. Let L = I −
D−1/2AD−1/2 be the normalized Laplacian matrix of G, and its eigen-decomposition is L =
UΛU⊤, where the eigen-values Λ = diag(λ1, . . . , λ|V |) is sorted in the ascending order. By
thresholding eigen-values with a small threshold γ, we get k = argmaxk′ λk′ ≤ γ eigen-vectors
U1:k, then we run k-means to get k clusters (denoted by P) of graph nodes. Here P = {Ck′ ⊂
V : k′ = 1, . . . , k} with each Ck′ representing a cluster/patch. Note that the threshold γ is a
hyper-parameter, and k varies depending on the underlying graph’s topology.

Computing patch representations. When we learn representations of patches in P , we consider
both node connections within the patch and also connections between patches. Patches form a coarse
graph, which is also referred as a patch-level graph, by treating patches as nodes and their connections
as edges. We first learn node representations using GNN layers. Let H0 = X denote the initial
representations of all nodes. Then we apply L1 GNN layers to get node representations HL1 .

Hℓ = GNN(A,E,Hℓ−1), ℓ = 1, . . . , L1 (3)

Here for easier discussion, we apply GNN layers to the entire graph. We have also tried to apply
GNN layers within each patch only and found that the performance is similar.

Then we read out the initial patch representation by summarizing representations of nodes within this
patch. Let z0k′ denote the initial patch representation, then

z0k′ =
|Ck′ |
|V |

· readout(hL1
i : i ∈ Ck′), k′ = 1, . . . , k (4)

Here hL1
i is node i’s representation in HL1 . We collectively denote these patch representations in

a matrix Z0 = (z0k′ : k′ = 1, . . . , k). The readout function readout(·) is a function aggregating
information from a set of vectors. Our implementation uses the max pooling. We use the factor |Ck′ |

|V |
to assign proper weights to patch representations.

To further refine patch representations and encode structural information of the entire graph, we apply
further GNN layers to the patch-level formed by patches. We first compute the adjacency matrix
Ã of the patch-level graph. If we convert the partition P to an assignment matrix S = (Si,k′ : i ∈
V, k′ = 1, . . . k) such that Si,k′ = 1[i ∈ Ck′ ], then the adjacency matrix over patches is

Ã = 1
[
(S⊤AS) > 0

]
. (5)

Note that Ã only has connections between patches and does not maintain connection strength.

We then compute use L2 GNN layers to refine patch representations.

Zℓ = GNN(Ã,0,Zℓ−1), ℓ = 1, . . . , L2 (6)

GNN layers here do not have edge features. From the last layer, we get patch representations in ZL2

Graph representation via Transformer layers. Then we use L3 Transformer layers to extract the
representation of the entire graph. Here we use a learnable query vector q0 to “retrieve” the global
representation g of the graph from patch representations ZL2

.

q′
ℓ = MHA(qℓ−1,ZL2 ,ZL2) , ℓ = 1, . . . , L3 (7)

qℓ = MLP(q′
ℓ) + qℓ−1, ℓ = 1, . . . , L3 (8)

g = LN(qL3
) (9)
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Here MHA(·, ·, ·) is the function of a multi-head attention layer (please refer to Chp. 10 of [42]). Its
three arguments are the query, key, and value. The two functions MLP(·) and LN(·) are respectively
a multi-layer perceptron and a linear layer. Note that patch representations ZL2 are carried through
without being updated. Only the query token is updated to query information from patch representa-
tions. The final learned graph representation is g, from which we can perform various graph level
tasks.

4 Theoretical Analysis
In this section, we study the theoretical properties of the proposed model. To save space, we put all
proofs in the appendix.

4.1 Enhancing model expressiveness with patches

On purpose we form graph patches using a clustering method that is not part of the neural network.
An alternative consideration is to learn such cluster assignments with GNNs (e.g. DiffPool [39] and
MinCutPool[4]. However, cluster assignment learned by GNNs inherits the limitation of GNNs and
hinders the expessiveness of the entire model.
Theorem 1. Suppose two graphs receive the same coloring by 1-WL algorithm, then DiffPool will
compute the same vector representation for them.

Although DiffPool and MinCutPool claims to cluster “similar” graph nodes into clusters during
pooling, but these nodes may not be connected. Because of the limitation of GNNs, they may
aggregate nodes that are far apart in the graph. For example, nodes in the same orbit always get the
same color by the 1-WL algorithm and also the same representations from a GNN, then these nodes
always have the same cluster assignment. Merging these nodes into the same cluster does not seem
capture the high-level structure of a graph.

Another prominent pooling method is the Graph U-Net [12], which has similar issues. We briefly
introduce its calculation here. Suppose the layer input is (A,H), the model’s pooling layer projects
H with a unit vector p and gets values v = Hp for all nodes, then it chooses the top k nodes that
have largest values in v and keep their representations only. We will show that this approach is NOT
invariant to node orders.

We also consider a small variant of Graph U-Net for analysis convenience. Instead of choosing k
nodes with top values in v, the variant uses a threshold β (either learnable or a hyper-parameter) to
choose nodes: b = v ≥ β. Then the output of the layer is (A[b,b],H[b]). We call the model with
the variant with thresholding as Graph U-Net-th. We show that the variant of Graph U-Net-th is also
bounded by the 1-WL algorithm.
Theorem 2. Suppose two graphs receive the same coloring by 1-WL algorithm, then Graph U-Net-th
will compute the same vector representation for them.

The two theorems strongly indicate that pooling structures learned by GNNs have the same drawback.
We provide detailed analysis for Graph U-Net in Appendix A.3.

In contrast, a small variant of PatchGT is more expressive than the 1-WL algorithm. Figure 7 in
Appendix shows two graph pairs that can be distinguished by PatchGT but not the 1-WL algorithm.
In this PatchGT variant, we only need to choose the summation operation to aggregate node represen-
tations in the same patch and multiply a scalar to the MHA output. We put the result in the following
Theorem.
Theorem 3. Suppose a PatchGT uses GIN layers, uses sum-pooling as the readout function in
Equation (4), z0k′ =

∑
i∈Ck′ h

L1
i , and multiplies the MHA output in Equation (7) with the number k

of patches, q′
ℓ = k ·MHA(qℓ−1,ZL2 ,ZL2). Let g1 and g2 be outputs computed from two graphs

G1 and G2 by a PatchGT model. There exists a PatchGT such that g1 ̸= g2 if G1 and G2 can be
distinguished by the 1-WL algorithm. Furthermore, there are graph pairs G1 ̸= G2 that cannot be
distinguished by the 1-WL algorithm, but g1 ̸= g2 from this PatchGT model.

The first part of the conclusion is true because the patch aggregation, patch-level GNN, and the MHA
pooling can all be bijective mapping. According to Corollary 6 of [36], the outputs of GIN layers
have the same expressive power as the 1-WL algorithm. Such expressive power is maintained in the
model output. However, when GIN layers on patches use extra structural information on patches, the
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1-WL algorithm (nodes are colored by the
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Figure 3: It is hard for a GNN to push signal from one
graph cluster to the other, but a patch-level GNN can do
so with patch representations.

model can distinguish graphs that cannot be distinguished by the 1-WL algorithm. We put the formal
proof in Appendix A.4.

4.2 Permutation invariance

Our model depends on the patch structure formed by the clustering algorithm, which further depends
on the spectral decomposition of the normalized Laplacian. Note that the spectral decomposition is
not unique, but we show that the clustering result is not affected by sign variant and multiplicities
associated with decomposition, and our model is still invariant to node permutations.
Theorem 4. The network function of PatchGT is invariant to node permutations.

4.3 Addressing information bottleneck with patch representations

Alon et al. [2] recently characterize the issue of information bottleneck in GNNs through empirical
methods. Here we consider this issue on a special case when a graph consists of loosely-connected
node clusters. Note that molecule graphs often have this property. Here we make the first attempt
to characterize the information bottleneck through theoretical analysis. We further show that our
PatchGT can partially address this issue.

For convenient analysis, we consider a regular graph with degree τ . Suppose the node set V of G
forms two clusters S and T : V = S ∪ T, S ∩ T = ∅, and there are only m edges between S and T .

We consider the difficulty of passing signal from S to T . Let fGNN(·) denote the network function
of a GNN of L layers with ReLU activation σ as in (2), and input X = (xi ∈ Rd : i ∈ V ) ∈ R|V |×d,
which contains d-dimensional feature inputs to nodes in G. Let fGNN

i (·) be the output at node i.
We can ask this question: if we perturb the input to nodes in S, how much impact we can observe
at the output at nodes in T . We need to avoid the case that the impact is amplified by scaling up
network parameters. In real applications, scaling up network parameters also amplifies signals within
T itself, and the signal from S still cannot be well received. Here we consider relative impact: the
ratio between the impact on T from S over that from T itself.

Let α ∈ R|V |×d be some perturbation on S such that αij ≤ ϵ if i ∈ S and αij = 0 otherwise. Here
ϵ is the scale of the perturbation. Similarly let β ∈ R|V |×d be some perturbation on T : βij ≤ ϵ if
i ∈ T and βij = 0 otherwise. Then the impacts on node representations fGNN

i , i ∈ T from α and β
are respectively

δS→T = max
α

∑
i∈T

∥fGNN
i (X+α)− fGNN

i (X)∥1 (10)

δT→T = max
β

∑
i∈T

∥fGNN
i (X+ β)− fGNN

i (X)∥1 (11)

where the maximum is also over all possible learnable parameters ∥W1∥L1→L1 , ∥W2∥L1→L1 ≤ 1
as in (2). Then we have the following proposition to bound the ratio δS→T /δT→T .
Proposition 1. Given a τ -regular graph G, a node subset S with its complement T such that there
are only m edges between S and T , and a L-layer GNN, it holds that

δS→T

δT→T
≤ 2mL

|T |
(12)

The proposition indicates that when there is a small graph cut between two clusters, then it forms
an information bottleneck in a GNN – the network needs to use more layers to pass signal from one
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Figure 4: Segmentation results from spectral clustering and trainable clustering.

group to another. The bound is still conservative: if the signal is extracted in middle layers of the
network, then passing the signal is even harder. The proposition is illustrated in Figure 3.

In our PatchGT model, communication can happen at the coarse graph and thus can partially
address this issue. The coarse graph Ã consists of two nodes (we still denote them by S, T ), and
there is an edge between S and T . From the output fGNN, we construct the patch representations
(zS , zT ) = ( 1

|V |
∑

i∈S fGNN
i (X), 1

|V |
∑

i∈T fGNN
i (X)) ∈ R2×d. Then we apply a GNN layer to

get node represents on the coarse graph (gGNN
S (X), gGNN

T (X)) ∈ R2×d:

gGNN
S (X) = σ(zSW

⊤
1 + zTW

⊤
2 ), gGNN

T (X) = σ(zTW
⊤
1 + zSW

⊤
2 ), (13)

where W1,W2 ∈ Rd×d are learnable parameters. We consider the impact of α on our patch GT, let

ηS→T = max
α

∥gGNN
T (X+α)− gGNN

T (X)∥1 (14)

ηT→T = max
β

∥gGNN
T (X+ β)− gGNN

T (X)∥1, (15)

Then we have the following proposition on the ratio ηS→T /ηT→T .
Theorem 5. The ratio ηS→T

ηT→T
can be arbitrarily close to 1 in a PatchGT model, under the assumption

of regular graphs.

This is because S and T are direct neighbors in the coarse graph, then αS can directly impact zS ,
which can impact gGNN

T through messages passed by GNN layers or the attention mechanism of
Transformer layers. The right part of fig. 3 shows that patch representation can include signals from
the other node cluster.

4.4 Comparison for different Segmentation methods

In the previous researches, there exist many hierarchical pooling models [4, 12, 13, 19, 27, 39]. The
most obvious difference from the proposed method is that the pooling/segmentation is trainable.
Particularly, the pooling is from the node respresentations learned by GNNs. In the Theorem 1 and
Theorem 2, we prove such trainable clustering methods will compute the same representations to the
nodes if 1-WL algorithm can not differentiate them. This takes two serious problems for the graph
segmentation: First, the nodes with the same representations will be assigned to the same cluster even
if they are not connected to each other; Second, too many nodes could be assigned to one cluster to
make sure that the nodes far away from each other are in the same cluster.

Here we compare the two segmentation results: one is from spectral clustering and another is from
Memory-based graph networks[1] which is a typical trainable clustering method. In the first case,
we find that nodes in the blue cluster from trainable clustering are not connected. If we adopt such
patch representations by aggregating the disconnected nodes, it will definitely hurt the performance.
This can also be applied to other hierarchical pooling methods such as Diffpool, Eigenpool, and
MinCutpool.

In the second case, the spectral clustering methods segment the graph by minimum cuts. This is
helpful to solve the information bottleneck between patches. However, the Memory-based graph
networks cluster the two benzene rings together. It will be difficult for the model to detect the
existence of these two benzene rings.
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5 Empirical Study
In this section, we evaluate the effectiveness of PatchGT through experiments.

Datasets. We benchmark the performances of PatchGT on several commonly studied graph-level
prediction datasets. The first four are from the Open Graph Benchmark (OGB) datasets [14] (ogbg-
molhiv, ogbg-molbace, ogbg-molclintox, and ogbg-molsider). These tasks are predicting molecular
attributes. The evaluation metric for these four datasets is ROC-AUC (%). The second group of six
datasets are from the TU datasets [25], and they are DD, MUTAG, PROTEINS, PTC-MR, ENZYMES,
and Mutagenicity. Each dataset contains one classification task for molecules. The evaluation metric
is accuracy (%) over all six datasets. The statistics for the datasets is summarized in Appendix A.11.

5.1 Quantitative evaluation

Table 1: Results (%) on OGB datasets

ogbg-molhiv ogbg-molbace ogbg-molclintox ogbg-molsider
GCN +VN 75.99 ±1.19 71.44 ± 4.01 88.55±2.09 59.84±1.54
GIN + VN 77.07±1.49 76.41±2.68 84.06±3.84 57.75 ±1.14
Deep LRP 77.19±1.40 - - -
PNA 79.05±1.32 - - -
Nested GIN 78.34±1.86 74.33±1.89 86.35±1.27 61.2±1.15
GRAPHSNN +VN 79.72±1.83 - - -
Graphormer (pre-trained) 80.51±0.53 - - -
PatchGT-GCN 80.22±0.84 86.44±1.92 92.21 ±1.35 65.21 ± 0.87
PatchGT-GIN 79.99±1.21 84.08±2.03 86.75 ±1.04 64.90 ±0.92
PatchGT-DeeperGCN 78.13 ± 1.89 88.31±1.87 89.02± 1.21 65.46±1.03

Table 2: Results (%) on TU datasets

DD MUTAG PROTEINS PTC-MR ENZYMES Mutagenicity
GCN 71.6±2.8 73.4±10.8 71.7±4.7 56.4±7.1 50.17 -
GraphSAGE 71.6±3.0 74.0±8.8 71.2±5.2 57.0±5.5 54.25 -
GIN 70.5±3.9 84.5±8.9 70.6±4.3 51.2±9.2 59.6 -
GAT 71.0±4.4 73.9±10.7 72.0±3.3 57.0±7.3 58.45 -
DiffPool 79.3±2.4 - 72.7±3.8 - 62.53 77.6±2.7
MinCutPool 80.8±2.3 - 76.5±2.6 - - 79.9±2.1
Nested GCN 76.3±3.8 82.9±11.1 73.3±4.0 57.3±7.7 31.2±6.7 -
Nested GIN 77.8±3.9 87.9±8.2 73.9±5.1 54.1±7.7 29.0±8.0 -
DiffPool-NOLP 79.98 - 76.22 - 61.95 -
SEG-BERT - 90.8 ±6.5 77.1±4.2 - - -
U2GNN 80.2±1.5 89.9±3.6 78.5±4.07 - - -
EigenGCN 78.6 - 76.6 - 64.5 -
Graph U-Nets 82.43 - 77.68 - - -
PatchGT-GCN 83.3±3.1 94.7±3.5 80.3±2.5 62.5±4.1 73.3±3.3 78.3±2.2
PatchGT-GIN 79.6±3.3 89.4±3.2 79.5±3.1 58.4±2.9 70.0±3.5 80.4±1.4
PatchGT-DeeperGCN 76.1±2.8 89.4±3.7 77.5±3.4 60.0±2.6 56.6±3.1 80.6±1.5

Baselines. In this section, we compare the performance of PatchGT against several baselines including
GCN [17], GIN [36], as well as recent works Nested Graph Neural Networks [44] and GraphSNN
[33]. To compare with learnable pooling methods, we also include DiffPool [39], MinCutPool [4]
Graph U-Nets[12], and EigenGCN[23] as baselines for TU datasets. We also include the Graphormer
model, but note that Graphormer needs a large-scale pre-training and cannot be easily applied to a
wider range of datasets. We also compare our model with other transformer-based models such as
U2GNN[26] and SEG-BERT[43].

Settings. We search model hyper-parameters such as the eigenvalue threshold, the learning rate, and
the number of graph neural network layers on the validation set. Each OGB dataset has its own data
split of training, validation, and test sets. We run ten fold cross-validation on each TU dataset. In
each fold, one-tenth of the data is used as the test set, one-tenth is used as the validation set, and the
rest is used as training. For the detailed search space, please refer to Appendix A.12.
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Figure 5: Analysis of the key design for the proposed PatchGT. All results are based on PatchGT
GCN. In the left figure, we show how changing the threshold for eigenvalues affects performance
on the ogbg-molclintox and PROTEINS datasets; The middle figure shows the model performances
with the removal of patch-GNN or Transformer (replaced by mean pool) on DD and ogbg-molhiv
datasets; The right figure shows the effect of the different readout functions for patch representations.

Figure 6: Attention visualization of PatchGT on ogbg-molhiv molecules. The second and fourth
figures show the attention weights of query tokens on the node patches for the corresponding
molecules, which are in the first and third figures. The molecule in the first figure does not inhibit
HIV virus, yet the molecule in the third figure does.

Results. Table 1 and Table 2 summarize the performance of PatchGT and other baselines on OGB
datasets and TU datasets. We take values from the original papers and the OGB website; EXCEPT
the performance values of Nested GIN on the last three OGB datasets – we obtain the three values by
running Nested GIN. We also tried to run the contemporary method GRAPHSNN+VN on the other
three OGB datasets, but we did not find the official implementation at the submission of this work.

From the results, we see that the proposed method gets good performances on almost all datasets
and often outperforms competing methods with a large margin. On the ogbg-molhiv dataset, the
performance of PatchGT with GCN is only slightly worse than Graphormer, but note that Graphormer
needs large-scale pre-training, which limits its applications.

PatchGT with GCN outperforms three baselines on the other three OGB datasets. The improvements
on these three OGB datasets are significant. PatchGT with GCN outperforms baselines on four out
of six TU datasets. When it does not outperform all baselines, its performances are only slightly
worse than the best performance. Similarly, two other configurations, PatchGT-GIN and PatchGT-
DeeperGCN, also perform very well on these two datasets.

5.2 Ablation study

We perform ablation studies to check how different configurations of our model affect its performance.
The results are shown in Figure 5.

Effect of eigenvalue threshold. The eigenvalue threshold γ influences how many patches for a
graph after the segmentation. Generally speaking, larger γ introduces more patches and patches with
smaller sizes. When γ is large enough, the number of patches k equals the number of nodes |V | in the
graph, and the Transformer actually works at the node level. When the γ is 0, then the whole graph is
treated as one patch, and the model is reduced to a GNN with pooling. The left figure shows that
there is a sweet point (depending on the dataset) for the threshold, which means that using patches is
a better choice than not using patches.
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Effect of GNN layer on the coarse graph and Transformer layers. This ablation study removes
either patch-level GNN layers or Transformer layers to check which part of the architecture is
important for the model performance. From the middle plot in Figure 5, we see that both types of
layers are useful, and Transformer layers are more useful. This is another piece of evidence that
PatchGT can combine the strengths of different models.

Comparison of readout functions. We compare the performance of PatchGT model using different
readout functions when aggregating node representations at each patch in Equation (4). In the right
figure, we observe the remarkable influence of the readout function on the performance. Empirical
studies indicate max-pooling is the optimal choice under most circumstances.

5.3 Understanding the attention

Besides improving learning performances, we are also interested in understanding how the attention
mechanism helps the model identify the graph property. We train the PatchGT model on the ogbg-
molhiv dataset and visualize the attention weights between query tokens and each patch. Interestingly,
the attention only concentrates on some chemical motifs such as Cl O3 and CON2 but ignores other
very common motifs such as benzene rings. It can be noticed that for the molecule in the first figure,
the two benzene rings are connected to each other by -C-C-. However, the model does not pay any
attention to this part. The two rings in the molecule of the second molecule are connected by -S-S-;
differently, the model pays attention to this part this time. It indicates that Transformer can identify
which motifs are informative and which motifs are common. Such property offers better model
interpretability compared to the traditional global pooling. It not only makes accurate predictions but
also provides some insight into why decisions are made. In the two examples shown above, we can
start from motifs SO3 and -S-S- to look for structures meaningful for the classification problem.

6 Conclusion and Limitations
In this work, we show that graph learning models benefit from modeling patches on graphs, particu-
larly when it is combined with Transformer layers. We propose PatchGT, a new learning model that
uses non-trainable clustering to get graph patches and learn graph representations based on patch
representations. It combines the strengths of GNN layers and Transformer layers and we theoretically
prove that it helps mitigate the bottleneck of graphs and limitations of trainable clustering. It shows
superior performances on a list of graph learning tasks. Based on graph patches, Transformer layers
also provides a good level of interpretability of model predictions.

However, the work tested our model mostly on chemical datasets. It is unclear whether the model
still performs well when input graphs do not have clear cluster structures.
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A Appendix
A.1 Proof of Theorem 1

The proof that DiffPooling cannot distinguish graphs that are colored in the same way by the 1-WL
algorithm.

Proof. The function form of a pooling layer in DiffPooling is

H′ = S⊤ASS⊤H, S = gnnc(A,X), H = gnnr(A,X) (16)

Here gnnc(·, ·) learns a cluster assignment S of all nodes in the graph, and gnnr(·, ·) learns node
representations.

Note that gnnr has at most the ability of 1-WL algorithm [36]. Two nodes must get the same
representation when they have the same color in the 1-WL coloring result. We use an indicator matrix
C to represent the 1-WL coloring of the graph, that is, the node i is colored as j if Ci,j = 1, then we
can write

S = CB (17)

Here the j-th row of B denote the vector representation learned for color j.

If two graphs represented by A and Λ cannot be distinguished by the 1-WL algorithm, then they get
the same coloring matrix C (subject to some node permutation that does not affect our analysis here).
Now we show that:

C⊤AC = C⊤ΛC (18)

Let’s compare the two matrices on both sides of the equation at an arbitrary entry (k, t). Let αk

and αt represent nodes colored in k and t, then the entry at (k, t) is
∑

i∈αk

∑
j∈αt

Ai,j , which is
the count of edges that have one incident node colored in k and the other incident node colored
in t. Since the coloring is obtained by 1-WL algorithm, each node i ∈ αk has exactly the same
number of neighbors colored as t. The number of nodes in color k and the number of neighbors
in color t are exactly the same for Λ because Λ receives the same coloring as A. Therefore,∑

i∈αk

∑
j∈αt

Ai,j =
∑

i∈αk

∑
j∈αt

Λi,j , and (18) holds.

At the same time, if two graphs cannot be distinguished by 1-WL, they have the same node represen-
tations H, then they have the same H′.

A.2 Proof of Theorem 2

We first prove a lemma.
Lemma 1. Suppose two graphs represented by A and Λ obtain the same coloring from the 1-WL
algorithm, then

i) the resultant two graphs from removal of nodes in the same color still get the same coloring by
the 1-WL algorithm; and

ii) the two multigraphs represented by Aℓ and Λℓ still get the same coloring by the 1-WL algorithm.

Here Aℓ and Λℓ are the ℓ-th power of the two adjacency matrices, and they represent multigraphs that
may have self-loops and parallel edges. The 1-WL algorithm is still valid over graphs with self-loops
and multi-edges. A 1-WL style GNN defined in Section 3.1 or [12] is still bounded by the 1-WL
algorithm on such multigraphs.

Proof. i) We first consider updating of 1-WL coloring when nodes in a color is removed. Suppose
we have stable coloring of graphs represented by A. Let αt and αr denote two groups of nodes in
color t and r respectively. We also assume each node in r has t in its color set – if there are not such
cases, then we can simply remove nodes in a color and obtain a stable 1-WL coloring.

Suppose we remove nodes in color t from both graphs. Note that all nodes αr have the same number
of neighbors in color t. We update the color set of each i ∈ αr by removing color t from it. Then all
nodes in αr still get the same color. Therefore, removing the color t from nodes in all relevant color
groups gives at least a stable coloring, which, however, might not be the coarsest.
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Then we merge some colors when nodes share the same color set. If a node in color r has the same
color set as a node in color r′, then we assign the same color to both nodes in colors r and r′. We run
merging steps until no nodes in different colors share the same color set, then the coloring is a stable
coloring of the graph, and the resultant coloring of the graph can be viewed as the 1-WL coloring of
the graph.

In the procedure above, the step of removing a color, and the steps of merging colors directly operate
on nodes’ color sets. Since nodes in A and nodes in Λ have the same color sets, therefore, they will
have the same color sets after color updates.

The update procedure above purely runs on color relations between different colors. Since A and Λ
have exactly the same color relations because they receive the same 1-WL coloring. Therefore, the
update procedure above still gives the same stable coloring to A and Λ.

ii) For the second part of the lemma, we first check the coloring of Aℓ. We show that the coloring
of A is a stable coloring of Aℓ. Suppose each node i has a color set Ci. In the graph Aℓ, i’s ℓ-th
neighbors become direct neighbors of i. The color set of i becomes

Ci ∪
(
∪j1∈N(i)Cj

)
∪ . . . ∪

(
∪j1∈N(i) . . . ∪jℓ∈N(jℓ−1) Cjℓ

)
(19)

We know that if two nodes i and i′ have the same color if and only if their color sets are the same. By
using the relation recursively, i and i′ have the same color set in Aℓ. Therefore, the stable coloring of
A is also a stable coloring of Aℓ. If necessary, we can also run the merging procedure above and
eventually get 1-WL coloring of Aℓ. With the same argument as above, the operations only run on
color sets, therefore, Aℓ and Λℓ have the same coloring.

Now we are ready to prove the main theorem that the Graph U-Net variant cannot distinguish graphs
colored in the same way by the 1-WL algorithm.

Proof. In the calculation of Graph U-Net-th, the indicator b for removing nodes is obtained by
thresholding v, which is computed by a 1-WL GNN. Therefore, nodes in the same color are always
kept or removed all together in b.

Suppose the inputs to a Graph U-Net layer are (A,X) and (Λ,X) respectively, and A and Λ
cannot be distinguished by the 1-WL algorithm. The inputs to next layer are (Aℓ[b,b],X[b]) and
(Λℓ[b,b],X[b]) respectively. By the lemma above, the 1-WL algorithm cannot distinguish Aℓ and
Λℓ, and it cannot be distinguish Aℓ[b,b] and Λℓ[b,b] either. Therefore, it still cannot distinguish
the inputs (Aℓ[b,b],X[b]) to the next layer.

By using the argument above recursively, the network cannot distinguish the graph at the final outputs
if network inputs (A,X) and (Λ,X) cannot be distinguished by the 1-WL algorithm.

Remark 1. For graphs with noise or low homophily ratios, the aforementioned issue may not be
severe and long-distance aggregation is helpful.

A.3 Analysis for expressiveness of Graph U-Nets

In this section we use an example in Fig. 7 to understand how to maintain a graph’s global structure
with pooling operations. In a pooling step, DiffPool and MinCutPool will assign nodes in the same
color to the same cluster and merge them as one node. Clearly it does not maintain the global structure
of the graph and cannot distinguish the two graphs.

Graph U-Net always ranks nodes in one color above nodes of the other color. It is not always
permutation invariant: for example, it may get different structures when it breaks tie to take two
green nodes. In many cases, it cannot distinguish the two graphs: when it takes three nodes, either
three green nodes or two blue and one green nodes, it cannot distinguish the two graphs. The Graph
U-Net variant considered above always remove blue or green nodes, thus it cannot distinguish the
two graphs. One important observation is Graph U-Net cannot preserve the global graph structure in
its pooling steps. For example, when it removes three nodes, the structure left is vastly different from
the original graph.
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Figure 7: Two graphs that cannot be distinguished by the 1-WL algorithm. The colors illustrate
the 1-WL coloring of graph nodes. In comparison, PatchGT can differentiate them through the
patch-level graph.

A.4 A proof showing that PatchGT is more expressive than the 1-WL algorithm

Proof. From the proof of GIN, we know that the two multi-sets {hL1
i : i ∈ G1} and {hL1

i : i ∈ G2}
are already different if the two graphs can be distinguished by the L1-round 1-WL algorithm.

Then we show that the rest of a learned network from Equation (4) to Equation (9) is a bijective
operation. We first consider the patch aggregation by the sum-pooling is bijective. According to
Corollary 6 of [36], and assuming the GIN layers are properly trained, then there is an inverse inv(·)
of sum-pooling such that {hL1

i : i ∈ Ck′} = inv(z0). Then the inverse of patch aggregation is:

{hL1
i : i ∈ G1} = ∪k

k′=1inv(z
0
k′) (20)

If the L2 GNN layers on patches are also properly trained, then the mapping from Z0 to ZL2 is also
bijective. At the same time, we assume vectors in ZL2 are properly transformed, which will be useful
in the following MHA operation.

Finally, we consider MHA layers. We first analyze the case with only one layer with one attention

head. Note that q1 = k · softmax
(
q⊤
0 ZL2

/
√
d
)⊤

ZL2
with d being the dimension of row vectors

in Z1. Suppose PatchGT learns the query q0 to be a zero vector, and the linear transformation in
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Equation (9) is the identity operation, then g1 = q1 = 1⊤ZL2 , which is the summation of patch
vectors ZL2 . Combining the last GIN layer, this summation is a bijective operation according to
Corollary 6 of [36]. If there are multiple MHA layers, then we only need the MLP in Equation (8) to
zero out the input, and the layer is equivalent to no operation. If there are multiple attention heads,
the network can always take the first attention head. Therefore, a general case of MHA layers can
also be a summation of input vectors.

Putting these steps together, there is an inverse mapping g1 to {hL1
i : i ∈ G1} and mapping g2 to

{hL1
i : i ∈ G2}. Then g1 and g2 must be different.

We further show that there are cases that cannot be distinguished by the 1-WL algorithm but can
be distinguished by PatchGT. Consider two examples in Figure 7. The two original graphs G1 and
G2, or G3 and G4, are non-isomorphic. However, both the 1-WL algorithm cannot differentiate
them. In comparison, by segmenting these graphs into patches, PatchGT can discriminate G1 from
G2. After segmentation, the two patches from G1 and the pacthes G2 can be distinguished by the
1-WL algorithm and also PatchGT. Note that node degrees of G1 patches are already different from
node degrees of G2 patches. It is the same for G3 and G4. These two examples indicate that the
expressiveness of PatchGT is beyond 1-WL algorithm.

A.5 Proof of Theorem 4

We prove the theorem 4 through three lemmas below.
Lemma 2. The patches split via k-means are invariant to column vectors in U from the spans of
eigenvectors associated with the multiplicities of eigenvalues.

kmeans(V) = kmeans(VQ) (21)

where Q is a standard block-diagonal rotation matrix.

Proof. If we use Nu eigenvectors for the graph patch splitting, corresponding to the first Nu smallest
eigenvalues, we can write them as (λ1,u1), ..., (λNu ,uNu). If we have multiplicities in these
eigenvalues, we can rotate the eigenvectors by a block-diagonal rotation matrix Q ∈ RNu×Nu to
obtain another set of eigenvectors,

U′ = [u′
1, ...,u

′
k] = [u1, ...,uk]Q = UQ (22)

where ui,u
′
i ∈ R|V |×1. If we perform k-means on the row vectors of [(u1)i, ..., (uk)Nu

], we can
write the nodes’ coordinates as

[x1; ...;x|V |] = [u1, ...,uNu
]. (23)

Similarly, we can write down the new coordinates after rotation as

[x′
1; ...;x|V |] = [u′

1, ...,u
′
Nu

]. (24)

From the above three equations, it holds that

[x′
1; ...;x|V|′ ] = [x1; ...;x|V|]Q. (25)

So for i, j ∈ {1, ..., |V |}, we have

x′
i = xiQ x′

j = xjQ. (26)

The relative distance of new coordinates can be calculated as

(x′
i − x′

j)(x
′
i − x′

j)
⊤ = (xiQ− xjQ)(xiQ− xjQ)⊤ = (xi − xj)QQ⊤(xi − xj)

⊤. (27)

From the property of the rotational matrix, we have

I = QQ⊤. (28)

So it holds that
(x′

i − x′
j)(x

′
i − x′

j)
⊤ = (xi − xj)(xi − xj)

⊤. (29)
So for any two node pair, the relative distance is preserved, thus it will not affect the k-means
results.
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Lemma 3. The patches split via k-means are invariant to column vectors in U with different signs.

Proof. The sign invariance is a special case of rotation invariance by taking Q as a diagonal matrix
with entry (Q)ii ∈ {−1, 1}

Lemma 4. The patches split via k-means are invariant to the permutations of nodes

kmeans(U) = kmeans(PU) (30)

where P is a permutation matrix.

Proof. We denote I|V | = [1, ..., 1]⊤ ∈ R|V |×1 For a permutation matrix P of A, we have the
corresponding permutation matrix P such that

A′ = P⊤AP (31)

where A and A′ are adjacency matrices of G and G′ respectively. And the for the degree matrix of
G and G′

D = diag(A′I|V |), D
′ = diag(A′I|V |) (32)

Substitute equation31 into equation 32

D′ = diag(P⊤API|V |) = diag(P⊤AP(P⊤I|V |P)) (33)

From the symmetry of the permutation matrix, it holds that

P−1 = P⊤ (34)

Combine the above three equations, we can get

D′ = P⊤diag(AI|V |)P = P⊤DP (35)

So the permuted Laplacian matrix is

L′ = I−D′−0.5A′D′−0.5 = P⊤IP−P⊤D−0.5PP⊤APP⊤D−0.5P

= P⊤(I−D−0.5AD−0.5)P = P⊤LP
(36)

Substitute into the Laplacian eigen decomposition, we have the equation

L′ − λI = P⊤LP⊤ −P⊤λIP = P⊤(L− λI)P (37)

and its algebraic form

det(L′ − λI) = det(P⊤)det(L− λI)det(P) = det(L− λI), (38)

so the eigenvalues are remaining invariant.

Next we look at the eigenvector. For a eigenvector of bL′, (λ,u′), we have

L′u′ = λu′ (39)

Combine with equation 36, we can get

P⊤LPu′ = λu′ ⇐⇒ L(Pu′) = λ(Pu′) (40)

So we have the relation of two corresponding eigenvectors as

u = Pu′ ⇐⇒ u′ = P⊤u (41)

So we have the relation for the node coordinate

[x′
1; ...;x

′
|V |] = PT [x1; ...;x|V |]. (42)

Thus there is a bijective mapping B : n → m such that (P)nB(n) = 1 and xn = x′
B(n). Then for any

node pair (i, j), we can find (i′, j′) = (B(i),B(j)) such that

xi = x′
i′ , xj = x′

j′ , (43)

then it clearly holds that

(xi − xj)(xi − xj)
⊤ = (x′

i′ − x′
j′)(x

′
i′ − x′

j′)
⊤. (44)

So for any two node pair, the relative distance is preserved, thus it will not affect the k-means
results.
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A.6 Multi-head attention

Transformer [32] has been proved successful in the NLP and CV fields. The design of multi-head
attention (MHA) layer is based on attention mechanism with Query-Key-Value (QKV). Given the
packed matrix representations of queries Q, keys K, and values V, the scaled dot-product attention
used by Transformer is given by:

ATTENTION(Q,K,V) = softmax

(
QKT

√
Dk

)
V, (45)

where Dk represents the dimensions of queries and keys.

The multi-head attention applies H heads of attention, allowing a model to attend to different types
of information.

MHA(Q,K,V) = CONCAT(head1, . . . ,headH)W

where headi = ATTENTION
(
QWQ

i ,KWK
i ,VWV

i

)
, i = 1, . . . ,H. (46)

A.7 Proof of proposition 1

Given a L layer GNN with uniform hidden feature and initial feature H0 = X, for l = 0, ..., L, the
recurrent output of a GNN layer Hl+1 follows

Hl+1 = σ(HlW
⊤
1l +AHlW

⊤
2l) (47)

where Hl ∈ R|V |×d, W1l,W2l ∈ Rd×d. And then we introduce another recurrent relationship to
track the output change of each layers propagated from an initial perturbation ϵ0 ∈ R|V |×d on H0,

ϵl+1 = σ(HlW
⊤
1l +AHlW

⊤
2l + ϵlW

⊤
1l +AϵlW

⊤
2l)− σ(HlW

⊤
1l +AHlW

⊤
2l). (48)

We denote | · | as an operator to replace a matrix’s (·) elements with absolute values and we write
|J| ≤ |K| if |(J)ij | ≤ |(K)ij |. Let IS ∈ R|V |×1 is an indicator vector of S such that (IS)i =
1 if i ∈ S else 0. We firstly prove a lemma below.
Lemma 5. Given ϵ0 = α, it holds that

|ϵl| ≤ alISV
⊤
l + rl ∈ R|V |×d or |(ϵl)ij | ≤ al(Vl)j(IS)i + (rl)ij (49)

where al = ϵ(τ + 1)l, Vl ∈ Rd×1
+ , ||Vl||1 ≤ d and ||rl||1 ≤ 2rϵm(l + 1)(τ + 1)l.

Proof. We prove by induction. For l = 0, we can take a0 = ϵ, V0 = Id = [1, ..., 1︸ ︷︷ ︸
d

] and r0 = 0, then

it holds
|ϵ0| ≤ a0ISV

⊤
0 + r0. (50)

From the recurrent relation in equation 48, it holds that

ϵl+1 = σ((Hl + ϵl)W
⊤
1l +A(Hl + ϵl)W

⊤
2l)− σ(HlW

⊤
1l +AHlW

⊤
2l). (51)

From the Lipschitz continuity of σ, it holds that

|ϵl+1| ≤ |ϵlW⊤
1l +AϵlW

⊤
2l|. (52)

From the triangle inequality, we have

|ϵl+1| ≤ |ϵl||W⊤
1l|+A|ϵl||W⊤

2l|. (53)

From the assumption the statement holds at lth layer, we have

(∗) |ϵl| ≤ alISV
⊤
l + rl. (54)

Substitute equation 54 into equation 53, we have,

|ϵl+1| ≤ (alISV
⊤
l + rl)|W⊤

1l|+A(alISV
⊤
l + rl)|W⊤

2l| (55)

Expand the above equation,

|ϵl+1| ≤ al(AIS)(V
⊤
l |W⊤

2l|) +Arl|W⊤
2l|+ alISV

⊤
l |W⊤

1l|+ rl|W⊤
1l| (56)

18



PatchGT: Transformer over Non-trainable Clusters for Learning Graph Representations

Using the property of undirected τ -graph, it holds that

AIS = τIS −
∑

(i,j)∈E,i∈S,j∈T

(Ei −Ej) = τIS +BS , (57)

where we denote
BS = −

∑
(i,j)∈E,i∈S,j∈T

(Ei −Ej), (58)

and Ei,Ej ∈ R|V |×1 are unit vectors with ith and jth entry equal to 1 respectively. Then it is trivial
to show that

||BS ||1 ≤ 2m. (59)
Substitute equation 57 into equation 56, we have

|ϵl+1| ≤ alτISV
⊤
l |W⊤

2l|+ alBSV
⊤
l |W⊤

2l|+Arl|W⊤
2l|+ alISV

⊤
l |W⊤

1l|+ rl|W⊤
1l|. (60)

Let

al+1 = (1 + τ)al,

V⊤
l+1 =

τ

τ + 1
V⊤

l |W⊤
2l|+

1

τ + 1
V⊤

l |WT
1l|,

rl+1 = alBSV
⊤
l |W⊤

2l|+Arl|W⊤
2l|+ rl|W⊤

1l|,

(61)

then we rewrite equation 60 as

|ϵl+1| ≤ al+1ISV
⊤
l+1 + rl+1 (62)

From the assumption that
||W1l||1 ≤ 1, ||W2l||1 ≤ 1, (63)

we have
||(|W1l|)||1 = ||W1l||1 ≤ 1, ||(|W2l|)||1 = ||W2l||1 ≤ 1. (64)

So substitute equation 64, equation 59 and equation 54 into equation 61,

al+1 = (τ + 1)al ≤ ϵ(τ + 1)l+1

||V⊤
l+1|| ≤

τ

τ + 1
||V⊤

l ||1 +
1

τ + 1
||V⊤

l || ≤ d
(65)

and

||rl+1||1 ≤ al||BS ||1||V⊤
l ||1 + ||A||1||rl||1 + ||rl||1

≤ 2almd+ (τ + 1)||rl||1 ≤ 2mdϵ(τ + 1)l + (τ + 1)||rl||1
≤ 2mdϵ(τ + 1)l + 2mdϵ(l + 1)(τ + 1)l+1

≤ 2mdϵ(τ + 1)l+1 + 2mdϵ(l + 1)(τ + 1)l+1 = 2mdϵ(l + 2)(τ + 1)l+1.

(66)

This finishes the induction.

The above lemma gives
max

||W1l||1
||W2l||1

α

|ϵl| ≤ ϵ(τ + 1)lISV
⊤
l + rl (67)

where ||V⊤
l || ≤ d and ||rl||1 ≤ 2dϵm(l + 1)(τ + 1)l. So when only looking at indices ϵij with

i ∈ T , the first term vanishes and it holds that

max
||W1l||1
||W2l||1

α

∑
i∈T

|ϵl|ij ≤ 2dϵm(l + 1)(τ + 1)l (68)

For the denominator, we simply construct W1l = W2l as both identity matrix and take ϵ0 = β.
Then it simply holds that

|ϵ0| = (1 + τ)0ϵIT I
⊤
d (69)
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where IT is the indicator vector on set T . Assume it holds,

ϵl = (1 + τ)lϵIT I
⊤
d (70)

then from the Lipschitz continuity (ReLU) of σ and standard τ -graph, it holds that

ϵl+1 = σ((I+A)(Hl+ϵl))−σ((I+A)(Hl)) = (1+d)lϵ(I+A)IT I
⊤
d = (1+τ)l+1ϵIT I

⊤
d (71)

So we can get ∑
i∈T

|(ϵl)ij | = ϵ(1 + τ)l
∑
i∈T

(IT I
⊤
d )ij = (1 + τ)lϵ|T |d (72)

So that it holds that
max

||W1l||1
||W2l||1

β

∑
i∈T

|ϵl|ij ≥ (1 + τ)lϵ|T |d (73)

Combine equation 68 and equation 73, and substitute the last layer number as L− 1, we have

max
||W1l||1
||W2l||1

α

∑
i∈T |ϵl|ij

max
||W1l||1
||W2l||1

β

∑
i∈T |ϵl|ij

≤ 2mL

|T |
. (74)

A.8 Proof of Theorem 5

From the proof of proposition 1 in appendix A.7, by simply constructing W1l,W2l in the node-level
GNN as identity matrix, we have

∑
i∈S

|(ϵS)ij | = (1 + τ)Lϵ|S|d if ϵ0 = α,∑
i∈T

|(ϵS)ij | = (1 + τ)Lϵ|T |d if ϵ0 = β.
(75)

Then from Lipschitz continuity (ReLU) we have

ηS→T = gGNN
T (X+α)− gGNN

T (X)

= σ(zTW
⊤
1 + (zS +

1

|V |
∑
i∈S

(ϵS)ij)W2)− σ(zTW
⊤
1 + zSW

⊤
2 )

= (
1

|V |
∑
i∈S

(ϵS)ij)W
⊤
2 if ϵ0 = α

(76)

and

||ηS→T ||1 = ||( 1

|V |
∑
i∈S

(ϵS)ij)W
⊤
2 ||1 = ||W⊤

2 ||1(1 + τ)Lϵ
|S|
|V |

d if ϵ0 = α (77)

Similarly, we can get

ηT→T = (
1

|V |
∑
i∈T

(ϵT )ij)W
⊤
1 . if ϵ0 = β, (78)

and

||ηT→T ||1 = ||W⊤
1 ||1(1 + τ)Lϵ

|T |
|V |

d if ϵ0 = β, (79)

Then we can simply make ||W1||1
||W2||1 = |S|

|T | , so that the ratio is 1.
Remark 2. The assumption of output norm unification can be achieved by standard normalization,
such as batch and layer normalizations. Lipschitz continuity exists widely in the activation functions
such as ReLU. And most molecules can be modeled as qusi standard graphs. These assumptions are
fair assumptions in graph learning. Although it is difficult to universally obtain a precise and tight
bound, the existence of such bounds is still helpful for GNN structure design.
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Remark 3. The ratio may become informative if there are information bottlenecks within a cluster.
We can mitigate the problem by having an appropriate, sufficient number of clusters. However, the
number of clusters can not be too large, so there is a tradeoff between avoiding bottlenecks and
computational cost.

Here, we also introduce a heuristic example for possibly extending to a non-standard graph. Let
subgraph S be an cycle (2-graph) and subgraph T be a clique (n-graph), approximately. And we
assume |S| = |T | = n, and node values are all units with perturbation ϵ. After one propagation of
node level, each node in S has the value 3(1 + ϵ), each node in T has the value n(1 + ϵ). Then at
patch level, equations (75), (77), (79) are modified accordingly as ηS→T = 3ϵW2, ηT→T = nϵW1,
then ηS→T

ηT→T
= 3

n · W2

W1
, which indicates the unevenness may affect the performance. However, if at

patch level W2

W1
≈ O(n) can be learned, we can still reach a sub-optimal balance. Actually, if W2

W1
> 1

can be learned, it will help mitigate the bottleneck anyway.

A.9 Graph segmentation

As a graph has an irregular structure and contains rich structural information, forming patches on a
graph is not as straightforward as segmenting images. The previous works [9, 22] generally split an
image in the euclidean space. However, graphs are segmented through spectral clustering based on
its topology. Figure 8 shows the second eigenvector and patch segmentations based on the algorithm
described in Section 3.2. It can be seen that the eigenvectors change along with the graph structures,
and the graphs are splitted into several function groups. Such patches are useful for discriminating
the property of the given molecule.

A.10 More results

Table 7 provides the performance of PatchGT on ogbg-moltox21 and ogbg-moltoxcast.

Table 3: Results (%) on OGB datasets

ogbg-moltox21 ogbg-moltoxcast
GCN +VN 75.51 ± 0.86 66.33±0.35
GIN + VN 76.21 ± 0.82 66.18 ±0.68
GRAPHSNN +VN 76.78± 1.27 67.68 ± 0.92
PatchGT-GCN 76.49 ±0.93 66.58 ±0.47
PatchGT-GIN 77.26 ± 0.80 67.95 ±0.55

A.11 Datasets

Table 4 contains the statistics for the six datasets from Open Graph Bechmark (OGB) [14], and
Table 5 contains the statistics for the six datasets from TU datasets [25].

Table 4: Statistics of OGB datasets

Name #Graphs #Nodes per graphs #Edges per graph #Tasks
molhiv 41,127 25.5 27.5 1

molbace 1,513 34.1 36.9 1
molclintox 1,477 26.2 27.9 2
molsider 1,427 33.6 35.4 27

ogbg-moltox21 7,831 18.6 19.3 12
ogbg-moltoxcast 8,576 18.8 19.3 617

A.12 Hyper-parameters selection

We report the detailed hyper-parameter settings used for training PatchGT in Table 6. The search
space for λ is {0.1, 0.2, 0.4, 0.5, 0.8}.
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Figure 8: Examples of eigenvectors, and graph patches for molecules.
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Table 5: Statistics of TU datasets

Name #Graphs #Nodes per graphs #Edges per graph
DD 1,178 284.3 715.7

MUTAG 188 17.9 19.8
PROTEINS 1,113 39.1 72.8
PTC-MR 344 14.3 14.7

ENZYMES 600 32.6 62.1
Mutagenicity 4,337 30.3 30.8

Table 6: Model Configurations and Hyper-parameters

OGB TU
# GNN layers 5 4

# patch-GNN layers 2 2
Embedding Dropout 0.0 0.1
Hidden Dimension d 512 256
# Attention Heads 16 4
Attention Dropout 0.1 0.1

Batch Size 512 256
Learning Rate 1e-4 1e-4
Max Epochs 150 50

eigenvalue threshold λ {0.1, 0.2, 0.4, 0.5, 0.8}

A.13 Visualization of attention on nodes

Figure 9 shows more attention on graphs. We notice that some patches the model concentrates on
are far away from each other. This can help address information bottleneck in the graph. Also, it
provides more model interpretation.

A.14 Analysis of the computational complexity

We compare our computational complexity with the node-level Transformer, Graphormer [38]. The
comptutational complexity for both framework can be classified into two parts. The first part is
extracting graph structure infromation. For PatchGT, the complexity is O(|V |3) for calculating the
eigenvectors and perform kmeans for k patches. For Graphormer, the complexity is O(|V |4) due to
node pairwise shortest path computation.

Remark 4. The software and algorithms of eigen-decomposition are being widely developed in many
disciplines [10]. The complexity can be reduced to O(|V |2) if a partial query and approximation
of eigenvectors and eigenvalues are allowed [8, 29]. And spectral clustering does not require all
eigenvectors with exact values. However, we admit that for graphs with eigenvalues that are too close
to each other, the complexity of computing the eigenvectors takes O(N3).

The second part is neural network computation. For PatchGT, the complexity is O(|E|) for GNN if
the adjacency matrix is sparse and O(k2) for Transformer. And for Graphormer, the complexity of
Transformer is O(|V |2). It shoud be noticed that for a large graph, k << |V |. Overall, the complexity
of patch-level transformer is significantly less than that of applying transformer directly on the node
level.

For other hierarchical pooling methods, they also need O(L|E|) to learn the segmentation (L is the
number of layers used in GNN), which is comparable to spectral clustering. And spectral clustering
is easier for parallel computation. Specifically, for a Npool-level hierarchical pooling, it needs
O(

∑Npool
i=1 Li|Ei|) to learn the segmentation and O(

∑Npool
i=1 |Vi|diki) to perform the segmentation.

When training epoch number becomes a large number, the extra accumulated cost is non-trivial. Our
segmentation cost does not scale with the training iterations.
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Figure 9: Attention visualization of PatchGT on ogbg-molhiv molecules.

A.15 Frequencies of motifs

There are two classes in ogbg-molhiv, and we record the frequencies of motifs PatchGT pay attention
to. There are an apparent difference between the two classes. It indicates the model has a better
interpretability.

A.16 Ablation study for patch level GNN

In PatchGT, we apply patch level GNN to the entire graph. We can also apply it to each patch so
that there would not be any connection between subgraphs. Here we test the difference of these two
designs.

Table 7: Results (%) on ogbg-molhiv

single GNN multiple GNNs
PatchGT-GCN 80.22 ±0.0.84 79.13 ±0.47
PatchGT-GIN 79.99 ± 1.21 78.96 ±0.55
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Figure 10: Frequency of motifs PatchGT pay attention to in two classes.
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